xref: /linux/drivers/net/wireless/intel/iwlwifi/iwl-nvm-parse.c (revision 25489a4f556414445d342951615178368ee45cde)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023, 2025 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM REGULATORY -Section offset (in words) definitions */
42 	NVM_CHANNELS_SDP = 0,
43 };
44 
45 enum ext_nvm_offsets {
46 	/* NVM HW-Section offset (in words) definitions */
47 
48 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
49 
50 	/* NVM SW-Section offset (in words) definitions */
51 	NVM_VERSION_EXT_NVM = 0,
52 	N_HW_ADDRS_FAMILY_8000 = 3,
53 
54 	/* NVM PHY_SKU-Section offset (in words) definitions */
55 	RADIO_CFG_FAMILY_EXT_NVM = 0,
56 	SKU_FAMILY_8000 = 2,
57 
58 	/* NVM REGULATORY -Section offset (in words) definitions */
59 	NVM_CHANNELS_EXTENDED = 0,
60 	NVM_LAR_OFFSET_OLD = 0x4C7,
61 	NVM_LAR_OFFSET = 0x507,
62 	NVM_LAR_ENABLED = 0x7,
63 };
64 
65 /* SKU Capabilities (actual values from NVM definition) */
66 enum nvm_sku_bits {
67 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
68 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
69 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
70 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
71 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
72 };
73 
74 /*
75  * These are the channel numbers in the order that they are stored in the NVM
76  */
77 static const u16 iwl_nvm_channels[] = {
78 	/* 2.4 GHz */
79 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
80 	/* 5 GHz */
81 	36, 40, 44, 48, 52, 56, 60, 64,
82 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
83 	149, 153, 157, 161, 165
84 };
85 
86 static const u16 iwl_ext_nvm_channels[] = {
87 	/* 2.4 GHz */
88 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
89 	/* 5 GHz */
90 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
91 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
92 	149, 153, 157, 161, 165, 169, 173, 177, 181
93 };
94 
95 static const u16 iwl_uhb_nvm_channels[] = {
96 	/* 2.4 GHz */
97 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
98 	/* 5 GHz */
99 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
100 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
101 	149, 153, 157, 161, 165, 169, 173, 177, 181,
102 	/* 6-7 GHz */
103 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
104 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
105 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
106 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
107 };
108 
109 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
110 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
111 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
112 #define NUM_2GHZ_CHANNELS		14
113 #define NUM_5GHZ_CHANNELS		37
114 #define FIRST_2GHZ_HT_MINUS		5
115 #define LAST_2GHZ_HT_PLUS		9
116 #define N_HW_ADDR_MASK			0xF
117 
118 /* rate data (static) */
119 static struct ieee80211_rate iwl_cfg80211_rates[] = {
120 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
121 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
122 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
123 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
124 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
125 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
126 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
127 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
128 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
129 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
130 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
131 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
132 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
133 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
134 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
135 };
136 #define RATES_24_OFFS	0
137 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
138 #define RATES_52_OFFS	4
139 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
140 
141 /**
142  * enum iwl_nvm_channel_flags - channel flags in NVM
143  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
144  * @NVM_CHANNEL_IBSS: usable as an IBSS channel and deprecated
145  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
146  * @NVM_CHANNEL_ALLOW_20MHZ_ACTIVITY: active scanning allowed and
147  *	AP allowed only in 20 MHz. Valid only
148  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
149  * @NVM_CHANNEL_ACTIVE: active scanning allowed and allows IBSS
150  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
151  * @NVM_CHANNEL_RADAR: radar detection required
152  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
153  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
154  *	on same channel on 2.4 or same UNII band on 5.2
155  * @NVM_CHANNEL_UNIFORM: uniform spreading required
156  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
157  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
158  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
159  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
160  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
161  * @NVM_CHANNEL_VLP: client support connection to UHB VLP AP
162  * @NVM_CHANNEL_AFC: client support connection to UHB AFC AP
163  * @NVM_CHANNEL_VLP_AP_NOT_ALLOWED: UHB VLP AP not allowed,
164  *	Valid only when %NVM_CHANNEL_VLP is enabled.
165  */
166 enum iwl_nvm_channel_flags {
167 	NVM_CHANNEL_VALID			= BIT(0),
168 	NVM_CHANNEL_IBSS			= BIT(1),
169 	NVM_CHANNEL_ALLOW_20MHZ_ACTIVITY	= BIT(2),
170 	NVM_CHANNEL_ACTIVE			= BIT(3),
171 	NVM_CHANNEL_RADAR			= BIT(4),
172 	NVM_CHANNEL_INDOOR_ONLY			= BIT(5),
173 	NVM_CHANNEL_GO_CONCURRENT		= BIT(6),
174 	NVM_CHANNEL_UNIFORM			= BIT(7),
175 	NVM_CHANNEL_20MHZ			= BIT(8),
176 	NVM_CHANNEL_40MHZ			= BIT(9),
177 	NVM_CHANNEL_80MHZ			= BIT(10),
178 	NVM_CHANNEL_160MHZ			= BIT(11),
179 	NVM_CHANNEL_DC_HIGH			= BIT(12),
180 	NVM_CHANNEL_VLP				= BIT(13),
181 	NVM_CHANNEL_AFC				= BIT(14),
182 	NVM_CHANNEL_VLP_AP_NOT_ALLOWED		= BIT(15),
183 };
184 
185 /**
186  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
187  * domain.
188  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
189  *	2.4Ghz band is allowed.
190  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
191  *	5Ghz band is allowed.
192  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
193  *	for this regulatory domain (valid only in 5Ghz).
194  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
195  *	for this regulatory domain (valid only in 5Ghz).
196  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
197  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
198  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
199  *	for this regulatory domain (valid only in 5Ghz).
200  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
201  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
202  */
203 enum iwl_reg_capa_flags_v1 {
204 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
205 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
206 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
207 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
208 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
209 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
210 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
211 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
212 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
213 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
214 
215 /**
216  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
217  * domain (version 2).
218  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
219  *	disabled.
220  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
221  *	2.4Ghz band is allowed.
222  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
223  *	5Ghz band is allowed.
224  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
225  *	for this regulatory domain (valid only in 5Ghz).
226  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
227  *	for this regulatory domain (valid only in 5Ghz).
228  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
229  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
230  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
231  *	126, 122) are disabled.
232  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
233  *	for this regulatory domain (uvalid only in 5Ghz).
234  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
235  */
236 enum iwl_reg_capa_flags_v2 {
237 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
238 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
239 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
240 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
241 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
242 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
243 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
244 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
245 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
246 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
247 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
248 
249 /**
250  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
251  * domain.
252  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
253  *	for this regulatory domain (valid only in 5Ghz).
254  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
255  *	for this regulatory domain (valid only in 5Ghz).
256  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
257  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
258  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
259  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
260  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
261  *	for this regulatory domain (valid only in 5GHz).
262  */
263 enum iwl_reg_capa_flags_v4 {
264 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
265 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
266 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
267 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
268 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
269 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
270 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
271 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
272 
273 /*
274 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
275 * MCC update command response.
276 */
277 #define REG_CAPA_V2_RESP_VER	6
278 
279 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
280  * MCC update command response.
281  */
282 #define REG_CAPA_V4_RESP_VER	8
283 
284 /**
285  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
286  * handling the different APIs of reg_capa_flags.
287  *
288  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
289  *	for this regulatory domain.
290  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
291  *	for this regulatory domain (valid only in 5 and 6 Ghz).
292  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
293  *	for this regulatory domain (valid only in 5 and 6 Ghz).
294  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
295  *	for this regulatory domain (valid only in 6 Ghz).
296  * @disable_11ax: 11ax is forbidden for this regulatory domain.
297  * @disable_11be: 11be is forbidden for this regulatory domain.
