xref: /linux/drivers/net/wireless/intel/iwlwifi/iwl-nvm-parse.c (revision 58cd34772a30d5cbe9fec7d199772149946a4032)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM calibration section offset (in words) definitions */
42 	NVM_CALIB_SECTION = 0x2B8,
43 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44 
45 	/* NVM REGULATORY -Section offset (in words) definitions */
46 	NVM_CHANNELS_SDP = 0,
47 };
48 
49 enum ext_nvm_offsets {
50 	/* NVM HW-Section offset (in words) definitions */
51 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52 
53 	/* NVM SW-Section offset (in words) definitions */
54 	NVM_VERSION_EXT_NVM = 0,
55 	N_HW_ADDRS_FAMILY_8000 = 3,
56 
57 	/* NVM PHY_SKU-Section offset (in words) definitions */
58 	RADIO_CFG_FAMILY_EXT_NVM = 0,
59 	SKU_FAMILY_8000 = 2,
60 
61 	/* NVM REGULATORY -Section offset (in words) definitions */
62 	NVM_CHANNELS_EXTENDED = 0,
63 	NVM_LAR_OFFSET_OLD = 0x4C7,
64 	NVM_LAR_OFFSET = 0x507,
65 	NVM_LAR_ENABLED = 0x7,
66 };
67 
68 /* SKU Capabilities (actual values from NVM definition) */
69 enum nvm_sku_bits {
70 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
71 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
72 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
73 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
74 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
75 };
76 
77 /*
78  * These are the channel numbers in the order that they are stored in the NVM
79  */
80 static const u16 iwl_nvm_channels[] = {
81 	/* 2.4 GHz */
82 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83 	/* 5 GHz */
84 	36, 40, 44, 48, 52, 56, 60, 64,
85 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86 	149, 153, 157, 161, 165
87 };
88 
89 static const u16 iwl_ext_nvm_channels[] = {
90 	/* 2.4 GHz */
91 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92 	/* 5 GHz */
93 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95 	149, 153, 157, 161, 165, 169, 173, 177, 181
96 };
97 
98 static const u16 iwl_uhb_nvm_channels[] = {
99 	/* 2.4 GHz */
100 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101 	/* 5 GHz */
102 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104 	149, 153, 157, 161, 165, 169, 173, 177, 181,
105 	/* 6-7 GHz */
106 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110 };
111 
112 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
114 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
115 #define NUM_2GHZ_CHANNELS		14
116 #define NUM_5GHZ_CHANNELS		37
117 #define FIRST_2GHZ_HT_MINUS		5
118 #define LAST_2GHZ_HT_PLUS		9
119 #define N_HW_ADDR_MASK			0xF
120 
121 /* rate data (static) */
122 static struct ieee80211_rate iwl_cfg80211_rates[] = {
123 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138 };
139 #define RATES_24_OFFS	0
140 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
141 #define RATES_52_OFFS	4
142 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
143 
144 /**
145  * enum iwl_nvm_channel_flags - channel flags in NVM
146  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148  * @NVM_CHANNEL_ACTIVE: active scanning allowed
149  * @NVM_CHANNEL_RADAR: radar detection required
150  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152  *	on same channel on 2.4 or same UNII band on 5.2
153  * @NVM_CHANNEL_UNIFORM: uniform spreading required
154  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159  */
160 enum iwl_nvm_channel_flags {
161 	NVM_CHANNEL_VALID		= BIT(0),
162 	NVM_CHANNEL_IBSS		= BIT(1),
163 	NVM_CHANNEL_ACTIVE		= BIT(3),
164 	NVM_CHANNEL_RADAR		= BIT(4),
165 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
166 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
167 	NVM_CHANNEL_UNIFORM		= BIT(7),
168 	NVM_CHANNEL_20MHZ		= BIT(8),
169 	NVM_CHANNEL_40MHZ		= BIT(9),
170 	NVM_CHANNEL_80MHZ		= BIT(10),
171 	NVM_CHANNEL_160MHZ		= BIT(11),
172 	NVM_CHANNEL_DC_HIGH		= BIT(12),
173 };
174 
175 /**
176  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
177  * domain.
178  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
179  *	2.4Ghz band is allowed.
180  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
181  *	5Ghz band is allowed.
182  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
183  *	for this regulatory domain (valid only in 5Ghz).
184  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
185  *	for this regulatory domain (valid only in 5Ghz).
186  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
187  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
188  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
189  *	for this regulatory domain (valid only in 5Ghz).
190  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
191  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
192  */
193 enum iwl_reg_capa_flags_v1 {
194 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
195 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
196 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
197 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
198 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
199 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
200 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
201 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
202 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
203 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
204 
205 /**
206  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
207  * domain (version 2).
208  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
209  *	disabled.
210  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
211  *	2.4Ghz band is allowed.
212  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
213  *	5Ghz band is allowed.
214  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
215  *	for this regulatory domain (valid only in 5Ghz).
216  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
217  *	for this regulatory domain (valid only in 5Ghz).
218  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
219  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
220  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
221  *	126, 122) are disabled.
222  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
223  *	for this regulatory domain (uvalid only in 5Ghz).
224  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
225  */
226 enum iwl_reg_capa_flags_v2 {
227 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
228 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
229 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
230 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
231 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
232 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
233 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
234 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
235 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
236 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
237 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
238 
239 /**
240  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
241  * domain.
242  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
243  *	for this regulatory domain (valid only in 5Ghz).
244  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
245  *	for this regulatory domain (valid only in 5Ghz).
246  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
247  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
248  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
249  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
250  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
251  *	for this regulatory domain (valid only in 5GHz).
252  */
253 enum iwl_reg_capa_flags_v4 {
254 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
255 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
256 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
257 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
258 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
259 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
260 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
261 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
262 
263 /*
264 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
265 * MCC update command response.
266 */
267 #define REG_CAPA_V2_RESP_VER	6
268 
269 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
270  * MCC update command response.
271  */
272 #define REG_CAPA_V4_RESP_VER	8
273 
274 /**
275  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
276  * handling the different APIs of reg_capa_flags.
277  *
278  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
279  *	for this regulatory domain.
280  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
281  *	for this regulatory domain (valid only in 5 and 6 Ghz).
282  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
283  *	for this regulatory domain (valid only in 5 and 6 Ghz).
284  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
285  *	for this regulatory domain (valid only in 6 Ghz).
286  * @disable_11ax: 11ax is forbidden for this regulatory domain.
287  * @disable_11be: 11be is forbidden for this regulatory domain.
