1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2024-2025 Intel Corporation 4 */ 5 6 #include <net/mac80211.h> 7 #include <kunit/static_stub.h> 8 9 #include "mld.h" 10 #include "sta.h" 11 #include "agg.h" 12 #include "rx.h" 13 #include "hcmd.h" 14 #include "iface.h" 15 #include "time_sync.h" 16 #include "fw/dbg.h" 17 #include "fw/api/rx.h" 18 19 /* stores relevant PHY data fields extracted from iwl_rx_mpdu_desc */ 20 struct iwl_mld_rx_phy_data { 21 enum iwl_rx_phy_info_type info_type; 22 __le32 data0; 23 __le32 data1; 24 __le32 data2; 25 __le32 data3; 26 __le32 eht_data4; 27 __le32 data5; 28 __le16 data4; 29 bool first_subframe; 30 bool with_data; 31 __le32 rx_vec[4]; 32 u32 rate_n_flags; 33 u32 gp2_on_air_rise; 34 u16 phy_info; 35 u8 energy_a, energy_b; 36 u8 channel; 37 }; 38 39 static void 40 iwl_mld_fill_phy_data(struct iwl_rx_mpdu_desc *desc, 41 struct iwl_mld_rx_phy_data *phy_data) 42 { 43 phy_data->phy_info = le16_to_cpu(desc->phy_info); 44 phy_data->rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 45 phy_data->gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 46 phy_data->channel = desc->v3.channel; 47 phy_data->energy_a = desc->v3.energy_a; 48 phy_data->energy_b = desc->v3.energy_b; 49 phy_data->data0 = desc->v3.phy_data0; 50 phy_data->data1 = desc->v3.phy_data1; 51 phy_data->data2 = desc->v3.phy_data2; 52 phy_data->data3 = desc->v3.phy_data3; 53 phy_data->data4 = desc->phy_data4; 54 phy_data->eht_data4 = desc->phy_eht_data4; 55 phy_data->data5 = desc->v3.phy_data5; 56 phy_data->with_data = true; 57 } 58 59 static inline int iwl_mld_check_pn(struct iwl_mld *mld, struct sk_buff *skb, 60 int queue, struct ieee80211_sta *sta) 61 { 62 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 63 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 64 struct iwl_mld_sta *mld_sta; 65 struct iwl_mld_ptk_pn *ptk_pn; 66 int res; 67 u8 tid, keyidx; 68 u8 pn[IEEE80211_CCMP_PN_LEN]; 69 u8 *extiv; 70 71 /* multicast and non-data only arrives on default queue; avoid checking 72 * for default queue - we don't want to replicate all the logic that's 73 * necessary for checking the PN on fragmented frames, leave that 74 * to mac80211 75 */ 76 if (queue == 0 || !ieee80211_is_data(hdr->frame_control) || 77 is_multicast_ether_addr(hdr->addr1)) 78 return 0; 79 80 if (!(stats->flag & RX_FLAG_DECRYPTED)) 81 return 0; 82 83 /* if we are here - this for sure is either CCMP or GCMP */ 84 if (!sta) { 85 IWL_DEBUG_DROP(mld, 86 "expected hw-decrypted unicast frame for station\n"); 87 return -1; 88 } 89 90 mld_sta = iwl_mld_sta_from_mac80211(sta); 91 92 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 93 keyidx = extiv[3] >> 6; 94 95 ptk_pn = rcu_dereference(mld_sta->ptk_pn[keyidx]); 96 if (!ptk_pn) 97 return -1; 98 99 if (ieee80211_is_data_qos(hdr->frame_control)) 100 tid = ieee80211_get_tid(hdr); 101 else 102 tid = 0; 103 104 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 105 if (tid >= IWL_MAX_TID_COUNT) 106 return -1; 107 108 /* load pn */ 109 pn[0] = extiv[7]; 110 pn[1] = extiv[6]; 111 pn[2] = extiv[5]; 112 pn[3] = extiv[4]; 113 pn[4] = extiv[1]; 114 pn[5] = extiv[0]; 115 116 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 117 if (res < 0) 118 return -1; 119 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 120 return -1; 121 122 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 123 stats->flag |= RX_FLAG_PN_VALIDATED; 124 125 return 0; 126 } 127 128 /* iwl_mld_pass_packet_to_mac80211 - passes the packet for mac80211 */ 129 void iwl_mld_pass_packet_to_mac80211(struct iwl_mld *mld, 130 struct napi_struct *napi, 131 struct sk_buff *skb, int queue, 132 struct ieee80211_sta *sta) 133 { 134 KUNIT_STATIC_STUB_REDIRECT(iwl_mld_pass_packet_to_mac80211, 135 mld, napi, skb, queue, sta); 136 137 if (unlikely(iwl_mld_check_pn(mld, skb, queue, sta))) { 138 kfree_skb(skb); 139 return; 140 } 141 142 ieee80211_rx_napi(mld->hw, sta, skb, napi); 143 } 144 EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_pass_packet_to_mac80211); 145 146 static void iwl_mld_fill_signal(struct iwl_mld *mld, 147 struct ieee80211_rx_status *rx_status, 148 struct iwl_mld_rx_phy_data *phy_data) 149 { 150 u32 rate_n_flags = phy_data->rate_n_flags; 151 int energy_a = phy_data->energy_a; 152 int energy_b = phy_data->energy_b; 153 int max_energy; 154 155 energy_a = energy_a ? -energy_a : S8_MIN; 156 energy_b = energy_b ? -energy_b : S8_MIN; 157 max_energy = max(energy_a, energy_b); 158 159 IWL_DEBUG_STATS(mld, "energy in A %d B %d, and max %d\n", 160 energy_a, energy_b, max_energy); 161 162 rx_status->signal = max_energy; 163 rx_status->chains = 164 (rate_n_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 165 rx_status->chain_signal[0] = energy_a; 166 rx_status->chain_signal[1] = energy_b; 167 } 168 169 static void 170 iwl_mld_decode_he_phy_ru_alloc(struct iwl_mld_rx_phy_data *phy_data, 171 struct ieee80211_radiotap_he *he, 172 struct ieee80211_radiotap_he_mu *he_mu, 173 struct ieee80211_rx_status *rx_status) 174 { 175 /* Unfortunately, we have to leave the mac80211 data 176 * incorrect for the case that we receive an HE-MU 177 * transmission and *don't* have the HE phy data (due 178 * to the bits being used for TSF). This shouldn't 179 * happen though as management frames where we need 180 * the TSF/timers are not be transmitted in HE-MU. 181 */ 182 u8 ru = le32_get_bits(phy_data->data1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 183 u32 rate_n_flags = phy_data->rate_n_flags; 184 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 185 u8 offs = 0; 186 187 rx_status->bw = RATE_INFO_BW_HE_RU; 188 189 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 190 191 switch (ru) { 192 case 0 ... 36: 193 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 194 offs = ru; 195 break; 196 case 37 ... 52: 197 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 198 offs = ru - 37; 199 break; 200 case 53 ... 60: 201 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 202 offs = ru - 53; 203 break; 204 case 61 ... 64: 205 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 206 offs = ru - 61; 207 break; 208 case 65 ... 66: 209 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 210 offs = ru - 65; 211 break; 212 case 67: 213 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 214 break; 215 case 68: 216 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 217 break; 218 } 219 he->data2 |= le16_encode_bits(offs, 220 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 221 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 222 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 223 if (phy_data->data1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 224 he->data2 |= 225 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 226 227 #define CHECK_BW(bw) \ 228 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 229 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 230 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 231 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 232 CHECK_BW(20); 233 CHECK_BW(40); 234 CHECK_BW(80); 235 CHECK_BW(160); 236 237 if (he_mu) 238 he_mu->flags2 |= 239 le16_encode_bits(u32_get_bits(rate_n_flags, 240 RATE_MCS_CHAN_WIDTH_MSK), 241 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 242 else if (he_type == RATE_MCS_HE_TYPE_TRIG) 243 he->data6 |= 244 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 245 le16_encode_bits(u32_get_bits(rate_n_flags, 246 RATE_MCS_CHAN_WIDTH_MSK), 247 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 248 } 249 250 static void 251 iwl_mld_decode_he_mu_ext(struct iwl_mld_rx_phy_data *phy_data, 252 struct ieee80211_radiotap_he_mu *he_mu) 253 { 254 u32 phy_data2 = le32_to_cpu(phy_data->data2); 255 u32 phy_data3 = le32_to_cpu(phy_data->data3); 256 u16 phy_data4 = le16_to_cpu(phy_data->data4); 257 u32 rate_n_flags = phy_data->rate_n_flags; 258 259 if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK)) { 260 he_mu->flags1 |= 261 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 262 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 263 264 he_mu->flags1 |= 265 le16_encode_bits(u32_get_bits(phy_data4, 266 IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU), 267 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 268 269 he_mu->ru_ch1[0] = u32_get_bits(phy_data2, 270 IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0); 271 he_mu->ru_ch1[1] = u32_get_bits(phy_data3, 272 IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1); 273 he_mu->ru_ch1[2] = u32_get_bits(phy_data2, 274 IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2); 275 he_mu->ru_ch1[3] = u32_get_bits(phy_data3, 276 IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3); 277 } 278 279 if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK) && 280 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) { 281 he_mu->flags1 |= 282 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 283 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 284 285 he_mu->flags2 |= 286 le16_encode_bits(u32_get_bits(phy_data4, 287 IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU), 