xref: /linux/drivers/net/wireless/intel/iwlwifi/iwl-nvm-parse.c (revision d3d344a1ca69d8fb2413e29e6400f3ad58a05c06)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM calibration section offset (in words) definitions */
42 	NVM_CALIB_SECTION = 0x2B8,
43 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44 
45 	/* NVM REGULATORY -Section offset (in words) definitions */
46 	NVM_CHANNELS_SDP = 0,
47 };
48 
49 enum ext_nvm_offsets {
50 	/* NVM HW-Section offset (in words) definitions */
51 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52 
53 	/* NVM SW-Section offset (in words) definitions */
54 	NVM_VERSION_EXT_NVM = 0,
55 	N_HW_ADDRS_FAMILY_8000 = 3,
56 
57 	/* NVM PHY_SKU-Section offset (in words) definitions */
58 	RADIO_CFG_FAMILY_EXT_NVM = 0,
59 	SKU_FAMILY_8000 = 2,
60 
61 	/* NVM REGULATORY -Section offset (in words) definitions */
62 	NVM_CHANNELS_EXTENDED = 0,
63 	NVM_LAR_OFFSET_OLD = 0x4C7,
64 	NVM_LAR_OFFSET = 0x507,
65 	NVM_LAR_ENABLED = 0x7,
66 };
67 
68 /* SKU Capabilities (actual values from NVM definition) */
69 enum nvm_sku_bits {
70 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
71 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
72 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
73 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
74 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
75 };
76 
77 /*
78  * These are the channel numbers in the order that they are stored in the NVM
79  */
80 static const u16 iwl_nvm_channels[] = {
81 	/* 2.4 GHz */
82 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83 	/* 5 GHz */
84 	36, 40, 44, 48, 52, 56, 60, 64,
85 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86 	149, 153, 157, 161, 165
87 };
88 
89 static const u16 iwl_ext_nvm_channels[] = {
90 	/* 2.4 GHz */
91 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92 	/* 5 GHz */
93 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95 	149, 153, 157, 161, 165, 169, 173, 177, 181
96 };
97 
98 static const u16 iwl_uhb_nvm_channels[] = {
99 	/* 2.4 GHz */
100 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101 	/* 5 GHz */
102 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104 	149, 153, 157, 161, 165, 169, 173, 177, 181,
105 	/* 6-7 GHz */
106 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110 };
111 
112 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
114 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
115 #define NUM_2GHZ_CHANNELS		14
116 #define NUM_5GHZ_CHANNELS		37
117 #define FIRST_2GHZ_HT_MINUS		5
118 #define LAST_2GHZ_HT_PLUS		9
119 #define N_HW_ADDR_MASK			0xF
120 
121 /* rate data (static) */
122 static struct ieee80211_rate iwl_cfg80211_rates[] = {
123 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138 };
139 #define RATES_24_OFFS	0
140 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
141 #define RATES_52_OFFS	4
142 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
143 
144 /**
145  * enum iwl_nvm_channel_flags - channel flags in NVM
146  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148  * @NVM_CHANNEL_ACTIVE: active scanning allowed
149  * @NVM_CHANNEL_RADAR: radar detection required
150  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152  *	on same channel on 2.4 or same UNII band on 5.2
153  * @NVM_CHANNEL_UNIFORM: uniform spreading required
154  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159  */
160 enum iwl_nvm_channel_flags {
161 	NVM_CHANNEL_VALID		= BIT(0),
162 	NVM_CHANNEL_IBSS		= BIT(1),
163 	NVM_CHANNEL_ACTIVE		= BIT(3),
164 	NVM_CHANNEL_RADAR		= BIT(4),
165 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
166 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
167 	NVM_CHANNEL_UNIFORM		= BIT(7),
168 	NVM_CHANNEL_20MHZ		= BIT(8),
169 	NVM_CHANNEL_40MHZ		= BIT(9),
170 	NVM_CHANNEL_80MHZ		= BIT(10),
171 	NVM_CHANNEL_160MHZ		= BIT(11),
172 	NVM_CHANNEL_DC_HIGH		= BIT(12),
173 };
174 
175 /**
176  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
177  * domain.
178  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
179  *	2.4Ghz band is allowed.
180  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
181  *	5Ghz band is allowed.
182  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
183  *	for this regulatory domain (valid only in 5Ghz).
184  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
185  *	for this regulatory domain (valid only in 5Ghz).
186  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
187  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
188  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
189  *	for this regulatory domain (valid only in 5Ghz).
190  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
191  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
192  */
193 enum iwl_reg_capa_flags_v1 {
194 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
195 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
196 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
197 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
198 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
199 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
200 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
201 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
202 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
203 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
204 
205 /**
206  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
207  * domain (version 2).
208  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
209  *	disabled.
210  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
211  *	2.4Ghz band is allowed.
212  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
213  *	5Ghz band is allowed.
214  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
215  *	for this regulatory domain (valid only in 5Ghz).
216  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
217  *	for this regulatory domain (valid only in 5Ghz).
218  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
219  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
220  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
221  *	126, 122) are disabled.
222  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
223  *	for this regulatory domain (uvalid only in 5Ghz).
224  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
225  */
226 enum iwl_reg_capa_flags_v2 {
227 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
228 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
229 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
230 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
231 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
232 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
233 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
234 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
235 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
236 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
237 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
238 
239 /**
240  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
241  * domain.
242  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
243  *	for this regulatory domain (valid only in 5Ghz).
244  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
245  *	for this regulatory domain (valid only in 5Ghz).
246  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
247  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
248  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
249  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
250  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
251  *	for this regulatory domain (valid only in 5GHz).
252  */
253 enum iwl_reg_capa_flags_v4 {
254 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
255 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
256 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
257 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
258 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
259 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
260 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
261 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
262 
263 /*
264 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
265 * MCC update command response.
266 */
267 #define REG_CAPA_V2_RESP_VER	6
268 
269 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
270  * MCC update command response.
271  */
272 #define REG_CAPA_V4_RESP_VER	8
273 
274 /**
275  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
276  * handling the different APIs of reg_capa_flags.
277  *
278  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
279  *	for this regulatory domain.
280  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
281  *	for this regulatory domain (valid only in 5 and 6 Ghz).
282  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
283  *	for this regulatory domain (valid only in 5 and 6 Ghz).
284  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
285  *	for this regulatory domain (valid only in 6 Ghz).
286  * @disable_11ax: 11ax is forbidden for this regulatory domain.
287  * @disable_11be: 11be is forbidden for this regulatory domain.