288  */
289 struct iwl_reg_capa {
290 	bool allow_40mhz;
291 	bool allow_80mhz;
292 	bool allow_160mhz;
293 	bool allow_320mhz;
294 	bool disable_11ax;
295 	bool disable_11be;
296 };
297 
298 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
299 					       int chan, u32 flags)
300 {
301 #define CHECK_AND_PRINT_I(x)	\
302 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
303 
304 	if (!(flags & NVM_CHANNEL_VALID)) {
305 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
306 			      chan, flags);
307 		return;
308 	}
309 
310 	/* Note: already can print up to 101 characters, 110 is the limit! */
311 	IWL_DEBUG_DEV(dev, level,
312 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
313 		      chan, flags,
314 		      CHECK_AND_PRINT_I(VALID),
315 		      CHECK_AND_PRINT_I(IBSS),
316 		      CHECK_AND_PRINT_I(ACTIVE),
317 		      CHECK_AND_PRINT_I(RADAR),
318 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
319 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
320 		      CHECK_AND_PRINT_I(UNIFORM),
321 		      CHECK_AND_PRINT_I(20MHZ),
322 		      CHECK_AND_PRINT_I(40MHZ),
323 		      CHECK_AND_PRINT_I(80MHZ),
324 		      CHECK_AND_PRINT_I(160MHZ),
325 		      CHECK_AND_PRINT_I(DC_HIGH));
326 #undef CHECK_AND_PRINT_I
327 }
328 
329 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
330 				 u32 nvm_flags, const struct iwl_cfg *cfg)
331 {
332 	u32 flags = IEEE80211_CHAN_NO_HT40;
333 
334 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
335 		if (ch_num <= LAST_2GHZ_HT_PLUS)
336 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
337 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
338 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
339 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
340 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
341 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
342 		else
343 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
344 	}
345 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
346 		flags |= IEEE80211_CHAN_NO_80MHZ;
347 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
348 		flags |= IEEE80211_CHAN_NO_160MHZ;
349 
350 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
351 		flags |= IEEE80211_CHAN_NO_IR;
352 
353 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
354 		flags |= IEEE80211_CHAN_NO_IR;
355 
356 	if (nvm_flags & NVM_CHANNEL_RADAR)
357 		flags |= IEEE80211_CHAN_RADAR;
358 
359 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
360 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
361 
362 	/* Set the GO concurrent flag only in case that NO_IR is set.
363 	 * Otherwise it is meaningless
364 	 */
365 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
366 	    (flags & IEEE80211_CHAN_NO_IR))
367 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
368 
369 	return flags;
370 }
371 
372 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
373 {
374 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
375 		return NL80211_BAND_6GHZ;
376 	}
377 
378 	if (ch_idx >= NUM_2GHZ_CHANNELS)
379 		return NL80211_BAND_5GHZ;
380 	return NL80211_BAND_2GHZ;
381 }
382 
383 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
384 				struct iwl_nvm_data *data,
385 				const void * const nvm_ch_flags,
386 				u32 sbands_flags, bool v4)
387 {
388 	int ch_idx;
389 	int n_channels = 0;
390 	struct ieee80211_channel *channel;
391 	u32 ch_flags;
392 	int num_of_ch;
393 	const u16 *nvm_chan;
394 
395 	if (cfg->uhb_supported) {
396 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
397 		nvm_chan = iwl_uhb_nvm_channels;
398 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
399 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
400 		nvm_chan = iwl_ext_nvm_channels;
401 	} else {
402 		num_of_ch = IWL_NVM_NUM_CHANNELS;
403 		nvm_chan = iwl_nvm_channels;
404 	}
405 
406 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
407 		enum nl80211_band band =
408 			iwl_nl80211_band_from_channel_idx(ch_idx);
409 
410 		if (v4)
411 			ch_flags =
412 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
413 		else
414 			ch_flags =
415 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
416 
417 		if (band == NL80211_BAND_5GHZ &&
418 		    !data->sku_cap_band_52ghz_enable)
419 			continue;
420 
421 		/* workaround to disable wide channels in 5GHz */
422 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
423 		    band == NL80211_BAND_5GHZ) {
424 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
425 				     NVM_CHANNEL_80MHZ |
426 				     NVM_CHANNEL_160MHZ);
427 		}
428 
429 		if (ch_flags & NVM_CHANNEL_160MHZ)
430 			data->vht160_supported = true;
431 
432 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
433 		    !(ch_flags & NVM_CHANNEL_VALID)) {
434 			/*
435 			 * Channels might become valid later if lar is
436 			 * supported, hence we still want to add them to
437 			 * the list of supported channels to cfg80211.
438 			 */
439 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 						    nvm_chan[ch_idx], ch_flags);
441 			continue;
442 		}
443 
444 		channel = &data->channels[n_channels];
445 		n_channels++;
446 
447 		channel->hw_value = nvm_chan[ch_idx];
448 		channel->band = band;
449 		channel->center_freq =
450 			ieee80211_channel_to_frequency(
451 				channel->hw_value, channel->band);
452 
453 		/* Initialize regulatory-based run-time data */
454 
455 		/*
456 		 * Default value - highest tx power value.  max_power
457 		 * is not used in mvm, and is used for backwards compatibility
458 		 */
459 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
460 
461 		/* don't put limitations in case we're using LAR */
462 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
463 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
464 							       ch_idx, band,
465 							       ch_flags, cfg);
466 		else
467 			channel->flags = 0;
468 
469 		/* TODO: Don't put limitations on UHB devices as we still don't
470 		 * have NVM for them
471 		 */
472 		if (cfg->uhb_supported)
473 			channel->flags = 0;
474 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
475 					    channel->hw_value, ch_flags);
476 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
477 				 channel->hw_value, channel->max_power);
478 	}
479 
480 	return n_channels;
481 }
482 
483 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
484 				  struct iwl_nvm_data *data,
485 				  struct ieee80211_sta_vht_cap *vht_cap,
486 				  u8 tx_chains, u8 rx_chains)
487 {
488 	const struct iwl_cfg *cfg = trans->cfg;
489 	int num_rx_ants = num_of_ant(rx_chains);
490 	int num_tx_ants = num_of_ant(tx_chains);
491 
492 	vht_cap->vht_supported = true;
493 
494 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
495 		       IEEE80211_VHT_CAP_RXSTBC_1 |
496 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
497 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
498 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
499 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
500 
501 	if (!trans->cfg->ht_params->stbc)
502 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
503 
504 	if (data->vht160_supported)
505 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
506 				IEEE80211_VHT_CAP_SHORT_GI_160;
507 
508 	if (cfg->vht_mu_mimo_supported)
509 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
510 
511 	if (cfg->ht_params->ldpc)
512 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
513 
514 	if (data->sku_cap_mimo_disabled) {
515 		num_rx_ants = 1;
516 		num_tx_ants = 1;
517 	}
518 
519 	if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
520 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
521 	else
522 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
523 
524 	switch (iwlwifi_mod_params.amsdu_size) {
525 	case IWL_AMSDU_DEF:
526 		if (trans->trans_cfg->mq_rx_supported)
527 			vht_cap->cap |=
528 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
529 		else
530 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
531 		break;
532 	case IWL_AMSDU_2K:
533 		if (trans->trans_cfg->mq_rx_supported)
534 			vht_cap->cap |=
535 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
536 		else
537 			WARN(1, "RB size of 2K is not supported by this device\n");
538 		break;
539 	case IWL_AMSDU_4K:
540 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
541 		break;
542 	case IWL_AMSDU_8K:
543 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
544 		break;
545 	case IWL_AMSDU_12K:
546 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
547 		break;
548 	default:
549 		break;
550 	}
551 
552 	vht_cap->vht_mcs.rx_mcs_map =
553 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
554 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
555 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
556 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
557 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
558 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
559 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
560 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
561 
562 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
563 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
564 		/* this works because NOT_SUPPORTED == 3 */
565 		vht_cap->vht_mcs.rx_mcs_map |=
566 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
567 	}
568 
569 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
570 
571 	vht_cap->vht_mcs.tx_highest |=
572 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
573 }
574 
575 static const u8 iwl_vendor_caps[] = {
576 	0xdd,			/* vendor element */
577 	0x06,			/* length */
578 	0x00, 0x17, 0x35,	/* Intel OUI */
579 	0x08,			/* type (Intel Capabilities) */
580 	/* followed by 16 bits of capabilities */
581 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
582 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
583 	0x00
584 };
585 
586 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
587 	{
588 		.types_mask = BIT(NL80211_IFTYPE_STATION),
589 		.he_cap = {
590 			.has_he = true,
591 			.he_cap_elem = {
592 				.mac_cap_info[0] =
593 					IEEE80211_HE_MAC_CAP0_HTC_HE,
594 				.mac_cap_info[1] =
595 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
596 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
597 				.mac_cap_info[2] =
598 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
599 				.mac_cap_info[3] =
600 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
601 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
602 				.mac_cap_info[4] =
603 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
604 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
605 				.mac_cap_info[5] =
606 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
607 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
608 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
609 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
610 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
611 				.phy_cap_info[1] =
612 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
613 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
614 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
615 				.phy_cap_info[2] =
616 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
617 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
618 				.phy_cap_info[3] =
619 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
620 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
621 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
622 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
623 				.phy_cap_info[4] =
624 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
625 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
626 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
627 				.phy_cap_info[6] =
628 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
629 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
630 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
631 				.phy_cap_info[7] =
632 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
633 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
634 				.phy_cap_info[8] =
635 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
636 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
637 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
638 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
639 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
640 				.phy_cap_info[9] =
641 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
642 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
643 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
644 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
645 				.phy_cap_info[10] =
646 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
647 			},
648 			/*
649 			 * Set default Tx/Rx HE MCS NSS Support field.
