xref: /linux/drivers/net/wireless/intel/iwlwifi/iwl-nvm-parse.c (revision 0678df8271820bcf8fb4f877129f05d68a237de4)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM calibration section offset (in words) definitions */
42 	NVM_CALIB_SECTION = 0x2B8,
43 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44 
45 	/* NVM REGULATORY -Section offset (in words) definitions */
46 	NVM_CHANNELS_SDP = 0,
47 };
48 
49 enum ext_nvm_offsets {
50 	/* NVM HW-Section offset (in words) definitions */
51 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52 
53 	/* NVM SW-Section offset (in words) definitions */
54 	NVM_VERSION_EXT_NVM = 0,
55 	N_HW_ADDRS_FAMILY_8000 = 3,
56 
57 	/* NVM PHY_SKU-Section offset (in words) definitions */
58 	RADIO_CFG_FAMILY_EXT_NVM = 0,
59 	SKU_FAMILY_8000 = 2,
60 
61 	/* NVM REGULATORY -Section offset (in words) definitions */
62 	NVM_CHANNELS_EXTENDED = 0,
63 	NVM_LAR_OFFSET_OLD = 0x4C7,
64 	NVM_LAR_OFFSET = 0x507,
65 	NVM_LAR_ENABLED = 0x7,
66 };
67 
68 /* SKU Capabilities (actual values from NVM definition) */
69 enum nvm_sku_bits {
70 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
71 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
72 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
73 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
74 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
75 };
76 
77 /*
78  * These are the channel numbers in the order that they are stored in the NVM
79  */
80 static const u16 iwl_nvm_channels[] = {
81 	/* 2.4 GHz */
82 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83 	/* 5 GHz */
84 	36, 40, 44, 48, 52, 56, 60, 64,
85 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86 	149, 153, 157, 161, 165
87 };
88 
89 static const u16 iwl_ext_nvm_channels[] = {
90 	/* 2.4 GHz */
91 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92 	/* 5 GHz */
93 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95 	149, 153, 157, 161, 165, 169, 173, 177, 181
96 };
97 
98 static const u16 iwl_uhb_nvm_channels[] = {
99 	/* 2.4 GHz */
100 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101 	/* 5 GHz */
102 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104 	149, 153, 157, 161, 165, 169, 173, 177, 181,
105 	/* 6-7 GHz */
106 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110 };
111 
112 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
114 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
115 #define NUM_2GHZ_CHANNELS		14
116 #define NUM_5GHZ_CHANNELS		37
117 #define FIRST_2GHZ_HT_MINUS		5
118 #define LAST_2GHZ_HT_PLUS		9
119 #define N_HW_ADDR_MASK			0xF
120 
121 /* rate data (static) */
122 static struct ieee80211_rate iwl_cfg80211_rates[] = {
123 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138 };
139 #define RATES_24_OFFS	0
140 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
141 #define RATES_52_OFFS	4
142 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
143 
144 /**
145  * enum iwl_nvm_channel_flags - channel flags in NVM
146  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148  * @NVM_CHANNEL_ACTIVE: active scanning allowed
149  * @NVM_CHANNEL_RADAR: radar detection required
150  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152  *	on same channel on 2.4 or same UNII band on 5.2
153  * @NVM_CHANNEL_UNIFORM: uniform spreading required
154  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159  */
160 enum iwl_nvm_channel_flags {
161 	NVM_CHANNEL_VALID		= BIT(0),
162 	NVM_CHANNEL_IBSS		= BIT(1),
163 	NVM_CHANNEL_ACTIVE		= BIT(3),
164 	NVM_CHANNEL_RADAR		= BIT(4),
165 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
166 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
167 	NVM_CHANNEL_UNIFORM		= BIT(7),
168 	NVM_CHANNEL_20MHZ		= BIT(8),
169 	NVM_CHANNEL_40MHZ		= BIT(9),
170 	NVM_CHANNEL_80MHZ		= BIT(10),
171 	NVM_CHANNEL_160MHZ		= BIT(11),
172 	NVM_CHANNEL_DC_HIGH		= BIT(12),
173 };
174 
175 /**
176  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
177  * domain.
178  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
179  *	2.4Ghz band is allowed.
180  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
181  *	5Ghz band is allowed.
182  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
183  *	for this regulatory domain (valid only in 5Ghz).
184  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
185  *	for this regulatory domain (valid only in 5Ghz).
186  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
187  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
188  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
189  *	for this regulatory domain (valid only in 5Ghz).
190  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
191  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
192  */
193 enum iwl_reg_capa_flags_v1 {
194 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
195 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
196 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
197 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
198 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
199 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
200 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
201 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
202 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
203 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
204 
205 /**
206  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
207  * domain (version 2).
208  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
209  *	disabled.
210  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
211  *	2.4Ghz band is allowed.
212  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
213  *	5Ghz band is allowed.
214  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
215  *	for this regulatory domain (valid only in 5Ghz).
216  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
217  *	for this regulatory domain (valid only in 5Ghz).
218  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
219  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
220  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
221  *	126, 122) are disabled.
222  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
223  *	for this regulatory domain (uvalid only in 5Ghz).
224  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
225  */
226 enum iwl_reg_capa_flags_v2 {
227 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
228 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
229 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
230 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
231 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
232 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
233 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
234 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
235 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
236 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
237 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
238 
239 /**
240  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
241  * domain.
242  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
243  *	for this regulatory domain (valid only in 5Ghz).
244  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
245  *	for this regulatory domain (valid only in 5Ghz).
246  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
247  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
248  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
249  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
250  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
251  *	for this regulatory domain (valid only in 5GHz).
252  */
253 enum iwl_reg_capa_flags_v4 {
254 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
255 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
256 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
257 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
258 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
259 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
260 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
261 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
262 
263 /*
264 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
265 * MCC update command response.
266 */
267 #define REG_CAPA_V2_RESP_VER	6
268 
269 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
270  * MCC update command response.
271  */
272 #define REG_CAPA_V4_RESP_VER	8
273 
274 /**
275  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
276  * handling the different APIs of reg_capa_flags.
277  *
278  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
279  *	for this regulatory domain.
280  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
281  *	for this regulatory domain (valid only in 5 and 6 Ghz).
282  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
283  *	for this regulatory domain (valid only in 5 and 6 Ghz).
284  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
285  *	for this regulatory domain (valid only in 6 Ghz).
286  * @disable_11ax: 11ax is forbidden for this regulatory domain.
287  * @disable_11be: 11be is forbidden for this regulatory domain.
