1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2005-2014, 2018-2023 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/types.h> 8 #include <linux/slab.h> 9 #include <linux/export.h> 10 #include <linux/etherdevice.h> 11 #include <linux/pci.h> 12 #include <linux/firmware.h> 13 14 #include "iwl-drv.h" 15 #include "iwl-modparams.h" 16 #include "iwl-nvm-parse.h" 17 #include "iwl-prph.h" 18 #include "iwl-io.h" 19 #include "iwl-csr.h" 20 #include "fw/acpi.h" 21 #include "fw/api/nvm-reg.h" 22 #include "fw/api/commands.h" 23 #include "fw/api/cmdhdr.h" 24 #include "fw/img.h" 25 #include "mei/iwl-mei.h" 26 27 /* NVM offsets (in words) definitions */ 28 enum nvm_offsets { 29 /* NVM HW-Section offset (in words) definitions */ 30 SUBSYSTEM_ID = 0x0A, 31 HW_ADDR = 0x15, 32 33 /* NVM SW-Section offset (in words) definitions */ 34 NVM_SW_SECTION = 0x1C0, 35 NVM_VERSION = 0, 36 RADIO_CFG = 1, 37 SKU = 2, 38 N_HW_ADDRS = 3, 39 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, 40 41 /* NVM REGULATORY -Section offset (in words) definitions */ 42 NVM_CHANNELS_SDP = 0, 43 }; 44 45 enum ext_nvm_offsets { 46 /* NVM HW-Section offset (in words) definitions */ 47 48 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1, 49 50 /* NVM SW-Section offset (in words) definitions */ 51 NVM_VERSION_EXT_NVM = 0, 52 N_HW_ADDRS_FAMILY_8000 = 3, 53 54 /* NVM PHY_SKU-Section offset (in words) definitions */ 55 RADIO_CFG_FAMILY_EXT_NVM = 0, 56 SKU_FAMILY_8000 = 2, 57 58 /* NVM REGULATORY -Section offset (in words) definitions */ 59 NVM_CHANNELS_EXTENDED = 0, 60 NVM_LAR_OFFSET_OLD = 0x4C7, 61 NVM_LAR_OFFSET = 0x507, 62 NVM_LAR_ENABLED = 0x7, 63 }; 64 65 /* SKU Capabilities (actual values from NVM definition) */ 66 enum nvm_sku_bits { 67 NVM_SKU_CAP_BAND_24GHZ = BIT(0), 68 NVM_SKU_CAP_BAND_52GHZ = BIT(1), 69 NVM_SKU_CAP_11N_ENABLE = BIT(2), 70 NVM_SKU_CAP_11AC_ENABLE = BIT(3), 71 NVM_SKU_CAP_MIMO_DISABLE = BIT(5), 72 }; 73 74 /* 75 * These are the channel numbers in the order that they are stored in the NVM 76 */ 77 static const u16 iwl_nvm_channels[] = { 78 /* 2.4 GHz */ 79 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 80 /* 5 GHz */ 81 36, 40, 44, 48, 52, 56, 60, 64, 82 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 83 149, 153, 157, 161, 165 84 }; 85 86 static const u16 iwl_ext_nvm_channels[] = { 87 /* 2.4 GHz */ 88 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 89 /* 5 GHz */ 90 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 91 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 92 149, 153, 157, 161, 165, 169, 173, 177, 181 93 }; 94 95 static const u16 iwl_uhb_nvm_channels[] = { 96 /* 2.4 GHz */ 97 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 98 /* 5 GHz */ 99 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 100 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 101 149, 153, 157, 161, 165, 169, 173, 177, 181, 102 /* 6-7 GHz */ 103 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 104 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 105 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 106 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233 107 }; 108 109 #define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) 110 #define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels) 111 #define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels) 112 #define NUM_2GHZ_CHANNELS 14 113 #define NUM_5GHZ_CHANNELS 37 114 #define FIRST_2GHZ_HT_MINUS 5 115 #define LAST_2GHZ_HT_PLUS 9 116 #define N_HW_ADDR_MASK 0xF 117 118 /* rate data (static) */ 119 static struct ieee80211_rate iwl_cfg80211_rates[] = { 120 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, 121 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, 122 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 123 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, 124 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 125 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, 126 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 127 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, 128 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, 129 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, 130 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, 131 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, 132 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, 133 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, 134 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, 135 }; 136 #define RATES_24_OFFS 0 137 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) 138 #define RATES_52_OFFS 4 139 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) 140 141 /** 142 * enum iwl_nvm_channel_flags - channel flags in NVM 143 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo 144 * @NVM_CHANNEL_IBSS: usable as an IBSS channel 145 * @NVM_CHANNEL_ACTIVE: active scanning allowed 146 * @NVM_CHANNEL_RADAR: radar detection required 147 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed 148 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS 149 * on same channel on 2.4 or same UNII band on 5.2 150 * @NVM_CHANNEL_UNIFORM: uniform spreading required 151 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay 152 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay 153 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay 154 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay 155 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?) 156 * @NVM_CHANNEL_VLP: client support connection to UHB VLP AP 157 * @NVM_CHANNEL_AFC: client support connection to UHB AFC AP 158 */ 159 enum iwl_nvm_channel_flags { 160 NVM_CHANNEL_VALID = BIT(0), 161 NVM_CHANNEL_IBSS = BIT(1), 162 NVM_CHANNEL_ACTIVE = BIT(3), 163 NVM_CHANNEL_RADAR = BIT(4), 164 NVM_CHANNEL_INDOOR_ONLY = BIT(5), 165 NVM_CHANNEL_GO_CONCURRENT = BIT(6), 166 NVM_CHANNEL_UNIFORM = BIT(7), 167 NVM_CHANNEL_20MHZ = BIT(8), 168 NVM_CHANNEL_40MHZ = BIT(9), 169 NVM_CHANNEL_80MHZ = BIT(10), 170 NVM_CHANNEL_160MHZ = BIT(11), 171 NVM_CHANNEL_DC_HIGH = BIT(12), 172 NVM_CHANNEL_VLP = BIT(13), 173 NVM_CHANNEL_AFC = BIT(14), 174 }; 175 176 /** 177 * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory 178 * domain. 179 * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the 180 * 2.4Ghz band is allowed. 181 * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the 182 * 5Ghz band is allowed. 183 * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed 184 * for this regulatory domain (valid only in 5Ghz). 185 * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed 186 * for this regulatory domain (valid only in 5Ghz). 187 * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed. 188 * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed. 189 * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden 190 * for this regulatory domain (valid only in 5Ghz). 191 * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed. 192 * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain. 193 */ 194 enum iwl_reg_capa_flags_v1 { 195 REG_CAPA_V1_BF_CCD_LOW_BAND = BIT(0), 196 REG_CAPA_V1_BF_CCD_HIGH_BAND = BIT(1), 197 REG_CAPA_V1_160MHZ_ALLOWED = BIT(2), 198 REG_CAPA_V1_80MHZ_ALLOWED = BIT(3), 199 REG_CAPA_V1_MCS_8_ALLOWED = BIT(4), 200 REG_CAPA_V1_MCS_9_ALLOWED = BIT(5), 201 REG_CAPA_V1_40MHZ_FORBIDDEN = BIT(7), 202 REG_CAPA_V1_DC_HIGH_ENABLED = BIT(9), 203 REG_CAPA_V1_11AX_DISABLED = BIT(10), 204 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */ 205 206 /** 207 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory 208 * domain (version 2). 209 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are 210 * disabled. 211 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the 212 * 2.4Ghz band is allowed. 213 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the 214 * 5Ghz band is allowed. 215 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed 216 * for this regulatory domain (valid only in 5Ghz). 217 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed 218 * for this regulatory domain (valid only in 5Ghz). 219 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed. 220 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed. 221 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118, 222 * 126, 122) are disabled. 223 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed 224 * for this regulatory domain (uvalid only in 5Ghz). 225 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain. 226 */ 227 enum iwl_reg_capa_flags_v2 { 228 REG_CAPA_V2_STRADDLE_DISABLED = BIT(0), 229 REG_CAPA_V2_BF_CCD_LOW_BAND = BIT(1), 230 REG_CAPA_V2_BF_CCD_HIGH_BAND = BIT(2), 231 REG_CAPA_V2_160MHZ_ALLOWED = BIT(3), 232 REG_CAPA_V2_80MHZ_ALLOWED = BIT(4), 233 REG_CAPA_V2_MCS_8_ALLOWED = BIT(5), 234 REG_CAPA_V2_MCS_9_ALLOWED = BIT(6), 235 REG_CAPA_V2_WEATHER_DISABLED = BIT(7), 236 REG_CAPA_V2_40MHZ_ALLOWED = BIT(8), 237 REG_CAPA_V2_11AX_DISABLED = BIT(10), 238 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */ 239 240 /** 241 * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory 242 * domain. 243 * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed 244 * for this regulatory domain (valid only in 5Ghz). 245 * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed 246 * for this regulatory domain (valid only in 5Ghz). 