650 			 * Indicate support for up to 2 spatial streams and all
651 			 * MCS, without any special cases
652 			 */
653 			.he_mcs_nss_supp = {
654 				.rx_mcs_80 = cpu_to_le16(0xfffa),
655 				.tx_mcs_80 = cpu_to_le16(0xfffa),
656 				.rx_mcs_160 = cpu_to_le16(0xfffa),
657 				.tx_mcs_160 = cpu_to_le16(0xfffa),
658 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
659 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
660 			},
661 			/*
662 			 * Set default PPE thresholds, with PPET16 set to 0,
663 			 * PPET8 set to 7
664 			 */
665 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
666 		},
667 		.eht_cap = {
668 			.has_eht = true,
669 			.eht_cap_elem = {
670 				.mac_cap_info[0] =
671 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
672 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
673 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
674 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
675 				.phy_cap_info[0] =
676 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
677 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
678 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
679 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
680 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
681 				.phy_cap_info[1] =
682 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
683 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
684 				.phy_cap_info[3] =
685 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
686 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
687 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
688 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
689 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
690 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
691 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
692 
693 				.phy_cap_info[4] =
694 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
695 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
696 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
697 				.phy_cap_info[5] =
698 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
699 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
700 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
701 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
702 				.phy_cap_info[6] =
703 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
704 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
705 				.phy_cap_info[8] =
706 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
707 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
708 			},
709 
710 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
711 			 * Rx - note we don't set the only_20mhz, but due to this
712 			 * being a union, it gets set correctly anyway.
713 			 */
714 			.eht_mcs_nss_supp = {
715 				.bw._80 = {
716 					.rx_tx_mcs9_max_nss = 0x22,
717 					.rx_tx_mcs11_max_nss = 0x22,
718 					.rx_tx_mcs13_max_nss = 0x22,
719 				},
720 				.bw._160 = {
721 					.rx_tx_mcs9_max_nss = 0x22,
722 					.rx_tx_mcs11_max_nss = 0x22,
723 					.rx_tx_mcs13_max_nss = 0x22,
724 				},
725 				.bw._320 = {
726 					.rx_tx_mcs9_max_nss = 0x22,
727 					.rx_tx_mcs11_max_nss = 0x22,
728 					.rx_tx_mcs13_max_nss = 0x22,
729 				},
730 			},
731 
732 			/*
733 			 * PPE thresholds for NSS = 2, and RU index bitmap set
734 			 * to 0xc.
735 			 */
736 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
737 		},
738 	},
739 	{
740 		.types_mask = BIT(NL80211_IFTYPE_AP),
741 		.he_cap = {
742 			.has_he = true,
743 			.he_cap_elem = {
744 				.mac_cap_info[0] =
745 					IEEE80211_HE_MAC_CAP0_HTC_HE,
746 				.mac_cap_info[1] =
747 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
748 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
749 				.mac_cap_info[3] =
750 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
751 				.phy_cap_info[1] =
752 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
753 				.phy_cap_info[2] =
754 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
755 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
756 				.phy_cap_info[3] =
757 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
758 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
759 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
760 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
761 				.phy_cap_info[6] =
762 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
763 				.phy_cap_info[7] =
764 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
765 				.phy_cap_info[8] =
766 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
767 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
768 				.phy_cap_info[9] =
769 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
770 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
771 			},
772 			/*
773 			 * Set default Tx/Rx HE MCS NSS Support field.
774 			 * Indicate support for up to 2 spatial streams and all
775 			 * MCS, without any special cases
776 			 */
777 			.he_mcs_nss_supp = {
778 				.rx_mcs_80 = cpu_to_le16(0xfffa),
779 				.tx_mcs_80 = cpu_to_le16(0xfffa),
780 				.rx_mcs_160 = cpu_to_le16(0xfffa),
781 				.tx_mcs_160 = cpu_to_le16(0xfffa),
782 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
783 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
784 			},
785 			/*
786 			 * Set default PPE thresholds, with PPET16 set to 0,
787 			 * PPET8 set to 7
788 			 */
789 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
790 		},
791 		.eht_cap = {
792 			.has_eht = true,
793 			.eht_cap_elem = {
794 				.mac_cap_info[0] =
795 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
796 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
797 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
798 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
799 				.phy_cap_info[0] =
800 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
801 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
802 				.phy_cap_info[5] =
803 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
804 			},
805 
806 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
807 			 * Rx - note we don't set the only_20mhz, but due to this
808 			 * being a union, it gets set correctly anyway.
809 			 */
810 			.eht_mcs_nss_supp = {
811 				.bw._80 = {
812 					.rx_tx_mcs9_max_nss = 0x22,
813 					.rx_tx_mcs11_max_nss = 0x22,
814 					.rx_tx_mcs13_max_nss = 0x22,
815 				},
816 				.bw._160 = {
817 					.rx_tx_mcs9_max_nss = 0x22,
818 					.rx_tx_mcs11_max_nss = 0x22,
819 					.rx_tx_mcs13_max_nss = 0x22,
820 				},
821 				.bw._320 = {
822 					.rx_tx_mcs9_max_nss = 0x22,
823 					.rx_tx_mcs11_max_nss = 0x22,
824 					.rx_tx_mcs13_max_nss = 0x22,
825 				},
826 			},
827 
828 			/*
829 			 * PPE thresholds for NSS = 2, and RU index bitmap set
830 			 * to 0xc.