288  */
289 struct iwl_reg_capa {
290 	bool allow_40mhz;
291 	bool allow_80mhz;
292 	bool allow_160mhz;
293 	bool allow_320mhz;
294 	bool disable_11ax;
295 	bool disable_11be;
296 };
297 
298 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
299 					       int chan, u32 flags)
300 {
301 #define CHECK_AND_PRINT_I(x)	\
302 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
303 
304 	if (!(flags & NVM_CHANNEL_VALID)) {
305 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
306 			      chan, flags);
307 		return;
308 	}
309 
310 	/* Note: already can print up to 101 characters, 110 is the limit! */
311 	IWL_DEBUG_DEV(dev, level,
312 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
313 		      chan, flags,
314 		      CHECK_AND_PRINT_I(VALID),
315 		      CHECK_AND_PRINT_I(IBSS),
316 		      CHECK_AND_PRINT_I(ACTIVE),
317 		      CHECK_AND_PRINT_I(RADAR),
318 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
319 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
320 		      CHECK_AND_PRINT_I(UNIFORM),
321 		      CHECK_AND_PRINT_I(20MHZ),
322 		      CHECK_AND_PRINT_I(40MHZ),
323 		      CHECK_AND_PRINT_I(80MHZ),
324 		      CHECK_AND_PRINT_I(160MHZ),
325 		      CHECK_AND_PRINT_I(DC_HIGH));
326 #undef CHECK_AND_PRINT_I
327 }
328 
329 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
330 				 u32 nvm_flags, const struct iwl_cfg *cfg)
331 {
332 	u32 flags = IEEE80211_CHAN_NO_HT40;
333 
334 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
335 		if (ch_num <= LAST_2GHZ_HT_PLUS)
336 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
337 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
338 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
339 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
340 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
341 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
342 		else
343 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
344 	}
345 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
346 		flags |= IEEE80211_CHAN_NO_80MHZ;
347 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
348 		flags |= IEEE80211_CHAN_NO_160MHZ;
349 
350 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
351 		flags |= IEEE80211_CHAN_NO_IR;
352 
353 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
354 		flags |= IEEE80211_CHAN_NO_IR;
355 
356 	if (nvm_flags & NVM_CHANNEL_RADAR)
357 		flags |= IEEE80211_CHAN_RADAR;
358 
359 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
360 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
361 
362 	/* Set the GO concurrent flag only in case that NO_IR is set.
363 	 * Otherwise it is meaningless
364 	 */
365 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
366 	    (flags & IEEE80211_CHAN_NO_IR))
367 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
368 
369 	return flags;
370 }
371 
372 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
373 {
374 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
375 		return NL80211_BAND_6GHZ;
376 	}
377 
378 	if (ch_idx >= NUM_2GHZ_CHANNELS)
379 		return NL80211_BAND_5GHZ;
380 	return NL80211_BAND_2GHZ;
381 }
382 
383 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
384 				struct iwl_nvm_data *data,
385 				const void * const nvm_ch_flags,
386 				u32 sbands_flags, bool v4)
387 {
388 	int ch_idx;
389 	int n_channels = 0;
390 	struct ieee80211_channel *channel;
391 	u32 ch_flags;
392 	int num_of_ch;
393 	const u16 *nvm_chan;
394 
395 	if (cfg->uhb_supported) {
396 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
397 		nvm_chan = iwl_uhb_nvm_channels;
398 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
399 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
400 		nvm_chan = iwl_ext_nvm_channels;
401 	} else {
402 		num_of_ch = IWL_NVM_NUM_CHANNELS;
403 		nvm_chan = iwl_nvm_channels;
404 	}
405 
406 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
407 		enum nl80211_band band =
408 			iwl_nl80211_band_from_channel_idx(ch_idx);
409 
410 		if (v4)
411 			ch_flags =
412 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
413 		else
414 			ch_flags =
415 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
416 
417 		if (band == NL80211_BAND_5GHZ &&
418 		    !data->sku_cap_band_52ghz_enable)
419 			continue;
420 
421 		/* workaround to disable wide channels in 5GHz */
422 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
423 		    band == NL80211_BAND_5GHZ) {
424 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
425 				     NVM_CHANNEL_80MHZ |
426 				     NVM_CHANNEL_160MHZ);
427 		}
428 
429 		if (ch_flags & NVM_CHANNEL_160MHZ)
430 			data->vht160_supported = true;
431 
432 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
433 		    !(ch_flags & NVM_CHANNEL_VALID)) {
434 			/*
435 			 * Channels might become valid later if lar is
436 			 * supported, hence we still want to add them to
437 			 * the list of supported channels to cfg80211.
438 			 */
439 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 						    nvm_chan[ch_idx], ch_flags);
441 			continue;
442 		}
443 
444 		channel = &data->channels[n_channels];
445 		n_channels++;
446 
447 		channel->hw_value = nvm_chan[ch_idx];
448 		channel->band = band;
449 		channel->center_freq =
450 			ieee80211_channel_to_frequency(
451 				channel->hw_value, channel->band);
452 
453 		/* Initialize regulatory-based run-time data */
454 
455 		/*
456 		 * Default value - highest tx power value.  max_power
457 		 * is not used in mvm, and is used for backwards compatibility
458 		 */
459 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
460 
461 		/* don't put limitations in case we're using LAR */
462 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
463 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
464 							       ch_idx, band,
465 							       ch_flags, cfg);
466 		else
467 			channel->flags = 0;
468 
469 		/* TODO: Don't put limitations on UHB devices as we still don't
470 		 * have NVM for them
471 		 */
472 		if (cfg->uhb_supported)
473 			channel->flags = 0;
474 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
475 					    channel->hw_value, ch_flags);
476 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
477 				 channel->hw_value, channel->max_power);
478 	}
479 
480 	return n_channels;
481 }
482 
483 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
484 				  struct iwl_nvm_data *data,
485 				  struct ieee80211_sta_vht_cap *vht_cap,
486 				  u8 tx_chains, u8 rx_chains)
487 {
488 	const struct iwl_cfg *cfg = trans->cfg;
489 	int num_rx_ants = num_of_ant(rx_chains);
490 	int num_tx_ants = num_of_ant(tx_chains);
491 
492 	vht_cap->vht_supported = true;
493 
494 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
495 		       IEEE80211_VHT_CAP_RXSTBC_1 |
496 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
497 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
498 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
499 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
500 
501 	if (!trans->cfg->ht_params->stbc)
502 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
503 
504 	if (data->vht160_supported)
505 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
506 				IEEE80211_VHT_CAP_SHORT_GI_160;
507 
508 	if (cfg->vht_mu_mimo_supported)
509 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
510 
511 	if (cfg->ht_params->ldpc)
512 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
513 
514 	if (data->sku_cap_mimo_disabled) {
515 		num_rx_ants = 1;
516 		num_tx_ants = 1;
517 	}
518 
519 	if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
520 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
521 	else
522 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
523 
524 	switch (iwlwifi_mod_params.amsdu_size) {
525 	case IWL_AMSDU_DEF:
526 		if (trans->trans_cfg->mq_rx_supported)
527 			vht_cap->cap |=
528 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
529 		else
530 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
531 		break;
532 	case IWL_AMSDU_2K:
533 		if (trans->trans_cfg->mq_rx_supported)
534 			vht_cap->cap |=
535 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
536 		else
537 			WARN(1, "RB size of 2K is not supported by this device\n");
538 		break;
539 	case IWL_AMSDU_4K:
540 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
541 		break;
542 	case IWL_AMSDU_8K:
543 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
544 		break;
545 	case IWL_AMSDU_12K:
546 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
547 		break;
548 	default:
549 		break;
550 	}
551 
552 	vht_cap->vht_mcs.rx_mcs_map =
553 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
554 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
555 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
556 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
557 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
558 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
559 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
560 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
561 
562 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
563 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
564 		/* this works because NOT_SUPPORTED == 3 */
565 		vht_cap->vht_mcs.rx_mcs_map |=
566 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
567 	}
568 
569 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
570 
571 	vht_cap->vht_mcs.tx_highest |=
572 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
573 }
574 
575 static const u8 iwl_vendor_caps[] = {
576 	0xdd,			/* vendor element */
577 	0x06,			/* length */
578 	0x00, 0x17, 0x35,	/* Intel OUI */
579 	0x08,			/* type (Intel Capabilities) */
580 	/* followed by 16 bits of capabilities */
581 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
582 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
583 	0x00
584 };
585 
586 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
587 	{
588 		.types_mask = BIT(NL80211_IFTYPE_STATION),
589 		.he_cap = {
590 			.has_he = true,
591 			.he_cap_elem = {
592 				.mac_cap_info[0] =
593 					IEEE80211_HE_MAC_CAP0_HTC_HE,
594 				.mac_cap_info[1] =
595 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
596 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
597 				.mac_cap_info[2] =
598 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
599 				.mac_cap_info[3] =
600 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
601 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
602 				.mac_cap_info[4] =
603 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
604 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
605 				.mac_cap_info[5] =
606 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
607 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
608 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
609 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
610 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
611 				.phy_cap_info[1] =
612 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
613 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
614 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
615 				.phy_cap_info[2] =
616 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
617 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
618 				.phy_cap_info[3] =
619 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
620 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
621 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
622 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
623 				.phy_cap_info[4] =
624 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
625 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
626 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
627 				.phy_cap_info[6] =
628 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
629 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
630 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
631 				.phy_cap_info[7] =
632 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
633 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
634 				.phy_cap_info[8] =
635 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
636 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
637 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
638 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
639 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
640 				.phy_cap_info[9] =
641 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
642 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
643 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
644 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
645 				.phy_cap_info[10] =
646 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
647 			},
648 			/*
649 			 * Set default Tx/Rx HE MCS NSS Support field.