298  */
299 struct iwl_reg_capa {
300 	bool allow_40mhz;
301 	bool allow_80mhz;
302 	bool allow_160mhz;
303 	bool allow_320mhz;
304 	bool disable_11ax;
305 	bool disable_11be;
306 };
307 
308 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
309 					       int chan, u32 flags)
310 {
311 #define CHECK_AND_PRINT_I(x)	\
312 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
313 
314 	if (!(flags & NVM_CHANNEL_VALID)) {
315 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
316 			      chan, flags);
317 		return;
318 	}
319 
320 	/* Note: already can print up to 101 characters, 110 is the limit! */
321 	IWL_DEBUG_DEV(dev, level,
322 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
323 		      chan, flags,
324 		      CHECK_AND_PRINT_I(VALID),
325 		      CHECK_AND_PRINT_I(IBSS),
326 		      CHECK_AND_PRINT_I(ACTIVE),
327 		      CHECK_AND_PRINT_I(RADAR),
328 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
329 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
330 		      CHECK_AND_PRINT_I(UNIFORM),
331 		      CHECK_AND_PRINT_I(20MHZ),
332 		      CHECK_AND_PRINT_I(40MHZ),
333 		      CHECK_AND_PRINT_I(80MHZ),
334 		      CHECK_AND_PRINT_I(160MHZ),
335 		      CHECK_AND_PRINT_I(DC_HIGH),
336 		      CHECK_AND_PRINT_I(VLP),
337 		      CHECK_AND_PRINT_I(AFC));
338 #undef CHECK_AND_PRINT_I
339 }
340 
341 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
342 				 u32 nvm_flags, const struct iwl_rf_cfg *cfg)
343 {
344 	u32 flags = IEEE80211_CHAN_NO_HT40;
345 
346 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
347 		if (ch_num <= LAST_2GHZ_HT_PLUS)
348 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
349 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
350 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
351 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
352 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
353 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
354 		else
355 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
356 	}
357 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
358 		flags |= IEEE80211_CHAN_NO_80MHZ;
359 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
360 		flags |= IEEE80211_CHAN_NO_160MHZ;
361 
362 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
363 		flags |= IEEE80211_CHAN_NO_IR;
364 
365 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
366 		flags |= IEEE80211_CHAN_NO_IR;
367 
368 	if (nvm_flags & NVM_CHANNEL_RADAR)
369 		flags |= IEEE80211_CHAN_RADAR;
370 
371 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
372 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
373 
374 	/* Set the GO concurrent flag only in case that NO_IR is set.
375 	 * Otherwise it is meaningless
376 	 */
377 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
378 	    (flags & IEEE80211_CHAN_NO_IR))
379 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
380 
381 	/* Set the AP type for the UHB case. */
382 	if (nvm_flags & NVM_CHANNEL_VLP)
383 		flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
384 	else
385 		flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
386 	if (!(nvm_flags & NVM_CHANNEL_AFC))
387 		flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
388 
389 	return flags;
390 }
391 
392 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
393 {
394 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
395 		return NL80211_BAND_6GHZ;
396 	}
397 
398 	if (ch_idx >= NUM_2GHZ_CHANNELS)
399 		return NL80211_BAND_5GHZ;
400 	return NL80211_BAND_2GHZ;
401 }
402 
403 static int iwl_init_channel_map(struct iwl_trans *trans,
404 				const struct iwl_fw *fw,
405 				struct iwl_nvm_data *data,
406 				const void * const nvm_ch_flags,
407 				u32 sbands_flags, bool v4)
408 {
409 	const struct iwl_rf_cfg *cfg = trans->cfg;
410 	struct device *dev = trans->dev;
411 	int ch_idx;
412 	int n_channels = 0;
413 	struct ieee80211_channel *channel;
414 	u32 ch_flags;
415 	int num_of_ch;
416 	const u16 *nvm_chan;
417 
418 	if (cfg->uhb_supported) {
419 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
420 		nvm_chan = iwl_uhb_nvm_channels;
421 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
422 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
423 		nvm_chan = iwl_ext_nvm_channels;
424 	} else {
425 		num_of_ch = IWL_NVM_NUM_CHANNELS;
426 		nvm_chan = iwl_nvm_channels;
427 	}
428 
429 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
430 		enum nl80211_band band =
431 			iwl_nl80211_band_from_channel_idx(ch_idx);
432 
433 		if (v4)
434 			ch_flags =
435 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
436 		else
437 			ch_flags =
438 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
439 
440 		if (band == NL80211_BAND_5GHZ &&
441 		    !data->sku_cap_band_52ghz_enable)
442 			continue;
443 
444 		/* workaround to disable wide channels in 5GHz */
445 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
446 		    band == NL80211_BAND_5GHZ) {
447 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
448 				     NVM_CHANNEL_80MHZ |
449 				     NVM_CHANNEL_160MHZ);
450 		}
451 
452 		if (ch_flags & NVM_CHANNEL_160MHZ)
453 			data->vht160_supported = true;
454 
455 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
456 		    !(ch_flags & NVM_CHANNEL_VALID)) {
457 			/*
458 			 * Channels might become valid later if lar is
459 			 * supported, hence we still want to add them to
460 			 * the list of supported channels to cfg80211.
461 			 */
462 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
463 						    nvm_chan[ch_idx], ch_flags);
464 			continue;
465 		}
466 
467 		channel = &data->channels[n_channels];
468 		n_channels++;
469 
470 		channel->hw_value = nvm_chan[ch_idx];
471 		channel->band = band;
472 		channel->center_freq =
473 			ieee80211_channel_to_frequency(
474 				channel->hw_value, channel->band);
475 
476 		/* Initialize regulatory-based run-time data */
477 
478 		/*
479 		 * Default value - highest tx power value.  max_power
480 		 * is not used in mvm, and is used for backwards compatibility
481 		 */
482 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
483 
484 		/* don't put limitations in case we're using LAR */
485 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
486 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
487 							       ch_idx, band,
488 							       ch_flags, cfg);
489 		else
490 			channel->flags = 0;
491 
492 		if (fw_has_capa(&fw->ucode_capa,
493 				IWL_UCODE_TLV_CAPA_MONITOR_PASSIVE_CHANS))
494 			channel->flags |= IEEE80211_CHAN_CAN_MONITOR;
495 
496 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
497 					    channel->hw_value, ch_flags);
498 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
499 				 channel->hw_value, channel->max_power);
500 	}
501 
502 	return n_channels;
503 }
504 
505 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
506 				  struct iwl_nvm_data *data,
507 				  struct ieee80211_sta_vht_cap *vht_cap,
508 				  u8 tx_chains, u8 rx_chains)
509 {
510 	const struct iwl_rf_cfg *cfg = trans->cfg;
511 	int num_rx_ants = num_of_ant(rx_chains);
512 	int num_tx_ants = num_of_ant(tx_chains);
513 
514 	vht_cap->vht_supported = true;
515 
516 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
517 		       IEEE80211_VHT_CAP_RXSTBC_1 |
518 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
519 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
520 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
521 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
522 
523 	if (!trans->cfg->ht_params.stbc)
524 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
525 
526 	if (data->vht160_supported)
527 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
528 				IEEE80211_VHT_CAP_SHORT_GI_160;
529 
530 	if (cfg->vht_mu_mimo_supported)
531 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
532 
533 	if (cfg->ht_params.ldpc)
534 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
535 
536 	if (data->sku_cap_mimo_disabled) {
537 		num_rx_ants = 1;
538 		num_tx_ants = 1;
539 	}
540 
541 	if (trans->cfg->ht_params.stbc && num_tx_ants > 1)
542 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
543 	else
544 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
545 
546 	switch (iwlwifi_mod_params.amsdu_size) {
547 	case IWL_AMSDU_DEF:
548 		if (trans->mac_cfg->mq_rx_supported)
549 			vht_cap->cap |=
550 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
551 		else
552 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
553 		break;
554 	case IWL_AMSDU_2K:
555 		if (trans->mac_cfg->mq_rx_supported)
556 			vht_cap->cap |=
557 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
558 		else
559 			WARN(1, "RB size of 2K is not supported by this device\n");
560 		break;
561 	case IWL_AMSDU_4K:
562 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
563 		break;
564 	case IWL_AMSDU_8K:
565 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
566 		break;
567 	case IWL_AMSDU_12K:
568 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
569 		break;
570 	default:
571 		break;
572 	}
573 
574 	vht_cap->vht_mcs.rx_mcs_map =
575 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
576 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
577 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
578 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
579 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
580 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
581 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
582 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
583 
584 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
585 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
586 		/* this works because NOT_SUPPORTED == 3 */
587 		vht_cap->vht_mcs.rx_mcs_map |=
588 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
589 	}
590 
591 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
592 
593 	vht_cap->vht_mcs.tx_highest |=
594 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
595 }
596 
597 static const u8 iwl_vendor_caps[] = {
598 	0xdd,			/* vendor element */
599 	0x06,			/* length */
600 	0x00, 0x17, 0x35,	/* Intel OUI */
601 	0x08,			/* type (Intel Capabilities) */
602 	/* followed by 16 bits of capabilities */
603 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
604 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
605 	0x00
606 };
607 
608 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
609 	{
610 		.types_mask = BIT(NL80211_IFTYPE_STATION) |
611 			      BIT(NL80211_IFTYPE_P2P_CLIENT),
612 		.he_cap = {
613 			.has_he = true,
614 			.he_cap_elem = {
615 				.mac_cap_info[0] =
616 					IEEE80211_HE_MAC_CAP0_HTC_HE,
617 				.mac_cap_info[1] =
618 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
619 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
620 				.mac_cap_info[2] =
621 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
622 				.mac_cap_info[3] =
623 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
624 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
625 				.mac_cap_info[4] =
626 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
627 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
628 				.mac_cap_info[5] =
629 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
630 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
631 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
632 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
633 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
634 				.phy_cap_info[1] =
635 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
636 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
637 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
638 				.phy_cap_info[2] =
639 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
640 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
641 				.phy_cap_info[3] =
642 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
643 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
644 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
645 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
646 				.phy_cap_info[4] =
647 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
648 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
649 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
650 				.phy_cap_info[6] =
651 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
652 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
653 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
654 				.phy_cap_info[7] =
655 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
656 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
657 				.phy_cap_info[8] =
658 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
659 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
660 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
661 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
662 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
663 				.phy_cap_info[9] =
664 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
665 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
666 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
667 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
668 				.phy_cap_info[10] =
669 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
670 			},
671 			/*
672 			 * Set default Tx/Rx HE MCS NSS Support field.
