xref: /linux/drivers/net/wireless/intel/iwlwifi/mld/rx.c (revision 0a7a30fce30e566a462b30994fcf69cea01934ed)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2024-2025 Intel Corporation
4  */
5 
6 #include <net/mac80211.h>
7 #include <kunit/static_stub.h>
8 
9 #include "mld.h"
10 #include "sta.h"
11 #include "agg.h"
12 #include "rx.h"
13 #include "hcmd.h"
14 #include "iface.h"
15 #include "time_sync.h"
16 #include "fw/dbg.h"
17 #include "fw/api/rx.h"
18 
19 /* stores relevant PHY data fields extracted from iwl_rx_mpdu_desc */
20 struct iwl_mld_rx_phy_data {
21 	enum iwl_rx_phy_info_type info_type;
22 	__le32 data0;
23 	__le32 data1;
24 	__le32 data2;
25 	__le32 data3;
26 	__le32 eht_data4;
27 	__le32 data5;
28 	__le16 data4;
29 	bool first_subframe;
30 	bool with_data;
31 	__le32 rx_vec[4];
32 	u32 rate_n_flags;
33 	u32 gp2_on_air_rise;
34 	u16 phy_info;
35 	u8 energy_a, energy_b;
36 };
37 
38 static void
39 iwl_mld_fill_phy_data(struct iwl_rx_mpdu_desc *desc,
40 		      struct iwl_mld_rx_phy_data *phy_data)
41 {
42 	phy_data->phy_info = le16_to_cpu(desc->phy_info);
43 	phy_data->rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
44 	phy_data->gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
45 	phy_data->energy_a = desc->v3.energy_a;
46 	phy_data->energy_b = desc->v3.energy_b;
47 	phy_data->data0 = desc->v3.phy_data0;
48 	phy_data->data1 = desc->v3.phy_data1;
49 	phy_data->data2 = desc->v3.phy_data2;
50 	phy_data->data3 = desc->v3.phy_data3;
51 	phy_data->data4 = desc->phy_data4;
52 	phy_data->eht_data4 = desc->phy_eht_data4;
53 	phy_data->data5 = desc->v3.phy_data5;
54 	phy_data->with_data = true;
55 }
56 
57 static inline int iwl_mld_check_pn(struct iwl_mld *mld, struct sk_buff *skb,
58 				   int queue, struct ieee80211_sta *sta)
59 {
60 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
61 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
62 	struct iwl_mld_sta *mld_sta;
63 	struct iwl_mld_ptk_pn *ptk_pn;
64 	int res;
65 	u8 tid, keyidx;
66 	u8 pn[IEEE80211_CCMP_PN_LEN];
67 	u8 *extiv;
68 
69 	/* multicast and non-data only arrives on default queue; avoid checking
70 	 * for default queue - we don't want to replicate all the logic that's
71 	 * necessary for checking the PN on fragmented frames, leave that
72 	 * to mac80211
73 	 */
74 	if (queue == 0 || !ieee80211_is_data(hdr->frame_control) ||
75 	    is_multicast_ether_addr(hdr->addr1))
76 		return 0;
77 
78 	if (!(stats->flag & RX_FLAG_DECRYPTED))
79 		return 0;
80 
81 	/* if we are here - this for sure is either CCMP or GCMP */
82 	if (!sta) {
83 		IWL_DEBUG_DROP(mld,
84 			       "expected hw-decrypted unicast frame for station\n");
85 		return -1;
86 	}
87 
88 	mld_sta = iwl_mld_sta_from_mac80211(sta);
89 
90 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
91 	keyidx = extiv[3] >> 6;
92 
93 	ptk_pn = rcu_dereference(mld_sta->ptk_pn[keyidx]);
94 	if (!ptk_pn)
95 		return -1;
96 
97 	if (ieee80211_is_data_qos(hdr->frame_control))
98 		tid = ieee80211_get_tid(hdr);
99 	else
100 		tid = 0;
101 
102 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
103 	if (tid >= IWL_MAX_TID_COUNT)
104 		return -1;
105 
106 	/* load pn */
107 	pn[0] = extiv[7];
108 	pn[1] = extiv[6];
109 	pn[2] = extiv[5];
110 	pn[3] = extiv[4];
111 	pn[4] = extiv[1];
112 	pn[5] = extiv[0];
113 
114 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
115 	if (res < 0)
116 		return -1;
117 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
118 		return -1;
119 
120 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
121 	stats->flag |= RX_FLAG_PN_VALIDATED;
122 
123 	return 0;
124 }
125 
126 /* iwl_mld_pass_packet_to_mac80211 - passes the packet for mac80211 */
127 void iwl_mld_pass_packet_to_mac80211(struct iwl_mld *mld,
128 				     struct napi_struct *napi,
129 				     struct sk_buff *skb, int queue,
130 				     struct ieee80211_sta *sta)
131 {
132 	KUNIT_STATIC_STUB_REDIRECT(iwl_mld_pass_packet_to_mac80211,
133 				   mld, napi, skb, queue, sta);
134 
135 	if (unlikely(iwl_mld_check_pn(mld, skb, queue, sta))) {
136 		kfree_skb(skb);
137 		return;
138 	}
139 
140 	ieee80211_rx_napi(mld->hw, sta, skb, napi);
141 }
142 EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_pass_packet_to_mac80211);
143 
144 static void iwl_mld_fill_signal(struct iwl_mld *mld,
145 				struct ieee80211_rx_status *rx_status,
146 				struct iwl_mld_rx_phy_data *phy_data)
147 {
148 	u32 rate_n_flags = phy_data->rate_n_flags;
149 	int energy_a = phy_data->energy_a;
150 	int energy_b = phy_data->energy_b;
151 	int max_energy;
152 
153 	energy_a = energy_a ? -energy_a : S8_MIN;
154 	energy_b = energy_b ? -energy_b : S8_MIN;
155 	max_energy = max(energy_a, energy_b);
156 
157 	IWL_DEBUG_STATS(mld, "energy in A %d B %d, and max %d\n",
158 			energy_a, energy_b, max_energy);
159 
160 	rx_status->signal = max_energy;
161 	rx_status->chains =
162 	    (rate_n_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
163 	rx_status->chain_signal[0] = energy_a;
164 	rx_status->chain_signal[1] = energy_b;
165 }
166 
167 static void
168 iwl_mld_decode_he_phy_ru_alloc(struct iwl_mld_rx_phy_data *phy_data,
169 			       struct ieee80211_radiotap_he *he,
170 			       struct ieee80211_radiotap_he_mu *he_mu,
171 			       struct ieee80211_rx_status *rx_status)
172 {
173 	/* Unfortunately, we have to leave the mac80211 data
174 	 * incorrect for the case that we receive an HE-MU
175 	 * transmission and *don't* have the HE phy data (due
176 	 * to the bits being used for TSF). This shouldn't
177 	 * happen though as management frames where we need
178 	 * the TSF/timers are not be transmitted in HE-MU.
