xref: /linux/drivers/net/wireless/intel/iwlwifi/iwl-trans.h (revision 41fb0cf1bced59c1fe178cf6cc9f716b5da9e40e)
1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2005-2014, 2018-2021 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #ifndef __iwl_trans_h__
8 #define __iwl_trans_h__
9 
10 #include <linux/ieee80211.h>
11 #include <linux/mm.h> /* for page_address */
12 #include <linux/lockdep.h>
13 #include <linux/kernel.h>
14 
15 #include "iwl-debug.h"
16 #include "iwl-config.h"
17 #include "fw/img.h"
18 #include "iwl-op-mode.h"
19 #include <linux/firmware.h>
20 #include "fw/api/cmdhdr.h"
21 #include "fw/api/txq.h"
22 #include "fw/api/dbg-tlv.h"
23 #include "iwl-dbg-tlv.h"
24 
25 /**
26  * DOC: Transport layer - what is it ?
27  *
28  * The transport layer is the layer that deals with the HW directly. It provides
29  * an abstraction of the underlying HW to the upper layer. The transport layer
30  * doesn't provide any policy, algorithm or anything of this kind, but only
31  * mechanisms to make the HW do something. It is not completely stateless but
32  * close to it.
33  * We will have an implementation for each different supported bus.
34  */
35 
36 /**
37  * DOC: Life cycle of the transport layer
38  *
39  * The transport layer has a very precise life cycle.
40  *
41  *	1) A helper function is called during the module initialization and
42  *	   registers the bus driver's ops with the transport's alloc function.
43  *	2) Bus's probe calls to the transport layer's allocation functions.
44  *	   Of course this function is bus specific.
45  *	3) This allocation functions will spawn the upper layer which will
46  *	   register mac80211.
47  *
48  *	4) At some point (i.e. mac80211's start call), the op_mode will call
49  *	   the following sequence:
50  *	   start_hw
51  *	   start_fw
52  *
53  *	5) Then when finished (or reset):
54  *	   stop_device
55  *
56  *	6) Eventually, the free function will be called.
57  */
58 
59 #define IWL_TRANS_FW_DBG_DOMAIN(trans)	IWL_FW_INI_DOMAIN_ALWAYS_ON
60 
61 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
62 #define FH_RSCSR_FRAME_INVALID		0x55550000
63 #define FH_RSCSR_FRAME_ALIGN		0x40
64 #define FH_RSCSR_RPA_EN			BIT(25)
65 #define FH_RSCSR_RADA_EN		BIT(26)
66 #define FH_RSCSR_RXQ_POS		16
67 #define FH_RSCSR_RXQ_MASK		0x3F0000
68 
69 struct iwl_rx_packet {
70 	/*
71 	 * The first 4 bytes of the RX frame header contain both the RX frame
72 	 * size and some flags.
73 	 * Bit fields:
74 	 * 31:    flag flush RB request
75 	 * 30:    flag ignore TC (terminal counter) request
76 	 * 29:    flag fast IRQ request
77 	 * 28-27: Reserved
78 	 * 26:    RADA enabled
79 	 * 25:    Offload enabled
80 	 * 24:    RPF enabled
81 	 * 23:    RSS enabled
82 	 * 22:    Checksum enabled
83 	 * 21-16: RX queue
84 	 * 15-14: Reserved
85 	 * 13-00: RX frame size
86 	 */
87 	__le32 len_n_flags;
88 	struct iwl_cmd_header hdr;
89 	u8 data[];
90 } __packed;
91 
92 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
93 {
94 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
95 }
96 
97 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
98 {
99 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
100 }
101 
102 /**
103  * enum CMD_MODE - how to send the host commands ?
104  *
105  * @CMD_ASYNC: Return right away and don't wait for the response
106  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
107  *	the response. The caller needs to call iwl_free_resp when done.
108  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
109  *	called after this command completes. Valid only with CMD_ASYNC.
110  * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
111  *	SUSPEND and RESUME commands. We are in D3 mode when we set
112  *	trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
113  */
114 enum CMD_MODE {
115 	CMD_ASYNC		= BIT(0),
116 	CMD_WANT_SKB		= BIT(1),
117 	CMD_SEND_IN_RFKILL	= BIT(2),
118 	CMD_WANT_ASYNC_CALLBACK	= BIT(3),
119 	CMD_SEND_IN_D3          = BIT(4),
120 };
121 
122 #define DEF_CMD_PAYLOAD_SIZE 320
123 
124 /**
125  * struct iwl_device_cmd
126  *
127  * For allocation of the command and tx queues, this establishes the overall
128  * size of the largest command we send to uCode, except for commands that
129  * aren't fully copied and use other TFD space.
130  */
131 struct iwl_device_cmd {
132 	union {
133 		struct {
134 			struct iwl_cmd_header hdr;	/* uCode API */
135 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
136 		};
137 		struct {
138 			struct iwl_cmd_header_wide hdr_wide;
139 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
140 					sizeof(struct iwl_cmd_header_wide) +
141 					sizeof(struct iwl_cmd_header)];
142 		};
143 	};
144 } __packed;
145 
146 /**
147  * struct iwl_device_tx_cmd - buffer for TX command
148  * @hdr: the header
149  * @payload: the payload placeholder
150  *
151  * The actual structure is sized dynamically according to need.
152  */
153 struct iwl_device_tx_cmd {
154 	struct iwl_cmd_header hdr;
155 	u8 payload[];
156 } __packed;
157 
158 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
159 
160 /*
161  * number of transfer buffers (fragments) per transmit frame descriptor;
162  * this is just the driver's idea, the hardware supports 20
163  */
164 #define IWL_MAX_CMD_TBS_PER_TFD	2
165 
166 /* We need 2 entries for the TX command and header, and another one might
167  * be needed for potential data in the SKB's head. The remaining ones can
168  * be used for frags.
