xref: /linux/drivers/net/wireless/intel/iwlwifi/iwl-nvm-parse.c (revision a5d9265e017f081f0dc133c0e2f45103d027b874)
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018        Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018        Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *****************************************************************************/
63 #include <linux/types.h>
64 #include <linux/slab.h>
65 #include <linux/export.h>
66 #include <linux/etherdevice.h>
67 #include <linux/pci.h>
68 #include <linux/firmware.h>
69 
70 #include "iwl-drv.h"
71 #include "iwl-modparams.h"
72 #include "iwl-nvm-parse.h"
73 #include "iwl-prph.h"
74 #include "iwl-io.h"
75 #include "iwl-csr.h"
76 #include "fw/acpi.h"
77 #include "fw/api/nvm-reg.h"
78 #include "fw/api/commands.h"
79 #include "fw/api/cmdhdr.h"
80 #include "fw/img.h"
81 
82 /* NVM offsets (in words) definitions */
83 enum nvm_offsets {
84 	/* NVM HW-Section offset (in words) definitions */
85 	SUBSYSTEM_ID = 0x0A,
86 	HW_ADDR = 0x15,
87 
88 	/* NVM SW-Section offset (in words) definitions */
89 	NVM_SW_SECTION = 0x1C0,
90 	NVM_VERSION = 0,
91 	RADIO_CFG = 1,
92 	SKU = 2,
93 	N_HW_ADDRS = 3,
94 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
95 
96 	/* NVM calibration section offset (in words) definitions */
97 	NVM_CALIB_SECTION = 0x2B8,
98 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
99 
100 	/* NVM REGULATORY -Section offset (in words) definitions */
101 	NVM_CHANNELS_SDP = 0,
102 };
103 
104 enum ext_nvm_offsets {
105 	/* NVM HW-Section offset (in words) definitions */
106 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
107 
108 	/* NVM SW-Section offset (in words) definitions */
109 	NVM_VERSION_EXT_NVM = 0,
110 	RADIO_CFG_FAMILY_EXT_NVM = 0,
111 	SKU_FAMILY_8000 = 2,
112 	N_HW_ADDRS_FAMILY_8000 = 3,
113 
114 	/* NVM REGULATORY -Section offset (in words) definitions */
115 	NVM_CHANNELS_EXTENDED = 0,
116 	NVM_LAR_OFFSET_OLD = 0x4C7,
117 	NVM_LAR_OFFSET = 0x507,
118 	NVM_LAR_ENABLED = 0x7,
119 };
120 
121 /* SKU Capabilities (actual values from NVM definition) */
122 enum nvm_sku_bits {
123 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
124 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
125 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
126 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
127 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
128 };
129 
130 /*
131  * These are the channel numbers in the order that they are stored in the NVM
132  */
133 static const u8 iwl_nvm_channels[] = {
134 	/* 2.4 GHz */
135 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
136 	/* 5 GHz */
137 	36, 40, 44 , 48, 52, 56, 60, 64,
138 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
139 	149, 153, 157, 161, 165
140 };
141 
142 static const u8 iwl_ext_nvm_channels[] = {
143 	/* 2.4 GHz */
144 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 	/* 5 GHz */
146 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
147 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
148 	149, 153, 157, 161, 165, 169, 173, 177, 181
149 };
150 
151 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
152 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
153 #define NUM_2GHZ_CHANNELS		14
154 #define NUM_2GHZ_CHANNELS_EXT	14
155 #define FIRST_2GHZ_HT_MINUS		5
156 #define LAST_2GHZ_HT_PLUS		9
157 #define LAST_5GHZ_HT			165
158 #define LAST_5GHZ_HT_FAMILY_8000	181
159 #define N_HW_ADDR_MASK			0xF
160 
161 /* rate data (static) */
162 static struct ieee80211_rate iwl_cfg80211_rates[] = {
163 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
164 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
165 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
166 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
167 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
168 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
169 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
170 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
171 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
172 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
173 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
174 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
175 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
176 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
177 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
178 };
179 #define RATES_24_OFFS	0
180 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
181 #define RATES_52_OFFS	4
182 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
183 
184 /**
185  * enum iwl_nvm_channel_flags - channel flags in NVM
186  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
187  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
188  * @NVM_CHANNEL_ACTIVE: active scanning allowed
189  * @NVM_CHANNEL_RADAR: radar detection required
190  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
191  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
192  *	on same channel on 2.4 or same UNII band on 5.2
193  * @NVM_CHANNEL_UNIFORM: uniform spreading required
194  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
195  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
196  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