288  */
289 struct iwl_reg_capa {
290 	bool allow_40mhz;
291 	bool allow_80mhz;
292 	bool allow_160mhz;
293 	bool allow_320mhz;
294 	bool disable_11ax;
295 	bool disable_11be;
296 };
297 
298 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
299 					       int chan, u32 flags)
300 {
301 #define CHECK_AND_PRINT_I(x)	\
302 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
303 
304 	if (!(flags & NVM_CHANNEL_VALID)) {
305 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
306 			      chan, flags);
307 		return;
308 	}
309 
310 	/* Note: already can print up to 101 characters, 110 is the limit! */
311 	IWL_DEBUG_DEV(dev, level,
312 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
313 		      chan, flags,
314 		      CHECK_AND_PRINT_I(VALID),
315 		      CHECK_AND_PRINT_I(IBSS),
316 		      CHECK_AND_PRINT_I(ACTIVE),
317 		      CHECK_AND_PRINT_I(RADAR),
318 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
319 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
320 		      CHECK_AND_PRINT_I(UNIFORM),
321 		      CHECK_AND_PRINT_I(20MHZ),
322 		      CHECK_AND_PRINT_I(40MHZ),
323 		      CHECK_AND_PRINT_I(80MHZ),
324 		      CHECK_AND_PRINT_I(160MHZ),
325 		      CHECK_AND_PRINT_I(DC_HIGH));
326 #undef CHECK_AND_PRINT_I
327 }
328 
329 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
330 				 u32 nvm_flags, const struct iwl_cfg *cfg)
331 {
332 	u32 flags = IEEE80211_CHAN_NO_HT40;
333 
334 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
335 		if (ch_num <= LAST_2GHZ_HT_PLUS)
336 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
337 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
338 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
339 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
340 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
341 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
342 		else
343 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
344 	}
345 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
346 		flags |= IEEE80211_CHAN_NO_80MHZ;
347 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
348 		flags |= IEEE80211_CHAN_NO_160MHZ;
349 
350 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
351 		flags |= IEEE80211_CHAN_NO_IR;
352 
353 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
354 		flags |= IEEE80211_CHAN_NO_IR;
355 
356 	if (nvm_flags & NVM_CHANNEL_RADAR)
357 		flags |= IEEE80211_CHAN_RADAR;
358 
359 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
360 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
361 
362 	/* Set the GO concurrent flag only in case that NO_IR is set.
363 	 * Otherwise it is meaningless
364 	 */
365 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
366 	    (flags & IEEE80211_CHAN_NO_IR))
367 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
368 
369 	return flags;
370 }
371 
372 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
373 {
374 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
375 		return NL80211_BAND_6GHZ;
376 	}
377 
378 	if (ch_idx >= NUM_2GHZ_CHANNELS)
379 		return NL80211_BAND_5GHZ;
380 	return NL80211_BAND_2GHZ;
381 }
382 
383 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
384 				struct iwl_nvm_data *data,
385 				const void * const nvm_ch_flags,
386 				u32 sbands_flags, bool v4)
387 {
388 	int ch_idx;
389 	int n_channels = 0;
390 	struct ieee80211_channel *channel;
391 	u32 ch_flags;
392 	int num_of_ch;
393 	const u16 *nvm_chan;
394 
395 	if (cfg->uhb_supported) {
396 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
397 		nvm_chan = iwl_uhb_nvm_channels;
398 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
399 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
400 		nvm_chan = iwl_ext_nvm_channels;
401 	} else {
402 		num_of_ch = IWL_NVM_NUM_CHANNELS;
403 		nvm_chan = iwl_nvm_channels;
404 	}
405 
406 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
407 		enum nl80211_band band =
408 			iwl_nl80211_band_from_channel_idx(ch_idx);
409 
410 		if (v4)
411 			ch_flags =
412 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
413 		else
414 			ch_flags =
415 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
416 
417 		if (band == NL80211_BAND_5GHZ &&
418 		    !data->sku_cap_band_52ghz_enable)
419 			continue;
420 
421 		/* workaround to disable wide channels in 5GHz */
422 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
423 		    band == NL80211_BAND_5GHZ) {
424 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
425 				     NVM_CHANNEL_80MHZ |
426 				     NVM_CHANNEL_160MHZ);
427 		}
428 
429 		if (ch_flags & NVM_CHANNEL_160MHZ)
430 			data->vht160_supported = true;
431 
432 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
433 		    !(ch_flags & NVM_CHANNEL_VALID)) {
434 			/*
435 			 * Channels might become valid later if lar is
436 			 * supported, hence we still want to add them to
437 			 * the list of supported channels to cfg80211.
438 			 */
439 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 						    nvm_chan[ch_idx], ch_flags);
441 			continue;
442 		}
443 
444 		channel = &data->channels[n_channels];
445 		n_channels++;
446 
447 		channel->hw_value = nvm_chan[ch_idx];
448 		channel->band = band;
449 		channel->center_freq =
450 			ieee80211_channel_to_frequency(
451 				channel->hw_value, channel->band);
452 
453 		/* Initialize regulatory-based run-time data */
454 
455 		/*
456 		 * Default value - highest tx power value.  max_power
457 		 * is not used in mvm, and is used for backwards compatibility
458 		 */
459 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
460 
461 		/* don't put limitations in case we're using LAR */
462 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
463 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
464 							       ch_idx, band,
465 							       ch_flags, cfg);
466 		else
467 			channel->flags = 0;
468 
469 		/* TODO: Don't put limitations on UHB devices as we still don't
470 		 * have NVM for them
471 		 */
472 		if (cfg->uhb_supported)
473 			channel->flags = 0;
474 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
475 					    channel->hw_value, ch_flags);
476 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
477 				 channel->hw_value, channel->max_power);
478 	}
479 
480 	return n_channels;
481 }
482 
483 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
484 				  struct iwl_nvm_data *data,
485 				  struct ieee80211_sta_vht_cap *vht_cap,
486 				  u8 tx_chains, u8 rx_chains)
487 {
488 	const struct iwl_cfg *cfg = trans->cfg;
489 	int num_rx_ants = num_of_ant(rx_chains);
490 	int num_tx_ants = num_of_ant(tx_chains);
491 
492 	vht_cap->vht_supported = true;
493 
494 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
495 		       IEEE80211_VHT_CAP_RXSTBC_1 |
496 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
497 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
498 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
499 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
500 
501 	if (!trans->cfg->ht_params->stbc)
502 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
503 
504 	if (data->vht160_supported)
505 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
506 				IEEE80211_VHT_CAP_SHORT_GI_160;
507 
508 	if (cfg->vht_mu_mimo_supported)
509 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
510 
511 	if (cfg->ht_params->ldpc)
512 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
513 
514 	if (data->sku_cap_mimo_disabled) {
515 		num_rx_ants = 1;
516 		num_tx_ants = 1;
517 	}
518 
519 	if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
520 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
521 	else
522 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
523 
524 	switch (iwlwifi_mod_params.amsdu_size) {
525 	case IWL_AMSDU_DEF:
526 		if (trans->trans_cfg->mq_rx_supported)
527 			vht_cap->cap |=
528 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
529 		else
530 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
531 		break;
532 	case IWL_AMSDU_2K:
533 		if (trans->trans_cfg->mq_rx_supported)
534 			vht_cap->cap |=
535 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
536 		else
537 			WARN(1, "RB size of 2K is not supported by this device\n");
538 		break;
539 	case IWL_AMSDU_4K:
540 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
541 		break;
542 	case IWL_AMSDU_8K:
543 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
544 		break;
545 	case IWL_AMSDU_12K:
546 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
547 		break;
548 	default:
549 		break;
550 	}
551 
552 	vht_cap->vht_mcs.rx_mcs_map =
553 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
554 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
555 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
556 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
557 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
558 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
559 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
560 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
561 
562 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
563 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
564 		/* this works because NOT_SUPPORTED == 3 */
565 		vht_cap->vht_mcs.rx_mcs_map |=
566 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
567 	}
568 
569 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
570 
571 	vht_cap->vht_mcs.tx_highest |=
572 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
573 }
574 
575 static const u8 iwl_vendor_caps[] = {
576 	0xdd,			/* vendor element */
577 	0x06,			/* length */
578 	0x00, 0x17, 0x35,	/* Intel OUI */
579 	0x08,			/* type (Intel Capabilities) */
580 	/* followed by 16 bits of capabilities */
581 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
582 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
583 	0x00
584 };
585 
586 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
587 	{
588 		.types_mask = BIT(NL80211_IFTYPE_STATION),
589 		.he_cap = {
590 			.has_he = true,
591 			.he_cap_elem = {
592 				.mac_cap_info[0] =
593 					IEEE80211_HE_MAC_CAP0_HTC_HE,
594 				.mac_cap_info[1] =
595 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
596 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
597 				.mac_cap_info[2] =
598 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
599 				.mac_cap_info[3] =
600 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
601 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
602 				.mac_cap_info[4] =
603 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
604 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
605 				.mac_cap_info[5] =
606 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
607 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
608 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
609 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
610 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
611 				.phy_cap_info[1] =
612 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
613 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
614 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
615 				.phy_cap_info[2] =
616 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
617 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
618 				.phy_cap_info[3] =
619 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
620 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
621 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
622 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
623 				.phy_cap_info[4] =
624 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
625 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
626 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
627 				.phy_cap_info[6] =
628 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
629 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
630 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
631 				.phy_cap_info[7] =
632 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
633 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
634 				.phy_cap_info[8] =
635 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
636 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
637 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
638 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
639 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
640 				.phy_cap_info[9] =
641 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
642 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
643 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
644 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
645 				.phy_cap_info[10] =
646 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
647 			},
648 			/*
649 			 * Set default Tx/Rx HE MCS NSS Support field.