169  */
170 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
171 
172 /**
173  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
174  *
175  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
176  *	ring. The transport layer doesn't map the command's buffer to DMA, but
177  *	rather copies it to a previously allocated DMA buffer. This flag tells
178  *	the transport layer not to copy the command, but to map the existing
179  *	buffer (that is passed in) instead. This saves the memcpy and allows
180  *	commands that are bigger than the fixed buffer to be submitted.
181  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
182  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
183  *	chunk internally and free it again after the command completes. This
184  *	can (currently) be used only once per command.
185  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
186  */
187 enum iwl_hcmd_dataflag {
188 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
189 	IWL_HCMD_DFL_DUP	= BIT(1),
190 };
191 
192 enum iwl_error_event_table_status {
193 	IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
194 	IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
195 	IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
196 	IWL_ERROR_EVENT_TABLE_TCM = BIT(3),
197 };
198 
199 /**
200  * struct iwl_host_cmd - Host command to the uCode
201  *
202  * @data: array of chunks that composes the data of the host command
203  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
204  * @_rx_page_order: (internally used to free response packet)
205  * @_rx_page_addr: (internally used to free response packet)
206  * @flags: can be CMD_*
207  * @len: array of the lengths of the chunks in data
208  * @dataflags: IWL_HCMD_DFL_*
209  * @id: command id of the host command, for wide commands encoding the
210  *	version and group as well
211  */
212 struct iwl_host_cmd {
213 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
214 	struct iwl_rx_packet *resp_pkt;
215 	unsigned long _rx_page_addr;
216 	u32 _rx_page_order;
217 
218 	u32 flags;
219 	u32 id;
220 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
221 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
222 };
223 
224 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
225 {
226 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
227 }
228 
229 struct iwl_rx_cmd_buffer {
230 	struct page *_page;
231 	int _offset;
232 	bool _page_stolen;
233 	u32 _rx_page_order;
234 	unsigned int truesize;
235 };
236 
237 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
238 {
239 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
240 }
241 
242 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
243 {
244 	return r->_offset;
245 }
246 
247 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
248 {
249 	r->_page_stolen = true;
250 	get_page(r->_page);
251 	return r->_page;
252 }
253 
254 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
255 {
256 	__free_pages(r->_page, r->_rx_page_order);
257 }
258 
259 #define MAX_NO_RECLAIM_CMDS	6
260 
261 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
262 
263 /*
264  * Maximum number of HW queues the transport layer
265  * currently supports
266  */
267 #define IWL_MAX_HW_QUEUES		32
268 #define IWL_MAX_TVQM_QUEUES		512
269 
270 #define IWL_MAX_TID_COUNT	8
271 #define IWL_MGMT_TID		15
272 #define IWL_FRAME_LIMIT	64
273 #define IWL_MAX_RX_HW_QUEUES	16
274 #define IWL_9000_MAX_RX_HW_QUEUES	6
275 
276 /**
277  * enum iwl_wowlan_status - WoWLAN image/device status
278  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
279  * @IWL_D3_STATUS_RESET: device was reset while suspended
280  */
281 enum iwl_d3_status {
282 	IWL_D3_STATUS_ALIVE,
283 	IWL_D3_STATUS_RESET,
284 };
285 
286 /**
287  * enum iwl_trans_status: transport status flags
288  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
289  * @STATUS_DEVICE_ENABLED: APM is enabled
290  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
291  * @STATUS_INT_ENABLED: interrupts are enabled
292  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
293  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
294  * @STATUS_FW_ERROR: the fw is in error state
295  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
296  *	are sent
297  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
298  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
299  */
300 enum iwl_trans_status {
301 	STATUS_SYNC_HCMD_ACTIVE,
302 	STATUS_DEVICE_ENABLED,
303 	STATUS_TPOWER_PMI,
304 	STATUS_INT_ENABLED,
305 	STATUS_RFKILL_HW,
306 	STATUS_RFKILL_OPMODE,
307 	STATUS_FW_ERROR,
308 	STATUS_TRANS_GOING_IDLE,
309 	STATUS_TRANS_IDLE,
310 	STATUS_TRANS_DEAD,
311 };
312 
313 static inline int
314 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
315 {
316 	switch (rb_size) {
317 	case IWL_AMSDU_2K:
318 		return get_order(2 * 1024);
319 	case IWL_AMSDU_4K:
320 		return get_order(4 * 1024);
321 	case IWL_AMSDU_8K:
322 		return get_order(8 * 1024);
323 	case IWL_AMSDU_12K:
324 		return get_order(16 * 1024);
325 	default:
326 		WARN_ON(1);
327 		return -1;
328 	}
329 }
330 
331 static inline int
332 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
333 {
334 	switch (rb_size) {
335 	case IWL_AMSDU_2K:
336 		return 2 * 1024;
337 	case IWL_AMSDU_4K:
338 		return 4 * 1024;
339 	case IWL_AMSDU_8K:
340 		return 8 * 1024;
341 	case IWL_AMSDU_12K:
342 		return 16 * 1024;
343 	default:
344 		WARN_ON(1);
345 		return 0;
346 	}
347 }
348 
349 struct iwl_hcmd_names {
350 	u8 cmd_id;
351 	const char *const cmd_name;
352 };
353 
354 #define HCMD_NAME(x)	\
355 	{ .cmd_id = x, .cmd_name = #x }
356 
357 struct iwl_hcmd_arr {
358 	const struct iwl_hcmd_names *arr;
359 	int size;
360 };
361 
362 #define HCMD_ARR(x)	\
363 	{ .arr = x, .size = ARRAY_SIZE(x) }
364 
365 /**
366  * struct iwl_dump_sanitize_ops - dump sanitization operations
367  * @frob_txf: Scrub the TX FIFO data
368  * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
369  *	but that might be short or long (&struct iwl_cmd_header or
370  *	&struct iwl_cmd_header_wide)
371  * @frob_mem: Scrub memory data
372  */
373 struct iwl_dump_sanitize_ops {
374 	void (*frob_txf)(void *ctx, void *buf, size_t buflen);
375 	void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
376 	void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
377 };
378 
379 /**
380  * struct iwl_trans_config - transport configuration
381  *
382  * @op_mode: pointer to the upper layer.
