xref: /linux/drivers/net/wireless/intel/iwlwifi/dvm/main.c (revision fcab107abe1ab5be9dbe874baa722372da8f4f73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3  *
4  * Copyright(c) 2003 - 2014, 2018 - 2022 Intel Corporation. All rights reserved.
5  * Copyright(c) 2024-2025 Intel Corporation. All rights reserved.
6  * Copyright(c) 2015 Intel Deutschland GmbH
7  *
8  * Portions of this file are derived from the ipw3945 project, as well
9  * as portions of the ieee80211 subsystem header files.
10  *****************************************************************************/
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/sched.h>
20 #include <linux/skbuff.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/if_arp.h>
24 
25 #include <net/mac80211.h>
26 
27 #include <asm/div64.h>
28 
29 #include "iwl-nvm-utils.h"
30 #include "iwl-io.h"
31 #include "iwl-trans.h"
32 #include "iwl-op-mode.h"
33 #include "iwl-drv.h"
34 #include "iwl-modparams.h"
35 #include "iwl-prph.h"
36 
37 #include "dev.h"
38 #include "calib.h"
39 #include "agn.h"
40 
41 
42 /******************************************************************************
43  *
44  * module boiler plate
45  *
46  ******************************************************************************/
47 
48 #define DRV_DESCRIPTION	"Intel(R) Wireless WiFi Link AGN driver for Linux"
49 MODULE_DESCRIPTION(DRV_DESCRIPTION);
50 MODULE_LICENSE("GPL");
51 MODULE_IMPORT_NS("IWLWIFI");
52 
53 /* Please keep this array *SORTED* by hex value.
54  * Access is done through binary search.
55  * A warning will be triggered on violation.
56  */
57 static const struct iwl_hcmd_names iwl_dvm_cmd_names[] = {
58 	HCMD_NAME(REPLY_ALIVE),
59 	HCMD_NAME(REPLY_ERROR),
60 	HCMD_NAME(REPLY_ECHO),
61 	HCMD_NAME(REPLY_RXON),
62 	HCMD_NAME(REPLY_RXON_ASSOC),
63 	HCMD_NAME(REPLY_QOS_PARAM),
64 	HCMD_NAME(REPLY_RXON_TIMING),
65 	HCMD_NAME(REPLY_ADD_STA),
66 	HCMD_NAME(REPLY_REMOVE_STA),
67 	HCMD_NAME(REPLY_REMOVE_ALL_STA),
68 	HCMD_NAME(REPLY_TX),
69 	HCMD_NAME(REPLY_TXFIFO_FLUSH),
70 	HCMD_NAME(REPLY_WEPKEY),
71 	HCMD_NAME(REPLY_LEDS_CMD),
72 	HCMD_NAME(REPLY_TX_LINK_QUALITY_CMD),
73 	HCMD_NAME(COEX_PRIORITY_TABLE_CMD),
74 	HCMD_NAME(COEX_MEDIUM_NOTIFICATION),
75 	HCMD_NAME(COEX_EVENT_CMD),
76 	HCMD_NAME(TEMPERATURE_NOTIFICATION),
77 	HCMD_NAME(CALIBRATION_CFG_CMD),
78 	HCMD_NAME(CALIBRATION_RES_NOTIFICATION),
79 	HCMD_NAME(CALIBRATION_COMPLETE_NOTIFICATION),
80 	HCMD_NAME(REPLY_QUIET_CMD),
81 	HCMD_NAME(REPLY_CHANNEL_SWITCH),
82 	HCMD_NAME(CHANNEL_SWITCH_NOTIFICATION),
83 	HCMD_NAME(REPLY_SPECTRUM_MEASUREMENT_CMD),
84 	HCMD_NAME(SPECTRUM_MEASURE_NOTIFICATION),
85 	HCMD_NAME(POWER_TABLE_CMD),
86 	HCMD_NAME(PM_SLEEP_NOTIFICATION),
87 	HCMD_NAME(PM_DEBUG_STATISTIC_NOTIFIC),
88 	HCMD_NAME(REPLY_SCAN_CMD),
89 	HCMD_NAME(REPLY_SCAN_ABORT_CMD),
90 	HCMD_NAME(SCAN_START_NOTIFICATION),
91 	HCMD_NAME(SCAN_RESULTS_NOTIFICATION),
92 	HCMD_NAME(SCAN_COMPLETE_NOTIFICATION),
93 	HCMD_NAME(BEACON_NOTIFICATION),
94 	HCMD_NAME(REPLY_TX_BEACON),
95 	HCMD_NAME(WHO_IS_AWAKE_NOTIFICATION),
96 	HCMD_NAME(REPLY_TX_POWER_DBM_CMD),
97 	HCMD_NAME(QUIET_NOTIFICATION),
98 	HCMD_NAME(REPLY_TX_PWR_TABLE_CMD),
99 	HCMD_NAME(REPLY_TX_POWER_DBM_CMD_V1),
100 	HCMD_NAME(TX_ANT_CONFIGURATION_CMD),
101 	HCMD_NAME(MEASURE_ABORT_NOTIFICATION),
102 	HCMD_NAME(REPLY_BT_CONFIG),
103 	HCMD_NAME(REPLY_STATISTICS_CMD),
104 	HCMD_NAME(STATISTICS_NOTIFICATION),
105 	HCMD_NAME(REPLY_CARD_STATE_CMD),
106 	HCMD_NAME(CARD_STATE_NOTIFICATION),
107 	HCMD_NAME(MISSED_BEACONS_NOTIFICATION),
108 	HCMD_NAME(REPLY_CT_KILL_CONFIG_CMD),
109 	HCMD_NAME(SENSITIVITY_CMD),
110 	HCMD_NAME(REPLY_PHY_CALIBRATION_CMD),
111 	HCMD_NAME(REPLY_WIPAN_PARAMS),
112 	HCMD_NAME(REPLY_WIPAN_RXON),
113 	HCMD_NAME(REPLY_WIPAN_RXON_TIMING),
114 	HCMD_NAME(REPLY_WIPAN_RXON_ASSOC),
115 	HCMD_NAME(REPLY_WIPAN_QOS_PARAM),
116 	HCMD_NAME(REPLY_WIPAN_WEPKEY),
117 	HCMD_NAME(REPLY_WIPAN_P2P_CHANNEL_SWITCH),
118 	HCMD_NAME(REPLY_WIPAN_NOA_NOTIFICATION),
119 	HCMD_NAME(REPLY_WIPAN_DEACTIVATION_COMPLETE),
120 	HCMD_NAME(REPLY_RX_PHY_CMD),
121 	HCMD_NAME(REPLY_RX_MPDU_CMD),
122 	HCMD_NAME(REPLY_RX),
123 	HCMD_NAME(REPLY_COMPRESSED_BA),
124 	HCMD_NAME(REPLY_BT_COEX_PRIO_TABLE),
125 	HCMD_NAME(REPLY_BT_COEX_PROT_ENV),
126 	HCMD_NAME(REPLY_BT_COEX_PROFILE_NOTIF),
127 	HCMD_NAME(REPLY_D3_CONFIG),
128 	HCMD_NAME(REPLY_WOWLAN_PATTERNS),
129 	HCMD_NAME(REPLY_WOWLAN_WAKEUP_FILTER),
130 	HCMD_NAME(REPLY_WOWLAN_TSC_RSC_PARAMS),
131 	HCMD_NAME(REPLY_WOWLAN_TKIP_PARAMS),
132 	HCMD_NAME(REPLY_WOWLAN_KEK_KCK_MATERIAL),
133 	HCMD_NAME(REPLY_WOWLAN_GET_STATUS),
134 };
135 
136 static const struct iwl_hcmd_arr iwl_dvm_groups[] = {
137 	[0x0] = HCMD_ARR(iwl_dvm_cmd_names),
138 };
139 
140 static const struct iwl_op_mode_ops iwl_dvm_ops;
141 
142 void iwl_update_chain_flags(struct iwl_priv *priv)
143 {
144 	struct iwl_rxon_context *ctx;
145 
146 	for_each_context(priv, ctx) {
147 		iwlagn_set_rxon_chain(priv, ctx);
148 		if (ctx->active.rx_chain != ctx->staging.rx_chain)
149 			iwlagn_commit_rxon(priv, ctx);
150 	}
151 }
152 
153 /* Parse the beacon frame to find the TIM element and set tim_idx & tim_size */
154 static void iwl_set_beacon_tim(struct iwl_priv *priv,
155 			       struct iwl_tx_beacon_cmd *tx_beacon_cmd,
156 			       u8 *beacon, u32 frame_size)
157 {
158 	u16 tim_idx;
159 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)beacon;
160 
161 	/*
162 	 * The index is relative to frame start but we start looking at the
163 	 * variable-length part of the beacon.
