1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of version 2 of the GNU General Public License as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 24 * USA 25 * 26 * The full GNU General Public License is included in this distribution 27 * in the file called COPYING. 28 * 29 * Contact Information: 30 * Intel Linux Wireless <linuxwifi@intel.com> 31 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 32 * 33 * BSD LICENSE 34 * 35 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 36 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 37 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 38 * All rights reserved. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 44 * * Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * * Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in 48 * the documentation and/or other materials provided with the 49 * distribution. 50 * * Neither the name Intel Corporation nor the names of its 51 * contributors may be used to endorse or promote products derived 52 * from this software without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 55 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 56 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 57 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 58 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 61 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 62 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 63 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 64 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 65 * 66 *****************************************************************************/ 67 #ifndef __iwl_trans_h__ 68 #define __iwl_trans_h__ 69 70 #include <linux/ieee80211.h> 71 #include <linux/mm.h> /* for page_address */ 72 #include <linux/lockdep.h> 73 #include <linux/kernel.h> 74 75 #include "iwl-debug.h" 76 #include "iwl-config.h" 77 #include "iwl-fw.h" 78 #include "iwl-op-mode.h" 79 80 /** 81 * DOC: Transport layer - what is it ? 82 * 83 * The transport layer is the layer that deals with the HW directly. It provides 84 * an abstraction of the underlying HW to the upper layer. The transport layer 85 * doesn't provide any policy, algorithm or anything of this kind, but only 86 * mechanisms to make the HW do something. It is not completely stateless but 87 * close to it. 88 * We will have an implementation for each different supported bus. 89 */ 90 91 /** 92 * DOC: Life cycle of the transport layer 93 * 94 * The transport layer has a very precise life cycle. 95 * 96 * 1) A helper function is called during the module initialization and 97 * registers the bus driver's ops with the transport's alloc function. 98 * 2) Bus's probe calls to the transport layer's allocation functions. 99 * Of course this function is bus specific. 100 * 3) This allocation functions will spawn the upper layer which will 101 * register mac80211. 102 * 103 * 4) At some point (i.e. mac80211's start call), the op_mode will call 104 * the following sequence: 105 * start_hw 106 * start_fw 107 * 108 * 5) Then when finished (or reset): 109 * stop_device 110 * 111 * 6) Eventually, the free function will be called. 112 */ 113 114 /** 115 * DOC: Host command section 116 * 117 * A host command is a command issued by the upper layer to the fw. There are 118 * several versions of fw that have several APIs. The transport layer is 119 * completely agnostic to these differences. 120 * The transport does provide helper functionality (i.e. SYNC / ASYNC mode), 121 */ 122 #define SEQ_TO_QUEUE(s) (((s) >> 8) & 0x1f) 123 #define QUEUE_TO_SEQ(q) (((q) & 0x1f) << 8) 124 #define SEQ_TO_INDEX(s) ((s) & 0xff) 125 #define INDEX_TO_SEQ(i) ((i) & 0xff) 126 #define SEQ_RX_FRAME cpu_to_le16(0x8000) 127 128 /* 129 * those functions retrieve specific information from 130 * the id field in the iwl_host_cmd struct which contains 131 * the command id, the group id and the version of the command 132 * and vice versa 133 */ 134 static inline u8 iwl_cmd_opcode(u32 cmdid) 135 { 136 return cmdid & 0xFF; 137 } 138 139 static inline u8 iwl_cmd_groupid(u32 cmdid) 140 { 141 return ((cmdid & 0xFF00) >> 8); 142 } 143 144 static inline u8 iwl_cmd_version(u32 cmdid) 145 { 146 return ((cmdid & 0xFF0000) >> 16); 147 } 148 149 static inline u32 iwl_cmd_id(u8 opcode, u8 groupid, u8 version) 150 { 151 return opcode + (groupid << 8) + (version << 16); 152 } 153 154 /* make u16 wide id out of u8 group and opcode */ 155 #define WIDE_ID(grp, opcode) ((grp << 8) | opcode) 156 #define DEF_ID(opcode) ((1 << 8) | (opcode)) 157 158 /* due to the conversion, this group is special; new groups 159 * should be defined in the appropriate fw-api header files 160 */ 161 #define IWL_ALWAYS_LONG_GROUP 1 162 163 /** 164 * struct iwl_cmd_header 165 * 166 * This header format appears in the beginning of each command sent from the 167 * driver, and each response/notification received from uCode. 168 */ 169 struct iwl_cmd_header { 170 u8 cmd; /* Command ID: REPLY_RXON, etc. */ 171 u8 group_id; 172 /* 173 * The driver sets up the sequence number to values of its choosing. 174 * uCode does not use this value, but passes it back to the driver 175 * when sending the response to each driver-originated command, so 176 * the driver can match the response to the command. Since the values 177 * don't get used by uCode, the driver may set up an arbitrary format. 