1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2016 Intel Deutschland GmbH 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of version 2 of the GNU General Public License as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 24 * USA 25 * 26 * The full GNU General Public License is included in this distribution 27 * in the file called COPYING. 28 * 29 * Contact Information: 30 * Intel Linux Wireless <linuxwifi@intel.com> 31 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 32 * 33 * BSD LICENSE 34 * 35 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 36 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 43 * * Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * * Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in 47 * the documentation and/or other materials provided with the 48 * distribution. 49 * * Neither the name Intel Corporation nor the names of its 50 * contributors may be used to endorse or promote products derived 51 * from this software without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 54 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 55 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 56 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 57 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 58 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 59 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 60 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 61 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 62 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 63 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 64 *****************************************************************************/ 65 #include <linux/types.h> 66 #include <linux/slab.h> 67 #include <linux/export.h> 68 #include <linux/etherdevice.h> 69 #include <linux/pci.h> 70 #include "iwl-drv.h" 71 #include "iwl-modparams.h" 72 #include "iwl-nvm-parse.h" 73 #include "iwl-prph.h" 74 #include "iwl-io.h" 75 #include "iwl-csr.h" 76 77 /* NVM offsets (in words) definitions */ 78 enum wkp_nvm_offsets { 79 /* NVM HW-Section offset (in words) definitions */ 80 HW_ADDR = 0x15, 81 82 /* NVM SW-Section offset (in words) definitions */ 83 NVM_SW_SECTION = 0x1C0, 84 NVM_VERSION = 0, 85 RADIO_CFG = 1, 86 SKU = 2, 87 N_HW_ADDRS = 3, 88 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, 89 90 /* NVM calibration section offset (in words) definitions */ 91 NVM_CALIB_SECTION = 0x2B8, 92 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION 93 }; 94 95 enum family_8000_nvm_offsets { 96 /* NVM HW-Section offset (in words) definitions */ 97 HW_ADDR0_WFPM_FAMILY_8000 = 0x12, 98 HW_ADDR1_WFPM_FAMILY_8000 = 0x16, 99 HW_ADDR0_PCIE_FAMILY_8000 = 0x8A, 100 HW_ADDR1_PCIE_FAMILY_8000 = 0x8E, 101 MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1, 102 103 /* NVM SW-Section offset (in words) definitions */ 104 NVM_SW_SECTION_FAMILY_8000 = 0x1C0, 105 NVM_VERSION_FAMILY_8000 = 0, 106 RADIO_CFG_FAMILY_8000 = 0, 107 SKU_FAMILY_8000 = 2, 108 N_HW_ADDRS_FAMILY_8000 = 3, 109 110 /* NVM REGULATORY -Section offset (in words) definitions */ 111 NVM_CHANNELS_FAMILY_8000 = 0, 112 NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7, 113 NVM_LAR_OFFSET_FAMILY_8000 = 0x507, 114 NVM_LAR_ENABLED_FAMILY_8000 = 0x7, 115 116 /* NVM calibration section offset (in words) definitions */ 117 NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8, 118 XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000 119 }; 120 121 /* SKU Capabilities (actual values from NVM definition) */ 122 enum nvm_sku_bits { 123 NVM_SKU_CAP_BAND_24GHZ = BIT(0), 124 NVM_SKU_CAP_BAND_52GHZ = BIT(1), 125 NVM_SKU_CAP_11N_ENABLE = BIT(2), 126 NVM_SKU_CAP_11AC_ENABLE = BIT(3), 127 NVM_SKU_CAP_MIMO_DISABLE = BIT(5), 128 }; 129 130 /* 131 * These are the channel numbers in the order that they are stored in the NVM 132 */ 133 static const u8 iwl_nvm_channels[] = { 134 /* 2.4 GHz */ 135 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 136 /* 5 GHz */ 137 36, 40, 44 , 48, 52, 56, 60, 64, 138 