164 	 */
165 	tim_idx = mgmt->u.beacon.variable - beacon;
166 
167 	/* Parse variable-length elements of beacon to find WLAN_EID_TIM */
168 	while ((tim_idx < (frame_size - 2)) &&
169 			(beacon[tim_idx] != WLAN_EID_TIM))
170 		tim_idx += beacon[tim_idx+1] + 2;
171 
172 	/* If TIM field was found, set variables */
173 	if ((tim_idx < (frame_size - 1)) && (beacon[tim_idx] == WLAN_EID_TIM)) {
174 		tx_beacon_cmd->tim_idx = cpu_to_le16(tim_idx);
175 		tx_beacon_cmd->tim_size = beacon[tim_idx+1];
176 	} else
177 		IWL_WARN(priv, "Unable to find TIM Element in beacon\n");
178 }
179 
180 int iwlagn_send_beacon_cmd(struct iwl_priv *priv)
181 {
182 	struct iwl_tx_beacon_cmd *tx_beacon_cmd;
183 	struct iwl_host_cmd cmd = {
184 		.id = REPLY_TX_BEACON,
185 	};
186 	struct ieee80211_tx_info *info;
187 	u32 frame_size;
188 	u32 rate_flags;
189 	u32 rate;
190 
191 	/*
192 	 * We have to set up the TX command, the TX Beacon command, and the
193 	 * beacon contents.
194 	 */
195 
196 	lockdep_assert_held(&priv->mutex);
197 
198 	if (!priv->beacon_ctx) {
199 		IWL_ERR(priv, "trying to build beacon w/o beacon context!\n");
200 		return 0;
201 	}
202 
203 	if (WARN_ON(!priv->beacon_skb))
204 		return -EINVAL;
205 
206 	/* Allocate beacon command */
207 	if (!priv->beacon_cmd)
208 		priv->beacon_cmd = kzalloc(sizeof(*tx_beacon_cmd), GFP_KERNEL);
209 	tx_beacon_cmd = priv->beacon_cmd;
210 	if (!tx_beacon_cmd)
211 		return -ENOMEM;
212 
213 	frame_size = priv->beacon_skb->len;
214 
215 	/* Set up TX command fields */
216 	tx_beacon_cmd->tx.len = cpu_to_le16((u16)frame_size);
217 	tx_beacon_cmd->tx.sta_id = priv->beacon_ctx->bcast_sta_id;
218 	tx_beacon_cmd->tx.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE;
219 	tx_beacon_cmd->tx.tx_flags = TX_CMD_FLG_SEQ_CTL_MSK |
220 		TX_CMD_FLG_TSF_MSK | TX_CMD_FLG_STA_RATE_MSK;
221 
222 	/* Set up TX beacon command fields */
223 	iwl_set_beacon_tim(priv, tx_beacon_cmd, priv->beacon_skb->data,
224 			   frame_size);
225 
226 	/* Set up packet rate and flags */
227 	info = IEEE80211_SKB_CB(priv->beacon_skb);
228 
229 	/*
230 	 * Let's set up the rate at least somewhat correctly;
231 	 * it will currently not actually be used by the uCode,
232 	 * it uses the broadcast station's rate instead.
233 	 */
234 	if (info->control.rates[0].idx < 0 ||
235 	    info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
236 		rate = 0;
237 	else
238 		rate = info->control.rates[0].idx;
239 
240 	priv->mgmt_tx_ant = iwl_toggle_tx_ant(priv, priv->mgmt_tx_ant,
241 					      priv->nvm_data->valid_tx_ant);
242 	rate_flags = iwl_ant_idx_to_flags(priv->mgmt_tx_ant);
243 
244 	/* In mac80211, rates for 5 GHz start at 0 */
245 	if (info->band == NL80211_BAND_5GHZ)
246 		rate += IWL_FIRST_OFDM_RATE;
247 	else if (rate >= IWL_FIRST_CCK_RATE && rate <= IWL_LAST_CCK_RATE)
248 		rate_flags |= RATE_MCS_CCK_MSK;
249 
250 	tx_beacon_cmd->tx.rate_n_flags =
251 			iwl_hw_set_rate_n_flags(rate, rate_flags);
252 
253 	/* Submit command */
254 	cmd.len[0] = sizeof(*tx_beacon_cmd);
255 	cmd.data[0] = tx_beacon_cmd;
256 	cmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
257 	cmd.len[1] = frame_size;
258 	cmd.data[1] = priv->beacon_skb->data;
259 	cmd.dataflags[1] = IWL_HCMD_DFL_NOCOPY;
260 
261 	return iwl_dvm_send_cmd(priv, &cmd);
262 }
263 
264 static void iwl_bg_beacon_update(struct work_struct *work)
265 {
266 	struct iwl_priv *priv =
267 		container_of(work, struct iwl_priv, beacon_update);
268 	struct sk_buff *beacon;
269 
270 	mutex_lock(&priv->mutex);
271 	if (!priv->beacon_ctx) {
272 		IWL_ERR(priv, "updating beacon w/o beacon context!\n");
273 		goto out;
274 	}
275 
276 	if (priv->beacon_ctx->vif->type != NL80211_IFTYPE_AP) {
277 		/*
278 		 * The ucode will send beacon notifications even in
279 		 * IBSS mode, but we don't want to process them. But
280 		 * we need to defer the type check to here due to
281 		 * requiring locking around the beacon_ctx access.
282 		 */
283 		goto out;
284 	}
285 
286 	/* Pull updated AP beacon from mac80211. will fail if not in AP mode */
287 	beacon = ieee80211_beacon_get(priv->hw, priv->beacon_ctx->vif, 0);
288 	if (!beacon) {
289 		IWL_ERR(priv, "update beacon failed -- keeping old\n");
290 		goto out;
291 	}
292 
293 	/* new beacon skb is allocated every time; dispose previous.*/
294 	dev_kfree_skb(priv->beacon_skb);
295 
296 	priv->beacon_skb = beacon;
297 
298 	iwlagn_send_beacon_cmd(priv);
299  out:
300 	mutex_unlock(&priv->mutex);
301 }
302 
303 static void iwl_bg_bt_runtime_config(struct work_struct *work)
304 {
305 	struct iwl_priv *priv =
306 		container_of(work, struct iwl_priv, bt_runtime_config);
307 
308 	mutex_lock(&priv->mutex);
309 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
310 		goto out;
311 
312 	/* dont send host command if rf-kill is on */
313 	if (!iwl_is_ready_rf(priv))
314 		goto out;
315 
316 	iwlagn_send_advance_bt_config(priv);
317 out:
318 	mutex_unlock(&priv->mutex);
319 }
320 
321 static void iwl_bg_bt_full_concurrency(struct work_struct *work)
322 {
323 	struct iwl_priv *priv =
324 		container_of(work, struct iwl_priv, bt_full_concurrency);
325 	struct iwl_rxon_context *ctx;
326 
327 	mutex_lock(&priv->mutex);
328 
329 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
330 		goto out;
331 
332 	/* dont send host command if rf-kill is on */
333 	if (!iwl_is_ready_rf(priv))
334 		goto out;
335 
336 	IWL_DEBUG_INFO(priv, "BT coex in %s mode\n",
337 		       priv->bt_full_concurrent ?