673 			 * Indicate support for up to 2 spatial streams and all
674 			 * MCS, without any special cases
675 			 */
676 			.he_mcs_nss_supp = {
677 				.rx_mcs_80 = cpu_to_le16(0xfffa),
678 				.tx_mcs_80 = cpu_to_le16(0xfffa),
679 				.rx_mcs_160 = cpu_to_le16(0xfffa),
680 				.tx_mcs_160 = cpu_to_le16(0xfffa),
681 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
682 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
683 			},
684 			/*
685 			 * Set default PPE thresholds, with PPET16 set to 0,
686 			 * PPET8 set to 7
687 			 */
688 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
689 		},
690 		.eht_cap = {
691 			.has_eht = true,
692 			.eht_cap_elem = {
693 				.mac_cap_info[0] =
694 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
695 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
696 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
697 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 |
698 					IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC,
699 				.mac_cap_info[1] =
700 					IEEE80211_EHT_MAC_CAP1_UNSOL_EPCS_PRIO_ACCESS,
701 				.phy_cap_info[0] =
702 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
703 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
704 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
705 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
706 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
707 				.phy_cap_info[1] =
708 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
709 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
710 				.phy_cap_info[3] =
711 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
712 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
713 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
714 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
715 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
716 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
717 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
718 
719 				.phy_cap_info[4] =
720 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
721 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
722 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
723 				.phy_cap_info[5] =
724 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
725 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US) |
726 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
727 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
728 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP,
729 				.phy_cap_info[6] =
730 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
731 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
732 				.phy_cap_info[8] =
733 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
734 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
735 			},
736 
737 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
738 			 * Rx - note we don't set the only_20mhz, but due to this
739 			 * being a union, it gets set correctly anyway.
740 			 */
741 			.eht_mcs_nss_supp = {
742 				.bw._80 = {
743 					.rx_tx_mcs9_max_nss = 0x22,
744 					.rx_tx_mcs11_max_nss = 0x22,
745 					.rx_tx_mcs13_max_nss = 0x22,
746 				},
747 				.bw._160 = {
748 					.rx_tx_mcs9_max_nss = 0x22,
749 					.rx_tx_mcs11_max_nss = 0x22,
750 					.rx_tx_mcs13_max_nss = 0x22,
751 				},
752 				.bw._320 = {
753 					.rx_tx_mcs9_max_nss = 0x22,
754 					.rx_tx_mcs11_max_nss = 0x22,
755 					.rx_tx_mcs13_max_nss = 0x22,
756 				},
757 			},
758 
759 			/*
760 			 * PPE thresholds for NSS = 2, and RU index bitmap set
761 			 * to 0xc.
762 			 * Note: just for stating what we want, not present in
763 			 * the transmitted data due to not including
764 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
765 			 */
766 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
767 		},
768 	},
769 	{
770 		.types_mask = BIT(NL80211_IFTYPE_AP) |
771 			      BIT(NL80211_IFTYPE_P2P_GO),
772 		.he_cap = {
773 			.has_he = true,
774 			.he_cap_elem = {
775 				.mac_cap_info[0] =
776 					IEEE80211_HE_MAC_CAP0_HTC_HE,
777 				.mac_cap_info[1] =
778 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
779 				.mac_cap_info[3] =
780 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
781 				.phy_cap_info[1] =
782 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
783 				.phy_cap_info[2] =
784 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
785 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
786 				.phy_cap_info[3] =
787 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
788 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
789 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
790 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
791 				.phy_cap_info[6] =
792 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
793 				.phy_cap_info[7] =
794 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
795 				.phy_cap_info[8] =
796 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
797 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
798 				.phy_cap_info[9] =
799 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
800 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
801 			},
802 			/*
803 			 * Set default Tx/Rx HE MCS NSS Support field.
804 			 * Indicate support for up to 2 spatial streams and all
805 			 * MCS, without any special cases
806 			 */
807 			.he_mcs_nss_supp = {
808 				.rx_mcs_80 = cpu_to_le16(0xfffa),
809 				.tx_mcs_80 = cpu_to_le16(0xfffa),
810 				.rx_mcs_160 = cpu_to_le16(0xfffa),
811 				.tx_mcs_160 = cpu_to_le16(0xfffa),
812 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
813 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
814 			},
815 			/*
816 			 * Set default PPE thresholds, with PPET16 set to 0,
817 			 * PPET8 set to 7
818 			 */
819 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
820 		},
821 		.eht_cap = {
822 			.has_eht = true,
823 			.eht_cap_elem = {
824 				.mac_cap_info[0] =
825 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
826 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
827 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
828 				.phy_cap_info[0] =
829 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
830 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
831 				.phy_cap_info[5] =
832 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
833 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US),
834 			},
835 
836 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
837 			 * Rx - note we don't set the only_20mhz, but due to this
838 			 * being a union, it gets set correctly anyway.
839 			 */
840 			.eht_mcs_nss_supp = {
841 				.bw._80 = {
842 					.rx_tx_mcs9_max_nss = 0x22,
843 					.rx_tx_mcs11_max_nss = 0x22,
844 					.rx_tx_mcs13_max_nss = 0x22,
845 				},
846 				.bw._160 = {
847 					.rx_tx_mcs9_max_nss = 0x22,
848 					.rx_tx_mcs11_max_nss = 0x22,
849 					.rx_tx_mcs13_max_nss = 0x22,
850 				},
851 				.bw._320 = {
852 					.rx_tx_mcs9_max_nss = 0x22,
853 					.rx_tx_mcs11_max_nss = 0x22,
854 					.rx_tx_mcs13_max_nss = 0x22,
855 				},
856 			},
857 
858 			/*
859 			 * PPE thresholds for NSS = 2, and RU index bitmap set
860 			 * to 0xc.
