1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2016 Intel Deutschland GmbH 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of version 2 of the GNU General Public License as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 24 * USA 25 * 26 * The full GNU General Public License is included in this distribution 27 * in the file called COPYING. 28 * 29 * Contact Information: 30 * Intel Linux Wireless <linuxwifi@intel.com> 31 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 32 * 33 * BSD LICENSE 34 * 35 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 36 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 43 * * Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * * Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in 47 * the documentation and/or other materials provided with the 48 * distribution. 49 * * Neither the name Intel Corporation nor the names of its 50 * contributors may be used to endorse or promote products derived 51 * from this software without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 54 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 55 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 56 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 57 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 58 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 59 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 60 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 61 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 62 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 63 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 64 *****************************************************************************/ 65 #include <linux/types.h> 66 #include <linux/slab.h> 67 #include <linux/export.h> 68 #include <linux/etherdevice.h> 69 #include <linux/pci.h> 70 #include "iwl-drv.h" 71 #include "iwl-modparams.h" 72 #include "iwl-nvm-parse.h" 73 #include "iwl-prph.h" 74 #include "iwl-io.h" 75 #include "iwl-csr.h" 76 77 /* NVM offsets (in words) definitions */ 78 enum wkp_nvm_offsets { 79 /* NVM HW-Section offset (in words) definitions */ 80 HW_ADDR = 0x15, 81 82 /* NVM SW-Section offset (in words) definitions */ 83 NVM_SW_SECTION = 0x1C0, 84 NVM_VERSION = 0, 85 RADIO_CFG = 1, 86 SKU = 2, 87 N_HW_ADDRS = 3, 88 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, 89 90 /* NVM calibration section offset (in words) definitions */ 91 NVM_CALIB_SECTION = 0x2B8, 92 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION 93 }; 94 95 enum family_8000_nvm_offsets { 96 /* NVM HW-Section offset (in words) definitions */ 97 HW_ADDR0_WFPM_FAMILY_8000 = 0x12, 98 HW_ADDR1_WFPM_FAMILY_8000 = 0x16, 99 HW_ADDR0_PCIE_FAMILY_8000 = 0x8A, 100 HW_ADDR1_PCIE_FAMILY_8000 = 0x8E, 101 MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1, 102 103 /* NVM SW-Section offset (in words) definitions */ 104 NVM_SW_SECTION_FAMILY_8000 = 0x1C0, 105 NVM_VERSION_FAMILY_8000 = 0, 106 RADIO_CFG_FAMILY_8000 = 0, 107 SKU_FAMILY_8000 = 2, 108 N_HW_ADDRS_FAMILY_8000 = 3, 109 110 /* NVM REGULATORY -Section offset (in words) definitions */ 111 NVM_CHANNELS_FAMILY_8000 = 0, 112 NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7, 113 NVM_LAR_OFFSET_FAMILY_8000 = 0x507, 114 NVM_LAR_ENABLED_FAMILY_8000 = 0x7, 115 116 /* NVM calibration section offset (in words) definitions */ 117 NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8, 118 XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000 119 }; 120 121 /* SKU Capabilities (actual values from NVM definition) */ 122 enum nvm_sku_bits { 123 NVM_SKU_CAP_BAND_24GHZ = BIT(0), 124 NVM_SKU_CAP_BAND_52GHZ = BIT(1), 125 NVM_SKU_CAP_11N_ENABLE = BIT(2), 126 NVM_SKU_CAP_11AC_ENABLE = BIT(3), 127 NVM_SKU_CAP_MIMO_DISABLE = BIT(5), 128 }; 129 130 /* 131 * These are the channel numbers in the order that they are stored in the NVM 132 */ 133 static const u8 iwl_nvm_channels[] = { 134 /* 2.4 GHz */ 135 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 136 /* 5 GHz */ 137 36, 40, 44 , 48, 52, 56, 60, 64, 138 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 