197  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
198  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
199  */
200 enum iwl_nvm_channel_flags {
201 	NVM_CHANNEL_VALID		= BIT(0),
202 	NVM_CHANNEL_IBSS		= BIT(1),
203 	NVM_CHANNEL_ACTIVE		= BIT(3),
204 	NVM_CHANNEL_RADAR		= BIT(4),
205 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
206 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
207 	NVM_CHANNEL_UNIFORM		= BIT(7),
208 	NVM_CHANNEL_20MHZ		= BIT(8),
209 	NVM_CHANNEL_40MHZ		= BIT(9),
210 	NVM_CHANNEL_80MHZ		= BIT(10),
211 	NVM_CHANNEL_160MHZ		= BIT(11),
212 	NVM_CHANNEL_DC_HIGH		= BIT(12),
213 };
214 
215 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
216 					       int chan, u16 flags)
217 {
218 #define CHECK_AND_PRINT_I(x)	\
219 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
220 
221 	if (!(flags & NVM_CHANNEL_VALID)) {
222 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
223 			      chan, flags);
224 		return;
225 	}
226 
227 	/* Note: already can print up to 101 characters, 110 is the limit! */
228 	IWL_DEBUG_DEV(dev, level,
229 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
230 		      chan, flags,
231 		      CHECK_AND_PRINT_I(VALID),
232 		      CHECK_AND_PRINT_I(IBSS),
233 		      CHECK_AND_PRINT_I(ACTIVE),
234 		      CHECK_AND_PRINT_I(RADAR),
235 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
236 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
237 		      CHECK_AND_PRINT_I(UNIFORM),
238 		      CHECK_AND_PRINT_I(20MHZ),
239 		      CHECK_AND_PRINT_I(40MHZ),
240 		      CHECK_AND_PRINT_I(80MHZ),
241 		      CHECK_AND_PRINT_I(160MHZ),
242 		      CHECK_AND_PRINT_I(DC_HIGH));
243 #undef CHECK_AND_PRINT_I
244 }
245 
246 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
247 				 u16 nvm_flags, const struct iwl_cfg *cfg)
248 {
249 	u32 flags = IEEE80211_CHAN_NO_HT40;
250 	u32 last_5ghz_ht = LAST_5GHZ_HT;
251 
252 	if (cfg->nvm_type == IWL_NVM_EXT)
253 		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
254 
255 	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
256 		if (ch_num <= LAST_2GHZ_HT_PLUS)
257 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
258 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
259 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
260 	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
261 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
262 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
263 		else
264 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
265 	}
266 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
267 		flags |= IEEE80211_CHAN_NO_80MHZ;
268 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
269 		flags |= IEEE80211_CHAN_NO_160MHZ;
270 
271 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
272 		flags |= IEEE80211_CHAN_NO_IR;
273 
274 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
275 		flags |= IEEE80211_CHAN_NO_IR;
276 
277 	if (nvm_flags & NVM_CHANNEL_RADAR)
278 		flags |= IEEE80211_CHAN_RADAR;
279 
280 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
281 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
282 
283 	/* Set the GO concurrent flag only in case that NO_IR is set.
284 	 * Otherwise it is meaningless
285 	 */
286 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
287 	    (flags & IEEE80211_CHAN_NO_IR))
288 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
289 
290 	return flags;
291 }
292 
293 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
294 				struct iwl_nvm_data *data,
295 				const __le16 * const nvm_ch_flags,
296 				u32 sbands_flags)
297 {
298 	int ch_idx;
299 	int n_channels = 0;
300 	struct ieee80211_channel *channel;
301 	u16 ch_flags;
302 	int num_of_ch, num_2ghz_channels;
303 	const u8 *nvm_chan;
304 
305 	if (cfg->nvm_type != IWL_NVM_EXT) {
306 		num_of_ch = IWL_NVM_NUM_CHANNELS;
307 		nvm_chan = &iwl_nvm_channels[0];
308 		num_2ghz_channels = NUM_2GHZ_CHANNELS;
309 	} else {
310 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
311 		nvm_chan = &iwl_ext_nvm_channels[0];
312 		num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT;
313 	}
314 
315 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
316 		bool is_5ghz = (ch_idx >= num_2ghz_channels);
317 
318 		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
319 
320 		if (is_5ghz && !data->sku_cap_band_52ghz_enable)
321 			continue;
322 
323 		/* workaround to disable wide channels in 5GHz */
324 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
325 		    is_5ghz) {
326 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
327 				     NVM_CHANNEL_80MHZ |
328 				     NVM_CHANNEL_160MHZ);
329 		}
330 
331 		if (ch_flags & NVM_CHANNEL_160MHZ)
332 			data->vht160_supported = true;
333 
334 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
335 		    !(ch_flags & NVM_CHANNEL_VALID)) {
336 			/*
337 			 * Channels might become valid later if lar is
338 			 * supported, hence we still want to add them to
339 			 * the list of supported channels to cfg80211.
340 			 */
341 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
342 						    nvm_chan[ch_idx], ch_flags);
343 			continue;
344 		}
345 
346 		channel = &data->channels[n_channels];
347 		n_channels++;
348 
349 		channel->hw_value = nvm_chan[ch_idx];
350 		channel->band = is_5ghz ?