178 * 179 * There is one exception: uCode sets bit 15 when it originates 180 * the response/notification, i.e. when the response/notification 181 * is not a direct response to a command sent by the driver. For 182 * example, uCode issues REPLY_RX when it sends a received frame 183 * to the driver; it is not a direct response to any driver command. 184 * 185 * The Linux driver uses the following format: 186 * 187 * 0:7 tfd index - position within TX queue 188 * 8:12 TX queue id 189 * 13:14 reserved 190 * 15 unsolicited RX or uCode-originated notification 191 */ 192 __le16 sequence; 193 } __packed; 194 195 /** 196 * struct iwl_cmd_header_wide 197 * 198 * This header format appears in the beginning of each command sent from the 199 * driver, and each response/notification received from uCode. 200 * this is the wide version that contains more information about the command 201 * like length, version and command type 202 */ 203 struct iwl_cmd_header_wide { 204 u8 cmd; 205 u8 group_id; 206 __le16 sequence; 207 __le16 length; 208 u8 reserved; 209 u8 version; 210 } __packed; 211 212 #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */ 213 #define FH_RSCSR_FRAME_INVALID 0x55550000 214 #define FH_RSCSR_FRAME_ALIGN 0x40 215 #define FH_RSCSR_RPA_EN BIT(25) 216 #define FH_RSCSR_RXQ_POS 16 217 #define FH_RSCSR_RXQ_MASK 0x3F0000 218 219 struct iwl_rx_packet { 220 /* 221 * The first 4 bytes of the RX frame header contain both the RX frame 222 * size and some flags. 223 * Bit fields: 224 * 31: flag flush RB request 225 * 30: flag ignore TC (terminal counter) request 226 * 29: flag fast IRQ request 227 * 28-26: Reserved 228 * 25: Offload enabled 229 * 24: RPF enabled 230 * 23: RSS enabled 231 * 22: Checksum enabled 232 * 21-16: RX queue 233 * 15-14: Reserved 234 * 13-00: RX frame size 235 */ 236 __le32 len_n_flags; 237 struct iwl_cmd_header hdr; 238 u8 data[]; 239 } __packed; 240 241 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt) 242 { 243 return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK; 244 } 245 246 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt) 247 { 248 return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr); 249 } 250 251 /** 252 * enum CMD_MODE - how to send the host commands ? 253 * 254 * @CMD_ASYNC: Return right away and don't wait for the response 255 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of 256 * the response. The caller needs to call iwl_free_resp when done. 257 * @CMD_HIGH_PRIO: The command is high priority - it goes to the front of the 258 * command queue, but after other high priority commands. Valid only 259 * with CMD_ASYNC. 260 * @CMD_SEND_IN_IDLE: The command should be sent even when the trans is idle. 261 * @CMD_MAKE_TRANS_IDLE: The command response should mark the trans as idle. 262 * @CMD_WAKE_UP_TRANS: The command response should wake up the trans 263 * (i.e. mark it as non-idle). 264 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be 265 * called after this command completes. Valid only with CMD_ASYNC. 266 */ 267 enum CMD_MODE { 268 CMD_ASYNC = BIT(0), 269 CMD_WANT_SKB = BIT(1), 270 CMD_SEND_IN_RFKILL = BIT(2), 271 CMD_HIGH_PRIO = BIT(3), 272 CMD_SEND_IN_IDLE = BIT(4), 273 CMD_MAKE_TRANS_IDLE = BIT(5), 274 CMD_WAKE_UP_TRANS = BIT(6), 275 CMD_WANT_ASYNC_CALLBACK = BIT(7), 276 }; 277 278 #define DEF_CMD_PAYLOAD_SIZE 320 279 280 /** 281 * struct iwl_device_cmd 282 * 283 * For allocation of the command and tx queues, this establishes the overall 284 * size of the largest command we send to uCode, except for commands that 285 * aren't fully copied and use other TFD space. 286 */ 287 struct iwl_device_cmd { 288 union { 289 struct { 290 struct iwl_cmd_header hdr; /* uCode API */ 291 u8 payload[DEF_CMD_PAYLOAD_SIZE]; 292 }; 293 struct { 294 struct iwl_cmd_header_wide hdr_wide; 295 u8 payload_wide[DEF_CMD_PAYLOAD_SIZE - 296 sizeof(struct iwl_cmd_header_wide) + 297 sizeof(struct iwl_cmd_header)]; 298 }; 299 }; 300 } __packed; 301 302 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd)) 303 304 /* 305 * number of transfer buffers (fragments) per transmit frame descriptor; 306 * this is just the driver's idea, the hardware supports 20 307 */ 308 #define IWL_MAX_CMD_TBS_PER_TFD 2 309 310 /** 311 * struct iwl_hcmd_dataflag - flag for each one of the chunks of the command 312 * 313 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's 314 * ring. The transport layer doesn't map the command's buffer to DMA, but 315 * rather copies it to a previously allocated DMA buffer. This flag tells 316 * the transport layer not to copy the command, but to map the existing 317 * buffer (that is passed in) instead. This saves the memcpy and allows 318 * commands that are bigger than the fixed buffer to be submitted. 319 * Note that a TFD entry after a NOCOPY one cannot be a normal copied one. 320 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this 321 * chunk internally and free it again after the command completes. This 322 * can (currently) be used only once per command. 