383  * @cmd_queue: the index of the command queue.
384  *	Must be set before start_fw.
385  * @cmd_fifo: the fifo for host commands
386  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
387  * @no_reclaim_cmds: Some devices erroneously don't set the
388  *	SEQ_RX_FRAME bit on some notifications, this is the
389  *	list of such notifications to filter. Max length is
390  *	%MAX_NO_RECLAIM_CMDS.
391  * @n_no_reclaim_cmds: # of commands in list
392  * @rx_buf_size: RX buffer size needed for A-MSDUs
393  *	if unset 4k will be the RX buffer size
394  * @bc_table_dword: set to true if the BC table expects the byte count to be
395  *	in DWORD (as opposed to bytes)
396  * @scd_set_active: should the transport configure the SCD for HCMD queue
397  * @command_groups: array of command groups, each member is an array of the
398  *	commands in the group; for debugging only
399  * @command_groups_size: number of command groups, to avoid illegal access
400  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
401  *	space for at least two pointers
402  * @fw_reset_handshake: firmware supports reset flow handshake
403  */
404 struct iwl_trans_config {
405 	struct iwl_op_mode *op_mode;
406 
407 	u8 cmd_queue;
408 	u8 cmd_fifo;
409 	unsigned int cmd_q_wdg_timeout;
410 	const u8 *no_reclaim_cmds;
411 	unsigned int n_no_reclaim_cmds;
412 
413 	enum iwl_amsdu_size rx_buf_size;
414 	bool bc_table_dword;
415 	bool scd_set_active;
416 	const struct iwl_hcmd_arr *command_groups;
417 	int command_groups_size;
418 
419 	u8 cb_data_offs;
420 	bool fw_reset_handshake;
421 };
422 
423 struct iwl_trans_dump_data {
424 	u32 len;
425 	u8 data[];
426 };
427 
428 struct iwl_trans;
429 
430 struct iwl_trans_txq_scd_cfg {
431 	u8 fifo;
432 	u8 sta_id;
433 	u8 tid;
434 	bool aggregate;
435 	int frame_limit;
436 };
437 
438 /**
439  * struct iwl_trans_rxq_dma_data - RX queue DMA data
440  * @fr_bd_cb: DMA address of free BD cyclic buffer
441  * @fr_bd_wid: Initial write index of the free BD cyclic buffer
442  * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
443  * @ur_bd_cb: DMA address of used BD cyclic buffer
444  */
445 struct iwl_trans_rxq_dma_data {
446 	u64 fr_bd_cb;
447 	u32 fr_bd_wid;
448 	u64 urbd_stts_wrptr;
449 	u64 ur_bd_cb;
450 };
451 
452 /**
453  * struct iwl_trans_ops - transport specific operations
454  *
455  * All the handlers MUST be implemented
456  *
457  * @start_hw: starts the HW. From that point on, the HW can send interrupts.
458  *	May sleep.
459  * @op_mode_leave: Turn off the HW RF kill indication if on
460  *	May sleep
461  * @start_fw: allocates and inits all the resources for the transport
462  *	layer. Also kick a fw image.
463  *	May sleep
464  * @fw_alive: called when the fw sends alive notification. If the fw provides
465  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
466  *	May sleep
467  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
468  *	the HW. From that point on, the HW will be stopped but will still issue
469  *	an interrupt if the HW RF kill switch is triggered.
470  *	This callback must do the right thing and not crash even if %start_hw()
471  *	was called but not &start_fw(). May sleep.
472  * @d3_suspend: put the device into the correct mode for WoWLAN during
473  *	suspend. This is optional, if not implemented WoWLAN will not be
474  *	supported. This callback may sleep.
475  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
476  *	talk to the WoWLAN image to get its status. This is optional, if not
477  *	implemented WoWLAN will not be supported. This callback may sleep.
478  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
479  *	If RFkill is asserted in the middle of a SYNC host command, it must
480  *	return -ERFKILL straight away.
481  *	May sleep only if CMD_ASYNC is not set
482  * @tx: send an skb. The transport relies on the op_mode to zero the
483  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
484  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
485  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
486  *	header if it is IPv4.
487  *	Must be atomic
488  * @reclaim: free packet until ssn. Returns a list of freed packets.
489  *	Must be atomic
490  * @txq_enable: setup a queue. To setup an AC queue, use the
491  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
492  *	this one. The op_mode must not configure the HCMD queue. The scheduler
493  *	configuration may be %NULL, in which case the hardware will not be
494  *	configured. If true is returned, the operation mode needs to increment
495  *	the sequence number of the packets routed to this queue because of a
496  *	hardware scheduler bug. May sleep.
497  * @txq_disable: de-configure a Tx queue to send AMPDUs
498  *	Must be atomic
499  * @txq_set_shared_mode: change Tx queue shared/unshared marking
500  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
501  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
502  * @freeze_txq_timer: prevents the timer of the queue from firing until the
503  *	queue is set to awake. Must be atomic.
504  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
505  *	that the transport needs to refcount the calls since this function
506  *	will be called several times with block = true, and then the queues
507  *	need to be unblocked only after the same number of calls with
508  *	block = false.
509  * @write8: write a u8 to a register at offset ofs from the BAR
510  * @write32: write a u32 to a register at offset ofs from the BAR
511  * @read32: read a u32 register at offset ofs from the BAR
512  * @read_prph: read a DWORD from a periphery register
513  * @write_prph: write a DWORD to a periphery register
514  * @read_mem: read device's SRAM in DWORD
515  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
516  *	will be zeroed.
517  * @read_config32: read a u32 value from the device's config space at
518  *	the given offset.