861 			 * Note: just for stating what we want, not present in
862 			 * the transmitted data due to not including
863 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
864 			 */
865 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
866 		},
867 	},
868 };
869 
870 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
871 				  struct iwl_nvm_data *data,
872 				  struct ieee80211_supported_band *sband,
873 				  u8 tx_chains, u8 rx_chains)
874 {
875 	struct ieee80211_sta_ht_cap ht_cap;
876 	struct ieee80211_sta_vht_cap vht_cap = {};
877 	struct ieee80211_sband_iftype_data *iftype_data;
878 	u16 he_6ghz_capa = 0;
879 	u32 exp;
880 	int i;
881 
882 	if (sband->band != NL80211_BAND_6GHZ)
883 		return;
884 
885 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
886 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
887 			     tx_chains, rx_chains);
888 	WARN_ON(!ht_cap.ht_supported);
889 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
890 	WARN_ON(!vht_cap.vht_supported);
891 
892 	he_6ghz_capa |=
893 		u16_encode_bits(ht_cap.ampdu_density,
894 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
895 	exp = u32_get_bits(vht_cap.cap,
896 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
897 	he_6ghz_capa |=
898 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
899 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
900 	he_6ghz_capa |=
901 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
902 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
903 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
904 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
905 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
906 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
907 
908 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
909 
910 	/* we know it's writable - we set it before ourselves */
911 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
912 	for (i = 0; i < sband->n_iftype_data; i++)
913 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
914 }
915 
916 static void
917 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
918 			 struct iwl_nvm_data *data,
919 			 struct ieee80211_supported_band *sband,
920 			 struct ieee80211_sband_iftype_data *iftype_data,
921 			 u8 tx_chains, u8 rx_chains,
922 			 const struct iwl_fw *fw)
923 {
924 	bool is_ap = iftype_data->types_mask & (BIT(NL80211_IFTYPE_AP) |
925 						BIT(NL80211_IFTYPE_P2P_GO));
926 	bool slow_pcie = (!trans->mac_cfg->integrated &&
927 			  trans->info.pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB);
928 
929 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
930 		iftype_data->eht_cap.has_eht = false;
931 
932 	/* Advertise an A-MPDU exponent extension based on
933 	 * operating band
934 	 */
935 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
936 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
937 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
938 	else if (sband->band != NL80211_BAND_2GHZ)
939 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
940 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
941 	else
942 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
943 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
944 
945 	switch (sband->band) {
946 	case NL80211_BAND_2GHZ:
947 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
948 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
949 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
950 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
951 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
952 		break;
953 	case NL80211_BAND_6GHZ:
954 		if (!trans->reduced_cap_sku &&
955 		    (!trans->cfg->bw_limit || trans->cfg->bw_limit >= 320)) {
956 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
957 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
958 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
959 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
960 		}
961 		fallthrough;
962 	case NL80211_BAND_5GHZ:
963 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
964 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
965 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
966 		break;
967 	default:
968 		WARN_ON(1);
969 		break;
970 	}
971 
972 	if ((tx_chains & rx_chains) == ANT_AB) {
973 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
974 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
975 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
976 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
977 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
978 		if (!is_ap) {
979 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
980 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
981 
982 			if (iftype_data->eht_cap.has_eht) {
983 				/*
984 				 * Set the number of sounding dimensions for each
985 				 * bandwidth to 1 to indicate the maximal supported
986 				 * value of TXVECTOR parameter NUM_STS of 2
987 				 */
988 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
989 
990 				/*
991 				 * Set the MAX NC to 1 to indicate sounding feedback of
992 				 * 2 supported by the beamfomee.
993 				 */
994 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
995 			}
996 		}
997 
998 		if (slow_pcie) {
999 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
1000 				&iftype_data->eht_cap.eht_mcs_nss_supp;
1001 
1002 			mcs_nss->bw._320.rx_tx_mcs11_max_nss = 0;
1003 			mcs_nss->bw._320.rx_tx_mcs13_max_nss = 0;
1004 		}
1005 	} else {
1006 		struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
1007 			&iftype_data->he_cap.he_mcs_nss_supp;
1008 
1009 		if (iftype_data->eht_cap.has_eht) {
1010 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
1011 				&iftype_data->eht_cap.eht_mcs_nss_supp;
1012 
1013 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
1014 		}
1015 
1016 		if (!is_ap) {
1017 			/* If not 2x2, we need to indicate 1x1 in the
1018 			 * Midamble RX Max NSTS - but not for AP mode
1019 			 */
1020 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
1021 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
1022 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1023 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
1024 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
1025 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
1026 		}
1027 
1028 		he_mcs_nss_supp->rx_mcs_80 |=
1029 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1030 		he_mcs_nss_supp->tx_mcs_80 |=
1031 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1032 		he_mcs_nss_supp->rx_mcs_160 |=
1033 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1034 		he_mcs_nss_supp->tx_mcs_160 |=
1035 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1036 		he_mcs_nss_supp->rx_mcs_80p80 |=
1037 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1038 		he_mcs_nss_supp->tx_mcs_80p80 |=
1039 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1040 	}
1041 
1042 	if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1043 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1044 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1045 
1046 	switch (CSR_HW_RFID_TYPE(trans->info.hw_rf_id)) {
1047 	case IWL_CFG_RF_TYPE_GF:
1048 	case IWL_CFG_RF_TYPE_FM:
1049 	case IWL_CFG_RF_TYPE_WH:
1050 	case IWL_CFG_RF_TYPE_PE:
1051 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1052 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1053 		if (!is_ap)
1054 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1055 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1056 		break;
1057 	}
1058 
1059 	if (CSR_HW_REV_TYPE(trans->info.hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1060 	    iftype_data->eht_cap.has_eht) {
1061 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1062 			~(IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1063 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1064 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1065 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1066 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1067 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1068 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1069 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1070 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1071 			  IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK);
1072 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1073 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1074 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1075 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1076 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1077 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1078 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1079 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1080 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1081 			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1082 	}
1083 
1084 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1085 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1086 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1087 
1088 	if (trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1089 	    !is_ap) {
1090 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1091 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1092 	}
1093 
1094 	if (!trans->cfg->ht_params.stbc) {
1095 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1096 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1097 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1098 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1099 	}
1100 
1101 	if (trans->step_urm) {
1102 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs11_max_nss = 0;
1103 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs13_max_nss = 0;
1104 	}
1105 
1106 	if (trans->cfg->bw_limit && trans->cfg->bw_limit < 160)
1107 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] &=
1108 			~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1109 
1110 	if ((trans->cfg->bw_limit && trans->cfg->bw_limit < 320) ||
1111 	    trans->reduced_cap_sku) {
1112 		memset(&iftype_data->eht_cap.eht_mcs_nss_supp.bw._320, 0,
1113 		       sizeof(iftype_data->eht_cap.eht_mcs_nss_supp.bw._320));
1114 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] &=
1115 			~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK;
1116 	}
1117 
1118 	if (trans->reduced_cap_sku) {
1119 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss = 0;
1120 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._160.rx_tx_mcs13_max_nss = 0;
1121 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[8] &=
1122 			~IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA;
1123 	}
1124 }
1125 
1126 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1127 				 struct iwl_nvm_data *data,
1128 				 struct ieee80211_supported_band *sband,
1129 				 u8 tx_chains, u8 rx_chains,
