xref: /linux/drivers/net/wireless/intel/iwlwifi/iwl-trans.h (revision 4eca0ef49af9b2b0c52ef2b58e045ab34629796b)
1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #ifndef __iwl_trans_h__
8 #define __iwl_trans_h__
9 
10 #include <linux/ieee80211.h>
11 #include <linux/mm.h> /* for page_address */
12 #include <linux/lockdep.h>
13 #include <linux/kernel.h>
14 
15 #include "iwl-debug.h"
16 #include "iwl-config.h"
17 #include "fw/img.h"
18 #include "iwl-op-mode.h"
19 #include <linux/firmware.h>
20 #include "fw/api/cmdhdr.h"
21 #include "fw/api/txq.h"
22 #include "fw/api/dbg-tlv.h"
23 #include "iwl-dbg-tlv.h"
24 
25 /**
26  * DOC: Transport layer - what is it ?
27  *
28  * The transport layer is the layer that deals with the HW directly. It provides
29  * an abstraction of the underlying HW to the upper layer. The transport layer
30  * doesn't provide any policy, algorithm or anything of this kind, but only
31  * mechanisms to make the HW do something. It is not completely stateless but
32  * close to it.
33  * We will have an implementation for each different supported bus.
34  */
35 
36 /**
37  * DOC: Life cycle of the transport layer
38  *
39  * The transport layer has a very precise life cycle.
40  *
41  *	1) A helper function is called during the module initialization and
42  *	   registers the bus driver's ops with the transport's alloc function.
43  *	2) Bus's probe calls to the transport layer's allocation functions.
44  *	   Of course this function is bus specific.
45  *	3) This allocation functions will spawn the upper layer which will
46  *	   register mac80211.
47  *
48  *	4) At some point (i.e. mac80211's start call), the op_mode will call
49  *	   the following sequence:
50  *	   start_hw
51  *	   start_fw
52  *
53  *	5) Then when finished (or reset):
54  *	   stop_device
55  *
56  *	6) Eventually, the free function will be called.
57  */
58 
59 /* default preset 0 (start from bit 16)*/
60 #define IWL_FW_DBG_DOMAIN_POS	16
61 #define IWL_FW_DBG_DOMAIN	BIT(IWL_FW_DBG_DOMAIN_POS)
62 
63 #define IWL_TRANS_FW_DBG_DOMAIN(trans)	IWL_FW_INI_DOMAIN_ALWAYS_ON
64 
65 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
66 #define FH_RSCSR_FRAME_INVALID		0x55550000
67 #define FH_RSCSR_FRAME_ALIGN		0x40
68 #define FH_RSCSR_RPA_EN			BIT(25)
69 #define FH_RSCSR_RADA_EN		BIT(26)
70 #define FH_RSCSR_RXQ_POS		16
71 #define FH_RSCSR_RXQ_MASK		0x3F0000
72 
73 struct iwl_rx_packet {
74 	/*
75 	 * The first 4 bytes of the RX frame header contain both the RX frame
76 	 * size and some flags.
77 	 * Bit fields:
78 	 * 31:    flag flush RB request
79 	 * 30:    flag ignore TC (terminal counter) request
80 	 * 29:    flag fast IRQ request
81 	 * 28-27: Reserved
82 	 * 26:    RADA enabled
83 	 * 25:    Offload enabled
84 	 * 24:    RPF enabled
85 	 * 23:    RSS enabled
86 	 * 22:    Checksum enabled
87 	 * 21-16: RX queue
88 	 * 15-14: Reserved
89 	 * 13-00: RX frame size
90 	 */
91 	__le32 len_n_flags;
92 	struct iwl_cmd_header hdr;
93 	u8 data[];
94 } __packed;
95 
96 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
97 {
98 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
99 }
100 
101 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
102 {
103 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
104 }
105 
106 /**
107  * enum CMD_MODE - how to send the host commands ?
108  *
109  * @CMD_ASYNC: Return right away and don't wait for the response
110  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
111  *	the response. The caller needs to call iwl_free_resp when done.
112  * @CMD_SEND_IN_RFKILL: Send the command even if the NIC is in RF-kill.
113  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
114  *	called after this command completes. Valid only with CMD_ASYNC.
115  * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
116  *	SUSPEND and RESUME commands. We are in D3 mode when we set
117  *	trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
118  */
119 enum CMD_MODE {
120 	CMD_ASYNC		= BIT(0),
121 	CMD_WANT_SKB		= BIT(1),
122 	CMD_SEND_IN_RFKILL	= BIT(2),
123 	CMD_WANT_ASYNC_CALLBACK	= BIT(3),
124 	CMD_SEND_IN_D3          = BIT(4),
125 };
126 
127 #define DEF_CMD_PAYLOAD_SIZE 320
128 
129 /**
130  * struct iwl_device_cmd
131  *
132  * For allocation of the command and tx queues, this establishes the overall
133  * size of the largest command we send to uCode, except for commands that
134  * aren't fully copied and use other TFD space.
135  */
136 struct iwl_device_cmd {
137 	union {
138 		struct {
139 			struct iwl_cmd_header hdr;	/* uCode API */
140 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
141 		};
142 		struct {
143 			struct iwl_cmd_header_wide hdr_wide;
144 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
145 					sizeof(struct iwl_cmd_header_wide) +
146 					sizeof(struct iwl_cmd_header)];
147 		};
148 	};
149 } __packed;
150 
151 /**
152  * struct iwl_device_tx_cmd - buffer for TX command
153  * @hdr: the header
154  * @payload: the payload placeholder
155  *
156  * The actual structure is sized dynamically according to need.
157  */
158 struct iwl_device_tx_cmd {
159 	struct iwl_cmd_header hdr;
160 	u8 payload[];
161 } __packed;
162 
163 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
164 
165 /*
166  * number of transfer buffers (fragments) per transmit frame descriptor;
167  * this is just the driver's idea, the hardware supports 20
168  */
169 #define IWL_MAX_CMD_TBS_PER_TFD	2
170 
171 /* We need 2 entries for the TX command and header, and another one might
172  * be needed for potential data in the SKB's head. The remaining ones can
173  * be used for frags.
174  */
175 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
176 
177 /**
178  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
179  *
180  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
181  *	ring. The transport layer doesn't map the command's buffer to DMA, but
182  *	rather copies it to a previously allocated DMA buffer. This flag tells
183  *	the transport layer not to copy the command, but to map the existing
184  *	buffer (that is passed in) instead. This saves the memcpy and allows
185  *	commands that are bigger than the fixed buffer to be submitted.
186  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
187  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
188  *	chunk internally and free it again after the command completes. This
189  *	can (currently) be used only once per command.