650 			 * Indicate support for up to 2 spatial streams and all
651 			 * MCS, without any special cases
652 			 */
653 			.he_mcs_nss_supp = {
654 				.rx_mcs_80 = cpu_to_le16(0xfffa),
655 				.tx_mcs_80 = cpu_to_le16(0xfffa),
656 				.rx_mcs_160 = cpu_to_le16(0xfffa),
657 				.tx_mcs_160 = cpu_to_le16(0xfffa),
658 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
659 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
660 			},
661 			/*
662 			 * Set default PPE thresholds, with PPET16 set to 0,
663 			 * PPET8 set to 7
664 			 */
665 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
666 		},
667 		.eht_cap = {
668 			.has_eht = true,
669 			.eht_cap_elem = {
670 				.mac_cap_info[0] =
671 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
672 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
673 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
674 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 |
675 					IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC,
676 				.phy_cap_info[0] =
677 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
678 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
679 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
680 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
681 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
682 				.phy_cap_info[1] =
683 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
684 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
685 				.phy_cap_info[3] =
686 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
687 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
688 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
689 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
690 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
691 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
692 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
693 
694 				.phy_cap_info[4] =
695 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
696 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
697 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
698 				.phy_cap_info[5] =
699 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
700 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
701 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
702 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
703 				.phy_cap_info[6] =
704 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
705 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
706 				.phy_cap_info[8] =
707 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
708 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
709 			},
710 
711 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
712 			 * Rx - note we don't set the only_20mhz, but due to this
713 			 * being a union, it gets set correctly anyway.
714 			 */
715 			.eht_mcs_nss_supp = {
716 				.bw._80 = {
717 					.rx_tx_mcs9_max_nss = 0x22,
718 					.rx_tx_mcs11_max_nss = 0x22,
719 					.rx_tx_mcs13_max_nss = 0x22,
720 				},
721 				.bw._160 = {
722 					.rx_tx_mcs9_max_nss = 0x22,
723 					.rx_tx_mcs11_max_nss = 0x22,
724 					.rx_tx_mcs13_max_nss = 0x22,
725 				},
726 				.bw._320 = {
727 					.rx_tx_mcs9_max_nss = 0x22,
728 					.rx_tx_mcs11_max_nss = 0x22,
729 					.rx_tx_mcs13_max_nss = 0x22,
730 				},
731 			},
732 
733 			/*
734 			 * PPE thresholds for NSS = 2, and RU index bitmap set
735 			 * to 0xc.
736 			 */
737 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
738 		},
739 	},
740 	{
741 		.types_mask = BIT(NL80211_IFTYPE_AP),
742 		.he_cap = {
743 			.has_he = true,
744 			.he_cap_elem = {
745 				.mac_cap_info[0] =
746 					IEEE80211_HE_MAC_CAP0_HTC_HE,
747 				.mac_cap_info[1] =
748 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
749 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
750 				.mac_cap_info[3] =
751 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
752 				.phy_cap_info[1] =
753 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
754 				.phy_cap_info[2] =
755 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
756 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
757 				.phy_cap_info[3] =
758 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
759 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
760 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
761 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
762 				.phy_cap_info[6] =
763 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
764 				.phy_cap_info[7] =
765 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
766 				.phy_cap_info[8] =
767 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
768 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
769 				.phy_cap_info[9] =
770 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
771 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
772 			},
773 			/*
774 			 * Set default Tx/Rx HE MCS NSS Support field.
775 			 * Indicate support for up to 2 spatial streams and all
776 			 * MCS, without any special cases
777 			 */
778 			.he_mcs_nss_supp = {
779 				.rx_mcs_80 = cpu_to_le16(0xfffa),
780 				.tx_mcs_80 = cpu_to_le16(0xfffa),
781 				.rx_mcs_160 = cpu_to_le16(0xfffa),
782 				.tx_mcs_160 = cpu_to_le16(0xfffa),
783 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
784 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
785 			},
786 			/*
787 			 * Set default PPE thresholds, with PPET16 set to 0,
788 			 * PPET8 set to 7
789 			 */
790 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
791 		},
792 		.eht_cap = {
793 			.has_eht = true,
794 			.eht_cap_elem = {
795 				.mac_cap_info[0] =
796 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
797 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
798 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
799 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
800 				.phy_cap_info[0] =
801 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
802 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
803 				.phy_cap_info[5] =
804 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
805 			},
806 
807 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
808 			 * Rx - note we don't set the only_20mhz, but due to this
809 			 * being a union, it gets set correctly anyway.
810 			 */
811 			.eht_mcs_nss_supp = {
812 				.bw._80 = {
813 					.rx_tx_mcs9_max_nss = 0x22,
814 					.rx_tx_mcs11_max_nss = 0x22,
815 					.rx_tx_mcs13_max_nss = 0x22,
816 				},
817 				.bw._160 = {
818 					.rx_tx_mcs9_max_nss = 0x22,
819 					.rx_tx_mcs11_max_nss = 0x22,
820 					.rx_tx_mcs13_max_nss = 0x22,
821 				},
822 				.bw._320 = {
823 					.rx_tx_mcs9_max_nss = 0x22,
824 					.rx_tx_mcs11_max_nss = 0x22,
825 					.rx_tx_mcs13_max_nss = 0x22,
826 				},
827 			},
828 
829 			/*
830 			 * PPE thresholds for NSS = 2, and RU index bitmap set
831 			 * to 0xc.