351 				NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
352 		channel->center_freq =
353 			ieee80211_channel_to_frequency(
354 				channel->hw_value, channel->band);
355 
356 		/* Initialize regulatory-based run-time data */
357 
358 		/*
359 		 * Default value - highest tx power value.  max_power
360 		 * is not used in mvm, and is used for backwards compatibility
361 		 */
362 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
363 
364 		/* don't put limitations in case we're using LAR */
365 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
366 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
367 							       ch_idx, is_5ghz,
368 							       ch_flags, cfg);
369 		else
370 			channel->flags = 0;
371 
372 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
373 					    channel->hw_value, ch_flags);
374 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
375 				 channel->hw_value, channel->max_power);
376 	}
377 
378 	return n_channels;
379 }
380 
381 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
382 				  struct iwl_nvm_data *data,
383 				  struct ieee80211_sta_vht_cap *vht_cap,
384 				  u8 tx_chains, u8 rx_chains)
385 {
386 	int num_rx_ants = num_of_ant(rx_chains);
387 	int num_tx_ants = num_of_ant(tx_chains);
388 	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
389 					   IEEE80211_VHT_MAX_AMPDU_1024K);
390 
391 	vht_cap->vht_supported = true;
392 
393 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
394 		       IEEE80211_VHT_CAP_RXSTBC_1 |
395 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
396 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
397 		       max_ampdu_exponent <<
398 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
399 
400 	if (data->vht160_supported)
401 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
402 				IEEE80211_VHT_CAP_SHORT_GI_160;
403 
404 	if (cfg->vht_mu_mimo_supported)
405 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
406 
407 	if (cfg->ht_params->ldpc)
408 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
409 
410 	if (data->sku_cap_mimo_disabled) {
411 		num_rx_ants = 1;
412 		num_tx_ants = 1;
413 	}
414 
415 	if (num_tx_ants > 1)
416 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
417 	else
418 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
419 
420 	switch (iwlwifi_mod_params.amsdu_size) {
421 	case IWL_AMSDU_DEF:
422 		if (cfg->mq_rx_supported)
423 			vht_cap->cap |=
424 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
425 		else
426 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
427 		break;
428 	case IWL_AMSDU_2K:
429 		if (cfg->mq_rx_supported)
430 			vht_cap->cap |=
431 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
432 		else
433 			WARN(1, "RB size of 2K is not supported by this device\n");
434 		break;
435 	case IWL_AMSDU_4K:
436 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
437 		break;
438 	case IWL_AMSDU_8K:
439 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
440 		break;
441 	case IWL_AMSDU_12K:
442 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
443 		break;
444 	default:
445 		break;
446 	}
447 
448 	vht_cap->vht_mcs.rx_mcs_map =
449 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
450 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
451 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
452 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
453 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
454 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
455 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
456 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
457 
458 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
459 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
460 		/* this works because NOT_SUPPORTED == 3 */
461 		vht_cap->vht_mcs.rx_mcs_map |=
462 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
463 	}
464 
465 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
466 }
467 
468 static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
469 	{
470 		.types_mask = BIT(NL80211_IFTYPE_STATION),
471 		.he_cap = {
472 			.has_he = true,
473 			.he_cap_elem = {
474 				.mac_cap_info[0] =
475 					IEEE80211_HE_MAC_CAP0_HTC_HE |
476 					IEEE80211_HE_MAC_CAP0_TWT_REQ,
477 				.mac_cap_info[1] =
478 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
479 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
480 				.mac_cap_info[2] =
481 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP |
482 					IEEE80211_HE_MAC_CAP2_MU_CASCADING |
483 					IEEE80211_HE_MAC_CAP2_ACK_EN,
484 				.mac_cap_info[3] =
485 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
486 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
487 				.mac_cap_info[4] =
488 					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
489 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
490 				.mac_cap_info[5] =
491 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
492 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
493 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
494 				.phy_cap_info[0] =
495 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
496 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
497 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
498 				.phy_cap_info[1] =
499 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
500 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
501 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
502 					IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
503 				.phy_cap_info[2] =
504 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
505 					IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
506 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
507 					IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
508 					IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO,
509 				.phy_cap_info[3] =
510 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
511 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
512 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
513 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
514 				.phy_cap_info[4] =
515 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
516 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
517 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
518 				.phy_cap_info[5] =
519 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
520 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 |
521 					IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK |
522 					IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK,
523 				.phy_cap_info[6] =
524 					IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU |
525 					IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU |
526 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMER_FB |
527 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMER_FB |
528 					IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB |
529 					IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO |
530 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
531 				.phy_cap_info[7] =
532 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
533 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
534 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
535 				.phy_cap_info[8] =
536 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
537 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
538 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
539 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
540 					IEEE80211_HE_PHY_CAP8_DCM_MAX_BW_160_OR_80P80_MHZ,
541 				.phy_cap_info[9] =
542 					IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
543 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
544 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB,
545 			},
546 			/*
547 			 * Set default Tx/Rx HE MCS NSS Support field.
548 			 * Indicate support for up to 2 spatial streams and all
549 			 * MCS, without any special cases
550 			 */
551 			.he_mcs_nss_supp = {
552 				.rx_mcs_80 = cpu_to_le16(0xfffa),
553 				.tx_mcs_80 = cpu_to_le16(0xfffa),
554 				.rx_mcs_160 = cpu_to_le16(0xfffa),
555 				.tx_mcs_160 = cpu_to_le16(0xfffa),
556 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
557 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
558 			},
559 			/*
560 			 * Set default PPE thresholds, with PPET16 set to 0,
561 			 * PPET8 set to 7
562 			 */
563 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
564 		},
565 	},
566 	{
567 		.types_mask = BIT(NL80211_IFTYPE_AP),
568 		.he_cap = {
569 			.has_he = true,
570 			.he_cap_elem = {
571 				.mac_cap_info[0] =
572 					IEEE80211_HE_MAC_CAP0_HTC_HE,
573 				.mac_cap_info[1] =
574 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
575 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
576 				.mac_cap_info[2] =
577 					IEEE80211_HE_MAC_CAP2_BSR |
578 					IEEE80211_HE_MAC_CAP2_MU_CASCADING |
579 					IEEE80211_HE_MAC_CAP2_ACK_EN,
580 				.mac_cap_info[3] =
581 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
582 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
583 				.mac_cap_info[4] =
584 					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
585 				.phy_cap_info[0] =
586 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
587 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
588 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
589 				.phy_cap_info[1] =
590 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
591 					IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
592 				.phy_cap_info[2] =
593 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
594 					IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
595 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
596 				.phy_cap_info[3] =
597 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
598 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
599 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
600 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
601 				.phy_cap_info[4] =
602 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
603 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
604 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
605 				.phy_cap_info[5] =
606 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
607 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 |
608 					IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK |
609 					IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK,
610 				.phy_cap_info[6] =
611 					IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU |
612 					IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU |
613 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
614 				.phy_cap_info[7] =
615 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
616 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
617 				.phy_cap_info[8] =
618 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
619 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
620 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
621 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
622 					IEEE80211_HE_PHY_CAP8_DCM_MAX_BW_160_OR_80P80_MHZ,
623 				.phy_cap_info[9] =
624 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
625 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB,
626 			},
627 			/*
628 			 * Set default Tx/Rx HE MCS NSS Support field.