288 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 289 290 he_mu->ru_ch2[0] = u32_get_bits(phy_data2, 291 IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0); 292 he_mu->ru_ch2[1] = u32_get_bits(phy_data3, 293 IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1); 294 he_mu->ru_ch2[2] = u32_get_bits(phy_data2, 295 IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2); 296 he_mu->ru_ch2[3] = u32_get_bits(phy_data3, 297 IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3); 298 } 299 } 300 301 static void 302 iwl_mld_decode_he_phy_data(struct iwl_mld_rx_phy_data *phy_data, 303 struct ieee80211_radiotap_he *he, 304 struct ieee80211_radiotap_he_mu *he_mu, 305 struct ieee80211_rx_status *rx_status, 306 int queue) 307 { 308 switch (phy_data->info_type) { 309 case IWL_RX_PHY_INFO_TYPE_NONE: 310 case IWL_RX_PHY_INFO_TYPE_CCK: 311 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 312 case IWL_RX_PHY_INFO_TYPE_HT: 313 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 314 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 315 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 316 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 317 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 318 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 319 return; 320 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 321 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 322 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 323 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 324 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 325 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2, 326 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 327 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 328 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2, 329 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 330 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 331 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2, 332 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 333 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 334 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2, 335 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 336 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 337 fallthrough; 338 case IWL_RX_PHY_INFO_TYPE_HE_SU: 339 case IWL_RX_PHY_INFO_TYPE_HE_MU: 340 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 341 case IWL_RX_PHY_INFO_TYPE_HE_TB: 342 /* HE common */ 343 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 344 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 345 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 346 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 347 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 348 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 349 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 350 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0, 351 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 352 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 353 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 354 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 355 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 356 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0, 357 IWL_RX_PHY_DATA0_HE_UPLINK), 358 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 359 } 360 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0, 361 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 362 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 363 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0, 364 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 365 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 366 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0, 367 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 368 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 369 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data1, 370 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 371 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 372 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0, 373 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 374 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 375 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0, 376 IWL_RX_PHY_DATA0_HE_DOPPLER), 377 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 378 break; 379 } 380 381 switch (phy_data->info_type) { 382 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 383 case IWL_RX_PHY_INFO_TYPE_HE_MU: 384 case IWL_RX_PHY_INFO_TYPE_HE_SU: 385 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 386 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data0, 387 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 388 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 389 break; 390 default: 391 /* nothing here */ 392 break; 393 } 394 395 switch (phy_data->info_type) { 396 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 397 he_mu->flags1 |= 398 le16_encode_bits(le16_get_bits(phy_data->data4, 399 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 400 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 401 he_mu->flags1 |= 402 le16_encode_bits(le16_get_bits(phy_data->data4, 403 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 404 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 405 he_mu->flags2 |= 406 le16_encode_bits(le16_get_bits(phy_data->data4, 407 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 408 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 409 iwl_mld_decode_he_mu_ext(phy_data, he_mu); 410 fallthrough; 411 case IWL_RX_PHY_INFO_TYPE_HE_MU: 412 he_mu->flags2 |= 413 le16_encode_bits(le32_get_bits(phy_data->data1, 414 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 415 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 416 he_mu->flags2 |= 417 le16_encode_bits(le32_get_bits(phy_data->data1, 418 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 419 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 420 fallthrough; 421 case IWL_RX_PHY_INFO_TYPE_HE_TB: 422 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 423 iwl_mld_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); 424 break; 425 case IWL_RX_PHY_INFO_TYPE_HE_SU: 426 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 427 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0, 428 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 429 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 430 break; 431 default: 432 /* nothing */ 433 break; 434 } 435 } 436 437 static void iwl_mld_rx_he(struct iwl_mld *mld, struct sk_buff *skb, 438 struct iwl_mld_rx_phy_data *phy_data, 439 int queue) 440 { 441 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 442 struct ieee80211_radiotap_he *he = NULL; 443 struct ieee80211_radiotap_he_mu *he_mu = NULL; 444 u32 rate_n_flags = phy_data->rate_n_flags; 445 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 446 u8 ltf; 447 static const struct ieee80211_radiotap_he known = { 448 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 449 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 450 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 451 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 452 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 453 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 454 }; 455 static const struct ieee80211_radiotap_he_mu mu_known = { 456 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 457 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 458 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 459 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 460 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 461 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 462 }; 463 u16 phy_info = phy_data->phy_info; 464 465 he = skb_put_data(skb, &known, sizeof(known)); 466 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 467 468 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 469 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 470 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 471 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 472 } 473 474 /* report the AMPDU-EOF bit on single frames */ 475 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 476 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 477 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 478 if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 479 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 480 } 481 482 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 483 iwl_mld_decode_he_phy_data(phy_data, he, he_mu, rx_status, 484 queue); 485 486 /* update aggregation data for monitor sake on default queue */ 487 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 488 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 489 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 490 if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 491 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 