338 		       "full concurrency" : "3-wire");
339 
340 	/*
341 	 * LQ & RXON updated cmds must be sent before BT Config cmd
342 	 * to avoid 3-wire collisions
343 	 */
344 	for_each_context(priv, ctx) {
345 		iwlagn_set_rxon_chain(priv, ctx);
346 		iwlagn_commit_rxon(priv, ctx);
347 	}
348 
349 	iwlagn_send_advance_bt_config(priv);
350 out:
351 	mutex_unlock(&priv->mutex);
352 }
353 
354 int iwl_send_statistics_request(struct iwl_priv *priv, u8 flags, bool clear)
355 {
356 	struct iwl_statistics_cmd statistics_cmd = {
357 		.configuration_flags =
358 			clear ? IWL_STATS_CONF_CLEAR_STATS : 0,
359 	};
360 
361 	if (flags & CMD_ASYNC)
362 		return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD,
363 					CMD_ASYNC,
364 					sizeof(struct iwl_statistics_cmd),
365 					&statistics_cmd);
366 	else
367 		return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD, 0,
368 					sizeof(struct iwl_statistics_cmd),
369 					&statistics_cmd);
370 }
371 
372 /*
373  * iwl_bg_statistics_periodic - Timer callback to queue statistics
374  *
375  * This callback is provided in order to send a statistics request.
376  *
377  * This timer function is continually reset to execute within
378  * REG_RECALIB_PERIOD seconds since the last STATISTICS_NOTIFICATION
379  * was received.  We need to ensure we receive the statistics in order
380  * to update the temperature used for calibrating the TXPOWER.
381  */
382 static void iwl_bg_statistics_periodic(struct timer_list *t)
383 {
384 	struct iwl_priv *priv = timer_container_of(priv, t,
385 						   statistics_periodic);
386 
387 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
388 		return;
389 
390 	/* dont send host command if rf-kill is on */
391 	if (!iwl_is_ready_rf(priv))
392 		return;
393 
394 	iwl_send_statistics_request(priv, CMD_ASYNC, false);
395 }
396 
397 
398 static void iwl_print_cont_event_trace(struct iwl_priv *priv, u32 base,
399 					u32 start_idx, u32 num_events,
400 					u32 capacity, u32 mode)
401 {
402 	u32 i;
403 	u32 ptr;        /* SRAM byte address of log data */
404 	u32 ev, time, data; /* event log data */
405 
406 	if (mode == 0)
407 		ptr = base + (4 * sizeof(u32)) + (start_idx * 2 * sizeof(u32));
408 	else
409 		ptr = base + (4 * sizeof(u32)) + (start_idx * 3 * sizeof(u32));
410 
411 	/* Make sure device is powered up for SRAM reads */
412 	if (!iwl_trans_grab_nic_access(priv->trans))
413 		return;
414 
415 	/* Set starting address; reads will auto-increment */
416 	iwl_write32(priv->trans, HBUS_TARG_MEM_RADDR, ptr);
417 
418 	/*
419 	 * Refuse to read more than would have fit into the log from
420 	 * the current start_idx. This used to happen due to the race
421 	 * described below, but now WARN because the code below should
422 	 * prevent it from happening here.
423 	 */
424 	if (WARN_ON(num_events > capacity - start_idx))
425 		num_events = capacity - start_idx;
426 
427 	/*
428 	 * "time" is actually "data" for mode 0 (no timestamp).
429 	 * place event id # at far right for easier visual parsing.
430 	 */
431 	for (i = 0; i < num_events; i++) {
432 		ev = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
433 		time = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
434 		if (mode == 0) {
435 			trace_iwlwifi_dev_ucode_cont_event(
436 					priv->trans->dev, 0, time, ev);
437 		} else {
438 			data = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
439 			trace_iwlwifi_dev_ucode_cont_event(
440 					priv->trans->dev, time, data, ev);
441 		}
442 	}
443 	/* Allow device to power down */
444 	iwl_trans_release_nic_access(priv->trans);
445 }
446 
447 static void iwl_continuous_event_trace(struct iwl_priv *priv)
448 {
449 	u32 capacity;   /* event log capacity in # entries */
450 	struct {
451 		u32 capacity;
452 		u32 mode;
453 		u32 wrap_counter;
454 		u32 write_counter;
455 	} __packed read;
456 	u32 base;       /* SRAM byte address of event log header */
457 	u32 mode;       /* 0 - no timestamp, 1 - timestamp recorded */
458 	u32 num_wraps;  /* # times uCode wrapped to top of log */
459 	u32 next_entry; /* index of next entry to be written by uCode */
460 
461 	base = priv->device_pointers.log_event_table;
462 	if (iwlagn_hw_valid_rtc_data_addr(base)) {
463 		iwl_trans_read_mem_bytes(priv->trans, base,
464 					 &read, sizeof(read));
465 		capacity = read.capacity;
466 		mode = read.mode;
467 		num_wraps = read.wrap_counter;
468 		next_entry = read.write_counter;
469 	} else
470 		return;
471 
472 	/*
473 	 * Unfortunately, the uCode doesn't use temporary variables.
474 	 * Therefore, it can happen that we read next_entry == capacity,
475 	 * which really means next_entry == 0.
476 	 */
477 	if (unlikely(next_entry == capacity))
478 		next_entry = 0;
479 	/*
480 	 * Additionally, the uCode increases the write pointer before
481 	 * the wraps counter, so if the write pointer is smaller than
482 	 * the old write pointer (wrap occurred) but we read that no
483 	 * wrap occurred, we actually read between the next_entry and
484 	 * num_wraps update (this does happen in practice!!) -- take
485 	 * that into account by increasing num_wraps.
486 	 */
487 	if (unlikely(next_entry < priv->event_log.next_entry &&
488 		     num_wraps == priv->event_log.num_wraps))
489 		num_wraps++;
490 
491 	if (num_wraps == priv->event_log.num_wraps) {
492 		iwl_print_cont_event_trace(
493 			priv, base, priv->event_log.next_entry,
494 			next_entry - priv->event_log.next_entry,
495 			capacity, mode);
496 
497 		priv->event_log.non_wraps_count++;
498 	} else {
499 		if (num_wraps - priv->event_log.num_wraps > 1)
500 			priv->event_log.wraps_more_count++;
501 		else
502 			priv->event_log.wraps_once_count++;
503 
504 		trace_iwlwifi_dev_ucode_wrap_event(priv->trans->dev,
505 				num_wraps - priv->event_log.num_wraps,
506 				next_entry, priv->event_log.next_entry);
507 
508 		if (next_entry < priv->event_log.next_entry) {
509 			iwl_print_cont_event_trace(
510 				priv, base, priv->event_log.next_entry,
511 				capacity - priv->event_log.next_entry,
512 				capacity, mode);
513 
514 			iwl_print_cont_event_trace(
515 				priv, base, 0, next_entry, capacity, mode);
516 		} else {
517 			iwl_print_cont_event_trace(
518 				priv, base, next_entry,
519 				capacity - next_entry,
520 				capacity, mode);
521 
522 			iwl_print_cont_event_trace(
523 				priv, base, 0, next_entry, capacity, mode);
524 		}
525 	}
526 
527 	priv->event_log.num_wraps = num_wraps;
528 	priv->event_log.next_entry = next_entry;
529 }
530 
531 /*
532  * iwl_bg_ucode_trace - Timer callback to log ucode event
533  *
534  * The timer is continually set to execute every
535  * UCODE_TRACE_PERIOD milliseconds after the last timer expired
536  * this function is to perform continuous uCode event logging operation
537  * if enabled
538  */
539 static void iwl_bg_ucode_trace(struct timer_list *t)
540 {
541 	struct iwl_priv *priv = timer_container_of(priv, t, ucode_trace);
542 
543 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
544 		return;
545 
546 	if (priv->event_log.ucode_trace) {
547 		iwl_continuous_event_trace(priv);
548 		/* Reschedule the timer to occur in UCODE_TRACE_PERIOD */
549 		mod_timer(&priv->ucode_trace,
550 			 jiffies + msecs_to_jiffies(UCODE_TRACE_PERIOD));
551 	}
552 }
553 
554 static void iwl_bg_tx_flush(struct work_struct *work)
555 {
556 	struct iwl_priv *priv =
557 		container_of(work, struct iwl_priv, tx_flush);
558 
559 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
560 		return;
561 
562 	/* do nothing if rf-kill is on */
563 	if (!iwl_is_ready_rf(priv))
564 		return;
565 
566 	IWL_DEBUG_INFO(priv, "device request: flush all tx frames\n");
567 	iwlagn_dev_txfifo_flush(priv);
568 }
569 
570 /*
571  * queue/FIFO/AC mapping definitions
572  */
573 
574 static const u8 iwlagn_bss_ac_to_fifo[] = {
575 	IWL_TX_FIFO_VO,
576 	IWL_TX_FIFO_VI,
577 	IWL_TX_FIFO_BE,
578 	IWL_TX_FIFO_BK,
579 };
580 
581 static const u8 iwlagn_bss_ac_to_queue[] = {
582 	0, 1, 2, 3,
583 };
584 
585 static const u8 iwlagn_pan_ac_to_fifo[] = {
586 	IWL_TX_FIFO_VO_IPAN,
587 	IWL_TX_FIFO_VI_IPAN,
588 	IWL_TX_FIFO_BE_IPAN,
589 	IWL_TX_FIFO_BK_IPAN,
590 };
591 
592 static const u8 iwlagn_pan_ac_to_queue[] = {
593 	7, 6, 5, 4,
594 };
595 
596 static void iwl_init_context(struct iwl_priv *priv, u32 ucode_flags)
597 {
598 	int i;
599 
600 	/*
601 	 * The default context is always valid,
602 	 * the PAN context depends on uCode.