179 	 */
180 	u8 ru = le32_get_bits(phy_data->data1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
181 	u32 rate_n_flags = phy_data->rate_n_flags;
182 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
183 	u8 offs = 0;
184 
185 	rx_status->bw = RATE_INFO_BW_HE_RU;
186 
187 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
188 
189 	switch (ru) {
190 	case 0 ... 36:
191 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
192 		offs = ru;
193 		break;
194 	case 37 ... 52:
195 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
196 		offs = ru - 37;
197 		break;
198 	case 53 ... 60:
199 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
200 		offs = ru - 53;
201 		break;
202 	case 61 ... 64:
203 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
204 		offs = ru - 61;
205 		break;
206 	case 65 ... 66:
207 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
208 		offs = ru - 65;
209 		break;
210 	case 67:
211 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
212 		break;
213 	case 68:
214 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
215 		break;
216 	}
217 	he->data2 |= le16_encode_bits(offs,
218 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
219 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
220 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
221 	if (phy_data->data1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
222 		he->data2 |=
223 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
224 
225 #define CHECK_BW(bw) \
226 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
227 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
228 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
229 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
230 	CHECK_BW(20);
231 	CHECK_BW(40);
232 	CHECK_BW(80);
233 	CHECK_BW(160);
234 
235 	if (he_mu)
236 		he_mu->flags2 |=
237 			le16_encode_bits(u32_get_bits(rate_n_flags,
238 						      RATE_MCS_CHAN_WIDTH_MSK),
239 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
240 	else if (he_type == RATE_MCS_HE_TYPE_TRIG)
241 		he->data6 |=
242 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
243 			le16_encode_bits(u32_get_bits(rate_n_flags,
244 						      RATE_MCS_CHAN_WIDTH_MSK),
245 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
246 }
247 
248 static void
249 iwl_mld_decode_he_mu_ext(struct iwl_mld_rx_phy_data *phy_data,
250 			 struct ieee80211_radiotap_he_mu *he_mu)
251 {
252 	u32 phy_data2 = le32_to_cpu(phy_data->data2);
253 	u32 phy_data3 = le32_to_cpu(phy_data->data3);
254 	u16 phy_data4 = le16_to_cpu(phy_data->data4);
255 	u32 rate_n_flags = phy_data->rate_n_flags;
256 
257 	if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK)) {
258 		he_mu->flags1 |=
259 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
260 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
261 
262 		he_mu->flags1 |=
263 			le16_encode_bits(u32_get_bits(phy_data4,
264 						      IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU),
265 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
266 
267 		he_mu->ru_ch1[0] = u32_get_bits(phy_data2,
268 						IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0);
269 		he_mu->ru_ch1[1] = u32_get_bits(phy_data3,
270 						IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1);
271 		he_mu->ru_ch1[2] = u32_get_bits(phy_data2,
272 						IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2);
273 		he_mu->ru_ch1[3] = u32_get_bits(phy_data3,
274 						IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3);
275 	}
276 
277 	if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK) &&
278 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
279 		he_mu->flags1 |=
280 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
281 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
282 
283 		he_mu->flags2 |=
284 			le16_encode_bits(u32_get_bits(phy_data4,
285 						      IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU),
286 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
287 
288 		he_mu->ru_ch2[0] = u32_get_bits(phy_data2,
289 						IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0);
290 		he_mu->ru_ch2[1] = u32_get_bits(phy_data3,
291 						IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1);
292 		he_mu->ru_ch2[2] = u32_get_bits(phy_data2,
293 						IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2);
294 		he_mu->ru_ch2[3] = u32_get_bits(phy_data3,
295 						IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3);
296 	}
297 }
298 
299 static void
300 iwl_mld_decode_he_phy_data(struct iwl_mld_rx_phy_data *phy_data,
301 			   struct ieee80211_radiotap_he *he,
302 			   struct ieee80211_radiotap_he_mu *he_mu,
303 			   struct ieee80211_rx_status *rx_status,
304 			   int queue)
305 {
306 	switch (phy_data->info_type) {
307 	case IWL_RX_PHY_INFO_TYPE_NONE:
308 	case IWL_RX_PHY_INFO_TYPE_CCK:
309 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
310 	case IWL_RX_PHY_INFO_TYPE_HT:
311 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
312 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
313 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
314 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
315 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
316 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
317 		return;
318 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
319 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
320 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
321 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
322 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
323 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
324 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
325 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
326 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
327 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
328 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
329 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
330 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
331 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
332 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
333 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
334 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
335 		fallthrough;
336 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
337 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
338 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
339 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
340 		/* HE common */
341 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
342 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
343 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
344 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
345 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
346 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
347 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
348 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
349 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
350 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
351 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
352 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
353 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
354 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
355 							    IWL_RX_PHY_DATA0_HE_UPLINK),
356 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
357 		}
358 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
359 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
360 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
361 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0,
362 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
363 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
364 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0,
365 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
366 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
367 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data1,
368 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
369 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
370 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0,
371 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
372 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
373 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0,
374 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
375 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
376 		break;
377 	}
378 
379 	switch (phy_data->info_type) {
380 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
381 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
382 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
383 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
384 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data0,
385 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
386 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
387 		break;
388 	default:
389 		/* nothing here */
390 		break;
391 	}
392 
393 	switch (phy_data->info_type) {
394 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
395 		he_mu->flags1 |=
396 			le16_encode_bits(le16_get_bits(phy_data->data4,
397 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
398 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
399 		he_mu->flags1 |=
400 			le16_encode_bits(le16_get_bits(phy_data->data4,
401 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
402 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
403 		he_mu->flags2 |=
404 			le16_encode_bits(le16_get_bits(phy_data->data4,
405 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
406 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
407 		iwl_mld_decode_he_mu_ext(phy_data, he_mu);
408 		fallthrough;
409 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
410 		he_mu->flags2 |=
411 			le16_encode_bits(le32_get_bits(phy_data->data1,
412 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
413 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
414 		he_mu->flags2 |=
415 			le16_encode_bits(le32_get_bits(phy_data->data1,
416 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
417 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
418 		fallthrough;
419 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
420 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
421 		iwl_mld_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
422 		break;
423 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
424 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
425 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
426 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
427 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
428 		break;
429 	default:
430 		/* nothing */
431 		break;
432 	}
433 }
434 
435 static void iwl_mld_rx_he(struct iwl_mld *mld, struct sk_buff *skb,
436 			  struct iwl_mld_rx_phy_data *phy_data,
437 			  int queue)
438 {
439 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
440 	struct ieee80211_radiotap_he *he = NULL;
441 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
442 	u32 rate_n_flags = phy_data->rate_n_flags;
443 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
444 	u8 ltf;
445 	static const struct ieee80211_radiotap_he known = {
446 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
447 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
448 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN	|
449 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
450 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
451 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
452 	};
453 	static const struct ieee80211_radiotap_he_mu mu_known = {
454 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
455 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
456 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
457 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
458 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
459 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
460 	};
461 	u16 phy_info = phy_data->phy_info;
462 
463 	he = skb_put_data(skb, &known, sizeof(known));
464 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
465 
466 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
467 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
468 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
469 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
470 	}
471 
472 	/* report the AMPDU-EOF bit on single frames */
473 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
474 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
475 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
476 		if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
477 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
478 	}
479 
480 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
481 		iwl_mld_decode_he_phy_data(phy_data, he, he_mu, rx_status,
482 					   queue);
483 
484 	/* update aggregation data for monitor sake on default queue */
485 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
486 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
487 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
488 		if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
489 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
490 	}
491 
492 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
493 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
494 		rx_status->bw = RATE_INFO_BW_HE_RU;
495 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
496 	}
497 
498 	/* actually data is filled in mac80211 */
499 	if (he_type == RATE_MCS_HE_TYPE_SU ||
500 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
501 		he->data1 |=
502 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
503 
504 #define CHECK_TYPE(F)							\
505 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
506 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
507 
508 	CHECK_TYPE(SU);
509 	CHECK_TYPE(EXT_SU);
510 	CHECK_TYPE(MU);
511 	CHECK_TYPE(TRIG);
512 
513 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
514 
515 	if (rate_n_flags & RATE_MCS_BF_MSK)
516 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
517 
518 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
519 		RATE_MCS_HE_GI_LTF_POS) {
520 	case 0:
521 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
522 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
523 		else
524 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
525 		if (he_type == RATE_MCS_HE_TYPE_MU)
526 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
527 		else
528 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
529 		break;
530 	case 1:
531 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
532 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
533 		else
534 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
535 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
536 		break;
537 	case 2:
538 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
539 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
540 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
541 		} else {
542 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
543 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
544 		}
545 		break;
546 	case 3:
547 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
548 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
549 		break;
550 	case 4:
551 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
552 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
553 		break;
554 	default:
555 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
556 	}
557 
558 	he->data5 |= le16_encode_bits(ltf,
559 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
560 }
561 
562 static void iwl_mld_decode_lsig(struct sk_buff *skb,
563 				struct iwl_mld_rx_phy_data *phy_data)
564 {
565 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
566 	struct ieee80211_radiotap_lsig *lsig;
567 
568 	switch (phy_data->info_type) {
569 	case IWL_RX_PHY_INFO_TYPE_HT:
570 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
571 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
572 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
573 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
574 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
575 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
576 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
577 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
578 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
579 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
580 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
581 		lsig = skb_put(skb, sizeof(*lsig));
582 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
583 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->data1,
584 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
585 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
586 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
587 		break;
588 	default:
589 		break;
590 	}
591 }
592 
593 /* Put a TLV on the skb and return data pointer
594  *
595  * Also pad the len to 4 and zero out all data part
596  */
597 static void *
598 iwl_mld_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
599 {
600 	struct ieee80211_radiotap_tlv *tlv;
601 
602 	tlv = skb_put(skb, sizeof(*tlv));
603 	tlv->type = cpu_to_le16(type);
604 	tlv->len = cpu_to_le16(len);
605 	return skb_put_zero(skb, ALIGN(len, 4));
606 }
607 
608 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
609 	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
610 
611 #define IWL_MLD_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
612 	typeof(enc_bits) _enc_bits = enc_bits; \
613 	typeof(usig) _usig = usig; \
614 	(_usig)->mask |= cpu_to_le32(_enc_bits); \
615 	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
616 } while (0)
617 
618 #define __IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
619 	eht->data[(rt_data)] |= \
620 		(cpu_to_le32 \
621 		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
622 		 LE32_DEC_ENC(data ## fw_data, \
623 			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
624 			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
625 
626 #define _IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
627 	__IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
628 
629 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
630 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
631 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
632 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
633 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
634 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
635 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
636 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
637 
638 #define IWL_RX_RU_DATA_A1			2
639 #define IWL_RX_RU_DATA_A2			2
640 #define IWL_RX_RU_DATA_B1			2
641 #define IWL_RX_RU_DATA_B2			4
642 #define IWL_RX_RU_DATA_C1			3
643 #define IWL_RX_RU_DATA_C2			3
644 #define IWL_RX_RU_DATA_D1			4
645 #define IWL_RX_RU_DATA_D2			4
646 
647 #define IWL_MLD_ENC_EHT_RU(rt_ru, fw_ru)				\
648 	_IWL_MLD_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
649 			    rt_ru,					\
650 			    IWL_RX_RU_DATA_ ## fw_ru,			\
651 			    fw_ru)
652 
653 static void iwl_mld_decode_eht_ext_mu(struct iwl_mld *mld,
654 				      struct iwl_mld_rx_phy_data *phy_data,
655 				      struct ieee80211_rx_status *rx_status,
656 				      struct ieee80211_radiotap_eht *eht,
657 				      struct ieee80211_radiotap_eht_usig *usig)
658 {
659 	if (phy_data->with_data) {
660 		__le32 data1 = phy_data->data1;
661 		__le32 data2 = phy_data->data2;
662 		__le32 data3 = phy_data->data3;
663 		__le32 data4 = phy_data->eht_data4;
664 		__le32 data5 = phy_data->data5;
665 		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
666 
667 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
668 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
669 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
670 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
671 					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
672 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
673 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data4,
674 					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
675 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
676 		IWL_MLD_ENC_USIG_VALUE_MASK
677 			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
678 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
679 
680 		eht->user_info[0] |=
681 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
682 			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
683 				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
684 
685 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
686 		eht->data[7] |= LE32_DEC_ENC
687 			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
688 			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
689 
690 		/*
691 		 * Hardware labels the content channels/RU allocation values
692 		 * as follows:
693 		 *           Content Channel 1		Content Channel 2
694 		 *   20 MHz: A1
695 		 *   40 MHz: A1				B1
696 		 *   80 MHz: A1 C1			B1 D1
697 		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
698 		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
699 		 *
700 		 * However firmware can only give us A1-D2, so the higher
701 		 * frequencies are missing.
