xref: /linux/drivers/net/wireless/intel/iwlwifi/mld/rx.c (revision af2d6148d2a159e1a0862bce5a2c88c1618a2b27)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2024-2025 Intel Corporation
4  */
5 
6 #include <net/mac80211.h>
7 #include <kunit/static_stub.h>
8 
9 #include "mld.h"
10 #include "sta.h"
11 #include "agg.h"
12 #include "rx.h"
13 #include "hcmd.h"
14 #include "iface.h"
15 #include "time_sync.h"
16 #include "fw/dbg.h"
17 #include "fw/api/rx.h"
18 
19 /* stores relevant PHY data fields extracted from iwl_rx_mpdu_desc */
20 struct iwl_mld_rx_phy_data {
21 	enum iwl_rx_phy_info_type info_type;
22 	__le32 data0;
23 	__le32 data1;
24 	__le32 data2;
25 	__le32 data3;
26 	__le32 eht_data4;
27 	__le32 data5;
28 	__le16 data4;
29 	bool first_subframe;
30 	bool with_data;
31 	__le32 rx_vec[4];
32 	u32 rate_n_flags;
33 	u32 gp2_on_air_rise;
34 	u16 phy_info;
35 	u8 energy_a, energy_b;
36 };
37 
38 static void
39 iwl_mld_fill_phy_data(struct iwl_mld *mld,
40 		      struct iwl_rx_mpdu_desc *desc,
41 		      struct iwl_mld_rx_phy_data *phy_data)
42 {
43 	phy_data->phy_info = le16_to_cpu(desc->phy_info);
44 	phy_data->rate_n_flags = iwl_v3_rate_from_v2_v3(desc->v3.rate_n_flags,
45 							mld->fw_rates_ver_3);
46 	phy_data->gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
47 	phy_data->energy_a = desc->v3.energy_a;
48 	phy_data->energy_b = desc->v3.energy_b;
49 	phy_data->data0 = desc->v3.phy_data0;
50 	phy_data->data1 = desc->v3.phy_data1;
51 	phy_data->data2 = desc->v3.phy_data2;
52 	phy_data->data3 = desc->v3.phy_data3;
53 	phy_data->data4 = desc->phy_data4;
54 	phy_data->eht_data4 = desc->phy_eht_data4;
55 	phy_data->data5 = desc->v3.phy_data5;
56 	phy_data->with_data = true;
57 }
58 
59 static inline int iwl_mld_check_pn(struct iwl_mld *mld, struct sk_buff *skb,
60 				   int queue, struct ieee80211_sta *sta)
61 {
62 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
63 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
64 	struct iwl_mld_sta *mld_sta;
65 	struct iwl_mld_ptk_pn *ptk_pn;
66 	int res;
67 	u8 tid, keyidx;
68 	u8 pn[IEEE80211_CCMP_PN_LEN];
69 	u8 *extiv;
70 
71 	/* multicast and non-data only arrives on default queue; avoid checking
72 	 * for default queue - we don't want to replicate all the logic that's
73 	 * necessary for checking the PN on fragmented frames, leave that
74 	 * to mac80211
75 	 */
76 	if (queue == 0 || !ieee80211_is_data(hdr->frame_control) ||
77 	    is_multicast_ether_addr(hdr->addr1))
78 		return 0;
79 
80 	if (!(stats->flag & RX_FLAG_DECRYPTED))
81 		return 0;
82 
83 	/* if we are here - this for sure is either CCMP or GCMP */
84 	if (!sta) {
85 		IWL_DEBUG_DROP(mld,
86 			       "expected hw-decrypted unicast frame for station\n");
87 		return -1;
88 	}
89 
90 	mld_sta = iwl_mld_sta_from_mac80211(sta);
91 
92 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
93 	keyidx = extiv[3] >> 6;
94 
95 	ptk_pn = rcu_dereference(mld_sta->ptk_pn[keyidx]);
96 	if (!ptk_pn)
97 		return -1;
98 
99 	if (ieee80211_is_data_qos(hdr->frame_control))
100 		tid = ieee80211_get_tid(hdr);
101 	else
102 		tid = 0;
103 
104 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
105 	if (tid >= IWL_MAX_TID_COUNT)
106 		return -1;
107 
108 	/* load pn */
109 	pn[0] = extiv[7];
110 	pn[1] = extiv[6];
111 	pn[2] = extiv[5];
112 	pn[3] = extiv[4];
113 	pn[4] = extiv[1];
114 	pn[5] = extiv[0];
115 
116 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
117 	if (res < 0)
118 		return -1;
119 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
120 		return -1;
121 
122 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
123 	stats->flag |= RX_FLAG_PN_VALIDATED;
124 
125 	return 0;
126 }
127 
128 /* iwl_mld_pass_packet_to_mac80211 - passes the packet for mac80211 */
129 void iwl_mld_pass_packet_to_mac80211(struct iwl_mld *mld,
130 				     struct napi_struct *napi,
131 				     struct sk_buff *skb, int queue,
132 				     struct ieee80211_sta *sta)
133 {
134 	KUNIT_STATIC_STUB_REDIRECT(iwl_mld_pass_packet_to_mac80211,
135 				   mld, napi, skb, queue, sta);
136 
137 	if (unlikely(iwl_mld_check_pn(mld, skb, queue, sta))) {
138 		kfree_skb(skb);
139 		return;
140 	}
141 
142 	ieee80211_rx_napi(mld->hw, sta, skb, napi);
143 }
144 EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_pass_packet_to_mac80211);
145 
146 static bool iwl_mld_used_average_energy(struct iwl_mld *mld, int link_id,
147 					struct ieee80211_hdr *hdr,
148 					struct ieee80211_rx_status *rx_status)
149 {
150 	struct ieee80211_bss_conf *link_conf;
151 	struct iwl_mld_link *mld_link;
152 
153 	if (unlikely(!hdr || link_id < 0))
154 		return false;
155 
156 	if (likely(!ieee80211_is_beacon(hdr->frame_control)))
157 		return false;
158 
159 	/*
160 	 * if link ID is >= valid ones then that means the RX
161 	 * was on the AUX link and no correction is needed
162 	 */
163 	if (link_id >= mld->fw->ucode_capa.num_links)
164 		return false;
165 
166 	/* for the link conf lookup */
167 	guard(rcu)();
168 
169 	link_conf = rcu_dereference(mld->fw_id_to_bss_conf[link_id]);
170 	if (!link_conf)
171 		return false;
172 
173 	mld_link = iwl_mld_link_from_mac80211(link_conf);
174 	if (!mld_link)
175 		return false;
176 
177 	/*
178 	 * If we know the link by link ID then the frame was
179 	 * received for the link, so by filtering it means it
180 	 * was from the AP the link is connected to.
181 	 */
182 
183 	/* skip also in case we don't have it (yet) */
184 	if (!mld_link->average_beacon_energy)
185 		return false;
186 
187 	IWL_DEBUG_STATS(mld, "energy override by average %d\n",
188 			mld_link->average_beacon_energy);
189 	rx_status->signal = -mld_link->average_beacon_energy;
190 	return true;
191 }
192 
193 static void iwl_mld_fill_signal(struct iwl_mld *mld, int link_id,
194 				struct ieee80211_hdr *hdr,
195 				struct ieee80211_rx_status *rx_status,
196 				struct iwl_mld_rx_phy_data *phy_data)
197 {
198 	u32 rate_n_flags = phy_data->rate_n_flags;
199 	int energy_a = phy_data->energy_a;
200 	int energy_b = phy_data->energy_b;
201 	int max_energy;
202 
203 	energy_a = energy_a ? -energy_a : S8_MIN;
204 	energy_b = energy_b ? -energy_b : S8_MIN;
205 	max_energy = max(energy_a, energy_b);
206 
207 	IWL_DEBUG_STATS(mld, "energy in A %d B %d, and max %d\n",
208 			energy_a, energy_b, max_energy);
209 
210 	if (iwl_mld_used_average_energy(mld, link_id, hdr, rx_status))
211 		return;
212 
213 	rx_status->signal = max_energy;
214 	rx_status->chains = u32_get_bits(rate_n_flags, RATE_MCS_ANT_AB_MSK);
215 	rx_status->chain_signal[0] = energy_a;
216 	rx_status->chain_signal[1] = energy_b;
217 }
218 
219 static void
220 iwl_mld_decode_he_phy_ru_alloc(struct iwl_mld_rx_phy_data *phy_data,
221 			       struct ieee80211_radiotap_he *he,
222 			       struct ieee80211_radiotap_he_mu *he_mu,
223 			       struct ieee80211_rx_status *rx_status)
224 {
225 	/* Unfortunately, we have to leave the mac80211 data
226 	 * incorrect for the case that we receive an HE-MU
227 	 * transmission and *don't* have the HE phy data (due
228 	 * to the bits being used for TSF). This shouldn't
229 	 * happen though as management frames where we need
230 	 * the TSF/timers are not be transmitted in HE-MU.