492 } 493 494 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 495 rate_n_flags & RATE_MCS_HE_106T_MSK) { 496 rx_status->bw = RATE_INFO_BW_HE_RU; 497 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 498 } 499 500 /* actually data is filled in mac80211 */ 501 if (he_type == RATE_MCS_HE_TYPE_SU || 502 he_type == RATE_MCS_HE_TYPE_EXT_SU) 503 he->data1 |= 504 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 505 506 #define CHECK_TYPE(F) \ 507 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 508 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 509 510 CHECK_TYPE(SU); 511 CHECK_TYPE(EXT_SU); 512 CHECK_TYPE(MU); 513 CHECK_TYPE(TRIG); 514 515 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 516 517 if (rate_n_flags & RATE_MCS_BF_MSK) 518 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 519 520 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 521 RATE_MCS_HE_GI_LTF_POS) { 522 case 0: 523 if (he_type == RATE_MCS_HE_TYPE_TRIG) 524 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 525 else 526 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 527 if (he_type == RATE_MCS_HE_TYPE_MU) 528 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 529 else 530 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 531 break; 532 case 1: 533 if (he_type == RATE_MCS_HE_TYPE_TRIG) 534 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 535 else 536 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 537 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 538 break; 539 case 2: 540 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 541 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 542 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 543 } else { 544 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 545 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 546 } 547 break; 548 case 3: 549 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 550 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 551 break; 552 case 4: 553 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 554 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 555 break; 556 default: 557 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 558 } 559 560 he->data5 |= le16_encode_bits(ltf, 561 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 562 } 563 564 static void iwl_mld_decode_lsig(struct sk_buff *skb, 565 struct iwl_mld_rx_phy_data *phy_data) 566 { 567 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 568 struct ieee80211_radiotap_lsig *lsig; 569 570 switch (phy_data->info_type) { 571 case IWL_RX_PHY_INFO_TYPE_HT: 572 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 573 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 574 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 575 case IWL_RX_PHY_INFO_TYPE_HE_SU: 576 case IWL_RX_PHY_INFO_TYPE_HE_MU: 577 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 578 case IWL_RX_PHY_INFO_TYPE_HE_TB: 579 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 580 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 581 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 582 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 583 lsig = skb_put(skb, sizeof(*lsig)); 584 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 585 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->data1, 586 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 587 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 588 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 589 break; 590 default: 591 break; 592 } 593 } 594 595 /* Put a TLV on the skb and return data pointer 596 * 597 * Also pad the len to 4 and zero out all data part 598 */ 599 static void * 600 iwl_mld_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) 601 { 602 struct ieee80211_radiotap_tlv *tlv; 603 604 tlv = skb_put(skb, sizeof(*tlv)); 605 tlv->type = cpu_to_le16(type); 606 tlv->len = cpu_to_le16(len); 607 return skb_put_zero(skb, ALIGN(len, 4)); 608 } 609 610 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ 611 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) 612 613 #define IWL_MLD_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ 614 typeof(enc_bits) _enc_bits = enc_bits; \ 615 typeof(usig) _usig = usig; \ 616 (_usig)->mask |= cpu_to_le32(_enc_bits); \ 617 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ 618 } while (0) 619 620 #define __IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 621 eht->data[(rt_data)] |= \ 622 (cpu_to_le32 \ 623 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ 624 LE32_DEC_ENC(data ## fw_data, \ 625 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ 626 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) 627 628 #define _IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 629 __IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) 630 631 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 632 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 633 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 634 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 635 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 636 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 637 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 638 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 639 640 #define IWL_RX_RU_DATA_A1 2 641 #define IWL_RX_RU_DATA_A2 2 642 #define IWL_RX_RU_DATA_B1 2 643 #define IWL_RX_RU_DATA_B2 4 644 #define IWL_RX_RU_DATA_C1 3 645 #define IWL_RX_RU_DATA_C2 3 646 #define IWL_RX_RU_DATA_D1 4 647 #define IWL_RX_RU_DATA_D2 4 648 649 #define IWL_MLD_ENC_EHT_RU(rt_ru, fw_ru) \ 650 _IWL_MLD_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ 651 rt_ru, \ 652 IWL_RX_RU_DATA_ ## fw_ru, \ 653 fw_ru) 654 655 static void iwl_mld_decode_eht_ext_mu(struct iwl_mld *mld, 656 struct iwl_mld_rx_phy_data *phy_data, 657 struct ieee80211_rx_status *rx_status, 658 struct ieee80211_radiotap_eht *eht, 659 struct ieee80211_radiotap_eht_usig *usig) 660 { 661 if (phy_data->with_data) { 662 __le32 data1 = phy_data->data1; 663 __le32 data2 = phy_data->data2; 664 __le32 data3 = phy_data->data3; 665 __le32 data4 = phy_data->eht_data4; 666 __le32 data5 = phy_data->data5; 667 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; 668 669 IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, 670 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 671 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 672 IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, 673 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, 674 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 675 IWL_MLD_ENC_USIG_VALUE_MASK(usig, data4, 676 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, 677 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 678 IWL_MLD_ENC_USIG_VALUE_MASK 679 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, 680 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 681 682 eht->user_info[0] |= 683 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | 684 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, 685 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); 686 687 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); 688 eht->data[7] |= LE32_DEC_ENC 689 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, 690 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); 691 692 /* 693 * Hardware labels the content channels/RU allocation values 694 * as follows: 695 * Content Channel 1 Content Channel 2 696 * 20 MHz: A1 697 * 40 MHz: A1 B1 698 * 80 MHz: A1 C1 B1 D1 699 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 700 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 701 * 702 * However firmware can only give us A1-D2, so the higher 703 * frequencies are missing. 