831 			 */
832 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
833 		},
834 	},
835 };
836 
837 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
838 				  struct iwl_nvm_data *data,
839 				  struct ieee80211_supported_band *sband,
840 				  u8 tx_chains, u8 rx_chains)
841 {
842 	struct ieee80211_sta_ht_cap ht_cap;
843 	struct ieee80211_sta_vht_cap vht_cap = {};
844 	struct ieee80211_sband_iftype_data *iftype_data;
845 	u16 he_6ghz_capa = 0;
846 	u32 exp;
847 	int i;
848 
849 	if (sband->band != NL80211_BAND_6GHZ)
850 		return;
851 
852 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
853 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
854 			     tx_chains, rx_chains);
855 	WARN_ON(!ht_cap.ht_supported);
856 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
857 	WARN_ON(!vht_cap.vht_supported);
858 
859 	he_6ghz_capa |=
860 		u16_encode_bits(ht_cap.ampdu_density,
861 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
862 	exp = u32_get_bits(vht_cap.cap,
863 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
864 	he_6ghz_capa |=
865 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
866 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
867 	he_6ghz_capa |=
868 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
869 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
870 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
871 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
872 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
873 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
874 
875 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
876 
877 	/* we know it's writable - we set it before ourselves */
878 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
879 	for (i = 0; i < sband->n_iftype_data; i++)
880 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
881 }
882 
883 static void
884 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
885 			 struct iwl_nvm_data *data,
886 			 struct ieee80211_supported_band *sband,
887 			 struct ieee80211_sband_iftype_data *iftype_data,
888 			 u8 tx_chains, u8 rx_chains,
889 			 const struct iwl_fw *fw)
890 {
891 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
892 	bool no_320;
893 
894 	no_320 = !trans->trans_cfg->integrated &&
895 		 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB;
896 
897 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
898 		iftype_data->eht_cap.has_eht = false;
899 
900 	/* Advertise an A-MPDU exponent extension based on
901 	 * operating band
902 	 */
903 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
904 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
905 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
906 	else if (sband->band != NL80211_BAND_2GHZ)
907 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
908 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
909 	else
910 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
911 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
912 
913 	switch (sband->band) {
914 	case NL80211_BAND_2GHZ:
915 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
916 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
917 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
918 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
919 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
920 		break;
921 	case NL80211_BAND_6GHZ:
922 		if (!no_320) {
923 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
924 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
925 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
926 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
927 		}
928 		fallthrough;
929 	case NL80211_BAND_5GHZ:
930 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
931 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
932 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
933 		break;
934 	default:
935 		WARN_ON(1);
936 		break;
937 	}
938 
939 	if ((tx_chains & rx_chains) == ANT_AB) {
940 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
941 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
942 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
943 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
944 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
945 		if (!is_ap) {
946 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
947 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
948 
949 			if (iftype_data->eht_cap.has_eht) {
950 				/*
951 				 * Set the number of sounding dimensions for each
952 				 * bandwidth to 1 to indicate the maximal supported
953 				 * value of TXVECTOR parameter NUM_STS of 2
954 				 */
955 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
956 
957 				/*
958 				 * Set the MAX NC to 1 to indicate sounding feedback of
959 				 * 2 supported by the beamfomee.
960 				 */
961 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
962 			}
963 		}
964 	} else {
965 		struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
966 			&iftype_data->he_cap.he_mcs_nss_supp;
967 
968 		if (iftype_data->eht_cap.has_eht) {
969 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
970 				&iftype_data->eht_cap.eht_mcs_nss_supp;
971 
972 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
973 		}
974 
975 		if (!is_ap) {
976 			/* If not 2x2, we need to indicate 1x1 in the
977 			 * Midamble RX Max NSTS - but not for AP mode
978 			 */
979 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
980 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
981 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
982 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
983 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
984 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
985 		}
986 
987 		he_mcs_nss_supp->rx_mcs_80 |=
988 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
989 		he_mcs_nss_supp->tx_mcs_80 |=
990 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
991 		he_mcs_nss_supp->rx_mcs_160 |=
992 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
993 		he_mcs_nss_supp->tx_mcs_160 |=
994 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
995 		he_mcs_nss_supp->rx_mcs_80p80 |=
996 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
997 		he_mcs_nss_supp->tx_mcs_80p80 |=
998 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
999 	}
1000 
1001 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1002 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1003 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1004 
1005 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
1006 	case IWL_CFG_RF_TYPE_GF:
1007 	case IWL_CFG_RF_TYPE_MR:
1008 	case IWL_CFG_RF_TYPE_MS:
1009 	case IWL_CFG_RF_TYPE_FM:
1010 	case IWL_CFG_RF_TYPE_WH:
1011 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1012 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1013 		if (!is_ap)
1014 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1015 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1016 		break;
1017 	}
1018 
1019 	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1020 	    iftype_data->eht_cap.has_eht) {
1021 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1022 			~(IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
1023 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1024 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1025 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1026 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1027 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1028 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1029 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1030 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1031 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK);
1032 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1033 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1034 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1035 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1036 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1037 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1038 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1039 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1040 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1041 			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1042 	}
1043 
1044 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1045 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1046 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1047 
1048 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1049 	    !is_ap) {
1050 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1051 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1052 	}
1053 
1054 	if (!trans->cfg->ht_params->stbc) {
1055 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1056 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1057 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1058 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1059 	}
1060 }
1061 
1062 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1063 				 struct iwl_nvm_data *data,
1064 				 struct ieee80211_supported_band *sband,
1065 				 u8 tx_chains, u8 rx_chains,
1066 				 const struct iwl_fw *fw)
1067 {
1068 	struct ieee80211_sband_iftype_data *iftype_data;
1069 	int i;
1070 
1071 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1072 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1073 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1074 
1075 	switch (sband->band) {
1076 	case NL80211_BAND_2GHZ:
1077 		iftype_data = data->iftd.low;
1078 		break;
1079 	case NL80211_BAND_5GHZ:
1080 		iftype_data = data->iftd.high;
1081 		break;
1082 	case NL80211_BAND_6GHZ:
1083 		iftype_data = data->iftd.uhb;
1084 		break;
1085 	default:
1086 		WARN_ON(1);
1087 		return;
1088 	}
1089 
1090 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1091 
1092 	_ieee80211_set_sband_iftype_data(sband, iftype_data,
1093 					 ARRAY_SIZE(iwl_he_eht_capa));
1094 
1095 	for (i = 0; i < sband->n_iftype_data; i++)