231 	 */
232 	u8 ru = le32_get_bits(phy_data->data1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
233 	u32 rate_n_flags = phy_data->rate_n_flags;
234 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
235 	u8 offs = 0;
236 
237 	rx_status->bw = RATE_INFO_BW_HE_RU;
238 
239 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
240 
241 	switch (ru) {
242 	case 0 ... 36:
243 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
244 		offs = ru;
245 		break;
246 	case 37 ... 52:
247 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
248 		offs = ru - 37;
249 		break;
250 	case 53 ... 60:
251 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
252 		offs = ru - 53;
253 		break;
254 	case 61 ... 64:
255 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
256 		offs = ru - 61;
257 		break;
258 	case 65 ... 66:
259 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
260 		offs = ru - 65;
261 		break;
262 	case 67:
263 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
264 		break;
265 	case 68:
266 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
267 		break;
268 	}
269 	he->data2 |= le16_encode_bits(offs,
270 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
271 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
272 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
273 	if (phy_data->data1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
274 		he->data2 |=
275 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
276 
277 #define CHECK_BW(bw) \
278 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
279 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
280 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
281 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
282 	CHECK_BW(20);
283 	CHECK_BW(40);
284 	CHECK_BW(80);
285 	CHECK_BW(160);
286 
287 	if (he_mu)
288 		he_mu->flags2 |=
289 			le16_encode_bits(u32_get_bits(rate_n_flags,
290 						      RATE_MCS_CHAN_WIDTH_MSK),
291 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
292 	else if (he_type == RATE_MCS_HE_TYPE_TRIG)
293 		he->data6 |=
294 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
295 			le16_encode_bits(u32_get_bits(rate_n_flags,
296 						      RATE_MCS_CHAN_WIDTH_MSK),
297 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
298 }
299 
300 static void
301 iwl_mld_decode_he_mu_ext(struct iwl_mld_rx_phy_data *phy_data,
302 			 struct ieee80211_radiotap_he_mu *he_mu)
303 {
304 	u32 phy_data2 = le32_to_cpu(phy_data->data2);
305 	u32 phy_data3 = le32_to_cpu(phy_data->data3);
306 	u16 phy_data4 = le16_to_cpu(phy_data->data4);
307 	u32 rate_n_flags = phy_data->rate_n_flags;
308 
309 	if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK)) {
310 		he_mu->flags1 |=
311 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
312 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
313 
314 		he_mu->flags1 |=
315 			le16_encode_bits(u32_get_bits(phy_data4,
316 						      IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU),
317 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
318 
319 		he_mu->ru_ch1[0] = u32_get_bits(phy_data2,
320 						IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0);
321 		he_mu->ru_ch1[1] = u32_get_bits(phy_data3,
322 						IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1);
323 		he_mu->ru_ch1[2] = u32_get_bits(phy_data2,
324 						IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2);
325 		he_mu->ru_ch1[3] = u32_get_bits(phy_data3,
326 						IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3);
327 	}
328 
329 	if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK) &&
330 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
331 		he_mu->flags1 |=
332 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
333 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
334 
335 		he_mu->flags2 |=
336 			le16_encode_bits(u32_get_bits(phy_data4,
337 						      IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU),
338 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
339 
340 		he_mu->ru_ch2[0] = u32_get_bits(phy_data2,
341 						IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0);
342 		he_mu->ru_ch2[1] = u32_get_bits(phy_data3,
343 						IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1);
344 		he_mu->ru_ch2[2] = u32_get_bits(phy_data2,
345 						IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2);
346 		he_mu->ru_ch2[3] = u32_get_bits(phy_data3,
347 						IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3);
348 	}
349 }
350 
351 static void
352 iwl_mld_decode_he_phy_data(struct iwl_mld_rx_phy_data *phy_data,
353 			   struct ieee80211_radiotap_he *he,
354 			   struct ieee80211_radiotap_he_mu *he_mu,
355 			   struct ieee80211_rx_status *rx_status,
356 			   int queue)
357 {
358 	switch (phy_data->info_type) {
359 	case IWL_RX_PHY_INFO_TYPE_NONE:
360 	case IWL_RX_PHY_INFO_TYPE_CCK:
361 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
362 	case IWL_RX_PHY_INFO_TYPE_HT:
363 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
364 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
365 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
366 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
367 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
368 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
369 		return;
370 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
371 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
372 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
373 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
374 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
375 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
376 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
377 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
378 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
379 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
380 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
381 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
382 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
383 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
384 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
385 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
386 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
387 		fallthrough;
388 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
389 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
390 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
391 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
392 		/* HE common */
393 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
394 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
395 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
396 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
397 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
398 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
399 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
400 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
401 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
402 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
403 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
404 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
405 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
406 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
407 							    IWL_RX_PHY_DATA0_HE_UPLINK),
408 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
409 		}
410 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
411 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
412 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
413 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0,
414 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
415 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
416 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0,
417 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
418 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
419 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data1,
420 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
421 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
422 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0,
423 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
424 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
425 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0,
426 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
427 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
428 		break;
429 	}
430 
431 	switch (phy_data->info_type) {
432 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
433 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
434 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
435 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
436 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data0,
437 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
438 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
439 		break;
440 	default:
441 		/* nothing here */
442 		break;
443 	}
444 
445 	switch (phy_data->info_type) {
446 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
447 		he_mu->flags1 |=
448 			le16_encode_bits(le16_get_bits(phy_data->data4,
449 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
450 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
451 		he_mu->flags1 |=
452 			le16_encode_bits(le16_get_bits(phy_data->data4,
453 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
454 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
455 		he_mu->flags2 |=
456 			le16_encode_bits(le16_get_bits(phy_data->data4,
457 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
458 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
459 		iwl_mld_decode_he_mu_ext(phy_data, he_mu);
460 		fallthrough;
461 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
462 		he_mu->flags2 |=
463 			le16_encode_bits(le32_get_bits(phy_data->data1,
464 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
465 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
466 		he_mu->flags2 |=
467 			le16_encode_bits(le32_get_bits(phy_data->data1,
468 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
469 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
470 		fallthrough;
471 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
472 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
473 		iwl_mld_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
474 		break;
475 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
476 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
477 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
478 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
479 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
480 		break;
481 	default:
482 		/* nothing */
483 		break;
484 	}
485 }
486 
487 static void iwl_mld_rx_he(struct iwl_mld *mld, struct sk_buff *skb,
488 			  struct iwl_mld_rx_phy_data *phy_data,
489 			  int queue)
490 {
491 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
492 	struct ieee80211_radiotap_he *he = NULL;
493 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
494 	u32 rate_n_flags = phy_data->rate_n_flags;
495 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
496 	u8 ltf;
497 	static const struct ieee80211_radiotap_he known = {
498 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
499 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
500 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN	|
501 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
502 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
503 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
504 	};
505 	static const struct ieee80211_radiotap_he_mu mu_known = {
506 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
507 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
508 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
509 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
510 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
511 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
512 	};
513 	u16 phy_info = phy_data->phy_info;
514 
515 	he = skb_put_data(skb, &known, sizeof(known));
516 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
517 
518 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
519 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
520 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
521 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