519  * @configure: configure parameters required by the transport layer from
520  *	the op_mode. May be called several times before start_fw, can't be
521  *	called after that.
522  * @set_pmi: set the power pmi state
523  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
524  *	Sleeping is not allowed between grab_nic_access and
525  *	release_nic_access.
526  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
527  *	must be the same one that was sent before to the grab_nic_access.
528  * @set_bits_mask - set SRAM register according to value and mask.
529  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
530  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
531  *	Note that the transport must fill in the proper file headers.
532  * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
533  *	of the trans debugfs
534  * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
535  *	context info.
536  * @interrupts: disable/enable interrupts to transport
537  */
538 struct iwl_trans_ops {
539 
540 	int (*start_hw)(struct iwl_trans *iwl_trans);
541 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
542 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
543 			bool run_in_rfkill);
544 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
545 	void (*stop_device)(struct iwl_trans *trans);
546 
547 	int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
548 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
549 			 bool test, bool reset);
550 
551 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
552 
553 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
554 		  struct iwl_device_tx_cmd *dev_cmd, int queue);
555 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
556 			struct sk_buff_head *skbs);
557 
558 	void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
559 
560 	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
561 			   const struct iwl_trans_txq_scd_cfg *cfg,
562 			   unsigned int queue_wdg_timeout);
563 	void (*txq_disable)(struct iwl_trans *trans, int queue,
564 			    bool configure_scd);
565 	/* 22000 functions */
566 	int (*txq_alloc)(struct iwl_trans *trans,
567 			 __le16 flags, u8 sta_id, u8 tid,
568 			 int cmd_id, int size,
569 			 unsigned int queue_wdg_timeout);
570 	void (*txq_free)(struct iwl_trans *trans, int queue);
571 	int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
572 			    struct iwl_trans_rxq_dma_data *data);
573 
574 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
575 				    bool shared);
576 
577 	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
578 	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
579 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
580 				 bool freeze);
581 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
582 
583 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
584 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
585 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
586 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
587 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
588 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
589 			void *buf, int dwords);
590 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
591 			 const void *buf, int dwords);
592 	int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
593 	void (*configure)(struct iwl_trans *trans,
594 			  const struct iwl_trans_config *trans_cfg);
595 	void (*set_pmi)(struct iwl_trans *trans, bool state);
596 	void (*sw_reset)(struct iwl_trans *trans);
597 	bool (*grab_nic_access)(struct iwl_trans *trans);
598 	void (*release_nic_access)(struct iwl_trans *trans);
599 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
600 			      u32 value);
601 
602 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
603 						 u32 dump_mask,
604 						 const struct iwl_dump_sanitize_ops *sanitize_ops,
605 						 void *sanitize_ctx);
606 	void (*debugfs_cleanup)(struct iwl_trans *trans);
607 	void (*sync_nmi)(struct iwl_trans *trans);
608 	int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len);
609 	int (*set_reduce_power)(struct iwl_trans *trans,
610 				const void *data, u32 len);
611 	void (*interrupts)(struct iwl_trans *trans, bool enable);
612 };
613 
614 /**
615  * enum iwl_trans_state - state of the transport layer
616  *
617  * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
618  * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
619  * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
620  */
621 enum iwl_trans_state {
622 	IWL_TRANS_NO_FW,
623 	IWL_TRANS_FW_STARTED,
624 	IWL_TRANS_FW_ALIVE,
625 };
626 
627 /**
628  * DOC: Platform power management
629  *
630  * In system-wide power management the entire platform goes into a low
631  * power state (e.g. idle or suspend to RAM) at the same time and the
632  * device is configured as a wakeup source for the entire platform.
633  * This is usually triggered by userspace activity (e.g. the user
634  * presses the suspend button or a power management daemon decides to
635  * put the platform in low power mode).  The device's behavior in this
636  * mode is dictated by the wake-on-WLAN configuration.
637  *
638  * The terms used for the device's behavior are as follows:
639  *
640  *	- D0: the device is fully powered and the host is awake;
641  *	- D3: the device is in low power mode and only reacts to
642  *		specific events (e.g. magic-packet received or scan
643  *		results found);
644  *
645  * These terms reflect the power modes in the firmware and are not to
646  * be confused with the physical device power state.
647  */
648 
649 /**
650  * enum iwl_plat_pm_mode - platform power management mode
651  *
652  * This enumeration describes the device's platform power management
653  * behavior when in system-wide suspend (i.e WoWLAN).
654  *
655  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
656  *	device.  In system-wide suspend mode, it means that the all
657  *	connections will be closed automatically by mac80211 before
658  *	the platform is suspended.