603 	 */
604 	priv->valid_contexts = BIT(IWL_RXON_CTX_BSS);
605 	if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN)
606 		priv->valid_contexts |= BIT(IWL_RXON_CTX_PAN);
607 
608 	for (i = 0; i < NUM_IWL_RXON_CTX; i++)
609 		priv->contexts[i].ctxid = i;
610 
611 	priv->contexts[IWL_RXON_CTX_BSS].always_active = true;
612 	priv->contexts[IWL_RXON_CTX_BSS].is_active = true;
613 	priv->contexts[IWL_RXON_CTX_BSS].rxon_cmd = REPLY_RXON;
614 	priv->contexts[IWL_RXON_CTX_BSS].rxon_timing_cmd = REPLY_RXON_TIMING;
615 	priv->contexts[IWL_RXON_CTX_BSS].rxon_assoc_cmd = REPLY_RXON_ASSOC;
616 	priv->contexts[IWL_RXON_CTX_BSS].qos_cmd = REPLY_QOS_PARAM;
617 	priv->contexts[IWL_RXON_CTX_BSS].ap_sta_id = IWL_AP_ID;
618 	priv->contexts[IWL_RXON_CTX_BSS].wep_key_cmd = REPLY_WEPKEY;
619 	priv->contexts[IWL_RXON_CTX_BSS].bcast_sta_id = IWLAGN_BROADCAST_ID;
620 	priv->contexts[IWL_RXON_CTX_BSS].exclusive_interface_modes =
621 		BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MONITOR);
622 	priv->contexts[IWL_RXON_CTX_BSS].interface_modes =
623 		BIT(NL80211_IFTYPE_STATION);
624 	priv->contexts[IWL_RXON_CTX_BSS].ap_devtype = RXON_DEV_TYPE_AP;
625 	priv->contexts[IWL_RXON_CTX_BSS].ibss_devtype = RXON_DEV_TYPE_IBSS;
626 	priv->contexts[IWL_RXON_CTX_BSS].station_devtype = RXON_DEV_TYPE_ESS;
627 	priv->contexts[IWL_RXON_CTX_BSS].unused_devtype = RXON_DEV_TYPE_ESS;
628 	memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_queue,
629 	       iwlagn_bss_ac_to_queue, sizeof(iwlagn_bss_ac_to_queue));
630 	memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_fifo,
631 	       iwlagn_bss_ac_to_fifo, sizeof(iwlagn_bss_ac_to_fifo));
632 
633 	priv->contexts[IWL_RXON_CTX_PAN].rxon_cmd = REPLY_WIPAN_RXON;
634 	priv->contexts[IWL_RXON_CTX_PAN].rxon_timing_cmd =
635 		REPLY_WIPAN_RXON_TIMING;
636 	priv->contexts[IWL_RXON_CTX_PAN].rxon_assoc_cmd =
637 		REPLY_WIPAN_RXON_ASSOC;
638 	priv->contexts[IWL_RXON_CTX_PAN].qos_cmd = REPLY_WIPAN_QOS_PARAM;
639 	priv->contexts[IWL_RXON_CTX_PAN].ap_sta_id = IWL_AP_ID_PAN;
640 	priv->contexts[IWL_RXON_CTX_PAN].wep_key_cmd = REPLY_WIPAN_WEPKEY;
641 	priv->contexts[IWL_RXON_CTX_PAN].bcast_sta_id = IWLAGN_PAN_BCAST_ID;
642 	priv->contexts[IWL_RXON_CTX_PAN].station_flags = STA_FLG_PAN_STATION;
643 	priv->contexts[IWL_RXON_CTX_PAN].interface_modes =
644 		BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP);
645 
646 	priv->contexts[IWL_RXON_CTX_PAN].ap_devtype = RXON_DEV_TYPE_CP;
647 	priv->contexts[IWL_RXON_CTX_PAN].station_devtype = RXON_DEV_TYPE_2STA;
648 	priv->contexts[IWL_RXON_CTX_PAN].unused_devtype = RXON_DEV_TYPE_P2P;
649 	memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_queue,
650 	       iwlagn_pan_ac_to_queue, sizeof(iwlagn_pan_ac_to_queue));
651 	memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_fifo,
652 	       iwlagn_pan_ac_to_fifo, sizeof(iwlagn_pan_ac_to_fifo));
653 	priv->contexts[IWL_RXON_CTX_PAN].mcast_queue = IWL_IPAN_MCAST_QUEUE;
654 
655 	BUILD_BUG_ON(NUM_IWL_RXON_CTX != 2);
656 }
657 
658 static void iwl_rf_kill_ct_config(struct iwl_priv *priv)
659 {
660 	struct iwl_ct_kill_config cmd;
661 	struct iwl_ct_kill_throttling_config adv_cmd;
662 	int ret = 0;
663 
664 	iwl_write32(priv->trans, CSR_UCODE_DRV_GP1_CLR,
665 		    CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
666 
667 	priv->thermal_throttle.ct_kill_toggle = false;
668 
669 	if (priv->lib->support_ct_kill_exit) {
670 		adv_cmd.critical_temperature_enter =
671 			cpu_to_le32(priv->hw_params.ct_kill_threshold);
672 		adv_cmd.critical_temperature_exit =
673 			cpu_to_le32(priv->hw_params.ct_kill_exit_threshold);
674 
675 		ret = iwl_dvm_send_cmd_pdu(priv,
676 				       REPLY_CT_KILL_CONFIG_CMD,
677 				       0, sizeof(adv_cmd), &adv_cmd);
678 		if (ret)
679 			IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n");
680 		else
681 			IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD "
682 				"succeeded, critical temperature enter is %d,"
683 				"exit is %d\n",
684 				priv->hw_params.ct_kill_threshold,
685 				priv->hw_params.ct_kill_exit_threshold);
686 	} else {
687 		cmd.critical_temperature_R =
688 			cpu_to_le32(priv->hw_params.ct_kill_threshold);
689 
690 		ret = iwl_dvm_send_cmd_pdu(priv,
691 				       REPLY_CT_KILL_CONFIG_CMD,
692 				       0, sizeof(cmd), &cmd);
693 		if (ret)
694 			IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n");
695 		else
696 			IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD "
697 				"succeeded, "
698 				"critical temperature is %d\n",
699 				priv->hw_params.ct_kill_threshold);
700 	}
701 }
702 
703 static int iwlagn_send_calib_cfg_rt(struct iwl_priv *priv, u32 cfg)
704 {
705 	struct iwl_calib_cfg_cmd calib_cfg_cmd;
706 	struct iwl_host_cmd cmd = {
707 		.id = CALIBRATION_CFG_CMD,
708 		.len = { sizeof(struct iwl_calib_cfg_cmd), },
709 		.data = { &calib_cfg_cmd, },
710 	};
711 
712 	memset(&calib_cfg_cmd, 0, sizeof(calib_cfg_cmd));
713 	calib_cfg_cmd.ucd_calib_cfg.once.is_enable = IWL_CALIB_RT_CFG_ALL;
714 	calib_cfg_cmd.ucd_calib_cfg.once.start = cpu_to_le32(cfg);
715 
716 	return iwl_dvm_send_cmd(priv, &cmd);
717 }
718 
719 
720 static int iwlagn_send_tx_ant_config(struct iwl_priv *priv, u8 valid_tx_ant)
721 {
722 	struct iwl_tx_ant_config_cmd tx_ant_cmd = {
723 	  .valid = cpu_to_le32(valid_tx_ant),
724 	};
725 
726 	if (IWL_UCODE_API(priv->fw->ucode_ver) > 1) {
727 		IWL_DEBUG_HC(priv, "select valid tx ant: %u\n", valid_tx_ant);