190  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
191  */
192 enum iwl_hcmd_dataflag {
193 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
194 	IWL_HCMD_DFL_DUP	= BIT(1),
195 };
196 
197 enum iwl_error_event_table_status {
198 	IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
199 	IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
200 	IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
201 	IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3),
202 	IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4),
203 	IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5),
204 	IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6),
205 };
206 
207 /**
208  * struct iwl_host_cmd - Host command to the uCode
209  *
210  * @data: array of chunks that composes the data of the host command
211  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
212  * @_rx_page_order: (internally used to free response packet)
213  * @_rx_page_addr: (internally used to free response packet)
214  * @flags: can be CMD_*
215  * @len: array of the lengths of the chunks in data
216  * @dataflags: IWL_HCMD_DFL_*
217  * @id: command id of the host command, for wide commands encoding the
218  *	version and group as well
219  */
220 struct iwl_host_cmd {
221 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
222 	struct iwl_rx_packet *resp_pkt;
223 	unsigned long _rx_page_addr;
224 	u32 _rx_page_order;
225 
226 	u32 flags;
227 	u32 id;
228 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
229 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
230 };
231 
232 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
233 {
234 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
235 }
236 
237 struct iwl_rx_cmd_buffer {
238 	struct page *_page;
239 	int _offset;
240 	bool _page_stolen;
241 	u32 _rx_page_order;
242 	unsigned int truesize;
243 };
244 
245 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
246 {
247 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
248 }
249 
250 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
251 {
252 	return r->_offset;
253 }
254 
255 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
256 {
257 	r->_page_stolen = true;
258 	get_page(r->_page);
259 	return r->_page;
260 }
261 
262 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
263 {
264 	__free_pages(r->_page, r->_rx_page_order);
265 }
266 
267 #define MAX_NO_RECLAIM_CMDS	6
268 
269 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
270 
271 /*
272  * Maximum number of HW queues the transport layer
273  * currently supports
274  */
275 #define IWL_MAX_HW_QUEUES		32
276 #define IWL_MAX_TVQM_QUEUES		512
277 
278 #define IWL_MAX_TID_COUNT	8
279 #define IWL_MGMT_TID		15
280 #define IWL_FRAME_LIMIT	64
281 #define IWL_MAX_RX_HW_QUEUES	16
282 #define IWL_9000_MAX_RX_HW_QUEUES	1
283 
284 /**
285  * enum iwl_wowlan_status - WoWLAN image/device status
286  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
287  * @IWL_D3_STATUS_RESET: device was reset while suspended
288  */
289 enum iwl_d3_status {
290 	IWL_D3_STATUS_ALIVE,
291 	IWL_D3_STATUS_RESET,
292 };
293 
294 /**
295  * enum iwl_trans_status: transport status flags
296  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
297  * @STATUS_DEVICE_ENABLED: APM is enabled
298  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
299  * @STATUS_INT_ENABLED: interrupts are enabled
300  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
301  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
302  * @STATUS_FW_ERROR: the fw is in error state
303  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
304  *	are sent
305  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
306  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
307  * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once,
308  *	e.g. for testing
309  */
310 enum iwl_trans_status {
311 	STATUS_SYNC_HCMD_ACTIVE,
312 	STATUS_DEVICE_ENABLED,
313 	STATUS_TPOWER_PMI,
314 	STATUS_INT_ENABLED,
315 	STATUS_RFKILL_HW,
316 	STATUS_RFKILL_OPMODE,
317 	STATUS_FW_ERROR,
318 	STATUS_TRANS_GOING_IDLE,
319 	STATUS_TRANS_IDLE,
320 	STATUS_TRANS_DEAD,
321 	STATUS_SUPPRESS_CMD_ERROR_ONCE,
322 };
323 
324 static inline int
325 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
326 {
327 	switch (rb_size) {
328 	case IWL_AMSDU_2K:
329 		return get_order(2 * 1024);
330 	case IWL_AMSDU_4K:
331 		return get_order(4 * 1024);
332 	case IWL_AMSDU_8K:
333 		return get_order(8 * 1024);
334 	case IWL_AMSDU_12K:
335 		return get_order(16 * 1024);
336 	default:
337 		WARN_ON(1);
338 		return -1;
339 	}
340 }
341 
342 static inline int
343 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
344 {
345 	switch (rb_size) {
346 	case IWL_AMSDU_2K:
347 		return 2 * 1024;
348 	case IWL_AMSDU_4K:
349 		return 4 * 1024;
350 	case IWL_AMSDU_8K:
351 		return 8 * 1024;
352 	case IWL_AMSDU_12K:
353 		return 16 * 1024;
354 	default:
355 		WARN_ON(1);
356 		return 0;
357 	}
358 }
359 
360 struct iwl_hcmd_names {
361 	u8 cmd_id;
362 	const char *const cmd_name;
363 };
364 
365 #define HCMD_NAME(x)	\
366 	{ .cmd_id = x, .cmd_name = #x }
367 
368 struct iwl_hcmd_arr {
369 	const struct iwl_hcmd_names *arr;
370 	int size;
371 };
372 
373 #define HCMD_ARR(x)	\
374 	{ .arr = x, .size = ARRAY_SIZE(x) }
375 
376 /**
377  * struct iwl_dump_sanitize_ops - dump sanitization operations
378  * @frob_txf: Scrub the TX FIFO data
379  * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
380  *	but that might be short or long (&struct iwl_cmd_header or
381  *	&struct iwl_cmd_header_wide)
382  * @frob_mem: Scrub memory data
383  */
384 struct iwl_dump_sanitize_ops {
385 	void (*frob_txf)(void *ctx, void *buf, size_t buflen);
386 	void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
387 	void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
388 };
389 
390 /**
391  * struct iwl_trans_config - transport configuration
392  *
393  * @op_mode: pointer to the upper layer.
394  * @cmd_queue: the index of the command queue.
395  *	Must be set before start_fw.
396  * @cmd_fifo: the fifo for host commands
397  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
398  * @no_reclaim_cmds: Some devices erroneously don't set the
399  *	SEQ_RX_FRAME bit on some notifications, this is the
400  *	list of such notifications to filter. Max length is
401  *	%MAX_NO_RECLAIM_CMDS.
402  * @n_no_reclaim_cmds: # of commands in list
403  * @rx_buf_size: RX buffer size needed for A-MSDUs
404  *	if unset 4k will be the RX buffer size
405  * @bc_table_dword: set to true if the BC table expects the byte count to be
406  *	in DWORD (as opposed to bytes)
407  * @scd_set_active: should the transport configure the SCD for HCMD queue
408  * @command_groups: array of command groups, each member is an array of the
409  *	commands in the group; for debugging only
410  * @command_groups_size: number of command groups, to avoid illegal access
411  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
412  *	space for at least two pointers
413  * @fw_reset_handshake: firmware supports reset flow handshake
414  * @queue_alloc_cmd_ver: queue allocation command version, set to 0
415  *	for using the older SCD_QUEUE_CFG, set to the version of
416  *	SCD_QUEUE_CONFIG_CMD otherwise.