629 			 * Indicate support for up to 2 spatial streams and all
630 			 * MCS, without any special cases
631 			 */
632 			.he_mcs_nss_supp = {
633 				.rx_mcs_80 = cpu_to_le16(0xfffa),
634 				.tx_mcs_80 = cpu_to_le16(0xfffa),
635 				.rx_mcs_160 = cpu_to_le16(0xfffa),
636 				.tx_mcs_160 = cpu_to_le16(0xfffa),
637 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
638 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
639 			},
640 			/*
641 			 * Set default PPE thresholds, with PPET16 set to 0,
642 			 * PPET8 set to 7
643 			 */
644 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
645 		},
646 	},
647 };
648 
649 static void iwl_init_he_hw_capab(struct ieee80211_supported_band *sband,
650 				 u8 tx_chains, u8 rx_chains)
651 {
652 	if (sband->band == NL80211_BAND_2GHZ ||
653 	    sband->band == NL80211_BAND_5GHZ)
654 		sband->iftype_data = iwl_he_capa;
655 	else
656 		return;
657 
658 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
659 
660 	/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
661 	if ((tx_chains & rx_chains) != ANT_AB) {
662 		int i;
663 
664 		for (i = 0; i < sband->n_iftype_data; i++) {
665 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
666 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
667 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
668 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
669 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
670 				~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
671 		}
672 	}
673 }
674 
675 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
676 			    struct iwl_nvm_data *data,
677 			    const __le16 *nvm_ch_flags, u8 tx_chains,
678 			    u8 rx_chains, u32 sbands_flags)
679 {
680 	int n_channels;
681 	int n_used = 0;
682 	struct ieee80211_supported_band *sband;
683 
684 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
685 					  sbands_flags);
686 	sband = &data->bands[NL80211_BAND_2GHZ];
687 	sband->band = NL80211_BAND_2GHZ;
688 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
689 	sband->n_bitrates = N_RATES_24;
690 	n_used += iwl_init_sband_channels(data, sband, n_channels,
691 					  NL80211_BAND_2GHZ);
692 	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
693 			     tx_chains, rx_chains);
694 
695 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
696 		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
697 
698 	sband = &data->bands[NL80211_BAND_5GHZ];
699 	sband->band = NL80211_BAND_5GHZ;
700 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
701 	sband->n_bitrates = N_RATES_52;
702 	n_used += iwl_init_sband_channels(data, sband, n_channels,
703 					  NL80211_BAND_5GHZ);
704 	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
705 			     tx_chains, rx_chains);
706 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
707 		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
708 				      tx_chains, rx_chains);
709 
710 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
711 		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
712 
713 	if (n_channels != n_used)
714 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
715 			    n_used, n_channels);
716 }
717 
718 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
719 		       const __le16 *phy_sku)
720 {
721 	if (cfg->nvm_type != IWL_NVM_EXT)
722 		return le16_to_cpup(nvm_sw + SKU);
723 
724 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
725 }
726 
727 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
728 {
729 	if (cfg->nvm_type != IWL_NVM_EXT)
730 		return le16_to_cpup(nvm_sw + NVM_VERSION);
731 	else
732 		return le32_to_cpup((__le32 *)(nvm_sw +
733 					       NVM_VERSION_EXT_NVM));
734 }
735 
736 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
737 			     const __le16 *phy_sku)
738 {
739 	if (cfg->nvm_type != IWL_NVM_EXT)
740 		return le16_to_cpup(nvm_sw + RADIO_CFG);
741 
742 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
743 
744 }
745 
746 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
747 {
748 	int n_hw_addr;
749 
750 	if (cfg->nvm_type != IWL_NVM_EXT)
751 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
752 
753 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
754 
755 	return n_hw_addr & N_HW_ADDR_MASK;
756 }
757 
758 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
759 			      struct iwl_nvm_data *data,
760 			      u32 radio_cfg)
761 {
762 	if (cfg->nvm_type != IWL_NVM_EXT) {
763 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
764 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
765 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
766 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
767 		return;
768 	}
769 
770 	/* set the radio configuration for family 8000 */
771 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
772 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
773 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
774 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
775 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
776 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
777 }
778 
779 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
780 {
781 	const u8 *hw_addr;
782 
783 	hw_addr = (const u8 *)&mac_addr0;
784 	dest[0] = hw_addr[3];
785 	dest[1] = hw_addr[2];
786 	dest[2] = hw_addr[1];
787 	dest[3] = hw_addr[0];
788 
789 	hw_addr = (const u8 *)&mac_addr1;
790 	dest[4] = hw_addr[1];
791 	dest[5] = hw_addr[0];
792 }
793 
794 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
795 					struct iwl_nvm_data *data)
796 {
797 	__le32 mac_addr0 =
798 		cpu_to_le32(iwl_read32(trans,
799 				       trans->cfg->csr->mac_addr0_strap));
800 	__le32 mac_addr1 =
801 		cpu_to_le32(iwl_read32(trans,
802 				       trans->cfg->csr->mac_addr1_strap));
803 
804 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
805 	/*
806 	 * If the OEM fused a valid address, use it instead of the one in the
807 	 * OTP
808 	 */
809 	if (is_valid_ether_addr(data->hw_addr))
810 		return;
811 
812 	mac_addr0 = cpu_to_le32(iwl_read32(trans,
813 					   trans->cfg->csr->mac_addr0_otp));
814 	mac_addr1 = cpu_to_le32(iwl_read32(trans,
815 					   trans->cfg->csr->mac_addr1_otp));
816 
817 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
818 }
819 
820 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
821 					   const struct iwl_cfg *cfg,
822 					   struct iwl_nvm_data *data,
823 					   const __le16 *mac_override,
824 					   const __be16 *nvm_hw)
825 {
826 	const u8 *hw_addr;
827 
828 	if (mac_override) {
829 		static const u8 reserved_mac[] = {
830 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
831 		};
832 
833 		hw_addr = (const u8 *)(mac_override +
834 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
835 
836 		/*
837 		 * Store the MAC address from MAO section.