728 		return iwl_dvm_send_cmd_pdu(priv, TX_ANT_CONFIGURATION_CMD, 0,
729 					sizeof(struct iwl_tx_ant_config_cmd),
730 					&tx_ant_cmd);
731 	} else {
732 		IWL_DEBUG_HC(priv, "TX_ANT_CONFIGURATION_CMD not supported\n");
733 		return -EOPNOTSUPP;
734 	}
735 }
736 
737 static void iwl_send_bt_config(struct iwl_priv *priv)
738 {
739 	struct iwl_bt_cmd bt_cmd = {
740 		.lead_time = BT_LEAD_TIME_DEF,
741 		.max_kill = BT_MAX_KILL_DEF,
742 		.kill_ack_mask = 0,
743 		.kill_cts_mask = 0,
744 	};
745 
746 	if (!iwlwifi_mod_params.bt_coex_active)
747 		bt_cmd.flags = BT_COEX_DISABLE;
748 	else
749 		bt_cmd.flags = BT_COEX_ENABLE;
750 
751 	priv->bt_enable_flag = bt_cmd.flags;
752 	IWL_DEBUG_INFO(priv, "BT coex %s\n",
753 		(bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
754 
755 	if (iwl_dvm_send_cmd_pdu(priv, REPLY_BT_CONFIG,
756 			     0, sizeof(struct iwl_bt_cmd), &bt_cmd))
757 		IWL_ERR(priv, "failed to send BT Coex Config\n");
758 }
759 
760 /*
761  * iwl_alive_start - called after REPLY_ALIVE notification received
762  *                   from protocol/runtime uCode (initialization uCode's
763  *                   Alive gets handled by iwl_init_alive_start()).
764  */
765 int iwl_alive_start(struct iwl_priv *priv)
766 {
767 	int ret = 0;
768 	struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
769 
770 	IWL_DEBUG_INFO(priv, "Runtime Alive received.\n");
771 
772 	/* After the ALIVE response, we can send host commands to the uCode */
773 	set_bit(STATUS_ALIVE, &priv->status);
774 
775 	if (iwl_is_rfkill(priv))
776 		return -ERFKILL;
777 
778 	if (priv->event_log.ucode_trace) {
779 		/* start collecting data now */
780 		mod_timer(&priv->ucode_trace, jiffies);
781 	}
782 
783 	/* download priority table before any calibration request */
784 	if (priv->lib->bt_params &&
785 	    priv->lib->bt_params->advanced_bt_coexist) {
786 		/* Configure Bluetooth device coexistence support */
787 		if (priv->lib->bt_params->bt_sco_disable)
788 			priv->bt_enable_pspoll = false;
789 		else
790 			priv->bt_enable_pspoll = true;
791 
792 		priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK;
793 		priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT;
794 		priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT;
795 		iwlagn_send_advance_bt_config(priv);
796 		priv->bt_valid = IWLAGN_BT_VALID_ENABLE_FLAGS;
797 		priv->cur_rssi_ctx = NULL;
798 
799 		iwl_send_prio_tbl(priv);
800 
801 		/* FIXME: w/a to force change uCode BT state machine */
802 		ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_OPEN,
803 					 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2);
804 		if (ret)
805 			return ret;
806 		ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_CLOSE,
807 					 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2);
808 		if (ret)
809 			return ret;
810 	} else if (priv->lib->bt_params) {
811 		/*
812 		 * default is 2-wire BT coexexistence support
813 		 */
814 		iwl_send_bt_config(priv);
815 	}
816 
817 	/*
818 	 * Perform runtime calibrations, including DC calibration.
819 	 */
820 	iwlagn_send_calib_cfg_rt(priv, IWL_CALIB_CFG_DC_IDX);
821 
822 	ieee80211_wake_queues(priv->hw);
823 
824 	/* Configure Tx antenna selection based on H/W config */
825 	iwlagn_send_tx_ant_config(priv, priv->nvm_data->valid_tx_ant);
826 
827 	if (iwl_is_associated_ctx(ctx) && !priv->wowlan) {
828 		struct iwl_rxon_cmd *active = (void *)(uintptr_t)&ctx->active;
829 
830 		/* apply any changes in staging */
831 		ctx->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
832 		active->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
833 	} else {
834 		struct iwl_rxon_context *tmp;
835 		/* Initialize our rx_config data */
836 		for_each_context(priv, tmp)
837 			iwl_connection_init_rx_config(priv, tmp);
838 
839 		iwlagn_set_rxon_chain(priv, ctx);
840 	}
841 
842 	if (!priv->wowlan) {
843 		/* WoWLAN ucode will not reply in the same way, skip it */
844 		iwl_reset_run_time_calib(priv);
845 	}
846 
847 	set_bit(STATUS_READY, &priv->status);
848 
849 	/* Configure the adapter for unassociated operation */
850 	ret = iwlagn_commit_rxon(priv, ctx);
851 	if (ret)
852 		return ret;
853 
854 	/* At this point, the NIC is initialized and operational */
855 	iwl_rf_kill_ct_config(priv);
856 
857 	IWL_DEBUG_INFO(priv, "ALIVE processing complete.\n");
858 
859 	return iwl_power_update_mode(priv, true);
860 }
861 
862 /**
863  * iwl_clear_driver_stations - clear knowledge of all stations from driver
864  * @priv: iwl priv struct
865  *
866  * This is called during iwl_down() to make sure that in the case
867  * we're coming there from a hardware restart mac80211 will be
868  * able to reconfigure stations -- if we're getting there in the
869  * normal down flow then the stations will already be cleared.
870  */
871 static void iwl_clear_driver_stations(struct iwl_priv *priv)
872 {
873 	struct iwl_rxon_context *ctx;
874 
875 	spin_lock_bh(&priv->sta_lock);
876 	memset(priv->stations, 0, sizeof(priv->stations));
877 	priv->num_stations = 0;
878 
879 	priv->ucode_key_table = 0;
880 
881 	for_each_context(priv, ctx) {
882 		/*
883 		 * Remove all key information that is not stored as part
884 		 * of station information since mac80211 may not have had
885 		 * a chance to remove all the keys. When device is
886 		 * reconfigured by mac80211 after an error all keys will
887 		 * be reconfigured.