1096 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1097 					 tx_chains, rx_chains, fw);
1098 
1099 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1100 }
1101 
1102 void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1103 		    u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1104 {
1105 	struct ieee80211_supported_band *sband;
1106 
1107 	sband = &data->bands[NL80211_BAND_2GHZ];
1108 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1109 			     tx_chains, rx_chains);
1110 
1111 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1112 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1113 				     fw);
1114 
1115 	sband = &data->bands[NL80211_BAND_5GHZ];
1116 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1117 			     tx_chains, rx_chains);
1118 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1119 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1120 				      tx_chains, rx_chains);
1121 
1122 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1123 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1124 				     fw);
1125 
1126 	sband = &data->bands[NL80211_BAND_6GHZ];
1127 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1128 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1129 				     fw);
1130 }
1131 IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1132 
1133 static void iwl_init_sbands(struct iwl_trans *trans,
1134 			    struct iwl_nvm_data *data,
1135 			    const void *nvm_ch_flags, u8 tx_chains,
1136 			    u8 rx_chains, u32 sbands_flags, bool v4,
1137 			    const struct iwl_fw *fw)
1138 {
1139 	struct device *dev = trans->dev;
1140 	const struct iwl_cfg *cfg = trans->cfg;
1141 	int n_channels;
1142 	int n_used = 0;
1143 	struct ieee80211_supported_band *sband;
1144 
1145 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1146 					  sbands_flags, v4);
1147 	sband = &data->bands[NL80211_BAND_2GHZ];
1148 	sband->band = NL80211_BAND_2GHZ;
1149 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1150 	sband->n_bitrates = N_RATES_24;
1151 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1152 					  NL80211_BAND_2GHZ);
1153 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1154 			     tx_chains, rx_chains);
1155 
1156 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1157 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1158 				     fw);
1159 
1160 	sband = &data->bands[NL80211_BAND_5GHZ];
1161 	sband->band = NL80211_BAND_5GHZ;
1162 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1163 	sband->n_bitrates = N_RATES_52;
1164 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1165 					  NL80211_BAND_5GHZ);
1166 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1167 			     tx_chains, rx_chains);
1168 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1169 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1170 				      tx_chains, rx_chains);
1171 
1172 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1173 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1174 				     fw);
1175 
1176 	/* 6GHz band. */
1177 	sband = &data->bands[NL80211_BAND_6GHZ];
1178 	sband->band = NL80211_BAND_6GHZ;
1179 	/* use the same rates as 5GHz band */
1180 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1181 	sband->n_bitrates = N_RATES_52;
1182 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1183 					  NL80211_BAND_6GHZ);
1184 
1185 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1186 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1187 				     fw);
1188 	else
1189 		sband->n_channels = 0;
1190 	if (n_channels != n_used)
1191 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1192 			    n_used, n_channels);
1193 }
1194 
1195 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1196 		       const __le16 *phy_sku)
1197 {
1198 	if (cfg->nvm_type != IWL_NVM_EXT)
1199 		return le16_to_cpup(nvm_sw + SKU);
1200 
1201 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1202 }
1203 
1204 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1205 {
1206 	if (cfg->nvm_type != IWL_NVM_EXT)
1207 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1208 	else
1209 		return le32_to_cpup((const __le32 *)(nvm_sw +
1210 						     NVM_VERSION_EXT_NVM));
1211 }
1212 
1213 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1214 			     const __le16 *phy_sku)
1215 {
1216 	if (cfg->nvm_type != IWL_NVM_EXT)
1217 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1218 
1219 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1220 
1221 }
1222 
1223 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1224 {
1225 	int n_hw_addr;
1226 
1227 	if (cfg->nvm_type != IWL_NVM_EXT)
1228 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1229 
1230 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1231 
1232 	return n_hw_addr & N_HW_ADDR_MASK;
1233 }
1234 
1235 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1236 			      struct iwl_nvm_data *data,
1237 			      u32 radio_cfg)
1238 {
1239 	if (cfg->nvm_type != IWL_NVM_EXT) {
1240 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1241 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1242 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1243 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1244 		return;
1245 	}
1246 
1247 	/* set the radio configuration for family 8000 */
1248 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1249 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1250 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1251 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1252 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1253 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1254 }
1255 
1256 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1257 {
1258 	const u8 *hw_addr;
1259 
1260 	hw_addr = (const u8 *)&mac_addr0;
1261 	dest[0] = hw_addr[3];
1262 	dest[1] = hw_addr[2];
1263 	dest[2] = hw_addr[1];
1264 	dest[3] = hw_addr[0];
1265 
1266 	hw_addr = (const u8 *)&mac_addr1;
1267 	dest[4] = hw_addr[1];
1268 	dest[5] = hw_addr[0];
1269 }
1270 
1271 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1272 					struct iwl_nvm_data *data)
1273 {
1274 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1275 						  CSR_MAC_ADDR0_STRAP(trans)));
1276 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1277 						  CSR_MAC_ADDR1_STRAP(trans)));
1278 
1279 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1280 	/*
1281 	 * If the OEM fused a valid address, use it instead of the one in the
1282 	 * OTP
1283 	 */
1284 	if (is_valid_ether_addr(data->hw_addr))
1285 		return;
1286 
1287 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1288 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1289 
1290 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1291 }
1292 
1293 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1294 					   const struct iwl_cfg *cfg,
1295 					   struct iwl_nvm_data *data,
1296 					   const __le16 *mac_override,
1297 					   const __be16 *nvm_hw)
1298 {
1299 	const u8 *hw_addr;
1300 
1301 	if (mac_override) {
1302 		static const u8 reserved_mac[] = {
1303 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1304 		};
1305 
1306 		hw_addr = (const u8 *)(mac_override +
1307 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1308 
1309 		/*
1310 		 * Store the MAC address from MAO section.
1311 		 * No byte swapping is required in MAO section
1312 		 */
1313 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1314 
1315 		/*
1316 		 * Force the use of the OTP MAC address in case of reserved MAC
1317 		 * address in the NVM, or if address is given but invalid.
1318 		 */
1319 		if (is_valid_ether_addr(data->hw_addr) &&
1320 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1321 			return;
1322 
1323 		IWL_ERR(trans,
1324 			"mac address from nvm override section is not valid\n");
1325 	}
1326 
1327 	if (nvm_hw) {
1328 		/* read the mac address from WFMP registers */
1329 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1330 						WFMP_MAC_ADDR_0));
1331 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1332 						WFMP_MAC_ADDR_1));
1333 
1334 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1335 
1336 		return;
1337 	}
1338 
1339 	IWL_ERR(trans, "mac address is not found\n");
1340 }
1341 
1342 static int iwl_set_hw_address(struct iwl_trans *trans,
1343 			      const struct iwl_cfg *cfg,
1344 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1345 			      const __le16 *mac_override)
1346 {
1347 	if (cfg->mac_addr_from_csr) {
1348 		iwl_set_hw_address_from_csr(trans, data);
1349 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1350 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1351 
1352 		/* The byte order is little endian 16 bit, meaning 214365 */
1353 		data->hw_addr[0] = hw_addr[1];
1354 		data->hw_addr[1] = hw_addr[0];
1355 		data->hw_addr[2] = hw_addr[3];
1356 		data->hw_addr[3] = hw_addr[2];
1357 		data->hw_addr[4] = hw_addr[5];
1358 		data->hw_addr[5] = hw_addr[4];
1359 	} else {
1360 		iwl_set_hw_address_family_8000(trans, cfg, data,
1361 					       mac_override, nvm_hw);
1362 	}
1363 
1364 	if (!is_valid_ether_addr(data->hw_addr)) {
1365 		IWL_ERR(trans, "no valid mac address was found\n");
1366 		return -EINVAL;
1367 	}
1368 
1369 	if (!trans->csme_own)
1370 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1371 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1372 
1373 	return 0;
1374 }
1375 
1376 static bool
1377 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1378 			const __be16 *nvm_hw)
1379 {
1380 	/*
1381 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1382 	 * some 7000-family OTPs erroneously allow wide channels in
1383 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1384 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1385 	 * 9.  In those cases, we need to force-disable wide channels
1386 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1387 	 * to use them.
1388 	 */
1389 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1390 		/*
1391 		 * Unlike the other sections in the NVM, the hw
1392 		 * section uses big-endian.