139 149, 153, 157, 161, 165 140 }; 141 142 static const u8 iwl_nvm_channels_family_8000[] = { 143 /* 2.4 GHz */ 144 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 145 /* 5 GHz */ 146 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 147 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148 149, 153, 157, 161, 165, 169, 173, 177, 181 149 }; 150 151 #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) 152 #define IWL_NUM_CHANNELS_FAMILY_8000 ARRAY_SIZE(iwl_nvm_channels_family_8000) 153 #define NUM_2GHZ_CHANNELS 14 154 #define NUM_2GHZ_CHANNELS_FAMILY_8000 14 155 #define FIRST_2GHZ_HT_MINUS 5 156 #define LAST_2GHZ_HT_PLUS 9 157 #define LAST_5GHZ_HT 165 158 #define LAST_5GHZ_HT_FAMILY_8000 181 159 #define N_HW_ADDR_MASK 0xF 160 161 /* rate data (static) */ 162 static struct ieee80211_rate iwl_cfg80211_rates[] = { 163 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, 164 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, 165 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 166 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, 167 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 168 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, 169 .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, 170 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, 171 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, 172 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, 173 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, 174 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, 175 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, 176 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, 177 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, 178 }; 179 #define RATES_24_OFFS 0 180 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) 181 #define RATES_52_OFFS 4 182 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) 183 184 /** 185 * enum iwl_nvm_channel_flags - channel flags in NVM 186 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo 187 * @NVM_CHANNEL_IBSS: usable as an IBSS channel 188 * @NVM_CHANNEL_ACTIVE: active scanning allowed 189 * @NVM_CHANNEL_RADAR: radar detection required 190 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed 191 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS 192 * on same channel on 2.4 or same UNII band on 5.2 193 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?) 194 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) 195 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) 196 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) 197 */ 198 enum iwl_nvm_channel_flags { 199 NVM_CHANNEL_VALID = BIT(0), 200 NVM_CHANNEL_IBSS = BIT(1), 201 NVM_CHANNEL_ACTIVE = BIT(3), 202 NVM_CHANNEL_RADAR = BIT(4), 203 NVM_CHANNEL_INDOOR_ONLY = BIT(5), 204 NVM_CHANNEL_GO_CONCURRENT = BIT(6), 205 NVM_CHANNEL_WIDE = BIT(8), 206 NVM_CHANNEL_40MHZ = BIT(9), 207 NVM_CHANNEL_80MHZ = BIT(10), 208 NVM_CHANNEL_160MHZ = BIT(11), 209 }; 210 211 #define CHECK_AND_PRINT_I(x) \ 212 ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "") 213 214 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz, 215 u16 nvm_flags, const struct iwl_cfg *cfg) 216 { 217 u32 flags = IEEE80211_CHAN_NO_HT40; 218 u32 last_5ghz_ht = LAST_5GHZ_HT; 219 220 if (cfg->device_family == IWL_DEVICE_FAMILY_8000) 221 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; 222 223 if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) { 224 if (ch_num <= LAST_2GHZ_HT_PLUS) 225 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 226 if (ch_num >= FIRST_2GHZ_HT_MINUS) 227 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 228 } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) { 229 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 230 flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 231 else 232 flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 233 } 234 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 235 flags |= IEEE80211_CHAN_NO_80MHZ; 236 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 237 flags |= IEEE80211_CHAN_NO_160MHZ; 238 239 if (!