323 * Note that a TFD entry after a DUP one cannot be a normal copied one. 324 */ 325 enum iwl_hcmd_dataflag { 326 IWL_HCMD_DFL_NOCOPY = BIT(0), 327 IWL_HCMD_DFL_DUP = BIT(1), 328 }; 329 330 /** 331 * struct iwl_host_cmd - Host command to the uCode 332 * 333 * @data: array of chunks that composes the data of the host command 334 * @resp_pkt: response packet, if %CMD_WANT_SKB was set 335 * @_rx_page_order: (internally used to free response packet) 336 * @_rx_page_addr: (internally used to free response packet) 337 * @flags: can be CMD_* 338 * @len: array of the lengths of the chunks in data 339 * @dataflags: IWL_HCMD_DFL_* 340 * @id: command id of the host command, for wide commands encoding the 341 * version and group as well 342 */ 343 struct iwl_host_cmd { 344 const void *data[IWL_MAX_CMD_TBS_PER_TFD]; 345 struct iwl_rx_packet *resp_pkt; 346 unsigned long _rx_page_addr; 347 u32 _rx_page_order; 348 349 u32 flags; 350 u32 id; 351 u16 len[IWL_MAX_CMD_TBS_PER_TFD]; 352 u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD]; 353 }; 354 355 static inline void iwl_free_resp(struct iwl_host_cmd *cmd) 356 { 357 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order); 358 } 359 360 struct iwl_rx_cmd_buffer { 361 struct page *_page; 362 int _offset; 363 bool _page_stolen; 364 u32 _rx_page_order; 365 unsigned int truesize; 366 }; 367 368 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r) 369 { 370 return (void *)((unsigned long)page_address(r->_page) + r->_offset); 371 } 372 373 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r) 374 { 375 return r->_offset; 376 } 377 378 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r) 379 { 380 r->_page_stolen = true; 381 get_page(r->_page); 382 return r->_page; 383 } 384 385 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r) 386 { 387 __free_pages(r->_page, r->_rx_page_order); 388 } 389 390 #define MAX_NO_RECLAIM_CMDS 6 391 392 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo)))) 393 394 /* 395 * Maximum number of HW queues the transport layer 396 * currently supports 397 */ 398 #define IWL_MAX_HW_QUEUES 32 399 #define IWL_MAX_TVQM_QUEUES 512 400 401 #define IWL_MAX_TID_COUNT 8 402 #define IWL_MGMT_TID 15 403 #define IWL_FRAME_LIMIT 64 404 #define IWL_MAX_RX_HW_QUEUES 16 405 406 /** 407 * enum iwl_wowlan_status - WoWLAN image/device status 408 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume 409 * @IWL_D3_STATUS_RESET: device was reset while suspended 410 */ 411 enum iwl_d3_status { 412 IWL_D3_STATUS_ALIVE, 413 IWL_D3_STATUS_RESET, 414 }; 415 416 /** 417 * enum iwl_trans_status: transport status flags 418 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed 419 * @STATUS_DEVICE_ENABLED: APM is enabled 420 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up) 421 * @STATUS_INT_ENABLED: interrupts are enabled 422 * @STATUS_RFKILL: the HW RFkill switch is in KILL position 423 * @STATUS_FW_ERROR: the fw is in error state 424 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands 425 * are sent 426 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent 427 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation 428 */ 429 enum iwl_trans_status { 430 STATUS_SYNC_HCMD_ACTIVE, 431 STATUS_DEVICE_ENABLED, 432 STATUS_TPOWER_PMI, 433 STATUS_INT_ENABLED, 434 STATUS_RFKILL, 435 STATUS_FW_ERROR, 436 STATUS_TRANS_GOING_IDLE, 437 STATUS_TRANS_IDLE, 438 STATUS_TRANS_DEAD, 439 }; 440 441 static inline int 442 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size) 443 { 444 switch (rb_size) { 445 case IWL_AMSDU_4K: 446 return get_order(4 * 1024); 447 case IWL_AMSDU_8K: 448 return get_order(8 * 1024); 449 case IWL_AMSDU_12K: 450 return get_order(12 * 1024); 451 default: 452 WARN_ON(1); 453 return -1; 454 } 455 } 456 457 struct iwl_hcmd_names { 458 u8 cmd_id; 459 const char *const cmd_name; 460 }; 461 462 #define HCMD_NAME(x) \ 463 { .cmd_id = x, .cmd_name = #x } 464 465 struct iwl_hcmd_arr { 466 const struct iwl_hcmd_names *arr; 467 int size; 468 }; 469 470 #define HCMD_ARR(x) \ 471 { .arr = x, .size = ARRAY_SIZE(x) } 472 473 /** 474 * struct iwl_trans_config - transport configuration 475 * 476 * @op_mode: pointer to the upper layer. 477 * @cmd_queue: the index of the command queue. 478 * Must be set before start_fw. 479 * @cmd_fifo: the fifo for host commands 480 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue. 481 * @no_reclaim_cmds: Some devices erroneously don't set the 482 * SEQ_RX_FRAME bit on some notifications, this is the 483 * list of such notifications to filter. Max length is 484 * %MAX_NO_RECLAIM_CMDS. 485 * @n_no_reclaim_cmds: # of commands in list 486 * @rx_buf_size: RX buffer size needed for A-MSDUs 487 * if unset 4k will be the RX buffer size 488 * @bc_table_dword: set to true if the BC table expects the byte count to be 489 * in DWORD (as opposed to bytes) 490 * @scd_set_active: should the transport configure the SCD for HCMD queue 491 * @sw_csum_tx: transport should compute the TCP checksum 492 * @command_groups: array of command groups, each member is an array of the 493 * commands in the group; for debugging only 494 * @command_groups_size: number of command groups, to avoid illegal access 495 * @sdio_adma_addr: the default address to set for the ADMA in SDIO mode until 496 * we get the ALIVE from the uCode 497 * @cb_data_offs: offset inside skb->cb to store transport data at, must have 498 * space for at least two pointers 499 */ 500 struct iwl_trans_config { 501 struct iwl_op_mode *op_mode; 502 503 u8 cmd_queue; 504 u8 cmd_fifo; 505 unsigned int cmd_q_wdg_timeout; 506 const u8 *no_reclaim_cmds; 507 unsigned int n_no_reclaim_cmds; 508 509 enum iwl_amsdu_size rx_buf_size; 510 bool bc_table_dword; 511 bool scd_set_active; 512 bool sw_csum_tx; 513 const struct iwl_hcmd_arr *command_groups; 514 int command_groups_size; 515 516 u32 sdio_adma_addr; 517 518 u8 cb_data_offs; 519 }; 520 521 struct iwl_trans_dump_data { 522 u32 len; 523 u8 data[]; 524 }; 525 526 struct iwl_trans; 527 528 struct iwl_trans_txq_scd_cfg { 529 u8 fifo; 530 u8 sta_id; 531 u8 tid; 532 bool aggregate; 533 int frame_limit; 534 }; 535 536 /* Available options for &struct iwl_tx_queue_cfg_cmd */ 537 enum iwl_tx_queue_cfg_actions { 538 TX_QUEUE_CFG_ENABLE_QUEUE = BIT(0), 539 TX_QUEUE_CFG_TFD_SHORT_FORMAT = BIT(1), 540 }; 541 542 /** 543 * struct iwl_tx_queue_cfg_cmd - txq hw scheduler config command 544 * @sta_id: station id 545 * @tid: tid of the queue 546 * @flags: Bit 0 - on enable, off - disable, Bit 1 - short TFD format 547 * @cb_size: size of TFD cyclic buffer. Value is exponent - 3. 