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 139 149, 153, 157, 161, 165 140 }; 141 142 static const u8 iwl_nvm_channels_family_8000[] = { 143 /* 2.4 GHz */ 144 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 145 /* 5 GHz */ 146 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 147 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148 149, 153, 157, 161, 165, 169, 173, 177, 181 149 }; 150 151 #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) 152 #define IWL_NUM_CHANNELS_FAMILY_8000 ARRAY_SIZE(iwl_nvm_channels_family_8000) 153 #define NUM_2GHZ_CHANNELS 14 154 #define NUM_2GHZ_CHANNELS_FAMILY_8000 14 155 #define FIRST_2GHZ_HT_MINUS 5 156 #define LAST_2GHZ_HT_PLUS 9 157 #define LAST_5GHZ_HT 165 158 #define LAST_5GHZ_HT_FAMILY_8000 181 159 #define N_HW_ADDR_MASK 0xF 160 161 /* rate data (static) */ 162 static struct ieee80211_rate iwl_cfg80211_rates[] = { 163 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, 164 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, 165 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 166 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, 167 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 168 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, 169 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 170 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, 171 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, 172 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, 173 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, 174 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, 175 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, 176 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, 177 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, 178 }; 179 #define RATES_24_OFFS 0 180 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) 181 #define RATES_52_OFFS 4 182 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) 183 184 /** 185 * enum iwl_nvm_channel_flags - channel flags in NVM 186 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo 187 * @NVM_CHANNEL_IBSS: usable as an IBSS channel 188 * @NVM_CHANNEL_ACTIVE: active scanning allowed 189 * @NVM_CHANNEL_RADAR: radar detection required 190 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed 191 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS 192 * on same channel on 2.4 or same UNII band on 5.2 193 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?) 194 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) 195 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) 196 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) 197 */ 198 enum iwl_nvm_channel_flags { 199 NVM_CHANNEL_VALID = BIT(0), 200 NVM_CHANNEL_IBSS = BIT(1), 201 NVM_CHANNEL_ACTIVE = BIT(3), 202 NVM_CHANNEL_RADAR = BIT(4), 203 NVM_CHANNEL_INDOOR_ONLY = BIT(5), 204 NVM_CHANNEL_GO_CONCURRENT = BIT(6), 205 NVM_CHANNEL_WIDE = BIT(8), 206 NVM_CHANNEL_40MHZ = BIT(9), 207 NVM_CHANNEL_80MHZ = BIT(10), 208 NVM_CHANNEL_160MHZ = BIT(11), 209 }; 210 211 #define CHECK_AND_PRINT_I(x) \ 212 ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "") 213 214 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz, 215 u16 nvm_flags, const struct iwl_cfg *cfg) 216 { 217 u32 flags = IEEE80211_CHAN_NO_HT40; 218 u32 last_5ghz_ht = LAST_5GHZ_HT; 219 220 if (cfg->device_family == IWL_DEVICE_FAMILY_8000) 221 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; 222 223 if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) { 224 if (ch_num <= LAST_2GHZ_HT_PLUS) 225 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 226 if (ch_num >= FIRST_2GHZ_HT_MINUS) 227 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 228 } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) { 229 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 230 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 231 else 232 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 233 } 234 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 235 flags |= IEEE80211_CHAN_NO_80MHZ; 236 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 237 flags |= IEEE80211_CHAN_NO_160MHZ; 238 239 if (!