1130 				 const struct iwl_fw *fw)
1131 {
1132 	struct ieee80211_sband_iftype_data *iftype_data;
1133 	int i;
1134 
1135 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1136 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1137 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1138 
1139 	switch (sband->band) {
1140 	case NL80211_BAND_2GHZ:
1141 		iftype_data = data->iftd.low;
1142 		break;
1143 	case NL80211_BAND_5GHZ:
1144 		iftype_data = data->iftd.high;
1145 		break;
1146 	case NL80211_BAND_6GHZ:
1147 		iftype_data = data->iftd.uhb;
1148 		break;
1149 	default:
1150 		WARN_ON(1);
1151 		return;
1152 	}
1153 
1154 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1155 
1156 	_ieee80211_set_sband_iftype_data(sband, iftype_data,
1157 					 ARRAY_SIZE(iwl_he_eht_capa));
1158 
1159 	for (i = 0; i < sband->n_iftype_data; i++)
1160 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1161 					 tx_chains, rx_chains, fw);
1162 
1163 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1164 }
1165 
1166 void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1167 		    u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1168 {
1169 	struct ieee80211_supported_band *sband;
1170 
1171 	sband = &data->bands[NL80211_BAND_2GHZ];
1172 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1173 			     tx_chains, rx_chains);
1174 
1175 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1176 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1177 				     fw);
1178 
1179 	sband = &data->bands[NL80211_BAND_5GHZ];
1180 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1181 			     tx_chains, rx_chains);
1182 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1183 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1184 				      tx_chains, rx_chains);
1185 
1186 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1187 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1188 				     fw);
1189 
1190 	sband = &data->bands[NL80211_BAND_6GHZ];
1191 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1192 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1193 				     fw);
1194 }
1195 IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1196 
1197 static void iwl_init_sbands(struct iwl_trans *trans,
1198 			    struct iwl_nvm_data *data,
1199 			    const void *nvm_ch_flags, u8 tx_chains,
1200 			    u8 rx_chains, u32 sbands_flags, bool v4,
1201 			    const struct iwl_fw *fw)
1202 {
1203 	struct device *dev = trans->dev;
1204 	int n_channels;
1205 	int n_used = 0;
1206 	struct ieee80211_supported_band *sband;
1207 
1208 	n_channels = iwl_init_channel_map(trans, fw, data, nvm_ch_flags,
1209 					  sbands_flags, v4);
1210 	sband = &data->bands[NL80211_BAND_2GHZ];
1211 	sband->band = NL80211_BAND_2GHZ;
1212 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1213 	sband->n_bitrates = N_RATES_24;
1214 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1215 					  NL80211_BAND_2GHZ);
1216 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1217 			     tx_chains, rx_chains);
1218 
1219 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1220 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1221 				     fw);
1222 
1223 	sband = &data->bands[NL80211_BAND_5GHZ];
1224 	sband->band = NL80211_BAND_5GHZ;
1225 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1226 	sband->n_bitrates = N_RATES_52;
1227 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1228 					  NL80211_BAND_5GHZ);
1229 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1230 			     tx_chains, rx_chains);
1231 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1232 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1233 				      tx_chains, rx_chains);
1234 
1235 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1236 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1237 				     fw);
1238 
1239 	/* 6GHz band. */
1240 	sband = &data->bands[NL80211_BAND_6GHZ];
1241 	sband->band = NL80211_BAND_6GHZ;
1242 	/* use the same rates as 5GHz band */
1243 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1244 	sband->n_bitrates = N_RATES_52;
1245 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1246 					  NL80211_BAND_6GHZ);
1247 
1248 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1249 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1250 				     fw);
1251 	else
1252 		sband->n_channels = 0;
1253 	if (n_channels != n_used)
1254 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1255 			    n_used, n_channels);
1256 }
1257 
1258 static int iwl_get_sku(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw,
1259 		       const __le16 *phy_sku)
1260 {
1261 	if (cfg->nvm_type != IWL_NVM_EXT)
1262 		return le16_to_cpup(nvm_sw + SKU);
1263 
1264 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1265 }
1266 
1267 static int iwl_get_nvm_version(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw)
1268 {
1269 	if (cfg->nvm_type != IWL_NVM_EXT)
1270 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1271 	else
1272 		return le32_to_cpup((const __le32 *)(nvm_sw +
1273 						     NVM_VERSION_EXT_NVM));
1274 }
1275 
1276 static int iwl_get_radio_cfg(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw,
1277 			     const __le16 *phy_sku)
1278 {
1279 	if (cfg->nvm_type != IWL_NVM_EXT)
1280 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1281 
1282 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1283 
1284 }
1285 
1286 static int iwl_get_n_hw_addrs(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw)
1287 {
1288 	int n_hw_addr;
1289 
1290 	if (cfg->nvm_type != IWL_NVM_EXT)
1291 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1292 
1293 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1294 
1295 	return n_hw_addr & N_HW_ADDR_MASK;
1296 }
1297 
1298 static void iwl_set_radio_cfg(const struct iwl_rf_cfg *cfg,
1299 			      struct iwl_nvm_data *data,
1300 			      u32 radio_cfg)
1301 {
1302 	if (cfg->nvm_type != IWL_NVM_EXT) {
1303 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1304 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1305 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1306 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1307 		return;
1308 	}
1309 
1310 	/* set the radio configuration for family 8000 */
1311 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1312 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1313 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1314 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1315 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1316 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1317 }
1318 
1319 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1320 {
1321 	const u8 *hw_addr;
1322 
1323 	hw_addr = (const u8 *)&mac_addr0;
1324 	dest[0] = hw_addr[3];
1325 	dest[1] = hw_addr[2];
1326 	dest[2] = hw_addr[1];
1327 	dest[3] = hw_addr[0];
1328 
1329 	hw_addr = (const u8 *)&mac_addr1;
1330 	dest[4] = hw_addr[1];
1331 	dest[5] = hw_addr[0];
1332 }
1333 
1334 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1335 					struct iwl_nvm_data *data)
1336 {
1337 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1338 						  CSR_MAC_ADDR0_STRAP(trans)));
1339 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1340 						  CSR_MAC_ADDR1_STRAP(trans)));
1341 
1342 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1343 	/*
1344 	 * If the OEM fused a valid address, use it instead of the one in the
1345 	 * OTP
1346 	 */
1347 	if (is_valid_ether_addr(data->hw_addr))
1348 		return;
1349 
1350 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1351 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1352 
1353 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1354 }
1355 
1356 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1357 					   const struct iwl_rf_cfg *cfg,
1358 					   struct iwl_nvm_data *data,
1359 					   const __le16 *mac_override,
1360 					   const __be16 *nvm_hw)
1361 {
1362 	const u8 *hw_addr;
1363 
1364 	if (mac_override) {
1365 		static const u8 reserved_mac[] = {
1366 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1367 		};
1368 
1369 		hw_addr = (const u8 *)(mac_override +
1370 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1371 
1372 		/*
1373 		 * Store the MAC address from MAO section.
1374 		 * No byte swapping is required in MAO section
1375 		 */
1376 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1377 
1378 		/*
1379 		 * Force the use of the OTP MAC address in case of reserved MAC
1380 		 * address in the NVM, or if address is given but invalid.
1381 		 */
1382 		if (is_valid_ether_addr(data->hw_addr) &&
1383 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1384 			return;
1385 
1386 		IWL_ERR(trans,
1387 			"mac address from nvm override section is not valid\n");
1388 	}
1389 
1390 	if (nvm_hw) {
1391 		/* read the mac address from WFMP registers */
1392 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1393 						WFMP_MAC_ADDR_0));
1394 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1395 						WFMP_MAC_ADDR_1));
1396 
1397 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1398 
1399 		return;
1400 	}
1401 
1402 	IWL_ERR(trans, "mac address is not found\n");
1403 }
1404 
1405 static int iwl_set_hw_address(struct iwl_trans *trans,
1406 			      const struct iwl_rf_cfg *cfg,
1407 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1408 			      const __le16 *mac_override)
1409 {
1410 	const struct iwl_mac_cfg *mac_cfg = trans->mac_cfg;
1411 	if (mac_cfg->base->mac_addr_from_csr) {
1412 		iwl_set_hw_address_from_csr(trans, data);
1413 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1414 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1415 
1416 		/* The byte order is little endian 16 bit, meaning 214365 */
1417 		data->hw_addr[0] = hw_addr[1];
1418 		data->hw_addr[1] = hw_addr[0];
1419 		data->hw_addr[2] = hw_addr[3];
1420 		data->hw_addr[3] = hw_addr[2];
1421 		data->hw_addr[4] = hw_addr[5];
1422 		data->hw_addr[5] = hw_addr[4];
1423 	} else {
1424 		iwl_set_hw_address_family_8000(trans, cfg, data,
1425 					       mac_override, nvm_hw);
1426 	}
1427 
1428 	if (!is_valid_ether_addr(data->hw_addr)) {
1429 		IWL_ERR(trans, "no valid mac address was found\n");
1430 		return -EINVAL;
1431 	}
1432 
1433 	if (!trans->csme_own)
1434 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1435 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1436 
1437 	return 0;
1438 }
1439 
1440 static bool
1441 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1442 			const __be16 *nvm_hw)
1443 {
1444 	/*
1445 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1446 	 * some 7000-family OTPs erroneously allow wide channels in
1447 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1448 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1449 	 * 9.  In those cases, we need to force-disable wide channels
1450 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1451 	 * to use them.