247 * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed. 248 * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed. 249 * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain. 250 * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain. 251 * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed 252 * for this regulatory domain (valid only in 5GHz). 253 */ 254 enum iwl_reg_capa_flags_v4 { 255 REG_CAPA_V4_160MHZ_ALLOWED = BIT(3), 256 REG_CAPA_V4_80MHZ_ALLOWED = BIT(4), 257 REG_CAPA_V4_MCS_12_ALLOWED = BIT(5), 258 REG_CAPA_V4_MCS_13_ALLOWED = BIT(6), 259 REG_CAPA_V4_11BE_DISABLED = BIT(8), 260 REG_CAPA_V4_11AX_DISABLED = BIT(13), 261 REG_CAPA_V4_320MHZ_ALLOWED = BIT(16), 262 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */ 263 264 /* 265 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the 266 * MCC update command response. 267 */ 268 #define REG_CAPA_V2_RESP_VER 6 269 270 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the 271 * MCC update command response. 272 */ 273 #define REG_CAPA_V4_RESP_VER 8 274 275 /** 276 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for 277 * handling the different APIs of reg_capa_flags. 278 * 279 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed 280 * for this regulatory domain. 281 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed 282 * for this regulatory domain (valid only in 5 and 6 Ghz). 283 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed 284 * for this regulatory domain (valid only in 5 and 6 Ghz). 285 * @allow_320mhz: 11be channel with a width of 320Mhz is allowed 286 * for this regulatory domain (valid only in 6 Ghz). 287 * @disable_11ax: 11ax is forbidden for this regulatory domain. 288 * @disable_11be: 11be is forbidden for this regulatory domain. 289 */ 290 struct iwl_reg_capa { 291 bool allow_40mhz; 292 bool allow_80mhz; 293 bool allow_160mhz; 294 bool allow_320mhz; 295 bool disable_11ax; 296 bool disable_11be; 297 }; 298 299 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level, 300 int chan, u32 flags) 301 { 302 #define CHECK_AND_PRINT_I(x) \ 303 ((flags & NVM_CHANNEL_##x) ? " " #x : "") 304 305 if (!(flags & NVM_CHANNEL_VALID)) { 306 IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n", 307 chan, flags); 308 return; 309 } 310 311 /* Note: already can print up to 101 characters, 110 is the limit! */ 312 IWL_DEBUG_DEV(dev, level, 313 "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 314 chan, flags, 315 CHECK_AND_PRINT_I(VALID), 316 CHECK_AND_PRINT_I(IBSS), 317 CHECK_AND_PRINT_I(ACTIVE), 318 CHECK_AND_PRINT_I(RADAR), 319 CHECK_AND_PRINT_I(INDOOR_ONLY), 320 CHECK_AND_PRINT_I(GO_CONCURRENT), 321 CHECK_AND_PRINT_I(UNIFORM), 322 CHECK_AND_PRINT_I(20MHZ), 323 CHECK_AND_PRINT_I(40MHZ), 324 CHECK_AND_PRINT_I(80MHZ), 325 CHECK_AND_PRINT_I(160MHZ), 326 CHECK_AND_PRINT_I(DC_HIGH), 327 CHECK_AND_PRINT_I(VLP), 328 CHECK_AND_PRINT_I(AFC)); 329 #undef CHECK_AND_PRINT_I 330 } 331 332 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band, 333 u32 nvm_flags, const struct iwl_cfg *cfg) 334 { 335 u32 flags = IEEE80211_CHAN_NO_HT40; 336 337 if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) { 338 if (ch_num <= LAST_2GHZ_HT_PLUS) 339 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 340 if (ch_num >= FIRST_2GHZ_HT_MINUS) 341 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 342 } else if (nvm_flags & NVM_CHANNEL_40MHZ) { 343 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 344 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 345 else 346 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 347 } 348 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 349 flags |= IEEE80211_CHAN_NO_80MHZ; 350 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 351 flags |= IEEE80211_CHAN_NO_160MHZ; 352 353 if (!(nvm_flags & NVM_CHANNEL_IBSS)) 354 flags |= IEEE80211_CHAN_NO_IR; 355 356 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 357 flags |= IEEE80211_CHAN_NO_IR; 358 359 if (nvm_flags & NVM_CHANNEL_RADAR) 360 flags |= IEEE80211_CHAN_RADAR; 361 362 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 363 flags |= IEEE80211_CHAN_INDOOR_ONLY; 364 365 /* Set the GO concurrent flag only in case that NO_IR is set. 366 * Otherwise it is meaningless 367 */ 368 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 369 (flags & IEEE80211_CHAN_NO_IR)) 370 flags |= IEEE80211_CHAN_IR_CONCURRENT; 371 372 /* Set the AP type for the UHB case. */ 373 if (nvm_flags & NVM_CHANNEL_VLP) 374 flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP; 375 else 376 flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT; 377 if (!(nvm_flags & NVM_CHANNEL_AFC)) 378 flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT; 379 380 return flags; 381 } 382 383 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx) 384 { 385 if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) { 386 return NL80211_BAND_6GHZ; 387 } 388 389 if (ch_idx >= NUM_2GHZ_CHANNELS) 390 return NL80211_BAND_5GHZ; 391 return NL80211_BAND_2GHZ; 392 } 393 394 static int iwl_init_channel_map(struct iwl_trans *trans, 395 const struct iwl_fw *fw, 396 struct iwl_nvm_data *data, 397 const void * const nvm_ch_flags, 398 u32 sbands_flags, bool v4) 399 { 400 const struct iwl_cfg *cfg = trans->cfg; 401 struct device *dev = trans->dev; 402 int ch_idx; 403 int n_channels = 0; 404 struct ieee80211_channel *channel; 405 u32 ch_flags; 406 int num_of_ch; 407 const u16 *nvm_chan; 408 409 if (cfg->uhb_supported) { 410 num_of_ch = IWL_NVM_NUM_CHANNELS_UHB; 411 nvm_chan = iwl_uhb_nvm_channels; 412 } else if (cfg->nvm_type == IWL_NVM_EXT) { 413 num_of_ch = IWL_NVM_NUM_CHANNELS_EXT; 414 nvm_chan = iwl_ext_nvm_channels; 415 } else { 416 num_of_ch = IWL_NVM_NUM_CHANNELS; 417 nvm_chan = iwl_nvm_channels; 418 } 419 420 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 421 enum nl80211_band band = 422 iwl_nl80211_band_from_channel_idx(ch_idx); 423 424 if (v4) 425 ch_flags = 426 __le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx); 427 else 428 ch_flags = 429 __le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx); 430 431 if (band == NL80211_BAND_5GHZ && 432 !data->sku_cap_band_52ghz_enable) 433 continue; 434 435 /* workaround to disable wide channels in 5GHz */ 436 if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) && 437 band == NL80211_BAND_5GHZ) { 438 ch_flags &= ~(NVM_CHANNEL_40MHZ | 439 NVM_CHANNEL_80MHZ | 440 NVM_CHANNEL_160MHZ); 441 } 442 443 if (ch_flags & NVM_CHANNEL_160MHZ) 444 data->vht160_supported = true; 445 446 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) && 447 !(ch_flags & NVM_CHANNEL_VALID)) { 448 /* 449 * Channels might become valid later if lar is 450 * supported, hence we still want to add them to 451 * the list of supported channels to cfg80211. 452 */ 453 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, 454 nvm_chan[ch_idx], ch_flags); 455 continue; 456 } 457 458 channel = &data->channels[n_channels]; 459 n_channels++; 460 461 channel->hw_value = nvm_chan[ch_idx]; 462 channel->band = band; 463 channel->center_freq = 464 ieee80211_channel_to_frequency( 465 channel->hw_value, channel->band); 466 467 /* Initialize regulatory-based run-time data */ 468 469 /* 470 * Default value - highest tx power value. max_power 471 * is not used in mvm, and is used for backwards compatibility 472 */ 473 channel->max_power = IWL_DEFAULT_MAX_TX_POWER; 474 475 /* don't put limitations in case we're using LAR */ 476 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR)) 477 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], 478 ch_idx, band, 479 ch_flags, cfg); 480 else 481 channel->flags = 0; 482 483 if (fw_has_capa(&fw->ucode_capa, 484 IWL_UCODE_TLV_CAPA_MONITOR_PASSIVE_CHANS)) 485 channel->flags |= IEEE80211_CHAN_CAN_MONITOR; 486 487 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, 488 channel->hw_value, ch_flags); 489 IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n", 490 channel->hw_value, channel->max_power); 491 } 492 493 return n_channels; 494 } 495 496 static void iwl_init_vht_hw_capab(struct iwl_trans *trans, 497 struct iwl_nvm_data *data, 498 struct ieee80211_sta_vht_cap *vht_cap, 499 u8 tx_chains, u8 rx_chains) 500 { 501 const struct iwl_cfg *cfg = trans->cfg; 502 int num_rx_ants = num_of_ant(rx_chains); 503 int num_tx_ants = num_of_ant(tx_chains); 504 505 vht_cap->vht_supported = true; 506 507 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | 508 IEEE80211_VHT_CAP_RXSTBC_1 | 509 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 510 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | 511 IEEE80211_VHT_MAX_AMPDU_1024K << 512 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 513 514 if (!trans->cfg->ht_params->stbc) 515 vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK; 516 517 if (data->vht160_supported) 518 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | 519 IEEE80211_VHT_CAP_SHORT_GI_160; 520 521 if (cfg->vht_mu_mimo_supported) 522 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; 523 524 if (cfg->ht_params->ldpc) 525 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 526 527 if (data->sku_cap_mimo_disabled) { 528 num_rx_ants = 1; 529 num_tx_ants = 1; 530 } 531 532 if (trans->cfg->ht_params->stbc && num_tx_ants > 1) 533 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 534 else 535 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; 536 537 switch (iwlwifi_mod_params.amsdu_size) { 538 case IWL_AMSDU_DEF: 539 if (trans->trans_cfg->mq_rx_supported) 540 vht_cap->cap |= 541 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 542 else 543 