704 */ 705 706 switch (phy_bw) { 707 case RATE_MCS_CHAN_WIDTH_320: 708 /* additional values are missing in RX metadata */ 709 fallthrough; 710 case RATE_MCS_CHAN_WIDTH_160: 711 /* content channel 1 */ 712 IWL_MLD_ENC_EHT_RU(1_2_1, A2); 713 IWL_MLD_ENC_EHT_RU(1_2_2, C2); 714 /* content channel 2 */ 715 IWL_MLD_ENC_EHT_RU(2_2_1, B2); 716 IWL_MLD_ENC_EHT_RU(2_2_2, D2); 717 fallthrough; 718 case RATE_MCS_CHAN_WIDTH_80: 719 /* content channel 1 */ 720 IWL_MLD_ENC_EHT_RU(1_1_2, C1); 721 /* content channel 2 */ 722 IWL_MLD_ENC_EHT_RU(2_1_2, D1); 723 fallthrough; 724 case RATE_MCS_CHAN_WIDTH_40: 725 /* content channel 2 */ 726 IWL_MLD_ENC_EHT_RU(2_1_1, B1); 727 fallthrough; 728 case RATE_MCS_CHAN_WIDTH_20: 729 IWL_MLD_ENC_EHT_RU(1_1_1, A1); 730 break; 731 } 732 } else { 733 __le32 usig_a1 = phy_data->rx_vec[0]; 734 __le32 usig_a2 = phy_data->rx_vec[1]; 735 736 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1, 737 IWL_RX_USIG_A1_DISREGARD, 738 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); 739 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1, 740 IWL_RX_USIG_A1_VALIDATE, 741 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); 742 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, 743 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 744 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 745 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, 746 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 747 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); 748 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, 749 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, 750 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 751 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, 752 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, 753 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); 754 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, 755 IWL_RX_USIG_A2_EHT_SIG_MCS, 756 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 757 IWL_MLD_ENC_USIG_VALUE_MASK 758 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, 759 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 760 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, 761 IWL_RX_USIG_A2_EHT_CRC_OK, 762 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); 763 } 764 } 765 766 static void iwl_mld_decode_eht_ext_tb(struct iwl_mld *mld, 767 struct iwl_mld_rx_phy_data *phy_data, 768 struct ieee80211_rx_status *rx_status, 769 struct ieee80211_radiotap_eht *eht, 770 struct ieee80211_radiotap_eht_usig *usig) 771 { 772 if (phy_data->with_data) { 773 __le32 data5 = phy_data->data5; 774 775 IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, 776 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 777 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 778 IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, 779 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, 780 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 781 782 IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, 783 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, 784 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 785 } else { 786 __le32 usig_a1 = phy_data->rx_vec[0]; 787 __le32 usig_a2 = phy_data->rx_vec[1]; 788 789 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1, 790 IWL_RX_USIG_A1_DISREGARD, 791 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); 792 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, 793 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 794 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 795 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, 796 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 797 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); 798 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, 799 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, 800 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 801 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, 802 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, 803 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 804 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, 805 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, 806 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); 807 IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, 808 IWL_RX_USIG_A2_EHT_CRC_OK, 809 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); 810 } 811 } 812 813 static void iwl_mld_decode_eht_ru(struct iwl_mld *mld, 814 struct ieee80211_rx_status *rx_status, 815 struct ieee80211_radiotap_eht *eht) 816 { 817 u32 ru = le32_get_bits(eht->data[8], 818 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 819 enum nl80211_eht_ru_alloc nl_ru; 820 821 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields 822 * in an EHT variant User Info field 823 */ 824 825 switch (ru) { 826 case 0 ... 36: 827 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; 828 break; 829 case 37 ... 52: 830 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; 831 break; 832 case 53 ... 60: 833 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; 834 break; 835 case 61 ... 64: 836 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; 837 break; 838 case 65 ... 66: 839 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; 840 break; 841 case 67: 842 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; 843 break; 844 case 68: 845 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; 846 break; 847 case 69: 848 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; 849 break; 850 case 70 ... 81: 851 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; 852 break; 853 case 82 ... 89: 854 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; 855 break; 856 case 90 ... 93: 857 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; 858 break; 859 case 94 ... 95: 860 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; 861 break; 862 case 96 ... 99: 863 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; 864 break; 865 case 100 ... 103: 866 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; 867 break; 868 case 104: 869 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; 870 break; 871 case 105 ... 106: 872 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; 873 break; 874 default: 875 return; 876 } 877 878 rx_status->bw = RATE_INFO_BW_EHT_RU; 879 rx_status->eht.ru = nl_ru; 880 } 881 882 static void iwl_mld_decode_eht_phy_data(struct iwl_mld *mld, 883 struct iwl_mld_rx_phy_data *phy_data, 884 struct ieee80211_rx_status *rx_status, 885 struct ieee80211_radiotap_eht *eht, 886 struct ieee80211_radiotap_eht_usig *usig) 887 888 { 889 __le32 data0 = phy_data->data0; 890 __le32 data1 = phy_data->data1; 891 __le32 usig_a1 = phy_data->rx_vec[0]; 892 u8 info_type = phy_data->info_type; 893 894 /* Not in EHT range */ 895 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || 896 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) 897 return; 898 899 usig->common |= cpu_to_le32 900 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | 901 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); 902 if (phy_data->with_data) { 903 usig->common |= LE32_DEC_ENC(data0, 904 IWL_RX_PHY_DATA0_EHT_UPLINK, 905 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 906 usig->common |= LE32_DEC_ENC(data0, 907 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, 908 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 909 } else { 910 usig->common |= LE32_DEC_ENC(usig_a1, 911 IWL_RX_USIG_A1_UL_FLAG, 912 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 913 usig->common |= LE32_DEC_ENC(usig_a1, 914 IWL_RX_USIG_A1_BSS_COLOR, 915 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 916 } 917 918 usig->common |= 919 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); 920 usig->common |= 921 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, 922 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); 923 924 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); 925 eht->data[0] |= LE32_DEC_ENC(data0, 926 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, 927 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); 928 929 /* All RU allocating size/index is in TB format */ 930 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); 931 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, 932 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); 933 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, 934 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); 935 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, 936 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 937 938 iwl_mld_decode_eht_ru(mld, rx_status, eht); 939 940 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set 941 * which is on only in case of monitor mode so no need to check monitor 942 * mode 943 */ 944 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); 945 eht->data[1] |= 946 le32_encode_bits(mld->monitor.p80, 947 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); 948 949 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); 950 if (phy_data->with_data) 951 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, 952 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 953 else 954 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, 955 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 956 957 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); 958 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, 959 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); 960 961 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); 962 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, 963 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); 964 965 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); 966 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, 967 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); 968 969 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ 970 971 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) 972 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); 973 974 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); 975 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, 976 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); 977 978 /* 979 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, 980 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS 981 */ 982 983 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); 984 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, 985 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); 986 987 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || 988 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) 989 iwl_mld_decode_eht_ext_tb(mld, phy_data, rx_status, eht, usig); 990 991 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || 992 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) 993 iwl_mld_decode_eht_ext_mu(mld, phy_data, rx_status, eht, usig); 994 } 995 996 static void iwl_mld_rx_eht(struct iwl_mld *mld, struct sk_buff *skb, 997 struct iwl_mld_rx_phy_data *phy_data, 998 int queue) 999 { 1000 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1001 struct ieee80211_radiotap_eht *eht; 1002 struct ieee80211_radiotap_eht_usig *usig; 1003 size_t eht_len = sizeof(*eht); 1004 1005 u32 rate_n_flags = phy_data->rate_n_flags; 1006 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1007 /* EHT and HE have the same values for LTF */ 1008 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1009 u16 phy_info = phy_data->phy_info; 1010 u32 bw; 1011 1012 /* u32 for 1 user_info */ 1013 if (phy_data->with_data) 1014 eht_len += sizeof(u32); 1015 1016 eht = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); 1017 1018 usig = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, 1019 sizeof(*usig)); 1020 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 1021 usig->common |= 1022 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); 1023 1024 /* specific handling for 320MHz */ 1025 bw = u32_get_bits(rate_n_flags, RATE_MCS_CHAN_WIDTH_MSK); 1026 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) 1027 bw += le32_get_bits(phy_data->data0, 1028 IWL_RX_PHY_DATA0_EHT_BW320_SLOT); 1029 1030 usig->common |= cpu_to_le32 1031 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); 1032 1033 /* report the AMPDU-EOF bit on single frames */ 1034 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1035 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1036 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1037 if (phy_data->data0 & 1038 cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1039 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1040 } 1041 1042 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1043 iwl_mld_decode_eht_phy_data(mld, phy_data, rx_status, eht, usig); 1044 1045 #define CHECK_TYPE(F) \ 1046 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1047 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1048 1049 CHECK_TYPE(SU); 1050 CHECK_TYPE(EXT_SU); 1051 CHECK_TYPE(MU); 1052 CHECK_TYPE(TRIG); 1053 1054 switch (u32_get_bits(rate_n_flags, RATE_MCS_HE_GI_LTF_MSK)) { 1055 case 0: 1056 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1057 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1058 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1059 } else { 1060 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1061 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1062 } 1063 break; 1064 case 1: 1065 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1066 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1067 break; 1068 case 2: 1069 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1070 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1071 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1072 else 1073 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1074 break; 1075 case 3: 1076 if (he_type != RATE_MCS_HE_TYPE_TRIG) { 1077 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1078 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1079 } 1080 break; 1081 default: 1082 /* nothing here */ 1083 break; 1084 } 1085 1086 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { 1087 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); 1088 eht->data[0] |= cpu_to_le32 1089 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, 1090 ltf) | 1091 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, 1092 rx_status->eht.gi)); 1093 } 1094 1095 if (!phy_data->with_data) { 1096 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | 1097 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); 1098 eht->data[7] |= 1099 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], 1100 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), 1101 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); 1102 if (rate_n_flags & RATE_MCS_BF_MSK) 1103 eht->data[7] |= 1104 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); 1105 } else { 1106 eht->user_info[0] |= 1107 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | 1108 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | 1109 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | 1110 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | 1111 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); 1112 1113 if (rate_n_flags & RATE_MCS_BF_MSK) 1114 eht->user_info[0] |= 1115 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); 1116 1117 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1118 eht->user_info[0] |= 1119 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); 1120 1121 eht->user_info[0] |= cpu_to_le32 1122 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, 1123 u32_get_bits(rate_n_flags, 1124 RATE_VHT_MCS_RATE_CODE_MSK)) | 1125 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, 1126 u32_get_bits(rate_n_flags, 1127 RATE_MCS_NSS_MSK))); 1128 } 1129 } 1130 1131 #ifdef CONFIG_IWLWIFI_DEBUGFS 1132 static void iwl_mld_add_rtap_sniffer_config(struct iwl_mld *mld, 1133 struct sk_buff *skb) 1134 { 1135 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1136 struct ieee80211_radiotap_vendor_content *radiotap; 1137 const u16 vendor_data_len = sizeof(mld->monitor.cur_aid); 1138 1139 if (!mld->monitor.cur_aid) 1140 return; 1141 1142 radiotap = 1143 iwl_mld_radiotap_put_tlv(skb, 1144 IEEE80211_RADIOTAP_VENDOR_NAMESPACE, 1145 sizeof(*radiotap) + vendor_data_len); 1146 1147 /* Intel OUI */ 1148 radiotap->oui[0] = 0xf6; 1149 radiotap->oui[1] = 0x54; 1150 radiotap->oui[2] = 0x25; 1151 /* radiotap sniffer config sub-namespace */ 1152 radiotap->oui_subtype = 1; 1153 radiotap->vendor_type = 0; 1154 1155 /* fill the data now */ 1156 memcpy(radiotap->data, &mld->monitor.cur_aid, 1157 sizeof(mld->monitor.cur_aid)); 1158 1159 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 1160 } 1161 #endif 1162 1163 static void iwl_mld_rx_fill_status(struct iwl_mld *mld, struct sk_buff *skb, 1164 struct iwl_mld_rx_phy_data *phy_data, 1165 struct iwl_rx_mpdu_desc *mpdu_desc, 1166 struct ieee80211_hdr *hdr, 1167 int queue) 1168 { 1169 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1170 u32 format = phy_data->rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 1171 u32 rate_n_flags = phy_data->rate_n_flags; 1172 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); 1173 bool is_sgi = rate_n_flags & RATE_MCS_SGI_MSK; 1174 1175 if (WARN_ON_ONCE(phy_data->with_data && (!mpdu_desc || !hdr))) 1176 return; 1177 1178 /* Keep packets with CRC errors (and with overrun) for monitor mode 1179 * (otherwise the firmware discards them) but mark them as bad. 1180 */ 1181 if (phy_data->with_data && 1182 (!(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 1183 !(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK)))) { 1184 IWL_DEBUG_RX(mld, "Bad CRC or FIFO: 0x%08X.\n", 1185 le32_to_cpu(mpdu_desc->status)); 1186 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1187 } 1188 1189 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; 1190 1191 if (phy_data->with_data && 1192 likely(!(phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1193 rx_status->mactime = 1194 le64_to_cpu(mpdu_desc->v3.tsf_on_air_rise); 1195 1196 /* TSF as indicated by the firmware is at INA time */ 1197 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1198 } else { 1199 phy_data->info_type = 1200 le32_get_bits(phy_data->data1, 1201 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1202 } 1203 1204 /* management stuff on default queue */ 1205 if (!queue && phy_data->with_data && 1206 unlikely(ieee80211_is_beacon(hdr->frame_control) || 1207 ieee80211_is_probe_resp(hdr->frame_control))) { 1208 rx_status->boottime_ns = ktime_get_boottime_ns(); 1209 1210 if (mld->scan.pass_all_sched_res == SCHED_SCAN_PASS_ALL_STATE_ENABLED) 1211 mld->scan.pass_all_sched_res = SCHED_SCAN_PASS_ALL_STATE_FOUND; 1212 } 1213 1214 /* set the preamble flag if appropriate */ 1215 if (format == RATE_MCS_CCK_MSK && 1216 phy_data->phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1217 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1218 1219 iwl_mld_fill_signal(mld, rx_status, phy_data); 1220 1221 /* This may be overridden by iwl_mld_rx_he() to HE_RU */ 1222 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1223 case RATE_MCS_CHAN_WIDTH_20: 1224 break; 1225 case RATE_MCS_CHAN_WIDTH_40: 1226 rx_status->bw = RATE_INFO_BW_40; 1227 break; 1228 case RATE_MCS_CHAN_WIDTH_80: 1229 rx_status->bw = RATE_INFO_BW_80; 1230 break; 1231 case