1452 	 */
1453 	if (trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1454 		/*
1455 		 * Unlike the other sections in the NVM, the hw
1456 		 * section uses big-endian.
1457 		 */
1458 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1459 		u8 sku = (subsystem_id & 0x1e) >> 1;
1460 
1461 		if (sku == 5 || sku == 9) {
1462 			IWL_DEBUG_EEPROM(trans->dev,
1463 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1464 					 subsystem_id, sku);
1465 			return true;
1466 		}
1467 	}
1468 
1469 	return false;
1470 }
1471 
1472 struct iwl_nvm_data *
1473 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1474 		       const struct iwl_mei_nvm *mei_nvm,
1475 		       const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1476 {
1477 	struct iwl_nvm_data *data;
1478 	u32 sbands_flags = 0;
1479 	u8 rx_chains = fw->valid_rx_ant;
1480 	u8 tx_chains = fw->valid_rx_ant;
1481 
1482 	if (cfg->uhb_supported)
1483 		data = kzalloc(struct_size(data, channels,
1484 					   IWL_NVM_NUM_CHANNELS_UHB),
1485 					   GFP_KERNEL);
1486 	else
1487 		data = kzalloc(struct_size(data, channels,
1488 					   IWL_NVM_NUM_CHANNELS_EXT),
1489 					   GFP_KERNEL);
1490 	if (!data)
1491 		return NULL;
1492 
1493 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1494 		     IWL_NVM_NUM_CHANNELS_UHB);
1495 	data->nvm_version = mei_nvm->nvm_version;
1496 
1497 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1498 	if (data->valid_tx_ant)
1499 		tx_chains &= data->valid_tx_ant;
1500 	if (data->valid_rx_ant)
1501 		rx_chains &= data->valid_rx_ant;
1502 	if (tx_ant)
1503 		tx_chains &= tx_ant;
1504 	if (rx_ant)
1505 		rx_chains &= rx_ant;
1506 
1507 	data->sku_cap_mimo_disabled = false;
1508 	data->sku_cap_band_24ghz_enable = true;
1509 	data->sku_cap_band_52ghz_enable = true;
1510 	data->sku_cap_11n_enable =
1511 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1512 	data->sku_cap_11ac_enable = true;
1513 	data->sku_cap_11ax_enable =
1514 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1515 
1516 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1517 
1518 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1519 	/* If no valid mac address was found - bail out */
1520 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1521 		kfree(data);
1522 		return NULL;
1523 	}
1524 
1525 	if (data->lar_enabled &&
1526 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1527 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1528 
1529 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1530 			sbands_flags, true, fw);
1531 
1532 	return data;
1533 }
1534 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1535 
1536 struct iwl_nvm_data *
1537 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1538 		   const struct iwl_fw *fw,
1539 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1540 		   const __le16 *nvm_calib, const __le16 *regulatory,
1541 		   const __le16 *mac_override, const __le16 *phy_sku,
1542 		   u8 tx_chains, u8 rx_chains)
1543 {
1544 	struct iwl_nvm_data *data;
1545 	bool lar_enabled;
1546 	u32 sku, radio_cfg;
1547 	u32 sbands_flags = 0;
1548 	u16 lar_config;
1549 	const __le16 *ch_section;
1550 
1551 	if (cfg->uhb_supported)
1552 		data = kzalloc(struct_size(data, channels,
1553 					   IWL_NVM_NUM_CHANNELS_UHB),
1554 					   GFP_KERNEL);
1555 	else if (cfg->nvm_type != IWL_NVM_EXT)
1556 		data = kzalloc(struct_size(data, channels,
1557 					   IWL_NVM_NUM_CHANNELS),
1558 					   GFP_KERNEL);
1559 	else
1560 		data = kzalloc(struct_size(data, channels,
1561 					   IWL_NVM_NUM_CHANNELS_EXT),
1562 					   GFP_KERNEL);
1563 	if (!data)
1564 		return NULL;
1565 
1566 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1567 
1568 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1569 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1570 	if (data->valid_tx_ant)
1571 		tx_chains &= data->valid_tx_ant;
1572 	if (data->valid_rx_ant)
1573 		rx_chains &= data->valid_rx_ant;
1574 
1575 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1576 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1577 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1578 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1579 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1580 		data->sku_cap_11n_enable = false;
1581 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1582 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1583 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1584 
1585 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1586 
1587 	if (cfg->nvm_type != IWL_NVM_EXT) {
1588 		/* Checking for required sections */
1589 		if (!nvm_calib) {
1590 			IWL_ERR(trans,
1591 				"Can't parse empty Calib NVM sections\n");
1592 			kfree(data);
1593 			return NULL;
1594 		}
1595 
1596 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1597 			     &regulatory[NVM_CHANNELS_SDP] :
1598 			     &nvm_sw[NVM_CHANNELS];
1599 
1600 		lar_enabled = true;
1601 	} else {
1602 		u16 lar_offset = data->nvm_version < 0xE39 ?
1603 				 NVM_LAR_OFFSET_OLD :
1604 				 NVM_LAR_OFFSET;
1605 
1606 		lar_config = le16_to_cpup(regulatory + lar_offset);
1607 		data->lar_enabled = !!(lar_config &
1608 				       NVM_LAR_ENABLED);
1609 		lar_enabled = data->lar_enabled;
1610 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1611 	}
1612 
1613 	/* If no valid mac address was found - bail out */
1614 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1615 		kfree(data);
1616 		return NULL;
1617 	}
1618 
1619 	if (lar_enabled &&
1620 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1621 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1622 
1623 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1624 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1625 
1626 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1627 			sbands_flags, false, fw);
1628 	data->calib_version = 255;
1629 
1630 	return data;
1631 }
1632 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1633 
1634 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1635 				       int ch_idx, u16 nvm_flags,
1636 				       struct iwl_reg_capa reg_capa)
1637 {
1638 	u32 flags = NL80211_RRF_NO_HT40;
1639 
1640 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1641 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1642 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1643 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1644 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1645 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1646 	} else if (ch_idx < NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS &&
1647 		   nvm_flags & NVM_CHANNEL_40MHZ) {
1648 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1649 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1650 		else
1651 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1652 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1653 		flags &= ~NL80211_RRF_NO_HT40PLUS;
1654 		flags &= ~NL80211_RRF_NO_HT40MINUS;
1655 	}
1656 
1657 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1658 		flags |= NL80211_RRF_NO_80MHZ;
1659 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1660 		flags |= NL80211_RRF_NO_160MHZ;
1661 
1662 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1663 		flags |= NL80211_RRF_NO_IR;
1664 
1665 	if (nvm_flags & NVM_CHANNEL_RADAR)
1666 		flags |= NL80211_RRF_DFS;
1667 
1668 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1669 		flags |= NL80211_RRF_NO_OUTDOOR;
1670 
1671 	if (nvm_flags & NVM_CHANNEL_ALLOW_20MHZ_ACTIVITY &&
1672 	    flags & NL80211_RRF_NO_IR)
1673 		flags |= NL80211_RRF_ALLOW_20MHZ_ACTIVITY;
1674 
1675 	/* Set the GO concurrent flag only in case that NO_IR is set.
1676 	 * Otherwise it is meaningless
1677 	 */
1678 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1679 		if (flags & NL80211_RRF_NO_IR)
1680 			flags |= NL80211_RRF_GO_CONCURRENT;
1681 		if (flags & NL80211_RRF_DFS) {
1682 			flags |= NL80211_RRF_DFS_CONCURRENT;
1683 			/* Our device doesn't set active bit for DFS channels
1684 			 * however, once marked as DFS no-ir is not needed.