(nvm_flags & NVM_CHANNEL_IBSS)) 240 flags |= IEEE80211_CHAN_NO_IR; 241 242 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 243 flags |= IEEE80211_CHAN_NO_IR; 244 245 if (nvm_flags & NVM_CHANNEL_RADAR) 246 flags |= IEEE80211_CHAN_RADAR; 247 248 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 249 flags |= IEEE80211_CHAN_INDOOR_ONLY; 250 251 /* Set the GO concurrent flag only in case that NO_IR is set. 252 * Otherwise it is meaningless 253 */ 254 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 255 (flags & IEEE80211_CHAN_NO_IR)) 256 flags |= IEEE80211_CHAN_IR_CONCURRENT; 257 258 return flags; 259 } 260 261 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, 262 struct iwl_nvm_data *data, 263 const __le16 * const nvm_ch_flags, 264 bool lar_supported) 265 { 266 int ch_idx; 267 int n_channels = 0; 268 struct ieee80211_channel *channel; 269 u16 ch_flags; 270 bool is_5ghz; 271 int num_of_ch, num_2ghz_channels; 272 const u8 *nvm_chan; 273 274 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 275 num_of_ch = IWL_NUM_CHANNELS; 276 nvm_chan = &iwl_nvm_channels[0]; 277 num_2ghz_channels = NUM_2GHZ_CHANNELS; 278 } else { 279 num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000; 280 nvm_chan = &iwl_nvm_channels_family_8000[0]; 281 num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000; 282 } 283 284 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 285 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx); 286 287 if (ch_idx >= num_2ghz_channels && 288 !data->sku_cap_band_52GHz_enable) 289 continue; 290 291 if (ch_flags & NVM_CHANNEL_160MHZ) 292 data->vht160_supported = true; 293 294 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) { 295 /* 296 * Channels might become valid later if lar is 297 * supported, hence we still want to add them to 298 * the list of supported channels to cfg80211. 299 */ 300 IWL_DEBUG_EEPROM(dev, 301 "Ch. %d Flags %x [%sGHz] - No traffic\n", 302 nvm_chan[ch_idx], 303 ch_flags, 304 (ch_idx >= num_2ghz_channels) ? 305 "5.2" : "2.4"); 306 continue; 307 } 308 309 channel = &data->channels[n_channels]; 310 n_channels++; 311 312 channel->hw_value = nvm_chan[ch_idx]; 313 channel->band = (ch_idx < num_2ghz_channels) ? 314 NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 315 channel->center_freq = 316 ieee80211_channel_to_frequency( 317 channel->hw_value, channel->band); 318 319 /* Initialize regulatory-based run-time data */ 320 321 /* 322 * Default value - highest tx power value. max_power 323 * is not used in mvm, and is used for backwards compatibility 324 */ 325 channel->max_power = IWL_DEFAULT_MAX_TX_POWER; 326 is_5ghz = channel->band == NL80211_BAND_5GHZ; 327 328 /* don't put limitations in case we're using LAR */ 329 if (!lar_supported) 330 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], 331 ch_idx, is_5ghz, 332 ch_flags, cfg); 333 else 334 channel->flags = 0; 335 336 IWL_DEBUG_EEPROM(dev, 337 "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n", 338 channel->hw_value, 339 is_5ghz ? "5.2" : "2.4", 340 ch_flags, 341 CHECK_AND_PRINT_I(VALID), 342 CHECK_AND_PRINT_I(IBSS), 343 CHECK_AND_PRINT_I(ACTIVE), 344 CHECK_AND_PRINT_I(RADAR), 345 CHECK_AND_PRINT_I(INDOOR_ONLY), 346 CHECK_AND_PRINT_I(GO_CONCURRENT), 347 CHECK_AND_PRINT_I(WIDE), 348 CHECK_AND_PRINT_I(40MHZ), 349 CHECK_AND_PRINT_I(80MHZ), 350 CHECK_AND_PRINT_I(160MHZ), 351 channel->max_power, 352 ((ch_flags & NVM_CHANNEL_IBSS) && 353 !(ch_flags & NVM_CHANNEL_RADAR)) 354 ? "" : "not "); 355 } 356 357 return n_channels; 358 } 359 360 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg, 361 struct iwl_nvm_data *data, 362 struct ieee80211_sta_vht_cap *vht_cap, 363 u8 tx_chains, u8 rx_chains) 364 { 365 int num_rx_ants = num_of_ant(rx_chains); 366 int num_tx_ants = num_of_ant(tx_chains); 367 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?: 368 IEEE80211_VHT_MAX_AMPDU_1024K); 369 370 vht_cap->vht_supported = true; 371 372 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | 373 IEEE80211_VHT_CAP_RXSTBC_1 | 374 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 375 