417  */
418 struct iwl_trans_config {
419 	struct iwl_op_mode *op_mode;
420 
421 	u8 cmd_queue;
422 	u8 cmd_fifo;
423 	unsigned int cmd_q_wdg_timeout;
424 	const u8 *no_reclaim_cmds;
425 	unsigned int n_no_reclaim_cmds;
426 
427 	enum iwl_amsdu_size rx_buf_size;
428 	bool bc_table_dword;
429 	bool scd_set_active;
430 	const struct iwl_hcmd_arr *command_groups;
431 	int command_groups_size;
432 
433 	u8 cb_data_offs;
434 	bool fw_reset_handshake;
435 	u8 queue_alloc_cmd_ver;
436 };
437 
438 struct iwl_trans_dump_data {
439 	u32 len;
440 	u8 data[];
441 };
442 
443 struct iwl_trans;
444 
445 struct iwl_trans_txq_scd_cfg {
446 	u8 fifo;
447 	u8 sta_id;
448 	u8 tid;
449 	bool aggregate;
450 	int frame_limit;
451 };
452 
453 /**
454  * struct iwl_trans_rxq_dma_data - RX queue DMA data
455  * @fr_bd_cb: DMA address of free BD cyclic buffer
456  * @fr_bd_wid: Initial write index of the free BD cyclic buffer
457  * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
458  * @ur_bd_cb: DMA address of used BD cyclic buffer
459  */
460 struct iwl_trans_rxq_dma_data {
461 	u64 fr_bd_cb;
462 	u32 fr_bd_wid;
463 	u64 urbd_stts_wrptr;
464 	u64 ur_bd_cb;
465 };
466 
467 /* maximal number of DRAM MAP entries supported by FW */
468 #define IPC_DRAM_MAP_ENTRY_NUM_MAX 64
469 
470 /**
471  * struct iwl_pnvm_image - contains info about the parsed pnvm image
472  * @chunks: array of pointers to pnvm payloads and their sizes
473  * @n_chunks: the number of the pnvm payloads.
474  * @version: the version of the loaded PNVM image
475  */
476 struct iwl_pnvm_image {
477 	struct {
478 		const void *data;
479 		u32 len;
480 	} chunks[IPC_DRAM_MAP_ENTRY_NUM_MAX];
481 	u32 n_chunks;
482 	u32 version;
483 };
484 
485 /**
486  * struct iwl_trans_ops - transport specific operations
487  *
488  * All the handlers MUST be implemented
489  *
490  * @start_hw: starts the HW. From that point on, the HW can send interrupts.
491  *	May sleep.
492  * @op_mode_leave: Turn off the HW RF kill indication if on
493  *	May sleep
494  * @start_fw: allocates and inits all the resources for the transport
495  *	layer. Also kick a fw image.
496  *	May sleep
497  * @fw_alive: called when the fw sends alive notification. If the fw provides
498  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
499  *	May sleep
500  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
501  *	the HW. From that point on, the HW will be stopped but will still issue
502  *	an interrupt if the HW RF kill switch is triggered.
503  *	This callback must do the right thing and not crash even if %start_hw()
504  *	was called but not &start_fw(). May sleep.
505  * @d3_suspend: put the device into the correct mode for WoWLAN during
506  *	suspend. This is optional, if not implemented WoWLAN will not be
507  *	supported. This callback may sleep.
508  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
509  *	talk to the WoWLAN image to get its status. This is optional, if not
510  *	implemented WoWLAN will not be supported. This callback may sleep.
511  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
512  *	If RFkill is asserted in the middle of a SYNC host command, it must
513  *	return -ERFKILL straight away.
514  *	May sleep only if CMD_ASYNC is not set
515  * @tx: send an skb. The transport relies on the op_mode to zero the
516  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
517  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
518  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
519  *	header if it is IPv4.
520  *	Must be atomic
521  * @reclaim: free packet until ssn. Returns a list of freed packets.
522  *	Must be atomic
523  * @txq_enable: setup a queue. To setup an AC queue, use the
524  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
525  *	this one. The op_mode must not configure the HCMD queue. The scheduler
526  *	configuration may be %NULL, in which case the hardware will not be
527  *	configured. If true is returned, the operation mode needs to increment
528  *	the sequence number of the packets routed to this queue because of a
529  *	hardware scheduler bug. May sleep.
530  * @txq_disable: de-configure a Tx queue to send AMPDUs
531  *	Must be atomic
532  * @txq_set_shared_mode: change Tx queue shared/unshared marking
533  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
534  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
535  * @freeze_txq_timer: prevents the timer of the queue from firing until the
536  *	queue is set to awake. Must be atomic.
537  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
538  *	that the transport needs to refcount the calls since this function
539  *	will be called several times with block = true, and then the queues
540  *	need to be unblocked only after the same number of calls with
541  *	block = false.
542  * @write8: write a u8 to a register at offset ofs from the BAR
543  * @write32: write a u32 to a register at offset ofs from the BAR
544  * @read32: read a u32 register at offset ofs from the BAR
545  * @read_prph: read a DWORD from a periphery register
546  * @write_prph: write a DWORD to a periphery register
547  * @read_mem: read device's SRAM in DWORD
548  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
549  *	will be zeroed.
550  * @read_config32: read a u32 value from the device's config space at
551  *	the given offset.
552  * @configure: configure parameters required by the transport layer from
553  *	the op_mode. May be called several times before start_fw, can't be
554  *	called after that.
555  * @set_pmi: set the power pmi state
556  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
557  *	Sleeping is not allowed between grab_nic_access and
558  *	release_nic_access.
559  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
560  *	must be the same one that was sent before to the grab_nic_access.
561  * @set_bits_mask - set SRAM register according to value and mask.
562  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
563  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
564  *	Note that the transport must fill in the proper file headers.
565  * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
566  *	of the trans debugfs
567  * @load_pnvm: save the pnvm data in DRAM
568  * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
569  *	context info.