RATE_MCS_CHAN_WIDTH_160: 1232 rx_status->bw = RATE_INFO_BW_160; 1233 break; 1234 case RATE_MCS_CHAN_WIDTH_320: 1235 rx_status->bw = RATE_INFO_BW_320; 1236 break; 1237 } 1238 1239 /* must be before L-SIG data */ 1240 if (format == RATE_MCS_HE_MSK) 1241 iwl_mld_rx_he(mld, skb, phy_data, queue); 1242 1243 iwl_mld_decode_lsig(skb, phy_data); 1244 1245 rx_status->device_timestamp = phy_data->gp2_on_air_rise; 1246 1247 /* using TLV format and must be after all fixed len fields */ 1248 if (format == RATE_MCS_EHT_MSK) 1249 iwl_mld_rx_eht(mld, skb, phy_data, queue); 1250 1251 #ifdef CONFIG_IWLWIFI_DEBUGFS 1252 if (unlikely(mld->monitor.on)) 1253 iwl_mld_add_rtap_sniffer_config(mld, skb); 1254 #endif 1255 1256 if (format != RATE_MCS_CCK_MSK && is_sgi) 1257 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1258 1259 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1260 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1261 1262 switch (format) { 1263 case RATE_MCS_HT_MSK: 1264 rx_status->encoding = RX_ENC_HT; 1265 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 1266 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1267 break; 1268 case RATE_MCS_VHT_MSK: 1269 case RATE_MCS_HE_MSK: 1270 case RATE_MCS_EHT_MSK: 1271 if (format == RATE_MCS_VHT_MSK) { 1272 rx_status->encoding = RX_ENC_VHT; 1273 } else if (format == RATE_MCS_HE_MSK) { 1274 rx_status->encoding = RX_ENC_HE; 1275 rx_status->he_dcm = 1276 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1277 } else if (format == RATE_MCS_EHT_MSK) { 1278 rx_status->encoding = RX_ENC_EHT; 1279 } 1280 1281 rx_status->nss = u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; 1282 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 1283 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1284 break; 1285 default: { 1286 int rate = 1287 iwl_mld_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 1288 rx_status->band); 1289 1290 /* valid rate */ 1291 if (rate >= 0 && rate <= 0xFF) { 1292 rx_status->rate_idx = rate; 1293 break; 1294 } 1295 1296 /* invalid rate */ 1297 rx_status->rate_idx = 0; 1298 1299 if (net_ratelimit()) 1300 IWL_ERR(mld, "invalid rate_n_flags=0x%x, band=%d\n", 1301 rate_n_flags, rx_status->band); 1302 break; 1303 } 1304 } 1305 } 1306 1307 /* iwl_mld_create_skb adds the rxb to a new skb */ 1308 static int iwl_mld_build_rx_skb(struct iwl_mld *mld, struct sk_buff *skb, 1309 struct ieee80211_hdr *hdr, u16 len, 1310 u8 crypt_len, struct iwl_rx_cmd_buffer *rxb) 1311 { 1312 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1313 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1314 unsigned int headlen, fraglen, pad_len = 0; 1315 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 1316 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 1317 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 1318 1319 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1320 len -= 2; 1321 pad_len = 2; 1322 } 1323 1324 /* For non monitor interface strip the bytes the RADA might not have 1325 * removed (it might be disabled, e.g. for mgmt frames). As a monitor 1326 * interface cannot exist with other interfaces, this removal is safe 1327 * and sufficient, in monitor mode there's no decryption being done. 1328 */ 1329 if (len > mic_crc_len && !ieee80211_hw_check(mld->hw, RX_INCLUDES_FCS)) 1330 len -= mic_crc_len; 1331 1332 /* If frame is small enough to fit in skb->head, pull it completely. 1333 * If not, only pull ieee80211_hdr (including crypto if present, and 1334 * an additional 8 bytes for SNAP/ethertype, see below) so that 1335 * splice() or TCP coalesce are more efficient. 1336 * 1337 * Since, in addition, ieee80211_data_to_8023() always pull in at 1338 * least 8 bytes (possibly more for mesh) we can do the same here 1339 * to save the cost of doing it later. That still doesn't pull in 1340 * the actual IP header since the typical case has a SNAP header. 1341 * If the latter changes (there are efforts in the standards group 1342 * to do so) we should revisit this and ieee80211_data_to_8023(). 1343 */ 1344 headlen = (len <= skb_tailroom(skb)) ? len : hdrlen + crypt_len + 8; 1345 1346 /* The firmware may align the packet to DWORD. 1347 * The padding is inserted after the IV. 1348 * After copying the header + IV skip the padding if 1349 * present before copying packet data. 1350 */ 1351 hdrlen += crypt_len; 1352 1353 if (unlikely(headlen < hdrlen)) 1354 return -EINVAL; 1355 1356 /* Since data doesn't move data while putting data on skb and that is 1357 * the only way we use, data + len is the next place that hdr would 1358 * be put 1359 */ 1360 skb_set_mac_header(skb, skb->len); 1361 skb_put_data(skb, hdr, hdrlen); 1362 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 1363 1364 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1365 struct { 1366 u8 hdr[6]; 1367 __be16 type; 1368 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 1369 1370 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 1371 !ether_addr_equal(shdr->hdr, rfc1042_header) || 1372 (shdr->type != htons(ETH_P_IP) && 1373 shdr->type != htons(ETH_P_ARP) && 1374 shdr->type != htons(ETH_P_IPV6) && 1375 shdr->type != htons(ETH_P_8021Q) && 1376 shdr->type != htons(ETH_P_PAE) && 1377 shdr->type != htons(ETH_P_TDLS)))) 1378 skb->ip_summed = CHECKSUM_NONE; 1379 } 1380 1381 fraglen = len - headlen; 1382 1383 if (fraglen) { 1384 int offset = (u8 *)hdr + headlen + pad_len - 1385 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 1386 1387 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 1388 fraglen, rxb->truesize); 1389 } 1390 1391 return 0; 1392 } 1393 1394 /* returns true if a packet is a duplicate or invalid tid and 1395 * should be dropped. Updates AMSDU PN tracking info 1396 */ 1397 VISIBLE_IF_IWLWIFI_KUNIT 1398 bool 1399 iwl_mld_is_dup(struct iwl_mld *mld, struct ieee80211_sta *sta, 1400 struct ieee80211_hdr *hdr, 1401 const struct iwl_rx_mpdu_desc *mpdu_desc, 1402 struct ieee80211_rx_status *rx_status, int queue) 1403 { 1404 struct iwl_mld_sta *mld_sta; 1405 struct iwl_mld_rxq_dup_data *dup_data; 1406 u8 tid, sub_frame_idx; 1407 1408 if (WARN_ON(!sta)) 1409 return false; 1410 1411 mld_sta = iwl_mld_sta_from_mac80211(sta); 1412 1413 if (WARN_ON_ONCE(!mld_sta->dup_data)) 1414 return false; 1415 1416 dup_data = &mld_sta->dup_data[queue]; 1417 1418 /* Drop duplicate 802.11 retransmissions 1419 * (IEEE 802.11-2020: 10.3.2.14 "Duplicate detection and recovery") 1420 */ 1421 if (ieee80211_is_ctl(hdr->frame_control) || 1422 ieee80211_is_any_nullfunc(hdr->frame_control) || 1423 is_multicast_ether_addr(hdr->addr1)) 1424 return false; 1425 1426 if (ieee80211_is_data_qos(hdr->frame_control)) { 1427 /* frame has qos control */ 1428 tid = ieee80211_get_tid(hdr); 1429 if (tid >= IWL_MAX_TID_COUNT) 1430 return true; 1431 } else { 1432 tid = IWL_MAX_TID_COUNT; 1433 } 1434 1435 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 1436 sub_frame_idx = mpdu_desc->amsdu_info & 1437 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 1438 1439 if (IWL_FW_CHECK(mld, 1440 sub_frame_idx > 0 && 1441 !(mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU), 1442 "got sub_frame_idx=%d but A-MSDU flag is not set\n", 1443 sub_frame_idx)) 1444 return true; 1445 1446 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1447 dup_data->last_seq[tid] == hdr->seq_ctrl && 1448 dup_data->last_sub_frame_idx[tid] >= sub_frame_idx)) 1449 return true; 1450 1451 /* Allow same PN as the first subframe for following sub frames */ 1452 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 1453 sub_frame_idx > dup_data->last_sub_frame_idx[tid]) 1454 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 1455 1456 dup_data->last_seq[tid] = hdr->seq_ctrl; 1457 dup_data->last_sub_frame_idx[tid] = sub_frame_idx; 1458 1459 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 1460 1461 return false; 1462 } 1463 EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_is_dup); 1464 1465 static void iwl_mld_update_last_rx_timestamp(struct iwl_mld *mld, u8 baid) 1466 { 1467 unsigned long now = jiffies; 1468 unsigned long timeout; 1469 struct iwl_mld_baid_data *ba_data; 1470 1471 ba_data = rcu_dereference(mld->fw_id_to_ba[baid]); 1472 if (!ba_data) { 1473 IWL_DEBUG_HT(mld, "BAID %d not found in map\n", baid); 1474 return; 1475 } 1476 1477 if (!ba_data->timeout) 1478 return; 1479 1480 /* To minimize cache bouncing between RX queues, avoid frequent updates 1481 * to last_rx_timestamp. update it only when the timeout period has 1482 * passed. The worst-case scenario is the session expiring after 1483 * approximately 2 * timeout, which is negligible (the update is 1484 * atomic). 1485 */ 1486 timeout = TU_TO_JIFFIES(ba_data->timeout); 1487 if (time_is_before_jiffies(ba_data->last_rx_timestamp + timeout)) 1488 ba_data->last_rx_timestamp = now; 1489 } 1490 1491 /* Processes received packets for a station. 1492 * Sets *drop to true if the packet should be dropped. 1493 * Returns the station if found, or NULL otherwise. 