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | 376 max_ampdu_exponent << 377 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 378 379 if (data->vht160_supported) 380 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | 381 IEEE80211_VHT_CAP_SHORT_GI_160; 382 383 if (cfg->vht_mu_mimo_supported) 384 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; 385 386 if (cfg->ht_params->ldpc) 387 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 388 389 if (data->sku_cap_mimo_disabled) { 390 num_rx_ants = 1; 391 num_tx_ants = 1; 392 } 393 394 if (num_tx_ants > 1) 395 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 396 else 397 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; 398 399 switch (iwlwifi_mod_params.amsdu_size) { 400 case IWL_AMSDU_4K: 401 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; 402 break; 403 case IWL_AMSDU_8K: 404 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; 405 break; 406 case IWL_AMSDU_12K: 407 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; 408 break; 409 default: 410 break; 411 } 412 413 vht_cap->vht_mcs.rx_mcs_map = 414 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 415 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | 416 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 417 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 418 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 419 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 420 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 421 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); 422 423 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { 424 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; 425 /* this works because NOT_SUPPORTED == 3 */ 426 vht_cap->vht_mcs.rx_mcs_map |= 427 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); 428 } 429 430 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; 431 } 432 433 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg, 434 struct iwl_nvm_data *data, 435 const __le16 *ch_section, 436 u8 tx_chains, u8 rx_chains, bool lar_supported) 437 { 438 int n_channels; 439 int n_used = 0; 440 struct ieee80211_supported_band *sband; 441 442 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 443 n_channels = iwl_init_channel_map( 444 dev, cfg, data, 445 &ch_section[NVM_CHANNELS], lar_supported); 446 else 447 n_channels = iwl_init_channel_map( 448 dev, cfg, data, 449 &ch_section[NVM_CHANNELS_FAMILY_8000], 450 lar_supported); 451 452 sband = &data->bands[NL80211_BAND_2GHZ]; 453 sband->band = NL80211_BAND_2GHZ; 454 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; 455 sband->n_bitrates = N_RATES_24; 456 n_used += iwl_init_sband_channels(data, sband, n_channels, 457 NL80211_BAND_2GHZ); 458 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ, 459 tx_chains, rx_chains); 460 461 sband = &data->bands[NL80211_BAND_5GHZ]; 462 sband->band = NL80211_BAND_5GHZ; 463 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; 464 sband->n_bitrates = N_RATES_52; 465 n_used += iwl_init_sband_channels(data, sband, n_channels, 466 NL80211_BAND_5GHZ); 467 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ, 468 tx_chains, rx_chains); 469 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) 470 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap, 471 tx_chains, rx_chains); 472 473 if (n_channels != n_used) 474 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", 475 n_used, n_channels); 476 } 477 478 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 479 const __le16 *phy_sku) 480 { 481 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 482 return le16_to_cpup(nvm_sw + SKU); 483 484 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000)); 485 } 486 487 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 488 { 489 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 490 return le16_to_cpup(nvm_sw + NVM_VERSION); 491 else 492 return le32_to_cpup((__le32 *)(nvm_sw + 493 NVM_VERSION_FAMILY_8000)); 494 } 495 496 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, 497 const __le16 *phy_sku) 498 { 499 