702 		 */
703 
704 		switch (phy_bw) {
705 		case RATE_MCS_CHAN_WIDTH_320:
706 			/* additional values are missing in RX metadata */
707 			fallthrough;
708 		case RATE_MCS_CHAN_WIDTH_160:
709 			/* content channel 1 */
710 			IWL_MLD_ENC_EHT_RU(1_2_1, A2);
711 			IWL_MLD_ENC_EHT_RU(1_2_2, C2);
712 			/* content channel 2 */
713 			IWL_MLD_ENC_EHT_RU(2_2_1, B2);
714 			IWL_MLD_ENC_EHT_RU(2_2_2, D2);
715 			fallthrough;
716 		case RATE_MCS_CHAN_WIDTH_80:
717 			/* content channel 1 */
718 			IWL_MLD_ENC_EHT_RU(1_1_2, C1);
719 			/* content channel 2 */
720 			IWL_MLD_ENC_EHT_RU(2_1_2, D1);
721 			fallthrough;
722 		case RATE_MCS_CHAN_WIDTH_40:
723 			/* content channel 2 */
724 			IWL_MLD_ENC_EHT_RU(2_1_1, B1);
725 			fallthrough;
726 		case RATE_MCS_CHAN_WIDTH_20:
727 			IWL_MLD_ENC_EHT_RU(1_1_1, A1);
728 			break;
729 		}
730 	} else {
731 		__le32 usig_a1 = phy_data->rx_vec[0];
732 		__le32 usig_a2 = phy_data->rx_vec[1];
733 
734 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
735 					    IWL_RX_USIG_A1_DISREGARD,
736 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
737 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
738 					    IWL_RX_USIG_A1_VALIDATE,
739 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
740 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
741 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
742 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
743 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
744 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
745 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
746 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
747 					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
748 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
749 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
750 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
751 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
752 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
753 					    IWL_RX_USIG_A2_EHT_SIG_MCS,
754 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
755 		IWL_MLD_ENC_USIG_VALUE_MASK
756 			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
757 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
758 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
759 					    IWL_RX_USIG_A2_EHT_CRC_OK,
760 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
761 	}
762 }
763 
764 static void iwl_mld_decode_eht_ext_tb(struct iwl_mld *mld,
765 				      struct iwl_mld_rx_phy_data *phy_data,
766 				      struct ieee80211_rx_status *rx_status,
767 				      struct ieee80211_radiotap_eht *eht,
768 				      struct ieee80211_radiotap_eht_usig *usig)
769 {
770 	if (phy_data->with_data) {
771 		__le32 data5 = phy_data->data5;
772 
773 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
774 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
775 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
776 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
777 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
778 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
779 
780 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
781 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
782 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
783 	} else {
784 		__le32 usig_a1 = phy_data->rx_vec[0];
785 		__le32 usig_a2 = phy_data->rx_vec[1];
786 
787 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
788 					    IWL_RX_USIG_A1_DISREGARD,
789 					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
790 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
791 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
792 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
793 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
794 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
795 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
796 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
797 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
798 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
799 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
800 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
801 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
802 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
803 					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
804 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
805 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
806 					    IWL_RX_USIG_A2_EHT_CRC_OK,
807 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
808 	}
809 }
810 
811 static void iwl_mld_decode_eht_ru(struct iwl_mld *mld,
812 				  struct ieee80211_rx_status *rx_status,
813 				  struct ieee80211_radiotap_eht *eht)
814 {
815 	u32 ru = le32_get_bits(eht->data[8],
816 			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
817 	enum nl80211_eht_ru_alloc nl_ru;
818 
819 	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
820 	 * in an EHT variant User Info field
821 	 */
822 
823 	switch (ru) {
824 	case 0 ... 36:
825 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
826 		break;
827 	case 37 ... 52:
828 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
829 		break;
830 	case 53 ... 60:
831 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
832 		break;
833 	case 61 ... 64:
834 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
835 		break;
836 	case 65 ... 66:
837 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
838 		break;
839 	case 67:
840 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
841 		break;
842 	case 68:
843 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
844 		break;
845 	case 69:
846 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
847 		break;
848 	case 70 ... 81:
849 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
850 		break;
851 	case 82 ... 89:
852 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
853 		break;
854 	case 90 ... 93:
855 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
856 		break;
857 	case 94 ... 95:
858 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
859 		break;
860 	case 96 ... 99:
861 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
862 		break;
863 	case 100 ... 103:
864 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
865 		break;
866 	case 104:
867 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
868 		break;
869 	case 105 ... 106:
870 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
871 		break;
872 	default:
873 		return;
874 	}
875 
876 	rx_status->bw = RATE_INFO_BW_EHT_RU;
877 	rx_status->eht.ru = nl_ru;
878 }
879 
880 static void iwl_mld_decode_eht_phy_data(struct iwl_mld *mld,
881 					struct iwl_mld_rx_phy_data *phy_data,
882 					struct ieee80211_rx_status *rx_status,
883 					struct ieee80211_radiotap_eht *eht,
884 					struct ieee80211_radiotap_eht_usig *usig)
885 
886 {
887 	__le32 data0 = phy_data->data0;
888 	__le32 data1 = phy_data->data1;
889 	__le32 usig_a1 = phy_data->rx_vec[0];
890 	u8 info_type = phy_data->info_type;
891 
892 	/* Not in EHT range */
893 	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
894 	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
895 		return;
896 
897 	usig->common |= cpu_to_le32
898 		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
899 		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
900 	if (phy_data->with_data) {
901 		usig->common |= LE32_DEC_ENC(data0,
902 					     IWL_RX_PHY_DATA0_EHT_UPLINK,
903 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
904 		usig->common |= LE32_DEC_ENC(data0,
905 					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
906 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
907 	} else {
908 		usig->common |= LE32_DEC_ENC(usig_a1,
909 					     IWL_RX_USIG_A1_UL_FLAG,
910 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
911 		usig->common |= LE32_DEC_ENC(usig_a1,
912 					     IWL_RX_USIG_A1_BSS_COLOR,
913 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
914 	}
915 
916 	usig->common |=
917 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
918 	usig->common |=
919 		LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
920 			     IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
921 
922 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
923 	eht->data[0] |= LE32_DEC_ENC(data0,
924 				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
925 				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
926 
927 	/* All RU allocating size/index is in TB format */
928 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
929 	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
930 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
931 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
932 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
933 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
934 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
935 
936 	iwl_mld_decode_eht_ru(mld, rx_status, eht);
937 
938 	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
939 	 * which is on only in case of monitor mode so no need to check monitor
940 	 * mode
941 	 */
942 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
943 	eht->data[1] |=
944 		le32_encode_bits(mld->monitor.p80,
945 				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
946 
947 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
948 	if (phy_data->with_data)
949 		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
950 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
951 	else
952 		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
953 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
954 
955 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
956 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
957 				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
958 
959 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
960 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
961 				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
962 
963 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
964 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
965 				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
966 
967 	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
968 
969 	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
970 		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
971 
972 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
973 	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
974 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
975 
976 	/*
977 	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
978 	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
979 	 */
980 
981 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
982 	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
983 				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
984 
985 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
986 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