888 		 */
889 		memset(ctx->wep_keys, 0, sizeof(ctx->wep_keys));
890 		ctx->key_mapping_keys = 0;
891 	}
892 
893 	spin_unlock_bh(&priv->sta_lock);
894 }
895 
896 void iwl_down(struct iwl_priv *priv)
897 {
898 	int exit_pending;
899 
900 	IWL_DEBUG_INFO(priv, DRV_NAME " is going down\n");
901 
902 	lockdep_assert_held(&priv->mutex);
903 
904 	iwl_scan_cancel_timeout(priv, 200);
905 
906 	exit_pending =
907 		test_and_set_bit(STATUS_EXIT_PENDING, &priv->status);
908 
909 	iwl_clear_ucode_stations(priv, NULL);
910 	iwl_dealloc_bcast_stations(priv);
911 	iwl_clear_driver_stations(priv);
912 
913 	/* reset BT coex data */
914 	priv->bt_status = 0;
915 	priv->cur_rssi_ctx = NULL;
916 	priv->bt_is_sco = 0;
917 	if (priv->lib->bt_params)
918 		priv->bt_traffic_load =
919 			 priv->lib->bt_params->bt_init_traffic_load;
920 	else
921 		priv->bt_traffic_load = 0;
922 	priv->bt_full_concurrent = false;
923 	priv->bt_ci_compliance = 0;
924 
925 	/* Wipe out the EXIT_PENDING status bit if we are not actually
926 	 * exiting the module */
927 	if (!exit_pending)
928 		clear_bit(STATUS_EXIT_PENDING, &priv->status);
929 
930 	if (priv->mac80211_registered)
931 		ieee80211_stop_queues(priv->hw);
932 
933 	priv->ucode_loaded = false;
934 	iwl_trans_stop_device(priv->trans);
935 
936 	/* Set num_aux_in_flight must be done after the transport is stopped */
937 	atomic_set(&priv->num_aux_in_flight, 0);
938 
939 	/* Clear out all status bits but a few that are stable across reset */
940 	priv->status &= test_bit(STATUS_RF_KILL_HW, &priv->status) <<
941 				STATUS_RF_KILL_HW |
942 			test_bit(STATUS_FW_ERROR, &priv->status) <<
943 				STATUS_FW_ERROR |
944 			test_bit(STATUS_EXIT_PENDING, &priv->status) <<
945 				STATUS_EXIT_PENDING;
946 
947 	dev_kfree_skb(priv->beacon_skb);
948 	priv->beacon_skb = NULL;
949 }
950 
951 /*****************************************************************************
952  *
953  * Workqueue callbacks
954  *
955  *****************************************************************************/
956 
957 static void iwl_bg_run_time_calib_work(struct work_struct *work)
958 {
959 	struct iwl_priv *priv = container_of(work, struct iwl_priv,
960 			run_time_calib_work);
961 
962 	mutex_lock(&priv->mutex);
963 
964 	if (test_bit(STATUS_EXIT_PENDING, &priv->status) ||
965 	    test_bit(STATUS_SCANNING, &priv->status)) {
966 		mutex_unlock(&priv->mutex);
967 		return;
968 	}
969 
970 	if (priv->start_calib) {
971 		iwl_chain_noise_calibration(priv);
972 		iwl_sensitivity_calibration(priv);
973 	}
974 
975 	mutex_unlock(&priv->mutex);
976 }
977 
978 void iwlagn_prepare_restart(struct iwl_priv *priv)
979 {
980 	bool bt_full_concurrent;
981 	u8 bt_ci_compliance;
982 	u8 bt_load;
983 	u8 bt_status;
984 	bool bt_is_sco;
985 	int i;
986 
987 	lockdep_assert_held(&priv->mutex);
988 
989 	priv->is_open = 0;
990 
991 	/*
992 	 * __iwl_down() will clear the BT status variables,
993 	 * which is correct, but when we restart we really
994 	 * want to keep them so restore them afterwards.
995 	 *
996 	 * The restart process will later pick them up and
997 	 * re-configure the hw when we reconfigure the BT
998 	 * command.
999 	 */
1000 	bt_full_concurrent = priv->bt_full_concurrent;
1001 	bt_ci_compliance = priv->bt_ci_compliance;
1002 	bt_load = priv->bt_traffic_load;
1003 	bt_status = priv->bt_status;
1004 	bt_is_sco = priv->bt_is_sco;
1005 
1006 	iwl_down(priv);
1007 
1008 	priv->bt_full_concurrent = bt_full_concurrent;
1009 	priv->bt_ci_compliance = bt_ci_compliance;
1010 	priv->bt_traffic_load = bt_load;
1011 	priv->bt_status = bt_status;
1012 	priv->bt_is_sco = bt_is_sco;
1013 
1014 	/* reset aggregation queues */
1015 	for (i = IWLAGN_FIRST_AMPDU_QUEUE; i < IWL_MAX_HW_QUEUES; i++)
1016 		priv->queue_to_mac80211[i] = IWL_INVALID_MAC80211_QUEUE;
1017 	/* and stop counts */
1018 	for (i = 0; i < IWL_MAX_HW_QUEUES; i++)
1019 		atomic_set(&priv->queue_stop_count[i], 0);
1020 
1021 	memset(priv->agg_q_alloc, 0, sizeof(priv->agg_q_alloc));
1022 }
1023 
1024 static void iwl_bg_restart(struct work_struct *data)
1025 {
1026 	struct iwl_priv *priv = container_of(data, struct iwl_priv, restart);
1027 
1028 	if (test_bit(STATUS_EXIT_PENDING, &priv->status))
1029 		return;
1030 
1031 	if (test_and_clear_bit(STATUS_FW_ERROR, &priv->status)) {
1032 		mutex_lock(&priv->mutex);
1033 		iwlagn_prepare_restart(priv);
1034 		mutex_unlock(&priv->mutex);
1035 		iwl_cancel_deferred_work(priv);
1036 		if (priv->mac80211_registered)
1037 			ieee80211_restart_hw(priv->hw);
1038 		else
1039 			IWL_ERR(priv,
1040 				"Cannot request restart before registering with mac80211\n");
1041 	} else {
1042 		WARN_ON(1);
1043 	}
1044 }
1045 
1046 /*****************************************************************************
1047  *
1048  * driver setup and teardown
1049  *
1050  *****************************************************************************/
1051 
1052 static void iwl_setup_deferred_work(struct iwl_priv *priv)
1053 {
1054 	priv->workqueue = alloc_ordered_workqueue(DRV_NAME, 0);
1055 
1056 	INIT_WORK(&priv->restart, iwl_bg_restart);
1057 	INIT_WORK(&priv->beacon_update, iwl_bg_beacon_update);
1058 	INIT_WORK(&priv->run_time_calib_work, iwl_bg_run_time_calib_work);
1059 	INIT_WORK(&priv->tx_flush, iwl_bg_tx_flush);
1060 	INIT_WORK(&priv->bt_full_concurrency, iwl_bg_bt_full_concurrency);
1061 	INIT_WORK(&priv->bt_runtime_config, iwl_bg_bt_runtime_config);
1062 
1063 	iwl_setup_scan_deferred_work(priv);
1064 
1065 	if (priv->lib->bt_params)
1066 		iwlagn_bt_setup_deferred_work(priv);
1067 
1068 	timer_setup(&priv->statistics_periodic, iwl_bg_statistics_periodic, 0);
1069 
1070 	timer_setup(&priv->ucode_trace, iwl_bg_ucode_trace, 0);
1071 }
1072 
1073 void iwl_cancel_deferred_work(struct iwl_priv *priv)
1074 {
1075 	if (priv->lib->bt_params)
1076 		iwlagn_bt_cancel_deferred_work(priv);
1077 
1078 	cancel_work_sync(&priv->run_time_calib_work);
1079 	cancel_work_sync(&priv->beacon_update);
1080 
1081 	iwl_cancel_scan_deferred_work(priv);
1082 
1083 	cancel_work_sync(&priv->bt_full_concurrency);
1084 	cancel_work_sync(&priv->bt_runtime_config);
1085 
1086 	timer_delete_sync(&priv->statistics_periodic);
1087 	timer_delete_sync(&priv->ucode_trace);
1088 }
1089 
1090 static int iwl_init_drv(struct iwl_priv *priv)
1091 {
1092 	spin_lock_init(&priv->sta_lock);
1093 
1094 	mutex_init(&priv->mutex);
1095 
1096 	INIT_LIST_HEAD(&priv->calib_results);
1097 
1098 	priv->band = NL80211_BAND_2GHZ;
1099 
1100 	priv->plcp_delta_threshold = priv->lib->plcp_delta_threshold;
1101 
1102 	priv->iw_mode = NL80211_IFTYPE_STATION;