838 		 * No byte swapping is required in MAO section
839 		 */
840 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
841 
842 		/*
843 		 * Force the use of the OTP MAC address in case of reserved MAC
844 		 * address in the NVM, or if address is given but invalid.
845 		 */
846 		if (is_valid_ether_addr(data->hw_addr) &&
847 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
848 			return;
849 
850 		IWL_ERR(trans,
851 			"mac address from nvm override section is not valid\n");
852 	}
853 
854 	if (nvm_hw) {
855 		/* read the mac address from WFMP registers */
856 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
857 						WFMP_MAC_ADDR_0));
858 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
859 						WFMP_MAC_ADDR_1));
860 
861 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
862 
863 		return;
864 	}
865 
866 	IWL_ERR(trans, "mac address is not found\n");
867 }
868 
869 static int iwl_set_hw_address(struct iwl_trans *trans,
870 			      const struct iwl_cfg *cfg,
871 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
872 			      const __le16 *mac_override)
873 {
874 	if (cfg->mac_addr_from_csr) {
875 		iwl_set_hw_address_from_csr(trans, data);
876 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
877 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
878 
879 		/* The byte order is little endian 16 bit, meaning 214365 */
880 		data->hw_addr[0] = hw_addr[1];
881 		data->hw_addr[1] = hw_addr[0];
882 		data->hw_addr[2] = hw_addr[3];
883 		data->hw_addr[3] = hw_addr[2];
884 		data->hw_addr[4] = hw_addr[5];
885 		data->hw_addr[5] = hw_addr[4];
886 	} else {
887 		iwl_set_hw_address_family_8000(trans, cfg, data,
888 					       mac_override, nvm_hw);
889 	}
890 
891 	if (!is_valid_ether_addr(data->hw_addr)) {
892 		IWL_ERR(trans, "no valid mac address was found\n");
893 		return -EINVAL;
894 	}
895 
896 	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
897 
898 	return 0;
899 }
900 
901 static bool
902 iwl_nvm_no_wide_in_5ghz(struct device *dev, const struct iwl_cfg *cfg,
903 			const __be16 *nvm_hw)
904 {
905 	/*
906 	 * Workaround a bug in Indonesia SKUs where the regulatory in
907 	 * some 7000-family OTPs erroneously allow wide channels in
908 	 * 5GHz.  To check for Indonesia, we take the SKU value from
909 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
910 	 * 9.  In those cases, we need to force-disable wide channels
911 	 * in 5GHz otherwise the FW will throw a sysassert when we try
912 	 * to use them.
913 	 */
914 	if (cfg->device_family == IWL_DEVICE_FAMILY_7000) {
915 		/*
916 		 * Unlike the other sections in the NVM, the hw
917 		 * section uses big-endian.
918 		 */
919 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
920 		u8 sku = (subsystem_id & 0x1e) >> 1;
921 
922 		if (sku == 5 || sku == 9) {
923 			IWL_DEBUG_EEPROM(dev,
924 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
925 					 subsystem_id, sku);
926 			return true;
927 		}
928 	}
929 
930 	return false;
931 }
932 
933 struct iwl_nvm_data *
934 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
935 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
936 		   const __le16 *nvm_calib, const __le16 *regulatory,
937 		   const __le16 *mac_override, const __le16 *phy_sku,
938 		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
939 {
940 	struct device *dev = trans->dev;
941 	struct iwl_nvm_data *data;
942 	bool lar_enabled;
943 	u32 sku, radio_cfg;
944 	u32 sbands_flags = 0;
945 	u16 lar_config;
946 	const __le16 *ch_section;
947 
948 	if (cfg->nvm_type != IWL_NVM_EXT)
949 		data = kzalloc(sizeof(*data) +
950 			       sizeof(struct ieee80211_channel) *
951 			       IWL_NVM_NUM_CHANNELS,
952 			       GFP_KERNEL);
953 	else
954 		data = kzalloc(sizeof(*data) +
955 			       sizeof(struct ieee80211_channel) *
956 			       IWL_NVM_NUM_CHANNELS_EXT,
957 			       GFP_KERNEL);
958 	if (!data)
959 		return NULL;
960 
961 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
962 
963 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
964 	iwl_set_radio_cfg(cfg, data, radio_cfg);
965 	if (data->valid_tx_ant)
966 		tx_chains &= data->valid_tx_ant;
967 	if (data->valid_rx_ant)
968 		rx_chains &= data->valid_rx_ant;
969 
970 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
971 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
972 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
973 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
974 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
975 		data->sku_cap_11n_enable = false;
976 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
977 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
978 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
979 
980 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
981 
982 	if (cfg->nvm_type != IWL_NVM_EXT) {
983 		/* Checking for required sections */
984 		if (!nvm_calib) {
985 			IWL_ERR(trans,
986 				"Can't parse empty Calib NVM sections\n");
987 			kfree(data);
988 			return NULL;
989 		}
990 
991 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
992 			     &regulatory[NVM_CHANNELS_SDP] :
993 			     &nvm_sw[NVM_CHANNELS];
994 
995 		/* in family 8000 Xtal calibration values moved to OTP */
996 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
997 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
998 		lar_enabled = true;
999 	} else {
1000 		u16 lar_offset = data->nvm_version < 0xE39 ?