(nvm_flags & NVM_CHANNEL_IBSS)) 240 flags |= IEEE80211_CHAN_NO_IR; 241 242 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 243 flags |= IEEE80211_CHAN_NO_IR; 244 245 if (nvm_flags & NVM_CHANNEL_RADAR) 246 flags |= IEEE80211_CHAN_RADAR; 247 248 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 249 flags |= IEEE80211_CHAN_INDOOR_ONLY; 250 251 /* Set the GO concurrent flag only in case that NO_IR is set. 252 * Otherwise it is meaningless 253 */ 254 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 255 (flags & IEEE80211_CHAN_NO_IR)) 256 flags |= IEEE80211_CHAN_IR_CONCURRENT; 257 258 return flags; 259 } 260 261 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, 262 struct iwl_nvm_data *data, 263 const __le16 * const nvm_ch_flags, 264 bool lar_supported) 265 { 266 int ch_idx; 267 int n_channels = 0; 268 struct ieee80211_channel *channel; 269 u16 ch_flags; 270 bool is_5ghz; 271 int num_of_ch, num_2ghz_channels; 272 const u8 *nvm_chan; 273 274 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 275 num_of_ch = IWL_NUM_CHANNELS; 276 nvm_chan = &iwl_nvm_channels[0]; 277 num_2ghz_channels = NUM_2GHZ_CHANNELS; 278 } else { 279 num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000; 280 nvm_chan = &iwl_nvm_channels_family_8000[0]; 281 num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000; 282 } 283 284 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 285 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx); 286 287 if (ch_idx >= num_2ghz_channels && 288 !data->sku_cap_band_52GHz_enable) 289 continue; 290 291 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) { 292 /* 293 * Channels might become valid later if lar is 294 * supported, hence we still want to add them to 295 * the list of supported channels to cfg80211. 296 */ 297 IWL_DEBUG_EEPROM(dev, 298 "Ch. %d Flags %x [%sGHz] - No traffic\n", 299 nvm_chan[ch_idx], 300 ch_flags, 301 (ch_idx >= num_2ghz_channels) ? 302 "5.2" : "2.4"); 303 continue; 304 } 305 306 channel = &data->channels[n_channels]; 307 n_channels++; 308 309 channel->hw_value = nvm_chan[ch_idx]; 310 channel->band = (ch_idx < num_2ghz_channels) ? 311 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; 312 channel->center_freq = 313 ieee80211_channel_to_frequency( 314 channel->hw_value, channel->band); 315 316 /* Initialize regulatory-based run-time data */ 317 318 /* 319 * Default value - highest tx power value. max_power 320 * is not used in mvm, and is used for backwards compatibility 321 */ 322 channel->max_power = IWL_DEFAULT_MAX_TX_POWER; 323 is_5ghz = channel->band == IEEE80211_BAND_5GHZ; 324 325 /* don't put limitations in case we're using LAR */ 326 if (!lar_supported) 327 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], 328 ch_idx, is_5ghz, 329 ch_flags, cfg); 330 else 331 channel->flags = 0; 332 333 IWL_DEBUG_EEPROM(dev, 334 "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n", 335 channel->hw_value, 336 is_5ghz ? "5.2" : "2.4", 337 CHECK_AND_PRINT_I(VALID), 338 CHECK_AND_PRINT_I(IBSS), 339 CHECK_AND_PRINT_I(ACTIVE), 340 CHECK_AND_PRINT_I(RADAR), 341 CHECK_AND_PRINT_I(WIDE), 342 CHECK_AND_PRINT_I(INDOOR_ONLY), 343 CHECK_AND_PRINT_I(GO_CONCURRENT), 344 ch_flags, 345 channel->max_power, 346 ((ch_flags & NVM_CHANNEL_IBSS) && 347 !(ch_flags & NVM_CHANNEL_RADAR)) 348 ? "" : "not "); 349 } 350 351 return n_channels; 352 } 353 354 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg, 355 struct iwl_nvm_data *data, 356 struct ieee80211_sta_vht_cap *vht_cap, 357 u8 tx_chains, u8 rx_chains) 358 { 359 int num_rx_ants = num_of_ant(rx_chains); 360 int num_tx_ants = num_of_ant(tx_chains); 361 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?: 362 IEEE80211_VHT_MAX_AMPDU_1024K); 363 364 vht_cap->vht_supported = true; 365 366 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | 367 IEEE80211_VHT_CAP_RXSTBC_1 | 368 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 369 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | 370 max_ampdu_exponent << 371 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 372 373 if (cfg->vht_mu_mimo_supported) 374 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; 375 376 if (cfg->ht_params->ldpc) 377 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 378 379 if (data->sku_cap_mimo_disabled) { 380 num_rx_ants = 1; 381 num_tx_ants = 1; 382 } 383 384 if (num_tx_ants > 1) 385 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 386 else 387 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; 388 389 switch (iwlwifi_mod_params.amsdu_size) { 390 case IWL_AMSDU_4K: 391 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 392 break; 393 case IWL_AMSDU_8K: 394 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; 395 break; 396 case IWL_AMSDU_12K: 397 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 398 break; 399 default: 400 break; 401 } 402 403 vht_cap->vht_mcs.rx_mcs_map = 404 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 405 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | 406 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 407 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 408 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 409 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 410 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 411 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); 412 413 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { 414 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; 415 /* this works because NOT_SUPPORTED == 3 */ 416 vht_cap->vht_mcs.rx_mcs_map |= 417 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); 418 } 419 420 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; 421 } 422 423 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg, 424 struct iwl_nvm_data *data, 425 const __le16 *ch_section, 426 u8 tx_chains, u8 rx_chains, bool lar_supported) 427 { 428 int n_channels; 429 int n_used = 0; 430 struct ieee80211_supported_band *sband; 431 432 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 433 n_channels = iwl_init_channel_map( 434 dev, cfg, data, 435 &ch_section[NVM_CHANNELS], lar_supported); 436 else 437 n_channels = iwl_init_channel_map( 438 dev, cfg, data, 439 &ch_section[NVM_CHANNELS_FAMILY_8000], 440 lar_supported); 441 442 sband = &data->bands[IEEE80211_BAND_2GHZ]; 443 sband->band = IEEE80211_BAND_2GHZ; 444 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; 445 sband->n_bitrates = N_RATES_24; 446 n_used += iwl_init_sband_channels(data, sband, n_channels, 447 IEEE80211_BAND_2GHZ); 448 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ, 449 tx_chains, rx_chains); 450 451 sband = &data->bands[IEEE80211_BAND_5GHZ]; 452 sband->band = IEEE80211_BAND_5GHZ; 453 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 454 sband->n_bitrates = N_RATES_52; 455 n_used += iwl_init_sband_channels(data, sband, n_channels, 456 IEEE80211_BAND_5GHZ); 457 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ, 458 tx_chains, rx_chains); 459 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) 460 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap, 461 tx_chains, rx_chains); 462 463 if (n_channels != n_used) 464 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", 465 n_used, n_channels); 466 } 467 468 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 469 const __le16 *phy_sku) 470 { 471 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 472 return le16_to_cpup(nvm_sw + SKU); 473 474 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000)); 475 } 476 477 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 478 { 479 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 480 return le16_to_cpup(nvm_sw + NVM_VERSION); 481 else 482 return le32_to_cpup((__le32 *)(nvm_sw + 483 NVM_VERSION_FAMILY_8000)); 484 } 485 486 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 487 const __le16 *phy_sku) 488 { 489 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 490 return le16_to_cpup(nvm_sw + RADIO_CFG); 491 492 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000)); 