1103 	priv->current_ht_config.smps = IEEE80211_SMPS_STATIC;
1104 	priv->missed_beacon_threshold = IWL_MISSED_BEACON_THRESHOLD_DEF;
1105 	priv->agg_tids_count = 0;
1106 
1107 	priv->rx_statistics_jiffies = jiffies;
1108 
1109 	/* Choose which receivers/antennas to use */
1110 	iwlagn_set_rxon_chain(priv, &priv->contexts[IWL_RXON_CTX_BSS]);
1111 
1112 	iwl_init_scan_params(priv);
1113 
1114 	/* init bt coex */
1115 	if (priv->lib->bt_params &&
1116 	    priv->lib->bt_params->advanced_bt_coexist) {
1117 		priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT;
1118 		priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT;
1119 		priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK;
1120 		priv->bt_on_thresh = BT_ON_THRESHOLD_DEF;
1121 		priv->bt_duration = BT_DURATION_LIMIT_DEF;
1122 		priv->dynamic_frag_thresh = BT_FRAG_THRESHOLD_DEF;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 static void iwl_uninit_drv(struct iwl_priv *priv)
1129 {
1130 	kfree(priv->scan_cmd);
1131 	kfree(priv->beacon_cmd);
1132 	kfree(rcu_dereference_raw(priv->noa_data));
1133 	iwl_calib_free_results(priv);
1134 #ifdef CONFIG_IWLWIFI_DEBUGFS
1135 	kfree(priv->wowlan_sram);
1136 #endif
1137 }
1138 
1139 static void iwl_set_hw_params(struct iwl_priv *priv)
1140 {
1141 	/* there are no devices with HT but without HT40 on all bands */
1142 	if (priv->cfg->ht_params.ht40_bands)
1143 		priv->hw_params.use_rts_for_aggregation =
1144 			priv->cfg->ht_params.use_rts_for_aggregation;
1145 
1146 	/* Device-specific setup */
1147 	priv->lib->set_hw_params(priv);
1148 }
1149 
1150 
1151 
1152 /* show what optional capabilities we have */
1153 static void iwl_option_config(struct iwl_priv *priv)
1154 {
1155 #ifdef CONFIG_IWLWIFI_DEBUG
1156 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUG enabled\n");
1157 #else
1158 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUG disabled\n");
1159 #endif
1160 
1161 #ifdef CONFIG_IWLWIFI_DEBUGFS
1162 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUGFS enabled\n");
1163 #else
1164 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUGFS disabled\n");
1165 #endif
1166 
1167 #ifdef CONFIG_IWLWIFI_DEVICE_TRACING
1168 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEVICE_TRACING enabled\n");
1169 #else
1170 	IWL_INFO(priv, "CONFIG_IWLWIFI_DEVICE_TRACING disabled\n");
1171 #endif
1172 }
1173 
1174 static int iwl_eeprom_init_hw_params(struct iwl_priv *priv)
1175 {
1176 	struct iwl_nvm_data *data = priv->nvm_data;
1177 
1178 	/* all HT devices also have HT40 on at least one band */
1179 	if (data->sku_cap_11n_enable &&
1180 	    !priv->cfg->ht_params.ht40_bands) {
1181 		IWL_ERR(priv, "Invalid 11n configuration\n");
1182 		return -EINVAL;
1183 	}
1184 
1185 	if (!data->sku_cap_11n_enable && !data->sku_cap_band_24ghz_enable &&
1186 	    !data->sku_cap_band_52ghz_enable) {
1187 		IWL_ERR(priv, "Invalid device sku\n");
1188 		return -EINVAL;
1189 	}
1190 
1191 	IWL_DEBUG_INFO(priv,
1192 		       "Device SKU: 24GHz %s %s, 52GHz %s %s, 11.n %s %s\n",
1193 		       data->sku_cap_band_24ghz_enable ? "" : "NOT", "enabled",
1194 		       data->sku_cap_band_52ghz_enable ? "" : "NOT", "enabled",
1195 		       data->sku_cap_11n_enable ? "" : "NOT", "enabled");
1196 
1197 	priv->hw_params.tx_chains_num =
1198 		num_of_ant(data->valid_tx_ant);
1199 	if (priv->cfg->rx_with_siso_diversity)
1200 		priv->hw_params.rx_chains_num = 1;
1201 	else
1202 		priv->hw_params.rx_chains_num =
1203 			num_of_ant(data->valid_rx_ant);
1204 
1205 	IWL_DEBUG_INFO(priv, "Valid Tx ant: 0x%X, Valid Rx ant: 0x%X\n",
1206 		       data->valid_tx_ant,
1207 		       data->valid_rx_ant);
1208 
1209 	return 0;
1210 }
1211 
1212 static int iwl_nvm_check_version(struct iwl_nvm_data *data,
1213 				 struct iwl_trans *trans)
1214 {
1215 	if (data->nvm_version >= trans->cfg->nvm_ver ||
1216 	    data->calib_version >= trans->cfg->nvm_calib_ver) {
1217 		IWL_DEBUG_INFO(trans, "device EEPROM VER=0x%x, CALIB=0x%x\n",
1218 			       data->nvm_version, data->calib_version);
1219 		return 0;
1220 	}
1221 
1222 	IWL_ERR(trans,
1223 		"Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
1224 		data->nvm_version, trans->cfg->nvm_ver,
1225 		data->calib_version,  trans->cfg->nvm_calib_ver);
1226 	return -EINVAL;
1227 }
1228 
1229 static struct iwl_op_mode *iwl_op_mode_dvm_start(struct iwl_trans *trans,
1230 						 const struct iwl_rf_cfg *cfg,
1231 						 const struct iwl_fw *fw,
1232 						 struct dentry *dbgfs_dir)
1233 {
1234 	struct iwl_priv *priv;
1235 	struct ieee80211_hw *hw;
1236 	struct iwl_op_mode *op_mode;
1237 	u16 num_mac;
1238 	u32 ucode_flags;
1239 	static const u8 no_reclaim_cmds[] = {
1240 		REPLY_RX_PHY_CMD,
1241 		REPLY_RX_MPDU_CMD,
1242 		REPLY_COMPRESSED_BA,
1243 		STATISTICS_NOTIFICATION,
1244 		REPLY_TX,
1245 	};
1246 	int i, err;
1247 
1248 	/************************
1249 	 * 1. Allocating HW data
1250 	 ************************/
1251 	hw = iwl_alloc_all();
1252 	if (!hw) {
1253 		pr_err("%s: Cannot allocate network device\n",
1254 		       trans->info.name);
1255 		err = -ENOMEM;
1256 		goto out;
1257 	}
1258 
1259 	op_mode = hw->priv;
1260 	op_mode->ops = &iwl_dvm_ops;
1261 	priv = IWL_OP_MODE_GET_DVM(op_mode);
1262 	priv->trans = trans;
1263 	priv->dev = trans->dev;
1264 	priv->cfg = cfg;
1265 	priv->fw = fw;
1266 
1267 	switch (priv->trans->mac_cfg->device_family) {
1268 	case IWL_DEVICE_FAMILY_1000:
1269 	case IWL_DEVICE_FAMILY_100:
1270 		priv->lib = &iwl_dvm_1000_cfg;
1271 		break;
1272 	case IWL_DEVICE_FAMILY_2000:
1273 		priv->lib = &iwl_dvm_2000_cfg;
1274 		break;
1275 	case IWL_DEVICE_FAMILY_105:
1276 		priv->lib = &iwl_dvm_105_cfg;
1277 		break;
1278 	case IWL_DEVICE_FAMILY_2030:
1279 	case IWL_DEVICE_FAMILY_135:
1280 		priv->lib = &iwl_dvm_2030_cfg;
1281 		break;
1282 	case IWL_DEVICE_FAMILY_5000:
1283 		priv->lib = &iwl_dvm_5000_cfg;
1284 		break;
1285 	case IWL_DEVICE_FAMILY_5150:
1286 		priv->lib = &iwl_dvm_5150_cfg;
1287 		break;
1288 	case IWL_DEVICE_FAMILY_6000:
1289 	case IWL_DEVICE_FAMILY_6000i:
1290 		priv->lib = &iwl_dvm_6000_cfg;
1291 		break;
1292 	case IWL_DEVICE_FAMILY_6005:
1293 		priv->lib = &iwl_dvm_6005_cfg;
1294 		break;
1295 	case IWL_DEVICE_FAMILY_6050:
1296 	case IWL_DEVICE_FAMILY_6150:
1297 		priv->lib = &iwl_dvm_6050_cfg;
1298 		break;
1299 	case IWL_DEVICE_FAMILY_6030:
1300 		priv->lib = &iwl_dvm_6030_cfg;
1301 		break;
1302 	default:
1303 		break;
1304 	}
1305 
1306 	if (WARN_ON(!priv->lib)) {
1307 		err = -ENODEV;
1308 		goto out_free_hw;
1309 	}
1310 
1311 	/*
1312 	 * Populate the state variables that the transport layer needs
1313 	 * to know about.