522 	}
523 
524 	/* report the AMPDU-EOF bit on single frames */
525 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
526 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
527 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
528 		if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
529 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
530 	}
531 
532 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
533 		iwl_mld_decode_he_phy_data(phy_data, he, he_mu, rx_status,
534 					   queue);
535 
536 	/* update aggregation data for monitor sake on default queue */
537 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
538 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
539 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
540 		if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
541 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
542 	}
543 
544 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
545 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
546 		rx_status->bw = RATE_INFO_BW_HE_RU;
547 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
548 	}
549 
550 	/* actually data is filled in mac80211 */
551 	if (he_type == RATE_MCS_HE_TYPE_SU ||
552 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
553 		he->data1 |=
554 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
555 
556 #define CHECK_TYPE(F)							\
557 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
558 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
559 
560 	CHECK_TYPE(SU);
561 	CHECK_TYPE(EXT_SU);
562 	CHECK_TYPE(MU);
563 	CHECK_TYPE(TRIG);
564 
565 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
566 
567 	if (rate_n_flags & RATE_MCS_BF_MSK)
568 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
569 
570 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
571 		RATE_MCS_HE_GI_LTF_POS) {
572 	case 0:
573 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
574 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
575 		else
576 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
577 		if (he_type == RATE_MCS_HE_TYPE_MU)
578 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
579 		else
580 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
581 		break;
582 	case 1:
583 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
584 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
585 		else
586 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
587 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
588 		break;
589 	case 2:
590 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
591 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
592 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
593 		} else {
594 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
595 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
596 		}
597 		break;
598 	case 3:
599 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
600 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
601 		break;
602 	case 4:
603 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
604 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
605 		break;
606 	default:
607 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
608 	}
609 
610 	he->data5 |= le16_encode_bits(ltf,
611 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
612 }
613 
614 static void iwl_mld_decode_lsig(struct sk_buff *skb,
615 				struct iwl_mld_rx_phy_data *phy_data)
616 {
617 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
618 	struct ieee80211_radiotap_lsig *lsig;
619 
620 	switch (phy_data->info_type) {
621 	case IWL_RX_PHY_INFO_TYPE_HT:
622 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
623 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
624 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
625 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
626 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
627 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
628 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
629 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
630 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
631 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
632 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
633 		lsig = skb_put(skb, sizeof(*lsig));
634 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
635 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->data1,
636 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
637 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
638 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
639 		break;
640 	default:
641 		break;
642 	}
643 }
644 
645 /* Put a TLV on the skb and return data pointer
646  *
647  * Also pad the len to 4 and zero out all data part
648  */
649 static void *
650 iwl_mld_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
651 {
652 	struct ieee80211_radiotap_tlv *tlv;
653 
654 	tlv = skb_put(skb, sizeof(*tlv));
655 	tlv->type = cpu_to_le16(type);
656 	tlv->len = cpu_to_le16(len);
657 	return skb_put_zero(skb, ALIGN(len, 4));
658 }
659 
660 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
661 	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
662 
663 #define IWL_MLD_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
664 	typeof(enc_bits) _enc_bits = enc_bits; \
665 	typeof(usig) _usig = usig; \
666 	(_usig)->mask |= cpu_to_le32(_enc_bits); \
667 	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
668 } while (0)
669 
670 #define __IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
671 	eht->data[(rt_data)] |= \
672 		(cpu_to_le32 \
673 		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
674 		 LE32_DEC_ENC(data ## fw_data, \
675 			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
676 			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
677 
678 #define _IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
679 	__IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
680 
681 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
682 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
683 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
684 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
685 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
686 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
687 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
688 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
689 
690 #define IWL_RX_RU_DATA_A1			2
691 #define IWL_RX_RU_DATA_A2			2
692 #define IWL_RX_RU_DATA_B1			2
693 #define IWL_RX_RU_DATA_B2			4
694 #define IWL_RX_RU_DATA_C1			3
695 #define IWL_RX_RU_DATA_C2			3
696 #define IWL_RX_RU_DATA_D1			4
697 #define IWL_RX_RU_DATA_D2			4
698 
699 #define IWL_MLD_ENC_EHT_RU(rt_ru, fw_ru)				\
700 	_IWL_MLD_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
701 			    rt_ru,					\
702 			    IWL_RX_RU_DATA_ ## fw_ru,			\
703 			    fw_ru)
704 
705 static void iwl_mld_decode_eht_ext_mu(struct iwl_mld *mld,
706 				      struct iwl_mld_rx_phy_data *phy_data,
707 				      struct ieee80211_rx_status *rx_status,
708 				      struct ieee80211_radiotap_eht *eht,
709 				      struct ieee80211_radiotap_eht_usig *usig)
710 {
711 	if (phy_data->with_data) {
712 		__le32 data1 = phy_data->data1;
713 		__le32 data2 = phy_data->data2;
714 		__le32 data3 = phy_data->data3;
715 		__le32 data4 = phy_data->eht_data4;
716 		__le32 data5 = phy_data->data5;
717 		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
718 
719 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
720 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
721 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
722 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
723 					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
724 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
725 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data4,
726 					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
727 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
728 		IWL_MLD_ENC_USIG_VALUE_MASK
729 			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
730 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
731 
732 		eht->user_info[0] |=
733 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
734 			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
735 				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
736 
737 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
738 		eht->data[7] |= LE32_DEC_ENC
739 			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
740 			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
741 
742 		/*
743 		 * Hardware labels the content channels/RU allocation values
744 		 * as follows:
745 		 *           Content Channel 1		Content Channel 2
746 		 *   20 MHz: A1
747 		 *   40 MHz: A1				B1
748 		 *   80 MHz: A1 C1			B1 D1
749 		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
750 		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
751 		 *
752 		 * However firmware can only give us A1-D2, so the higher
753 		 * frequencies are missing.
754 		 */
755 
756 		switch (phy_bw) {
757 		case RATE_MCS_CHAN_WIDTH_320:
758 			/* additional values are missing in RX metadata */
759 			fallthrough;
760 		case RATE_MCS_CHAN_WIDTH_160:
761 			/* content channel 1 */
762 			IWL_MLD_ENC_EHT_RU(1_2_1, A2);
763 			IWL_MLD_ENC_EHT_RU(1_2_2, C2);
764 			/* content channel 2 */
765 			IWL_MLD_ENC_EHT_RU(2_2_1, B2);
766 			IWL_MLD_ENC_EHT_RU(2_2_2, D2);
767 			fallthrough;
768 		case RATE_MCS_CHAN_WIDTH_80:
769 			/* content channel 1 */
770 			IWL_MLD_ENC_EHT_RU(1_1_2, C1);
771 			/* content channel 2 */
772 			IWL_MLD_ENC_EHT_RU(2_1_2, D1);
773 			fallthrough;
774 		case RATE_MCS_CHAN_WIDTH_40:
775 			/* content channel 2 */
776 			IWL_MLD_ENC_EHT_RU(2_1_1, B1);
777 			fallthrough;
778 		case RATE_MCS_CHAN_WIDTH_20:
779 			IWL_MLD_ENC_EHT_RU(1_1_1, A1);
780 			break;
781 		}
782 	} else {
783 		__le32 usig_a1 = phy_data->rx_vec[0];
784 		__le32 usig_a2 = phy_data->rx_vec[1];
785 
786 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
787 					    IWL_RX_USIG_A1_DISREGARD,
788 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
789 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
790 					    IWL_RX_USIG_A1_VALIDATE,
791 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
792 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
793 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
794 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
795 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
796 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
797 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
798 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
799 					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
800 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
801 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
802 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
803 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
804 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
805 					    IWL_RX_USIG_A2_EHT_SIG_MCS,
806 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
807 		IWL_MLD_ENC_USIG_VALUE_MASK
808 			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
809 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
810 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
811 					    IWL_RX_USIG_A2_EHT_CRC_OK,
812 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
813 	}
814 }
815 
816 static void iwl_mld_decode_eht_ext_tb(struct iwl_mld *mld,
817 				      struct iwl_mld_rx_phy_data *phy_data,
818 				      struct ieee80211_rx_status *rx_status,
819 				      struct ieee80211_radiotap_eht *eht,
820 				      struct ieee80211_radiotap_eht_usig *usig)
821 {
822 	if (phy_data->with_data) {
823 		__le32 data5 = phy_data->data5;
824 
825 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
826 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
827 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
828 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
829 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
830 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
831 
832 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
833 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
834 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
835 	} else {
836 		__le32 usig_a1 = phy_data->rx_vec[0];
837 		__le32 usig_a2 = phy_data->rx_vec[1];