650 			 * Indicate support for up to 2 spatial streams and all
651 			 * MCS, without any special cases
652 			 */
653 			.he_mcs_nss_supp = {
654 				.rx_mcs_80 = cpu_to_le16(0xfffa),
655 				.tx_mcs_80 = cpu_to_le16(0xfffa),
656 				.rx_mcs_160 = cpu_to_le16(0xfffa),
657 				.tx_mcs_160 = cpu_to_le16(0xfffa),
658 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
659 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
660 			},
661 			/*
662 			 * Set default PPE thresholds, with PPET16 set to 0,
663 			 * PPET8 set to 7
664 			 */
665 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
666 		},
667 		.eht_cap = {
668 			.has_eht = true,
669 			.eht_cap_elem = {
670 				.mac_cap_info[0] =
671 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
672 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
673 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
674 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 |
675 					IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC,
676 				.phy_cap_info[0] =
677 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
678 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
679 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
680 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
681 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
682 				.phy_cap_info[1] =
683 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
684 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
685 				.phy_cap_info[3] =
686 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
687 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
688 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
689 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
690 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
691 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
692 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
693 
694 				.phy_cap_info[4] =
695 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
696 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
697 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
698 				.phy_cap_info[5] =
699 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
700 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
701 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
702 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
703 				.phy_cap_info[6] =
704 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
705 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
706 				.phy_cap_info[8] =
707 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
708 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
709 			},
710 
711 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
712 			 * Rx - note we don't set the only_20mhz, but due to this
713 			 * being a union, it gets set correctly anyway.
714 			 */
715 			.eht_mcs_nss_supp = {
716 				.bw._80 = {
717 					.rx_tx_mcs9_max_nss = 0x22,
718 					.rx_tx_mcs11_max_nss = 0x22,
719 					.rx_tx_mcs13_max_nss = 0x22,
720 				},
721 				.bw._160 = {
722 					.rx_tx_mcs9_max_nss = 0x22,
723 					.rx_tx_mcs11_max_nss = 0x22,
724 					.rx_tx_mcs13_max_nss = 0x22,
725 				},
726 				.bw._320 = {
727 					.rx_tx_mcs9_max_nss = 0x22,
728 					.rx_tx_mcs11_max_nss = 0x22,
729 					.rx_tx_mcs13_max_nss = 0x22,
730 				},
731 			},
732 
733 			/*
734 			 * PPE thresholds for NSS = 2, and RU index bitmap set
735 			 * to 0xc.
736 			 */
737 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
738 		},
739 	},
740 	{
741 		.types_mask = BIT(NL80211_IFTYPE_AP),
742 		.he_cap = {
743 			.has_he = true,
744 			.he_cap_elem = {
745 				.mac_cap_info[0] =
746 					IEEE80211_HE_MAC_CAP0_HTC_HE,
747 				.mac_cap_info[1] =
748 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
749 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
750 				.mac_cap_info[3] =
751 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
752 				.phy_cap_info[1] =
753 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
754 				.phy_cap_info[2] =
755 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
756 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
757 				.phy_cap_info[3] =
758 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
759 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
760 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
761 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
762 				.phy_cap_info[6] =
763 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
764 				.phy_cap_info[7] =
765 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
766 				.phy_cap_info[8] =
767 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
768 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
769 				.phy_cap_info[9] =
770 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
771 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
772 			},
773 			/*
774 			 * Set default Tx/Rx HE MCS NSS Support field.
775 			 * Indicate support for up to 2 spatial streams and all
776 			 * MCS, without any special cases
777 			 */
778 			.he_mcs_nss_supp = {
779 				.rx_mcs_80 = cpu_to_le16(0xfffa),
780 				.tx_mcs_80 = cpu_to_le16(0xfffa),
781 				.rx_mcs_160 = cpu_to_le16(0xfffa),
782 				.tx_mcs_160 = cpu_to_le16(0xfffa),
783 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
784 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
785 			},
786 			/*
787 			 * Set default PPE thresholds, with PPET16 set to 0,
788 			 * PPET8 set to 7
789 			 */
790 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
791 		},
792 		.eht_cap = {
793 			.has_eht = true,
794 			.eht_cap_elem = {
795 				.mac_cap_info[0] =
796 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
797 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
798 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
799 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
800 				.phy_cap_info[0] =
801 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
802 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
803 				.phy_cap_info[5] =
804 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
805 			},
806 
807 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
808 			 * Rx - note we don't set the only_20mhz, but due to this
809 			 * being a union, it gets set correctly anyway.
810 			 */
811 			.eht_mcs_nss_supp = {
812 				.bw._80 = {
813 					.rx_tx_mcs9_max_nss = 0x22,
814 					.rx_tx_mcs11_max_nss = 0x22,
815 					.rx_tx_mcs13_max_nss = 0x22,
816 				},
817 				.bw._160 = {
818 					.rx_tx_mcs9_max_nss = 0x22,
819 					.rx_tx_mcs11_max_nss = 0x22,
820 					.rx_tx_mcs13_max_nss = 0x22,
821 				},
822 				.bw._320 = {
823 					.rx_tx_mcs9_max_nss = 0x22,
824 					.rx_tx_mcs11_max_nss = 0x22,
825 					.rx_tx_mcs13_max_nss = 0x22,
826 				},
827 			},
828 
829 			/*
830 			 * PPE thresholds for NSS = 2, and RU index bitmap set
831 			 * to 0xc.