1001 				 NVM_LAR_OFFSET_OLD :
1002 				 NVM_LAR_OFFSET;
1003 
1004 		lar_config = le16_to_cpup(regulatory + lar_offset);
1005 		data->lar_enabled = !!(lar_config &
1006 				       NVM_LAR_ENABLED);
1007 		lar_enabled = data->lar_enabled;
1008 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1009 	}
1010 
1011 	/* If no valid mac address was found - bail out */
1012 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1013 		kfree(data);
1014 		return NULL;
1015 	}
1016 
1017 	if (lar_fw_supported && lar_enabled)
1018 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1019 
1020 	if (iwl_nvm_no_wide_in_5ghz(dev, cfg, nvm_hw))
1021 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1022 
1023 	iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
1024 			sbands_flags);
1025 	data->calib_version = 255;
1026 
1027 	return data;
1028 }
1029 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1030 
1031 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
1032 				       int ch_idx, u16 nvm_flags,
1033 				       const struct iwl_cfg *cfg)
1034 {
1035 	u32 flags = NL80211_RRF_NO_HT40;
1036 	u32 last_5ghz_ht = LAST_5GHZ_HT;
1037 
1038 	if (cfg->nvm_type == IWL_NVM_EXT)
1039 		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
1040 
1041 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1042 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1043 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1044 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1045 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1046 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1047 	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
1048 		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
1049 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1050 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1051 		else
1052 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1053 	}
1054 
1055 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1056 		flags |= NL80211_RRF_NO_80MHZ;
1057 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1058 		flags |= NL80211_RRF_NO_160MHZ;
1059 
1060 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1061 		flags |= NL80211_RRF_NO_IR;
1062 
1063 	if (nvm_flags & NVM_CHANNEL_RADAR)
1064 		flags |= NL80211_RRF_DFS;
1065 
1066 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1067 		flags |= NL80211_RRF_NO_OUTDOOR;
1068 
1069 	/* Set the GO concurrent flag only in case that NO_IR is set.
1070 	 * Otherwise it is meaningless
1071 	 */
1072 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1073 	    (flags & NL80211_RRF_NO_IR))
1074 		flags |= NL80211_RRF_GO_CONCURRENT;
1075 
1076 	return flags;
1077 }
1078 
1079 struct regdb_ptrs {
1080 	struct ieee80211_wmm_rule *rule;
1081 	u32 token;
1082 };
1083 
1084 struct ieee80211_regdomain *
1085 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1086 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1087 		       u16 geo_info)
1088 {
1089 	int ch_idx;
1090 	u16 ch_flags;
1091 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1092 	const u8 *nvm_chan = cfg->nvm_type == IWL_NVM_EXT ?
1093 			     iwl_ext_nvm_channels : iwl_nvm_channels;
1094 	struct ieee80211_regdomain *regd, *copy_rd;
1095 	int size_of_regd, regd_to_copy;
1096 	struct ieee80211_reg_rule *rule;
1097 	struct regdb_ptrs *regdb_ptrs;
1098 	enum nl80211_band band;
1099 	int center_freq, prev_center_freq = 0;
1100 	int valid_rules = 0;
1101 	bool new_rule;
1102 	int max_num_ch = cfg->nvm_type == IWL_NVM_EXT ?
1103 			 IWL_NVM_NUM_CHANNELS_EXT : IWL_NVM_NUM_CHANNELS;
1104 
1105 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1106 		return ERR_PTR(-EINVAL);
1107 
1108 	if (WARN_ON(num_of_ch > max_num_ch))
1109 		num_of_ch = max_num_ch;
1110 
1111 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1112 		      num_of_ch);
1113 
1114 	/* build a regdomain rule for every valid channel */
1115 	size_of_regd =
1116 		sizeof(struct ieee80211_regdomain) +
1117 		num_of_ch * sizeof(struct ieee80211_reg_rule);
1118 
1119 	regd = kzalloc(size_of_regd, GFP_KERNEL);
1120 	if (!regd)
1121 		return ERR_PTR(-ENOMEM);
1122 
1123 	regdb_ptrs = kcalloc(num_of_ch, sizeof(*regdb_ptrs), GFP_KERNEL);
1124 	if (!regdb_ptrs) {
1125 		copy_rd = ERR_PTR(-ENOMEM);
1126 		goto out;
1127 	}
1128 
1129 	/* set alpha2 from FW. */
1130 	regd->alpha2[0] = fw_mcc >> 8;
1131 	regd->alpha2[1] = fw_mcc & 0xff;
1132 
1133 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1134 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1135 		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
1136 		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1137 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1138 							     band);
1139 		new_rule = false;
1140 
1141 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1142 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1143 						    nvm_chan[ch_idx], ch_flags);
1144 			continue;
1145 		}
1146 
1147 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1148 							     ch_flags, cfg);
1149 
1150 		/* we can't continue the same rule */
1151 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1152 		    center_freq - prev_center_freq > 20) {
1153 			valid_rules++;
1154 			new_rule = true;
1155 		}
1156 
1157 		rule = &regd->reg_rules[valid_rules - 1];
1158 
1159 		if (new_rule)
1160 			rule->freq_range.start_freq_khz =
1161 						MHZ_TO_KHZ(center_freq - 10);
1162 
1163 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1164 
1165 		/* this doesn't matter - not used by FW */
1166 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1167 		rule->power_rule.max_eirp =
1168 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1169 
1170 		rule->flags = reg_rule_flags;
1171 
1172 		/* rely on auto-calculation to merge BW of contiguous chans */
1173 		rule->flags |= NL80211_RRF_AUTO_BW;
1174 		rule->freq_range.max_bandwidth_khz = 0;
1175 
1176 		prev_center_freq = center_freq;
1177 		prev_reg_rule_flags = reg_rule_flags;
1178 
1179 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1180 					    nvm_chan[ch_idx], ch_flags);
1181 
1182 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1183 		    band == NL80211_BAND_2GHZ)
1184 			continue;
1185 
1186 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1187 	}
1188 
1189 	regd->n_reg_rules = valid_rules;
1190 
1191 	/*
1192 	 * Narrow down regdom for unused regulatory rules to prevent hole
1193 	 * between reg rules to wmm rules.