1685 			 */
1686 			flags &= ~NL80211_RRF_NO_IR;
1687 		}
1688 	}
1689 
1690 	/* Set the AP type for the UHB case. */
1691 	if (nvm_flags & NVM_CHANNEL_VLP) {
1692 		if (!(nvm_flags & NVM_CHANNEL_VLP_AP_NOT_ALLOWED))
1693 			flags |= NL80211_RRF_ALLOW_6GHZ_VLP_AP;
1694 	} else {
1695 		flags |= NL80211_RRF_NO_6GHZ_VLP_CLIENT;
1696 	}
1697 
1698 	if (!(nvm_flags & NVM_CHANNEL_AFC))
1699 		flags |= NL80211_RRF_NO_6GHZ_AFC_CLIENT;
1700 
1701 	/*
1702 	 * reg_capa is per regulatory domain so apply it for every channel
1703 	 */
1704 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1705 		if (!reg_capa.allow_40mhz)
1706 			flags |= NL80211_RRF_NO_HT40;
1707 
1708 		if (!reg_capa.allow_80mhz)
1709 			flags |= NL80211_RRF_NO_80MHZ;
1710 
1711 		if (!reg_capa.allow_160mhz)
1712 			flags |= NL80211_RRF_NO_160MHZ;
1713 
1714 		if (!reg_capa.allow_320mhz)
1715 			flags |= NL80211_RRF_NO_320MHZ;
1716 	}
1717 
1718 	if (reg_capa.disable_11ax)
1719 		flags |= NL80211_RRF_NO_HE;
1720 
1721 	if (reg_capa.disable_11be)
1722 		flags |= NL80211_RRF_NO_EHT;
1723 
1724 	return flags;
1725 }
1726 
1727 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1728 {
1729 	struct iwl_reg_capa reg_capa = {};
1730 
1731 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1732 		reg_capa.allow_40mhz = true;
1733 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1734 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1735 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1736 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1737 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1738 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1739 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1740 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1741 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1742 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1743 	} else {
1744 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1745 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1746 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1747 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1748 	}
1749 	return reg_capa;
1750 }
1751 
1752 struct ieee80211_regdomain *
1753 iwl_parse_nvm_mcc_info(struct iwl_trans *trans,
1754 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1755 		       u16 geo_info, u32 cap, u8 resp_ver)
1756 {
1757 	const struct iwl_rf_cfg *cfg = trans->cfg;
1758 	struct device *dev = trans->dev;
1759 	int ch_idx;
1760 	u16 ch_flags;
1761 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1762 	const u16 *nvm_chan;
1763 	struct ieee80211_regdomain *regd, *copy_rd;
1764 	struct ieee80211_reg_rule *rule;
1765 	int center_freq, prev_center_freq = 0;
1766 	int valid_rules = 0;
1767 	bool new_rule;
1768 	int max_num_ch;
1769 	struct iwl_reg_capa reg_capa;
1770 
1771 	if (cfg->uhb_supported) {
1772 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1773 		nvm_chan = iwl_uhb_nvm_channels;
1774 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1775 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1776 		nvm_chan = iwl_ext_nvm_channels;
1777 	} else {
1778 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1779 		nvm_chan = iwl_nvm_channels;
1780 	}
1781 
1782 	if (num_of_ch > max_num_ch) {
1783 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1784 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1785 			      num_of_ch, max_num_ch);
1786 		num_of_ch = max_num_ch;
1787 	}
1788 
1789 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1790 		return ERR_PTR(-EINVAL);
1791 
1792 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1793 		      num_of_ch);
1794 
1795 	/* build a regdomain rule for every valid channel */
1796 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1797 	if (!regd)
1798 		return ERR_PTR(-ENOMEM);
1799 
1800 	/* set alpha2 from FW. */
1801 	regd->alpha2[0] = fw_mcc >> 8;
1802 	regd->alpha2[1] = fw_mcc & 0xff;
1803 
1804 	/* parse regulatory capability flags */
1805 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1806 
1807 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1808 		enum nl80211_band band =
1809 			iwl_nl80211_band_from_channel_idx(ch_idx);
1810 
1811 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1812 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1813 							     band);
1814 		new_rule = false;
1815 
1816 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1817 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1818 						    nvm_chan[ch_idx], ch_flags);
1819 			continue;
1820 		}
1821 
1822 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1823 							     ch_flags,
1824 							     reg_capa);
1825 
1826 		/* we can't continue the same rule */
1827 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1828 		    center_freq - prev_center_freq > 20) {
1829 			valid_rules++;
1830 			new_rule = true;
1831 		}
1832 
1833 		rule = &regd->reg_rules[valid_rules - 1];
1834 
1835 		if (new_rule)
1836 			rule->freq_range.start_freq_khz =
1837 						MHZ_TO_KHZ(center_freq - 10);
1838 
1839 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1840 
1841 		/* this doesn't matter - not used by FW */
1842 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1843 		rule->power_rule.max_eirp =
1844 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1845 
1846 		rule->flags = reg_rule_flags;
1847 
1848 		/* rely on auto-calculation to merge BW of contiguous chans */
1849 		rule->flags |= NL80211_RRF_AUTO_BW;
1850 		rule->freq_range.max_bandwidth_khz = 0;
1851 
1852 		prev_center_freq = center_freq;
1853 		prev_reg_rule_flags = reg_rule_flags;
1854 
1855 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1856 					    nvm_chan[ch_idx], ch_flags);
1857 
1858 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1859 		    band == NL80211_BAND_2GHZ)
1860 			continue;
1861 
1862 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1863 	}
1864 
1865 	/*
1866 	 * Certain firmware versions might report no valid channels
1867 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1868 	 * running. We'll get out of this situation later when the
1869 	 * rfkill is removed and we update the regdomain again, but
1870 	 * since cfg80211 doesn't accept an empty regdomain, add a
1871 	 * dummy (unusable) rule here in this case so we can init.
1872 	 */
1873 	if (!valid_rules) {
1874 		valid_rules = 1;
1875 		rule = &regd->reg_rules[valid_rules - 1];
1876 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1877 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1878 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1879 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1880 		rule->power_rule.max_eirp =
1881 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1882 	}
1883 
1884 	regd->n_reg_rules = valid_rules;
1885 
1886 	/*
1887 	 * Narrow down regdom for unused regulatory rules to prevent hole
1888 	 * between reg rules to wmm rules.
1889 	 */
1890 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1891 			  GFP_KERNEL);
1892 	if (!copy_rd)
1893 		copy_rd = ERR_PTR(-ENOMEM);
1894 
1895 	kfree(regd);
1896 	return copy_rd;
1897 }
1898 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1899 
1900 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1901 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1902 #define MAX_NVM_FILE_LEN	16384
1903 
1904 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1905 		    unsigned int len)
1906 {
1907 #define IWL_4165_DEVICE_ID	0x5501
1908 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1909 
1910 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1911 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1912 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1913 		/* OTP 0x52 bug work around: it's a 1x1 device */
1914 		data[3] = ANT_B | (ANT_B << 4);
1915 }
1916 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1917 
1918 /*
1919  * Reads external NVM from a file into mvm->nvm_sections
1920  *
1921  * HOW TO CREATE THE NVM FILE FORMAT:
1922  * ------------------------------
1923  * 1. create hex file, format:
1924  *      3800 -> header
1925  *      0000 -> header
1926  *      5a40 -> data
1927  *
1928  *   rev - 6 bit (word1)
1929  *   len - 10 bit (word1)
1930  *   id - 4 bit (word2)
1931  *   rsv - 12 bit (word2)
1932  *
1933  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1934  *
1935  * 3. create binary file from the hex file
1936  *
1937  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1938  */
1939 int iwl_read_external_nvm(struct iwl_trans *trans,
1940 			  const char *nvm_file_name,
1941 			  struct iwl_nvm_section *nvm_sections)
1942 {
1943 	int ret, section_size;
1944 	u16 section_id;
1945 	const struct firmware *fw_entry;
1946 	const struct {
1947 		__le16 word1;
1948 		__le16 word2;
1949 		u8 data[];
1950 	} *file_sec;
1951 	const u8 *eof;
1952 	u8 *temp;
1953 	int max_section_size;
1954 	const __le32 *dword_buff;
1955 
1956 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1957 #define NVM_WORD2_ID(x) (x >> 12)
1958 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1959 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1960 #define NVM_HEADER_0	(0x2A504C54)
1961 #define NVM_HEADER_1	(0x4E564D2A)
1962 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1963 
1964 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1965 
1966 	/* Maximal size depends on NVM version */
1967 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1968 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1969 	else
1970 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1971 
1972 	/*
1973 	 * Obtain NVM image via request_firmware. Since we already used
1974 	 * request_firmware_nowait() for the firmware binary load and only
1975 	 * get here after that we assume the NVM request can be satisfied
1976 	 * synchronously.