832 			 */
833 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
834 		},
835 	},
836 };
837 
838 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
839 				  struct iwl_nvm_data *data,
840 				  struct ieee80211_supported_band *sband,
841 				  u8 tx_chains, u8 rx_chains)
842 {
843 	struct ieee80211_sta_ht_cap ht_cap;
844 	struct ieee80211_sta_vht_cap vht_cap = {};
845 	struct ieee80211_sband_iftype_data *iftype_data;
846 	u16 he_6ghz_capa = 0;
847 	u32 exp;
848 	int i;
849 
850 	if (sband->band != NL80211_BAND_6GHZ)
851 		return;
852 
853 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
854 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
855 			     tx_chains, rx_chains);
856 	WARN_ON(!ht_cap.ht_supported);
857 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
858 	WARN_ON(!vht_cap.vht_supported);
859 
860 	he_6ghz_capa |=
861 		u16_encode_bits(ht_cap.ampdu_density,
862 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
863 	exp = u32_get_bits(vht_cap.cap,
864 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
865 	he_6ghz_capa |=
866 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
867 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
868 	he_6ghz_capa |=
869 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
870 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
871 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
872 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
873 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
874 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
875 
876 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
877 
878 	/* we know it's writable - we set it before ourselves */
879 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
880 	for (i = 0; i < sband->n_iftype_data; i++)
881 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
882 }
883 
884 static void
885 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
886 			 struct iwl_nvm_data *data,
887 			 struct ieee80211_supported_band *sband,
888 			 struct ieee80211_sband_iftype_data *iftype_data,
889 			 u8 tx_chains, u8 rx_chains,
890 			 const struct iwl_fw *fw)
891 {
892 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
893 	bool no_320;
894 
895 	no_320 = !trans->trans_cfg->integrated &&
896 		 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB;
897 
898 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
899 		iftype_data->eht_cap.has_eht = false;
900 
901 	/* Advertise an A-MPDU exponent extension based on
902 	 * operating band
903 	 */
904 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
905 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
906 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
907 	else if (sband->band != NL80211_BAND_2GHZ)
908 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
909 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
910 	else
911 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
912 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
913 
914 	switch (sband->band) {
915 	case NL80211_BAND_2GHZ:
916 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
917 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
918 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
919 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
920 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
921 		break;
922 	case NL80211_BAND_6GHZ:
923 		if (!no_320) {
924 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
925 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
926 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
927 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
928 		}
929 		fallthrough;
930 	case NL80211_BAND_5GHZ:
931 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
932 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
933 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
934 		break;
935 	default:
936 		WARN_ON(1);
937 		break;
938 	}
939 
940 	if ((tx_chains & rx_chains) == ANT_AB) {
941 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
942 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
943 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
944 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
945 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
946 		if (!is_ap) {
947 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
948 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
949 
950 			if (iftype_data->eht_cap.has_eht) {
951 				/*
952 				 * Set the number of sounding dimensions for each
953 				 * bandwidth to 1 to indicate the maximal supported
954 				 * value of TXVECTOR parameter NUM_STS of 2
955 				 */
956 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
957 
958 				/*
959 				 * Set the MAX NC to 1 to indicate sounding feedback of
960 				 * 2 supported by the beamfomee.
961 				 */
962 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
963 			}
964 		}
965 	} else {
966 		struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
967 			&iftype_data->he_cap.he_mcs_nss_supp;
968 
969 		if (iftype_data->eht_cap.has_eht) {
970 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
971 				&iftype_data->eht_cap.eht_mcs_nss_supp;
972 
973 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
974 		}
975 
976 		if (!is_ap) {
977 			/* If not 2x2, we need to indicate 1x1 in the
978 			 * Midamble RX Max NSTS - but not for AP mode
979 			 */
980 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
981 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
982 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
983 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
984 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
985 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
986 		}
987 
988 		he_mcs_nss_supp->rx_mcs_80 |=
989 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
990 		he_mcs_nss_supp->tx_mcs_80 |=
991 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
992 		he_mcs_nss_supp->rx_mcs_160 |=
993 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
994 		he_mcs_nss_supp->tx_mcs_160 |=
995 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
996 		he_mcs_nss_supp->rx_mcs_80p80 |=
997 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
998 		he_mcs_nss_supp->tx_mcs_80p80 |=
999 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1000 	}
1001 
1002 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1003 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1004 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1005 
1006 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
1007 	case IWL_CFG_RF_TYPE_GF:
1008 	case IWL_CFG_RF_TYPE_MR:
1009 	case IWL_CFG_RF_TYPE_MS:
1010 	case IWL_CFG_RF_TYPE_FM:
1011 	case IWL_CFG_RF_TYPE_WH:
1012 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1013 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1014 		if (!is_ap)
1015 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1016 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1017 		break;
1018 	}
1019 
1020 	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1021 	    iftype_data->eht_cap.has_eht) {
1022 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1023 			~(IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
1024 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1025 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1026 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1027 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1028 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1029 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1030 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1031 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1032 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK);
1033 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1034 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1035 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1036 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1037 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1038 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1039 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1040 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1041 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1042 			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1043 	}
1044 
1045 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1046 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1047 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1048 
1049 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1050 	    !is_ap) {
1051 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1052 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1053 	}
1054 
1055 	if (!trans->cfg->ht_params->stbc) {
1056 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1057 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1058 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1059 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1060 	}
1061 }
1062 
1063 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1064 				 struct iwl_nvm_data *data,
1065 				 struct ieee80211_supported_band *sband,
1066 				 u8 tx_chains, u8 rx_chains,
1067 				 const struct iwl_fw *fw)
1068 {
1069 	struct ieee80211_sband_iftype_data *iftype_data;
1070 	int i;
1071 
1072 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1073 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1074 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1075 
1076 	switch (sband->band) {
1077 	case NL80211_BAND_2GHZ:
1078 		iftype_data = data->iftd.low;
1079 		break;
1080 	case NL80211_BAND_5GHZ:
1081 		iftype_data = data->iftd.high;
1082 		break;
1083 	case NL80211_BAND_6GHZ:
1084 		iftype_data = data->iftd.uhb;
1085 		break;
1086 	default:
1087 		WARN_ON(1);
1088 		return;
1089 	}
1090 
1091 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1092 
1093 	_ieee80211_set_sband_iftype_data(sband, iftype_data,
1094 					 ARRAY_SIZE(iwl_he_eht_capa));
1095 
1096 	for (i = 0; i < sband->n_iftype_data; i++)