1494 */ 1495 static struct ieee80211_sta * 1496 iwl_mld_rx_with_sta(struct iwl_mld *mld, struct ieee80211_hdr *hdr, 1497 struct sk_buff *skb, 1498 const struct iwl_rx_mpdu_desc *mpdu_desc, 1499 const struct iwl_rx_packet *pkt, int queue, bool *drop) 1500 { 1501 struct ieee80211_sta *sta = NULL; 1502 struct ieee80211_link_sta *link_sta = NULL; 1503 struct ieee80211_rx_status *rx_status; 1504 u8 baid; 1505 1506 if (mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1507 u8 sta_id = le32_get_bits(mpdu_desc->status, 1508 IWL_RX_MPDU_STATUS_STA_ID); 1509 1510 if (IWL_FW_CHECK(mld, 1511 sta_id >= mld->fw->ucode_capa.num_stations, 1512 "rx_mpdu: invalid sta_id %d\n", sta_id)) 1513 return NULL; 1514 1515 link_sta = rcu_dereference(mld->fw_id_to_link_sta[sta_id]); 1516 if (!IS_ERR_OR_NULL(link_sta)) 1517 sta = link_sta->sta; 1518 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1519 /* Passing NULL is fine since we prevent two stations with the 1520 * same address from being added. 1521 */ 1522 sta = ieee80211_find_sta_by_ifaddr(mld->hw, hdr->addr2, NULL); 1523 } 1524 1525 /* we may not have any station yet */ 1526 if (!sta) 1527 return NULL; 1528 1529 rx_status = IEEE80211_SKB_RXCB(skb); 1530 1531 if (link_sta && sta->valid_links) { 1532 rx_status->link_valid = true; 1533 rx_status->link_id = link_sta->link_id; 1534 } 1535 1536 /* fill checksum */ 1537 if (ieee80211_is_data(hdr->frame_control) && 1538 pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 1539 u16 hwsum = be16_to_cpu(mpdu_desc->v3.raw_xsum); 1540 1541 skb->ip_summed = CHECKSUM_COMPLETE; 1542 skb->csum = csum_unfold(~(__force __sum16)hwsum); 1543 } 1544 1545 if (iwl_mld_is_dup(mld, sta, hdr, mpdu_desc, rx_status, queue)) { 1546 IWL_DEBUG_DROP(mld, "Dropping duplicate packet 0x%x\n", 1547 le16_to_cpu(hdr->seq_ctrl)); 1548 *drop = true; 1549 return NULL; 1550 } 1551 1552 baid = le32_get_bits(mpdu_desc->reorder_data, 1553 IWL_RX_MPDU_REORDER_BAID_MASK); 1554 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) 1555 iwl_mld_update_last_rx_timestamp(mld, baid); 1556 1557 if (link_sta && ieee80211_is_data(hdr->frame_control)) { 1558 u8 sub_frame_idx = mpdu_desc->amsdu_info & 1559 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 1560 1561 /* 0 means not an A-MSDU, and 1 means a new A-MSDU */ 1562 if (!sub_frame_idx || sub_frame_idx == 1) 1563 iwl_mld_count_mpdu_rx(link_sta, queue, 1); 1564 1565 if (!is_multicast_ether_addr(hdr->addr1)) 1566 iwl_mld_low_latency_update_counters(mld, hdr, sta, 1567 queue); 1568 } 1569 1570 return sta; 1571 } 1572 1573 #define KEY_IDX_LEN 2 1574 1575 static int iwl_mld_rx_mgmt_prot(struct ieee80211_sta *sta, 1576 struct ieee80211_hdr *hdr, 1577 struct ieee80211_rx_status *rx_status, 1578 u32 mpdu_status, 1579 u32 mpdu_len) 1580 { 1581 struct wireless_dev *wdev; 1582 struct iwl_mld_sta *mld_sta; 1583 struct iwl_mld_vif *mld_vif; 1584 u8 keyidx; 1585 struct ieee80211_key_conf *key; 1586 const u8 *frame = (void *)hdr; 1587 1588 if ((mpdu_status & IWL_RX_MPDU_STATUS_SEC_MASK) == 1589 IWL_RX_MPDU_STATUS_SEC_NONE) 1590 return 0; 1591 1592 /* For non-beacon, we don't really care. But beacons may 1593 * be filtered out, and we thus need the firmware's replay 1594 * detection, otherwise beacons the firmware previously 1595 * filtered could be replayed, or something like that, and 1596 * it can filter a lot - though usually only if nothing has 1597 * changed. 1598 */ 1599 if (!ieee80211_is_beacon(hdr->frame_control)) 1600 return 0; 1601 1602 if (!sta) 1603 return -1; 1604 1605 mld_sta = iwl_mld_sta_from_mac80211(sta); 1606 mld_vif = iwl_mld_vif_from_mac80211(mld_sta->vif); 1607 1608 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 1609 if (!(mpdu_status & IWL_RX_MPDU_STATUS_KEY_VALID)) 1610 goto report; 1611 1612 /* good cases */ 1613 if (likely(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK && 1614 !(mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { 1615 rx_status->flag |= RX_FLAG_DECRYPTED; 1616 return 0; 1617 } 1618 1619 /* both keys will have the same cipher and MIC length, use 1620 * whichever one is available 1621 */ 1622 key = rcu_dereference(mld_vif->bigtks[0]); 1623 if (!key) { 1624 key = rcu_dereference(mld_vif->bigtks[1]); 1625 if (!key) 1626 goto report; 1627 } 1628 1629 if (mpdu_len < key->icv_len + IEEE80211_GMAC_PN_LEN + KEY_IDX_LEN) 1630 goto report; 1631 1632 /* get the real key ID */ 1633 keyidx = frame[mpdu_len - key->icv_len - IEEE80211_GMAC_PN_LEN - KEY_IDX_LEN]; 1634 /* and if that's the other key, look it up */ 1635 if (keyidx != key->keyidx) { 1636 /* shouldn't happen since firmware checked, but be safe 1637 * in case the MIC length is wrong too, for example 1638 */ 1639 if (keyidx != 6 && keyidx != 7) 1640 return -1; 1641 1642 key = rcu_dereference(mld_vif->bigtks[keyidx - 6]); 1643 if (!key) 1644 goto report; 1645 } 1646 1647 /* Report status to mac80211 */ 1648 if (!(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK)) 1649 ieee80211_key_mic_failure(key); 1650 else if (mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 1651 ieee80211_key_replay(key); 1652 report: 1653 wdev = ieee80211_vif_to_wdev(mld_sta->vif); 1654 if (wdev->netdev) 1655 cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, 1656 mpdu_len); 1657 1658 return -1; 1659 } 1660 1661 static int iwl_mld_rx_crypto(struct iwl_mld *mld, 1662 struct ieee80211_sta *sta, 1663 struct ieee80211_hdr *hdr, 1664 struct ieee80211_rx_status *rx_status, 1665 struct iwl_rx_mpdu_desc *desc, int queue, 1666 u32 pkt_flags, u8 *crypto_len) 1667 { 1668 u32 status = le32_to_cpu(desc->status); 1669 1670 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 1671 !ieee80211_has_protected(hdr->frame_control))) 1672 return iwl_mld_rx_mgmt_prot(sta, hdr, rx_status, status, 1673 le16_to_cpu(desc->mpdu_len)); 1674 1675 if (!ieee80211_has_protected(hdr->frame_control) || 1676 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 1677 IWL_RX_MPDU_STATUS_SEC_NONE) 1678 return 0; 1679 1680 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 1681 case IWL_RX_MPDU_STATUS_SEC_CCM: 1682 case IWL_RX_MPDU_STATUS_SEC_GCM: 1683 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 1684 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) { 1685 IWL_DEBUG_DROP(mld, 1686 "Dropping packet, bad MIC (CCM/GCM)\n"); 1687 return -1; 1688 } 1689 1690 rx_status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; 1691 *crypto_len = IEEE80211_CCMP_HDR_LEN; 1692 return 0; 1693 case IWL_RX_MPDU_STATUS_SEC_TKIP: 1694 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 1695 return -1; 1696 1697 if (!(status & RX_MPDU_RES_STATUS_MIC_OK)) 1698 rx_status->flag |= RX_FLAG_MMIC_ERROR; 1699 1700 if (pkt_flags & FH_RSCSR_RADA_EN) { 1701 rx_status->flag |= RX_FLAG_ICV_STRIPPED; 1702 rx_status->flag |= RX_FLAG_MMIC_STRIPPED; 1703 } 1704 1705 *crypto_len = IEEE80211_TKIP_IV_LEN; 1706 rx_status->flag |= RX_FLAG_DECRYPTED; 1707 return 0; 1708 default: 1709 break; 1710 } 1711 1712 return 0; 1713 } 1714 1715 static void iwl_mld_rx_update_ampdu_ref(struct iwl_mld *mld, 1716 struct iwl_mld_rx_phy_data *phy_data, 1717 struct ieee80211_rx_status *rx_status) 1718 { 1719 bool toggle_bit = 1720 phy_data->phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1721 1722 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1723 /* Toggle is switched whenever new aggregation starts. Make 1724 * sure ampdu_reference is never 0 so we can later use it to 1725 * see if the frame was really part of an A-MPDU or not. 1726 */ 1727 if (toggle_bit != mld->monitor.ampdu_toggle) { 1728 mld->monitor.ampdu_ref++; 1729 if (mld->monitor.ampdu_ref == 0) 1730 mld->monitor.ampdu_ref++; 1731 mld->monitor.ampdu_toggle = toggle_bit; 1732 phy_data->first_subframe = true; 1733 } 1734 rx_status->ampdu_reference = mld->monitor.ampdu_ref; 1735 } 1736 1737 static void 1738 iwl_mld_fill_rx_status_band_freq(struct iwl_mld_rx_phy_data *phy_data, 1739 struct iwl_rx_mpdu_desc *mpdu_desc, 1740 struct ieee80211_rx_status *rx_status) 1741 { 1742 enum nl80211_band band; 1743 1744 band = BAND_IN_RX_STATUS(mpdu_desc->mac_phy_idx); 1745 rx_status->band = iwl_mld_phy_band_to_nl80211(band); 1746 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, 1747 rx_status->band); 1748 } 1749 1750 void iwl_mld_rx_mpdu(struct iwl_mld *mld, struct napi_struct *napi, 1751 struct iwl_rx_cmd_buffer *rxb, int queue) 1752 { 1753 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1754 struct iwl_mld_rx_phy_data phy_data = {}; 1755 struct iwl_rx_mpdu_desc *mpdu_desc = (void *)pkt->data; 1756 struct ieee80211_sta *sta; 1757 struct ieee80211_hdr *hdr; 1758 struct sk_buff *skb; 1759 size_t mpdu_desc_size = sizeof(*mpdu_desc); 1760 bool drop = false; 1761 u8 crypto_len = 0; 1762 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 1763 u32 mpdu_len; 1764 enum iwl_mld_reorder_result reorder_res; 1765 struct ieee80211_rx_status *rx_status; 1766 1767 if (unlikely(mld->fw_status.in_hw_restart)) 1768 return; 1769 1770 if (IWL_FW_CHECK(mld, pkt_len < mpdu_desc_size, 1771 "Bad REPLY_RX_MPDU_CMD size (%d)\n", pkt_len)) 1772 return; 1773 1774 mpdu_len = le16_to_cpu(mpdu_desc->mpdu_len); 1775 1776 if (IWL_FW_CHECK(mld, mpdu_len + mpdu_desc_size > pkt_len, 1777 "FW lied about packet len (%d)\n", pkt_len)) 1778 return; 1779 1780 /* Don't use dev_alloc_skb(), we'll have enough headroom once 1781 * ieee80211_hdr pulled. 