548 * Minimum value 0 (8 TFDs), maximum value 5 (256 TFDs) 549 * @byte_cnt_addr: address of byte count table 550 * @tfdq_addr: address of TFD circular buffer 551 */ 552 struct iwl_tx_queue_cfg_cmd { 553 u8 sta_id; 554 u8 tid; 555 __le16 flags; 556 __le32 cb_size; 557 __le64 byte_cnt_addr; 558 __le64 tfdq_addr; 559 } __packed; /* TX_QUEUE_CFG_CMD_API_S_VER_2 */ 560 561 /** 562 * struct iwl_tx_queue_cfg_rsp - response to txq hw scheduler config 563 * @queue_number: queue number assigned to this RA -TID 564 * @flags: set on failure 565 * @write_pointer: initial value for write pointer 566 */ 567 struct iwl_tx_queue_cfg_rsp { 568 __le16 queue_number; 569 __le16 flags; 570 __le16 write_pointer; 571 __le16 reserved; 572 } __packed; /* TX_QUEUE_CFG_RSP_API_S_VER_2 */ 573 574 /** 575 * struct iwl_trans_ops - transport specific operations 576 * 577 * All the handlers MUST be implemented 578 * 579 * @start_hw: starts the HW. If low_power is true, the NIC needs to be taken 580 * out of a low power state. From that point on, the HW can send 581 * interrupts. May sleep. 582 * @op_mode_leave: Turn off the HW RF kill indication if on 583 * May sleep 584 * @start_fw: allocates and inits all the resources for the transport 585 * layer. Also kick a fw image. 586 * May sleep 587 * @fw_alive: called when the fw sends alive notification. If the fw provides 588 * the SCD base address in SRAM, then provide it here, or 0 otherwise. 589 * May sleep 590 * @stop_device: stops the whole device (embedded CPU put to reset) and stops 591 * the HW. If low_power is true, the NIC will be put in low power state. 592 * From that point on, the HW will be stopped but will still issue an 593 * interrupt if the HW RF kill switch is triggered. 594 * This callback must do the right thing and not crash even if %start_hw() 595 * was called but not &start_fw(). May sleep. 596 * @d3_suspend: put the device into the correct mode for WoWLAN during 597 * suspend. This is optional, if not implemented WoWLAN will not be 598 * supported. This callback may sleep. 599 * @d3_resume: resume the device after WoWLAN, enabling the opmode to 600 * talk to the WoWLAN image to get its status. This is optional, if not 601 * implemented WoWLAN will not be supported. This callback may sleep. 602 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted. 603 * If RFkill is asserted in the middle of a SYNC host command, it must 604 * return -ERFKILL straight away. 605 * May sleep only if CMD_ASYNC is not set 606 * @tx: send an skb. The transport relies on the op_mode to zero the 607 * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all 608 * the CSUM will be taken care of (TCP CSUM and IP header in case of 609 * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP 610 * header if it is IPv4. 611 * Must be atomic 612 * @reclaim: free packet until ssn. Returns a list of freed packets. 613 * Must be atomic 614 * @txq_enable: setup a queue. To setup an AC queue, use the 615 * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before 616 * this one. The op_mode must not configure the HCMD queue. The scheduler 617 * configuration may be %NULL, in which case the hardware will not be 618 * configured. May sleep. 619 * @txq_disable: de-configure a Tx queue to send AMPDUs 620 * Must be atomic 621 * @txq_set_shared_mode: change Tx queue shared/unshared marking 622 * @wait_tx_queue_empty: wait until tx queues are empty. May sleep. 623 * @freeze_txq_timer: prevents the timer of the queue from firing until the 624 * queue is set to awake. Must be atomic. 625 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note 626 * that the transport needs to refcount the calls since this function 627 * will be called several times with block = true, and then the queues 628 * need to be unblocked only after the same number of calls with 629 * block = false. 630 * @write8: write a u8 to a register at offset ofs from the BAR 631 * @write32: write a u32 to a register at offset ofs from the BAR 632 * @read32: read a u32 register at offset ofs from the BAR 633 * @read_prph: read a DWORD from a periphery register 634 * @write_prph: write a DWORD to a periphery register 635 * @read_mem: read device's SRAM in DWORD 636 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory 637 * will be zeroed. 638 * @configure: configure parameters required by the transport layer from 639 * the op_mode. May be called several times before start_fw, can't be 640 * called after that. 641 * @set_pmi: set the power pmi state 642 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs. 643 * Sleeping is not allowed between grab_nic_access and 644 * release_nic_access. 645 * @release_nic_access: let the NIC go to sleep. The "flags" parameter 646 * must be the same one that was sent before to the grab_nic_access. 