987 		iwl_mld_decode_eht_ext_tb(mld, phy_data, rx_status, eht, usig);
988 
989 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
990 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
991 		iwl_mld_decode_eht_ext_mu(mld, phy_data, rx_status, eht, usig);
992 }
993 
994 static void iwl_mld_rx_eht(struct iwl_mld *mld, struct sk_buff *skb,
995 			   struct iwl_mld_rx_phy_data *phy_data,
996 			   int queue)
997 {
998 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
999 	struct ieee80211_radiotap_eht *eht;
1000 	struct ieee80211_radiotap_eht_usig *usig;
1001 	size_t eht_len = sizeof(*eht);
1002 
1003 	u32 rate_n_flags = phy_data->rate_n_flags;
1004 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1005 	/* EHT and HE have the same values for LTF */
1006 	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1007 	u16 phy_info = phy_data->phy_info;
1008 	u32 bw;
1009 
1010 	/* u32 for 1 user_info */
1011 	if (phy_data->with_data)
1012 		eht_len += sizeof(u32);
1013 
1014 	eht = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1015 
1016 	usig = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1017 					sizeof(*usig));
1018 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1019 	usig->common |=
1020 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1021 
1022 	/* specific handling for 320MHz */
1023 	bw = u32_get_bits(rate_n_flags, RATE_MCS_CHAN_WIDTH_MSK);
1024 	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1025 		bw += le32_get_bits(phy_data->data0,
1026 				    IWL_RX_PHY_DATA0_EHT_BW320_SLOT);
1027 
1028 	usig->common |= cpu_to_le32
1029 		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1030 
1031 	/* report the AMPDU-EOF bit on single frames */
1032 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1033 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1034 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1035 		if (phy_data->data0 &
1036 		    cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1037 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1038 	}
1039 
1040 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1041 		iwl_mld_decode_eht_phy_data(mld, phy_data, rx_status, eht, usig);
1042 
1043 #define CHECK_TYPE(F)							\
1044 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1045 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1046 
1047 	CHECK_TYPE(SU);
1048 	CHECK_TYPE(EXT_SU);
1049 	CHECK_TYPE(MU);
1050 	CHECK_TYPE(TRIG);
1051 
1052 	switch (u32_get_bits(rate_n_flags, RATE_MCS_HE_GI_LTF_MSK)) {
1053 	case 0:
1054 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1055 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1056 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1057 		} else {
1058 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1059 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1060 		}
1061 		break;
1062 	case 1:
1063 		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1064 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1065 		break;
1066 	case 2:
1067 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1068 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1069 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1070 		else
1071 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1072 		break;
1073 	case 3:
1074 		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1075 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1076 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1077 		}
1078 		break;
1079 	default:
1080 		/* nothing here */
1081 		break;
1082 	}
1083 
1084 	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1085 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1086 		eht->data[0] |= cpu_to_le32
1087 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1088 				    ltf) |
1089 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1090 				    rx_status->eht.gi));
1091 	}
1092 
1093 	if (!phy_data->with_data) {
1094 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1095 					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1096 		eht->data[7] |=
1097 			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1098 						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1099 					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1100 		if (rate_n_flags & RATE_MCS_BF_MSK)
1101 			eht->data[7] |=
1102 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1103 	} else {
1104 		eht->user_info[0] |=
1105 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1106 				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1107 				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1108 				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1109 				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1110 
1111 		if (rate_n_flags & RATE_MCS_BF_MSK)
1112 			eht->user_info[0] |=
1113 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1114 
1115 		if (rate_n_flags & RATE_MCS_LDPC_MSK)
1116 			eht->user_info[0] |=
1117 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1118 
1119 		eht->user_info[0] |= cpu_to_le32
1120 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1121 				    u32_get_bits(rate_n_flags,
1122 						 RATE_VHT_MCS_RATE_CODE_MSK)) |
1123 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1124 				    u32_get_bits(rate_n_flags,
1125 						 RATE_MCS_NSS_MSK)));
1126 	}
1127 }
1128 
1129 #ifdef CONFIG_IWLWIFI_DEBUGFS
1130 static void iwl_mld_add_rtap_sniffer_config(struct iwl_mld *mld,
1131 					    struct sk_buff *skb)
1132 {
1133 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1134 	struct ieee80211_radiotap_vendor_content *radiotap;
1135 	const u16 vendor_data_len = sizeof(mld->monitor.cur_aid);
1136 
1137 	if (!mld->monitor.cur_aid)
1138 		return;
1139 
1140 	radiotap =
1141 		iwl_mld_radiotap_put_tlv(skb,
1142 					 IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
1143 					 sizeof(*radiotap) + vendor_data_len);
1144 
1145 	/* Intel OUI */
1146 	radiotap->oui[0] = 0xf6;
1147 	radiotap->oui[1] = 0x54;
1148 	radiotap->oui[2] = 0x25;
1149 	/* radiotap sniffer config sub-namespace */
1150 	radiotap->oui_subtype = 1;
1151 	radiotap->vendor_type = 0;
1152 
1153 	/* fill the data now */
1154 	memcpy(radiotap->data, &mld->monitor.cur_aid,
1155 	       sizeof(mld->monitor.cur_aid));
1156 
1157 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1158 }
1159 #endif
1160 
1161 static void iwl_mld_rx_fill_status(struct iwl_mld *mld, struct sk_buff *skb,
1162 				   struct iwl_mld_rx_phy_data *phy_data,
1163 				   int queue)
1164 {
1165 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1166 	u32 format = phy_data->rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1167 	u32 rate_n_flags = phy_data->rate_n_flags;
1168 	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1169 	bool is_sgi = rate_n_flags & RATE_MCS_SGI_MSK;
1170 
1171 	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1172 
1173 	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1174 		phy_data->info_type =
1175 			le32_get_bits(phy_data->data1,
1176 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1177 
1178 	/* set the preamble flag if appropriate */
1179 	if (format == RATE_MCS_CCK_MSK &&
1180 	    phy_data->phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1181 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1182 
1183 	iwl_mld_fill_signal(mld, rx_status, phy_data);
1184 
1185 	/* This may be overridden by iwl_mld_rx_he() to HE_RU */
1186 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1187 	case RATE_MCS_CHAN_WIDTH_20:
1188 		break;
1189 	case RATE_MCS_CHAN_WIDTH_40:
1190 		rx_status->bw = RATE_INFO_BW_40;
1191 		break;
1192 	case RATE_MCS_CHAN_WIDTH_80:
1193 		rx_status->bw = RATE_INFO_BW_80;
1194 		break;
1195 	case RATE_MCS_CHAN_WIDTH_160:
1196 		rx_status->bw = RATE_INFO_BW_160;
1197 		break;
1198 	case RATE_MCS_CHAN_WIDTH_320:
1199 		rx_status->bw = RATE_INFO_BW_320;
1200 		break;
1201 	}
1202 
1203 	/* must be before L-SIG data */
1204 	if (format == RATE_MCS_HE_MSK)
1205 		iwl_mld_rx_he(mld, skb, phy_data, queue);
1206 
1207 	iwl_mld_decode_lsig(skb, phy_data);
1208 
1209 	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1210 
1211 	/* using TLV format and must be after all fixed len fields */
1212 	if (format == RATE_MCS_EHT_MSK)
1213 		iwl_mld_rx_eht(mld, skb, phy_data, queue);
1214 
1215 #ifdef CONFIG_IWLWIFI_DEBUGFS
1216 	if (unlikely(mld->monitor.on))
1217 		iwl_mld_add_rtap_sniffer_config(mld, skb);
1218 #endif
1219 
1220 	if (format != RATE_MCS_CCK_MSK && is_sgi)
1221 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1222 
1223 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1224 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1225 
1226 	switch (format) {
1227 	case RATE_MCS_HT_MSK:
1228 		rx_status->encoding = RX_ENC_HT;
1229 		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
1230 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1231 		break;
1232 	case RATE_MCS_VHT_MSK:
1233 	case RATE_MCS_HE_MSK:
1234 	case RATE_MCS_EHT_MSK:
1235 		if (format == RATE_MCS_VHT_MSK) {
1236 			rx_status->encoding = RX_ENC_VHT;
1237 		} else if (format == RATE_MCS_HE_MSK) {
1238 			rx_status->encoding = RX_ENC_HE;
1239 			rx_status->he_dcm =
1240 				!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1241 		} else if (format == RATE_MCS_EHT_MSK) {
1242 			rx_status->encoding = RX_ENC_EHT;
1243 		}
1244 
1245 		rx_status->nss = u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
1246 		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
1247 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1248 		break;
1249 	default: {
1250 		int rate =
1251 		    iwl_mld_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
1252 							  rx_status->band);
1253 
1254 		/* valid rate */
1255 		if (rate >= 0 && rate <= 0xFF) {
1256 			rx_status->rate_idx = rate;
1257 			break;
1258 		}
1259 
1260 		/* invalid rate */
1261 		rx_status->rate_idx = 0;
1262 
1263 		if (net_ratelimit())
1264 			IWL_ERR(mld, "invalid rate_n_flags=0x%x, band=%d\n",
1265 				rate_n_flags, rx_status->band);
1266 		break;
1267 		}
1268 	}
1269 }
1270 
1271 /* iwl_mld_create_skb adds the rxb to a new skb */
1272 static int iwl_mld_build_rx_skb(struct iwl_mld *mld, struct sk_buff *skb,
1273 				struct ieee80211_hdr *hdr, u16 len,
1274 				u8 crypt_len, struct iwl_rx_cmd_buffer *rxb)
1275 {
1276 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1277 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1278 	unsigned int headlen, fraglen, pad_len = 0;
1279 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
1280 	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
1281 				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
1282 
1283 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1284 		len -= 2;
1285 		pad_len = 2;
1286 	}
1287 
1288 	/* For non monitor interface strip the bytes the RADA might not have
1289 	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
1290 	 * interface cannot exist with other interfaces, this removal is safe
1291 	 * and sufficient, in monitor mode there's no decryption being done.