832 			 */
833 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
834 		},
835 	},
836 };
837 
838 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
839 				  struct iwl_nvm_data *data,
840 				  struct ieee80211_supported_band *sband,
841 				  u8 tx_chains, u8 rx_chains)
842 {
843 	struct ieee80211_sta_ht_cap ht_cap;
844 	struct ieee80211_sta_vht_cap vht_cap = {};
845 	struct ieee80211_sband_iftype_data *iftype_data;
846 	u16 he_6ghz_capa = 0;
847 	u32 exp;
848 	int i;
849 
850 	if (sband->band != NL80211_BAND_6GHZ)
851 		return;
852 
853 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
854 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
855 			     tx_chains, rx_chains);
856 	WARN_ON(!ht_cap.ht_supported);
857 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
858 	WARN_ON(!vht_cap.vht_supported);
859 
860 	he_6ghz_capa |=
861 		u16_encode_bits(ht_cap.ampdu_density,
862 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
863 	exp = u32_get_bits(vht_cap.cap,
864 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
865 	he_6ghz_capa |=
866 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
867 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
868 	he_6ghz_capa |=
869 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
870 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
871 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
872 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
873 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
874 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
875 
876 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
877 
878 	/* we know it's writable - we set it before ourselves */
879 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
880 	for (i = 0; i < sband->n_iftype_data; i++)
881 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
882 }
883 
884 static void
885 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
886 			 struct iwl_nvm_data *data,
887 			 struct ieee80211_supported_band *sband,
888 			 struct ieee80211_sband_iftype_data *iftype_data,
889 			 u8 tx_chains, u8 rx_chains,
890 			 const struct iwl_fw *fw)
891 {
892 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
893 	bool no_320;
894 
895 	no_320 = !trans->trans_cfg->integrated &&
896 		 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB;
897 
898 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
899 		iftype_data->eht_cap.has_eht = false;
900 
901 	/* Advertise an A-MPDU exponent extension based on
902 	 * operating band
903 	 */
904 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
905 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
906 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
907 	else if (sband->band != NL80211_BAND_2GHZ)
908 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
909 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
910 	else
911 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
912 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
913 
914 	switch (sband->band) {
915 	case NL80211_BAND_2GHZ:
916 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
917 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
918 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
919 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
920 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
921 		break;
922 	case NL80211_BAND_6GHZ:
923 		if (!no_320) {
924 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
925 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
926 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
927 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
928 		}
929 		fallthrough;
930 	case NL80211_BAND_5GHZ:
931 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
932 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
933 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
934 		break;
935 	default:
936 		WARN_ON(1);
937 		break;
938 	}
939 
940 	if ((tx_chains & rx_chains) == ANT_AB) {
941 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
942 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
943 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
944 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
945 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
946 		if (!is_ap) {
947 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
948 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
949 
950 			if (iftype_data->eht_cap.has_eht) {
951 				/*
952 				 * Set the number of sounding dimensions for each
953 				 * bandwidth to 1 to indicate the maximal supported
954 				 * value of TXVECTOR parameter NUM_STS of 2
955 				 */
956 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
957 
958 				/*
959 				 * Set the MAX NC to 1 to indicate sounding feedback of
960 				 * 2 supported by the beamfomee.
961 				 */
962 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
963 			}
964 		}
965 	} else {
966 		struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
967 			&iftype_data->he_cap.he_mcs_nss_supp;
968 
969 		if (iftype_data->eht_cap.has_eht) {
970 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
971 				&iftype_data->eht_cap.eht_mcs_nss_supp;
972 
973 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
974 		}
975 
976 		if (!is_ap) {
977 			/* If not 2x2, we need to indicate 1x1 in the
978 			 * Midamble RX Max NSTS - but not for AP mode
979 			 */
980 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
981 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
982 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
983 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
984 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
985 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
986 		}
987 
988 		he_mcs_nss_supp->rx_mcs_80 |=
989 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
990 		he_mcs_nss_supp->tx_mcs_80 |=
991 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
992 		he_mcs_nss_supp->rx_mcs_160 |=
993 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
994 		he_mcs_nss_supp->tx_mcs_160 |=
995 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
996 		he_mcs_nss_supp->rx_mcs_80p80 |=
997 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
998 		he_mcs_nss_supp->tx_mcs_80p80 |=
999 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1000 	}
1001 
1002 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1003 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1004 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1005 
1006 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
1007 	case IWL_CFG_RF_TYPE_GF:
1008 	case IWL_CFG_RF_TYPE_MR:
1009 	case IWL_CFG_RF_TYPE_MS:
1010 	case IWL_CFG_RF_TYPE_FM:
1011 	case IWL_CFG_RF_TYPE_WH:
1012 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1013 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1014 		if (!is_ap)
1015 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1016 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1017 		break;
1018 	}
1019 
1020 	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1021 	    iftype_data->eht_cap.has_eht) {
1022 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1023 			~(IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
1024 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1025 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1026 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1027 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1028 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1029 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1030 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1031 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1032 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1033 			  IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK);
1034 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1035 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1036 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1037 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1038 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1039 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1040 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1041 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1042 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1043 			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1044 	}
1045 
1046 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1047 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1048 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1049 
1050 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1051 	    !is_ap) {
1052 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1053 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1054 	}
1055 
1056 	if (!trans->cfg->ht_params->stbc) {
1057 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1058 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1059 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1060 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1061 	}
1062 }
1063 
1064 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1065 				 struct iwl_nvm_data *data,
1066 				 struct ieee80211_supported_band *sband,
1067 				 u8 tx_chains, u8 rx_chains,
1068 				 const struct iwl_fw *fw)
1069 {
1070 	struct ieee80211_sband_iftype_data *iftype_data;
1071 	int i;
1072 
1073 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1074 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1075 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1076 
1077 	switch (sband->band) {
1078 	case NL80211_BAND_2GHZ:
1079 		iftype_data = data->iftd.low;
1080 		break;
1081 	case NL80211_BAND_5GHZ:
1082 		iftype_data = data->iftd.high;
1083 		break;
1084 	case NL80211_BAND_6GHZ:
1085 		iftype_data = data->iftd.uhb;
1086 		break;
1087 	default:
1088 		WARN_ON(1);
1089 		return;
1090 	}
1091 
1092 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1093 
1094 	_ieee80211_set_sband_iftype_data(sband, iftype_data,
1095 					 ARRAY_SIZE(iwl_he_eht_capa));
1096 