570  * @load_reduce_power: copy reduce power table to the corresponding DRAM memory
571  * @set_reduce_power: set reduce power table addresses in the sratch buffer
572  * @interrupts: disable/enable interrupts to transport
573  */
574 struct iwl_trans_ops {
575 
576 	int (*start_hw)(struct iwl_trans *iwl_trans);
577 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
578 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
579 			bool run_in_rfkill);
580 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
581 	void (*stop_device)(struct iwl_trans *trans);
582 
583 	int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
584 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
585 			 bool test, bool reset);
586 
587 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
588 
589 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
590 		  struct iwl_device_tx_cmd *dev_cmd, int queue);
591 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
592 			struct sk_buff_head *skbs, bool is_flush);
593 
594 	void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
595 
596 	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
597 			   const struct iwl_trans_txq_scd_cfg *cfg,
598 			   unsigned int queue_wdg_timeout);
599 	void (*txq_disable)(struct iwl_trans *trans, int queue,
600 			    bool configure_scd);
601 	/* 22000 functions */
602 	int (*txq_alloc)(struct iwl_trans *trans, u32 flags,
603 			 u32 sta_mask, u8 tid,
604 			 int size, unsigned int queue_wdg_timeout);
605 	void (*txq_free)(struct iwl_trans *trans, int queue);
606 	int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
607 			    struct iwl_trans_rxq_dma_data *data);
608 
609 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
610 				    bool shared);
611 
612 	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
613 	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
614 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
615 				 bool freeze);
616 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
617 
618 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
619 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
620 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
621 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
622 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
623 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
624 			void *buf, int dwords);
625 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
626 			 const void *buf, int dwords);
627 	int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
628 	void (*configure)(struct iwl_trans *trans,
629 			  const struct iwl_trans_config *trans_cfg);
630 	void (*set_pmi)(struct iwl_trans *trans, bool state);
631 	int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership);
632 	bool (*grab_nic_access)(struct iwl_trans *trans);
633 	void (*release_nic_access)(struct iwl_trans *trans);
634 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
635 			      u32 value);
636 
637 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
638 						 u32 dump_mask,
639 						 const struct iwl_dump_sanitize_ops *sanitize_ops,
640 						 void *sanitize_ctx);
641 	void (*debugfs_cleanup)(struct iwl_trans *trans);
642 	void (*sync_nmi)(struct iwl_trans *trans);
643 	int (*load_pnvm)(struct iwl_trans *trans,
644 			 const struct iwl_pnvm_image *pnvm_payloads,
645 			 const struct iwl_ucode_capabilities *capa);
646 	void (*set_pnvm)(struct iwl_trans *trans,
647 			 const struct iwl_ucode_capabilities *capa);
648 	int (*load_reduce_power)(struct iwl_trans *trans,
649 				 const struct iwl_pnvm_image *payloads,
650 				 const struct iwl_ucode_capabilities *capa);
651 	void (*set_reduce_power)(struct iwl_trans *trans,
652 				 const struct iwl_ucode_capabilities *capa);
653 
654 	void (*interrupts)(struct iwl_trans *trans, bool enable);
655 	int (*imr_dma_data)(struct iwl_trans *trans,
656 			    u32 dst_addr, u64 src_addr,
657 			    u32 byte_cnt);
658 
659 };
660 
661 /**
662  * enum iwl_trans_state - state of the transport layer
663  *
664  * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
665  * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
666  * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
667  */
668 enum iwl_trans_state {
669 	IWL_TRANS_NO_FW,
670 	IWL_TRANS_FW_STARTED,
671 	IWL_TRANS_FW_ALIVE,
672 };
673 
674 /**
675  * DOC: Platform power management
676  *
677  * In system-wide power management the entire platform goes into a low
678  * power state (e.g. idle or suspend to RAM) at the same time and the
679  * device is configured as a wakeup source for the entire platform.
680  * This is usually triggered by userspace activity (e.g. the user
681  * presses the suspend button or a power management daemon decides to
682  * put the platform in low power mode).  The device's behavior in this
683  * mode is dictated by the wake-on-WLAN configuration.
684  *
685  * The terms used for the device's behavior are as follows:
686  *
687  *	- D0: the device is fully powered and the host is awake;
688  *	- D3: the device is in low power mode and only reacts to
689  *		specific events (e.g. magic-packet received or scan
690  *		results found);
691  *
692  * These terms reflect the power modes in the firmware and are not to
693  * be confused with the physical device power state.
694  */
695 
696 /**
697  * enum iwl_plat_pm_mode - platform power management mode
698  *
699  * This enumeration describes the device's platform power management
700  * behavior when in system-wide suspend (i.e WoWLAN).
701  *
702  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
703  *	device.  In system-wide suspend mode, it means that the all
704  *	connections will be closed automatically by mac80211 before
705  *	the platform is suspended.
706  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
707  */
708 enum iwl_plat_pm_mode {
709 	IWL_PLAT_PM_MODE_DISABLED,
710 	IWL_PLAT_PM_MODE_D3,
711 };
712 
713 /**
714  * enum iwl_ini_cfg_state
715  * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
716  * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
717  * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
718  *	are corrupted. The rest of the debug TLVs will still be used
719  */
720 enum iwl_ini_cfg_state {
721 	IWL_INI_CFG_STATE_NOT_LOADED,
722 	IWL_INI_CFG_STATE_LOADED,
723 	IWL_INI_CFG_STATE_CORRUPTED,
724 };
725 
726 /* Max time to wait for nmi interrupt */
727 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
728 
729 /**
730  * struct iwl_dram_data
731  * @physical: page phy pointer
732  * @block: pointer to the allocated block/page
733  * @size: size of the block/page
734  */
735 struct iwl_dram_data {
736 	dma_addr_t physical;
737 	void *block;
738 	int size;
739 };
740 
741 /**
742  * struct iwl_dram_regions - DRAM regions container structure
743  * @drams: array of several DRAM areas that contains the pnvm and power
744  *	reduction table payloads.
745  * @n_regions: number of DRAM regions that were allocated
746  * @prph_scratch_mem_desc: points to a structure allocated in dram,
747  *	designed to show FW where all the payloads are.