838 
839 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
840 					    IWL_RX_USIG_A1_DISREGARD,
841 					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
842 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
843 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
844 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
845 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
846 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
847 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
848 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
849 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
850 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
851 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
852 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
853 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
854 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
855 					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
856 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
857 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
858 					    IWL_RX_USIG_A2_EHT_CRC_OK,
859 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
860 	}
861 }
862 
863 static void iwl_mld_decode_eht_ru(struct iwl_mld *mld,
864 				  struct ieee80211_rx_status *rx_status,
865 				  struct ieee80211_radiotap_eht *eht)
866 {
867 	u32 ru = le32_get_bits(eht->data[8],
868 			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
869 	enum nl80211_eht_ru_alloc nl_ru;
870 
871 	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
872 	 * in an EHT variant User Info field
873 	 */
874 
875 	switch (ru) {
876 	case 0 ... 36:
877 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
878 		break;
879 	case 37 ... 52:
880 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
881 		break;
882 	case 53 ... 60:
883 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
884 		break;
885 	case 61 ... 64:
886 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
887 		break;
888 	case 65 ... 66:
889 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
890 		break;
891 	case 67:
892 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
893 		break;
894 	case 68:
895 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
896 		break;
897 	case 69:
898 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
899 		break;
900 	case 70 ... 81:
901 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
902 		break;
903 	case 82 ... 89:
904 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
905 		break;
906 	case 90 ... 93:
907 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
908 		break;
909 	case 94 ... 95:
910 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
911 		break;
912 	case 96 ... 99:
913 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
914 		break;
915 	case 100 ... 103:
916 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
917 		break;
918 	case 104:
919 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
920 		break;
921 	case 105 ... 106:
922 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
923 		break;
924 	default:
925 		return;
926 	}
927 
928 	rx_status->bw = RATE_INFO_BW_EHT_RU;
929 	rx_status->eht.ru = nl_ru;
930 }
931 
932 static void iwl_mld_decode_eht_phy_data(struct iwl_mld *mld,
933 					struct iwl_mld_rx_phy_data *phy_data,
934 					struct ieee80211_rx_status *rx_status,
935 					struct ieee80211_radiotap_eht *eht,
936 					struct ieee80211_radiotap_eht_usig *usig)
937 
938 {
939 	__le32 data0 = phy_data->data0;
940 	__le32 data1 = phy_data->data1;
941 	__le32 usig_a1 = phy_data->rx_vec[0];
942 	u8 info_type = phy_data->info_type;
943 
944 	/* Not in EHT range */
945 	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
946 	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
947 		return;
948 
949 	usig->common |= cpu_to_le32
950 		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
951 		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
952 	if (phy_data->with_data) {
953 		usig->common |= LE32_DEC_ENC(data0,
954 					     IWL_RX_PHY_DATA0_EHT_UPLINK,
955 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
956 		usig->common |= LE32_DEC_ENC(data0,
957 					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
958 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
959 	} else {
960 		usig->common |= LE32_DEC_ENC(usig_a1,
961 					     IWL_RX_USIG_A1_UL_FLAG,
962 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
963 		usig->common |= LE32_DEC_ENC(usig_a1,
964 					     IWL_RX_USIG_A1_BSS_COLOR,
965 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
966 	}
967 
968 	usig->common |=
969 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
970 	usig->common |=
971 		LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
972 			     IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
973 
974 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
975 	eht->data[0] |= LE32_DEC_ENC(data0,
976 				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
977 				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
978 
979 	/* All RU allocating size/index is in TB format */
980 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
981 	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
982 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
983 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
984 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
985 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
986 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
987 
988 	iwl_mld_decode_eht_ru(mld, rx_status, eht);
989 
990 	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
991 	 * which is on only in case of monitor mode so no need to check monitor
992 	 * mode
993 	 */
994 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
995 	eht->data[1] |=
996 		le32_encode_bits(mld->monitor.p80,
997 				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
998 
999 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1000 	if (phy_data->with_data)
1001 		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1002 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1003 	else
1004 		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1005 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1006 
1007 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1008 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1009 				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1010 
1011 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1012 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1013 				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1014 
1015 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1016 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1017 				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1018 
1019 	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1020 
1021 	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1022 		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1023 
1024 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1025 	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1026 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1027 
1028 	/*
1029 	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1030 	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1031 	 */
1032 
1033 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1034 	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1035 				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1036 
1037 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1038 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1039 		iwl_mld_decode_eht_ext_tb(mld, phy_data, rx_status, eht, usig);
1040 
1041 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1042 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1043 		iwl_mld_decode_eht_ext_mu(mld, phy_data, rx_status, eht, usig);
1044 }
1045 
1046 static void iwl_mld_rx_eht(struct iwl_mld *mld, struct sk_buff *skb,
1047 			   struct iwl_mld_rx_phy_data *phy_data,
1048 			   int queue)
1049 {
1050 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1051 	struct ieee80211_radiotap_eht *eht;
1052 	struct ieee80211_radiotap_eht_usig *usig;
1053 	size_t eht_len = sizeof(*eht);
1054 
1055 	u32 rate_n_flags = phy_data->rate_n_flags;
1056 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1057 	/* EHT and HE have the same values for LTF */
1058 	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1059 	u16 phy_info = phy_data->phy_info;
1060 	u32 bw;
1061 
1062 	/* u32 for 1 user_info */
1063 	if (phy_data->with_data)
1064 		eht_len += sizeof(u32);
1065 
1066 	eht = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1067 
1068 	usig = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1069 					sizeof(*usig));
1070 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1071 	usig->common |=
1072 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1073 
1074 	/* specific handling for 320MHz */
1075 	bw = u32_get_bits(rate_n_flags, RATE_MCS_CHAN_WIDTH_MSK);
1076 	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1077 		bw += le32_get_bits(phy_data->data0,
1078 				    IWL_RX_PHY_DATA0_EHT_BW320_SLOT);
1079 
1080 	usig->common |= cpu_to_le32
1081 		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1082 
1083 	/* report the AMPDU-EOF bit on single frames */
1084 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1085 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1086 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1087 		if (phy_data->data0 &
1088 		    cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1089 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1090 	}
1091 
1092 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1093 		iwl_mld_decode_eht_phy_data(mld, phy_data, rx_status, eht, usig);
1094 
1095 #define CHECK_TYPE(F)							\
1096 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1097 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1098 
1099 	CHECK_TYPE(SU);
1100 	CHECK_TYPE(EXT_SU);
1101 	CHECK_TYPE(MU);
1102 	CHECK_TYPE(TRIG);
1103 
1104 	switch (u32_get_bits(rate_n_flags, RATE_MCS_HE_GI_LTF_MSK)) {
1105 	case 0:
1106 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1107 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1108 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1109 		} else {
1110 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1111 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1112 		}
1113 		break;
1114 	case 1:
1115 		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1116 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1117 		break;
1118 	case 2:
1119 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1120 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1121 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1122 		else
1123 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1124 		break;
1125 	case 3:
1126 		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1127 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1128 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1129 		}
1130 		break;
1131 	default:
1132 		/* nothing here */
1133 		break;
1134 	}
1135 
1136 	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1137 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1138 		eht->data[0] |= cpu_to_le32
1139 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1140 				    ltf) |
1141 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1142 				    rx_status->eht.gi));
1143 	}
1144 
1145 	if (!phy_data->with_data) {
1146 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1147 					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1148 		eht->data[7] |=
1149 			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1150 						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1151 					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1152 		if (rate_n_flags & RATE_MCS_BF_MSK)
1153 			eht->data[7] |=
1154 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1155 	} else {
1156 		eht->user_info[0] |=
1157 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1158 				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1159 				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1160 				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1161 				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1162 
1163 		if (rate_n_flags & RATE_MCS_BF_MSK)
1164 			eht->user_info[0] |=