647 * @set_bits_mask - set SRAM register according to value and mask. 648 * @ref: grab a reference to the transport/FW layers, disallowing 649 * certain low power states 650 * @unref: release a reference previously taken with @ref. Note that 651 * initially the reference count is 1, making an initial @unref 652 * necessary to allow low power states. 653 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last 654 * TX'ed commands and similar. The buffer will be vfree'd by the caller. 655 * Note that the transport must fill in the proper file headers. 656 */ 657 struct iwl_trans_ops { 658 659 int (*start_hw)(struct iwl_trans *iwl_trans, bool low_power); 660 void (*op_mode_leave)(struct iwl_trans *iwl_trans); 661 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw, 662 bool run_in_rfkill); 663 int (*update_sf)(struct iwl_trans *trans, 664 struct iwl_sf_region *st_fwrd_space); 665 void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr); 666 void (*stop_device)(struct iwl_trans *trans, bool low_power); 667 668 void (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset); 669 int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status, 670 bool test, bool reset); 671 672 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 673 674 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb, 675 struct iwl_device_cmd *dev_cmd, int queue); 676 void (*reclaim)(struct iwl_trans *trans, int queue, int ssn, 677 struct sk_buff_head *skbs); 678 679 void (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn, 680 const struct iwl_trans_txq_scd_cfg *cfg, 681 unsigned int queue_wdg_timeout); 682 void (*txq_disable)(struct iwl_trans *trans, int queue, 683 bool configure_scd); 684 /* a000 functions */ 685 int (*txq_alloc)(struct iwl_trans *trans, 686 struct iwl_tx_queue_cfg_cmd *cmd, 687 int cmd_id, 688 unsigned int queue_wdg_timeout); 689 void (*txq_free)(struct iwl_trans *trans, int queue); 690 691 void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id, 692 bool shared); 693 694 int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm); 695 void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs, 696 bool freeze); 697 void (*block_txq_ptrs)(struct iwl_trans *trans, bool block); 698 699 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val); 700 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val); 701 u32 (*read32)(struct iwl_trans *trans, u32 ofs); 702 u32 (*read_prph)(struct iwl_trans *trans, u32 ofs); 703 void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val); 704 int (*read_mem)(struct iwl_trans *trans, u32 addr, 705 void *buf, int dwords); 706 int (*write_mem)(struct iwl_trans *trans, u32 addr, 707 const void *buf, int dwords); 708 void (*configure)(struct iwl_trans *trans, 709 const struct iwl_trans_config *trans_cfg); 710 void (*set_pmi)(struct iwl_trans *trans, bool state); 711 bool (*grab_nic_access)(struct iwl_trans *trans, unsigned long *flags); 712 void (*release_nic_access)(struct iwl_trans *trans, 713 unsigned long *flags); 714 void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask, 715 u32 value); 716 void (*ref)(struct iwl_trans *trans); 717 void (*unref)(struct iwl_trans *trans); 718 int (*suspend)(struct iwl_trans *trans); 719 void (*resume)(struct iwl_trans *trans); 720 721 struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans, 722 const struct iwl_fw_dbg_trigger_tlv 723 *trigger); 724 }; 725 726 /** 727 * enum iwl_trans_state - state of the transport layer 728 * 729 * @IWL_TRANS_NO_FW: no fw has sent an alive response 730 * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response 731 */ 732 enum iwl_trans_state { 733 IWL_TRANS_NO_FW = 0, 734 IWL_TRANS_FW_ALIVE = 1, 735 }; 736 737 /** 738 * DOC: Platform power management 739 * 740 * There are two types of platform power management: system-wide 741 * (WoWLAN) and runtime. 742 * 743 * In system-wide power management the entire platform goes into a low 744 * power state (e.g. idle or suspend to RAM) at the same time and the 745 * device is configured as a wakeup source for the entire platform. 746 * This is usually triggered by userspace activity (e.g. the user 747 * presses the suspend button or a power management daemon decides to 748 * put the platform in low power mode). The device's behavior in this 749 * mode is dictated by the wake-on-WLAN configuration. 750 * 751 * In runtime power management, only the devices which are themselves 752 * idle enter a low power state. This is done at runtime, which means 753 * that the entire system is still running normally. This mode is 754 * usually triggered automatically by the device driver and requires 755 * the ability to enter and exit the low power modes in a very short 756 * time, so there is not much impact in usability. 757 * 758 * The terms used for the device's behavior are as follows: 759 * 760 * - D0: the device is fully powered and the host is awake; 761 * - D3: the device is in low power mode and only reacts to 762 * specific events (e.g. magic-packet received or scan 763 * results found); 764 * - D0I3: the device is in low power mode and reacts to any 765 * activity (e.g. RX); 766 * 767 * These terms reflect the power modes in the firmware and are not to 768 * be confused with the physical device power state. The NIC can be 769 * in D0I3 mode even if, for instance, the PCI device is in D3 state. 