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 500 return le16_to_cpup(nvm_sw + RADIO_CFG); 501 502 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000)); 503 504 } 505 506 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) 507 { 508 int n_hw_addr; 509 510 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 511 return le16_to_cpup(nvm_sw + N_HW_ADDRS); 512 513 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); 514 515 return n_hw_addr & N_HW_ADDR_MASK; 516 } 517 518 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, 519 struct iwl_nvm_data *data, 520 u32 radio_cfg) 521 { 522 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 523 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); 524 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); 525 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); 526 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); 527 return; 528 } 529 530 /* set the radio configuration for family 8000 */ 531 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg); 532 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg); 533 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg); 534 data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg); 535 data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg); 536 data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg); 537 } 538 539 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest) 540 { 541 const u8 *hw_addr; 542 543 hw_addr = (const u8 *)&mac_addr0; 544 dest[0] = hw_addr[3]; 545 dest[1] = hw_addr[2]; 546 dest[2] = hw_addr[1]; 547 dest[3] = hw_addr[0]; 548 549 hw_addr = (const u8 *)&mac_addr1; 550 dest[4] = hw_addr[1]; 551 dest[5] = hw_addr[0]; 552 } 553 554 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans, 555 struct iwl_nvm_data *data) 556 { 557 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP)); 558 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP)); 559 560 /* If OEM did not fuse address - get it from OTP */ 561 if (!mac_addr0 && !mac_addr1) { 562 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP)); 563 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP)); 564 } 565 566 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 567 } 568 569 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans, 570 const struct iwl_cfg *cfg, 571 struct iwl_nvm_data *data, 572 const __le16 *mac_override, 573 const __le16 *nvm_hw) 574 { 575 const u8 *hw_addr; 576 577 if (mac_override) { 578 static const u8 reserved_mac[] = { 579 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 580 }; 581 582 hw_addr = (const u8 *)(mac_override + 583 MAC_ADDRESS_OVERRIDE_FAMILY_8000); 584 585 /* 586 * Store the MAC address from MAO section. 587 * No byte swapping is required in MAO section 588 */ 589 memcpy(data->hw_addr, hw_addr, ETH_ALEN); 590 591 /* 592 * Force the use of the OTP MAC address in case of reserved MAC 593 * address in the NVM, or if address is given but invalid. 594 */ 595 if (is_valid_ether_addr(data->hw_addr) && 596 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) 597 return; 598 599 IWL_ERR(trans, 600 "mac address from nvm override section is not valid\n"); 601 } 602 603 if (nvm_hw) { 604 /* read the mac address from WFMP registers */ 605 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, 606 WFMP_MAC_ADDR_0)); 607 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, 608 WFMP_MAC_ADDR_1)); 609 610 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); 611 612 return; 613 } 614 615 IWL_ERR(trans, "mac address is not found\n"); 616 } 617 618 static int iwl_set_hw_address(struct iwl_trans *trans, 619 const struct iwl_cfg *cfg, 620 struct iwl_nvm_data *data, const __le16 *nvm_hw, 621 const __le16 *mac_override) 622 { 623 if (cfg->mac_addr_from_csr) { 624 iwl_set_hw_address_from_csr(trans, data); 625 } else if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 626 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR); 627 628 /* The byte order is little endian 16 bit, meaning 214365 */ 629 data->hw_addr[0] = hw_addr[1]; 630 data->hw_addr[1] = hw_addr[0]; 631 data->hw_addr[2] = hw_addr[3]; 