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 544 break; 545 case IWL_AMSDU_2K: 546 if (trans->trans_cfg->mq_rx_supported) 547 vht_cap->cap |= 548 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 549 else 550 WARN(1, "RB size of 2K is not supported by this device\n"); 551 break; 552 case IWL_AMSDU_4K: 553 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 554 break; 555 case IWL_AMSDU_8K: 556 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; 557 break; 558 case IWL_AMSDU_12K: 559 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 560 break; 561 default: 562 break; 563 } 564 565 vht_cap->vht_mcs.rx_mcs_map = 566 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 567 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | 568 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 569 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 570 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 571 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 572 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 573 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); 574 575 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { 576 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; 577 /* this works because NOT_SUPPORTED == 3 */ 578 vht_cap->vht_mcs.rx_mcs_map |= 579 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); 580 } 581 582 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; 583 584 vht_cap->vht_mcs.tx_highest |= 585 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE); 586 } 587 588 static const u8 iwl_vendor_caps[] = { 589 0xdd, /* vendor element */ 590 0x06, /* length */ 591 0x00, 0x17, 0x35, /* Intel OUI */ 592 0x08, /* type (Intel Capabilities) */ 593 /* followed by 16 bits of capabilities */ 594 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE BIT(0) 595 IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE, 596 0x00 597 }; 598 599 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = { 600 { 601 .types_mask = BIT(NL80211_IFTYPE_STATION) | 602 BIT(NL80211_IFTYPE_P2P_CLIENT), 603 .he_cap = { 604 .has_he = true, 605 .he_cap_elem = { 606 .mac_cap_info[0] = 607 IEEE80211_HE_MAC_CAP0_HTC_HE, 608 .mac_cap_info[1] = 609 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | 610 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, 611 .mac_cap_info[2] = 612 IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP, 613 .mac_cap_info[3] = 614 IEEE80211_HE_MAC_CAP3_OMI_CONTROL | 615 IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS, 616 .mac_cap_info[4] = 617 IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU | 618 IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39, 619 .mac_cap_info[5] = 620 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 | 621 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 | 622 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU | 623 IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS | 624 IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX, 625 .phy_cap_info[1] = 626 IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK | 627 IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | 628 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, 629 .phy_cap_info[2] = 630 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US | 631 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ, 632 .phy_cap_info[3] = 633 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK | 634 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | 635 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK | 636 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, 637 .phy_cap_info[4] = 638 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE | 639 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 | 640 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8, 641 .phy_cap_info[6] = 642 IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB | 643 IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB | 644 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, 645 .phy_cap_info[7] = 646 IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP | 647 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI, 648 .phy_cap_info[8] = 649 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | 650 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | 651 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | 652 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU | 653 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242, 654 .phy_cap_info[9] = 655 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | 656 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB | 657 (IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED << 658 IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS), 659 .phy_cap_info[10] = 660 IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF, 661 }, 662 /* 663 * Set default Tx/Rx HE MCS NSS Support field. 664 * Indicate support for up to 2 spatial streams and all 665 * MCS, without any special cases 666 */ 667 .he_mcs_nss_supp = { 668 .rx_mcs_80 = cpu_to_le16(0xfffa), 669 .tx_mcs_80 = cpu_to_le16(0xfffa), 670 .rx_mcs_160 = cpu_to_le16(0xfffa), 671 .tx_mcs_160 = cpu_to_le16(0xfffa), 672 .rx_mcs_80p80 = cpu_to_le16(0xffff), 673 .tx_mcs_80p80 = cpu_to_le16(0xffff), 674 }, 675 /* 676 * Set default PPE thresholds, with PPET16 set to 0, 677 * PPET8 set to 7 678 */ 679 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, 680 }, 681 .eht_cap = { 682 .has_eht = true, 683 .eht_cap_elem = { 684 .mac_cap_info[0] = 685 IEEE80211_EHT_MAC_CAP0_OM_CONTROL | 686 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 | 687 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 | 688 IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC, 689 .phy_cap_info[0] = 690 IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ | 691 IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI | 692 IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO | 693 IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE | 694 IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK, 695 .phy_cap_info[1] = 696 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK | 697 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK, 698 .phy_cap_info[3] = 699 IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK | 700 IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK | 701 IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK | 702 IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK | 703 IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK | 704 IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK | 705 IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK, 706 707 .phy_cap_info[4] = 708 IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO | 709 IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP | 710 IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI, 711 .phy_cap_info[5] = 712 FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK, 713 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US) | 714 IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK | 715 IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP | 716 IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP, 717 .phy_cap_info[6] = 718 IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK | 719 IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP, 720 .phy_cap_info[8] = 721 IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA | 722 IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA, 723 }, 724 725 /* For all MCS and bandwidth, set 2 NSS for both Tx and 726 * Rx - note we don't set the only_20mhz, but due to this 727 * being a union, it gets set correctly anyway. 728 */ 729 .eht_mcs_nss_supp = { 730 .bw._80 = { 731 .rx_tx_mcs9_max_nss = 0x22, 732 .rx_tx_mcs11_max_nss = 0x22, 733 .rx_tx_mcs13_max_nss = 0x22, 734 }, 735 .bw._160 = { 736 .rx_tx_mcs9_max_nss = 0x22, 737 .rx_tx_mcs11_max_nss = 0x22, 738 .rx_tx_mcs13_max_nss = 0x22, 739 }, 740 .bw._320 = { 741 .rx_tx_mcs9_max_nss = 0x22, 742 .rx_tx_mcs11_max_nss = 0x22, 743 .rx_tx_mcs13_max_nss = 0x22, 744 }, 745 }, 746 747 /* 748 * PPE thresholds for NSS = 2, and RU index bitmap set 749 * to 0xc. 750 * Note: just for stating what we want, not present in 751 * the transmitted data due to not including 752 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT. 753 */ 754 .eht_ppe_thres = {0xc1, 0x0e, 0xe0 } 755 }, 756 }, 757 { 758 .types_mask = BIT(NL80211_IFTYPE_AP) | 759 BIT(NL80211_IFTYPE_P2P_GO), 760 .he_cap = { 761 .has_he = true, 762 .he_cap_elem = { 763 .mac_cap_info[0] = 764 IEEE80211_HE_MAC_CAP0_HTC_HE, 765 .mac_cap_info[1] = 766 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, 767 .mac_cap_info[3] = 768 IEEE80211_HE_MAC_CAP3_OMI_CONTROL, 769 .phy_cap_info[1] = 770 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, 771 .phy_cap_info[2] = 772 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ | 773 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US, 774 .phy_cap_info[3] = 775 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK | 776 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | 777 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK | 778 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, 779 .phy_cap_info[6] = 780 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, 781 .phy_cap_info[7] = 782 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI, 783 .phy_cap_info[8] = 784 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | 785 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242, 786 .phy_cap_info[9] = 787 IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED 788 << IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS, 789 }, 790 /* 791 * Set default Tx/Rx HE MCS NSS Support field. 