770 */ 771 772 /** 773 * enum iwl_plat_pm_mode - platform power management mode 774 * 775 * This enumeration describes the device's platform power management 776 * behavior when in idle mode (i.e. runtime power management) or when 777 * in system-wide suspend (i.e WoWLAN). 778 * 779 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this 780 * device. At runtime, this means that nothing happens and the 781 * device always remains in active. In system-wide suspend mode, 782 * it means that the all connections will be closed automatically 783 * by mac80211 before the platform is suspended. 784 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN). 785 * For runtime power management, this mode is not officially 786 * supported. 787 * @IWL_PLAT_PM_MODE_D0I3: the device goes into D0I3 mode. 788 */ 789 enum iwl_plat_pm_mode { 790 IWL_PLAT_PM_MODE_DISABLED, 791 IWL_PLAT_PM_MODE_D3, 792 IWL_PLAT_PM_MODE_D0I3, 793 }; 794 795 /* Max time to wait for trans to become idle/non-idle on d0i3 796 * enter/exit (in msecs). 797 */ 798 #define IWL_TRANS_IDLE_TIMEOUT 2000 799 800 /** 801 * struct iwl_trans - transport common data 802 * 803 * @ops - pointer to iwl_trans_ops 804 * @op_mode - pointer to the op_mode 805 * @cfg - pointer to the configuration 806 * @drv - pointer to iwl_drv 807 * @status: a bit-mask of transport status flags 808 * @dev - pointer to struct device * that represents the device 809 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted. 810 * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported. 811 * @hw_rf_id a u32 with the device RF ID 812 * @hw_id: a u32 with the ID of the device / sub-device. 813 * Set during transport allocation. 814 * @hw_id_str: a string with info about HW ID. Set during transport allocation. 815 * @pm_support: set to true in start_hw if link pm is supported 816 * @ltr_enabled: set to true if the LTR is enabled 817 * @wide_cmd_header: true when ucode supports wide command header format 818 * @num_rx_queues: number of RX queues allocated by the transport; 819 * the transport must set this before calling iwl_drv_start() 820 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only. 821 * The user should use iwl_trans_{alloc,free}_tx_cmd. 822 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before 823 * starting the firmware, used for tracing 824 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the 825 * start of the 802.11 header in the @rx_mpdu_cmd 826 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI) 827 * @dbg_dest_tlv: points to the destination TLV for debug 828 * @dbg_conf_tlv: array of pointers to configuration TLVs for debug 829 * @dbg_trigger_tlv: array of pointers to triggers TLVs for debug 830 * @dbg_dest_reg_num: num of reg_ops in %dbg_dest_tlv 831 * @paging_req_addr: The location were the FW will upload / download the pages 832 * from. The address is set by the opmode 833 * @paging_db: Pointer to the opmode paging data base, the pointer is set by 834 * the opmode. 835 * @paging_download_buf: Buffer used for copying all of the pages before 836 * downloading them to the FW. The buffer is allocated in the opmode 837 * @system_pm_mode: the system-wide power management mode in use. 838 * This mode is set dynamically, depending on the WoWLAN values 839 * configured from the userspace at runtime. 840 * @runtime_pm_mode: the runtime power management mode in use. This 841 * mode is set during the initialization phase and is not 842 * supposed to change during runtime. 843 */ 844 struct iwl_trans { 845 const struct iwl_trans_ops *ops; 846 struct iwl_op_mode *op_mode; 847 const struct iwl_cfg *cfg; 848 struct iwl_drv *drv; 849 enum iwl_trans_state state; 850 unsigned long status; 851 852 struct device *dev; 853 u32 max_skb_frags; 854 u32 hw_rev; 855 u32 hw_rf_id; 856 u32 hw_id; 857 char hw_id_str[52]; 858 859 u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size; 860 861 bool pm_support; 862 bool ltr_enabled; 863 864 const struct iwl_hcmd_arr *command_groups; 865 int command_groups_size; 866 bool wide_cmd_header; 867 868 u8 num_rx_queues; 869 870 /* The following fields are internal only */ 871 struct kmem_cache *dev_cmd_pool; 872 char dev_cmd_pool_name[50]; 873 874 struct dentry *dbgfs_dir; 875 876 #ifdef CONFIG_LOCKDEP 877 struct lockdep_map sync_cmd_lockdep_map; 878 #endif 879 880 u64 dflt_pwr_limit; 881 882 const struct iwl_fw_dbg_dest_tlv *dbg_dest_tlv; 883 const struct iwl_fw_dbg_conf_tlv *dbg_conf_tlv[FW_DBG_CONF_MAX]; 884 struct iwl_fw_dbg_trigger_tlv * const *dbg_trigger_tlv; 885 u8 dbg_dest_reg_num; 886 887 /* 888 * Paging parameters - All of the parameters should be set by the 889 * opmode when paging is enabled 890 */ 891 u32 paging_req_addr; 892 struct iwl_fw_paging *paging_db; 893 void *paging_download_buf; 894 895 enum iwl_plat_pm_mode system_pm_mode; 896 enum iwl_plat_pm_mode runtime_pm_mode; 897 bool suspending; 898 899 /* pointer to trans specific struct */ 900 /*Ensure that this pointer will always be aligned to sizeof pointer */ 901 char trans_specific[0] __aligned(sizeof(void *)); 902 }; 903 904 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id); 905 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans); 906 907 static inline void iwl_trans_configure(struct iwl_trans *trans, 908 const struct iwl_trans_config *trans_cfg) 909 { 910 trans->op_mode = trans_cfg->op_mode; 911 912 trans->ops->configure(trans, trans_cfg); 913 WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg)); 914 } 915 916 static inline