659  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
660  */
661 enum iwl_plat_pm_mode {
662 	IWL_PLAT_PM_MODE_DISABLED,
663 	IWL_PLAT_PM_MODE_D3,
664 };
665 
666 /**
667  * enum iwl_ini_cfg_state
668  * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
669  * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
670  * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
671  *	are corrupted. The rest of the debug TLVs will still be used
672  */
673 enum iwl_ini_cfg_state {
674 	IWL_INI_CFG_STATE_NOT_LOADED,
675 	IWL_INI_CFG_STATE_LOADED,
676 	IWL_INI_CFG_STATE_CORRUPTED,
677 };
678 
679 /* Max time to wait for nmi interrupt */
680 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
681 
682 /**
683  * struct iwl_dram_data
684  * @physical: page phy pointer
685  * @block: pointer to the allocated block/page
686  * @size: size of the block/page
687  */
688 struct iwl_dram_data {
689 	dma_addr_t physical;
690 	void *block;
691 	int size;
692 };
693 
694 /**
695  * struct iwl_fw_mon - fw monitor per allocation id
696  * @num_frags: number of fragments
697  * @frags: an array of DRAM buffer fragments
698  */
699 struct iwl_fw_mon {
700 	u32 num_frags;
701 	struct iwl_dram_data *frags;
702 };
703 
704 /**
705  * struct iwl_self_init_dram - dram data used by self init process
706  * @fw: lmac and umac dram data
707  * @fw_cnt: total number of items in array
708  * @paging: paging dram data
709  * @paging_cnt: total number of items in array
710  */
711 struct iwl_self_init_dram {
712 	struct iwl_dram_data *fw;
713 	int fw_cnt;
714 	struct iwl_dram_data *paging;
715 	int paging_cnt;
716 };
717 
718 /**
719  * struct iwl_trans_debug - transport debug related data
720  *
721  * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
722  * @rec_on: true iff there is a fw debug recording currently active
723  * @dest_tlv: points to the destination TLV for debug
724  * @conf_tlv: array of pointers to configuration TLVs for debug
725  * @trigger_tlv: array of pointers to triggers TLVs for debug
726  * @lmac_error_event_table: addrs of lmacs error tables
727  * @umac_error_event_table: addr of umac error table
728  * @tcm_error_event_table: address of TCM error table
729  * @error_event_table_tlv_status: bitmap that indicates what error table
730  *	pointers was recevied via TLV. uses enum &iwl_error_event_table_status
731  * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
732  * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
733  * @fw_mon_cfg: debug buffer allocation configuration
734  * @fw_mon_ini: DRAM buffer fragments per allocation id
735  * @fw_mon: DRAM buffer for firmware monitor
736  * @hw_error: equals true if hw error interrupt was received from the FW
737  * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
738  * @active_regions: active regions
739  * @debug_info_tlv_list: list of debug info TLVs
740  * @time_point: array of debug time points
741  * @periodic_trig_list: periodic triggers list
742  * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
743  * @ucode_preset: preset based on ucode
744  */
745 struct iwl_trans_debug {
746 	u8 n_dest_reg;
747 	bool rec_on;
748 
749 	const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
750 	const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
751 	struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
752 
753 	u32 lmac_error_event_table[2];
754 	u32 umac_error_event_table;
755 	u32 tcm_error_event_table;
756 	unsigned int error_event_table_tlv_status;
757 
758 	enum iwl_ini_cfg_state internal_ini_cfg;
759 	enum iwl_ini_cfg_state external_ini_cfg;
760 
761 	struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
762 	struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
763 
764 	struct iwl_dram_data fw_mon;
765 
766 	bool hw_error;
767 	enum iwl_fw_ini_buffer_location ini_dest;
768 
769 	u64 unsupported_region_msk;
770 	struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
771 	struct list_head debug_info_tlv_list;
772 	struct iwl_dbg_tlv_time_point_data
773 		time_point[IWL_FW_INI_TIME_POINT_NUM];
774 	struct list_head periodic_trig_list;
775 
776 	u32 domains_bitmap;
777 	u32 ucode_preset;
778 };
779 
780 struct iwl_dma_ptr {
781 	dma_addr_t dma;
782 	void *addr;
783 	size_t size;
784 };
785 
786 struct iwl_cmd_meta {
787 	/* only for SYNC commands, iff the reply skb is wanted */
788 	struct iwl_host_cmd *source;
789 	u32 flags;
790 	u32 tbs;
791 };
792 
793 /*
794  * The FH will write back to the first TB only, so we need to copy some data
795  * into the buffer regardless of whether it should be mapped or not.
796  * This indicates how big the first TB must be to include the scratch buffer
797  * and the assigned PN.
798  * Since PN location is 8 bytes at offset 12, it's 20 now.
799  * If we make it bigger then allocations will be bigger and copy slower, so
800  * that's probably not useful.
801  */
802 #define IWL_FIRST_TB_SIZE	20
803 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
804 
805 struct iwl_pcie_txq_entry {
806 	void *cmd;
807 	struct sk_buff *skb;
808 	/* buffer to free after command completes */
809 	const void *free_buf;
810 	struct iwl_cmd_meta meta;
811 };
812 
813 struct iwl_pcie_first_tb_buf {
814 	u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
815 };
816 
817 /**
818  * struct iwl_txq - Tx Queue for DMA
819  * @q: generic Rx/Tx queue descriptor
820  * @tfds: transmit frame descriptors (DMA memory)
821  * @first_tb_bufs: start of command headers, including scratch buffers, for
822  *	the writeback -- this is DMA memory and an array holding one buffer
823  *	for each command on the queue
824  * @first_tb_dma: DMA address for the first_tb_bufs start
825  * @entries: transmit entries (driver state)
826  * @lock: queue lock
827  * @stuck_timer: timer that fires if queue gets stuck
828  * @trans: pointer back to transport (for timer)
829  * @need_update: indicates need to update read/write index
830  * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
831  * @wd_timeout: queue watchdog timeout (jiffies) - per queue
832  * @frozen: tx stuck queue timer is frozen
833  * @frozen_expiry_remainder: remember how long until the timer fires
834  * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
835  * @write_ptr: 1-st empty entry (index) host_w
836  * @read_ptr: last used entry (index) host_r
837  * @dma_addr:  physical addr for BD's
838  * @n_window: safe queue window
839  * @id: queue id
840  * @low_mark: low watermark, resume queue if free space more than this
841  * @high_mark: high watermark, stop queue if free space less than this
842  *
843  * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
844  * descriptors) and required locking structures.
845  *
846  * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
847  * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
848  * there might be HW changes in the future). For the normal TX
849  * queues, n_window, which is the size of the software queue data
850  * is also 256; however, for the command queue, n_window is only
851  * 32 since we don't need so many commands pending. Since the HW
852  * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
853  * This means that we end up with the following:
854  *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
855  *  SW entries:           | 0      | ... | 31          |
856  * where N is a number between 0 and 7. This means that the SW
857  * data is a window overlayed over the HW queue.