748  */
749 struct iwl_dram_regions {
750 	struct iwl_dram_data drams[IPC_DRAM_MAP_ENTRY_NUM_MAX];
751 	struct iwl_dram_data prph_scratch_mem_desc;
752 	u8 n_regions;
753 };
754 
755 /**
756  * struct iwl_fw_mon - fw monitor per allocation id
757  * @num_frags: number of fragments
758  * @frags: an array of DRAM buffer fragments
759  */
760 struct iwl_fw_mon {
761 	u32 num_frags;
762 	struct iwl_dram_data *frags;
763 };
764 
765 /**
766  * struct iwl_self_init_dram - dram data used by self init process
767  * @fw: lmac and umac dram data
768  * @fw_cnt: total number of items in array
769  * @paging: paging dram data
770  * @paging_cnt: total number of items in array
771  */
772 struct iwl_self_init_dram {
773 	struct iwl_dram_data *fw;
774 	int fw_cnt;
775 	struct iwl_dram_data *paging;
776 	int paging_cnt;
777 };
778 
779 /**
780  * struct iwl_imr_data - imr dram data used during debug process
781  * @imr_enable: imr enable status received from fw
782  * @imr_size: imr dram size received from fw
783  * @sram_addr: sram address from debug tlv
784  * @sram_size: sram size from debug tlv
785  * @imr2sram_remainbyte`: size remained after each dma transfer
786  * @imr_curr_addr: current dst address used during dma transfer
787  * @imr_base_addr: imr address received from fw
788  */
789 struct iwl_imr_data {
790 	u32 imr_enable;
791 	u32 imr_size;
792 	u32 sram_addr;
793 	u32 sram_size;
794 	u32 imr2sram_remainbyte;
795 	u64 imr_curr_addr;
796 	__le64 imr_base_addr;
797 };
798 
799 #define IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES      32
800 
801 /**
802  * struct iwl_pc_data - program counter details
803  * @pc_name: cpu name
804  * @pc_address: cpu program counter
805  */
806 struct iwl_pc_data {
807 	u8  pc_name[IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES];
808 	u32 pc_address;
809 };
810 
811 /**
812  * struct iwl_trans_debug - transport debug related data
813  *
814  * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
815  * @rec_on: true iff there is a fw debug recording currently active
816  * @dest_tlv: points to the destination TLV for debug
817  * @conf_tlv: array of pointers to configuration TLVs for debug
818  * @trigger_tlv: array of pointers to triggers TLVs for debug
819  * @lmac_error_event_table: addrs of lmacs error tables
820  * @umac_error_event_table: addr of umac error table
821  * @tcm_error_event_table: address(es) of TCM error table(s)
822  * @rcm_error_event_table: address(es) of RCM error table(s)
823  * @error_event_table_tlv_status: bitmap that indicates what error table
824  *	pointers was recevied via TLV. uses enum &iwl_error_event_table_status
825  * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
826  * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
827  * @fw_mon_cfg: debug buffer allocation configuration
828  * @fw_mon_ini: DRAM buffer fragments per allocation id
829  * @fw_mon: DRAM buffer for firmware monitor
830  * @hw_error: equals true if hw error interrupt was received from the FW
831  * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
832  * @active_regions: active regions
833  * @debug_info_tlv_list: list of debug info TLVs
834  * @time_point: array of debug time points
835  * @periodic_trig_list: periodic triggers list
836  * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
837  * @ucode_preset: preset based on ucode
838  * @dump_file_name_ext: dump file name extension
839  * @dump_file_name_ext_valid: dump file name extension if valid or not
840  * @num_pc: number of program counter for cpu
841  * @pc_data: details of the program counter
842  * @yoyo_bin_loaded: tells if a yoyo debug file has been loaded
843  */
844 struct iwl_trans_debug {
845 	u8 n_dest_reg;
846 	bool rec_on;
847 
848 	const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
849 	const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
850 	struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
851 
852 	u32 lmac_error_event_table[2];
853 	u32 umac_error_event_table;
854 	u32 tcm_error_event_table[2];
855 	u32 rcm_error_event_table[2];
856 	unsigned int error_event_table_tlv_status;
857 
858 	enum iwl_ini_cfg_state internal_ini_cfg;
859 	enum iwl_ini_cfg_state external_ini_cfg;
860 
861 	struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
862 	struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
863 
864 	struct iwl_dram_data fw_mon;
865 
866 	bool hw_error;
867 	enum iwl_fw_ini_buffer_location ini_dest;
868 
869 	u64 unsupported_region_msk;
870 	struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
871 	struct list_head debug_info_tlv_list;
872 	struct iwl_dbg_tlv_time_point_data time_point[IWL_FW_INI_TIME_POINT_NUM];
873 	struct list_head periodic_trig_list;
874 
875 	u32 domains_bitmap;
876 	u32 ucode_preset;
877 	bool restart_required;
878 	u32 last_tp_resetfw;
879 	struct iwl_imr_data imr_data;
880 	u8 dump_file_name_ext[IWL_FW_INI_MAX_NAME];
881 	bool dump_file_name_ext_valid;
882 	u32 num_pc;
883 	struct iwl_pc_data *pc_data;
884 	bool yoyo_bin_loaded;
885 };
886 
887 struct iwl_dma_ptr {
888 	dma_addr_t dma;
889 	void *addr;
890 	size_t size;
891 };
892 
893 struct iwl_cmd_meta {
894 	/* only for SYNC commands, iff the reply skb is wanted */
895 	struct iwl_host_cmd *source;
896 	u32 flags;
897 	u32 tbs;
898 };
899 
900 /*
901  * The FH will write back to the first TB only, so we need to copy some data
902  * into the buffer regardless of whether it should be mapped or not.
903  * This indicates how big the first TB must be to include the scratch buffer
904  * and the assigned PN.
905  * Since PN location is 8 bytes at offset 12, it's 20 now.
906  * If we make it bigger then allocations will be bigger and copy slower, so
907  * that's probably not useful.
908  */
909 #define IWL_FIRST_TB_SIZE	20
910 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
911 
912 struct iwl_pcie_txq_entry {
913 	void *cmd;
914 	struct sk_buff *skb;
915 	/* buffer to free after command completes */
916 	const void *free_buf;
917 	struct iwl_cmd_meta meta;
918 };
919 
920 struct iwl_pcie_first_tb_buf {
921 	u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
922 };
923 
924 /**
925  * struct iwl_txq - Tx Queue for DMA
926  * @tfds: transmit frame descriptors (DMA memory)
927  * @first_tb_bufs: start of command headers, including scratch buffers, for
928  *	the writeback -- this is DMA memory and an array holding one buffer
929  *	for each command on the queue
930  * @first_tb_dma: DMA address for the first_tb_bufs start
931  * @entries: transmit entries (driver state)
932  * @lock: queue lock
933  * @stuck_timer: timer that fires if queue gets stuck
934  * @trans: pointer back to transport (for timer)
935  * @need_update: indicates need to update read/write index
936  * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
937  * @wd_timeout: queue watchdog timeout (jiffies) - per queue
938  * @frozen: tx stuck queue timer is frozen
939  * @frozen_expiry_remainder: remember how long until the timer fires
940  * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
941  * @write_ptr: 1-st empty entry (index) host_w
942  * @read_ptr: last used entry (index) host_r
943  * @dma_addr:  physical addr for BD's
944  * @n_window: safe queue window
945  * @id: queue id
946  * @low_mark: low watermark, resume queue if free space more than this
947  * @high_mark: high watermark, stop queue if free space less than this
948  *
949  * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
950  * descriptors) and required locking structures.
951  *
952  * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
953  * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
954  * there might be HW changes in the future). For the normal TX
955  * queues, n_window, which is the size of the software queue data
956  * is also 256; however, for the command queue, n_window is only
957  * 32 since we don't need so many commands pending. Since the HW
958  * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
959  * This means that we end up with the following:
960  *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
961  *  SW entries:           | 0      | ... | 31          |
962  * where N is a number between 0 and 7. This means that the SW
963  * data is a window overlayed over the HW queue.