792 * Indicate support for up to 2 spatial streams and all 793 * MCS, without any special cases 794 */ 795 .he_mcs_nss_supp = { 796 .rx_mcs_80 = cpu_to_le16(0xfffa), 797 .tx_mcs_80 = cpu_to_le16(0xfffa), 798 .rx_mcs_160 = cpu_to_le16(0xfffa), 799 .tx_mcs_160 = cpu_to_le16(0xfffa), 800 .rx_mcs_80p80 = cpu_to_le16(0xffff), 801 .tx_mcs_80p80 = cpu_to_le16(0xffff), 802 }, 803 /* 804 * Set default PPE thresholds, with PPET16 set to 0, 805 * PPET8 set to 7 806 */ 807 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, 808 }, 809 .eht_cap = { 810 .has_eht = true, 811 .eht_cap_elem = { 812 .mac_cap_info[0] = 813 IEEE80211_EHT_MAC_CAP0_OM_CONTROL | 814 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 | 815 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2, 816 .phy_cap_info[0] = 817 IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ | 818 IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI, 819 .phy_cap_info[5] = 820 FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK, 821 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US), 822 }, 823 824 /* For all MCS and bandwidth, set 2 NSS for both Tx and 825 * Rx - note we don't set the only_20mhz, but due to this 826 * being a union, it gets set correctly anyway. 827 */ 828 .eht_mcs_nss_supp = { 829 .bw._80 = { 830 .rx_tx_mcs9_max_nss = 0x22, 831 .rx_tx_mcs11_max_nss = 0x22, 832 .rx_tx_mcs13_max_nss = 0x22, 833 }, 834 .bw._160 = { 835 .rx_tx_mcs9_max_nss = 0x22, 836 .rx_tx_mcs11_max_nss = 0x22, 837 .rx_tx_mcs13_max_nss = 0x22, 838 }, 839 .bw._320 = { 840 .rx_tx_mcs9_max_nss = 0x22, 841 .rx_tx_mcs11_max_nss = 0x22, 842 .rx_tx_mcs13_max_nss = 0x22, 843 }, 844 }, 845 846 /* 847 * PPE thresholds for NSS = 2, and RU index bitmap set 848 * to 0xc. 849 * Note: just for stating what we want, not present in 850 * the transmitted data due to not including 851 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT. 852 */ 853 .eht_ppe_thres = {0xc1, 0x0e, 0xe0 } 854 }, 855 }, 856 }; 857 858 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans, 859 struct iwl_nvm_data *data, 860 struct ieee80211_supported_band *sband, 861 u8 tx_chains, u8 rx_chains) 862 { 863 struct ieee80211_sta_ht_cap ht_cap; 864 struct ieee80211_sta_vht_cap vht_cap = {}; 865 struct ieee80211_sband_iftype_data *iftype_data; 866 u16 he_6ghz_capa = 0; 867 u32 exp; 868 int i; 869 870 if (sband->band != NL80211_BAND_6GHZ) 871 return; 872 873 /* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */ 874 iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ, 875 tx_chains, rx_chains); 876 WARN_ON(!ht_cap.ht_supported); 877 iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains); 878 WARN_ON(!vht_cap.vht_supported); 879 880 he_6ghz_capa |= 881 u16_encode_bits(ht_cap.ampdu_density, 882 IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START); 883 exp = u32_get_bits(vht_cap.cap, 884 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); 885 he_6ghz_capa |= 886 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP); 887 exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK); 888 he_6ghz_capa |= 889 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN); 890 /* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */ 891 if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN) 892 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS; 893 if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN) 894 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS; 895 896 IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa); 897 898 /* we know it's writable - we set it before ourselves */ 899 iftype_data = (void *)(uintptr_t)sband->iftype_data; 900 for (i = 0; i < sband->n_iftype_data; i++) 901 iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa); 902 } 903 904 static void 905 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans, 906 struct iwl_nvm_data *data, 907 struct ieee80211_supported_band *sband, 908 struct ieee80211_sband_iftype_data *iftype_data, 909 u8 tx_chains, u8 rx_chains, 910 const struct iwl_fw *fw) 911 { 912 bool is_ap = iftype_data->types_mask & (BIT(NL80211_IFTYPE_AP) | 913 BIT(NL80211_IFTYPE_P2P_GO)); 914 bool no_320; 915 916 no_320 = (!trans->trans_cfg->integrated && 917 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB) || 918 trans->reduced_cap_sku; 919 920 if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be) 921 iftype_data->eht_cap.has_eht = false; 922 923 /* Advertise an A-MPDU exponent extension based on 924 * operating band 925 */ 926 if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht) 927 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |= 928 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2; 929 else if (sband->band != NL80211_BAND_2GHZ) 930 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |= 931 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1; 932 else 933 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |= 934 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3; 935 936 switch (sband->band) { 937 case NL80211_BAND_2GHZ: 938 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |= 939 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G; 940 iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |= 941 u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454, 942 IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK); 943 break; 944 case NL80211_BAND_6GHZ: 945 if (!no_320) { 946 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |= 947 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 948 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |= 949 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK; 950 } 951 fallthrough; 952 case NL80211_BAND_5GHZ: 953 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |= 954 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 955 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 956 break; 957 default: 958 WARN_ON(1); 959 break; 960 } 961 962 if ((tx_chains & rx_chains) == ANT_AB) { 963 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |= 964 IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ; 965 iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |= 966 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 | 967 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2; 968 if (!is_ap) { 969 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |= 970 IEEE80211_HE_PHY_CAP7_MAX_NC_2; 971 972 if (iftype_data->eht_cap.has_eht) { 973 /* 974 * Set the number of sounding dimensions for each 975 * bandwidth to 1 to indicate the maximal supported 976 * value of TXVECTOR parameter NUM_STS of 2 977 */ 978 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49; 979 980 /* 981 * Set the MAX NC to 1 to indicate sounding feedback of 982 * 2 supported by the beamfomee. 983 */ 984 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10; 985 } 986 } 987 } else { 988 struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp = 989 &iftype_data->he_cap.he_mcs_nss_supp; 990 991 if (iftype_data->eht_cap.has_eht) { 992 struct ieee80211_eht_mcs_nss_supp *mcs_nss = 993 &iftype_data->eht_cap.eht_mcs_nss_supp; 994 995 memset(mcs_nss, 0x11, sizeof(*mcs_nss)); 996 } 997 998 if (!is_ap) { 999 /* If not 2x2, we need to indicate 1x1 in the 1000 * Midamble RX Max NSTS - but not for AP mode 1001 */ 1002 iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &= 1003 ~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS; 1004 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &= 1005 ~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS; 1006 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |= 1007 IEEE80211_HE_PHY_CAP7_MAX_NC_1; 1008 } 1009 1010 he_mcs_nss_supp->rx_mcs_80 |= 1011 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2); 1012 he_mcs_nss_supp->tx_mcs_80 |= 1013 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2); 1014 he_mcs_nss_supp->rx_mcs_160 |= 1015 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2); 1016 he_mcs_nss_supp->tx_mcs_160 |= 1017 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2); 1018 he_mcs_nss_supp->rx_mcs_80p80 |= 1019 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2); 1020 he_mcs_nss_supp->tx_mcs_80p80 |= 1021 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2); 1022 } 1023 1024 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap) 1025 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |= 1026 IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO; 1027 1028 switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) { 1029 case IWL_CFG_RF_TYPE_GF: 1030 case IWL_CFG_RF_TYPE_FM: 1031 case IWL_CFG_RF_TYPE_WH: 1032 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |= 1033 IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU; 1034 if (!is_ap) 1035 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |= 1036 IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU; 1037 break; 1038 } 1039 1040 if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL && 1041 iftype_data->eht_cap.has_eht) { 1042 iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &= 1043 ~(IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 | 1044 