1165 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1166 
1167 		if (rate_n_flags & RATE_MCS_LDPC_MSK)
1168 			eht->user_info[0] |=
1169 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1170 
1171 		eht->user_info[0] |= cpu_to_le32
1172 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1173 				    u32_get_bits(rate_n_flags,
1174 						 RATE_VHT_MCS_RATE_CODE_MSK)) |
1175 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1176 				    u32_get_bits(rate_n_flags,
1177 						 RATE_MCS_NSS_MSK)));
1178 	}
1179 }
1180 
1181 #ifdef CONFIG_IWLWIFI_DEBUGFS
1182 static void iwl_mld_add_rtap_sniffer_config(struct iwl_mld *mld,
1183 					    struct sk_buff *skb)
1184 {
1185 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1186 	struct ieee80211_radiotap_vendor_content *radiotap;
1187 	const u16 vendor_data_len = sizeof(mld->monitor.cur_aid);
1188 
1189 	if (!mld->monitor.cur_aid)
1190 		return;
1191 
1192 	radiotap =
1193 		iwl_mld_radiotap_put_tlv(skb,
1194 					 IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
1195 					 sizeof(*radiotap) + vendor_data_len);
1196 
1197 	/* Intel OUI */
1198 	radiotap->oui[0] = 0xf6;
1199 	radiotap->oui[1] = 0x54;
1200 	radiotap->oui[2] = 0x25;
1201 	/* radiotap sniffer config sub-namespace */
1202 	radiotap->oui_subtype = 1;
1203 	radiotap->vendor_type = 0;
1204 
1205 	/* fill the data now */
1206 	memcpy(radiotap->data, &mld->monitor.cur_aid,
1207 	       sizeof(mld->monitor.cur_aid));
1208 
1209 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1210 }
1211 #endif
1212 
1213 /* Note: hdr can be NULL */
1214 static void iwl_mld_rx_fill_status(struct iwl_mld *mld, int link_id,
1215 				   struct ieee80211_hdr *hdr,
1216 				   struct sk_buff *skb,
1217 				   struct iwl_mld_rx_phy_data *phy_data,
1218 				   int queue)
1219 {
1220 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1221 	u32 format = phy_data->rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1222 	u32 rate_n_flags = phy_data->rate_n_flags;
1223 	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1224 	bool is_sgi = rate_n_flags & RATE_MCS_SGI_MSK;
1225 
1226 	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1227 
1228 	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1229 		phy_data->info_type =
1230 			le32_get_bits(phy_data->data1,
1231 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1232 
1233 	/* set the preamble flag if appropriate */
1234 	if (format == RATE_MCS_MOD_TYPE_CCK &&
1235 	    phy_data->phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1236 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1237 
1238 	iwl_mld_fill_signal(mld, link_id, hdr, rx_status, phy_data);
1239 
1240 	/* This may be overridden by iwl_mld_rx_he() to HE_RU */
1241 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1242 	case RATE_MCS_CHAN_WIDTH_20:
1243 		break;
1244 	case RATE_MCS_CHAN_WIDTH_40:
1245 		rx_status->bw = RATE_INFO_BW_40;
1246 		break;
1247 	case RATE_MCS_CHAN_WIDTH_80:
1248 		rx_status->bw = RATE_INFO_BW_80;
1249 		break;
1250 	case RATE_MCS_CHAN_WIDTH_160:
1251 		rx_status->bw = RATE_INFO_BW_160;
1252 		break;
1253 	case RATE_MCS_CHAN_WIDTH_320:
1254 		rx_status->bw = RATE_INFO_BW_320;
1255 		break;
1256 	}
1257 
1258 	/* must be before L-SIG data */
1259 	if (format == RATE_MCS_MOD_TYPE_HE)
1260 		iwl_mld_rx_he(mld, skb, phy_data, queue);
1261 
1262 	iwl_mld_decode_lsig(skb, phy_data);
1263 
1264 	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1265 
1266 	/* using TLV format and must be after all fixed len fields */
1267 	if (format == RATE_MCS_MOD_TYPE_EHT)
1268 		iwl_mld_rx_eht(mld, skb, phy_data, queue);
1269 
1270 #ifdef CONFIG_IWLWIFI_DEBUGFS
1271 	if (unlikely(mld->monitor.on)) {
1272 		iwl_mld_add_rtap_sniffer_config(mld, skb);
1273 
1274 		if (mld->monitor.ptp_time) {
1275 			u64 adj_time =
1276 			    iwl_mld_ptp_get_adj_time(mld,
1277 						     phy_data->gp2_on_air_rise *
1278 						     NSEC_PER_USEC);
1279 
1280 			rx_status->mactime = div64_u64(adj_time, NSEC_PER_USEC);
1281 			rx_status->flag |= RX_FLAG_MACTIME_IS_RTAP_TS64;
1282 			rx_status->flag &= ~RX_FLAG_MACTIME;
1283 		}
1284 	}
1285 #endif
1286 
1287 	if (format != RATE_MCS_MOD_TYPE_CCK && is_sgi)
1288 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1289 
1290 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1291 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1292 
1293 	switch (format) {
1294 	case RATE_MCS_MOD_TYPE_HT:
1295 		rx_status->encoding = RX_ENC_HT;
1296 		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
1297 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1298 		break;
1299 	case RATE_MCS_MOD_TYPE_VHT:
1300 	case RATE_MCS_MOD_TYPE_HE:
1301 	case RATE_MCS_MOD_TYPE_EHT:
1302 		if (format == RATE_MCS_MOD_TYPE_VHT) {
1303 			rx_status->encoding = RX_ENC_VHT;
1304 		} else if (format == RATE_MCS_MOD_TYPE_HE) {
1305 			rx_status->encoding = RX_ENC_HE;
1306 			rx_status->he_dcm =
1307 				!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1308 		} else if (format == RATE_MCS_MOD_TYPE_EHT) {
1309 			rx_status->encoding = RX_ENC_EHT;
1310 		}
1311 
1312 		rx_status->nss = u32_get_bits(rate_n_flags,
1313 					      RATE_MCS_NSS_MSK) + 1;
1314 		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
1315 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1316 		break;
1317 	default: {
1318 		int rate =
1319 		    iwl_mld_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
1320 							  rx_status->band);
1321 
1322 		/* valid rate */
1323 		if (rate >= 0 && rate <= 0xFF) {
1324 			rx_status->rate_idx = rate;
1325 			break;
1326 		}
1327 
1328 		/* invalid rate */
1329 		rx_status->rate_idx = 0;
1330 
1331 		if (net_ratelimit())
1332 			IWL_ERR(mld, "invalid rate_n_flags=0x%x, band=%d\n",
1333 				rate_n_flags, rx_status->band);
1334 		break;
1335 		}
1336 	}
1337 }
1338 
1339 /* iwl_mld_create_skb adds the rxb to a new skb */
1340 static int iwl_mld_build_rx_skb(struct iwl_mld *mld, struct sk_buff *skb,
1341 				struct ieee80211_hdr *hdr, u16 len,
1342 				u8 crypt_len, struct iwl_rx_cmd_buffer *rxb)
1343 {
1344 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1345 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1346 	unsigned int headlen, fraglen, pad_len = 0;
1347 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
1348 	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
1349 				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
1350 
1351 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1352 		len -= 2;
1353 		pad_len = 2;
1354 	}
1355 
1356 	/* For non monitor interface strip the bytes the RADA might not have
1357 	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
1358 	 * interface cannot exist with other interfaces, this removal is safe
1359 	 * and sufficient, in monitor mode there's no decryption being done.
1360 	 */
1361 	if (len > mic_crc_len && !ieee80211_hw_check(mld->hw, RX_INCLUDES_FCS))
1362 		len -= mic_crc_len;
1363 
1364 	/* If frame is small enough to fit in skb->head, pull it completely.
1365 	 * If not, only pull ieee80211_hdr (including crypto if present, and
1366 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
1367 	 * splice() or TCP coalesce are more efficient.
1368 	 *
1369 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
1370 	 * least 8 bytes (possibly more for mesh) we can do the same here
1371 	 * to save the cost of doing it later. That still doesn't pull in
1372 	 * the actual IP header since the typical case has a SNAP header.
1373 	 * If the latter changes (there are efforts in the standards group
1374 	 * to do so) we should revisit this and ieee80211_data_to_8023().
1375 	 */
1376 	headlen = (len <= skb_tailroom(skb)) ? len : hdrlen + crypt_len + 8;
1377 
1378 	/* The firmware may align the packet to DWORD.
1379 	 * The padding is inserted after the IV.
1380 	 * After copying the header + IV skip the padding if
1381 	 * present before copying packet data.
1382 	 */
1383 	hdrlen += crypt_len;
1384 
1385 	if (unlikely(headlen < hdrlen))
1386 		return -EINVAL;
1387 
1388 	/* Since data doesn't move data while putting data on skb and that is
1389 	 * the only way we use, data + len is the next place that hdr would
1390 	 * be put
1391 	 */
1392 	skb_set_mac_header(skb, skb->len);
1393 	skb_put_data(skb, hdr, hdrlen);
1394 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
1395 
1396 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1397 		struct {
1398 			u8 hdr[6];
1399 			__be16 type;
1400 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
1401 
1402 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
1403 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
1404 			     (shdr->type != htons(ETH_P_IP) &&
1405 			      shdr->type != htons(ETH_P_ARP) &&
1406 			      shdr->type != htons(ETH_P_IPV6) &&
1407 			      shdr->type != htons(ETH_P_8021Q) &&
1408 			      shdr->type != htons(ETH_P_PAE) &&
1409 			      shdr->type != htons(ETH_P_TDLS))))
1410 			skb->ip_summed = CHECKSUM_NONE;
1411 	}
1412 
1413 	fraglen = len - headlen;
1414 
1415 	if (fraglen) {
1416 		int offset = (u8 *)hdr + headlen + pad_len -
1417 			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
1418 
1419 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
1420 				fraglen, rxb->truesize);
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /* returns true if a packet is a duplicate or invalid tid and
1427  * should be dropped. Updates AMSDU PN tracking info
1428  */
1429 VISIBLE_IF_IWLWIFI_KUNIT
1430 bool
1431 iwl_mld_is_dup(struct iwl_mld *mld, struct ieee80211_sta *sta,
1432 	       struct ieee80211_hdr *hdr,
1433 	       const struct iwl_rx_mpdu_desc *mpdu_desc,
1434 	       struct ieee80211_rx_status *rx_status, int queue)
1435 {
1436 	struct iwl_mld_sta *mld_sta;
1437 	struct iwl_mld_rxq_dup_data *dup_data;
1438 	u8 tid, sub_frame_idx;
1439 
1440 	if (WARN_ON(!sta))
1441 		return false;
1442 
1443 	mld_sta = iwl_mld_sta_from_mac80211(sta);
1444 
1445 	if (WARN_ON_ONCE(!mld_sta->dup_data))
1446 		return false;
1447 
1448 	dup_data = &mld_sta->dup_data[queue];
1449 
1450 	/* Drop duplicate 802.11 retransmissions
1451 	 * (IEEE 802.11-2020: 10.3.2.14 "Duplicate detection and recovery")
1452 	 */
1453 	if (ieee80211_is_ctl(hdr->frame_control) ||
1454 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1455 	    is_multicast_ether_addr(hdr->addr1))
1456 		return false;
1457 
1458 	if (ieee80211_is_data_qos(hdr->frame_control)) {
1459 		/* frame has qos control */
1460 		tid = ieee80211_get_tid(hdr);
1461 		if (tid >= IWL_MAX_TID_COUNT)
1462 			return true;
1463 	} else {
1464 		tid = IWL_MAX_TID_COUNT;
1465 	}
1466 
1467 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
1468 	sub_frame_idx = mpdu_desc->amsdu_info &
1469 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
1470 
1471 	if (IWL_FW_CHECK(mld,
1472 			 sub_frame_idx > 0 &&
1473 			 !(mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU),
1474 			 "got sub_frame_idx=%d but A-MSDU flag is not set\n",
1475 			 sub_frame_idx))
1476 		return true;
1477 
1478 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1479 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
1480 		     dup_data->last_sub_frame_idx[tid] >= sub_frame_idx))
1481 		return true;
1482 
1483 	/* Allow same PN as the first subframe for following sub frames */
1484 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
1485 	    sub_frame_idx > dup_data->last_sub_frame_idx[tid])
1486 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
1487 
1488 	dup_data->last_seq[tid] = hdr->seq_ctrl;
1489 	dup_data->last_sub_frame_idx[tid] = sub_frame_idx;
1490 
1491 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
1492 
1493 	return false;
1494 }
1495 EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_is_dup);
1496 
1497 static void iwl_mld_update_last_rx_timestamp(struct iwl_mld *mld, u8 baid)
1498 {
1499 	unsigned long now = jiffies;
1500 	unsigned long timeout;
1501 	struct iwl_mld_baid_data *ba_data;
1502 
1503 	ba_data = rcu_dereference(mld->fw_id_to_ba[baid]);
1504 	if (!ba_data) {
1505 		IWL_DEBUG_HT(mld, "BAID %d not found in map\n", baid);
1506 		return;
1507 	}
1508 
1509 	if (!ba_data->timeout)
1510 		return;
1511 
1512 	/* To minimize cache bouncing between RX queues, avoid frequent updates
1513 	 * to last_rx_timestamp. update it only when the timeout period has
1514 	 * passed. The worst-case scenario is the session expiring after
1515 	 * approximately 2 * timeout, which is negligible (the update is
1516 	 * atomic).