964  */
965 struct iwl_txq {
966 	void *tfds;
967 	struct iwl_pcie_first_tb_buf *first_tb_bufs;
968 	dma_addr_t first_tb_dma;
969 	struct iwl_pcie_txq_entry *entries;
970 	/* lock for syncing changes on the queue */
971 	spinlock_t lock;
972 	unsigned long frozen_expiry_remainder;
973 	struct timer_list stuck_timer;
974 	struct iwl_trans *trans;
975 	bool need_update;
976 	bool frozen;
977 	bool ampdu;
978 	int block;
979 	unsigned long wd_timeout;
980 	struct sk_buff_head overflow_q;
981 	struct iwl_dma_ptr bc_tbl;
982 
983 	int write_ptr;
984 	int read_ptr;
985 	dma_addr_t dma_addr;
986 	int n_window;
987 	u32 id;
988 	int low_mark;
989 	int high_mark;
990 
991 	bool overflow_tx;
992 };
993 
994 /**
995  * struct iwl_trans_txqs - transport tx queues data
996  *
997  * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
998  * @page_offs: offset from skb->cb to mac header page pointer
999  * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
1000  * @queue_used - bit mask of used queues
1001  * @queue_stopped - bit mask of stopped queues
1002  * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
1003  * @queue_alloc_cmd_ver: queue allocation command version
1004  */
1005 struct iwl_trans_txqs {
1006 	unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
1007 	unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
1008 	struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
1009 	struct dma_pool *bc_pool;
1010 	size_t bc_tbl_size;
1011 	bool bc_table_dword;
1012 	u8 page_offs;
1013 	u8 dev_cmd_offs;
1014 	struct iwl_tso_hdr_page __percpu *tso_hdr_page;
1015 
1016 	struct {
1017 		u8 fifo;
1018 		u8 q_id;
1019 		unsigned int wdg_timeout;
1020 	} cmd;
1021 
1022 	struct {
1023 		u8 max_tbs;
1024 		u16 size;
1025 		u8 addr_size;
1026 	} tfd;
1027 
1028 	struct iwl_dma_ptr scd_bc_tbls;
1029 
1030 	u8 queue_alloc_cmd_ver;
1031 };
1032 
1033 /**
1034  * struct iwl_trans - transport common data
1035  *
1036  * @csme_own - true if we couldn't get ownership on the device
1037  * @ops - pointer to iwl_trans_ops
1038  * @op_mode - pointer to the op_mode
1039  * @trans_cfg: the trans-specific configuration part
1040  * @cfg - pointer to the configuration
1041  * @drv - pointer to iwl_drv
1042  * @status: a bit-mask of transport status flags
1043  * @dev - pointer to struct device * that represents the device
1044  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
1045  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
1046  * @hw_rf_id a u32 with the device RF ID
1047  * @hw_crf_id a u32 with the device CRF ID
1048  * @hw_wfpm_id a u32 with the device wfpm ID
1049  * @hw_id: a u32 with the ID of the device / sub-device.
1050  *	Set during transport allocation.
1051  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
1052  * @hw_rev_step: The mac step of the HW
1053  * @pm_support: set to true in start_hw if link pm is supported
1054  * @ltr_enabled: set to true if the LTR is enabled
1055  * @fail_to_parse_pnvm_image: set to true if pnvm parsing failed
1056  * @failed_to_load_reduce_power_image: set to true if pnvm loading failed
1057  * @wide_cmd_header: true when ucode supports wide command header format
1058  * @wait_command_queue: wait queue for sync commands
1059  * @num_rx_queues: number of RX queues allocated by the transport;
1060  *	the transport must set this before calling iwl_drv_start()
1061  * @iml_len: the length of the image loader
1062  * @iml: a pointer to the image loader itself
1063  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
1064  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
1065  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
1066  *	starting the firmware, used for tracing
1067  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
1068  *	start of the 802.11 header in the @rx_mpdu_cmd
1069  * @system_pm_mode: the system-wide power management mode in use.
1070  *	This mode is set dynamically, depending on the WoWLAN values
1071  *	configured from the userspace at runtime.
1072  * @txqs: transport tx queues data.
1073  * @mbx_addr_0_step: step address data 0
1074  * @mbx_addr_1_step: step address data 1
1075  * @pcie_link_speed: current PCIe link speed (%PCI_EXP_LNKSTA_CLS_*),
1076  *	only valid for discrete (not integrated) NICs
1077  * @invalid_tx_cmd: invalid TX command buffer
1078  */
1079 struct iwl_trans {
1080 	bool csme_own;
1081 	const struct iwl_trans_ops *ops;
1082 	struct iwl_op_mode *op_mode;
1083 	const struct iwl_cfg_trans_params *trans_cfg;
1084 	const struct iwl_cfg *cfg;
1085 	struct iwl_drv *drv;
1086 	enum iwl_trans_state state;
1087 	unsigned long status;
1088 
1089 	struct device *dev;
1090 	u32 max_skb_frags;
1091 	u32 hw_rev;
1092 	u32 hw_rev_step;
1093 	u32 hw_rf_id;
1094 	u32 hw_crf_id;
1095 	u32 hw_cnv_id;
1096 	u32 hw_wfpm_id;
1097 	u32 hw_id;
1098 	char hw_id_str[52];
1099 	u32 sku_id[3];
1100 
1101 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
1102 
1103 	bool pm_support;
1104 	bool ltr_enabled;
1105 	u8 pnvm_loaded:1;
1106 	u8 fail_to_parse_pnvm_image:1;
1107 	u8 reduce_power_loaded:1;
1108 	u8 failed_to_load_reduce_power_image:1;
1109 
1110 	const struct iwl_hcmd_arr *command_groups;
1111 	int command_groups_size;
1112 	bool wide_cmd_header;
1113 
1114 	wait_queue_head_t wait_command_queue;
1115 	u8 num_rx_queues;
1116 
1117 	size_t iml_len;
1118 	u8 *iml;
1119 
1120 	/* The following fields are internal only */
1121 	struct kmem_cache *dev_cmd_pool;
1122 	char dev_cmd_pool_name[50];
1123 
1124 	struct dentry *dbgfs_dir;
1125 
1126 #ifdef CONFIG_LOCKDEP
1127 	struct lockdep_map sync_cmd_lockdep_map;
1128 #endif
1129 
1130 	struct iwl_trans_debug dbg;
1131 	struct iwl_self_init_dram init_dram;
1132 
1133 	enum iwl_plat_pm_mode system_pm_mode;
1134 
1135 	const char *name;
1136 	struct iwl_trans_txqs txqs;
1137 	u32 mbx_addr_0_step;
1138 	u32 mbx_addr_1_step;
1139 
1140 	u8 pcie_link_speed;
1141 
1142 	struct iwl_dma_ptr invalid_tx_cmd;
1143 
1144 	/* pointer to trans specific struct */
1145 	/*Ensure that this pointer will always be aligned to sizeof pointer */
1146 	char trans_specific[] __aligned(sizeof(void *));
1147 };
1148 
1149 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1150 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1151 
1152 static inline void iwl_trans_configure(struct iwl_trans *trans,
1153 				       const struct iwl_trans_config *trans_cfg)
1154 {
1155 	trans->op_mode = trans_cfg->op_mode;
1156 
1157 	trans->ops->configure(trans, trans_cfg);
1158 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1159 }
1160 
1161 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1162 {
1163 	might_sleep();
1164 
1165 	return trans->ops->start_hw(trans);
1166 }
1167 
1168 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1169 {
1170 	might_sleep();
1171 
1172 	if (trans->ops->op_mode_leave)