1097 	for (i = 0; i < sband->n_iftype_data; i++)
1098 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1099 					 tx_chains, rx_chains, fw);
1100 
1101 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1102 }
1103 
1104 void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1105 		    u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1106 {
1107 	struct ieee80211_supported_band *sband;
1108 
1109 	sband = &data->bands[NL80211_BAND_2GHZ];
1110 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1111 			     tx_chains, rx_chains);
1112 
1113 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1114 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1115 				     fw);
1116 
1117 	sband = &data->bands[NL80211_BAND_5GHZ];
1118 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1119 			     tx_chains, rx_chains);
1120 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1121 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1122 				      tx_chains, rx_chains);
1123 
1124 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1125 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1126 				     fw);
1127 
1128 	sband = &data->bands[NL80211_BAND_6GHZ];
1129 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1130 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1131 				     fw);
1132 }
1133 IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1134 
1135 static void iwl_init_sbands(struct iwl_trans *trans,
1136 			    struct iwl_nvm_data *data,
1137 			    const void *nvm_ch_flags, u8 tx_chains,
1138 			    u8 rx_chains, u32 sbands_flags, bool v4,
1139 			    const struct iwl_fw *fw)
1140 {
1141 	struct device *dev = trans->dev;
1142 	const struct iwl_cfg *cfg = trans->cfg;
1143 	int n_channels;
1144 	int n_used = 0;
1145 	struct ieee80211_supported_band *sband;
1146 
1147 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1148 					  sbands_flags, v4);
1149 	sband = &data->bands[NL80211_BAND_2GHZ];
1150 	sband->band = NL80211_BAND_2GHZ;
1151 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1152 	sband->n_bitrates = N_RATES_24;
1153 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1154 					  NL80211_BAND_2GHZ);
1155 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1156 			     tx_chains, rx_chains);
1157 
1158 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1159 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1160 				     fw);
1161 
1162 	sband = &data->bands[NL80211_BAND_5GHZ];
1163 	sband->band = NL80211_BAND_5GHZ;
1164 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1165 	sband->n_bitrates = N_RATES_52;
1166 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1167 					  NL80211_BAND_5GHZ);
1168 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1169 			     tx_chains, rx_chains);
1170 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1171 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1172 				      tx_chains, rx_chains);
1173 
1174 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1175 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1176 				     fw);
1177 
1178 	/* 6GHz band. */
1179 	sband = &data->bands[NL80211_BAND_6GHZ];
1180 	sband->band = NL80211_BAND_6GHZ;
1181 	/* use the same rates as 5GHz band */
1182 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1183 	sband->n_bitrates = N_RATES_52;
1184 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1185 					  NL80211_BAND_6GHZ);
1186 
1187 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1188 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1189 				     fw);
1190 	else
1191 		sband->n_channels = 0;
1192 	if (n_channels != n_used)
1193 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1194 			    n_used, n_channels);
1195 }
1196 
1197 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1198 		       const __le16 *phy_sku)
1199 {
1200 	if (cfg->nvm_type != IWL_NVM_EXT)
1201 		return le16_to_cpup(nvm_sw + SKU);
1202 
1203 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1204 }
1205 
1206 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1207 {
1208 	if (cfg->nvm_type != IWL_NVM_EXT)
1209 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1210 	else
1211 		return le32_to_cpup((const __le32 *)(nvm_sw +
1212 						     NVM_VERSION_EXT_NVM));
1213 }
1214 
1215 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1216 			     const __le16 *phy_sku)
1217 {
1218 	if (cfg->nvm_type != IWL_NVM_EXT)
1219 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1220 
1221 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1222 
1223 }
1224 
1225 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1226 {
1227 	int n_hw_addr;
1228 
1229 	if (cfg->nvm_type != IWL_NVM_EXT)
1230 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1231 
1232 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1233 
1234 	return n_hw_addr & N_HW_ADDR_MASK;
1235 }
1236 
1237 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1238 			      struct iwl_nvm_data *data,
1239 			      u32 radio_cfg)
1240 {
1241 	if (cfg->nvm_type != IWL_NVM_EXT) {
1242 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1243 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1244 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1245 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1246 		return;
1247 	}
1248 
1249 	/* set the radio configuration for family 8000 */
1250 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1251 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1252 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1253 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1254 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1255 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1256 }
1257 
1258 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1259 {
1260 	const u8 *hw_addr;
1261 
1262 	hw_addr = (const u8 *)&mac_addr0;
1263 	dest[0] = hw_addr[3];
1264 	dest[1] = hw_addr[2];
1265 	dest[2] = hw_addr[1];
1266 	dest[3] = hw_addr[0];
1267 
1268 	hw_addr = (const u8 *)&mac_addr1;
1269 	dest[4] = hw_addr[1];
1270 	dest[5] = hw_addr[0];
1271 }
1272 
1273 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1274 					struct iwl_nvm_data *data)
1275 {
1276 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1277 						  CSR_MAC_ADDR0_STRAP(trans)));
1278 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1279 						  CSR_MAC_ADDR1_STRAP(trans)));
1280 
1281 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1282 	/*
1283 	 * If the OEM fused a valid address, use it instead of the one in the
1284 	 * OTP
1285 	 */
1286 	if (is_valid_ether_addr(data->hw_addr))
1287 		return;
1288 
1289 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1290 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1291 
1292 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1293 }
1294 
1295 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1296 					   const struct iwl_cfg *cfg,
1297 					   struct iwl_nvm_data *data,
1298 					   const __le16 *mac_override,
1299 					   const __be16 *nvm_hw)
1300 {
1301 	const u8 *hw_addr;
1302 
1303 	if (mac_override) {
1304 		static const u8 reserved_mac[] = {
1305 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1306 		};
1307 
1308 		hw_addr = (const u8 *)(mac_override +
1309 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1310 
1311 		/*
1312 		 * Store the MAC address from MAO section.
1313 		 * No byte swapping is required in MAO section
1314 		 */
1315 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1316 
1317 		/*
1318 		 * Force the use of the OTP MAC address in case of reserved MAC
1319 		 * address in the NVM, or if address is given but invalid.
1320 		 */
1321 		if (is_valid_ether_addr(data->hw_addr) &&
1322 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1323 			return;
1324 
1325 		IWL_ERR(trans,
1326 			"mac address from nvm override section is not valid\n");
1327 	}
1328 
1329 	if (nvm_hw) {
1330 		/* read the mac address from WFMP registers */
1331 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1332 						WFMP_MAC_ADDR_0));
1333 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1334 						WFMP_MAC_ADDR_1));
1335 
1336 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1337 
1338 		return;
1339 	}
1340 
1341 	IWL_ERR(trans, "mac address is not found\n");
1342 }
1343 
1344 static int iwl_set_hw_address(struct iwl_trans *trans,
1345 			      const struct iwl_cfg *cfg,
1346 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1347 			      const __le16 *mac_override)
1348 {
1349 	if (cfg->mac_addr_from_csr) {
1350 		iwl_set_hw_address_from_csr(trans, data);
1351 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1352 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1353 
1354 		/* The byte order is little endian 16 bit, meaning 214365 */
1355 		data->hw_addr[0] = hw_addr[1];
1356 		data->hw_addr[1] = hw_addr[0];
1357 		data->hw_addr[2] = hw_addr[3];
1358 		data->hw_addr[3] = hw_addr[2];
1359 		data->hw_addr[4] = hw_addr[5];
1360 		data->hw_addr[5] = hw_addr[4];
1361 	} else {
1362 		iwl_set_hw_address_family_8000(trans, cfg, data,
1363 					       mac_override, nvm_hw);
1364 	}
1365 
1366 	if (!is_valid_ether_addr(data->hw_addr)) {
1367 		IWL_ERR(trans, "no valid mac address was found\n");
1368 		return -EINVAL;
1369 	}
1370 
1371 	if (!trans->csme_own)
1372 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1373 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1374 
1375 	return 0;
1376 }
1377 
1378 static bool
1379 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1380 			const __be16 *nvm_hw)
1381 {
1382 	/*
1383 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1384 	 * some 7000-family OTPs erroneously allow wide channels in
1385 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1386 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1387 	 * 9.  In those cases, we need to force-disable wide channels
1388 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1389 	 * to use them.
1390 	 */
1391 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1392 		/*
1393 		 * Unlike the other sections in the NVM, the hw
1394 		 * section uses big-endian.