1393 		 */
1394 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1395 		u8 sku = (subsystem_id & 0x1e) >> 1;
1396 
1397 		if (sku == 5 || sku == 9) {
1398 			IWL_DEBUG_EEPROM(trans->dev,
1399 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1400 					 subsystem_id, sku);
1401 			return true;
1402 		}
1403 	}
1404 
1405 	return false;
1406 }
1407 
1408 struct iwl_nvm_data *
1409 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1410 		       const struct iwl_mei_nvm *mei_nvm,
1411 		       const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1412 {
1413 	struct iwl_nvm_data *data;
1414 	u32 sbands_flags = 0;
1415 	u8 rx_chains = fw->valid_rx_ant;
1416 	u8 tx_chains = fw->valid_rx_ant;
1417 
1418 	if (cfg->uhb_supported)
1419 		data = kzalloc(struct_size(data, channels,
1420 					   IWL_NVM_NUM_CHANNELS_UHB),
1421 					   GFP_KERNEL);
1422 	else
1423 		data = kzalloc(struct_size(data, channels,
1424 					   IWL_NVM_NUM_CHANNELS_EXT),
1425 					   GFP_KERNEL);
1426 	if (!data)
1427 		return NULL;
1428 
1429 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1430 		     IWL_NVM_NUM_CHANNELS_UHB);
1431 	data->nvm_version = mei_nvm->nvm_version;
1432 
1433 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1434 	if (data->valid_tx_ant)
1435 		tx_chains &= data->valid_tx_ant;
1436 	if (data->valid_rx_ant)
1437 		rx_chains &= data->valid_rx_ant;
1438 	if (tx_ant)
1439 		tx_chains &= tx_ant;
1440 	if (rx_ant)
1441 		rx_chains &= rx_ant;
1442 
1443 	data->sku_cap_mimo_disabled = false;
1444 	data->sku_cap_band_24ghz_enable = true;
1445 	data->sku_cap_band_52ghz_enable = true;
1446 	data->sku_cap_11n_enable =
1447 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1448 	data->sku_cap_11ac_enable = true;
1449 	data->sku_cap_11ax_enable =
1450 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1451 
1452 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1453 
1454 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1455 	/* If no valid mac address was found - bail out */
1456 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1457 		kfree(data);
1458 		return NULL;
1459 	}
1460 
1461 	if (data->lar_enabled &&
1462 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1463 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1464 
1465 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1466 			sbands_flags, true, fw);
1467 
1468 	return data;
1469 }
1470 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1471 
1472 struct iwl_nvm_data *
1473 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1474 		   const struct iwl_fw *fw,
1475 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1476 		   const __le16 *nvm_calib, const __le16 *regulatory,
1477 		   const __le16 *mac_override, const __le16 *phy_sku,
1478 		   u8 tx_chains, u8 rx_chains)
1479 {
1480 	struct iwl_nvm_data *data;
1481 	bool lar_enabled;
1482 	u32 sku, radio_cfg;
1483 	u32 sbands_flags = 0;
1484 	u16 lar_config;
1485 	const __le16 *ch_section;
1486 
1487 	if (cfg->uhb_supported)
1488 		data = kzalloc(struct_size(data, channels,
1489 					   IWL_NVM_NUM_CHANNELS_UHB),
1490 					   GFP_KERNEL);
1491 	else if (cfg->nvm_type != IWL_NVM_EXT)
1492 		data = kzalloc(struct_size(data, channels,
1493 					   IWL_NVM_NUM_CHANNELS),
1494 					   GFP_KERNEL);
1495 	else
1496 		data = kzalloc(struct_size(data, channels,
1497 					   IWL_NVM_NUM_CHANNELS_EXT),
1498 					   GFP_KERNEL);
1499 	if (!data)
1500 		return NULL;
1501 
1502 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1503 
1504 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1505 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1506 	if (data->valid_tx_ant)
1507 		tx_chains &= data->valid_tx_ant;
1508 	if (data->valid_rx_ant)
1509 		rx_chains &= data->valid_rx_ant;
1510 
1511 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1512 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1513 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1514 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1515 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1516 		data->sku_cap_11n_enable = false;
1517 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1518 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1519 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1520 
1521 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1522 
1523 	if (cfg->nvm_type != IWL_NVM_EXT) {
1524 		/* Checking for required sections */
1525 		if (!nvm_calib) {
1526 			IWL_ERR(trans,
1527 				"Can't parse empty Calib NVM sections\n");
1528 			kfree(data);
1529 			return NULL;
1530 		}
1531 
1532 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1533 			     &regulatory[NVM_CHANNELS_SDP] :
1534 			     &nvm_sw[NVM_CHANNELS];
1535 
1536 		/* in family 8000 Xtal calibration values moved to OTP */
1537 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1538 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1539 		lar_enabled = true;
1540 	} else {
1541 		u16 lar_offset = data->nvm_version < 0xE39 ?
1542 				 NVM_LAR_OFFSET_OLD :
1543 				 NVM_LAR_OFFSET;
1544 
1545 		lar_config = le16_to_cpup(regulatory + lar_offset);
1546 		data->lar_enabled = !!(lar_config &
1547 				       NVM_LAR_ENABLED);
1548 		lar_enabled = data->lar_enabled;
1549 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1550 	}
1551 
1552 	/* If no valid mac address was found - bail out */
1553 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1554 		kfree(data);
1555 		return NULL;
1556 	}
1557 
1558 	if (lar_enabled &&
1559 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1560 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1561 
1562 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1563 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1564 
1565 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1566 			sbands_flags, false, fw);
1567 	data->calib_version = 255;
1568 
1569 	return data;
1570 }
1571 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1572 
1573 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1574 				       int ch_idx, u16 nvm_flags,
1575 				       struct iwl_reg_capa reg_capa,
1576 				       const struct iwl_cfg *cfg)
1577 {
1578 	u32 flags = NL80211_RRF_NO_HT40;
1579 
1580 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1581 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1582 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1583 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1584 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1585 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1586 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1587 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1588 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1589 		else
1590 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1591 	}
1592 
1593 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1594 		flags |= NL80211_RRF_NO_80MHZ;
1595 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1596 		flags |= NL80211_RRF_NO_160MHZ;
1597 
1598 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1599 		flags |= NL80211_RRF_NO_IR;
1600 
1601 	if (nvm_flags & NVM_CHANNEL_RADAR)
1602 		flags |= NL80211_RRF_DFS;
1603 
1604 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1605 		flags |= NL80211_RRF_NO_OUTDOOR;
1606 
1607 	/* Set the GO concurrent flag only in case that NO_IR is set.