493 494 } 495 496 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 497 { 498 int n_hw_addr; 499 500 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 501 return le16_to_cpup(nvm_sw + N_HW_ADDRS); 502 503 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); 504 505 return n_hw_addr & N_HW_ADDR_MASK; 506 } 507 508 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, 509 struct iwl_nvm_data *data, 510 u32 radio_cfg) 511 { 512 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 513 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); 514 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); 515 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); 516 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); 517 return; 518 } 519 520 /* set the radio configuration for family 8000 */ 521 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg); 522 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg); 523 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg); 524 data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg); 525 data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg); 526 data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg); 527 } 528 529 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest) 530 { 531 const u8 *hw_addr; 532 533 hw_addr = (const u8 *)&mac_addr0; 534 dest[0] = hw_addr[3]; 535 dest[1] = hw_addr[2]; 536 dest[2] = hw_addr[1]; 537 dest[3] = hw_addr[0]; 538 539 hw_addr = (const u8 *)&mac_addr1; 540 dest[4] = hw_addr[1]; 541 dest[5] = hw_addr[0]; 542 } 543 544 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans, 545 struct iwl_nvm_data *data) 546 { 547 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP)); 548 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP)); 549 550 /* If OEM did not fuse address - get it from OTP */ 551 if (!mac_addr0 && !mac_addr1) { 552 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP)); 553 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP)); 554 } 555 556 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 557 } 558 559 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans, 560 const struct iwl_cfg *cfg, 561 struct iwl_nvm_data *data, 562 const __le16 *mac_override, 563 const __le16 *nvm_hw) 564 { 565 const u8 *hw_addr; 566 567 if (mac_override) { 568 static const u8 reserved_mac[] = { 569 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 570 }; 571 572 hw_addr = (const u8 *)(mac_override + 573 MAC_ADDRESS_OVERRIDE_FAMILY_8000); 574 575 /* 576 * Store the MAC address from MAO section. 577 * No byte swapping is required in MAO section 578 */ 579 memcpy(data->hw_addr, hw_addr, ETH_ALEN); 580 581 /* 582 * Force the use of the OTP MAC address in case of reserved MAC 583 * address in the NVM, or if address is given but invalid. 584 */ 585 if (is_valid_ether_addr(data->hw_addr) && 586 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) 587 return; 588 589 IWL_ERR(trans, 590 "mac address from nvm override section is not valid\n"); 591 } 592 593 if (nvm_hw) { 594 /* read the mac address from WFMP registers */ 595 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, 596 WFMP_MAC_ADDR_0)); 597 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, 598 WFMP_MAC_ADDR_1)); 599 600 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 601 602 return; 603 } 604 605 IWL_ERR(trans, "mac address is not found\n"); 606 } 607 608 static int iwl_set_hw_address(struct iwl_trans *trans, 609 const struct iwl_cfg *cfg, 610 struct iwl_nvm_data *data, const __le16 *nvm_hw, 611 const __le16 *mac_override) 612 { 613 if (cfg->mac_addr_from_csr) { 614 iwl_set_hw_address_from_csr(trans, data); 615 } else if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 616 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR); 617 618 /* The byte order is little endian 16 bit, meaning 214365 */ 619 data->hw_addr[0] = hw_addr[1]; 620 data->hw_addr[1] = hw_addr[0]; 621 data->hw_addr[2] = hw_addr[3]; 622 data->hw_addr[3] = hw_addr[2]; 623 data->hw_addr[4] = hw_addr[5]; 624 data->hw_addr[5] = hw_addr[4]; 