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2); 1045 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &= 1046 ~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO | 1047 IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK | 1048 IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK | 1049 IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK | 1050 IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK | 1051 IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK | 1052 IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK); 1053 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &= 1054 ~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO | 1055 IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP); 1056 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &= 1057 ~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK; 1058 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &= 1059 ~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK | 1060 IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP); 1061 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |= 1062 IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF; 1063 } 1064 1065 if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT)) 1066 iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |= 1067 IEEE80211_HE_MAC_CAP2_BCAST_TWT; 1068 1069 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 && 1070 !is_ap) { 1071 iftype_data->vendor_elems.data = iwl_vendor_caps; 1072 iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps); 1073 } 1074 1075 if (!trans->cfg->ht_params->stbc) { 1076 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &= 1077 ~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ; 1078 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &= 1079 ~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ; 1080 } 1081 1082 if (trans->step_urm) { 1083 iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs11_max_nss = 0; 1084 iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs13_max_nss = 0; 1085 } 1086 1087 if (trans->no_160) 1088 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] &= 1089 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 1090 1091 if (trans->reduced_cap_sku) { 1092 memset(&iftype_data->eht_cap.eht_mcs_nss_supp.bw._320, 0, 1093 sizeof(iftype_data->eht_cap.eht_mcs_nss_supp.bw._320)); 1094 iftype_data->eht_cap.eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss = 0; 1095 iftype_data->eht_cap.eht_mcs_nss_supp.bw._160.rx_tx_mcs13_max_nss = 0; 1096 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[8] &= 1097 ~IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA; 1098 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] &= 1099 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK; 1100 } 1101 } 1102 1103 static void iwl_init_he_hw_capab(struct iwl_trans *trans, 1104 struct iwl_nvm_data *data, 1105 struct ieee80211_supported_band *sband, 1106 u8 tx_chains, u8 rx_chains, 1107 const struct iwl_fw *fw) 1108 { 1109 struct ieee80211_sband_iftype_data *iftype_data; 1110 int i; 1111 1112 BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa)); 1113 BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa)); 1114 BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa)); 1115 1116 switch (sband->band) { 1117 case NL80211_BAND_2GHZ: 1118 iftype_data = data->iftd.low; 1119 break; 1120 case NL80211_BAND_5GHZ: 1121 iftype_data = data->iftd.high; 1122 break; 1123 case NL80211_BAND_6GHZ: 1124 iftype_data = data->iftd.uhb; 1125 break; 1126 default: 1127 WARN_ON(1); 1128 return; 1129 } 1130 1131 memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa)); 1132 1133 _ieee80211_set_sband_iftype_data(sband, iftype_data, 1134 ARRAY_SIZE(iwl_he_eht_capa)); 1135 1136 for (i = 0; i < sband->n_iftype_data; i++) 1137 iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i], 1138 tx_chains, rx_chains, fw); 1139 1140 iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains); 1141 } 1142 1143 void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data, 1144 u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw) 1145 { 1146 struct ieee80211_supported_band *sband; 1147 1148 sband = &data->bands[NL80211_BAND_2GHZ]; 1149 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ, 1150 tx_chains, rx_chains); 1151 1152 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 1153 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, 1154 fw); 1155 1156 sband = &data->bands[NL80211_BAND_5GHZ]; 1157 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ, 1158 tx_chains, rx_chains); 1159 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) 1160 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap, 1161 tx_chains, rx_chains); 1162 1163 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 1164 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, 1165 fw); 1166 1167 sband = &data->bands[NL80211_BAND_6GHZ]; 1168 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 1169 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, 1170 fw); 1171 } 1172 IWL_EXPORT_SYMBOL(iwl_reinit_cab); 1173 1174 static void iwl_init_sbands(struct iwl_trans *trans, 1175 struct iwl_nvm_data *data, 1176 const void *nvm_ch_flags, u8 tx_chains, 1177 u8 rx_chains, u32 sbands_flags, bool v4, 1178 const struct iwl_fw *fw) 1179 { 1180 struct device *dev = trans->dev; 1181 int n_channels; 1182 int n_used = 0; 1183 struct ieee80211_supported_band *sband; 1184 1185 n_channels = iwl_init_channel_map(trans, fw, data, nvm_ch_flags, 1186 sbands_flags, v4); 1187 sband = &data->bands[NL80211_BAND_2GHZ]; 1188 sband->band = NL80211_BAND_2GHZ; 1189 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; 1190 sband->n_bitrates = N_RATES_24; 1191 n_used += iwl_init_sband_channels(data, sband, n_channels, 1192 NL80211_BAND_2GHZ); 1193 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ, 1194 tx_chains, rx_chains); 1195 1196 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 1197 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, 1198 fw); 1199 1200 sband = &data->bands[NL80211_BAND_5GHZ]; 1201 sband->band = NL80211_BAND_5GHZ; 1202 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 1203 sband->n_bitrates = N_RATES_52; 1204 n_used += iwl_init_sband_channels(data, sband, n_channels, 1205 NL80211_BAND_5GHZ); 1206 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ, 1207 tx_chains, rx_chains); 1208 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) 1209 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap, 1210 tx_chains, rx_chains); 1211 1212 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 1213 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, 1214 fw); 1215 1216 /* 6GHz band. */ 1217 sband = &data->bands[NL80211_BAND_6GHZ]; 1218 sband->band = NL80211_BAND_6GHZ; 1219 /* use the same rates as 5GHz band */ 1220 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 1221 sband->n_bitrates = N_RATES_52; 1222 n_used += iwl_init_sband_channels(data, sband, n_channels, 1223 NL80211_BAND_6GHZ); 1224 1225 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) 1226 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, 1227 fw); 1228 else 1229 sband->n_channels = 0; 1230 if (n_channels != n_used) 1231 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", 1232 n_used, n_channels); 1233 } 1234 1235 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 1236 const __le16 *phy_sku) 1237 { 1238 if (cfg->nvm_type != IWL_NVM_EXT) 1239 return le16_to_cpup(nvm_sw + SKU); 1240 1241 return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000)); 1242 } 1243 1244 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 1245 { 1246 if (cfg->nvm_type != IWL_NVM_EXT) 1247 return le16_to_cpup(nvm_sw + NVM_VERSION); 1248 else 1249 return le32_to_cpup((const __le32 *)(nvm_sw + 1250 NVM_VERSION_EXT_NVM)); 1251 } 1252 1253 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 1254 const __le16 *phy_sku) 1255 { 1256 if (cfg->nvm_type != IWL_NVM_EXT) 1257 return le16_to_cpup(nvm_sw + RADIO_CFG); 1258 1259 return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM)); 1260 1261 } 1262 1263 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 1264 { 1265 int n_hw_addr; 1266 1267 if (cfg->nvm_type != IWL_NVM_EXT) 1268 return le16_to_cpup(nvm_sw + N_HW_ADDRS); 1269 1270 n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); 1271 1272 return n_hw_addr & N_HW_ADDR_MASK; 1273 } 1274 1275 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, 1276 struct iwl_nvm_data *data, 1277 u32 radio_cfg) 1278 { 1279 if (cfg->nvm_type != IWL_NVM_EXT) { 1280 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); 1281 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); 1282 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); 1283 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); 1284 return; 1285 } 1286 1287 /* set the radio configuration for family 8000 */ 1288 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg); 1289 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg); 1290 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg); 1291 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg); 1292 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg); 1293 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg); 1294 } 1295 1296 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest) 1297 { 1298 const u8 *hw_addr; 1299 1300 hw_addr = (const u8 *)&mac_addr0; 1301 dest[0] = hw_addr[3]; 