1517 	 */
1518 	timeout = TU_TO_JIFFIES(ba_data->timeout);
1519 	if (time_is_before_jiffies(ba_data->last_rx_timestamp + timeout))
1520 		ba_data->last_rx_timestamp = now;
1521 }
1522 
1523 /* Processes received packets for a station.
1524  * Sets *drop to true if the packet should be dropped.
1525  * Returns the station if found, or NULL otherwise.
1526  */
1527 static struct ieee80211_sta *
1528 iwl_mld_rx_with_sta(struct iwl_mld *mld, struct ieee80211_hdr *hdr,
1529 		    struct sk_buff *skb,
1530 		    const struct iwl_rx_mpdu_desc *mpdu_desc,
1531 		    const struct iwl_rx_packet *pkt, int queue, bool *drop)
1532 {
1533 	struct ieee80211_sta *sta = NULL;
1534 	struct ieee80211_link_sta *link_sta = NULL;
1535 	struct ieee80211_rx_status *rx_status;
1536 	u8 baid;
1537 
1538 	if (mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1539 		u8 sta_id = le32_get_bits(mpdu_desc->status,
1540 					  IWL_RX_MPDU_STATUS_STA_ID);
1541 
1542 		if (IWL_FW_CHECK(mld,
1543 				 sta_id >= mld->fw->ucode_capa.num_stations,
1544 				 "rx_mpdu: invalid sta_id %d\n", sta_id))
1545 			return NULL;
1546 
1547 		link_sta = rcu_dereference(mld->fw_id_to_link_sta[sta_id]);
1548 		if (!IS_ERR_OR_NULL(link_sta))
1549 			sta = link_sta->sta;
1550 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
1551 		/* Passing NULL is fine since we prevent two stations with the
1552 		 * same address from being added.
1553 		 */
1554 		sta = ieee80211_find_sta_by_ifaddr(mld->hw, hdr->addr2, NULL);
1555 	}
1556 
1557 	/* we may not have any station yet */
1558 	if (!sta)
1559 		return NULL;
1560 
1561 	rx_status = IEEE80211_SKB_RXCB(skb);
1562 
1563 	if (link_sta && sta->valid_links) {
1564 		rx_status->link_valid = true;
1565 		rx_status->link_id = link_sta->link_id;
1566 	}
1567 
1568 	/* fill checksum */
1569 	if (ieee80211_is_data(hdr->frame_control) &&
1570 	    pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
1571 		u16 hwsum = be16_to_cpu(mpdu_desc->v3.raw_xsum);
1572 
1573 		skb->ip_summed = CHECKSUM_COMPLETE;
1574 		skb->csum = csum_unfold(~(__force __sum16)hwsum);
1575 	}
1576 
1577 	if (iwl_mld_is_dup(mld, sta, hdr, mpdu_desc, rx_status, queue)) {
1578 		IWL_DEBUG_DROP(mld, "Dropping duplicate packet 0x%x\n",
1579 			       le16_to_cpu(hdr->seq_ctrl));
1580 		*drop = true;
1581 		return NULL;
1582 	}
1583 
1584 	baid = le32_get_bits(mpdu_desc->reorder_data,
1585 			     IWL_RX_MPDU_REORDER_BAID_MASK);
1586 	if (baid != IWL_RX_REORDER_DATA_INVALID_BAID)
1587 		iwl_mld_update_last_rx_timestamp(mld, baid);
1588 
1589 	if (link_sta && ieee80211_is_data(hdr->frame_control)) {
1590 		u8 sub_frame_idx = mpdu_desc->amsdu_info &
1591 			IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
1592 
1593 		/* 0 means not an A-MSDU, and 1 means a new A-MSDU */
1594 		if (!sub_frame_idx || sub_frame_idx == 1)
1595 			iwl_mld_count_mpdu_rx(link_sta, queue, 1);
1596 
1597 		if (!is_multicast_ether_addr(hdr->addr1))
1598 			iwl_mld_low_latency_update_counters(mld, hdr, sta,
1599 							    queue);
1600 	}
1601 
1602 	return sta;
1603 }
1604 
1605 #define KEY_IDX_LEN 2
1606 
1607 static int iwl_mld_rx_mgmt_prot(struct ieee80211_sta *sta,
1608 				struct ieee80211_hdr *hdr,
1609 				struct ieee80211_rx_status *rx_status,
1610 				u32 mpdu_status,
1611 				u32 mpdu_len)
1612 {
1613 	struct wireless_dev *wdev;
1614 	struct iwl_mld_sta *mld_sta;
1615 	struct iwl_mld_vif *mld_vif;
1616 	u8 keyidx;
1617 	struct ieee80211_key_conf *key;
1618 	const u8 *frame = (void *)hdr;
1619 
1620 	if ((mpdu_status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
1621 	     IWL_RX_MPDU_STATUS_SEC_NONE)
1622 		return 0;
1623 
1624 	/* For non-beacon, we don't really care. But beacons may
1625 	 * be filtered out, and we thus need the firmware's replay
1626 	 * detection, otherwise beacons the firmware previously
1627 	 * filtered could be replayed, or something like that, and
1628 	 * it can filter a lot - though usually only if nothing has
1629 	 * changed.
1630 	 */
1631 	if (!ieee80211_is_beacon(hdr->frame_control))
1632 		return 0;
1633 
1634 	if (!sta)
1635 		return -1;
1636 
1637 	mld_sta = iwl_mld_sta_from_mac80211(sta);
1638 	mld_vif = iwl_mld_vif_from_mac80211(mld_sta->vif);
1639 
1640 	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
1641 	if (!(mpdu_status & IWL_RX_MPDU_STATUS_KEY_VALID))
1642 		goto report;
1643 
1644 	/* good cases */
1645 	if (likely(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK &&
1646 		   !(mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
1647 		rx_status->flag |= RX_FLAG_DECRYPTED;
1648 		return 0;
1649 	}
1650 
1651 	/* both keys will have the same cipher and MIC length, use
1652 	 * whichever one is available
1653 	 */
1654 	key = rcu_dereference(mld_vif->bigtks[0]);
1655 	if (!key) {
1656 		key = rcu_dereference(mld_vif->bigtks[1]);
1657 		if (!key)
1658 			goto report;
1659 	}
1660 
1661 	if (mpdu_len < key->icv_len + IEEE80211_GMAC_PN_LEN + KEY_IDX_LEN)
1662 		goto report;
1663 
1664 	/* get the real key ID */
1665 	keyidx = frame[mpdu_len - key->icv_len - IEEE80211_GMAC_PN_LEN - KEY_IDX_LEN];
1666 	/* and if that's the other key, look it up */
1667 	if (keyidx != key->keyidx) {
1668 		/* shouldn't happen since firmware checked, but be safe
1669 		 * in case the MIC length is wrong too, for example
1670 		 */
1671 		if (keyidx != 6 && keyidx != 7)
1672 			return -1;
1673 
1674 		key = rcu_dereference(mld_vif->bigtks[keyidx - 6]);
1675 		if (!key)
1676 			goto report;
1677 	}
1678 
1679 	/* Report status to mac80211 */
1680 	if (!(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK))
1681 		ieee80211_key_mic_failure(key);
1682 	else if (mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
1683 		ieee80211_key_replay(key);
1684 report:
1685 	wdev = ieee80211_vif_to_wdev(mld_sta->vif);
1686 	if (wdev->netdev)
1687 		cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr,
1688 					     mpdu_len);
1689 
1690 	return -1;
1691 }
1692 
1693 static int iwl_mld_rx_crypto(struct iwl_mld *mld,
1694 			     struct ieee80211_sta *sta,
1695 			     struct ieee80211_hdr *hdr,
1696 			     struct ieee80211_rx_status *rx_status,
1697 			     struct iwl_rx_mpdu_desc *desc, int queue,
1698 			     u32 pkt_flags, u8 *crypto_len)
1699 {
1700 	u32 status = le32_to_cpu(desc->status);
1701 
1702 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
1703 		     !ieee80211_has_protected(hdr->frame_control)))
1704 		return iwl_mld_rx_mgmt_prot(sta, hdr, rx_status, status,
1705 					    le16_to_cpu(desc->mpdu_len));
1706 
1707 	if (!ieee80211_has_protected(hdr->frame_control) ||
1708 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
1709 	    IWL_RX_MPDU_STATUS_SEC_NONE)
1710 		return 0;
1711 
1712 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
1713 	case IWL_RX_MPDU_STATUS_SEC_CCM:
1714 	case IWL_RX_MPDU_STATUS_SEC_GCM:
1715 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
1716 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) {
1717 			IWL_DEBUG_DROP(mld,
1718 				       "Dropping packet, bad MIC (CCM/GCM)\n");
1719 			return -1;
1720 		}
1721 
1722 		rx_status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
1723 		*crypto_len = IEEE80211_CCMP_HDR_LEN;
1724 		return 0;
1725 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
1726 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
1727 			return -1;
1728 
1729 		if (!(status & RX_MPDU_RES_STATUS_MIC_OK))
1730 			rx_status->flag |= RX_FLAG_MMIC_ERROR;
1731 
1732 		if (pkt_flags & FH_RSCSR_RADA_EN) {
1733 			rx_status->flag |= RX_FLAG_ICV_STRIPPED;
1734 			rx_status->flag |= RX_FLAG_MMIC_STRIPPED;
1735 		}
1736 
1737 		*crypto_len = IEEE80211_TKIP_IV_LEN;
1738 		rx_status->flag |= RX_FLAG_DECRYPTED;
1739 		return 0;
1740 	default:
1741 		break;
1742 	}
1743 
1744 	return 0;
1745 }
1746 
1747 static void iwl_mld_rx_update_ampdu_ref(struct iwl_mld *mld,
1748 					struct iwl_mld_rx_phy_data *phy_data,
1749 					struct ieee80211_rx_status *rx_status)
1750 {
1751 	bool toggle_bit =
1752 		phy_data->phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1753 
1754 	rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1755 	/* Toggle is switched whenever new aggregation starts. Make
1756 	 * sure ampdu_reference is never 0 so we can later use it to
1757 	 * see if the frame was really part of an A-MPDU or not.