1173 		trans->ops->op_mode_leave(trans);
1174 
1175 	trans->op_mode = NULL;
1176 
1177 	trans->state = IWL_TRANS_NO_FW;
1178 }
1179 
1180 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1181 {
1182 	might_sleep();
1183 
1184 	trans->state = IWL_TRANS_FW_ALIVE;
1185 
1186 	trans->ops->fw_alive(trans, scd_addr);
1187 }
1188 
1189 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1190 				     const struct fw_img *fw,
1191 				     bool run_in_rfkill)
1192 {
1193 	int ret;
1194 
1195 	might_sleep();
1196 
1197 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1198 
1199 	clear_bit(STATUS_FW_ERROR, &trans->status);
1200 	ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1201 	if (ret == 0)
1202 		trans->state = IWL_TRANS_FW_STARTED;
1203 
1204 	return ret;
1205 }
1206 
1207 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1208 {
1209 	might_sleep();
1210 
1211 	trans->ops->stop_device(trans);
1212 
1213 	trans->state = IWL_TRANS_NO_FW;
1214 }
1215 
1216 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1217 				       bool reset)
1218 {
1219 	might_sleep();
1220 	if (!trans->ops->d3_suspend)
1221 		return -EOPNOTSUPP;
1222 
1223 	return trans->ops->d3_suspend(trans, test, reset);
1224 }
1225 
1226 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1227 				      enum iwl_d3_status *status,
1228 				      bool test, bool reset)
1229 {
1230 	might_sleep();
1231 	if (!trans->ops->d3_resume)
1232 		return -EOPNOTSUPP;
1233 
1234 	return trans->ops->d3_resume(trans, status, test, reset);
1235 }
1236 
1237 static inline struct iwl_trans_dump_data *
1238 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
1239 		    const struct iwl_dump_sanitize_ops *sanitize_ops,
1240 		    void *sanitize_ctx)
1241 {
1242 	if (!trans->ops->dump_data)
1243 		return NULL;
1244 	return trans->ops->dump_data(trans, dump_mask,
1245 				     sanitize_ops, sanitize_ctx);
1246 }
1247 
1248 static inline struct iwl_device_tx_cmd *
1249 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1250 {
1251 	return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1252 }
1253 
1254 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1255 
1256 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1257 					 struct iwl_device_tx_cmd *dev_cmd)
1258 {
1259 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1260 }
1261 
1262 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1263 			       struct iwl_device_tx_cmd *dev_cmd, int queue)
1264 {
1265 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1266 		return -EIO;
1267 
1268 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1269 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1270 		return -EIO;
1271 	}
1272 
1273 	return trans->ops->tx(trans, skb, dev_cmd, queue);
1274 }
1275 
1276 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1277 				     int ssn, struct sk_buff_head *skbs,
1278 				     bool is_flush)
1279 {
1280 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1281 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1282 		return;
1283 	}
1284 
1285 	trans->ops->reclaim(trans, queue, ssn, skbs, is_flush);
1286 }
1287 
1288 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1289 					int ptr)
1290 {
1291 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1292 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1293 		return;
1294 	}
1295 
1296 	trans->ops->set_q_ptrs(trans, queue, ptr);
1297 }
1298 
1299 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1300 					 bool configure_scd)
1301 {
1302 	trans->ops->txq_disable(trans, queue, configure_scd);
1303 }
1304 
1305 static inline bool
1306 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1307 			 const struct iwl_trans_txq_scd_cfg *cfg,
1308 			 unsigned int queue_wdg_timeout)
1309 {
1310 	might_sleep();
1311 
1312 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1313 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1314 		return false;
1315 	}
1316 
1317 	return trans->ops->txq_enable(trans, queue, ssn,
1318 				      cfg, queue_wdg_timeout);
1319 }
1320 
1321 static inline int
1322 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1323 			   struct iwl_trans_rxq_dma_data *data)
1324 {
1325 	if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1326 		return -ENOTSUPP;
1327 
1328 	return trans->ops->rxq_dma_data(trans, queue, data);
1329 }
1330 
1331 static inline void
1332 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1333 {
1334 	if (WARN_ON_ONCE(!trans->ops->txq_free))
1335 		return;
1336 
1337 	trans->ops->txq_free(trans, queue);
1338 }
1339 
1340 static inline int
1341 iwl_trans_txq_alloc(struct iwl_trans *trans,
1342 		    u32 flags, u32 sta_mask, u8 tid,
1343 		    int size, unsigned int wdg_timeout)
1344 {
1345 	might_sleep();
1346 
1347 	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1348 		return -ENOTSUPP;
1349 
1350 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1351 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1352 		return -EIO;
1353 	}
1354 
1355 	return trans->ops->txq_alloc(trans, flags, sta_mask, tid,
1356 				     size, wdg_timeout);
1357 }
1358 
1359 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1360 						 int queue, bool shared_mode)
1361 {
1362 	if (trans->ops->txq_set_shared_mode)
1363 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1364 }
1365 
1366 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1367 					int fifo, int sta_id, int tid,
1368 					int frame_limit, u16 ssn,
1369 					unsigned int queue_wdg_timeout)
1370 {
1371 	struct iwl_trans_txq_scd_cfg cfg = {
1372 		.fifo = fifo,
1373 		.sta_id = sta_id,
1374 		.tid = tid,
1375 		.frame_limit = frame_limit,
1376 		.aggregate = sta_id >= 0,
1377 	};
1378 
1379 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1380 }
1381 
1382 static inline
1383 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1384 			     unsigned int queue_wdg_timeout)
1385 {
1386 	struct iwl_trans_txq_scd_cfg cfg = {
1387 		.fifo = fifo,
1388 		.sta_id = -1,
1389 		.tid = IWL_MAX_TID_COUNT,
1390 		.frame_limit = IWL_FRAME_LIMIT,
1391 		.aggregate = false,
1392 	};
1393 
1394 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1395 }
1396 
1397 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1398 					      unsigned long txqs,
1399 					      bool freeze)
1400 {
1401 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1402 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1403 		return;
1404 	}
1405 
1406 	if (trans->ops->freeze_txq_timer)
1407 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1408 }
1409 
1410 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1411 					    bool block)
1412 {
1413 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1414 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1415 		return;
1416 	}