1302 dest[1] = hw_addr[2]; 1303 dest[2] = hw_addr[1]; 1304 dest[3] = hw_addr[0]; 1305 1306 hw_addr = (const u8 *)&mac_addr1; 1307 dest[4] = hw_addr[1]; 1308 dest[5] = hw_addr[0]; 1309 } 1310 1311 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans, 1312 struct iwl_nvm_data *data) 1313 { 1314 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, 1315 CSR_MAC_ADDR0_STRAP(trans))); 1316 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, 1317 CSR_MAC_ADDR1_STRAP(trans))); 1318 1319 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 1320 /* 1321 * If the OEM fused a valid address, use it instead of the one in the 1322 * OTP 1323 */ 1324 if (is_valid_ether_addr(data->hw_addr)) 1325 return; 1326 1327 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans))); 1328 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans))); 1329 1330 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 1331 } 1332 1333 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans, 1334 const struct iwl_cfg *cfg, 1335 struct iwl_nvm_data *data, 1336 const __le16 *mac_override, 1337 const __be16 *nvm_hw) 1338 { 1339 const u8 *hw_addr; 1340 1341 if (mac_override) { 1342 static const u8 reserved_mac[] = { 1343 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 1344 }; 1345 1346 hw_addr = (const u8 *)(mac_override + 1347 MAC_ADDRESS_OVERRIDE_EXT_NVM); 1348 1349 /* 1350 * Store the MAC address from MAO section. 1351 * No byte swapping is required in MAO section 1352 */ 1353 memcpy(data->hw_addr, hw_addr, ETH_ALEN); 1354 1355 /* 1356 * Force the use of the OTP MAC address in case of reserved MAC 1357 * address in the NVM, or if address is given but invalid. 1358 */ 1359 if (is_valid_ether_addr(data->hw_addr) && 1360 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) 1361 return; 1362 1363 IWL_ERR(trans, 1364 "mac address from nvm override section is not valid\n"); 1365 } 1366 1367 if (nvm_hw) { 1368 /* read the mac address from WFMP registers */ 1369 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, 1370 WFMP_MAC_ADDR_0)); 1371 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, 1372 WFMP_MAC_ADDR_1)); 1373 1374 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 1375 1376 return; 1377 } 1378 1379 IWL_ERR(trans, "mac address is not found\n"); 1380 } 1381 1382 static int iwl_set_hw_address(struct iwl_trans *trans, 1383 const struct iwl_cfg *cfg, 1384 struct iwl_nvm_data *data, const __be16 *nvm_hw, 1385 const __le16 *mac_override) 1386 { 1387 if (cfg->mac_addr_from_csr) { 1388 iwl_set_hw_address_from_csr(trans, data); 1389 } else if (cfg->nvm_type != IWL_NVM_EXT) { 1390 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR); 1391 1392 /* The byte order is little endian 16 bit, meaning 214365 */ 1393 data->hw_addr[0] = hw_addr[1]; 1394 data->hw_addr[1] = hw_addr[0]; 1395 data->hw_addr[2] = hw_addr[3]; 1396 data->hw_addr[3] = hw_addr[2]; 1397 data->hw_addr[4] = hw_addr[5]; 1398 data->hw_addr[5] = hw_addr[4]; 1399 } else { 1400 iwl_set_hw_address_family_8000(trans, cfg, data, 1401 mac_override, nvm_hw); 1402 } 1403 1404 if (!is_valid_ether_addr(data->hw_addr)) { 1405 IWL_ERR(trans, "no valid mac address was found\n"); 1406 return -EINVAL; 1407 } 1408 1409 if (!trans->csme_own) 1410 IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n", 1411 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR)); 1412 1413 return 0; 1414 } 1415 1416 static bool 1417 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg, 1418 const __be16 *nvm_hw) 1419 { 1420 /* 1421 * Workaround a bug in Indonesia SKUs where the regulatory in 1422 * some 7000-family OTPs erroneously allow wide channels in 1423 * 5GHz. To check for Indonesia, we take the SKU value from 1424 * bits 1-4 in the subsystem ID and check if it is either 5 or 1425 * 9. In those cases, we need to force-disable wide channels 1426 * in 5GHz otherwise the FW will throw a sysassert when we try 1427 * to use them. 1428 */ 1429 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) { 1430 /* 1431 * Unlike the other sections in the NVM, the hw 1432 * section uses big-endian. 1433 */ 1434 u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID); 1435 u8 sku = (subsystem_id & 0x1e) >> 1; 1436 1437 if (sku == 5 || sku == 9) { 1438 IWL_DEBUG_EEPROM(trans->dev, 1439 "disabling wide channels in 5GHz (0x%0x %d)\n", 1440 subsystem_id, sku); 1441 return true; 1442 } 1443 } 1444 1445 return false; 1446 } 1447 1448 struct iwl_nvm_data * 1449 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, 1450 const struct iwl_mei_nvm *mei_nvm, 1451 const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant) 1452 { 1453 struct iwl_nvm_data *data; 1454 u32 sbands_flags = 0; 1455 u8 rx_chains = fw->valid_rx_ant; 1456 u8 tx_chains = fw->valid_rx_ant; 1457 1458 if (cfg->uhb_supported) 1459 data = kzalloc(struct_size(data, channels, 1460 IWL_NVM_NUM_CHANNELS_UHB), 1461 GFP_KERNEL); 1462 else 1463 data = kzalloc(struct_size(data, channels, 1464 IWL_NVM_NUM_CHANNELS_EXT), 1465 GFP_KERNEL); 1466 if (!data) 1467 return NULL; 1468 1469 BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) != 1470 IWL_NVM_NUM_CHANNELS_UHB); 1471 data->nvm_version = mei_nvm->nvm_version; 1472 1473 iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg); 1474 if (data->valid_tx_ant) 1475 tx_chains &= data->valid_tx_ant; 1476 if (data->valid_rx_ant) 1477 rx_chains &= data->valid_rx_ant; 1478 if (tx_ant) 1479 tx_chains &= tx_ant; 1480 if (rx_ant) 1481 rx_chains &= rx_ant; 1482 1483 data->sku_cap_mimo_disabled = false; 1484 data->sku_cap_band_24ghz_enable = true; 1485 data->sku_cap_band_52ghz_enable = true; 1486 data->sku_cap_11n_enable = 1487 !(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL); 1488 data->sku_cap_11ac_enable = true; 1489 data->sku_cap_11ax_enable = 1490 mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT; 1491 1492 data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT; 1493 1494 data->n_hw_addrs = mei_nvm->n_hw_addrs; 1495 /* If no valid mac address was found - bail out */ 1496 if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) { 1497 kfree(data); 1498 return NULL; 1499 } 1500 1501 if (data->lar_enabled && 1502 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) 1503 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; 1504 1505 iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains, 1506 sbands_flags, true, fw); 1507 1508 return data; 1509 } 1510 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data); 1511 1512 struct iwl_nvm_data * 1513 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, 1514 const struct iwl_fw *fw, 1515 const __be16 *nvm_hw, const __le16 *nvm_sw, 1516 const __le16 *nvm_calib, const __le16 *regulatory, 1517 const __le16 *mac_override, const __le16 *phy_sku, 1518 u8 tx_chains, u8 rx_chains) 1519 { 1520 struct iwl_nvm_data *data; 1521 bool lar_enabled; 1522 u32 sku, radio_cfg; 1523 u32 sbands_flags = 0; 1524 u16 lar_config; 1525 const __le16 *ch_section; 1526 1527 if (cfg->uhb_supported) 1528 data = kzalloc(struct_size(data, channels, 1529 IWL_NVM_NUM_CHANNELS_UHB), 1530 GFP_KERNEL); 1531 else if (cfg->nvm_type != IWL_NVM_EXT) 1532 data = kzalloc(struct_size(data, channels, 1533 IWL_NVM_NUM_CHANNELS), 1534 GFP_KERNEL); 1535 else 1536 data = kzalloc(struct_size(data, channels, 1537 IWL_NVM_NUM_CHANNELS_EXT), 1538 GFP_KERNEL); 1539 if (!data) 1540 return NULL; 1541 1542 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); 1543 1544 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); 1545 iwl_set_radio_cfg(cfg, data, radio_cfg); 1546 if (data->valid_tx_ant) 1547 tx_chains &= data->valid_tx_ant; 1548 if (data->valid_rx_ant) 1549 rx_chains &= data->valid_rx_ant; 1550 1551 sku = iwl_get_sku(cfg, nvm_sw, phy_sku); 1552 data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; 1553 data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; 1554 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; 1555 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) 1556 data->sku_cap_11n_enable = false; 1557 data->sku_cap_11ac_enable = data->sku_cap_11n_enable && 1558 (sku & NVM_SKU_CAP_11AC_ENABLE); 1559 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; 1560 1561 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); 1562 1563 if (cfg->nvm_type != IWL_NVM_EXT) { 1564 /* Checking for required sections */ 1565 if (!nvm_calib) { 1566 IWL_ERR(trans, 1567 "Can't parse empty Calib NVM sections\n"); 1568 kfree(data); 1569 return NULL; 1570 } 1571 1572 ch_section = cfg->nvm_type == IWL_NVM_SDP ? 1573 ®ulatory[NVM_CHANNELS_SDP] : 1574 &nvm_sw[NVM_CHANNELS]; 1575 1576 lar_enabled = true; 1577 } else { 1578 u16 lar_offset = data->nvm_version < 0xE39 ? 1579 NVM_LAR_OFFSET_OLD : 1580 NVM_LAR_OFFSET; 1581 1582 lar_config = le16_to_cpup(regulatory + lar_offset); 1583 data->lar_enabled = !!