1097 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1098 					 tx_chains, rx_chains, fw);
1099 
1100 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1101 }
1102 
1103 void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1104 		    u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1105 {
1106 	struct ieee80211_supported_band *sband;
1107 
1108 	sband = &data->bands[NL80211_BAND_2GHZ];
1109 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1110 			     tx_chains, rx_chains);
1111 
1112 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1113 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1114 				     fw);
1115 
1116 	sband = &data->bands[NL80211_BAND_5GHZ];
1117 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1118 			     tx_chains, rx_chains);
1119 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1120 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1121 				      tx_chains, rx_chains);
1122 
1123 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1124 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1125 				     fw);
1126 
1127 	sband = &data->bands[NL80211_BAND_6GHZ];
1128 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1129 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1130 				     fw);
1131 }
1132 IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1133 
1134 static void iwl_init_sbands(struct iwl_trans *trans,
1135 			    struct iwl_nvm_data *data,
1136 			    const void *nvm_ch_flags, u8 tx_chains,
1137 			    u8 rx_chains, u32 sbands_flags, bool v4,
1138 			    const struct iwl_fw *fw)
1139 {
1140 	struct device *dev = trans->dev;
1141 	const struct iwl_cfg *cfg = trans->cfg;
1142 	int n_channels;
1143 	int n_used = 0;
1144 	struct ieee80211_supported_band *sband;
1145 
1146 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1147 					  sbands_flags, v4);
1148 	sband = &data->bands[NL80211_BAND_2GHZ];
1149 	sband->band = NL80211_BAND_2GHZ;
1150 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1151 	sband->n_bitrates = N_RATES_24;
1152 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1153 					  NL80211_BAND_2GHZ);
1154 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1155 			     tx_chains, rx_chains);
1156 
1157 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1158 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1159 				     fw);
1160 
1161 	sband = &data->bands[NL80211_BAND_5GHZ];
1162 	sband->band = NL80211_BAND_5GHZ;
1163 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1164 	sband->n_bitrates = N_RATES_52;
1165 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1166 					  NL80211_BAND_5GHZ);
1167 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1168 			     tx_chains, rx_chains);
1169 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1170 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1171 				      tx_chains, rx_chains);
1172 
1173 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1174 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1175 				     fw);
1176 
1177 	/* 6GHz band. */
1178 	sband = &data->bands[NL80211_BAND_6GHZ];
1179 	sband->band = NL80211_BAND_6GHZ;
1180 	/* use the same rates as 5GHz band */
1181 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1182 	sband->n_bitrates = N_RATES_52;
1183 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1184 					  NL80211_BAND_6GHZ);
1185 
1186 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1187 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1188 				     fw);
1189 	else
1190 		sband->n_channels = 0;
1191 	if (n_channels != n_used)
1192 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1193 			    n_used, n_channels);
1194 }
1195 
1196 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1197 		       const __le16 *phy_sku)
1198 {
1199 	if (cfg->nvm_type != IWL_NVM_EXT)
1200 		return le16_to_cpup(nvm_sw + SKU);
1201 
1202 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1203 }
1204 
1205 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1206 {
1207 	if (cfg->nvm_type != IWL_NVM_EXT)
1208 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1209 	else
1210 		return le32_to_cpup((const __le32 *)(nvm_sw +
1211 						     NVM_VERSION_EXT_NVM));
1212 }
1213 
1214 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1215 			     const __le16 *phy_sku)
1216 {
1217 	if (cfg->nvm_type != IWL_NVM_EXT)
1218 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1219 
1220 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1221 
1222 }
1223 
1224 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1225 {
1226 	int n_hw_addr;
1227 
1228 	if (cfg->nvm_type != IWL_NVM_EXT)
1229 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1230 
1231 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1232 
1233 	return n_hw_addr & N_HW_ADDR_MASK;
1234 }
1235 
1236 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1237 			      struct iwl_nvm_data *data,
1238 			      u32 radio_cfg)
1239 {
1240 	if (cfg->nvm_type != IWL_NVM_EXT) {
1241 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1242 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1243 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1244 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1245 		return;
1246 	}
1247 
1248 	/* set the radio configuration for family 8000 */
1249 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1250 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1251 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1252 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1253 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1254 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1255 }
1256 
1257 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1258 {
1259 	const u8 *hw_addr;
1260 
1261 	hw_addr = (const u8 *)&mac_addr0;
1262 	dest[0] = hw_addr[3];
1263 	dest[1] = hw_addr[2];
1264 	dest[2] = hw_addr[1];
1265 	dest[3] = hw_addr[0];
1266 
1267 	hw_addr = (const u8 *)&mac_addr1;
1268 	dest[4] = hw_addr[1];
1269 	dest[5] = hw_addr[0];
1270 }
1271 
1272 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1273 					struct iwl_nvm_data *data)
1274 {
1275 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1276 						  CSR_MAC_ADDR0_STRAP(trans)));
1277 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1278 						  CSR_MAC_ADDR1_STRAP(trans)));
1279 
1280 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1281 	/*
1282 	 * If the OEM fused a valid address, use it instead of the one in the
1283 	 * OTP
1284 	 */
1285 	if (is_valid_ether_addr(data->hw_addr))
1286 		return;
1287 
1288 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1289 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1290 
1291 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1292 }
1293 
1294 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1295 					   const struct iwl_cfg *cfg,
1296 					   struct iwl_nvm_data *data,
1297 					   const __le16 *mac_override,
1298 					   const __be16 *nvm_hw)
1299 {
1300 	const u8 *hw_addr;
1301 
1302 	if (mac_override) {
1303 		static const u8 reserved_mac[] = {
1304 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1305 		};
1306 
1307 		hw_addr = (const u8 *)(mac_override +
1308 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1309 
1310 		/*
1311 		 * Store the MAC address from MAO section.
1312 		 * No byte swapping is required in MAO section
1313 		 */
1314 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1315 
1316 		/*
1317 		 * Force the use of the OTP MAC address in case of reserved MAC
1318 		 * address in the NVM, or if address is given but invalid.
1319 		 */
1320 		if (is_valid_ether_addr(data->hw_addr) &&
1321 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1322 			return;
1323 
1324 		IWL_ERR(trans,
1325 			"mac address from nvm override section is not valid\n");
1326 	}
1327 
1328 	if (nvm_hw) {
1329 		/* read the mac address from WFMP registers */
1330 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1331 						WFMP_MAC_ADDR_0));
1332 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1333 						WFMP_MAC_ADDR_1));
1334 
1335 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1336 
1337 		return;
1338 	}
1339 
1340 	IWL_ERR(trans, "mac address is not found\n");
1341 }
1342 
1343 static int iwl_set_hw_address(struct iwl_trans *trans,
1344 			      const struct iwl_cfg *cfg,
1345 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1346 			      const __le16 *mac_override)
1347 {
1348 	if (cfg->mac_addr_from_csr) {
1349 		iwl_set_hw_address_from_csr(trans, data);
1350 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1351 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1352 
1353 		/* The byte order is little endian 16 bit, meaning 214365 */
1354 		data->hw_addr[0] = hw_addr[1];
1355 		data->hw_addr[1] = hw_addr[0];
1356 		data->hw_addr[2] = hw_addr[3];
1357 		data->hw_addr[3] = hw_addr[2];
1358 		data->hw_addr[4] = hw_addr[5];
1359 		data->hw_addr[5] = hw_addr[4];
1360 	} else {
1361 		iwl_set_hw_address_family_8000(trans, cfg, data,
1362 					       mac_override, nvm_hw);
1363 	}
1364 
1365 	if (!is_valid_ether_addr(data->hw_addr)) {
1366 		IWL_ERR(trans, "no valid mac address was found\n");
1367 		return -EINVAL;
1368 	}
1369 
1370 	if (!trans->csme_own)
1371 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1372 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1373 
1374 	return 0;
1375 }
1376 
1377 static bool
1378 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1379 			const __be16 *nvm_hw)
1380 {
1381 	/*
1382 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1383 	 * some 7000-family OTPs erroneously allow wide channels in
1384 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1385 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1386 	 * 9.  In those cases, we need to force-disable wide channels
1387 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1388 	 * to use them.
1389 	 */
1390 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1391 		/*
1392 		 * Unlike the other sections in the NVM, the hw
1393 		 * section uses big-endian.