int _iwl_trans_start_hw(struct iwl_trans *trans, bool low_power) 917 { 918 might_sleep(); 919 920 return trans->ops->start_hw(trans, low_power); 921 } 922 923 static inline int iwl_trans_start_hw(struct iwl_trans *trans) 924 { 925 return trans->ops->start_hw(trans, true); 926 } 927 928 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans) 929 { 930 might_sleep(); 931 932 if (trans->ops->op_mode_leave) 933 trans->ops->op_mode_leave(trans); 934 935 trans->op_mode = NULL; 936 937 trans->state = IWL_TRANS_NO_FW; 938 } 939 940 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr) 941 { 942 might_sleep(); 943 944 trans->state = IWL_TRANS_FW_ALIVE; 945 946 trans->ops->fw_alive(trans, scd_addr); 947 } 948 949 static inline int iwl_trans_start_fw(struct iwl_trans *trans, 950 const struct fw_img *fw, 951 bool run_in_rfkill) 952 { 953 might_sleep(); 954 955 WARN_ON_ONCE(!trans->rx_mpdu_cmd); 956 957 clear_bit(STATUS_FW_ERROR, &trans->status); 958 return trans->ops->start_fw(trans, fw, run_in_rfkill); 959 } 960 961 static inline int iwl_trans_update_sf(struct iwl_trans *trans, 962 struct iwl_sf_region *st_fwrd_space) 963 { 964 might_sleep(); 965 966 if (trans->ops->update_sf) 967 return trans->ops->update_sf(trans, st_fwrd_space); 968 969 return 0; 970 } 971 972 static inline void _iwl_trans_stop_device(struct iwl_trans *trans, 973 bool low_power) 974 { 975 might_sleep(); 976 977 trans->ops->stop_device(trans, low_power); 978 979 trans->state = IWL_TRANS_NO_FW; 980 } 981 982 static inline void iwl_trans_stop_device(struct iwl_trans *trans) 983 { 984 _iwl_trans_stop_device(trans, true); 985 } 986 987 static inline void iwl_trans_d3_suspend(struct iwl_trans *trans, bool test, 988 bool reset) 989 { 990 might_sleep(); 991 if (trans->ops->d3_suspend) 992 trans->ops->d3_suspend(trans, test, reset); 993 } 994 995 static inline int iwl_trans_d3_resume(struct iwl_trans *trans, 996 enum iwl_d3_status *status, 997 bool test, bool reset) 998 { 999 might_sleep(); 1000 if (!trans->ops->d3_resume) 1001 return 0; 1002 1003 return trans->ops->d3_resume(trans, status, test, reset); 1004 } 1005 1006 static inline void iwl_trans_ref(struct iwl_trans *trans) 1007 { 1008 if (trans->ops->ref) 1009 trans->ops->ref(trans); 1010 } 1011 1012 static inline void iwl_trans_unref(struct iwl_trans *trans) 1013 { 1014 if (trans->ops->unref) 1015 trans->ops->unref(trans); 1016 } 1017 1018 static inline int iwl_trans_suspend(struct iwl_trans *trans) 1019 { 1020 if (!trans->ops->suspend) 1021 return 0; 1022 1023 return trans->ops->suspend(trans); 1024 } 1025 1026 static inline void iwl_trans_resume(struct iwl_trans *trans) 1027 { 1028 if (trans->ops->resume) 1029 trans->ops->resume(trans); 1030 } 1031 1032 static inline struct iwl_trans_dump_data * 1033 iwl_trans_dump_data(struct iwl_trans *trans, 1034 const struct iwl_fw_dbg_trigger_tlv *trigger) 1035 { 1036 if (!trans->ops->dump_data) 1037 return NULL; 1038 return trans->ops->dump_data(trans, trigger); 1039 } 1040 1041 static inline struct iwl_device_cmd * 1042 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans) 1043 { 1044 struct iwl_device_cmd *dev_cmd_ptr = 1045 kmem_cache_alloc(trans->dev_cmd_pool, GFP_ATOMIC); 1046 1047 if (unlikely(dev_cmd_ptr == NULL)) 1048 return NULL; 1049 1050 return dev_cmd_ptr; 1051 } 1052 1053 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 1054 1055 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans, 1056 struct iwl_device_cmd *dev_cmd) 1057 { 1058 kmem_cache_free(trans->dev_cmd_pool, dev_cmd); 1059 } 1060 1061 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb, 1062 struct iwl_device_cmd *dev_cmd, int queue) 1063 { 1064 if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) 1065 return -EIO; 1066 1067 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1068 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1069 return -EIO; 1070 } 1071 1072 return trans->ops->tx(trans, skb, dev_cmd, queue); 1073 } 1074 1075 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue, 1076 int ssn, struct sk_buff_head *skbs) 1077 { 1078 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1079 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1080 return; 1081 } 1082 1083 trans->ops->reclaim(trans, queue, ssn, skbs); 1084 } 1085 1086 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue, 1087 bool configure_scd) 1088 { 1089 trans->ops->txq_disable(trans, queue, configure_scd); 1090 } 1091 1092 static inline void 1093 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn, 1094 const struct iwl_trans_txq_scd_cfg *cfg, 1095 unsigned int queue_wdg_timeout) 1096 { 1097 might_sleep(); 1098 1099 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1100 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1101 return; 1102 } 1103 1104 trans->ops->txq_enable(trans, queue, ssn, cfg, queue_wdg_timeout); 1105 } 1106 1107 static inline void 1108 iwl_trans_txq_free(struct iwl_trans *trans, int queue) 1109 { 1110 if (WARN_ON_ONCE(!trans->ops->txq_free)) 1111 return; 1112 1113 trans->ops->txq_free(trans, queue); 1114 } 1115 1116 static inline int 1117 iwl_trans_txq_alloc(struct iwl_trans *trans, 1118 struct iwl_tx_queue_cfg_cmd *cmd, 1119 int cmd_id, 1120 unsigned int queue_wdg_timeout) 1121 { 1122 might_sleep(); 1123 1124 if (WARN_ON_ONCE(!trans->ops->txq_alloc)) 1125 return -ENOTSUPP; 1126 1127 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1128 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1129 