(lar_config & 1584 NVM_LAR_ENABLED); 1585 lar_enabled = data->lar_enabled; 1586 ch_section = ®ulatory[NVM_CHANNELS_EXTENDED]; 1587 } 1588 1589 /* If no valid mac address was found - bail out */ 1590 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) { 1591 kfree(data); 1592 return NULL; 1593 } 1594 1595 if (lar_enabled && 1596 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) 1597 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; 1598 1599 if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw)) 1600 sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ; 1601 1602 iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains, 1603 sbands_flags, false, fw); 1604 data->calib_version = 255; 1605 1606 return data; 1607 } 1608 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); 1609 1610 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan, 1611 int ch_idx, u16 nvm_flags, 1612 struct iwl_reg_capa reg_capa, 1613 const struct iwl_cfg *cfg) 1614 { 1615 u32 flags = NL80211_RRF_NO_HT40; 1616 1617 if (ch_idx < NUM_2GHZ_CHANNELS && 1618 (nvm_flags & NVM_CHANNEL_40MHZ)) { 1619 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) 1620 flags &= ~NL80211_RRF_NO_HT40PLUS; 1621 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) 1622 flags &= ~NL80211_RRF_NO_HT40MINUS; 1623 } else if (ch_idx < NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS && 1624 nvm_flags & NVM_CHANNEL_40MHZ) { 1625 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 1626 flags &= ~NL80211_RRF_NO_HT40PLUS; 1627 else 1628 flags &= ~NL80211_RRF_NO_HT40MINUS; 1629 } else if (nvm_flags & NVM_CHANNEL_40MHZ) { 1630 flags &= ~NL80211_RRF_NO_HT40PLUS; 1631 flags &= ~NL80211_RRF_NO_HT40MINUS; 1632 } 1633 1634 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 1635 flags |= NL80211_RRF_NO_80MHZ; 1636 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 1637 flags |= NL80211_RRF_NO_160MHZ; 1638 1639 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 1640 flags |= NL80211_RRF_NO_IR; 1641 1642 if (nvm_flags & NVM_CHANNEL_RADAR) 1643 flags |= NL80211_RRF_DFS; 1644 1645 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 1646 flags |= NL80211_RRF_NO_OUTDOOR; 1647 1648 /* Set the GO concurrent flag only in case that NO_IR is set. 1649 * Otherwise it is meaningless 1650 */ 1651 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) { 1652 if (flags & NL80211_RRF_NO_IR) 1653 flags |= NL80211_RRF_GO_CONCURRENT; 1654 if (flags & NL80211_RRF_DFS) { 1655 flags |= NL80211_RRF_DFS_CONCURRENT; 1656 /* Our device doesn't set active bit for DFS channels 1657 * however, once marked as DFS no-ir is not needed. 1658 */ 1659 flags &= ~NL80211_RRF_NO_IR; 1660 } 1661 } 1662 1663 /* Set the AP type for the UHB case. */ 1664 if (nvm_flags & NVM_CHANNEL_VLP) 1665 flags |= NL80211_RRF_ALLOW_6GHZ_VLP_AP; 1666 else 1667 flags |= NL80211_RRF_NO_6GHZ_VLP_CLIENT; 1668 1669 if (!(nvm_flags & NVM_CHANNEL_AFC)) 1670 flags |= NL80211_RRF_NO_6GHZ_AFC_CLIENT; 1671 1672 /* 1673 * reg_capa is per regulatory domain so apply it for every channel 1674 */ 1675 if (ch_idx >= NUM_2GHZ_CHANNELS) { 1676 if (!reg_capa.allow_40mhz) 1677 flags |= NL80211_RRF_NO_HT40; 1678 1679 if (!reg_capa.allow_80mhz) 1680 flags |= NL80211_RRF_NO_80MHZ; 1681 1682 if (!reg_capa.allow_160mhz) 1683 flags |= NL80211_RRF_NO_160MHZ; 1684 1685 if (!reg_capa.allow_320mhz) 1686 flags |= NL80211_RRF_NO_320MHZ; 1687 } 1688 1689 if (reg_capa.disable_11ax) 1690 flags |= NL80211_RRF_NO_HE; 1691 1692 if (reg_capa.disable_11be) 1693 flags |= NL80211_RRF_NO_EHT; 1694 1695 return flags; 1696 } 1697 1698 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver) 1699 { 1700 struct iwl_reg_capa reg_capa = {}; 1701 1702 if (resp_ver >= REG_CAPA_V4_RESP_VER) { 1703 reg_capa.allow_40mhz = true; 1704 reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED; 1705 reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED; 1706 reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED; 1707 reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED; 1708 reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED; 1709 } else if (resp_ver >= REG_CAPA_V2_RESP_VER) { 1710 reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED; 1711 reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED; 1712 reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED; 1713 reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED; 1714 } else { 1715 reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN); 1716 reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED; 1717 reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED; 1718 reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED; 1719 } 1720 return reg_capa; 1721 } 1722 1723 struct ieee80211_regdomain * 1724 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, 1725 int num_of_ch, __le32 *channels, u16 fw_mcc, 1726 u16 geo_info, u32 cap, u8 resp_ver) 1727 { 1728 int ch_idx; 1729 u16 ch_flags; 1730 u32 reg_rule_flags, prev_reg_rule_flags = 0; 1731 const u16 *nvm_chan; 1732 struct ieee80211_regdomain *regd, *copy_rd; 1733 struct ieee80211_reg_rule *rule; 1734 int center_freq, prev_center_freq = 0; 1735 int valid_rules = 0; 1736 bool new_rule; 1737 int max_num_ch; 1738 struct iwl_reg_capa reg_capa; 1739 1740 if (cfg->uhb_supported) { 1741 max_num_ch = IWL_NVM_NUM_CHANNELS_UHB; 1742 nvm_chan = iwl_uhb_nvm_channels; 1743 } else if (cfg->nvm_type == IWL_NVM_EXT) { 1744 max_num_ch = IWL_NVM_NUM_CHANNELS_EXT; 1745 nvm_chan = iwl_ext_nvm_channels; 1746 } else { 1747 max_num_ch = IWL_NVM_NUM_CHANNELS; 1748 nvm_chan = iwl_nvm_channels; 1749 } 1750 1751 if (num_of_ch > max_num_ch) { 1752 IWL_DEBUG_DEV(dev, IWL_DL_LAR, 1753 "Num of channels (%d) is greater than expected. Truncating to %d\n", 1754 num_of_ch, max_num_ch); 1755 num_of_ch = max_num_ch; 1756 } 1757 1758 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) 1759 return ERR_PTR(-EINVAL); 1760 1761 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", 1762 num_of_ch); 1763 1764 /* build a regdomain rule for every valid channel */ 1765 regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL); 1766 if (!regd) 1767 return ERR_PTR(-ENOMEM); 1768 1769 /* set alpha2 from FW. */ 1770 regd->alpha2[0] = fw_mcc >> 8; 1771 regd->alpha2[1] = fw_mcc & 0xff; 1772 1773 /* parse regulatory capability flags */ 1774 reg_capa = iwl_get_reg_capa(cap, resp_ver); 1775 1776 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 1777 enum nl80211_band band = 1778 iwl_nl80211_band_from_channel_idx(ch_idx); 1779 1780 ch_flags = (u16)__le32_to_cpup(channels + ch_idx); 1781 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], 1782 band); 1783 new_rule = false; 1784 1785 if (!(ch_flags & NVM_CHANNEL_VALID)) { 1786 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, 1787 nvm_chan[ch_idx], ch_flags); 1788 continue; 1789 } 1790 1791 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, 1792 ch_flags, reg_capa, 1793 cfg); 1794 1795 /* we can't continue the same rule */ 1796 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags || 1797 center_freq - prev_center_freq > 20) { 1798 valid_rules++; 1799 new_rule = true; 1800 } 1801 1802 rule = ®d->reg_rules[valid_rules - 1]; 1803 1804 if (new_rule) 1805 rule->freq_range.start_freq_khz = 1806 MHZ_TO_KHZ(center_freq - 10); 1807 1808 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); 1809 1810 /* this doesn't matter - not used by FW */ 1811 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 1812 rule->power_rule.max_eirp = 1813 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 1814 1815 rule->flags = reg_rule_flags; 1816 1817 /* rely on auto-calculation to merge BW of contiguous chans */ 1818 rule->flags |= NL80211_RRF_AUTO_BW; 1819 rule->freq_range.max_bandwidth_khz = 0; 1820 1821 prev_center_freq = center_freq; 1822 prev_reg_rule_flags = reg_rule_flags; 1823 1824 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, 1825 nvm_chan[ch_idx], ch_flags); 1826 1827 if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) || 1828 band == NL80211_BAND_2GHZ) 1829 continue; 1830 1831 reg_query_regdb_wmm(regd->alpha2, center_freq, rule); 1832 } 1833 1834 /* 1835 * Certain firmware versions might report no valid channels 1836 * if booted in RF-kill, i.e. not all calibrations etc. are 1837 * running. We'll get out of this situation later when the 1838 * rfkill is removed and we update the regdomain again, but 1839 * since cfg80211 doesn't accept an empty regdomain, add a 1840 * dummy (unusable) rule here in this case so we can init. 1841 */ 1842 if (!valid_rules) { 1843 valid_rules = 1; 1844 rule = ®d->reg_rules[valid_rules - 1]; 1845 rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412); 1846 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413); 1847 rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1); 1848 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 1849 rule->power_rule.max_eirp = 1850 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 1851 } 1852 1853 regd->n_reg_rules = valid_rules; 1854 1855 /* 1856 * Narrow down regdom for unused regulatory rules to prevent hole 1857 * between reg rules to wmm rules. 