1608 	 * Otherwise it is meaningless
1609 	 */
1610 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1611 	    (flags & NL80211_RRF_NO_IR))
1612 		flags |= NL80211_RRF_GO_CONCURRENT;
1613 
1614 	/*
1615 	 * reg_capa is per regulatory domain so apply it for every channel
1616 	 */
1617 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1618 		if (!reg_capa.allow_40mhz)
1619 			flags |= NL80211_RRF_NO_HT40;
1620 
1621 		if (!reg_capa.allow_80mhz)
1622 			flags |= NL80211_RRF_NO_80MHZ;
1623 
1624 		if (!reg_capa.allow_160mhz)
1625 			flags |= NL80211_RRF_NO_160MHZ;
1626 
1627 		if (!reg_capa.allow_320mhz)
1628 			flags |= NL80211_RRF_NO_320MHZ;
1629 	}
1630 
1631 	if (reg_capa.disable_11ax)
1632 		flags |= NL80211_RRF_NO_HE;
1633 
1634 	if (reg_capa.disable_11be)
1635 		flags |= NL80211_RRF_NO_EHT;
1636 
1637 	return flags;
1638 }
1639 
1640 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1641 {
1642 	struct iwl_reg_capa reg_capa = {};
1643 
1644 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1645 		reg_capa.allow_40mhz = true;
1646 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1647 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1648 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1649 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1650 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1651 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1652 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1653 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1654 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1655 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1656 	} else {
1657 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1658 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1659 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1660 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1661 	}
1662 	return reg_capa;
1663 }
1664 
1665 struct ieee80211_regdomain *
1666 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1667 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1668 		       u16 geo_info, u32 cap, u8 resp_ver)
1669 {
1670 	int ch_idx;
1671 	u16 ch_flags;
1672 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1673 	const u16 *nvm_chan;
1674 	struct ieee80211_regdomain *regd, *copy_rd;
1675 	struct ieee80211_reg_rule *rule;
1676 	enum nl80211_band band;
1677 	int center_freq, prev_center_freq = 0;
1678 	int valid_rules = 0;
1679 	bool new_rule;
1680 	int max_num_ch;
1681 	struct iwl_reg_capa reg_capa;
1682 
1683 	if (cfg->uhb_supported) {
1684 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1685 		nvm_chan = iwl_uhb_nvm_channels;
1686 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1687 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1688 		nvm_chan = iwl_ext_nvm_channels;
1689 	} else {
1690 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1691 		nvm_chan = iwl_nvm_channels;
1692 	}
1693 
1694 	if (num_of_ch > max_num_ch) {
1695 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1696 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1697 			      num_of_ch, max_num_ch);
1698 		num_of_ch = max_num_ch;
1699 	}
1700 
1701 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1702 		return ERR_PTR(-EINVAL);
1703 
1704 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1705 		      num_of_ch);
1706 
1707 	/* build a regdomain rule for every valid channel */
1708 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1709 	if (!regd)
1710 		return ERR_PTR(-ENOMEM);
1711 
1712 	/* set alpha2 from FW. */
1713 	regd->alpha2[0] = fw_mcc >> 8;
1714 	regd->alpha2[1] = fw_mcc & 0xff;
1715 
1716 	/* parse regulatory capability flags */
1717 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1718 
1719 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1720 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1721 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1722 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1723 							     band);
1724 		new_rule = false;
1725 
1726 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1727 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1728 						    nvm_chan[ch_idx], ch_flags);
1729 			continue;
1730 		}
1731 
1732 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1733 							     ch_flags, reg_capa,
1734 							     cfg);
1735 
1736 		/* we can't continue the same rule */
1737 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1738 		    center_freq - prev_center_freq > 20) {
1739 			valid_rules++;
1740 			new_rule = true;
1741 		}
1742 
1743 		rule = &regd->reg_rules[valid_rules - 1];
1744 
1745 		if (new_rule)
1746 			rule->freq_range.start_freq_khz =
1747 						MHZ_TO_KHZ(center_freq - 10);
1748 
1749 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1750 
1751 		/* this doesn't matter - not used by FW */
1752 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1753 		rule->power_rule.max_eirp =
1754 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1755 
1756 		rule->flags = reg_rule_flags;
1757 
1758 		/* rely on auto-calculation to merge BW of contiguous chans */
1759 		rule->flags |= NL80211_RRF_AUTO_BW;
1760 		rule->freq_range.max_bandwidth_khz = 0;
1761 
1762 		prev_center_freq = center_freq;
1763 		prev_reg_rule_flags = reg_rule_flags;
1764 
1765 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1766 					    nvm_chan[ch_idx], ch_flags);
1767 
1768 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1769 		    band == NL80211_BAND_2GHZ)
1770 			continue;
1771 
1772 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1773 	}
1774 
1775 	/*
1776 	 * Certain firmware versions might report no valid channels
1777 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1778 	 * running. We'll get out of this situation later when the
1779 	 * rfkill is removed and we update the regdomain again, but
1780 	 * since cfg80211 doesn't accept an empty regdomain, add a
1781 	 * dummy (unusable) rule here in this case so we can init.
1782 	 */
1783 	if (!valid_rules) {
1784 		valid_rules = 1;
1785 		rule = &regd->reg_rules[valid_rules - 1];
1786 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1787 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1788 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1789 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1790 		rule->power_rule.max_eirp =
1791 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1792 	}
1793 
1794 	regd->n_reg_rules = valid_rules;
1795 
1796 	/*
1797 	 * Narrow down regdom for unused regulatory rules to prevent hole
1798 	 * between reg rules to wmm rules.
1799 	 */
1800 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1801 			  GFP_KERNEL);
1802 	if (!copy_rd)
1803 		copy_rd = ERR_PTR(-ENOMEM);
1804 
1805 	kfree(regd);
1806 	return copy_rd;
1807 }
1808 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1809 
1810 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1811 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1812 #define MAX_NVM_FILE_LEN	16384
1813 
1814 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1815 		    unsigned int len)
1816 {
1817 #define IWL_4165_DEVICE_ID	0x5501
1818 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1819 
1820 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1821 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1822 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1823 		/* OTP 0x52 bug work around: it's a 1x1 device */
1824 		data[3] = ANT_B | (ANT_B << 4);
1825 }
1826 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1827 
1828 /*
1829  * Reads external NVM from a file into mvm->nvm_sections
1830  *
1831  * HOW TO CREATE THE NVM FILE FORMAT:
1832  * ------------------------------
1833  * 1. create hex file, format:
1834  *      3800 -> header
1835  *      0000 -> header
1836  *      5a40 -> data
1837  *
1838  *   rev - 6 bit (word1)
1839  *   len - 10 bit (word1)
1840  *   id - 4 bit (word2)
1841  *   rsv - 12 bit (word2)
1842  *
1843  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1844  *
1845  * 3. create binary file from the hex file
1846  *
1847  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1848  */
1849 int iwl_read_external_nvm(struct iwl_trans *trans,
1850 			  const char *nvm_file_name,
1851 			  struct iwl_nvm_section *nvm_sections)
1852 {
1853 	int ret, section_size;
1854 	u16 section_id;
1855 	const struct firmware *fw_entry;
1856 	const struct {
1857 		__le16 word1;
1858 		__le16 word2;
1859 		u8 data[];
1860 	} *file_sec;
1861 	const u8 *eof;
1862 	u8 *temp;
1863 	int max_section_size;
1864 	const __le32 *dword_buff;
1865 
1866 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1867 #define NVM_WORD2_ID(x) (x >> 12)
1868 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1869 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1870 #define NVM_HEADER_0	(0x2A504C54)
1871 #define NVM_HEADER_1	(0x4E564D2A)
1872 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1873 
1874 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1875 
1876 	/* Maximal size depends on NVM version */
1877 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1878 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1879 	else
1880 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1881 
1882 	/*
1883 	 * Obtain NVM image via request_firmware. Since we already used
1884 	 * request_firmware_nowait() for the firmware binary load and only
1885 	 * get here after that we assume the NVM request can be satisfied
1886 	 * synchronously.