632 data->hw_addr[3] = hw_addr[2]; 633 data->hw_addr[4] = hw_addr[5]; 634 data->hw_addr[5] = hw_addr[4]; 635 } else { 636 iwl_set_hw_address_family_8000(trans, cfg, data, 637 mac_override, nvm_hw); 638 } 639 640 if (!is_valid_ether_addr(data->hw_addr)) { 641 IWL_ERR(trans, "no valid mac address was found\n"); 642 return -EINVAL; 643 } 644 645 return 0; 646 } 647 648 struct iwl_nvm_data * 649 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, 650 const __le16 *nvm_hw, const __le16 *nvm_sw, 651 const __le16 *nvm_calib, const __le16 *regulatory, 652 const __le16 *mac_override, const __le16 *phy_sku, 653 u8 tx_chains, u8 rx_chains, bool lar_fw_supported) 654 { 655 struct device *dev = trans->dev; 656 struct iwl_nvm_data *data; 657 bool lar_enabled; 658 u32 sku, radio_cfg; 659 u16 lar_config; 660 const __le16 *ch_section; 661 662 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) 663 data = kzalloc(sizeof(*data) + 664 sizeof(struct ieee80211_channel) * 665 IWL_NUM_CHANNELS, 666 GFP_KERNEL); 667 else 668 data = kzalloc(sizeof(*data) + 669 sizeof(struct ieee80211_channel) * 670 IWL_NUM_CHANNELS_FAMILY_8000, 671 GFP_KERNEL); 672 if (!data) 673 return NULL; 674 675 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); 676 677 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); 678 iwl_set_radio_cfg(cfg, data, radio_cfg); 679 if (data->valid_tx_ant) 680 tx_chains &= data->valid_tx_ant; 681 if (data->valid_rx_ant) 682 rx_chains &= data->valid_rx_ant; 683 684 sku = iwl_get_sku(cfg, nvm_sw, phy_sku); 685 data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; 686 data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; 687 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; 688 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) 689 data->sku_cap_11n_enable = false; 690 data->sku_cap_11ac_enable = data->sku_cap_11n_enable && 691 (sku & NVM_SKU_CAP_11AC_ENABLE); 692 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; 693 694 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); 695 696 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { 697 /* Checking for required sections */ 698 if (!nvm_calib) { 699 IWL_ERR(trans, 700 "Can't parse empty Calib NVM sections\n"); 701 kfree(data); 702 return NULL; 703 } 704 /* in family 8000 Xtal calibration values moved to OTP */ 705 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); 706 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); 707 lar_enabled = true; 708 ch_section = nvm_sw; 709 } else { 710 u16 lar_offset = data->nvm_version < 0xE39 ? 711 NVM_LAR_OFFSET_FAMILY_8000_OLD : 712 NVM_LAR_OFFSET_FAMILY_8000; 713 714 lar_config = le16_to_cpup(regulatory + lar_offset); 715 data->lar_enabled = !!(lar_config & 716 NVM_LAR_ENABLED_FAMILY_8000); 717 lar_enabled = data->lar_enabled; 718 ch_section = regulatory; 719 } 720 721 /* If no valid mac address was found - bail out */ 722 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) { 723 kfree(data); 724 return NULL; 725 } 726 727 iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains, 728 lar_fw_supported && lar_enabled); 729 data->calib_version = 255; 730 731 return data; 732 } 733 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); 734 735 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan, 736 int ch_idx, u16 nvm_flags, 737 const struct iwl_cfg *cfg) 738 { 739 u32 flags = NL80211_RRF_NO_HT40; 740 u32 last_5ghz_ht = LAST_5GHZ_HT; 741 742 if (cfg->device_family == IWL_DEVICE_FAMILY_8000) 743 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; 744 745 if (ch_idx < NUM_2GHZ_CHANNELS && 746 (nvm_flags & NVM_CHANNEL_40MHZ)) { 747 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) 748 flags &= ~NL80211_RRF_NO_HT40PLUS; 749 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) 750 flags &= ~NL80211_RRF_NO_HT40MINUS; 751 } else if (nvm_chan[ch_idx] <= last_5ghz_ht && 752 (nvm_flags & NVM_CHANNEL_40MHZ)) { 753 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) 754 flags &= ~NL80211_RRF_NO_HT40PLUS; 755 else 756 flags &= ~NL80211_RRF_NO_HT40MINUS; 757 } 758 759 if (!