1394 		 */
1395 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1396 		u8 sku = (subsystem_id & 0x1e) >> 1;
1397 
1398 		if (sku == 5 || sku == 9) {
1399 			IWL_DEBUG_EEPROM(trans->dev,
1400 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1401 					 subsystem_id, sku);
1402 			return true;
1403 		}
1404 	}
1405 
1406 	return false;
1407 }
1408 
1409 struct iwl_nvm_data *
1410 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1411 		       const struct iwl_mei_nvm *mei_nvm,
1412 		       const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1413 {
1414 	struct iwl_nvm_data *data;
1415 	u32 sbands_flags = 0;
1416 	u8 rx_chains = fw->valid_rx_ant;
1417 	u8 tx_chains = fw->valid_rx_ant;
1418 
1419 	if (cfg->uhb_supported)
1420 		data = kzalloc(struct_size(data, channels,
1421 					   IWL_NVM_NUM_CHANNELS_UHB),
1422 					   GFP_KERNEL);
1423 	else
1424 		data = kzalloc(struct_size(data, channels,
1425 					   IWL_NVM_NUM_CHANNELS_EXT),
1426 					   GFP_KERNEL);
1427 	if (!data)
1428 		return NULL;
1429 
1430 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1431 		     IWL_NVM_NUM_CHANNELS_UHB);
1432 	data->nvm_version = mei_nvm->nvm_version;
1433 
1434 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1435 	if (data->valid_tx_ant)
1436 		tx_chains &= data->valid_tx_ant;
1437 	if (data->valid_rx_ant)
1438 		rx_chains &= data->valid_rx_ant;
1439 	if (tx_ant)
1440 		tx_chains &= tx_ant;
1441 	if (rx_ant)
1442 		rx_chains &= rx_ant;
1443 
1444 	data->sku_cap_mimo_disabled = false;
1445 	data->sku_cap_band_24ghz_enable = true;
1446 	data->sku_cap_band_52ghz_enable = true;
1447 	data->sku_cap_11n_enable =
1448 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1449 	data->sku_cap_11ac_enable = true;
1450 	data->sku_cap_11ax_enable =
1451 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1452 
1453 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1454 
1455 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1456 	/* If no valid mac address was found - bail out */
1457 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1458 		kfree(data);
1459 		return NULL;
1460 	}
1461 
1462 	if (data->lar_enabled &&
1463 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1464 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1465 
1466 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1467 			sbands_flags, true, fw);
1468 
1469 	return data;
1470 }
1471 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1472 
1473 struct iwl_nvm_data *
1474 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1475 		   const struct iwl_fw *fw,
1476 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1477 		   const __le16 *nvm_calib, const __le16 *regulatory,
1478 		   const __le16 *mac_override, const __le16 *phy_sku,
1479 		   u8 tx_chains, u8 rx_chains)
1480 {
1481 	struct iwl_nvm_data *data;
1482 	bool lar_enabled;
1483 	u32 sku, radio_cfg;
1484 	u32 sbands_flags = 0;
1485 	u16 lar_config;
1486 	const __le16 *ch_section;
1487 
1488 	if (cfg->uhb_supported)
1489 		data = kzalloc(struct_size(data, channels,
1490 					   IWL_NVM_NUM_CHANNELS_UHB),
1491 					   GFP_KERNEL);
1492 	else if (cfg->nvm_type != IWL_NVM_EXT)
1493 		data = kzalloc(struct_size(data, channels,
1494 					   IWL_NVM_NUM_CHANNELS),
1495 					   GFP_KERNEL);
1496 	else
1497 		data = kzalloc(struct_size(data, channels,
1498 					   IWL_NVM_NUM_CHANNELS_EXT),
1499 					   GFP_KERNEL);
1500 	if (!data)
1501 		return NULL;
1502 
1503 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1504 
1505 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1506 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1507 	if (data->valid_tx_ant)
1508 		tx_chains &= data->valid_tx_ant;
1509 	if (data->valid_rx_ant)
1510 		rx_chains &= data->valid_rx_ant;
1511 
1512 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1513 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1514 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1515 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1516 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1517 		data->sku_cap_11n_enable = false;
1518 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1519 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1520 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1521 
1522 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1523 
1524 	if (cfg->nvm_type != IWL_NVM_EXT) {
1525 		/* Checking for required sections */
1526 		if (!nvm_calib) {
1527 			IWL_ERR(trans,
1528 				"Can't parse empty Calib NVM sections\n");
1529 			kfree(data);
1530 			return NULL;
1531 		}
1532 
1533 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1534 			     &regulatory[NVM_CHANNELS_SDP] :
1535 			     &nvm_sw[NVM_CHANNELS];
1536 
1537 		/* in family 8000 Xtal calibration values moved to OTP */
1538 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1539 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1540 		lar_enabled = true;
1541 	} else {
1542 		u16 lar_offset = data->nvm_version < 0xE39 ?
1543 				 NVM_LAR_OFFSET_OLD :
1544 				 NVM_LAR_OFFSET;
1545 
1546 		lar_config = le16_to_cpup(regulatory + lar_offset);
1547 		data->lar_enabled = !!(lar_config &
1548 				       NVM_LAR_ENABLED);
1549 		lar_enabled = data->lar_enabled;
1550 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1551 	}
1552 
1553 	/* If no valid mac address was found - bail out */
1554 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1555 		kfree(data);
1556 		return NULL;
1557 	}
1558 
1559 	if (lar_enabled &&
1560 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1561 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1562 
1563 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1564 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1565 
1566 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1567 			sbands_flags, false, fw);
1568 	data->calib_version = 255;
1569 
1570 	return data;
1571 }
1572 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1573 
1574 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1575 				       int ch_idx, u16 nvm_flags,
1576 				       struct iwl_reg_capa reg_capa,
1577 				       const struct iwl_cfg *cfg)
1578 {
1579 	u32 flags = NL80211_RRF_NO_HT40;
1580 
1581 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1582 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1583 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1584 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1585 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1586 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1587 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1588 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1589 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1590 		else
1591 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1592 	}
1593 
1594 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1595 		flags |= NL80211_RRF_NO_80MHZ;
1596 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1597 		flags |= NL80211_RRF_NO_160MHZ;
1598 
1599 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1600 		flags |= NL80211_RRF_NO_IR;
1601 
1602 	if (nvm_flags & NVM_CHANNEL_RADAR)
1603 		flags |= NL80211_RRF_DFS;
1604 
1605 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1606 		flags |= NL80211_RRF_NO_OUTDOOR;
1607 
1608 	/* Set the GO concurrent flag only in case that NO_IR is set.