1292 	 */
1293 	if (len > mic_crc_len && !ieee80211_hw_check(mld->hw, RX_INCLUDES_FCS))
1294 		len -= mic_crc_len;
1295 
1296 	/* If frame is small enough to fit in skb->head, pull it completely.
1297 	 * If not, only pull ieee80211_hdr (including crypto if present, and
1298 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
1299 	 * splice() or TCP coalesce are more efficient.
1300 	 *
1301 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
1302 	 * least 8 bytes (possibly more for mesh) we can do the same here
1303 	 * to save the cost of doing it later. That still doesn't pull in
1304 	 * the actual IP header since the typical case has a SNAP header.
1305 	 * If the latter changes (there are efforts in the standards group
1306 	 * to do so) we should revisit this and ieee80211_data_to_8023().
1307 	 */
1308 	headlen = (len <= skb_tailroom(skb)) ? len : hdrlen + crypt_len + 8;
1309 
1310 	/* The firmware may align the packet to DWORD.
1311 	 * The padding is inserted after the IV.
1312 	 * After copying the header + IV skip the padding if
1313 	 * present before copying packet data.
1314 	 */
1315 	hdrlen += crypt_len;
1316 
1317 	if (unlikely(headlen < hdrlen))
1318 		return -EINVAL;
1319 
1320 	/* Since data doesn't move data while putting data on skb and that is
1321 	 * the only way we use, data + len is the next place that hdr would
1322 	 * be put
1323 	 */
1324 	skb_set_mac_header(skb, skb->len);
1325 	skb_put_data(skb, hdr, hdrlen);
1326 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
1327 
1328 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1329 		struct {
1330 			u8 hdr[6];
1331 			__be16 type;
1332 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
1333 
1334 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
1335 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
1336 			     (shdr->type != htons(ETH_P_IP) &&
1337 			      shdr->type != htons(ETH_P_ARP) &&
1338 			      shdr->type != htons(ETH_P_IPV6) &&
1339 			      shdr->type != htons(ETH_P_8021Q) &&
1340 			      shdr->type != htons(ETH_P_PAE) &&
1341 			      shdr->type != htons(ETH_P_TDLS))))
1342 			skb->ip_summed = CHECKSUM_NONE;
1343 	}
1344 
1345 	fraglen = len - headlen;
1346 
1347 	if (fraglen) {
1348 		int offset = (u8 *)hdr + headlen + pad_len -
1349 			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
1350 
1351 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
1352 				fraglen, rxb->truesize);
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 /* returns true if a packet is a duplicate or invalid tid and
1359  * should be dropped. Updates AMSDU PN tracking info
1360  */
1361 VISIBLE_IF_IWLWIFI_KUNIT
1362 bool
1363 iwl_mld_is_dup(struct iwl_mld *mld, struct ieee80211_sta *sta,
1364 	       struct ieee80211_hdr *hdr,
1365 	       const struct iwl_rx_mpdu_desc *mpdu_desc,
1366 	       struct ieee80211_rx_status *rx_status, int queue)
1367 {
1368 	struct iwl_mld_sta *mld_sta;
1369 	struct iwl_mld_rxq_dup_data *dup_data;
1370 	u8 tid, sub_frame_idx;
1371 
1372 	if (WARN_ON(!sta))
1373 		return false;
1374 
1375 	mld_sta = iwl_mld_sta_from_mac80211(sta);
1376 
1377 	if (WARN_ON_ONCE(!mld_sta->dup_data))
1378 		return false;
1379 
1380 	dup_data = &mld_sta->dup_data[queue];
1381 
1382 	/* Drop duplicate 802.11 retransmissions
1383 	 * (IEEE 802.11-2020: 10.3.2.14 "Duplicate detection and recovery")
1384 	 */
1385 	if (ieee80211_is_ctl(hdr->frame_control) ||
1386 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1387 	    is_multicast_ether_addr(hdr->addr1))
1388 		return false;
1389 
1390 	if (ieee80211_is_data_qos(hdr->frame_control)) {
1391 		/* frame has qos control */
1392 		tid = ieee80211_get_tid(hdr);
1393 		if (tid >= IWL_MAX_TID_COUNT)
1394 			return true;
1395 	} else {
1396 		tid = IWL_MAX_TID_COUNT;
1397 	}
1398 
1399 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
1400 	sub_frame_idx = mpdu_desc->amsdu_info &
1401 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
1402 
1403 	if (IWL_FW_CHECK(mld,
1404 			 sub_frame_idx > 0 &&
1405 			 !(mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU),
1406 			 "got sub_frame_idx=%d but A-MSDU flag is not set\n",
1407 			 sub_frame_idx))
1408 		return true;
1409 
1410 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1411 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
1412 		     dup_data->last_sub_frame_idx[tid] >= sub_frame_idx))
1413 		return true;
1414 
1415 	/* Allow same PN as the first subframe for following sub frames */
1416 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
1417 	    sub_frame_idx > dup_data->last_sub_frame_idx[tid])
1418 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
1419 
1420 	dup_data->last_seq[tid] = hdr->seq_ctrl;
1421 	dup_data->last_sub_frame_idx[tid] = sub_frame_idx;
1422 
1423 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
1424 
1425 	return false;
1426 }
1427 EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_is_dup);
1428 
1429 static void iwl_mld_update_last_rx_timestamp(struct iwl_mld *mld, u8 baid)
1430 {
1431 	unsigned long now = jiffies;
1432 	unsigned long timeout;
1433 	struct iwl_mld_baid_data *ba_data;
1434 
1435 	ba_data = rcu_dereference(mld->fw_id_to_ba[baid]);
1436 	if (!ba_data) {
1437 		IWL_DEBUG_HT(mld, "BAID %d not found in map\n", baid);
1438 		return;
1439 	}
1440 
1441 	if (!ba_data->timeout)
1442 		return;
1443 
1444 	/* To minimize cache bouncing between RX queues, avoid frequent updates
1445 	 * to last_rx_timestamp. update it only when the timeout period has
1446 	 * passed. The worst-case scenario is the session expiring after
1447 	 * approximately 2 * timeout, which is negligible (the update is
1448 	 * atomic).