return -EIO; 1130 } 1131 1132 return trans->ops->txq_alloc(trans, cmd, cmd_id, queue_wdg_timeout); 1133 } 1134 1135 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans, 1136 int queue, bool shared_mode) 1137 { 1138 if (trans->ops->txq_set_shared_mode) 1139 trans->ops->txq_set_shared_mode(trans, queue, shared_mode); 1140 } 1141 1142 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue, 1143 int fifo, int sta_id, int tid, 1144 int frame_limit, u16 ssn, 1145 unsigned int queue_wdg_timeout) 1146 { 1147 struct iwl_trans_txq_scd_cfg cfg = { 1148 .fifo = fifo, 1149 .sta_id = sta_id, 1150 .tid = tid, 1151 .frame_limit = frame_limit, 1152 .aggregate = sta_id >= 0, 1153 }; 1154 1155 iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout); 1156 } 1157 1158 static inline 1159 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo, 1160 unsigned int queue_wdg_timeout) 1161 { 1162 struct iwl_trans_txq_scd_cfg cfg = { 1163 .fifo = fifo, 1164 .sta_id = -1, 1165 .tid = IWL_MAX_TID_COUNT, 1166 .frame_limit = IWL_FRAME_LIMIT, 1167 .aggregate = false, 1168 }; 1169 1170 iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout); 1171 } 1172 1173 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans, 1174 unsigned long txqs, 1175 bool freeze) 1176 { 1177 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1178 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1179 return; 1180 } 1181 1182 if (trans->ops->freeze_txq_timer) 1183 trans->ops->freeze_txq_timer(trans, txqs, freeze); 1184 } 1185 1186 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans, 1187 bool block) 1188 { 1189 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1190 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1191 return; 1192 } 1193 1194 if (trans->ops->block_txq_ptrs) 1195 trans->ops->block_txq_ptrs(trans, block); 1196 } 1197 1198 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans, 1199 u32 txqs) 1200 { 1201 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1202 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1203 return -EIO; 1204 } 1205 1206 return trans->ops->wait_tx_queues_empty(trans, txqs); 1207 } 1208 1209 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val) 1210 { 1211 trans->ops->write8(trans, ofs, val); 1212 } 1213 1214 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val) 1215 { 1216 trans->ops->write32(trans, ofs, val); 1217 } 1218 1219 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs) 1220 { 1221 return trans->ops->read32(trans, ofs); 1222 } 1223 1224 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs) 1225 { 1226 return trans->ops->read_prph(trans, ofs); 1227 } 1228 1229 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs, 1230 u32 val) 1231 { 1232 return trans->ops->write_prph(trans, ofs, val); 1233 } 1234 1235 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr, 1236 void *buf, int dwords) 1237 { 1238 return trans->ops->read_mem(trans, addr, buf, dwords); 1239 } 1240 1241 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \ 1242 do { \ 1243 if (__builtin_constant_p(bufsize)) \ 1244 BUILD_BUG_ON((bufsize) % sizeof(u32)); \ 1245 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\ 1246 } while (0) 1247 1248 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr) 1249 { 1250 u32 value; 1251 1252 if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1))) 1253 return 0xa5a5a5a5; 1254 1255 return value; 1256 } 1257 1258 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr, 1259 const void *buf, int dwords) 1260 { 1261 return trans->ops->write_mem(trans, addr, buf, dwords); 1262 } 1263 1264 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr, 1265 u32 val) 1266 { 1267 return iwl_trans_write_mem(trans, addr, &val, 1); 1268 } 1269 1270 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state) 1271 { 1272 if (trans->ops->set_pmi) 1273 trans->ops->set_pmi(trans, state); 1274 } 1275 1276 static inline void 1277 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) 1278 { 1279 trans->ops->set_bits_mask(trans, reg, mask, value); 1280 } 1281 1282 #define iwl_trans_grab_nic_access(trans, flags) \ 1283 __cond_lock(nic_access, \ 1284 likely((trans)->ops->grab_nic_access(trans, flags))) 1285 1286 static inline void __releases(nic_access) 1287 iwl_trans_release_nic_access(struct iwl_trans *trans, unsigned long *flags) 1288 { 1289 trans->ops->release_nic_access(trans, flags); 1290 __release(nic_access); 1291 } 1292 1293 static inline void iwl_trans_fw_error(struct iwl_trans *trans) 1294 { 1295 if (WARN_ON_ONCE(!trans->op_mode)) 1296 return; 1297 1298 /* prevent double restarts due to the same erroneous FW */ 1299 if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) 1300 iwl_op_mode_nic_error(trans->op_mode); 1301 } 1302 1303 /***************************************************** 1304 * transport helper functions 1305 *****************************************************/ 1306 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size, 1307 struct device *dev, 1308 const struct iwl_cfg *cfg, 1309 const struct iwl_trans_ops *ops); 1310 void iwl_trans_free(struct iwl_trans *trans); 1311 1312 /***************************************************** 1313 * driver (transport) register/unregister functions 1314 ******************************************************/ 1315 int __must_check iwl_pci_register_driver(void); 1316 void iwl_pci_unregister_driver(void); 1317 1318 #endif /* __iwl_trans_h__ */ 1319