1609 	 * Otherwise it is meaningless
1610 	 */
1611 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1612 	    (flags & NL80211_RRF_NO_IR))
1613 		flags |= NL80211_RRF_GO_CONCURRENT;
1614 
1615 	/*
1616 	 * reg_capa is per regulatory domain so apply it for every channel
1617 	 */
1618 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1619 		if (!reg_capa.allow_40mhz)
1620 			flags |= NL80211_RRF_NO_HT40;
1621 
1622 		if (!reg_capa.allow_80mhz)
1623 			flags |= NL80211_RRF_NO_80MHZ;
1624 
1625 		if (!reg_capa.allow_160mhz)
1626 			flags |= NL80211_RRF_NO_160MHZ;
1627 
1628 		if (!reg_capa.allow_320mhz)
1629 			flags |= NL80211_RRF_NO_320MHZ;
1630 	}
1631 
1632 	if (reg_capa.disable_11ax)
1633 		flags |= NL80211_RRF_NO_HE;
1634 
1635 	if (reg_capa.disable_11be)
1636 		flags |= NL80211_RRF_NO_EHT;
1637 
1638 	return flags;
1639 }
1640 
1641 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1642 {
1643 	struct iwl_reg_capa reg_capa = {};
1644 
1645 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1646 		reg_capa.allow_40mhz = true;
1647 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1648 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1649 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1650 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1651 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1652 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1653 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1654 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1655 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1656 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1657 	} else {
1658 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1659 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1660 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1661 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1662 	}
1663 	return reg_capa;
1664 }
1665 
1666 struct ieee80211_regdomain *
1667 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1668 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1669 		       u16 geo_info, u32 cap, u8 resp_ver)
1670 {
1671 	int ch_idx;
1672 	u16 ch_flags;
1673 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1674 	const u16 *nvm_chan;
1675 	struct ieee80211_regdomain *regd, *copy_rd;
1676 	struct ieee80211_reg_rule *rule;
1677 	enum nl80211_band band;
1678 	int center_freq, prev_center_freq = 0;
1679 	int valid_rules = 0;
1680 	bool new_rule;
1681 	int max_num_ch;
1682 	struct iwl_reg_capa reg_capa;
1683 
1684 	if (cfg->uhb_supported) {
1685 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1686 		nvm_chan = iwl_uhb_nvm_channels;
1687 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1688 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1689 		nvm_chan = iwl_ext_nvm_channels;
1690 	} else {
1691 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1692 		nvm_chan = iwl_nvm_channels;
1693 	}
1694 
1695 	if (num_of_ch > max_num_ch) {
1696 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1697 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1698 			      num_of_ch, max_num_ch);
1699 		num_of_ch = max_num_ch;
1700 	}
1701 
1702 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1703 		return ERR_PTR(-EINVAL);
1704 
1705 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1706 		      num_of_ch);
1707 
1708 	/* build a regdomain rule for every valid channel */
1709 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1710 	if (!regd)
1711 		return ERR_PTR(-ENOMEM);
1712 
1713 	/* set alpha2 from FW. */
1714 	regd->alpha2[0] = fw_mcc >> 8;
1715 	regd->alpha2[1] = fw_mcc & 0xff;
1716 
1717 	/* parse regulatory capability flags */
1718 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1719 
1720 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1721 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1722 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1723 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1724 							     band);
1725 		new_rule = false;
1726 
1727 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1728 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1729 						    nvm_chan[ch_idx], ch_flags);
1730 			continue;
1731 		}
1732 
1733 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1734 							     ch_flags, reg_capa,
1735 							     cfg);
1736 
1737 		/* we can't continue the same rule */
1738 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1739 		    center_freq - prev_center_freq > 20) {
1740 			valid_rules++;
1741 			new_rule = true;
1742 		}
1743 
1744 		rule = &regd->reg_rules[valid_rules - 1];
1745 
1746 		if (new_rule)
1747 			rule->freq_range.start_freq_khz =
1748 						MHZ_TO_KHZ(center_freq - 10);
1749 
1750 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1751 
1752 		/* this doesn't matter - not used by FW */
1753 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1754 		rule->power_rule.max_eirp =
1755 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1756 
1757 		rule->flags = reg_rule_flags;
1758 
1759 		/* rely on auto-calculation to merge BW of contiguous chans */
1760 		rule->flags |= NL80211_RRF_AUTO_BW;
1761 		rule->freq_range.max_bandwidth_khz = 0;
1762 
1763 		prev_center_freq = center_freq;
1764 		prev_reg_rule_flags = reg_rule_flags;
1765 
1766 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1767 					    nvm_chan[ch_idx], ch_flags);
1768 
1769 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1770 		    band == NL80211_BAND_2GHZ)
1771 			continue;
1772 
1773 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1774 	}
1775 
1776 	/*
1777 	 * Certain firmware versions might report no valid channels
1778 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1779 	 * running. We'll get out of this situation later when the
1780 	 * rfkill is removed and we update the regdomain again, but
1781 	 * since cfg80211 doesn't accept an empty regdomain, add a
1782 	 * dummy (unusable) rule here in this case so we can init.
1783 	 */
1784 	if (!valid_rules) {
1785 		valid_rules = 1;
1786 		rule = &regd->reg_rules[valid_rules - 1];
1787 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1788 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1789 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1790 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1791 		rule->power_rule.max_eirp =
1792 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1793 	}
1794 
1795 	regd->n_reg_rules = valid_rules;
1796 
1797 	/*
1798 	 * Narrow down regdom for unused regulatory rules to prevent hole
1799 	 * between reg rules to wmm rules.
1800 	 */
1801 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1802 			  GFP_KERNEL);
1803 	if (!copy_rd)
1804 		copy_rd = ERR_PTR(-ENOMEM);
1805 
1806 	kfree(regd);
1807 	return copy_rd;
1808 }
1809 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1810 
1811 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1812 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1813 #define MAX_NVM_FILE_LEN	16384
1814 
1815 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1816 		    unsigned int len)
1817 {
1818 #define IWL_4165_DEVICE_ID	0x5501
1819 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1820 
1821 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1822 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1823 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1824 		/* OTP 0x52 bug work around: it's a 1x1 device */
1825 		data[3] = ANT_B | (ANT_B << 4);
1826 }
1827 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1828 
1829 /*
1830  * Reads external NVM from a file into mvm->nvm_sections
1831  *
1832  * HOW TO CREATE THE NVM FILE FORMAT:
1833  * ------------------------------
1834  * 1. create hex file, format:
1835  *      3800 -> header
1836  *      0000 -> header
1837  *      5a40 -> data
1838  *
1839  *   rev - 6 bit (word1)
1840  *   len - 10 bit (word1)
1841  *   id - 4 bit (word2)
1842  *   rsv - 12 bit (word2)
1843  *
1844  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1845  *
1846  * 3. create binary file from the hex file
1847  *
1848  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1849  */
1850 int iwl_read_external_nvm(struct iwl_trans *trans,
1851 			  const char *nvm_file_name,
1852 			  struct iwl_nvm_section *nvm_sections)
1853 {
1854 	int ret, section_size;
1855 	u16 section_id;
1856 	const struct firmware *fw_entry;
1857 	const struct {
1858 		__le16 word1;
1859 		__le16 word2;
1860 		u8 data[];
1861 	} *file_sec;
1862 	const u8 *eof;
1863 	u8 *temp;
1864 	int max_section_size;
1865 	const __le32 *dword_buff;
1866 
1867 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1868 #define NVM_WORD2_ID(x) (x >> 12)
1869 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1870 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1871 #define NVM_HEADER_0	(0x2A504C54)
1872 #define NVM_HEADER_1	(0x4E564D2A)
1873 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1874 
1875 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1876 
1877 	/* Maximal size depends on NVM version */
1878 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1879 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1880 	else
1881 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1882 
1883 	/*
1884 	 * Obtain NVM image via request_firmware. Since we already used
1885 	 * request_firmware_nowait() for the firmware binary load and only
1886 	 * get here after that we assume the NVM request can be satisfied
1887 	 * synchronously.