(nvm_flags & NVM_CHANNEL_80MHZ)) 760 flags |= NL80211_RRF_NO_80MHZ; 761 if (!(nvm_flags & NVM_CHANNEL_160MHZ)) 762 flags |= NL80211_RRF_NO_160MHZ; 763 764 if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) 765 flags |= NL80211_RRF_NO_IR; 766 767 if (nvm_flags & NVM_CHANNEL_RADAR) 768 flags |= NL80211_RRF_DFS; 769 770 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) 771 flags |= NL80211_RRF_NO_OUTDOOR; 772 773 /* Set the GO concurrent flag only in case that NO_IR is set. 774 * Otherwise it is meaningless 775 */ 776 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && 777 (flags & NL80211_RRF_NO_IR)) 778 flags |= NL80211_RRF_GO_CONCURRENT; 779 780 return flags; 781 } 782 783 struct ieee80211_regdomain * 784 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, 785 int num_of_ch, __le32 *channels, u16 fw_mcc) 786 { 787 int ch_idx; 788 u16 ch_flags, prev_ch_flags = 0; 789 const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ? 790 iwl_nvm_channels_family_8000 : iwl_nvm_channels; 791 struct ieee80211_regdomain *regd; 792 int size_of_regd; 793 struct ieee80211_reg_rule *rule; 794 enum nl80211_band band; 795 int center_freq, prev_center_freq = 0; 796 int valid_rules = 0; 797 bool new_rule; 798 int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ? 799 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS; 800 801 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) 802 return ERR_PTR(-EINVAL); 803 804 if (WARN_ON(num_of_ch > max_num_ch)) 805 num_of_ch = max_num_ch; 806 807 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", 808 num_of_ch); 809 810 /* build a regdomain rule for every valid channel */ 811 size_of_regd = 812 sizeof(struct ieee80211_regdomain) + 813 num_of_ch * sizeof(struct ieee80211_reg_rule); 814 815 regd = kzalloc(size_of_regd, GFP_KERNEL); 816 if (!regd) 817 return ERR_PTR(-ENOMEM); 818 819 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { 820 ch_flags = (u16)__le32_to_cpup(channels + ch_idx); 821 band = (ch_idx < NUM_2GHZ_CHANNELS) ? 822 NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 823 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], 824 band); 825 new_rule = false; 826 827 if (!(ch_flags & NVM_CHANNEL_VALID)) { 828 IWL_DEBUG_DEV(dev, IWL_DL_LAR, 829 "Ch. %d Flags %x [%sGHz] - No traffic\n", 830 nvm_chan[ch_idx], 831 ch_flags, 832 (ch_idx >= NUM_2GHZ_CHANNELS) ? 833 "5.2" : "2.4"); 834 continue; 835 } 836 837 /* we can't continue the same rule */ 838 if (ch_idx == 0 || prev_ch_flags != ch_flags || 839 center_freq - prev_center_freq > 20) { 840 valid_rules++; 841 new_rule = true; 842 } 843 844 rule = ®d->reg_rules[valid_rules - 1]; 845 846 if (new_rule) 847 rule->freq_range.start_freq_khz = 848 MHZ_TO_KHZ(center_freq - 10); 849 850 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); 851 852 /* this doesn't matter - not used by FW */ 853 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); 854 rule->power_rule.max_eirp = 855 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); 856 857 rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, 858 ch_flags, cfg); 859 860 /* rely on auto-calculation to merge BW of contiguous chans */ 861 rule->flags |= NL80211_RRF_AUTO_BW; 862 rule->freq_range.max_bandwidth_khz = 0; 863 864 prev_ch_flags = ch_flags; 865 prev_center_freq = center_freq; 866 867 IWL_DEBUG_DEV(dev, IWL_DL_LAR, 868 "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n", 869 center_freq, 870 band == NL80211_BAND_5GHZ ? "5.2" : "2.4", 871 CHECK_AND_PRINT_I(VALID), 872 CHECK_AND_PRINT_I(ACTIVE), 873 CHECK_AND_PRINT_I(RADAR), 874 CHECK_AND_PRINT_I(WIDE), 875 CHECK_AND_PRINT_I(40MHZ), 876 CHECK_AND_PRINT_I(80MHZ), 877 CHECK_AND_PRINT_I(160MHZ), 878 CHECK_AND_PRINT_I(INDOOR_ONLY), 879 CHECK_AND_PRINT_I(GO_CONCURRENT), 880 ch_flags, 881 ((ch_flags & NVM_CHANNEL_ACTIVE) && 882 !(ch_flags & NVM_CHANNEL_RADAR)) 883 ? "" : "not "); 884 } 885 886 regd->n_reg_rules = valid_rules; 887 888 /* set alpha2 from FW. */ 889 regd->alpha2[0] = fw_mcc >> 8; 890 regd->alpha2[1] = fw_mcc & 0xff; 891 892 return regd; 893 } 894 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); 895