858  */
859 struct iwl_txq {
860 	void *tfds;
861 	struct iwl_pcie_first_tb_buf *first_tb_bufs;
862 	dma_addr_t first_tb_dma;
863 	struct iwl_pcie_txq_entry *entries;
864 	/* lock for syncing changes on the queue */
865 	spinlock_t lock;
866 	unsigned long frozen_expiry_remainder;
867 	struct timer_list stuck_timer;
868 	struct iwl_trans *trans;
869 	bool need_update;
870 	bool frozen;
871 	bool ampdu;
872 	int block;
873 	unsigned long wd_timeout;
874 	struct sk_buff_head overflow_q;
875 	struct iwl_dma_ptr bc_tbl;
876 
877 	int write_ptr;
878 	int read_ptr;
879 	dma_addr_t dma_addr;
880 	int n_window;
881 	u32 id;
882 	int low_mark;
883 	int high_mark;
884 
885 	bool overflow_tx;
886 };
887 
888 /**
889  * struct iwl_trans_txqs - transport tx queues data
890  *
891  * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
892  * @page_offs: offset from skb->cb to mac header page pointer
893  * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
894  * @queue_used - bit mask of used queues
895  * @queue_stopped - bit mask of stopped queues
896  * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
897  */
898 struct iwl_trans_txqs {
899 	unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
900 	unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
901 	struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
902 	struct dma_pool *bc_pool;
903 	size_t bc_tbl_size;
904 	bool bc_table_dword;
905 	u8 page_offs;
906 	u8 dev_cmd_offs;
907 	struct iwl_tso_hdr_page __percpu *tso_hdr_page;
908 
909 	struct {
910 		u8 fifo;
911 		u8 q_id;
912 		unsigned int wdg_timeout;
913 	} cmd;
914 
915 	struct {
916 		u8 max_tbs;
917 		u16 size;
918 		u8 addr_size;
919 	} tfd;
920 
921 	struct iwl_dma_ptr scd_bc_tbls;
922 };
923 
924 /**
925  * struct iwl_trans - transport common data
926  *
927  * @csme_own - true if we couldn't get ownership on the device
928  * @ops - pointer to iwl_trans_ops
929  * @op_mode - pointer to the op_mode
930  * @trans_cfg: the trans-specific configuration part
931  * @cfg - pointer to the configuration
932  * @drv - pointer to iwl_drv
933  * @status: a bit-mask of transport status flags
934  * @dev - pointer to struct device * that represents the device
935  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
936  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
937  * @hw_rf_id a u32 with the device RF ID
938  * @hw_id: a u32 with the ID of the device / sub-device.
939  *	Set during transport allocation.
940  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
941  * @pm_support: set to true in start_hw if link pm is supported
942  * @ltr_enabled: set to true if the LTR is enabled
943  * @wide_cmd_header: true when ucode supports wide command header format
944  * @wait_command_queue: wait queue for sync commands
945  * @num_rx_queues: number of RX queues allocated by the transport;
946  *	the transport must set this before calling iwl_drv_start()
947  * @iml_len: the length of the image loader
948  * @iml: a pointer to the image loader itself
949  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
950  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
951  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
952  *	starting the firmware, used for tracing
953  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
954  *	start of the 802.11 header in the @rx_mpdu_cmd
955  * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
956  * @system_pm_mode: the system-wide power management mode in use.
957  *	This mode is set dynamically, depending on the WoWLAN values
958  *	configured from the userspace at runtime.
959  * @iwl_trans_txqs: transport tx queues data.
960  */
961 struct iwl_trans {
962 	bool csme_own;
963 	const struct iwl_trans_ops *ops;
964 	struct iwl_op_mode *op_mode;
965 	const struct iwl_cfg_trans_params *trans_cfg;
966 	const struct iwl_cfg *cfg;
967 	struct iwl_drv *drv;
968 	enum iwl_trans_state state;
969 	unsigned long status;
970 
971 	struct device *dev;
972 	u32 max_skb_frags;
973 	u32 hw_rev;
974 	u32 hw_rf_id;
975 	u32 hw_id;
976 	char hw_id_str[52];
977 	u32 sku_id[3];
978 
979 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
980 
981 	bool pm_support;
982 	bool ltr_enabled;
983 	u8 pnvm_loaded:1;
984 	u8 reduce_power_loaded:1;
985 
986 	const struct iwl_hcmd_arr *command_groups;
987 	int command_groups_size;
988 	bool wide_cmd_header;
989 
990 	wait_queue_head_t wait_command_queue;
991 	u8 num_rx_queues;
992 
993 	size_t iml_len;
994 	u8 *iml;
995 
996 	/* The following fields are internal only */
997 	struct kmem_cache *dev_cmd_pool;
998 	char dev_cmd_pool_name[50];
999 
1000 	struct dentry *dbgfs_dir;
1001 
1002 #ifdef CONFIG_LOCKDEP
1003 	struct lockdep_map sync_cmd_lockdep_map;
1004 #endif
1005 
1006 	struct iwl_trans_debug dbg;
1007 	struct iwl_self_init_dram init_dram;
1008 
1009 	enum iwl_plat_pm_mode system_pm_mode;
1010 
1011 	const char *name;
1012 	struct iwl_trans_txqs txqs;
1013 
1014 	/* pointer to trans specific struct */
1015 	/*Ensure that this pointer will always be aligned to sizeof pointer */
1016 	char trans_specific[] __aligned(sizeof(void *));
1017 };
1018 
1019 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1020 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1021 
1022 static inline void iwl_trans_configure(struct iwl_trans *trans,
1023 				       const struct iwl_trans_config *trans_cfg)
1024 {
1025 	trans->op_mode = trans_cfg->op_mode;
1026 
1027 	trans->ops->configure(trans, trans_cfg);
1028 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1029 }
1030 
1031 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1032 {
1033 	might_sleep();
1034 
1035 	return trans->ops->start_hw(trans);
1036 }
1037 
1038 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1039 {
1040 	might_sleep();
1041 
1042 	if (trans->ops->op_mode_leave)
1043 		trans->ops->op_mode_leave(trans);
1044 
1045 	trans->op_mode = NULL;
1046 
1047 	trans->state = IWL_TRANS_NO_FW;
1048 }
1049 
1050 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1051 {
1052 	might_sleep();
1053 
1054 	trans->state = IWL_TRANS_FW_ALIVE;
1055 
1056 	trans->ops->fw_alive(trans, scd_addr);
1057 }
1058 