625 } else { 626 iwl_set_hw_address_family_8000(trans, cfg, data, 627 mac_override, nvm_hw); 628 } 629 630 if (!is_valid_ether_addr(data->hw_addr)) { 631 IWL_ERR(trans, "no valid mac address was found\n"); 632 return -EINVAL; 633 } 634 635 return 0; 636 } 637 638 struct iwl_nvm_data * 639 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, 640 const __le16 *nvm_hw, const __le16 *nvm_sw, 641 const __le16 *nvm_calib, const __le16 *regulatory, 642 const __le16 *mac_override, const __le16 *phy_sku, 643 u8 tx_chains, u8 rx_chains, bool lar_fw_supported) 644 { 645 struct device *dev = trans->dev; 646 struct iwl_nvm_data *data; 647 bool lar_enabled; 648 u32 sku, radio_cfg; 649 u16 lar_config; 650 const __le16 *ch_section; 651 652 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 653 data = kzalloc(sizeof(*data) + 654 sizeof(struct ieee80211_channel) * 655 IWL_NUM_CHANNELS, 656 GFP_KERNEL); 657 else 658 data = kzalloc(sizeof(*data) + 659 sizeof(struct ieee80211_channel) * 660 IWL_NUM_CHANNELS_FAMILY_8000, 661 GFP_KERNEL); 662 if (!data) 663 return NULL; 664 665 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); 666 667 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); 668 iwl_set_radio_cfg(cfg, data, radio_cfg); 669 if (data->valid_tx_ant) 670 tx_chains &= data->valid_tx_ant; 671 if (data->valid_rx_ant) 672 rx_chains &= data->valid_rx_ant; 673 674 sku = iwl_get_sku(cfg, nvm_sw, phy_sku); 675 data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; 676 data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; 677 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; 678 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) 679 data->sku_cap_11n_enable = false; 680 data->sku_cap_11ac_enable = data->sku_cap_11n_enable && 681 (sku & NVM_SKU_CAP_11AC_ENABLE); 682 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; 683 684 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); 685 686 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 687 /* Checking for required sections */ 688 if (!nvm_calib) { 689 IWL_ERR(trans, 690 "Can't parse empty Calib NVM sections\n"); 691 kfree(data); 692 return NULL; 693 } 694 /* in family 8000 Xtal calibration values moved to OTP */ 695 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); 696 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); 697 lar_enabled = true; 698 ch_section = nvm_sw; 699 } else { 700 u16 lar_offset = data->nvm_version < 0xE39 ? 701 NVM_LAR_OFFSET_FAMILY_8000_OLD : 702 NVM_LAR_OFFSET_FAMILY_8000; 703 704 lar_config = le16_to_cpup(regulatory + lar_offset); 705 data->lar_enabled = !!(lar_config & 706 NVM_LAR_ENABLED_FAMILY_8000); 707 lar_enabled = data->lar_enabled; 708 ch_section = regulatory; 709 } 710 711 /* If no valid mac address was found - bail out */ 712 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) { 713 kfree(data); 714 return NULL; 715 } 716 717 iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains, 718 lar_fw_supported && lar_enabled); 719 data->calib_version = 255; 720 721 return data; 722 } 723 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); 724 725 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan, 726 int ch_idx, u16 nvm_flags, 727 const struct iwl_cfg *cfg) 728 { 729 u32 flags = NL80211_RRF_NO_HT40; 730 u32 last_5ghz_ht = LAST_5GHZ_HT; 731 732 if (cfg->device_family == IWL_DEVICE_FAMILY_8000) 733 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; 734 735 if (ch_idx < NUM_2GHZ_CHANNELS && 736 (nvm_flags & NVM_CHANNEL_40MHZ)) { 737 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) 738 flags &= ~NL80211_RRF_NO_HT40PLUS; 739 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) 740 flags &= ~NL80211_RRF_NO_HT40MINUS; 741 } else if (nvm_chan[ch_idx] <= last_5ghz_ht && 742 (nvm_flags & NVM_CHANNEL_40MHZ)) { 743 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 744 flags &= ~NL80211_RRF_NO_HT40PLUS; 745 else 746 flags &= ~NL80211_RRF_NO_HT40MINUS; 747 } 748 749 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 750 flags |= NL80211_RRF_NO_80MHZ; 751 