1194 	 */
1195 	regd_to_copy = sizeof(struct ieee80211_regdomain) +
1196 		valid_rules * sizeof(struct ieee80211_reg_rule);
1197 
1198 	copy_rd = kmemdup(regd, regd_to_copy, GFP_KERNEL);
1199 	if (!copy_rd) {
1200 		copy_rd = ERR_PTR(-ENOMEM);
1201 		goto out;
1202 	}
1203 
1204 out:
1205 	kfree(regdb_ptrs);
1206 	kfree(regd);
1207 	return copy_rd;
1208 }
1209 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1210 
1211 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1212 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1213 #define MAX_NVM_FILE_LEN	16384
1214 
1215 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1216 		    unsigned int len)
1217 {
1218 #define IWL_4165_DEVICE_ID	0x5501
1219 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1220 
1221 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1222 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1223 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1224 		/* OTP 0x52 bug work around: it's a 1x1 device */
1225 		data[3] = ANT_B | (ANT_B << 4);
1226 }
1227 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1228 
1229 /*
1230  * Reads external NVM from a file into mvm->nvm_sections
1231  *
1232  * HOW TO CREATE THE NVM FILE FORMAT:
1233  * ------------------------------
1234  * 1. create hex file, format:
1235  *      3800 -> header
1236  *      0000 -> header
1237  *      5a40 -> data
1238  *
1239  *   rev - 6 bit (word1)
1240  *   len - 10 bit (word1)
1241  *   id - 4 bit (word2)
1242  *   rsv - 12 bit (word2)
1243  *
1244  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1245  *
1246  * 3. create binary file from the hex file
1247  *
1248  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1249  */
1250 int iwl_read_external_nvm(struct iwl_trans *trans,
1251 			  const char *nvm_file_name,
1252 			  struct iwl_nvm_section *nvm_sections)
1253 {
1254 	int ret, section_size;
1255 	u16 section_id;
1256 	const struct firmware *fw_entry;
1257 	const struct {
1258 		__le16 word1;
1259 		__le16 word2;
1260 		u8 data[];
1261 	} *file_sec;
1262 	const u8 *eof;
1263 	u8 *temp;
1264 	int max_section_size;
1265 	const __le32 *dword_buff;
1266 
1267 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1268 #define NVM_WORD2_ID(x) (x >> 12)
1269 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1270 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1271 #define NVM_HEADER_0	(0x2A504C54)
1272 #define NVM_HEADER_1	(0x4E564D2A)
1273 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1274 
1275 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1276 
1277 	/* Maximal size depends on NVM version */
1278 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1279 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1280 	else
1281 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1282 
1283 	/*
1284 	 * Obtain NVM image via request_firmware. Since we already used
1285 	 * request_firmware_nowait() for the firmware binary load and only
1286 	 * get here after that we assume the NVM request can be satisfied
1287 	 * synchronously.
1288 	 */
1289 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1290 	if (ret) {
1291 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1292 			nvm_file_name, ret);
1293 		return ret;
1294 	}
1295 
1296 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1297 		 nvm_file_name, fw_entry->size);
1298 
1299 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1300 		IWL_ERR(trans, "NVM file too large\n");
1301 		ret = -EINVAL;
1302 		goto out;
1303 	}
1304 
1305 	eof = fw_entry->data + fw_entry->size;
1306 	dword_buff = (__le32 *)fw_entry->data;
1307 
1308 	/* some NVM file will contain a header.
1309 	 * The header is identified by 2 dwords header as follow:
1310 	 * dword[0] = 0x2A504C54
1311 	 * dword[1] = 0x4E564D2A
1312 	 *
1313 	 * This header must be skipped when providing the NVM data to the FW.