1449 	 */
1450 	timeout = TU_TO_JIFFIES(ba_data->timeout);
1451 	if (time_is_before_jiffies(ba_data->last_rx_timestamp + timeout))
1452 		ba_data->last_rx_timestamp = now;
1453 }
1454 
1455 /* Processes received packets for a station.
1456  * Sets *drop to true if the packet should be dropped.
1457  * Returns the station if found, or NULL otherwise.
1458  */
1459 static struct ieee80211_sta *
1460 iwl_mld_rx_with_sta(struct iwl_mld *mld, struct ieee80211_hdr *hdr,
1461 		    struct sk_buff *skb,
1462 		    const struct iwl_rx_mpdu_desc *mpdu_desc,
1463 		    const struct iwl_rx_packet *pkt, int queue, bool *drop)
1464 {
1465 	struct ieee80211_sta *sta = NULL;
1466 	struct ieee80211_link_sta *link_sta = NULL;
1467 	struct ieee80211_rx_status *rx_status;
1468 	u8 baid;
1469 
1470 	if (mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1471 		u8 sta_id = le32_get_bits(mpdu_desc->status,
1472 					  IWL_RX_MPDU_STATUS_STA_ID);
1473 
1474 		if (IWL_FW_CHECK(mld,
1475 				 sta_id >= mld->fw->ucode_capa.num_stations,
1476 				 "rx_mpdu: invalid sta_id %d\n", sta_id))
1477 			return NULL;
1478 
1479 		link_sta = rcu_dereference(mld->fw_id_to_link_sta[sta_id]);
1480 		if (!IS_ERR_OR_NULL(link_sta))
1481 			sta = link_sta->sta;
1482 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
1483 		/* Passing NULL is fine since we prevent two stations with the
1484 		 * same address from being added.
1485 		 */
1486 		sta = ieee80211_find_sta_by_ifaddr(mld->hw, hdr->addr2, NULL);
1487 	}
1488 
1489 	/* we may not have any station yet */
1490 	if (!sta)
1491 		return NULL;
1492 
1493 	rx_status = IEEE80211_SKB_RXCB(skb);
1494 
1495 	if (link_sta && sta->valid_links) {
1496 		rx_status->link_valid = true;
1497 		rx_status->link_id = link_sta->link_id;
1498 	}
1499 
1500 	/* fill checksum */
1501 	if (ieee80211_is_data(hdr->frame_control) &&
1502 	    pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
1503 		u16 hwsum = be16_to_cpu(mpdu_desc->v3.raw_xsum);
1504 
1505 		skb->ip_summed = CHECKSUM_COMPLETE;
1506 		skb->csum = csum_unfold(~(__force __sum16)hwsum);
1507 	}
1508 
1509 	if (iwl_mld_is_dup(mld, sta, hdr, mpdu_desc, rx_status, queue)) {
1510 		IWL_DEBUG_DROP(mld, "Dropping duplicate packet 0x%x\n",
1511 			       le16_to_cpu(hdr->seq_ctrl));
1512 		*drop = true;
1513 		return NULL;
1514 	}
1515 
1516 	baid = le32_get_bits(mpdu_desc->reorder_data,
1517 			     IWL_RX_MPDU_REORDER_BAID_MASK);
1518 	if (baid != IWL_RX_REORDER_DATA_INVALID_BAID)
1519 		iwl_mld_update_last_rx_timestamp(mld, baid);
1520 
1521 	if (link_sta && ieee80211_is_data(hdr->frame_control)) {
1522 		u8 sub_frame_idx = mpdu_desc->amsdu_info &
1523 			IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
1524 
1525 		/* 0 means not an A-MSDU, and 1 means a new A-MSDU */
1526 		if (!sub_frame_idx || sub_frame_idx == 1)
1527 			iwl_mld_count_mpdu_rx(link_sta, queue, 1);
1528 
1529 		if (!is_multicast_ether_addr(hdr->addr1))
1530 			iwl_mld_low_latency_update_counters(mld, hdr, sta,
1531 							    queue);
1532 	}
1533 
1534 	return sta;
1535 }
1536 
1537 #define KEY_IDX_LEN 2
1538 
1539 static int iwl_mld_rx_mgmt_prot(struct ieee80211_sta *sta,
1540 				struct ieee80211_hdr *hdr,
1541 				struct ieee80211_rx_status *rx_status,
1542 				u32 mpdu_status,
1543 				u32 mpdu_len)
1544 {
1545 	struct wireless_dev *wdev;
1546 	struct iwl_mld_sta *mld_sta;
1547 	struct iwl_mld_vif *mld_vif;
1548 	u8 keyidx;
1549 	struct ieee80211_key_conf *key;
1550 	const u8 *frame = (void *)hdr;
1551 
1552 	if ((mpdu_status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
1553 	     IWL_RX_MPDU_STATUS_SEC_NONE)
1554 		return 0;
1555 
1556 	/* For non-beacon, we don't really care. But beacons may
1557 	 * be filtered out, and we thus need the firmware's replay
1558 	 * detection, otherwise beacons the firmware previously
1559 	 * filtered could be replayed, or something like that, and
1560 	 * it can filter a lot - though usually only if nothing has
1561 	 * changed.
1562 	 */
1563 	if (!ieee80211_is_beacon(hdr->frame_control))
1564 		return 0;
1565 
1566 	if (!sta)
1567 		return -1;
1568 
1569 	mld_sta = iwl_mld_sta_from_mac80211(sta);
1570 	mld_vif = iwl_mld_vif_from_mac80211(mld_sta->vif);
1571 
1572 	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
1573 	if (!(mpdu_status & IWL_RX_MPDU_STATUS_KEY_VALID))
1574 		goto report;
1575 
1576 	/* good cases */
1577 	if (likely(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK &&
1578 		   !(mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
1579 		rx_status->flag |= RX_FLAG_DECRYPTED;
1580 		return 0;
1581 	}
1582 
1583 	/* both keys will have the same cipher and MIC length, use
1584 	 * whichever one is available
1585 	 */
1586 	key = rcu_dereference(mld_vif->bigtks[0]);
1587 	if (!key) {
1588 		key = rcu_dereference(mld_vif->bigtks[1]);
1589 		if (!key)
1590 			goto report;
1591 	}
1592 
1593 	if (mpdu_len < key->icv_len + IEEE80211_GMAC_PN_LEN + KEY_IDX_LEN)
1594 		goto report;
1595 
1596 	/* get the real key ID */
1597 	keyidx = frame[mpdu_len - key->icv_len - IEEE80211_GMAC_PN_LEN - KEY_IDX_LEN];
1598 	/* and if that's the other key, look it up */
1599 	if (keyidx != key->keyidx) {
1600 		/* shouldn't happen since firmware checked, but be safe
1601 		 * in case the MIC length is wrong too, for example
1602 		 */
1603 		if (keyidx != 6 && keyidx != 7)
1604 			return -1;
1605 
1606 		key = rcu_dereference(mld_vif->bigtks[keyidx - 6]);
1607 		if (!key)
1608 			goto report;
1609 	}
1610 
1611 	/* Report status to mac80211 */
1612 	if (!(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK))
1613 		ieee80211_key_mic_failure(key);
1614 	else if (mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
1615 		ieee80211_key_replay(key);
1616 report:
1617 	wdev = ieee80211_vif_to_wdev(mld_sta->vif);
1618 	if (wdev->netdev)
1619 		cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr,
1620 					     mpdu_len);
1621 
1622 	return -1;
1623 }
1624 
1625 static int iwl_mld_rx_crypto(struct iwl_mld *mld,
1626 			     struct ieee80211_sta *sta,
1627 			     struct ieee80211_hdr *hdr,
1628 			     struct ieee80211_rx_status *rx_status,
1629 			     struct iwl_rx_mpdu_desc *desc, int queue,
1630 			     u32 pkt_flags, u8 *crypto_len)
1631 {
1632 	u32 status = le32_to_cpu(desc->status);
1633 
1634 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
1635 		     !ieee80211_has_protected(hdr->frame_control)))
1636 		return iwl_mld_rx_mgmt_prot(sta, hdr, rx_status, status,
1637 					    le16_to_cpu(desc->mpdu_len));
1638 
1639 	if (!ieee80211_has_protected(hdr->frame_control) ||
1640 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
1641 	    IWL_RX_MPDU_STATUS_SEC_NONE)
1642 		return 0;
1643 
1644 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
1645 	case IWL_RX_MPDU_STATUS_SEC_CCM:
1646 	case IWL_RX_MPDU_STATUS_SEC_GCM:
1647 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
1648 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) {
1649 			IWL_DEBUG_DROP(mld,
1650 				       "Dropping packet, bad MIC (CCM/GCM)\n");
1651 			return -1;
1652 		}
1653 
1654 		rx_status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
1655 		*crypto_len = IEEE80211_CCMP_HDR_LEN;
1656 		return 0;
1657 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
1658 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
1659 			return -1;
1660 
1661 		if (!(status & RX_MPDU_RES_STATUS_MIC_OK))
1662 			rx_status->flag |= RX_FLAG_MMIC_ERROR;
1663 
1664 		if (pkt_flags & FH_RSCSR_RADA_EN) {
1665 			rx_status->flag |= RX_FLAG_ICV_STRIPPED;
1666 			rx_status->flag |= RX_FLAG_MMIC_STRIPPED;
1667 		}
1668 
1669 		*crypto_len = IEEE80211_TKIP_IV_LEN;
1670 		rx_status->flag |= RX_FLAG_DECRYPTED;
1671 		return 0;
1672 	default:
1673 		break;
1674 	}
1675 
1676 	return 0;
1677 }
1678 
1679 static void iwl_mld_rx_update_ampdu_ref(struct iwl_mld *mld,
1680 					struct iwl_mld_rx_phy_data *phy_data,
1681 					struct ieee80211_rx_status *rx_status)
1682 {
1683 	bool toggle_bit =
1684 		phy_data->phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1685 
1686 	rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1687 	/* Toggle is switched whenever new aggregation starts. Make
1688 	 * sure ampdu_reference is never 0 so we can later use it to
1689 	 * see if the frame was really part of an A-MPDU or not.