1395 		 */
1396 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1397 		u8 sku = (subsystem_id & 0x1e) >> 1;
1398 
1399 		if (sku == 5 || sku == 9) {
1400 			IWL_DEBUG_EEPROM(trans->dev,
1401 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1402 					 subsystem_id, sku);
1403 			return true;
1404 		}
1405 	}
1406 
1407 	return false;
1408 }
1409 
1410 struct iwl_nvm_data *
1411 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1412 		       const struct iwl_mei_nvm *mei_nvm,
1413 		       const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1414 {
1415 	struct iwl_nvm_data *data;
1416 	u32 sbands_flags = 0;
1417 	u8 rx_chains = fw->valid_rx_ant;
1418 	u8 tx_chains = fw->valid_rx_ant;
1419 
1420 	if (cfg->uhb_supported)
1421 		data = kzalloc(struct_size(data, channels,
1422 					   IWL_NVM_NUM_CHANNELS_UHB),
1423 					   GFP_KERNEL);
1424 	else
1425 		data = kzalloc(struct_size(data, channels,
1426 					   IWL_NVM_NUM_CHANNELS_EXT),
1427 					   GFP_KERNEL);
1428 	if (!data)
1429 		return NULL;
1430 
1431 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1432 		     IWL_NVM_NUM_CHANNELS_UHB);
1433 	data->nvm_version = mei_nvm->nvm_version;
1434 
1435 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1436 	if (data->valid_tx_ant)
1437 		tx_chains &= data->valid_tx_ant;
1438 	if (data->valid_rx_ant)
1439 		rx_chains &= data->valid_rx_ant;
1440 	if (tx_ant)
1441 		tx_chains &= tx_ant;
1442 	if (rx_ant)
1443 		rx_chains &= rx_ant;
1444 
1445 	data->sku_cap_mimo_disabled = false;
1446 	data->sku_cap_band_24ghz_enable = true;
1447 	data->sku_cap_band_52ghz_enable = true;
1448 	data->sku_cap_11n_enable =
1449 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1450 	data->sku_cap_11ac_enable = true;
1451 	data->sku_cap_11ax_enable =
1452 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1453 
1454 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1455 
1456 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1457 	/* If no valid mac address was found - bail out */
1458 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1459 		kfree(data);
1460 		return NULL;
1461 	}
1462 
1463 	if (data->lar_enabled &&
1464 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1465 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1466 
1467 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1468 			sbands_flags, true, fw);
1469 
1470 	return data;
1471 }
1472 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1473 
1474 struct iwl_nvm_data *
1475 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1476 		   const struct iwl_fw *fw,
1477 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1478 		   const __le16 *nvm_calib, const __le16 *regulatory,
1479 		   const __le16 *mac_override, const __le16 *phy_sku,
1480 		   u8 tx_chains, u8 rx_chains)
1481 {
1482 	struct iwl_nvm_data *data;
1483 	bool lar_enabled;
1484 	u32 sku, radio_cfg;
1485 	u32 sbands_flags = 0;
1486 	u16 lar_config;
1487 	const __le16 *ch_section;
1488 
1489 	if (cfg->uhb_supported)
1490 		data = kzalloc(struct_size(data, channels,
1491 					   IWL_NVM_NUM_CHANNELS_UHB),
1492 					   GFP_KERNEL);
1493 	else if (cfg->nvm_type != IWL_NVM_EXT)
1494 		data = kzalloc(struct_size(data, channels,
1495 					   IWL_NVM_NUM_CHANNELS),
1496 					   GFP_KERNEL);
1497 	else
1498 		data = kzalloc(struct_size(data, channels,
1499 					   IWL_NVM_NUM_CHANNELS_EXT),
1500 					   GFP_KERNEL);
1501 	if (!data)
1502 		return NULL;
1503 
1504 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1505 
1506 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1507 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1508 	if (data->valid_tx_ant)
1509 		tx_chains &= data->valid_tx_ant;
1510 	if (data->valid_rx_ant)
1511 		rx_chains &= data->valid_rx_ant;
1512 
1513 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1514 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1515 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1516 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1517 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1518 		data->sku_cap_11n_enable = false;
1519 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1520 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1521 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1522 
1523 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1524 
1525 	if (cfg->nvm_type != IWL_NVM_EXT) {
1526 		/* Checking for required sections */
1527 		if (!nvm_calib) {
1528 			IWL_ERR(trans,
1529 				"Can't parse empty Calib NVM sections\n");
1530 			kfree(data);
1531 			return NULL;
1532 		}
1533 
1534 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1535 			     &regulatory[NVM_CHANNELS_SDP] :
1536 			     &nvm_sw[NVM_CHANNELS];
1537 
1538 		/* in family 8000 Xtal calibration values moved to OTP */
1539 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1540 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1541 		lar_enabled = true;
1542 	} else {
1543 		u16 lar_offset = data->nvm_version < 0xE39 ?
1544 				 NVM_LAR_OFFSET_OLD :
1545 				 NVM_LAR_OFFSET;
1546 
1547 		lar_config = le16_to_cpup(regulatory + lar_offset);
1548 		data->lar_enabled = !!(lar_config &
1549 				       NVM_LAR_ENABLED);
1550 		lar_enabled = data->lar_enabled;
1551 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1552 	}
1553 
1554 	/* If no valid mac address was found - bail out */
1555 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1556 		kfree(data);
1557 		return NULL;
1558 	}
1559 
1560 	if (lar_enabled &&
1561 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1562 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1563 
1564 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1565 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1566 
1567 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1568 			sbands_flags, false, fw);
1569 	data->calib_version = 255;
1570 
1571 	return data;
1572 }
1573 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1574 
1575 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1576 				       int ch_idx, u16 nvm_flags,
1577 				       struct iwl_reg_capa reg_capa,
1578 				       const struct iwl_cfg *cfg)
1579 {
1580 	u32 flags = NL80211_RRF_NO_HT40;
1581 
1582 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1583 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1584 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1585 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1586 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1587 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1588 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1589 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1590 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1591 		else
1592 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1593 	}
1594 
1595 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1596 		flags |= NL80211_RRF_NO_80MHZ;
1597 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1598 		flags |= NL80211_RRF_NO_160MHZ;
1599 
1600 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1601 		flags |= NL80211_RRF_NO_IR;
1602 
1603 	if (nvm_flags & NVM_CHANNEL_RADAR)
1604 		flags |= NL80211_RRF_DFS;
1605 
1606 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1607 		flags |= NL80211_RRF_NO_OUTDOOR;
1608 
1609 	/* Set the GO concurrent flag only in case that NO_IR is set.
1610 	 * Otherwise it is meaningless
1611 	 */
1612 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1613 		if (flags & NL80211_RRF_NO_IR)
1614 			flags |= NL80211_RRF_GO_CONCURRENT;
1615 		if (flags & NL80211_RRF_DFS) {
1616 			flags |= NL80211_RRF_DFS_CONCURRENT;
1617 			/* Our device doesn't set active bit for DFS channels
1618 			 * however, once marked as DFS no-ir is not needed.