1417 
1418 	if (trans->ops->block_txq_ptrs)
1419 		trans->ops->block_txq_ptrs(trans, block);
1420 }
1421 
1422 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1423 						 u32 txqs)
1424 {
1425 	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1426 		return -ENOTSUPP;
1427 
1428 	/* No need to wait if the firmware is not alive */
1429 	if (trans->state != IWL_TRANS_FW_ALIVE) {
1430 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1431 		return -EIO;
1432 	}
1433 
1434 	return trans->ops->wait_tx_queues_empty(trans, txqs);
1435 }
1436 
1437 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1438 {
1439 	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1440 		return -ENOTSUPP;
1441 
1442 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1443 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1444 		return -EIO;
1445 	}
1446 
1447 	return trans->ops->wait_txq_empty(trans, queue);
1448 }
1449 
1450 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1451 {
1452 	trans->ops->write8(trans, ofs, val);
1453 }
1454 
1455 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1456 {
1457 	trans->ops->write32(trans, ofs, val);
1458 }
1459 
1460 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1461 {
1462 	return trans->ops->read32(trans, ofs);
1463 }
1464 
1465 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1466 {
1467 	return trans->ops->read_prph(trans, ofs);
1468 }
1469 
1470 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1471 					u32 val)
1472 {
1473 	return trans->ops->write_prph(trans, ofs, val);
1474 }
1475 
1476 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1477 				     void *buf, int dwords)
1478 {
1479 	return trans->ops->read_mem(trans, addr, buf, dwords);
1480 }
1481 
1482 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1483 	do {								      \
1484 		if (__builtin_constant_p(bufsize))			      \
1485 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1486 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1487 	} while (0)
1488 
1489 static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans,
1490 					  u32 dst_addr, u64 src_addr,
1491 					  u32 byte_cnt)
1492 {
1493 	if (trans->ops->imr_dma_data)
1494 		return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt);
1495 	return 0;
1496 }
1497 
1498 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1499 {
1500 	u32 value;
1501 
1502 	if (iwl_trans_read_mem(trans, addr, &value, 1))
1503 		return 0xa5a5a5a5;
1504 
1505 	return value;
1506 }
1507 
1508 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1509 				      const void *buf, int dwords)
1510 {
1511 	return trans->ops->write_mem(trans, addr, buf, dwords);
1512 }
1513 
1514 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1515 					u32 val)
1516 {
1517 	return iwl_trans_write_mem(trans, addr, &val, 1);
1518 }
1519 
1520 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1521 {
1522 	if (trans->ops->set_pmi)
1523 		trans->ops->set_pmi(trans, state);
1524 }
1525 
1526 static inline int iwl_trans_sw_reset(struct iwl_trans *trans,
1527 				     bool retake_ownership)
1528 {
1529 	if (trans->ops->sw_reset)
1530 		return trans->ops->sw_reset(trans, retake_ownership);
1531 	return 0;
1532 }
1533 
1534 static inline void
1535 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1536 {
1537 	trans->ops->set_bits_mask(trans, reg, mask, value);
1538 }
1539 
1540 #define iwl_trans_grab_nic_access(trans)		\
1541 	__cond_lock(nic_access,				\
1542 		    likely((trans)->ops->grab_nic_access(trans)))
1543 
1544 static inline void __releases(nic_access)
1545 iwl_trans_release_nic_access(struct iwl_trans *trans)
1546 {
1547 	trans->ops->release_nic_access(trans);
1548 	__release(nic_access);
1549 }
1550 
1551 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1552 {
1553 	if (WARN_ON_ONCE(!trans->op_mode))
1554 		return;
1555 
1556 	/* prevent double restarts due to the same erroneous FW */
1557 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1558 		iwl_op_mode_nic_error(trans->op_mode, sync);
1559 		trans->state = IWL_TRANS_NO_FW;
1560 	}
1561 }
1562 
1563 static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1564 {
1565 	return trans->state == IWL_TRANS_FW_ALIVE;
1566 }
1567 
1568 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1569 {
1570 	if (trans->ops->sync_nmi)
1571 		trans->ops->sync_nmi(trans);
1572 }
1573 
1574 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1575 				  u32 sw_err_bit);
1576 
1577 static inline int iwl_trans_load_pnvm(struct iwl_trans *trans,
1578 				      const struct iwl_pnvm_image *pnvm_data,
1579 				      const struct iwl_ucode_capabilities *capa)
1580 {
1581 	return trans->ops->load_pnvm(trans, pnvm_data, capa);
1582 }
1583 
1584 static inline void iwl_trans_set_pnvm(struct iwl_trans *trans,
1585 				      const struct iwl_ucode_capabilities *capa)
1586 {
1587 	if (trans->ops->set_pnvm)
1588 		trans->ops->set_pnvm(trans, capa);
1589 }
1590 
1591 static inline int iwl_trans_load_reduce_power
1592 				(struct iwl_trans *trans,
1593 				 const struct iwl_pnvm_image *payloads,
1594 				 const struct iwl_ucode_capabilities *capa)
1595 {
1596 	return trans->ops->load_reduce_power(trans, payloads, capa);
1597 }
1598 
1599 static inline void
1600 iwl_trans_set_reduce_power(struct iwl_trans *trans,
1601 			   const struct iwl_ucode_capabilities *capa)
1602 {
1603 	if (trans->ops->set_reduce_power)
1604 		trans->ops->set_reduce_power(trans, capa);
1605 }
1606 
1607 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1608 {
1609 	return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1610 		trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1611 }
1612 
1613 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1614 {
1615 	if (trans->ops->interrupts)
1616 		trans->ops->interrupts(trans, enable);
1617 }
1618 
1619 /*****************************************************
1620  * transport helper functions
1621  *****************************************************/
1622 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1623 			  struct device *dev,
1624 			  const struct iwl_trans_ops *ops,
1625 			  const struct iwl_cfg_trans_params *cfg_trans);
1626 int iwl_trans_init(struct iwl_trans *trans);
1627 void iwl_trans_free(struct iwl_trans *trans);
1628 
1629 static inline bool iwl_trans_is_hw_error_value(u32 val)
1630 {
1631 	return ((val & ~0xf) == 0xa5a5a5a0) || ((val & ~0xf) == 0x5a5a5a50);
1632 }
1633 
1634 /*****************************************************
1635 * driver (transport) register/unregister functions
1636 ******************************************************/
1637 int __must_check iwl_pci_register_driver(void);
1638 void iwl_pci_unregister_driver(void);
1639 void iwl_trans_pcie_remove(struct iwl_trans *trans, bool rescan);
1640 
1641 #endif /* __iwl_trans_h__ */
1642