1690 	 */
1691 	if (toggle_bit != mld->monitor.ampdu_toggle) {
1692 		mld->monitor.ampdu_ref++;
1693 		if (mld->monitor.ampdu_ref == 0)
1694 			mld->monitor.ampdu_ref++;
1695 		mld->monitor.ampdu_toggle = toggle_bit;
1696 		phy_data->first_subframe = true;
1697 	}
1698 	rx_status->ampdu_reference = mld->monitor.ampdu_ref;
1699 }
1700 
1701 static void
1702 iwl_mld_fill_rx_status_band_freq(struct ieee80211_rx_status *rx_status,
1703 				 u8 band, u8 channel)
1704 {
1705 	rx_status->band = iwl_mld_phy_band_to_nl80211(band);
1706 	rx_status->freq = ieee80211_channel_to_frequency(channel,
1707 							 rx_status->band);
1708 }
1709 
1710 void iwl_mld_rx_mpdu(struct iwl_mld *mld, struct napi_struct *napi,
1711 		     struct iwl_rx_cmd_buffer *rxb, int queue)
1712 {
1713 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1714 	struct iwl_mld_rx_phy_data phy_data = {};
1715 	struct iwl_rx_mpdu_desc *mpdu_desc = (void *)pkt->data;
1716 	struct ieee80211_sta *sta;
1717 	struct ieee80211_hdr *hdr;
1718 	struct sk_buff *skb;
1719 	size_t mpdu_desc_size = sizeof(*mpdu_desc);
1720 	bool drop = false;
1721 	u8 crypto_len = 0, band;
1722 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
1723 	u32 mpdu_len;
1724 	enum iwl_mld_reorder_result reorder_res;
1725 	struct ieee80211_rx_status *rx_status;
1726 
1727 	if (unlikely(mld->fw_status.in_hw_restart))
1728 		return;
1729 
1730 	if (IWL_FW_CHECK(mld, pkt_len < mpdu_desc_size,
1731 			 "Bad REPLY_RX_MPDU_CMD size (%d)\n", pkt_len))
1732 		return;
1733 
1734 	mpdu_len = le16_to_cpu(mpdu_desc->mpdu_len);
1735 
1736 	if (IWL_FW_CHECK(mld, mpdu_len + mpdu_desc_size > pkt_len,
1737 			 "FW lied about packet len (%d)\n", pkt_len))
1738 		return;
1739 
1740 	/* Don't use dev_alloc_skb(), we'll have enough headroom once
1741 	 * ieee80211_hdr pulled.
1742 	 */
1743 	skb = alloc_skb(128, GFP_ATOMIC);
1744 	if (!skb) {
1745 		IWL_ERR(mld, "alloc_skb failed\n");
1746 		return;
1747 	}
1748 
1749 	hdr = (void *)(pkt->data + mpdu_desc_size);
1750 
1751 	iwl_mld_fill_phy_data(mpdu_desc, &phy_data);
1752 
1753 	if (mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1754 		/* If the device inserted padding it means that (it thought)
1755 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
1756 		 * this case, reserve two bytes at the start of the SKB to
1757 		 * align the payload properly in case we end up copying it.
1758 		 */
1759 		skb_reserve(skb, 2);
1760 	}
1761 
1762 	rx_status = IEEE80211_SKB_RXCB(skb);
1763 
1764 	/* this is needed early */
1765 	band = u8_get_bits(mpdu_desc->mac_phy_band,
1766 			   IWL_RX_MPDU_MAC_PHY_BAND_BAND_MASK);
1767 	iwl_mld_fill_rx_status_band_freq(rx_status, band,
1768 					 mpdu_desc->v3.channel);
1769 
1770 
1771 	rcu_read_lock();
1772 
1773 	sta = iwl_mld_rx_with_sta(mld, hdr, skb, mpdu_desc, pkt, queue, &drop);
1774 	if (drop)
1775 		goto drop;
1776 
1777 	/* update aggregation data for monitor sake on default queue */
1778 	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU))
1779 		iwl_mld_rx_update_ampdu_ref(mld, &phy_data, rx_status);
1780 
1781 	/* Keep packets with CRC errors (and with overrun) for monitor mode
1782 	 * (otherwise the firmware discards them) but mark them as bad.
1783 	 */
1784 	if (!(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1785 	    !(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1786 		IWL_DEBUG_RX(mld, "Bad CRC or FIFO: 0x%08X.\n",
1787 			     le32_to_cpu(mpdu_desc->status));
1788 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1789 	}
1790 
1791 	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1792 		rx_status->mactime =
1793 			le64_to_cpu(mpdu_desc->v3.tsf_on_air_rise);
1794 
1795 		/* TSF as indicated by the firmware is at INA time */
1796 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1797 	}
1798 
1799 	/* management stuff on default queue */
1800 	if (!queue && unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1801 			       ieee80211_is_probe_resp(hdr->frame_control))) {
1802 		rx_status->boottime_ns = ktime_get_boottime_ns();
1803 
1804 		if (mld->scan.pass_all_sched_res ==
1805 				SCHED_SCAN_PASS_ALL_STATE_ENABLED)
1806 			mld->scan.pass_all_sched_res =
1807 				SCHED_SCAN_PASS_ALL_STATE_FOUND;
1808 	}
1809 
1810 	iwl_mld_rx_fill_status(mld, skb, &phy_data, queue);
1811 
1812 	if (iwl_mld_rx_crypto(mld, sta, hdr, rx_status, mpdu_desc, queue,
1813 			      le32_to_cpu(pkt->len_n_flags), &crypto_len))
1814 		goto drop;
1815 
1816 	if (iwl_mld_build_rx_skb(mld, skb, hdr, mpdu_len, crypto_len, rxb))
1817 		goto drop;
1818 
1819 	/* time sync frame is saved and will be released later when the
1820 	 * notification with the timestamps arrives.