1758 	 */
1759 	if (toggle_bit != mld->monitor.ampdu_toggle) {
1760 		mld->monitor.ampdu_ref++;
1761 		if (mld->monitor.ampdu_ref == 0)
1762 			mld->monitor.ampdu_ref++;
1763 		mld->monitor.ampdu_toggle = toggle_bit;
1764 		phy_data->first_subframe = true;
1765 	}
1766 	rx_status->ampdu_reference = mld->monitor.ampdu_ref;
1767 }
1768 
1769 static void
1770 iwl_mld_fill_rx_status_band_freq(struct ieee80211_rx_status *rx_status,
1771 				 u8 band, u8 channel)
1772 {
1773 	rx_status->band = iwl_mld_phy_band_to_nl80211(band);
1774 	rx_status->freq = ieee80211_channel_to_frequency(channel,
1775 							 rx_status->band);
1776 }
1777 
1778 void iwl_mld_rx_mpdu(struct iwl_mld *mld, struct napi_struct *napi,
1779 		     struct iwl_rx_cmd_buffer *rxb, int queue)
1780 {
1781 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1782 	struct iwl_mld_rx_phy_data phy_data = {};
1783 	struct iwl_rx_mpdu_desc *mpdu_desc = (void *)pkt->data;
1784 	struct ieee80211_sta *sta;
1785 	struct ieee80211_hdr *hdr;
1786 	struct sk_buff *skb;
1787 	size_t mpdu_desc_size = sizeof(*mpdu_desc);
1788 	bool drop = false;
1789 	u8 crypto_len = 0, band, link_id;
1790 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
1791 	u32 mpdu_len;
1792 	enum iwl_mld_reorder_result reorder_res;
1793 	struct ieee80211_rx_status *rx_status;
1794 
1795 	if (unlikely(mld->fw_status.in_hw_restart))
1796 		return;
1797 
1798 	if (IWL_FW_CHECK(mld, pkt_len < mpdu_desc_size,
1799 			 "Bad REPLY_RX_MPDU_CMD size (%d)\n", pkt_len))
1800 		return;
1801 
1802 	mpdu_len = le16_to_cpu(mpdu_desc->mpdu_len);
1803 
1804 	if (IWL_FW_CHECK(mld, mpdu_len + mpdu_desc_size > pkt_len,
1805 			 "FW lied about packet len (%d)\n", pkt_len))
1806 		return;
1807 
1808 	/* Don't use dev_alloc_skb(), we'll have enough headroom once
1809 	 * ieee80211_hdr pulled.
1810 	 */
1811 	skb = alloc_skb(128, GFP_ATOMIC);
1812 	if (!skb) {
1813 		IWL_ERR(mld, "alloc_skb failed\n");
1814 		return;
1815 	}
1816 
1817 	hdr = (void *)(pkt->data + mpdu_desc_size);
1818 
1819 	iwl_mld_fill_phy_data(mld, mpdu_desc, &phy_data);
1820 
1821 	if (mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1822 		/* If the device inserted padding it means that (it thought)
1823 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
1824 		 * this case, reserve two bytes at the start of the SKB to
1825 		 * align the payload properly in case we end up copying it.
1826 		 */
1827 		skb_reserve(skb, 2);
1828 	}
1829 
1830 	rx_status = IEEE80211_SKB_RXCB(skb);
1831 
1832 	/* this is needed early */
1833 	band = u8_get_bits(mpdu_desc->mac_phy_band,
1834 			   IWL_RX_MPDU_MAC_PHY_BAND_BAND_MASK);
1835 	iwl_mld_fill_rx_status_band_freq(rx_status, band,
1836 					 mpdu_desc->v3.channel);
1837 
1838 
1839 	rcu_read_lock();
1840 
1841 	sta = iwl_mld_rx_with_sta(mld, hdr, skb, mpdu_desc, pkt, queue, &drop);
1842 	if (drop)
1843 		goto drop;
1844 
1845 	/* update aggregation data for monitor sake on default queue */
1846 	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU))
1847 		iwl_mld_rx_update_ampdu_ref(mld, &phy_data, rx_status);
1848 
1849 	/* Keep packets with CRC errors (and with overrun) for monitor mode
1850 	 * (otherwise the firmware discards them) but mark them as bad.
1851 	 */
1852 	if (!(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1853 	    !(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1854 		IWL_DEBUG_RX(mld, "Bad CRC or FIFO: 0x%08X.\n",
1855 			     le32_to_cpu(mpdu_desc->status));
1856 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1857 	}
1858 
1859 	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1860 		rx_status->mactime =
1861 			le64_to_cpu(mpdu_desc->v3.tsf_on_air_rise);
1862 
1863 		/* TSF as indicated by the firmware is at INA time */
1864 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1865 	}
1866 
1867 	/* management stuff on default queue */
1868 	if (!queue && unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1869 			       ieee80211_is_probe_resp(hdr->frame_control))) {
1870 		rx_status->boottime_ns = ktime_get_boottime_ns();
1871 
1872 		if (mld->scan.pass_all_sched_res ==
1873 				SCHED_SCAN_PASS_ALL_STATE_ENABLED)
1874 			mld->scan.pass_all_sched_res =
1875 				SCHED_SCAN_PASS_ALL_STATE_FOUND;
1876 	}
1877 
1878 	link_id = u8_get_bits(mpdu_desc->mac_phy_band,
1879 			      IWL_RX_MPDU_MAC_PHY_BAND_LINK_MASK);
1880 
1881 	iwl_mld_rx_fill_status(mld, link_id, hdr, skb, &phy_data, queue);
1882 
1883 	if (iwl_mld_rx_crypto(mld, sta, hdr, rx_status, mpdu_desc, queue,
1884 			      le32_to_cpu(pkt->len_n_flags), &crypto_len))
1885 		goto drop;
1886 
1887 	if (iwl_mld_build_rx_skb(mld, skb, hdr, mpdu_len, crypto_len, rxb))
1888 		goto drop;
1889 
1890 	/* time sync frame is saved and will be released later when the
1891 	 * notification with the timestamps arrives.