1977 	 */
1978 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1979 	if (ret) {
1980 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1981 			nvm_file_name, ret);
1982 		return ret;
1983 	}
1984 
1985 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1986 		 nvm_file_name, fw_entry->size);
1987 
1988 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1989 		IWL_ERR(trans, "NVM file too large\n");
1990 		ret = -EINVAL;
1991 		goto out;
1992 	}
1993 
1994 	eof = fw_entry->data + fw_entry->size;
1995 	dword_buff = (const __le32 *)fw_entry->data;
1996 
1997 	/* some NVM file will contain a header.
1998 	 * The header is identified by 2 dwords header as follow:
1999 	 * dword[0] = 0x2A504C54
2000 	 * dword[1] = 0x4E564D2A
2001 	 *
2002 	 * This header must be skipped when providing the NVM data to the FW.
2003 	 */
2004 	if (fw_entry->size > NVM_HEADER_SIZE &&
2005 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
2006 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
2007 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
2008 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
2009 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
2010 			 le32_to_cpu(dword_buff[3]));
2011 
2012 		/* nvm file validation, dword_buff[2] holds the file version */
2013 		if (trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
2014 		    trans->info.hw_rev_step == SILICON_C_STEP &&
2015 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
2016 			ret = -EFAULT;
2017 			goto out;
2018 		}
2019 	} else {
2020 		file_sec = (const void *)fw_entry->data;
2021 	}
2022 
2023 	while (true) {
2024 		if (file_sec->data > eof) {
2025 			IWL_ERR(trans,
2026 				"ERROR - NVM file too short for section header\n");
2027 			ret = -EINVAL;
2028 			break;
2029 		}
2030 
2031 		/* check for EOF marker */
2032 		if (!file_sec->word1 && !file_sec->word2) {
2033 			ret = 0;
2034 			break;
2035 		}
2036 
2037 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
2038 			section_size =
2039 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
2040 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
2041 		} else {
2042 			section_size = 2 * EXT_NVM_WORD2_LEN(
2043 						le16_to_cpu(file_sec->word2));
2044 			section_id = EXT_NVM_WORD1_ID(
2045 						le16_to_cpu(file_sec->word1));
2046 		}
2047 
2048 		if (section_size > max_section_size) {
2049 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
2050 				section_size);
2051 			ret = -EINVAL;
2052 			break;
2053 		}
2054 
2055 		if (!section_size) {
2056 			IWL_ERR(trans, "ERROR - section empty\n");
2057 			ret = -EINVAL;
2058 			break;
2059 		}
2060 
2061 		if (file_sec->data + section_size > eof) {
2062 			IWL_ERR(trans,
2063 				"ERROR - NVM file too short for section (%d bytes)\n",
2064 				section_size);
2065 			ret = -EINVAL;
2066 			break;
2067 		}
2068 
2069 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
2070 			 "Invalid NVM section ID %d\n", section_id)) {
2071 			ret = -EINVAL;
2072 			break;
2073 		}
2074 
2075 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
2076 		if (!temp) {
2077 			ret = -ENOMEM;
2078 			break;
2079 		}
2080 
2081 		iwl_nvm_fixups(trans->info.hw_id, section_id, temp, section_size);
2082 
2083 		kfree(nvm_sections[section_id].data);
2084 		nvm_sections[section_id].data = temp;
2085 		nvm_sections[section_id].length = section_size;
2086 
2087 		/* advance to the next section */
2088 		file_sec = (const void *)(file_sec->data + section_size);
2089 	}
2090 out:
2091 	release_firmware(fw_entry);
2092 	return ret;
2093 }
2094 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2095 
2096 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2097 				 const struct iwl_fw *fw,
2098 				 u8 set_tx_ant, u8 set_rx_ant)
2099 {
2100 	struct iwl_nvm_get_info cmd = {};
2101 	struct iwl_nvm_data *nvm;
2102 	struct iwl_host_cmd hcmd = {
2103 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2104 		.data = { &cmd, },
2105 		.len = { sizeof(cmd) },
2106 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2107 	};
2108 	int  ret;
2109 	bool empty_otp;
2110 	u32 mac_flags;
2111 	u32 sbands_flags = 0;
2112 	u8 tx_ant;
2113 	u8 rx_ant;
2114 
2115 	/*
2116 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2117 	 * in v3, except for the channel profile part of the
2118 	 * regulatory.  So we can just access the new struct, with the
2119 	 * exception of the latter.
2120 	 */
2121 	struct iwl_nvm_get_info_rsp *rsp;
2122 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2123 	bool v4 = fw_has_api(&fw->ucode_capa,
2124 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2125 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2126 	void *channel_profile;
2127 
2128 	ret = iwl_trans_send_cmd(trans, &hcmd);
2129 	if (ret)
2130 		return ERR_PTR(ret);
2131 
2132 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2133 		 "Invalid payload len in NVM response from FW %d",
2134 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2135 		ret = -EINVAL;
2136 		goto out;
2137 	}
2138 
2139 	rsp = (void *)hcmd.resp_pkt->data;
2140 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2141 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2142 	if (empty_otp)
2143 		IWL_INFO(trans, "OTP is empty\n");
2144 
2145 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2146 	if (!nvm) {
2147 		ret = -ENOMEM;
2148 		goto out;
2149 	}
2150 
2151 	iwl_set_hw_address_from_csr(trans, nvm);
2152 	/* TODO: if platform NVM has MAC address - override it here */
2153 
2154 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2155 		IWL_ERR(trans, "no valid mac address was found\n");
2156 		ret = -EINVAL;
2157 		goto err_free;
2158 	}
2159 
2160 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2161 
2162 	/* Initialize general data */
2163 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2164 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2165 	if (nvm->n_hw_addrs == 0)
2166 		IWL_WARN(trans,
2167 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2168 			 empty_otp);
2169 
2170 	/* Initialize MAC sku data */
2171 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2172 	nvm->sku_cap_11ac_enable =
2173 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2174 	nvm->sku_cap_11n_enable =
2175 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2176 	nvm->sku_cap_11ax_enable =
2177 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2178 	nvm->sku_cap_band_24ghz_enable =
2179 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2180 	nvm->sku_cap_band_52ghz_enable =
2181 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2182 	nvm->sku_cap_mimo_disabled =
2183 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2184 	if (CSR_HW_RFID_TYPE(trans->info.hw_rf_id) >= IWL_CFG_RF_TYPE_FM)
2185 		nvm->sku_cap_11be_enable = true;
2186 
2187 	/* Initialize PHY sku data */
2188 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2189 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2190 
2191 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2192 	    fw_has_capa(&fw->ucode_capa,
2193 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2194 		nvm->lar_enabled = true;
2195 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2196 	}
2197 
2198 	rsp_v3 = (void *)rsp;
2199 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2200 			  (void *)rsp_v3->regulatory.channel_profile;
2201 
2202 	tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2203 	rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2204 
2205 	if (set_tx_ant)
2206 		tx_ant &= set_tx_ant;
2207 	if (set_rx_ant)
2208 		rx_ant &= set_rx_ant;
2209 
2210 	iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2211 			sbands_flags, v4, fw);
2212 
2213 	iwl_free_resp(&hcmd);
2214 	return nvm;
2215 
2216 err_free:
2217 	kfree(nvm);
2218 out:
2219 	iwl_free_resp(&hcmd);
2220 	return ERR_PTR(ret);
2221 }
2222 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2223