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 752 flags |= NL80211_RRF_NO_160MHZ; 753 754 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 755 flags |= NL80211_RRF_NO_IR; 756 757 if (nvm_flags & NVM_CHANNEL_RADAR) 758 flags |= NL80211_RRF_DFS; 759 760 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 761 flags |= NL80211_RRF_NO_OUTDOOR; 762 763 /* Set the GO concurrent flag only in case that NO_IR is set. 764 * Otherwise it is meaningless 765 */ 766 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 767 (flags & NL80211_RRF_NO_IR)) 768 flags |= NL80211_RRF_GO_CONCURRENT; 769 770 return flags; 771 } 772 773 struct ieee80211_regdomain * 774 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, 775 int num_of_ch, __le32 *channels, u16 fw_mcc) 776 { 777 int ch_idx; 778 u16 ch_flags, prev_ch_flags = 0; 779 const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ? 780 iwl_nvm_channels_family_8000 : iwl_nvm_channels; 781 struct ieee80211_regdomain *regd; 782 int size_of_regd; 783 struct ieee80211_reg_rule *rule; 784 enum ieee80211_band band; 785 int center_freq, prev_center_freq = 0; 786 int valid_rules = 0; 787 bool new_rule; 788 int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ? 789 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS; 790 791 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) 792 return ERR_PTR(-EINVAL); 793 794 if (WARN_ON(num_of_ch > max_num_ch)) 795 num_of_ch = max_num_ch; 796 797 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", 798 num_of_ch); 799 800 /* build a regdomain rule for every valid channel */ 801 size_of_regd = 802 sizeof(struct ieee80211_regdomain) + 803 num_of_ch * sizeof(struct ieee80211_reg_rule); 804 805 regd = kzalloc(size_of_regd, GFP_KERNEL); 806 if (!regd) 807 return ERR_PTR(-ENOMEM); 808 809 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 810 ch_flags = (u16)__le32_to_cpup(channels + ch_idx); 811 band = (ch_idx < NUM_2GHZ_CHANNELS) ? 812 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; 813 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], 814 band); 815 new_rule = false; 816 817 if (!(ch_flags & NVM_CHANNEL_VALID)) { 818 IWL_DEBUG_DEV(dev, IWL_DL_LAR, 819 "Ch. %d Flags %x [%sGHz] - No traffic\n", 820 nvm_chan[ch_idx], 821 ch_flags, 822 (ch_idx >= NUM_2GHZ_CHANNELS) ? 823 "5.2" : "2.4"); 824 continue; 825 } 826 827 /* we can't continue the same rule */ 828 if (ch_idx == 0 || prev_ch_flags != ch_flags || 829 center_freq - prev_center_freq > 20) { 830 valid_rules++; 831 new_rule = true; 832 } 833 834 rule = ®d->reg_rules[valid_rules - 1]; 835 836 if (new_rule) 837 rule->freq_range.start_freq_khz = 838 MHZ_TO_KHZ(center_freq - 10); 839 840 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); 841 842 /* this doesn't matter - not used by FW */ 843 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 844 rule->power_rule.max_eirp = 845 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 846 847 rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, 848 ch_flags, cfg); 849 850 /* rely on auto-calculation to merge BW of contiguous chans */ 851 rule->flags |= NL80211_RRF_AUTO_BW; 852 rule->freq_range.max_bandwidth_khz = 0; 853 854 prev_ch_flags = ch_flags; 855 prev_center_freq = center_freq; 856 857 IWL_DEBUG_DEV(dev, IWL_DL_LAR, 858 "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n", 859 center_freq, 860 band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4", 861 CHECK_AND_PRINT_I(VALID), 862 CHECK_AND_PRINT_I(ACTIVE), 863 CHECK_AND_PRINT_I(RADAR), 864 CHECK_AND_PRINT_I(WIDE), 865 CHECK_AND_PRINT_I(40MHZ), 866 CHECK_AND_PRINT_I(80MHZ), 867 CHECK_AND_PRINT_I(160MHZ), 868 CHECK_AND_PRINT_I(INDOOR_ONLY), 869 CHECK_AND_PRINT_I(GO_CONCURRENT), 870 ch_flags, 871 ((ch_flags & NVM_CHANNEL_ACTIVE) && 872 !(ch_flags & NVM_CHANNEL_RADAR)) 873 ? "" : "not "); 874 } 875 876 regd->n_reg_rules = valid_rules; 877 878 /* set alpha2 from FW. */ 879 regd->alpha2[0] = fw_mcc >> 8; 880 regd->alpha2[1] = fw_mcc & 0xff; 881 882 return regd; 883 } 884 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); 885