1892 	 */
1893 	if (iwl_mld_time_sync_frame(mld, skb, hdr->addr2))
1894 		goto out;
1895 
1896 	reorder_res = iwl_mld_reorder(mld, napi, queue, sta, skb, mpdu_desc);
1897 	switch (reorder_res) {
1898 	case IWL_MLD_PASS_SKB:
1899 		break;
1900 	case IWL_MLD_DROP_SKB:
1901 		goto drop;
1902 	case IWL_MLD_BUFFERED_SKB:
1903 		goto out;
1904 	default:
1905 		WARN_ON(1);
1906 		goto drop;
1907 	}
1908 
1909 	iwl_mld_pass_packet_to_mac80211(mld, napi, skb, queue, sta);
1910 
1911 	goto out;
1912 
1913 drop:
1914 	kfree_skb(skb);
1915 out:
1916 	rcu_read_unlock();
1917 }
1918 
1919 #define SYNC_RX_QUEUE_TIMEOUT (HZ)
1920 void iwl_mld_sync_rx_queues(struct iwl_mld *mld,
1921 			    enum iwl_mld_internal_rxq_notif_type type,
1922 			    const void *notif_payload, u32 notif_payload_size)
1923 {
1924 	u8 num_rx_queues = mld->trans->info.num_rxqs;
1925 	struct {
1926 		struct iwl_rxq_sync_cmd sync_cmd;
1927 		struct iwl_mld_internal_rxq_notif notif;
1928 	} __packed cmd = {
1929 		.sync_cmd.rxq_mask = cpu_to_le32(BIT(num_rx_queues) - 1),
1930 		.sync_cmd.count =
1931 			cpu_to_le32(sizeof(struct iwl_mld_internal_rxq_notif) +
1932 				    notif_payload_size),
1933 		.notif.type = type,
1934 		.notif.cookie = mld->rxq_sync.cookie,
1935 	};
1936 	struct iwl_host_cmd hcmd = {
1937 		.id = WIDE_ID(DATA_PATH_GROUP, TRIGGER_RX_QUEUES_NOTIF_CMD),
1938 		.data[0] = &cmd,
1939 		.len[0] = sizeof(cmd),
1940 		.data[1] = notif_payload,
1941 		.len[1] = notif_payload_size,
1942 	};
1943 	int ret;
1944 
1945 	/* size must be a multiple of DWORD */
1946 	if (WARN_ON(cmd.sync_cmd.count & cpu_to_le32(3)))
1947 		return;
1948 
1949 	mld->rxq_sync.state = (1 << num_rx_queues) - 1;
1950 
1951 	ret = iwl_mld_send_cmd(mld, &hcmd);
1952 	if (ret) {
1953 		IWL_ERR(mld, "Failed to trigger RX queues sync (%d)\n", ret);
1954 		goto out;
1955 	}
1956 
1957 	ret = wait_event_timeout(mld->rxq_sync.waitq,
1958 				 READ_ONCE(mld->rxq_sync.state) == 0,
1959 				 SYNC_RX_QUEUE_TIMEOUT);
1960 	WARN_ONCE(!ret, "RXQ sync failed: state=0x%lx, cookie=%d\n",
1961 		  mld->rxq_sync.state, mld->rxq_sync.cookie);
1962 
1963 out:
1964 	mld->rxq_sync.state = 0;
1965 	mld->rxq_sync.cookie++;
1966 }
1967 
1968 void iwl_mld_handle_rx_queues_sync_notif(struct iwl_mld *mld,
1969 					 struct napi_struct *napi,
1970 					 struct iwl_rx_packet *pkt, int queue)
1971 {
1972 	struct iwl_rxq_sync_notification *notif;
1973 	struct iwl_mld_internal_rxq_notif *internal_notif;
1974 	u32 len = iwl_rx_packet_payload_len(pkt);
1975 	size_t combined_notif_len = sizeof(*notif) + sizeof(*internal_notif);
1976 
1977 	notif = (void *)pkt->data;
1978 	internal_notif = (void *)notif->payload;
1979 
1980 	if (IWL_FW_CHECK(mld, len < combined_notif_len,
1981 			 "invalid notification size %u (%zu)\n",
1982 			 len, combined_notif_len))
1983 		return;
1984 
1985 	len -= combined_notif_len;
1986 
1987 	if (IWL_FW_CHECK(mld, mld->rxq_sync.cookie != internal_notif->cookie,
1988 			 "received expired RX queue sync message (cookie=%d expected=%d q[%d])\n",
1989 			 internal_notif->cookie, mld->rxq_sync.cookie, queue))
1990 		return;
1991 
1992 	switch (internal_notif->type) {
1993 	case IWL_MLD_RXQ_EMPTY:
1994 		IWL_FW_CHECK(mld, len,
1995 			     "invalid empty notification size %d\n", len);
1996 		break;
1997 	case IWL_MLD_RXQ_NOTIF_DEL_BA:
1998 		if (IWL_FW_CHECK(mld, len != sizeof(struct iwl_mld_delba_data),
1999 				 "invalid delba notification size %u (%zu)\n",
2000 				 len, sizeof(struct iwl_mld_delba_data)))
2001 			break;
2002 		iwl_mld_del_ba(mld, queue, (void *)internal_notif->payload);
2003 		break;
2004 	default:
2005 		WARN_ON_ONCE(1);
2006 	}
2007 
2008 	IWL_FW_CHECK(mld, !test_and_clear_bit(queue, &mld->rxq_sync.state),
2009 		     "RXQ sync: queue %d responded a second time!\n", queue);
2010 
2011 	if (READ_ONCE(mld->rxq_sync.state) == 0)
2012 		wake_up(&mld->rxq_sync.waitq);
2013 }
2014 
2015 void iwl_mld_rx_monitor_no_data(struct iwl_mld *mld, struct napi_struct *napi,
2016 				struct iwl_rx_packet *pkt, int queue)
2017 {
2018 	struct iwl_rx_no_data_ver_3 *desc;
2019 	struct iwl_mld_rx_phy_data phy_data;
2020 	struct ieee80211_rx_status *rx_status;
2021 	struct sk_buff *skb;
2022 	u32 format, rssi;
2023 	u8 channel;
2024 
2025 	if (unlikely(mld->fw_status.in_hw_restart))
2026 		return;
2027 
2028 	if (IWL_FW_CHECK(mld, iwl_rx_packet_payload_len(pkt) < sizeof(*desc),
2029 			 "Bad RX_NO_DATA_NOTIF size (%d)\n",
2030 			 iwl_rx_packet_payload_len(pkt)))
2031 		return;
2032 
2033 	desc = (void *)pkt->data;
2034 
2035 	rssi = le32_to_cpu(desc->rssi);
2036 	channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2037 
2038 	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2039 	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2040 	phy_data.data0 = desc->phy_info[0];
2041 	phy_data.data1 = desc->phy_info[1];
2042 	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2043 	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2044 	phy_data.rate_n_flags = iwl_v3_rate_from_v2_v3(desc->rate,
2045 						       mld->fw_rates_ver_3);
2046 	phy_data.with_data = false;
2047 
2048 	BUILD_BUG_ON(sizeof(phy_data.rx_vec) != sizeof(desc->rx_vec));
2049 	memcpy(phy_data.rx_vec, desc->rx_vec, sizeof(phy_data.rx_vec));
2050 
2051 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2052 
2053 	/* Don't use dev_alloc_skb(), we'll have enough headroom once
2054 	 * ieee80211_hdr pulled.
2055 	 */
2056 	skb = alloc_skb(128, GFP_ATOMIC);
2057 	if (!skb) {
2058 		IWL_ERR(mld, "alloc_skb failed\n");
2059 		return;
2060 	}
2061 
2062 	rx_status = IEEE80211_SKB_RXCB(skb);
2063 
2064 	/* 0-length PSDU */
2065 	rx_status->flag |= RX_FLAG_NO_PSDU;
2066 
2067 	/* mark as failed PLCP on any errors to skip checks in mac80211 */
2068 	if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) !=
2069 	    RX_NO_DATA_INFO_ERR_NONE)
2070 		rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC;
2071 
2072 	switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) {
2073 	case RX_NO_DATA_INFO_TYPE_NDP:
2074 		rx_status->zero_length_psdu_type =
2075 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2076 		break;
2077 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2078 	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2079 		rx_status->zero_length_psdu_type =
2080 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2081 		break;
2082 	default:
2083 		rx_status->zero_length_psdu_type =
2084 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2085 		break;
2086 	}
2087 
2088 	rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
2089 		NL80211_BAND_2GHZ;
2090 
2091 	rx_status->freq = ieee80211_channel_to_frequency(channel,
2092 							 rx_status->band);
2093 
2094 	/* link ID is ignored for NULL header */
2095 	iwl_mld_rx_fill_status(mld, -1, NULL, skb, &phy_data, queue);
2096 
2097 	/* No more radiotap info should be added after this point.
2098 	 * Mark it as mac header for upper layers to know where
2099 	 * the radiotap header ends.
2100 	 */
2101 	skb_set_mac_header(skb, skb->len);
2102 
2103 	/* Override the nss from the rx_vec since the rate_n_flags has
2104 	 * only 1 bit for the nss which gives a max of 2 ss but there
2105 	 * may be up to 8 spatial streams.
2106 	 */
2107 	switch (format) {
2108 	case RATE_MCS_MOD_TYPE_VHT:
2109 		rx_status->nss =
2110 			le32_get_bits(desc->rx_vec[0],
2111 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2112 		break;
2113 	case RATE_MCS_MOD_TYPE_HE:
2114 		rx_status->nss =
2115 			le32_get_bits(desc->rx_vec[0],
2116 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2117 		break;
2118 	case RATE_MCS_MOD_TYPE_EHT:
2119 		rx_status->nss =
2120 			le32_get_bits(desc->rx_vec[2],
2121 				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2122 	}
2123 
2124 	/* pass the packet to mac80211 */
2125 	rcu_read_lock();
2126 	ieee80211_rx_napi(mld->hw, NULL, skb, napi);
2127 	rcu_read_unlock();
2128 }
2129