1619 			 */
1620 			flags &= ~NL80211_RRF_NO_IR;
1621 		}
1622 	}
1623 	/*
1624 	 * reg_capa is per regulatory domain so apply it for every channel
1625 	 */
1626 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1627 		if (!reg_capa.allow_40mhz)
1628 			flags |= NL80211_RRF_NO_HT40;
1629 
1630 		if (!reg_capa.allow_80mhz)
1631 			flags |= NL80211_RRF_NO_80MHZ;
1632 
1633 		if (!reg_capa.allow_160mhz)
1634 			flags |= NL80211_RRF_NO_160MHZ;
1635 
1636 		if (!reg_capa.allow_320mhz)
1637 			flags |= NL80211_RRF_NO_320MHZ;
1638 	}
1639 
1640 	if (reg_capa.disable_11ax)
1641 		flags |= NL80211_RRF_NO_HE;
1642 
1643 	if (reg_capa.disable_11be)
1644 		flags |= NL80211_RRF_NO_EHT;
1645 
1646 	return flags;
1647 }
1648 
1649 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1650 {
1651 	struct iwl_reg_capa reg_capa = {};
1652 
1653 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1654 		reg_capa.allow_40mhz = true;
1655 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1656 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1657 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1658 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1659 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1660 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1661 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1662 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1663 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1664 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1665 	} else {
1666 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1667 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1668 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1669 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1670 	}
1671 	return reg_capa;
1672 }
1673 
1674 struct ieee80211_regdomain *
1675 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1676 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1677 		       u16 geo_info, u32 cap, u8 resp_ver)
1678 {
1679 	int ch_idx;
1680 	u16 ch_flags;
1681 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1682 	const u16 *nvm_chan;
1683 	struct ieee80211_regdomain *regd, *copy_rd;
1684 	struct ieee80211_reg_rule *rule;
1685 	enum nl80211_band band;
1686 	int center_freq, prev_center_freq = 0;
1687 	int valid_rules = 0;
1688 	bool new_rule;
1689 	int max_num_ch;
1690 	struct iwl_reg_capa reg_capa;
1691 
1692 	if (cfg->uhb_supported) {
1693 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1694 		nvm_chan = iwl_uhb_nvm_channels;
1695 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1696 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1697 		nvm_chan = iwl_ext_nvm_channels;
1698 	} else {
1699 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1700 		nvm_chan = iwl_nvm_channels;
1701 	}
1702 
1703 	if (num_of_ch > max_num_ch) {
1704 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1705 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1706 			      num_of_ch, max_num_ch);
1707 		num_of_ch = max_num_ch;
1708 	}
1709 
1710 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1711 		return ERR_PTR(-EINVAL);
1712 
1713 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1714 		      num_of_ch);
1715 
1716 	/* build a regdomain rule for every valid channel */
1717 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1718 	if (!regd)
1719 		return ERR_PTR(-ENOMEM);
1720 
1721 	/* set alpha2 from FW. */
1722 	regd->alpha2[0] = fw_mcc >> 8;
1723 	regd->alpha2[1] = fw_mcc & 0xff;
1724 
1725 	/* parse regulatory capability flags */
1726 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1727 
1728 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1729 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1730 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1731 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1732 							     band);
1733 		new_rule = false;
1734 
1735 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1736 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1737 						    nvm_chan[ch_idx], ch_flags);
1738 			continue;
1739 		}
1740 
1741 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1742 							     ch_flags, reg_capa,
1743 							     cfg);
1744 
1745 		/* we can't continue the same rule */
1746 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1747 		    center_freq - prev_center_freq > 20) {
1748 			valid_rules++;
1749 			new_rule = true;
1750 		}
1751 
1752 		rule = &regd->reg_rules[valid_rules - 1];
1753 
1754 		if (new_rule)
1755 			rule->freq_range.start_freq_khz =
1756 						MHZ_TO_KHZ(center_freq - 10);
1757 
1758 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1759 
1760 		/* this doesn't matter - not used by FW */
1761 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1762 		rule->power_rule.max_eirp =
1763 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1764 
1765 		rule->flags = reg_rule_flags;
1766 
1767 		/* rely on auto-calculation to merge BW of contiguous chans */
1768 		rule->flags |= NL80211_RRF_AUTO_BW;
1769 		rule->freq_range.max_bandwidth_khz = 0;
1770 
1771 		prev_center_freq = center_freq;
1772 		prev_reg_rule_flags = reg_rule_flags;
1773 
1774 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1775 					    nvm_chan[ch_idx], ch_flags);
1776 
1777 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1778 		    band == NL80211_BAND_2GHZ)
1779 			continue;
1780 
1781 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1782 	}
1783 
1784 	/*
1785 	 * Certain firmware versions might report no valid channels
1786 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1787 	 * running. We'll get out of this situation later when the
1788 	 * rfkill is removed and we update the regdomain again, but
1789 	 * since cfg80211 doesn't accept an empty regdomain, add a
1790 	 * dummy (unusable) rule here in this case so we can init.
1791 	 */
1792 	if (!valid_rules) {
1793 		valid_rules = 1;
1794 		rule = &regd->reg_rules[valid_rules - 1];
1795 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1796 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1797 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1798 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1799 		rule->power_rule.max_eirp =
1800 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1801 	}
1802 
1803 	regd->n_reg_rules = valid_rules;
1804 
1805 	/*
1806 	 * Narrow down regdom for unused regulatory rules to prevent hole
1807 	 * between reg rules to wmm rules.
1808 	 */
1809 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1810 			  GFP_KERNEL);
1811 	if (!copy_rd)
1812 		copy_rd = ERR_PTR(-ENOMEM);
1813 
1814 	kfree(regd);
1815 	return copy_rd;
1816 }
1817 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1818 
1819 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1820 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1821 #define MAX_NVM_FILE_LEN	16384
1822 
1823 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1824 		    unsigned int len)
1825 {
1826 #define IWL_4165_DEVICE_ID	0x5501
1827 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1828 
1829 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1830 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1831 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1832 		/* OTP 0x52 bug work around: it's a 1x1 device */
1833 		data[3] = ANT_B | (ANT_B << 4);
1834 }
1835 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1836 
1837 /*
1838  * Reads external NVM from a file into mvm->nvm_sections
1839  *
1840  * HOW TO CREATE THE NVM FILE FORMAT:
1841  * ------------------------------
1842  * 1. create hex file, format:
1843  *      3800 -> header
1844  *      0000 -> header
1845  *      5a40 -> data
1846  *
1847  *   rev - 6 bit (word1)
1848  *   len - 10 bit (word1)
1849  *   id - 4 bit (word2)
1850  *   rsv - 12 bit (word2)
1851  *
1852  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1853  *
1854  * 3. create binary file from the hex file
1855  *
1856  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1857  */
1858 int iwl_read_external_nvm(struct iwl_trans *trans,
1859 			  const char *nvm_file_name,
1860 			  struct iwl_nvm_section *nvm_sections)
1861 {
1862 	int ret, section_size;
1863 	u16 section_id;
1864 	const struct firmware *fw_entry;
1865 	const struct {
1866 		__le16 word1;
1867 		__le16 word2;
1868 		u8 data[];
1869 	} *file_sec;
1870 	const u8 *eof;
1871 	u8 *temp;
1872 	int max_section_size;
1873 	const __le32 *dword_buff;
1874 
1875 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1876 #define NVM_WORD2_ID(x) (x >> 12)
1877 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1878 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1879 #define NVM_HEADER_0	(0x2A504C54)
1880 #define NVM_HEADER_1	(0x4E564D2A)
1881 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1882 
1883 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1884 
1885 	/* Maximal size depends on NVM version */
1886 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1887 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1888 	else
1889 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1890 
1891 	/*
1892 	 * Obtain NVM image via request_firmware. Since we already used
1893 	 * request_firmware_nowait() for the firmware binary load and only
1894 	 * get here after that we assume the NVM request can be satisfied
1895 	 * synchronously.