1888 	 */
1889 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1890 	if (ret) {
1891 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1892 			nvm_file_name, ret);
1893 		return ret;
1894 	}
1895 
1896 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1897 		 nvm_file_name, fw_entry->size);
1898 
1899 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1900 		IWL_ERR(trans, "NVM file too large\n");
1901 		ret = -EINVAL;
1902 		goto out;
1903 	}
1904 
1905 	eof = fw_entry->data + fw_entry->size;
1906 	dword_buff = (const __le32 *)fw_entry->data;
1907 
1908 	/* some NVM file will contain a header.
1909 	 * The header is identified by 2 dwords header as follow:
1910 	 * dword[0] = 0x2A504C54
1911 	 * dword[1] = 0x4E564D2A
1912 	 *
1913 	 * This header must be skipped when providing the NVM data to the FW.
1914 	 */
1915 	if (fw_entry->size > NVM_HEADER_SIZE &&
1916 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1917 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1918 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1919 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1920 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1921 			 le32_to_cpu(dword_buff[3]));
1922 
1923 		/* nvm file validation, dword_buff[2] holds the file version */
1924 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1925 		    trans->hw_rev_step == SILICON_C_STEP &&
1926 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1927 			ret = -EFAULT;
1928 			goto out;
1929 		}
1930 	} else {
1931 		file_sec = (const void *)fw_entry->data;
1932 	}
1933 
1934 	while (true) {
1935 		if (file_sec->data > eof) {
1936 			IWL_ERR(trans,
1937 				"ERROR - NVM file too short for section header\n");
1938 			ret = -EINVAL;
1939 			break;
1940 		}
1941 
1942 		/* check for EOF marker */
1943 		if (!file_sec->word1 && !file_sec->word2) {
1944 			ret = 0;
1945 			break;
1946 		}
1947 
1948 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1949 			section_size =
1950 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1951 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1952 		} else {
1953 			section_size = 2 * EXT_NVM_WORD2_LEN(
1954 						le16_to_cpu(file_sec->word2));
1955 			section_id = EXT_NVM_WORD1_ID(
1956 						le16_to_cpu(file_sec->word1));
1957 		}
1958 
1959 		if (section_size > max_section_size) {
1960 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1961 				section_size);
1962 			ret = -EINVAL;
1963 			break;
1964 		}
1965 
1966 		if (!section_size) {
1967 			IWL_ERR(trans, "ERROR - section empty\n");
1968 			ret = -EINVAL;
1969 			break;
1970 		}
1971 
1972 		if (file_sec->data + section_size > eof) {
1973 			IWL_ERR(trans,
1974 				"ERROR - NVM file too short for section (%d bytes)\n",
1975 				section_size);
1976 			ret = -EINVAL;
1977 			break;
1978 		}
1979 
1980 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1981 			 "Invalid NVM section ID %d\n", section_id)) {
1982 			ret = -EINVAL;
1983 			break;
1984 		}
1985 
1986 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1987 		if (!temp) {
1988 			ret = -ENOMEM;
1989 			break;
1990 		}
1991 
1992 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1993 
1994 		kfree(nvm_sections[section_id].data);
1995 		nvm_sections[section_id].data = temp;
1996 		nvm_sections[section_id].length = section_size;
1997 
1998 		/* advance to the next section */
1999 		file_sec = (const void *)(file_sec->data + section_size);
2000 	}
2001 out:
2002 	release_firmware(fw_entry);
2003 	return ret;
2004 }
2005 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2006 
2007 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2008 				 const struct iwl_fw *fw,
2009 				 u8 set_tx_ant, u8 set_rx_ant)
2010 {
2011 	struct iwl_nvm_get_info cmd = {};
2012 	struct iwl_nvm_data *nvm;
2013 	struct iwl_host_cmd hcmd = {
2014 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2015 		.data = { &cmd, },
2016 		.len = { sizeof(cmd) },
2017 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2018 	};
2019 	int  ret;
2020 	bool empty_otp;
2021 	u32 mac_flags;
2022 	u32 sbands_flags = 0;
2023 	u8 tx_ant;
2024 	u8 rx_ant;
2025 
2026 	/*
2027 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2028 	 * in v3, except for the channel profile part of the
2029 	 * regulatory.  So we can just access the new struct, with the
2030 	 * exception of the latter.
2031 	 */
2032 	struct iwl_nvm_get_info_rsp *rsp;
2033 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2034 	bool v4 = fw_has_api(&fw->ucode_capa,
2035 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2036 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2037 	void *channel_profile;
2038 
2039 	ret = iwl_trans_send_cmd(trans, &hcmd);
2040 	if (ret)
2041 		return ERR_PTR(ret);
2042 
2043 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2044 		 "Invalid payload len in NVM response from FW %d",
2045 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2046 		ret = -EINVAL;
2047 		goto out;
2048 	}
2049 
2050 	rsp = (void *)hcmd.resp_pkt->data;
2051 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2052 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2053 	if (empty_otp)
2054 		IWL_INFO(trans, "OTP is empty\n");
2055 
2056 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2057 	if (!nvm) {
2058 		ret = -ENOMEM;
2059 		goto out;
2060 	}
2061 
2062 	iwl_set_hw_address_from_csr(trans, nvm);
2063 	/* TODO: if platform NVM has MAC address - override it here */
2064 
2065 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2066 		IWL_ERR(trans, "no valid mac address was found\n");
2067 		ret = -EINVAL;
2068 		goto err_free;
2069 	}
2070 
2071 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2072 
2073 	/* Initialize general data */
2074 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2075 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2076 	if (nvm->n_hw_addrs == 0)
2077 		IWL_WARN(trans,
2078 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2079 			 empty_otp);
2080 
2081 	/* Initialize MAC sku data */
2082 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2083 	nvm->sku_cap_11ac_enable =
2084 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2085 	nvm->sku_cap_11n_enable =
2086 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2087 	nvm->sku_cap_11ax_enable =
2088 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2089 	nvm->sku_cap_band_24ghz_enable =
2090 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2091 	nvm->sku_cap_band_52ghz_enable =
2092 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2093 	nvm->sku_cap_mimo_disabled =
2094 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2095 	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
2096 		nvm->sku_cap_11be_enable = true;
2097 
2098 	/* Initialize PHY sku data */
2099 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2100 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2101 
2102 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2103 	    fw_has_capa(&fw->ucode_capa,
2104 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2105 		nvm->lar_enabled = true;
2106 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2107 	}
2108 
2109 	rsp_v3 = (void *)rsp;
2110 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2111 			  (void *)rsp_v3->regulatory.channel_profile;
2112 
2113 	tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2114 	rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2115 
2116 	if (set_tx_ant)
2117 		tx_ant &= set_tx_ant;
2118 	if (set_rx_ant)
2119 		rx_ant &= set_rx_ant;
2120 
2121 	iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2122 			sbands_flags, v4, fw);
2123 
2124 	iwl_free_resp(&hcmd);
2125 	return nvm;
2126 
2127 err_free:
2128 	kfree(nvm);
2129 out:
2130 	iwl_free_resp(&hcmd);
2131 	return ERR_PTR(ret);
2132 }
2133 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2134