1858 */ 1859 copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules), 1860 GFP_KERNEL); 1861 if (!copy_rd) 1862 copy_rd = ERR_PTR(-ENOMEM); 1863 1864 kfree(regd); 1865 return copy_rd; 1866 } 1867 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); 1868 1869 #define IWL_MAX_NVM_SECTION_SIZE 0x1b58 1870 #define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc 1871 #define MAX_NVM_FILE_LEN 16384 1872 1873 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data, 1874 unsigned int len) 1875 { 1876 #define IWL_4165_DEVICE_ID 0x5501 1877 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5) 1878 1879 if (section == NVM_SECTION_TYPE_PHY_SKU && 1880 hw_id == IWL_4165_DEVICE_ID && data && len >= 5 && 1881 (data[4] & NVM_SKU_CAP_MIMO_DISABLE)) 1882 /* OTP 0x52 bug work around: it's a 1x1 device */ 1883 data[3] = ANT_B | (ANT_B << 4); 1884 } 1885 IWL_EXPORT_SYMBOL(iwl_nvm_fixups); 1886 1887 /* 1888 * Reads external NVM from a file into mvm->nvm_sections 1889 * 1890 * HOW TO CREATE THE NVM FILE FORMAT: 1891 * ------------------------------ 1892 * 1. create hex file, format: 1893 * 3800 -> header 1894 * 0000 -> header 1895 * 5a40 -> data 1896 * 1897 * rev - 6 bit (word1) 1898 * len - 10 bit (word1) 1899 * id - 4 bit (word2) 1900 * rsv - 12 bit (word2) 1901 * 1902 * 2. flip 8bits with 8 bits per line to get the right NVM file format 1903 * 1904 * 3. create binary file from the hex file 1905 * 1906 * 4. save as "iNVM_xxx.bin" under /lib/firmware 1907 */ 1908 int iwl_read_external_nvm(struct iwl_trans *trans, 1909 const char *nvm_file_name, 1910 struct iwl_nvm_section *nvm_sections) 1911 { 1912 int ret, section_size; 1913 u16 section_id; 1914 const struct firmware *fw_entry; 1915 const struct { 1916 __le16 word1; 1917 __le16 word2; 1918 u8 data[]; 1919 } *file_sec; 1920 const u8 *eof; 1921 u8 *temp; 1922 int max_section_size; 1923 const __le32 *dword_buff; 1924 1925 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF)) 1926 #define NVM_WORD2_ID(x) (x >> 12) 1927 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8)) 1928 #define EXT_NVM_WORD1_ID(x) ((x) >> 4) 1929 #define NVM_HEADER_0 (0x2A504C54) 1930 #define NVM_HEADER_1 (0x4E564D2A) 1931 #define NVM_HEADER_SIZE (4 * sizeof(u32)) 1932 1933 IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n"); 1934 1935 /* Maximal size depends on NVM version */ 1936 if (trans->cfg->nvm_type != IWL_NVM_EXT) 1937 max_section_size = IWL_MAX_NVM_SECTION_SIZE; 1938 else 1939 max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE; 1940 1941 /* 1942 * Obtain NVM image via request_firmware. Since we already used 1943 * request_firmware_nowait() for the firmware binary load and only 1944 * get here after that we assume the NVM request can be satisfied 1945 * synchronously. 1946 */ 1947 ret = request_firmware(&fw_entry, nvm_file_name, trans->dev); 1948 if (ret) { 1949 IWL_ERR(trans, "ERROR: %s isn't available %d\n", 1950 nvm_file_name, ret); 1951 return ret; 1952 } 1953 1954 IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n", 1955 nvm_file_name, fw_entry->size); 1956 1957 if (fw_entry->size > MAX_NVM_FILE_LEN) { 1958 IWL_ERR(trans, "NVM file too large\n"); 1959 ret = -EINVAL; 1960 goto out; 1961 } 1962 1963 eof = fw_entry->data + fw_entry->size; 1964 dword_buff = (const __le32 *)fw_entry->data; 1965 1966 /* some NVM file will contain a header. 1967 * The header is identified by 2 dwords header as follow: 1968 * dword[0] = 0x2A504C54 1969 * dword[1] = 0x4E564D2A 1970 * 1971 * This header must be skipped when providing the NVM data to the FW. 1972 */ 1973 if (fw_entry->size > NVM_HEADER_SIZE && 1974 dword_buff[0] == cpu_to_le32(NVM_HEADER_0) && 1975 dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) { 1976 file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE); 1977 IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2])); 1978 IWL_INFO(trans, "NVM Manufacturing date %08X\n", 1979 le32_to_cpu(dword_buff[3])); 1980 1981 /* nvm file validation, dword_buff[2] holds the file version */ 1982 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 && 1983 trans->hw_rev_step == SILICON_C_STEP && 1984 le32_to_cpu(dword_buff[2]) < 0xE4A) { 1985 ret = -EFAULT; 1986 goto out; 1987 } 1988 } else { 1989 file_sec = (const void *)fw_entry->data; 1990 } 1991 1992 while (true) { 1993 if (file_sec->data > eof) { 1994 IWL_ERR(trans, 1995 "ERROR - NVM file too short for section header\n"); 1996 ret = -EINVAL; 1997 break; 1998 } 1999 2000 /* check for EOF marker */ 2001 if (!file_sec->word1 && !file_sec->word2) { 2002 ret = 0; 2003 break; 2004 } 2005 2006 if (trans->cfg->nvm_type != IWL_NVM_EXT) { 2007 section_size = 2008 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1)); 2009 section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2)); 2010 } else { 2011 section_size = 2 * EXT_NVM_WORD2_LEN( 2012 le16_to_cpu(file_sec->word2)); 2013 section_id = EXT_NVM_WORD1_ID( 2014 le16_to_cpu(file_sec->word1)); 2015 } 2016 2017 if (section_size > max_section_size) { 2018 IWL_ERR(trans, "ERROR - section too large (%d)\n", 2019 section_size); 2020 ret = -EINVAL; 2021 break; 2022 } 2023 2024 if (!section_size) { 2025 IWL_ERR(trans, "ERROR - section empty\n"); 2026 ret = -EINVAL; 2027 break; 2028 } 2029 2030 if (file_sec->data + section_size > eof) { 2031 IWL_ERR(trans, 2032 "ERROR - NVM file too short for section (%d bytes)\n", 2033 section_size); 2034 ret = -EINVAL; 2035 break; 2036 } 2037 2038 if (WARN(section_id >= NVM_MAX_NUM_SECTIONS, 2039 "Invalid NVM section ID %d\n", section_id)) { 2040 ret = -EINVAL; 2041 break; 2042 } 2043 2044 temp = kmemdup(file_sec->data, section_size, GFP_KERNEL); 2045 if (!temp) { 2046 ret = -ENOMEM; 2047 break; 2048 } 2049 2050 iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size); 2051 2052 kfree(nvm_sections[section_id].data); 2053 nvm_sections[section_id].data = temp; 2054 nvm_sections[section_id].length = section_size; 2055 2056 /* advance to the next section */ 2057 file_sec = (const void *)(file_sec->data + section_size); 2058 } 2059 out: 2060 release_firmware(fw_entry); 2061 return ret; 2062 } 2063 IWL_EXPORT_SYMBOL(iwl_read_external_nvm); 2064 2065 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans, 2066 const struct iwl_fw *fw, 2067 u8 set_tx_ant, u8 set_rx_ant) 2068 { 2069 struct iwl_nvm_get_info cmd = {}; 2070 struct iwl_nvm_data *nvm; 2071 struct iwl_host_cmd hcmd = { 2072 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, 2073 .data = { &cmd, }, 2074 .len = { sizeof(cmd) }, 2075 .id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO) 2076 }; 2077 int ret; 2078 bool empty_otp; 2079 u32 mac_flags; 2080 u32 sbands_flags = 0; 2081 u8 tx_ant; 2082 u8 rx_ant; 2083 2084 /* 2085 * All the values in iwl_nvm_get_info_rsp v4 are the same as 2086 * in v3, except for the channel profile part of the 2087 * regulatory. So we can just access the new struct, with the 2088 * exception of the latter. 2089 */ 2090 struct iwl_nvm_get_info_rsp *rsp; 2091 struct iwl_nvm_get_info_rsp_v3 *rsp_v3; 2092 bool v4 = fw_has_api(&fw->ucode_capa, 2093 IWL_UCODE_TLV_API_REGULATORY_NVM_INFO); 2094 size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3); 2095 void *channel_profile; 2096 2097 ret = iwl_trans_send_cmd(trans, &hcmd); 2098 if (ret) 2099 return ERR_PTR(ret); 2100 2101 if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size, 2102 "Invalid payload len in NVM response from FW %d", 2103 iwl_rx_packet_payload_len(hcmd.resp_pkt))) { 2104 ret = -EINVAL; 2105 goto out; 2106 } 2107 2108 rsp = (void *)hcmd.resp_pkt->data; 2109 empty_otp = !!(le32_to_cpu(rsp->general.flags) & 2110 NVM_GENERAL_FLAGS_EMPTY_OTP); 2111 if (empty_otp) 2112 IWL_INFO(trans, "OTP is empty\n"); 2113 2114 nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL); 2115 if (!nvm) { 2116 ret = -ENOMEM; 2117 goto out; 2118 } 2119 2120 iwl_set_hw_address_from_csr(trans, nvm); 2121 /* TODO: if platform NVM has MAC address - override it here */ 2122 2123 if (!is_valid_ether_addr(nvm->hw_addr)) { 2124 IWL_ERR(trans, "no valid mac address was found\n"); 2125 ret = -EINVAL; 2126 goto err_free; 2127 } 2128 2129 IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr); 2130 2131 /* Initialize general data */ 2132 nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version); 2133 nvm->n_hw_addrs = rsp->general.n_hw_addrs; 2134 if (nvm->n_hw_addrs == 0) 2135 IWL_WARN(trans, 2136 "Firmware declares no reserved mac addresses. OTP is empty: %d\n", 2137 empty_otp); 2138 2139 /* Initialize MAC sku data */ 2140 mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags); 2141 nvm->sku_cap_11ac_enable = 2142 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED); 2143 nvm->sku_cap_11n_enable = 2144 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED); 2145 nvm->sku_cap_11ax_enable = 2146 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED); 2147 nvm->sku_cap_band_24ghz_enable = 2148 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED); 2149 nvm->sku_cap_band_52ghz_enable = 2150 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED); 2151 nvm->sku_cap_mimo_disabled = 2152 !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED); 2153 if (CSR_HW_RFID_TYPE(trans->hw_rf_id) >= IWL_CFG_RF_TYPE_FM) 2154 nvm->sku_cap_11be_enable = true; 2155 2156 /* Initialize PHY sku data */ 2157 nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains); 2158 nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains); 2159 2160 if (le32_to_cpu(rsp->regulatory.lar_enabled) && 2161 fw_has_capa(&fw->ucode_capa, 2162 IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) { 2163 nvm->lar_enabled = true; 2164 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; 2165 } 2166 2167 rsp_v3 = (void *)rsp; 2168 channel_profile = v4 ? (void *)rsp->regulatory.channel_profile : 2169 (void *)rsp_v3->regulatory.channel_profile; 2170 2171 tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant; 2172 rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant; 2173 2174 if (set_tx_ant) 2175 tx_ant &= set_tx_ant; 2176 if (set_rx_ant) 2177 rx_ant &= set_rx_ant; 2178 2179 iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant, 2180 sbands_flags, v4, fw); 2181 2182 iwl_free_resp(&hcmd); 2183 return nvm; 2184 2185 err_free: 2186 kfree(nvm); 2187 out: 2188 iwl_free_resp(&hcmd); 2189 return ERR_PTR(ret); 2190 } 2191 IWL_EXPORT_SYMBOL(iwl_get_nvm); 2192