1821 	 */
1822 	if (iwl_mld_time_sync_frame(mld, skb, hdr->addr2))
1823 		goto out;
1824 
1825 	reorder_res = iwl_mld_reorder(mld, napi, queue, sta, skb, mpdu_desc);
1826 	switch (reorder_res) {
1827 	case IWL_MLD_PASS_SKB:
1828 		break;
1829 	case IWL_MLD_DROP_SKB:
1830 		goto drop;
1831 	case IWL_MLD_BUFFERED_SKB:
1832 		goto out;
1833 	default:
1834 		WARN_ON(1);
1835 		goto drop;
1836 	}
1837 
1838 	iwl_mld_pass_packet_to_mac80211(mld, napi, skb, queue, sta);
1839 
1840 	goto out;
1841 
1842 drop:
1843 	kfree_skb(skb);
1844 out:
1845 	rcu_read_unlock();
1846 }
1847 
1848 #define SYNC_RX_QUEUE_TIMEOUT (HZ)
1849 void iwl_mld_sync_rx_queues(struct iwl_mld *mld,
1850 			    enum iwl_mld_internal_rxq_notif_type type,
1851 			    const void *notif_payload, u32 notif_payload_size)
1852 {
1853 	u8 num_rx_queues = mld->trans->num_rx_queues;
1854 	struct {
1855 		struct iwl_rxq_sync_cmd sync_cmd;
1856 		struct iwl_mld_internal_rxq_notif notif;
1857 	} __packed cmd = {
1858 		.sync_cmd.rxq_mask = cpu_to_le32(BIT(num_rx_queues) - 1),
1859 		.sync_cmd.count =
1860 			cpu_to_le32(sizeof(struct iwl_mld_internal_rxq_notif) +
1861 				    notif_payload_size),
1862 		.notif.type = type,
1863 		.notif.cookie = mld->rxq_sync.cookie,
1864 	};
1865 	struct iwl_host_cmd hcmd = {
1866 		.id = WIDE_ID(DATA_PATH_GROUP, TRIGGER_RX_QUEUES_NOTIF_CMD),
1867 		.data[0] = &cmd,
1868 		.len[0] = sizeof(cmd),
1869 		.data[1] = notif_payload,
1870 		.len[1] = notif_payload_size,
1871 	};
1872 	int ret;
1873 
1874 	/* size must be a multiple of DWORD */
1875 	if (WARN_ON(cmd.sync_cmd.count & cpu_to_le32(3)))
1876 		return;
1877 
1878 	mld->rxq_sync.state = (1 << num_rx_queues) - 1;
1879 
1880 	ret = iwl_mld_send_cmd(mld, &hcmd);
1881 	if (ret) {
1882 		IWL_ERR(mld, "Failed to trigger RX queues sync (%d)\n", ret);
1883 		goto out;
1884 	}
1885 
1886 	ret = wait_event_timeout(mld->rxq_sync.waitq,
1887 				 READ_ONCE(mld->rxq_sync.state) == 0,
1888 				 SYNC_RX_QUEUE_TIMEOUT);
1889 	WARN_ONCE(!ret, "RXQ sync failed: state=0x%lx, cookie=%d\n",
1890 		  mld->rxq_sync.state, mld->rxq_sync.cookie);
1891 
1892 out:
1893 	mld->rxq_sync.state = 0;
1894 	mld->rxq_sync.cookie++;
1895 }
1896 
1897 void iwl_mld_handle_rx_queues_sync_notif(struct iwl_mld *mld,
1898 					 struct napi_struct *napi,
1899 					 struct iwl_rx_packet *pkt, int queue)
1900 {
1901 	struct iwl_rxq_sync_notification *notif;
1902 	struct iwl_mld_internal_rxq_notif *internal_notif;
1903 	u32 len = iwl_rx_packet_payload_len(pkt);
1904 	size_t combined_notif_len = sizeof(*notif) + sizeof(*internal_notif);
1905 
1906 	notif = (void *)pkt->data;
1907 	internal_notif = (void *)notif->payload;
1908 
1909 	if (IWL_FW_CHECK(mld, len < combined_notif_len,
1910 			 "invalid notification size %u (%zu)\n",
1911 			 len, combined_notif_len))
1912 		return;
1913 
1914 	len -= combined_notif_len;
1915 
1916 	if (IWL_FW_CHECK(mld, mld->rxq_sync.cookie != internal_notif->cookie,
1917 			 "received expired RX queue sync message (cookie=%d expected=%d q[%d])\n",
1918 			 internal_notif->cookie, mld->rxq_sync.cookie, queue))
1919 		return;
1920 
1921 	switch (internal_notif->type) {
1922 	case IWL_MLD_RXQ_EMPTY:
1923 		IWL_FW_CHECK(mld, len,
1924 			     "invalid empty notification size %d\n", len);
1925 		break;
1926 	case IWL_MLD_RXQ_NOTIF_DEL_BA:
1927 		if (IWL_FW_CHECK(mld, len != sizeof(struct iwl_mld_delba_data),
1928 				 "invalid delba notification size %u (%zu)\n",
1929 				 len, sizeof(struct iwl_mld_delba_data)))
1930 			break;
1931 		iwl_mld_del_ba(mld, queue, (void *)internal_notif->payload);
1932 		break;
1933 	default:
1934 		WARN_ON_ONCE(1);
1935 	}
1936 
1937 	IWL_FW_CHECK(mld, !test_and_clear_bit(queue, &mld->rxq_sync.state),
1938 		     "RXQ sync: queue %d responded a second time!\n", queue);
1939 
1940 	if (READ_ONCE(mld->rxq_sync.state) == 0)
1941 		wake_up(&mld->rxq_sync.waitq);
1942 }
1943 
1944 void iwl_mld_rx_monitor_no_data(struct iwl_mld *mld, struct napi_struct *napi,
1945 				struct iwl_rx_packet *pkt, int queue)
1946 {
1947 	struct iwl_rx_no_data_ver_3 *desc;
1948 	struct iwl_mld_rx_phy_data phy_data;
1949 	struct ieee80211_rx_status *rx_status;
1950 	struct sk_buff *skb;
1951 	u32 format, rssi;
1952 	u8 channel;
1953 
1954 	if (unlikely(mld->fw_status.in_hw_restart))
1955 		return;
1956 
1957 	if (IWL_FW_CHECK(mld, iwl_rx_packet_payload_len(pkt) < sizeof(*desc),
1958 			 "Bad RX_NO_DATA_NOTIF size (%d)\n",
1959 			 iwl_rx_packet_payload_len(pkt)))
1960 		return;
1961 
1962 	desc = (void *)pkt->data;
1963 
1964 	rssi = le32_to_cpu(desc->rssi);
1965 	channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
1966 
1967 	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
1968 	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
1969 	phy_data.data0 = desc->phy_info[0];
1970 	phy_data.data1 = desc->phy_info[1];
1971 	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1972 	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1973 	phy_data.rate_n_flags = le32_to_cpu(desc->rate);
1974 	phy_data.with_data = false;
1975 
1976 	BUILD_BUG_ON(sizeof(phy_data.rx_vec) != sizeof(desc->rx_vec));
1977 	memcpy(phy_data.rx_vec, desc->rx_vec, sizeof(phy_data.rx_vec));
1978 
1979 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1980 
1981 	/* Don't use dev_alloc_skb(), we'll have enough headroom once
1982 	 * ieee80211_hdr pulled.
1983 	 */
1984 	skb = alloc_skb(128, GFP_ATOMIC);
1985 	if (!skb) {
1986 		IWL_ERR(mld, "alloc_skb failed\n");
1987 		return;
1988 	}
1989 
1990 	rx_status = IEEE80211_SKB_RXCB(skb);
1991 
1992 	/* 0-length PSDU */
1993 	rx_status->flag |= RX_FLAG_NO_PSDU;
1994 
1995 	/* mark as failed PLCP on any errors to skip checks in mac80211 */
1996 	if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) !=
1997 	    RX_NO_DATA_INFO_ERR_NONE)
1998 		rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC;
1999 
2000 	switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) {
2001 	case RX_NO_DATA_INFO_TYPE_NDP:
2002 		rx_status->zero_length_psdu_type =
2003 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2004 		break;
2005 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2006 	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2007 		rx_status->zero_length_psdu_type =
2008 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2009 		break;
2010 	default:
2011 		rx_status->zero_length_psdu_type =
2012 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2013 		break;
2014 	}
2015 
2016 	rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
2017 		NL80211_BAND_2GHZ;
2018 
2019 	rx_status->freq = ieee80211_channel_to_frequency(channel,
2020 							 rx_status->band);
2021 
2022 	iwl_mld_rx_fill_status(mld, skb, &phy_data, queue);
2023 
2024 	/* No more radiotap info should be added after this point.
2025 	 * Mark it as mac header for upper layers to know where
2026 	 * the radiotap header ends.
2027 	 */
2028 	skb_set_mac_header(skb, skb->len);
2029 
2030 	/* Override the nss from the rx_vec since the rate_n_flags has
2031 	 * only 1 bit for the nss which gives a max of 2 ss but there
2032 	 * may be up to 8 spatial streams.
2033 	 */
2034 	switch (format) {
2035 	case RATE_MCS_VHT_MSK:
2036 		rx_status->nss =
2037 			le32_get_bits(desc->rx_vec[0],
2038 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2039 		break;
2040 	case RATE_MCS_HE_MSK:
2041 		rx_status->nss =
2042 			le32_get_bits(desc->rx_vec[0],
2043 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2044 		break;
2045 	case RATE_MCS_EHT_MSK:
2046 		rx_status->nss =
2047 			le32_get_bits(desc->rx_vec[2],
2048 				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2049 	}
2050 
2051 	/* pass the packet to mac80211 */
2052 	rcu_read_lock();
2053 	ieee80211_rx_napi(mld->hw, NULL, skb, napi);
2054 	rcu_read_unlock();
2055 }
2056