1059 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1060 				     const struct fw_img *fw,
1061 				     bool run_in_rfkill)
1062 {
1063 	int ret;
1064 
1065 	might_sleep();
1066 
1067 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1068 
1069 	clear_bit(STATUS_FW_ERROR, &trans->status);
1070 	ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1071 	if (ret == 0)
1072 		trans->state = IWL_TRANS_FW_STARTED;
1073 
1074 	return ret;
1075 }
1076 
1077 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1078 {
1079 	might_sleep();
1080 
1081 	trans->ops->stop_device(trans);
1082 
1083 	trans->state = IWL_TRANS_NO_FW;
1084 }
1085 
1086 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1087 				       bool reset)
1088 {
1089 	might_sleep();
1090 	if (!trans->ops->d3_suspend)
1091 		return 0;
1092 
1093 	return trans->ops->d3_suspend(trans, test, reset);
1094 }
1095 
1096 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1097 				      enum iwl_d3_status *status,
1098 				      bool test, bool reset)
1099 {
1100 	might_sleep();
1101 	if (!trans->ops->d3_resume)
1102 		return 0;
1103 
1104 	return trans->ops->d3_resume(trans, status, test, reset);
1105 }
1106 
1107 static inline struct iwl_trans_dump_data *
1108 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
1109 		    const struct iwl_dump_sanitize_ops *sanitize_ops,
1110 		    void *sanitize_ctx)
1111 {
1112 	if (!trans->ops->dump_data)
1113 		return NULL;
1114 	return trans->ops->dump_data(trans, dump_mask,
1115 				     sanitize_ops, sanitize_ctx);
1116 }
1117 
1118 static inline struct iwl_device_tx_cmd *
1119 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1120 {
1121 	return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1122 }
1123 
1124 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1125 
1126 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1127 					 struct iwl_device_tx_cmd *dev_cmd)
1128 {
1129 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1130 }
1131 
1132 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1133 			       struct iwl_device_tx_cmd *dev_cmd, int queue)
1134 {
1135 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1136 		return -EIO;
1137 
1138 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1139 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1140 		return -EIO;
1141 	}
1142 
1143 	return trans->ops->tx(trans, skb, dev_cmd, queue);
1144 }
1145 
1146 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1147 				     int ssn, struct sk_buff_head *skbs)
1148 {
1149 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1150 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1151 		return;
1152 	}
1153 
1154 	trans->ops->reclaim(trans, queue, ssn, skbs);
1155 }
1156 
1157 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1158 					int ptr)
1159 {
1160 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1161 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1162 		return;
1163 	}
1164 
1165 	trans->ops->set_q_ptrs(trans, queue, ptr);
1166 }
1167 
1168 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1169 					 bool configure_scd)
1170 {
1171 	trans->ops->txq_disable(trans, queue, configure_scd);
1172 }
1173 
1174 static inline bool
1175 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1176 			 const struct iwl_trans_txq_scd_cfg *cfg,
1177 			 unsigned int queue_wdg_timeout)
1178 {
1179 	might_sleep();
1180 
1181 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1182 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1183 		return false;
1184 	}
1185 
1186 	return trans->ops->txq_enable(trans, queue, ssn,
1187 				      cfg, queue_wdg_timeout);
1188 }
1189 
1190 static inline int
1191 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1192 			   struct iwl_trans_rxq_dma_data *data)
1193 {
1194 	if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1195 		return -ENOTSUPP;
1196 
1197 	return trans->ops->rxq_dma_data(trans, queue, data);
1198 }
1199 
1200 static inline void
1201 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1202 {
1203 	if (WARN_ON_ONCE(!trans->ops->txq_free))
1204 		return;
1205 
1206 	trans->ops->txq_free(trans, queue);
1207 }
1208 
1209 static inline int
1210 iwl_trans_txq_alloc(struct iwl_trans *trans,
1211 		    __le16 flags, u8 sta_id, u8 tid,
1212 		    int cmd_id, int size,
1213 		    unsigned int wdg_timeout)
1214 {
1215 	might_sleep();
1216 
1217 	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1218 		return -ENOTSUPP;
1219 
1220 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1221 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1222 		return -EIO;
1223 	}
1224 
1225 	return trans->ops->txq_alloc(trans, flags, sta_id, tid,
1226 				     cmd_id, size, wdg_timeout);
1227 }
1228 
1229 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1230 						 int queue, bool shared_mode)
1231 {
1232 	if (trans->ops->txq_set_shared_mode)
1233 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1234 }
1235 
1236 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1237 					int fifo, int sta_id, int tid,
1238 					int frame_limit, u16 ssn,
1239 					unsigned int queue_wdg_timeout)
1240 {
1241 	struct iwl_trans_txq_scd_cfg cfg = {
1242 		.fifo = fifo,
1243 		.sta_id = sta_id,
1244 		.tid = tid,
1245 		.frame_limit = frame_limit,
1246 		.aggregate = sta_id >= 0,
1247 	};
1248 
1249 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1250 }
1251 
1252 static inline
1253 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1254 			     unsigned int queue_wdg_timeout)
1255 {
1256 	struct iwl_trans_txq_scd_cfg cfg = {
1257 		.fifo = fifo,
1258 		.sta_id = -1,
1259 		.tid = IWL_MAX_TID_COUNT,
1260 		.frame_limit = IWL_FRAME_LIMIT,
1261 		.aggregate = false,
1262 	};
1263 
1264 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1265 }
1266 
1267 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1268 					      unsigned long txqs,
1269 					      bool freeze)
1270 {
1271 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1272 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1273 		return;
1274 	}
1275 
1276 	if (trans->ops->freeze_txq_timer)
1277 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1278 }