1314 	 */
1315 	if (fw_entry->size > NVM_HEADER_SIZE &&
1316 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1317 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1318 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1319 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1320 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1321 			 le32_to_cpu(dword_buff[3]));
1322 
1323 		/* nvm file validation, dword_buff[2] holds the file version */
1324 		if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1325 		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1326 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1327 			ret = -EFAULT;
1328 			goto out;
1329 		}
1330 	} else {
1331 		file_sec = (void *)fw_entry->data;
1332 	}
1333 
1334 	while (true) {
1335 		if (file_sec->data > eof) {
1336 			IWL_ERR(trans,
1337 				"ERROR - NVM file too short for section header\n");
1338 			ret = -EINVAL;
1339 			break;
1340 		}
1341 
1342 		/* check for EOF marker */
1343 		if (!file_sec->word1 && !file_sec->word2) {
1344 			ret = 0;
1345 			break;
1346 		}
1347 
1348 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1349 			section_size =
1350 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1351 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1352 		} else {
1353 			section_size = 2 * EXT_NVM_WORD2_LEN(
1354 						le16_to_cpu(file_sec->word2));
1355 			section_id = EXT_NVM_WORD1_ID(
1356 						le16_to_cpu(file_sec->word1));
1357 		}
1358 
1359 		if (section_size > max_section_size) {
1360 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1361 				section_size);
1362 			ret = -EINVAL;
1363 			break;
1364 		}
1365 
1366 		if (!section_size) {
1367 			IWL_ERR(trans, "ERROR - section empty\n");
1368 			ret = -EINVAL;
1369 			break;
1370 		}
1371 
1372 		if (file_sec->data + section_size > eof) {
1373 			IWL_ERR(trans,
1374 				"ERROR - NVM file too short for section (%d bytes)\n",
1375 				section_size);
1376 			ret = -EINVAL;
1377 			break;
1378 		}
1379 
1380 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1381 			 "Invalid NVM section ID %d\n", section_id)) {
1382 			ret = -EINVAL;
1383 			break;
1384 		}
1385 
1386 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1387 		if (!temp) {
1388 			ret = -ENOMEM;
1389 			break;
1390 		}
1391 
1392 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1393 
1394 		kfree(nvm_sections[section_id].data);
1395 		nvm_sections[section_id].data = temp;
1396 		nvm_sections[section_id].length = section_size;
1397 
1398 		/* advance to the next section */
1399 		file_sec = (void *)(file_sec->data + section_size);
1400 	}
1401 out:
1402 	release_firmware(fw_entry);
1403 	return ret;
1404 }
1405 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1406 
1407 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1408 				 const struct iwl_fw *fw)
1409 {
1410 	struct iwl_nvm_get_info cmd = {};
1411 	struct iwl_nvm_get_info_rsp *rsp;
1412 	struct iwl_nvm_data *nvm;
1413 	struct iwl_host_cmd hcmd = {
1414 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1415 		.data = { &cmd, },
1416 		.len = { sizeof(cmd) },
1417 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1418 	};
1419 	int  ret;
1420 	bool lar_fw_supported = !iwlwifi_mod_params.lar_disable &&
1421 				fw_has_capa(&fw->ucode_capa,
1422 					    IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
1423 	bool empty_otp;
1424 	u32 mac_flags;
1425 	u32 sbands_flags = 0;
1426 
1427 	ret = iwl_trans_send_cmd(trans, &hcmd);
1428 	if (ret)
1429 		return ERR_PTR(ret);
1430 
1431 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != sizeof(*rsp),
1432 		 "Invalid payload len in NVM response from FW %d",
1433 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1434 		ret = -EINVAL;
1435 		goto out;
1436 	}
1437 
1438 	rsp = (void *)hcmd.resp_pkt->data;
1439 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1440 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1441 	if (empty_otp)
1442 		IWL_INFO(trans, "OTP is empty\n");
1443 
1444 	nvm = kzalloc(sizeof(*nvm) +
1445 		      sizeof(struct ieee80211_channel) * IWL_NUM_CHANNELS,
1446 		      GFP_KERNEL);
1447 	if (!nvm) {
1448 		ret = -ENOMEM;
1449 		goto out;
1450 	}
1451 
1452 	iwl_set_hw_address_from_csr(trans, nvm);
1453 	/* TODO: if platform NVM has MAC address - override it here */
1454 
1455 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1456 		IWL_ERR(trans, "no valid mac address was found\n");
1457 		ret = -EINVAL;
1458 		goto err_free;
1459 	}
1460 
1461 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1462 
1463 	/* Initialize general data */
1464 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1465 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1466 	if (nvm->n_hw_addrs == 0)
1467 		IWL_WARN(trans,
1468 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1469 			 empty_otp);
1470 
1471 	/* Initialize MAC sku data */
1472 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1473 	nvm->sku_cap_11ac_enable =
1474 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1475 	nvm->sku_cap_11n_enable =
1476 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1477 	nvm->sku_cap_11ax_enable =
1478 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1479 	nvm->sku_cap_band_24ghz_enable =
1480 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1481 	nvm->sku_cap_band_52ghz_enable =
1482 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1483 	nvm->sku_cap_mimo_disabled =
1484 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1485 
1486 	/* Initialize PHY sku data */
1487 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1488 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1489 
1490 	if (le32_to_cpu(rsp->regulatory.lar_enabled) && lar_fw_supported) {
1491 		nvm->lar_enabled = true;
1492 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1493 	}
1494 
1495 	iwl_init_sbands(trans->dev, trans->cfg, nvm,
1496 			rsp->regulatory.channel_profile,
1497 			nvm->valid_tx_ant & fw->valid_tx_ant,
1498 			nvm->valid_rx_ant & fw->valid_rx_ant,
1499 			sbands_flags);
1500 
1501 	iwl_free_resp(&hcmd);
1502 	return nvm;
1503 
1504 err_free:
1505 	kfree(nvm);
1506 out:
1507 	iwl_free_resp(&hcmd);
1508 	return ERR_PTR(ret);
1509 }
1510 IWL_EXPORT_SYMBOL(iwl_get_nvm);
1511