1887 	 */
1888 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1889 	if (ret) {
1890 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1891 			nvm_file_name, ret);
1892 		return ret;
1893 	}
1894 
1895 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1896 		 nvm_file_name, fw_entry->size);
1897 
1898 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1899 		IWL_ERR(trans, "NVM file too large\n");
1900 		ret = -EINVAL;
1901 		goto out;
1902 	}
1903 
1904 	eof = fw_entry->data + fw_entry->size;
1905 	dword_buff = (const __le32 *)fw_entry->data;
1906 
1907 	/* some NVM file will contain a header.
1908 	 * The header is identified by 2 dwords header as follow:
1909 	 * dword[0] = 0x2A504C54
1910 	 * dword[1] = 0x4E564D2A
1911 	 *
1912 	 * This header must be skipped when providing the NVM data to the FW.
1913 	 */
1914 	if (fw_entry->size > NVM_HEADER_SIZE &&
1915 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1916 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1917 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1918 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1919 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1920 			 le32_to_cpu(dword_buff[3]));
1921 
1922 		/* nvm file validation, dword_buff[2] holds the file version */
1923 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1924 		    trans->hw_rev_step == SILICON_C_STEP &&
1925 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1926 			ret = -EFAULT;
1927 			goto out;
1928 		}
1929 	} else {
1930 		file_sec = (const void *)fw_entry->data;
1931 	}
1932 
1933 	while (true) {
1934 		if (file_sec->data > eof) {
1935 			IWL_ERR(trans,
1936 				"ERROR - NVM file too short for section header\n");
1937 			ret = -EINVAL;
1938 			break;
1939 		}
1940 
1941 		/* check for EOF marker */
1942 		if (!file_sec->word1 && !file_sec->word2) {
1943 			ret = 0;
1944 			break;
1945 		}
1946 
1947 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1948 			section_size =
1949 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1950 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1951 		} else {
1952 			section_size = 2 * EXT_NVM_WORD2_LEN(
1953 						le16_to_cpu(file_sec->word2));
1954 			section_id = EXT_NVM_WORD1_ID(
1955 						le16_to_cpu(file_sec->word1));
1956 		}
1957 
1958 		if (section_size > max_section_size) {
1959 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1960 				section_size);
1961 			ret = -EINVAL;
1962 			break;
1963 		}
1964 
1965 		if (!section_size) {
1966 			IWL_ERR(trans, "ERROR - section empty\n");
1967 			ret = -EINVAL;
1968 			break;
1969 		}
1970 
1971 		if (file_sec->data + section_size > eof) {
1972 			IWL_ERR(trans,
1973 				"ERROR - NVM file too short for section (%d bytes)\n",
1974 				section_size);
1975 			ret = -EINVAL;
1976 			break;
1977 		}
1978 
1979 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1980 			 "Invalid NVM section ID %d\n", section_id)) {
1981 			ret = -EINVAL;
1982 			break;
1983 		}
1984 
1985 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1986 		if (!temp) {
1987 			ret = -ENOMEM;
1988 			break;
1989 		}
1990 
1991 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1992 
1993 		kfree(nvm_sections[section_id].data);
1994 		nvm_sections[section_id].data = temp;
1995 		nvm_sections[section_id].length = section_size;
1996 
1997 		/* advance to the next section */
1998 		file_sec = (const void *)(file_sec->data + section_size);
1999 	}
2000 out:
2001 	release_firmware(fw_entry);
2002 	return ret;
2003 }
2004 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2005 
2006 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2007 				 const struct iwl_fw *fw,
2008 				 u8 set_tx_ant, u8 set_rx_ant)
2009 {
2010 	struct iwl_nvm_get_info cmd = {};
2011 	struct iwl_nvm_data *nvm;
2012 	struct iwl_host_cmd hcmd = {
2013 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2014 		.data = { &cmd, },
2015 		.len = { sizeof(cmd) },
2016 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2017 	};
2018 	int  ret;
2019 	bool empty_otp;
2020 	u32 mac_flags;
2021 	u32 sbands_flags = 0;
2022 	u8 tx_ant;
2023 	u8 rx_ant;
2024 
2025 	/*
2026 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2027 	 * in v3, except for the channel profile part of the
2028 	 * regulatory.  So we can just access the new struct, with the
2029 	 * exception of the latter.
2030 	 */
2031 	struct iwl_nvm_get_info_rsp *rsp;
2032 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2033 	bool v4 = fw_has_api(&fw->ucode_capa,
2034 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2035 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2036 	void *channel_profile;
2037 
2038 	ret = iwl_trans_send_cmd(trans, &hcmd);
2039 	if (ret)
2040 		return ERR_PTR(ret);
2041 
2042 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2043 		 "Invalid payload len in NVM response from FW %d",
2044 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2045 		ret = -EINVAL;
2046 		goto out;
2047 	}
2048 
2049 	rsp = (void *)hcmd.resp_pkt->data;
2050 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2051 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2052 	if (empty_otp)
2053 		IWL_INFO(trans, "OTP is empty\n");
2054 
2055 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2056 	if (!nvm) {
2057 		ret = -ENOMEM;
2058 		goto out;
2059 	}
2060 
2061 	iwl_set_hw_address_from_csr(trans, nvm);
2062 	/* TODO: if platform NVM has MAC address - override it here */
2063 
2064 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2065 		IWL_ERR(trans, "no valid mac address was found\n");
2066 		ret = -EINVAL;
2067 		goto err_free;
2068 	}
2069 
2070 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2071 
2072 	/* Initialize general data */
2073 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2074 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2075 	if (nvm->n_hw_addrs == 0)
2076 		IWL_WARN(trans,
2077 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2078 			 empty_otp);
2079 
2080 	/* Initialize MAC sku data */
2081 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2082 	nvm->sku_cap_11ac_enable =
2083 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2084 	nvm->sku_cap_11n_enable =
2085 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2086 	nvm->sku_cap_11ax_enable =
2087 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2088 	nvm->sku_cap_band_24ghz_enable =
2089 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2090 	nvm->sku_cap_band_52ghz_enable =
2091 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2092 	nvm->sku_cap_mimo_disabled =
2093 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2094 	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
2095 		nvm->sku_cap_11be_enable = true;
2096 
2097 	/* Initialize PHY sku data */
2098 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2099 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2100 
2101 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2102 	    fw_has_capa(&fw->ucode_capa,
2103 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2104 		nvm->lar_enabled = true;
2105 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2106 	}
2107 
2108 	rsp_v3 = (void *)rsp;
2109 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2110 			  (void *)rsp_v3->regulatory.channel_profile;
2111 
2112 	tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2113 	rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2114 
2115 	if (set_tx_ant)
2116 		tx_ant &= set_tx_ant;
2117 	if (set_rx_ant)
2118 		rx_ant &= set_rx_ant;
2119 
2120 	iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2121 			sbands_flags, v4, fw);
2122 
2123 	iwl_free_resp(&hcmd);
2124 	return nvm;
2125 
2126 err_free:
2127 	kfree(nvm);
2128 out:
2129 	iwl_free_resp(&hcmd);
2130 	return ERR_PTR(ret);
2131 }
2132 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2133