1896 	 */
1897 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1898 	if (ret) {
1899 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1900 			nvm_file_name, ret);
1901 		return ret;
1902 	}
1903 
1904 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1905 		 nvm_file_name, fw_entry->size);
1906 
1907 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1908 		IWL_ERR(trans, "NVM file too large\n");
1909 		ret = -EINVAL;
1910 		goto out;
1911 	}
1912 
1913 	eof = fw_entry->data + fw_entry->size;
1914 	dword_buff = (const __le32 *)fw_entry->data;
1915 
1916 	/* some NVM file will contain a header.
1917 	 * The header is identified by 2 dwords header as follow:
1918 	 * dword[0] = 0x2A504C54
1919 	 * dword[1] = 0x4E564D2A
1920 	 *
1921 	 * This header must be skipped when providing the NVM data to the FW.
1922 	 */
1923 	if (fw_entry->size > NVM_HEADER_SIZE &&
1924 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1925 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1926 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1927 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1928 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1929 			 le32_to_cpu(dword_buff[3]));
1930 
1931 		/* nvm file validation, dword_buff[2] holds the file version */
1932 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1933 		    trans->hw_rev_step == SILICON_C_STEP &&
1934 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1935 			ret = -EFAULT;
1936 			goto out;
1937 		}
1938 	} else {
1939 		file_sec = (const void *)fw_entry->data;
1940 	}
1941 
1942 	while (true) {
1943 		if (file_sec->data > eof) {
1944 			IWL_ERR(trans,
1945 				"ERROR - NVM file too short for section header\n");
1946 			ret = -EINVAL;
1947 			break;
1948 		}
1949 
1950 		/* check for EOF marker */
1951 		if (!file_sec->word1 && !file_sec->word2) {
1952 			ret = 0;
1953 			break;
1954 		}
1955 
1956 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1957 			section_size =
1958 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1959 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1960 		} else {
1961 			section_size = 2 * EXT_NVM_WORD2_LEN(
1962 						le16_to_cpu(file_sec->word2));
1963 			section_id = EXT_NVM_WORD1_ID(
1964 						le16_to_cpu(file_sec->word1));
1965 		}
1966 
1967 		if (section_size > max_section_size) {
1968 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1969 				section_size);
1970 			ret = -EINVAL;
1971 			break;
1972 		}
1973 
1974 		if (!section_size) {
1975 			IWL_ERR(trans, "ERROR - section empty\n");
1976 			ret = -EINVAL;
1977 			break;
1978 		}
1979 
1980 		if (file_sec->data + section_size > eof) {
1981 			IWL_ERR(trans,
1982 				"ERROR - NVM file too short for section (%d bytes)\n",
1983 				section_size);
1984 			ret = -EINVAL;
1985 			break;
1986 		}
1987 
1988 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1989 			 "Invalid NVM section ID %d\n", section_id)) {
1990 			ret = -EINVAL;
1991 			break;
1992 		}
1993 
1994 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1995 		if (!temp) {
1996 			ret = -ENOMEM;
1997 			break;
1998 		}
1999 
2000 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
2001 
2002 		kfree(nvm_sections[section_id].data);
2003 		nvm_sections[section_id].data = temp;
2004 		nvm_sections[section_id].length = section_size;
2005 
2006 		/* advance to the next section */
2007 		file_sec = (const void *)(file_sec->data + section_size);
2008 	}
2009 out:
2010 	release_firmware(fw_entry);
2011 	return ret;
2012 }
2013 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2014 
2015 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2016 				 const struct iwl_fw *fw,
2017 				 u8 set_tx_ant, u8 set_rx_ant)
2018 {
2019 	struct iwl_nvm_get_info cmd = {};
2020 	struct iwl_nvm_data *nvm;
2021 	struct iwl_host_cmd hcmd = {
2022 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2023 		.data = { &cmd, },
2024 		.len = { sizeof(cmd) },
2025 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2026 	};
2027 	int  ret;
2028 	bool empty_otp;
2029 	u32 mac_flags;
2030 	u32 sbands_flags = 0;
2031 	u8 tx_ant;
2032 	u8 rx_ant;
2033 
2034 	/*
2035 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2036 	 * in v3, except for the channel profile part of the
2037 	 * regulatory.  So we can just access the new struct, with the
2038 	 * exception of the latter.
2039 	 */
2040 	struct iwl_nvm_get_info_rsp *rsp;
2041 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2042 	bool v4 = fw_has_api(&fw->ucode_capa,
2043 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2044 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2045 	void *channel_profile;
2046 
2047 	ret = iwl_trans_send_cmd(trans, &hcmd);
2048 	if (ret)
2049 		return ERR_PTR(ret);
2050 
2051 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2052 		 "Invalid payload len in NVM response from FW %d",
2053 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2054 		ret = -EINVAL;
2055 		goto out;
2056 	}
2057 
2058 	rsp = (void *)hcmd.resp_pkt->data;
2059 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2060 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2061 	if (empty_otp)
2062 		IWL_INFO(trans, "OTP is empty\n");
2063 
2064 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2065 	if (!nvm) {
2066 		ret = -ENOMEM;
2067 		goto out;
2068 	}
2069 
2070 	iwl_set_hw_address_from_csr(trans, nvm);
2071 	/* TODO: if platform NVM has MAC address - override it here */
2072 
2073 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2074 		IWL_ERR(trans, "no valid mac address was found\n");
2075 		ret = -EINVAL;
2076 		goto err_free;
2077 	}
2078 
2079 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2080 
2081 	/* Initialize general data */
2082 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2083 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2084 	if (nvm->n_hw_addrs == 0)
2085 		IWL_WARN(trans,
2086 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2087 			 empty_otp);
2088 
2089 	/* Initialize MAC sku data */
2090 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2091 	nvm->sku_cap_11ac_enable =
2092 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2093 	nvm->sku_cap_11n_enable =
2094 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2095 	nvm->sku_cap_11ax_enable =
2096 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2097 	nvm->sku_cap_band_24ghz_enable =
2098 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2099 	nvm->sku_cap_band_52ghz_enable =
2100 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2101 	nvm->sku_cap_mimo_disabled =
2102 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2103 	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
2104 		nvm->sku_cap_11be_enable = true;
2105 
2106 	/* Initialize PHY sku data */
2107 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2108 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2109 
2110 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2111 	    fw_has_capa(&fw->ucode_capa,
2112 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2113 		nvm->lar_enabled = true;
2114 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2115 	}
2116 
2117 	rsp_v3 = (void *)rsp;
2118 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2119 			  (void *)rsp_v3->regulatory.channel_profile;
2120 
2121 	tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2122 	rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2123 
2124 	if (set_tx_ant)
2125 		tx_ant &= set_tx_ant;
2126 	if (set_rx_ant)
2127 		rx_ant &= set_rx_ant;
2128 
2129 	iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2130 			sbands_flags, v4, fw);
2131 
2132 	iwl_free_resp(&hcmd);
2133 	return nvm;
2134 
2135 err_free:
2136 	kfree(nvm);
2137 out:
2138 	iwl_free_resp(&hcmd);
2139 	return ERR_PTR(ret);
2140 }
2141 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2142