1782 */ 1783 skb = alloc_skb(128, GFP_ATOMIC); 1784 if (!skb) { 1785 IWL_ERR(mld, "alloc_skb failed\n"); 1786 return; 1787 } 1788 1789 hdr = (void *)(pkt->data + mpdu_desc_size); 1790 1791 iwl_mld_fill_phy_data(mpdu_desc, &phy_data); 1792 1793 if (mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1794 /* If the device inserted padding it means that (it thought) 1795 * the 802.11 header wasn't a multiple of 4 bytes long. In 1796 * this case, reserve two bytes at the start of the SKB to 1797 * align the payload properly in case we end up copying it. 1798 */ 1799 skb_reserve(skb, 2); 1800 } 1801 1802 rx_status = IEEE80211_SKB_RXCB(skb); 1803 1804 /* this is needed early */ 1805 iwl_mld_fill_rx_status_band_freq(&phy_data, mpdu_desc, rx_status); 1806 1807 rcu_read_lock(); 1808 1809 sta = iwl_mld_rx_with_sta(mld, hdr, skb, mpdu_desc, pkt, queue, &drop); 1810 if (drop) 1811 goto drop; 1812 1813 /* update aggregation data for monitor sake on default queue */ 1814 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) 1815 iwl_mld_rx_update_ampdu_ref(mld, &phy_data, rx_status); 1816 1817 iwl_mld_rx_fill_status(mld, skb, &phy_data, mpdu_desc, hdr, queue); 1818 1819 if (iwl_mld_rx_crypto(mld, sta, hdr, rx_status, mpdu_desc, queue, 1820 le32_to_cpu(pkt->len_n_flags), &crypto_len)) 1821 goto drop; 1822 1823 if (iwl_mld_build_rx_skb(mld, skb, hdr, mpdu_len, crypto_len, rxb)) 1824 goto drop; 1825 1826 /* time sync frame is saved and will be released later when the 1827 * notification with the timestamps arrives. 1828 */ 1829 if (iwl_mld_time_sync_frame(mld, skb, hdr->addr2)) 1830 goto out; 1831 1832 reorder_res = iwl_mld_reorder(mld, napi, queue, sta, skb, mpdu_desc); 1833 switch (reorder_res) { 1834 case IWL_MLD_PASS_SKB: 1835 break; 1836 case IWL_MLD_DROP_SKB: 1837 goto drop; 1838 case IWL_MLD_BUFFERED_SKB: 1839 goto out; 1840 default: 1841 WARN_ON(1); 1842 goto drop; 1843 } 1844 1845 iwl_mld_pass_packet_to_mac80211(mld, napi, skb, queue, sta); 1846 1847 goto out; 1848 1849 drop: 1850 kfree_skb(skb); 1851 out: 1852 rcu_read_unlock(); 1853 } 1854 1855 #define SYNC_RX_QUEUE_TIMEOUT (HZ) 1856 void iwl_mld_sync_rx_queues(struct iwl_mld *mld, 1857 enum iwl_mld_internal_rxq_notif_type type, 1858 const void *notif_payload, u32 notif_payload_size) 1859 { 1860 u8 num_rx_queues = mld->trans->num_rx_queues; 1861 struct { 1862 struct iwl_rxq_sync_cmd sync_cmd; 1863 struct iwl_mld_internal_rxq_notif notif; 1864 } __packed cmd = { 1865 .sync_cmd.rxq_mask = cpu_to_le32(BIT(num_rx_queues) - 1), 1866 .sync_cmd.count = 1867 cpu_to_le32(sizeof(struct iwl_mld_internal_rxq_notif) + 1868 notif_payload_size), 1869 .notif.type = type, 1870 .notif.cookie = mld->rxq_sync.cookie, 1871 }; 1872 struct iwl_host_cmd hcmd = { 1873 .id = WIDE_ID(DATA_PATH_GROUP, TRIGGER_RX_QUEUES_NOTIF_CMD), 1874 .data[0] = &cmd, 1875 .len[0] = sizeof(cmd), 1876 .data[1] = notif_payload, 1877 .len[1] = notif_payload_size, 1878 }; 1879 int ret; 1880 1881 /* size must be a multiple of DWORD */ 1882 if (WARN_ON(cmd.sync_cmd.count & cpu_to_le32(3))) 1883 return; 1884 1885 mld->rxq_sync.state = (1 << num_rx_queues) - 1; 1886 1887 ret = iwl_mld_send_cmd(mld, &hcmd); 1888 if (ret) { 1889 IWL_ERR(mld, "Failed to trigger RX queues sync (%d)\n", ret); 1890 goto out; 1891 } 1892 1893 ret = wait_event_timeout(mld->rxq_sync.waitq, 1894 READ_ONCE(mld->rxq_sync.state) == 0, 1895 SYNC_RX_QUEUE_TIMEOUT); 1896 WARN_ONCE(!ret, "RXQ sync failed: state=0x%lx, cookie=%d\n", 1897 mld->rxq_sync.state, mld->rxq_sync.cookie); 1898 1899 out: 1900 mld->rxq_sync.state = 0; 1901 mld->rxq_sync.cookie++; 1902 } 1903 1904 void iwl_mld_handle_rx_queues_sync_notif(struct iwl_mld *mld, 1905 struct napi_struct *napi, 1906 struct iwl_rx_packet *pkt, int queue) 1907 { 1908 struct iwl_rxq_sync_notification *notif; 1909 struct iwl_mld_internal_rxq_notif *internal_notif; 1910 u32 len = iwl_rx_packet_payload_len(pkt); 1911 size_t combined_notif_len = sizeof(*notif) + sizeof(*internal_notif); 1912 1913 notif = (void *)pkt->data; 1914 internal_notif = (void *)notif->payload; 1915 1916 if (IWL_FW_CHECK(mld, len < combined_notif_len, 1917 "invalid notification size %u (%zu)\n", 1918 len, combined_notif_len)) 1919 return; 1920 1921 len -= combined_notif_len; 1922 1923 if (IWL_FW_CHECK(mld, mld->rxq_sync.cookie != internal_notif->cookie, 1924 "received expired RX queue sync message (cookie=%d expected=%d q[%d])\n", 1925 internal_notif->cookie, mld->rxq_sync.cookie, queue)) 1926 return; 1927 1928 switch (internal_notif->type) { 1929 case IWL_MLD_RXQ_EMPTY: 1930 IWL_FW_CHECK(mld, len, 1931 "invalid empty notification size %d\n", len); 1932 break; 1933 case IWL_MLD_RXQ_NOTIF_DEL_BA: 1934 if (IWL_FW_CHECK(mld, len != sizeof(struct iwl_mld_delba_data), 1935 "invalid delba notification size %u (%zu)\n", 1936 len, sizeof(struct iwl_mld_delba_data))) 1937 break; 1938 iwl_mld_del_ba(mld, queue, (void *)internal_notif->payload); 1939 break; 1940 default: 1941 WARN_ON_ONCE(1); 1942 } 1943 1944 IWL_FW_CHECK(mld, !test_and_clear_bit(queue, &mld->rxq_sync.state), 1945 "RXQ sync: queue %d responded a second time!\n", queue); 1946 1947 if (READ_ONCE(mld->rxq_sync.state) == 0) 1948 wake_up(&mld->rxq_sync.waitq); 1949 } 1950 1951 void iwl_mld_rx_monitor_no_data(struct iwl_mld *mld, struct napi_struct *napi, 1952 struct iwl_rx_packet *pkt, int queue) 1953 { 1954 struct iwl_rx_no_data_ver_3 *desc; 1955 struct iwl_mld_rx_phy_data phy_data; 1956 struct ieee80211_rx_status *rx_status; 1957 struct sk_buff *skb; 1958 u32 format, rssi; 1959 1960 if (unlikely(mld->fw_status.in_hw_restart)) 1961 return; 1962 1963 if (IWL_FW_CHECK(mld, iwl_rx_packet_payload_len(pkt) < sizeof(*desc), 1964 "Bad RX_NO_DATA_NOTIF size (%d)\n", 1965 iwl_rx_packet_payload_len(pkt))) 1966 return; 1967 1968 desc = (void *)pkt->data; 1969 1970 rssi = le32_to_cpu(desc->rssi); 1971 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); 1972 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); 1973 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); 1974 phy_data.data0 = desc->phy_info[0]; 1975 phy_data.data1 = desc->phy_info[1]; 1976 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 1977 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 1978 phy_data.rate_n_flags = le32_to_cpu(desc->rate); 1979 phy_data.with_data = false; 1980 1981 BUILD_BUG_ON(sizeof(phy_data.rx_vec) != sizeof(desc->rx_vec)); 1982 memcpy(phy_data.rx_vec, desc->rx_vec, sizeof(phy_data.rx_vec)); 1983 1984 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 1985 1986 /* Don't use dev_alloc_skb(), we'll have enough headroom once 1987 * ieee80211_hdr pulled. 1988 */ 1989 skb = alloc_skb(128, GFP_ATOMIC); 1990 if (!skb) { 1991 IWL_ERR(mld, "alloc_skb failed\n"); 1992 return; 1993 } 1994 1995 rx_status = IEEE80211_SKB_RXCB(skb); 1996 1997 /* 0-length PSDU */ 1998 rx_status->flag |= RX_FLAG_NO_PSDU; 1999 2000 /* mark as failed PLCP on any errors to skip checks in mac80211 */ 2001 if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) != 2002 RX_NO_DATA_INFO_ERR_NONE) 2003 rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC; 2004 2005 switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) { 2006 case RX_NO_DATA_INFO_TYPE_NDP: 2007 rx_status->zero_length_psdu_type = 2008 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2009 break; 2010 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2011 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: 2012 rx_status->zero_length_psdu_type = 2013 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2014 break; 2015 default: 2016 rx_status->zero_length_psdu_type = 2017 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2018 break; 2019 } 2020 2021 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2022 NL80211_BAND_2GHZ; 2023 2024 rx_status->freq = ieee80211_channel_to_frequency(phy_data.channel, 2025 rx_status->band); 2026 2027 iwl_mld_rx_fill_status(mld, skb, &phy_data, NULL, NULL, queue); 2028 2029 /* No more radiotap info should be added after this point. 2030 * Mark it as mac header for upper layers to know where 2031 * the radiotap header ends. 2032 */ 2033 skb_set_mac_header(skb, skb->len); 2034 2035 /* Override the nss from the rx_vec since the rate_n_flags has 2036 * only 1 bit for the nss which gives a max of 2 ss but there 2037 * may be up to 8 spatial streams. 2038 */ 2039 switch (format) { 2040 case RATE_MCS_VHT_MSK: 2041 rx_status->nss = 2042 le32_get_bits(desc->rx_vec[0], 2043 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2044 break; 2045 case RATE_MCS_HE_MSK: 2046 rx_status->nss = 2047 le32_get_bits(desc->rx_vec[0], 2048 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2049 break; 2050 case RATE_MCS_EHT_MSK: 2051 rx_status->nss = 2052 le32_get_bits(desc->rx_vec[2], 2053 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; 2054 } 2055 2056 /* pass the packet to mac80211 */ 2057 rcu_read_lock(); 2058 ieee80211_rx_napi(mld->hw, NULL, skb, napi); 2059 rcu_read_unlock(); 2060 } 2061