1279 
1280 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1281 					    bool block)
1282 {
1283 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1284 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1285 		return;
1286 	}
1287 
1288 	if (trans->ops->block_txq_ptrs)
1289 		trans->ops->block_txq_ptrs(trans, block);
1290 }
1291 
1292 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1293 						 u32 txqs)
1294 {
1295 	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1296 		return -ENOTSUPP;
1297 
1298 	/* No need to wait if the firmware is not alive */
1299 	if (trans->state != IWL_TRANS_FW_ALIVE) {
1300 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1301 		return -EIO;
1302 	}
1303 
1304 	return trans->ops->wait_tx_queues_empty(trans, txqs);
1305 }
1306 
1307 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1308 {
1309 	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1310 		return -ENOTSUPP;
1311 
1312 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1313 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1314 		return -EIO;
1315 	}
1316 
1317 	return trans->ops->wait_txq_empty(trans, queue);
1318 }
1319 
1320 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1321 {
1322 	trans->ops->write8(trans, ofs, val);
1323 }
1324 
1325 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1326 {
1327 	trans->ops->write32(trans, ofs, val);
1328 }
1329 
1330 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1331 {
1332 	return trans->ops->read32(trans, ofs);
1333 }
1334 
1335 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1336 {
1337 	return trans->ops->read_prph(trans, ofs);
1338 }
1339 
1340 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1341 					u32 val)
1342 {
1343 	return trans->ops->write_prph(trans, ofs, val);
1344 }
1345 
1346 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1347 				     void *buf, int dwords)
1348 {
1349 	return trans->ops->read_mem(trans, addr, buf, dwords);
1350 }
1351 
1352 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1353 	do {								      \
1354 		if (__builtin_constant_p(bufsize))			      \
1355 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1356 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1357 	} while (0)
1358 
1359 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1360 {
1361 	u32 value;
1362 
1363 	if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1364 		return 0xa5a5a5a5;
1365 
1366 	return value;
1367 }
1368 
1369 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1370 				      const void *buf, int dwords)
1371 {
1372 	return trans->ops->write_mem(trans, addr, buf, dwords);
1373 }
1374 
1375 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1376 					u32 val)
1377 {
1378 	return iwl_trans_write_mem(trans, addr, &val, 1);
1379 }
1380 
1381 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1382 {
1383 	if (trans->ops->set_pmi)
1384 		trans->ops->set_pmi(trans, state);
1385 }
1386 
1387 static inline void iwl_trans_sw_reset(struct iwl_trans *trans)
1388 {
1389 	if (trans->ops->sw_reset)
1390 		trans->ops->sw_reset(trans);
1391 }
1392 
1393 static inline void
1394 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1395 {
1396 	trans->ops->set_bits_mask(trans, reg, mask, value);
1397 }
1398 
1399 #define iwl_trans_grab_nic_access(trans)		\
1400 	__cond_lock(nic_access,				\
1401 		    likely((trans)->ops->grab_nic_access(trans)))
1402 
1403 static inline void __releases(nic_access)
1404 iwl_trans_release_nic_access(struct iwl_trans *trans)
1405 {
1406 	trans->ops->release_nic_access(trans);
1407 	__release(nic_access);
1408 }
1409 
1410 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1411 {
1412 	if (WARN_ON_ONCE(!trans->op_mode))
1413 		return;
1414 
1415 	/* prevent double restarts due to the same erroneous FW */
1416 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1417 		iwl_op_mode_nic_error(trans->op_mode, sync);
1418 		trans->state = IWL_TRANS_NO_FW;
1419 	}
1420 }
1421 
1422 static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1423 {
1424 	return trans->state == IWL_TRANS_FW_ALIVE;
1425 }
1426 
1427 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1428 {
1429 	if (trans->ops->sync_nmi)
1430 		trans->ops->sync_nmi(trans);
1431 }
1432 
1433 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1434 				  u32 sw_err_bit);
1435 
1436 static inline int iwl_trans_set_pnvm(struct iwl_trans *trans,
1437 				     const void *data, u32 len)
1438 {
1439 	if (trans->ops->set_pnvm) {
1440 		int ret = trans->ops->set_pnvm(trans, data, len);
1441 
1442 		if (ret)
1443 			return ret;
1444 	}
1445 
1446 	trans->pnvm_loaded = true;
1447 
1448 	return 0;
1449 }
1450 
1451 static inline int iwl_trans_set_reduce_power(struct iwl_trans *trans,
1452 					     const void *data, u32 len)
1453 {
1454 	if (trans->ops->set_reduce_power) {
1455 		int ret = trans->ops->set_reduce_power(trans, data, len);
1456 
1457 		if (ret)
1458 			return ret;
1459 	}
1460 
1461 	trans->reduce_power_loaded = true;
1462 	return 0;
1463 }
1464 
1465 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1466 {
1467 	return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1468 		trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1469 }
1470 
1471 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1472 {
1473 	if (trans->ops->interrupts)
1474 		trans->ops->interrupts(trans, enable);
1475 }
1476 
1477 /*****************************************************
1478  * transport helper functions
1479  *****************************************************/
1480 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1481 			  struct device *dev,
1482 			  const struct iwl_trans_ops *ops,
1483 			  const struct iwl_cfg_trans_params *cfg_trans);
1484 int iwl_trans_init(struct iwl_trans *trans);
1485 void iwl_trans_free(struct iwl_trans *trans);
1486 
1487 /*****************************************************
1488 * driver (transport) register/unregister functions
1489 ******************************************************/
1490 int __must_check iwl_pci_register_driver(void);
1491 void iwl_pci_unregister_driver(void);
1492 
1493 #endif /* __iwl_trans_h__ */
1494