1314 	 */
1315 	BUILD_BUG_ON(sizeof(no_reclaim_cmds) >
1316 		     sizeof(trans->conf.no_reclaim_cmds));
1317 	memcpy(trans->conf.no_reclaim_cmds, no_reclaim_cmds,
1318 	       sizeof(no_reclaim_cmds));
1319 
1320 	switch (iwlwifi_mod_params.amsdu_size) {
1321 	case IWL_AMSDU_DEF:
1322 	case IWL_AMSDU_4K:
1323 		trans->conf.rx_buf_size = IWL_AMSDU_4K;
1324 		break;
1325 	case IWL_AMSDU_8K:
1326 		trans->conf.rx_buf_size = IWL_AMSDU_8K;
1327 		break;
1328 	case IWL_AMSDU_12K:
1329 	default:
1330 		trans->conf.rx_buf_size = IWL_AMSDU_4K;
1331 		pr_err("Unsupported amsdu_size: %d\n",
1332 		       iwlwifi_mod_params.amsdu_size);
1333 	}
1334 
1335 	trans->conf.command_groups = iwl_dvm_groups;
1336 	trans->conf.command_groups_size = ARRAY_SIZE(iwl_dvm_groups);
1337 
1338 	trans->conf.cmd_fifo = IWLAGN_CMD_FIFO_NUM;
1339 	trans->conf.cb_data_offs = offsetof(struct ieee80211_tx_info,
1340 					    driver_data[2]);
1341 
1342 	WARN_ON(sizeof(priv->transport_queue_stop) * BITS_PER_BYTE <
1343 		priv->trans->mac_cfg->base->num_of_queues);
1344 
1345 	ucode_flags = fw->ucode_capa.flags;
1346 
1347 	if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN) {
1348 		priv->sta_key_max_num = STA_KEY_MAX_NUM_PAN;
1349 		trans->conf.cmd_queue = IWL_IPAN_CMD_QUEUE_NUM;
1350 	} else {
1351 		priv->sta_key_max_num = STA_KEY_MAX_NUM;
1352 		trans->conf.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM;
1353 	}
1354 
1355 	trans->conf.rx_mpdu_cmd = REPLY_RX_MPDU_CMD;
1356 	trans->conf.rx_mpdu_cmd_hdr_size = sizeof(struct iwl_rx_mpdu_res_start);
1357 
1358 	iwl_trans_op_mode_enter(priv->trans, op_mode);
1359 
1360 	/* At this point both hw and priv are allocated. */
1361 
1362 	SET_IEEE80211_DEV(priv->hw, priv->trans->dev);
1363 
1364 	iwl_option_config(priv);
1365 
1366 	IWL_DEBUG_INFO(priv, "*** LOAD DRIVER ***\n");
1367 
1368 	/* bt channel inhibition enabled*/
1369 	priv->bt_ch_announce = true;
1370 	IWL_DEBUG_INFO(priv, "BT channel inhibition is %s\n",
1371 		       (priv->bt_ch_announce) ? "On" : "Off");
1372 
1373 	/* these spin locks will be used in apm_ops.init and EEPROM access
1374 	 * we should init now
1375 	 */
1376 	spin_lock_init(&priv->statistics.lock);
1377 
1378 	/***********************
1379 	 * 2. Read REV register
1380 	 ***********************/
1381 	IWL_INFO(priv, "Detected %s, REV=0x%X\n",
1382 		priv->trans->info.name, priv->trans->info.hw_rev);
1383 
1384 	err = iwl_trans_start_hw(priv->trans);
1385 	if (err)
1386 		goto out_leave_trans;
1387 
1388 	/* Read the EEPROM */
1389 	err = iwl_read_eeprom(priv->trans, &priv->eeprom_blob,
1390 			      &priv->eeprom_blob_size);
1391 	if (err) {
1392 		IWL_ERR(priv, "Unable to init EEPROM\n");
1393 		goto out_leave_trans;
1394 	}
1395 
1396 	/* Reset chip to save power until we load uCode during "up". */
1397 	iwl_trans_stop_device(priv->trans);
1398 
1399 	priv->nvm_data = iwl_parse_eeprom_data(priv->trans, priv->cfg,
1400 					       priv->eeprom_blob,
1401 					       priv->eeprom_blob_size);
1402 	if (!priv->nvm_data) {
1403 		err = -ENOMEM;
1404 		goto out_free_eeprom_blob;
1405 	}
1406 
1407 	err = iwl_nvm_check_version(priv->nvm_data, priv->trans);
1408 	if (err)
1409 		goto out_free_eeprom;
1410 
1411 	err = iwl_eeprom_init_hw_params(priv);
1412 	if (err)
1413 		goto out_free_eeprom;
1414 
1415 	/* extract MAC Address */
1416 	memcpy(priv->addresses[0].addr, priv->nvm_data->hw_addr, ETH_ALEN);
1417 	IWL_DEBUG_INFO(priv, "MAC address: %pM\n", priv->addresses[0].addr);
1418 	priv->hw->wiphy->addresses = priv->addresses;
1419 	priv->hw->wiphy->n_addresses = 1;
1420 	num_mac = priv->nvm_data->n_hw_addrs;
1421 	if (num_mac > 1) {
1422 		memcpy(priv->addresses[1].addr, priv->addresses[0].addr,
1423 		       ETH_ALEN);
1424 		priv->addresses[1].addr[5]++;
1425 		priv->hw->wiphy->n_addresses++;
1426 	}
1427 
1428 	/************************
1429 	 * 4. Setup HW constants
1430 	 ************************/
1431 	iwl_set_hw_params(priv);
1432 
1433 	if (!(priv->nvm_data->sku_cap_ipan_enable)) {
1434 		IWL_DEBUG_INFO(priv, "Your EEPROM disabled PAN\n");
1435 		ucode_flags &= ~IWL_UCODE_TLV_FLAGS_PAN;
1436 		/*
1437 		 * if not PAN, then don't support P2P -- might be a uCode
1438 		 * packaging bug or due to the eeprom check above
1439 		 */
1440 		priv->sta_key_max_num = STA_KEY_MAX_NUM;
1441 		trans->conf.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM;
1442 	}
1443 
1444 	/*******************
1445 	 * 5. Setup priv
1446 	 *******************/
1447 	for (i = 0; i < IWL_MAX_HW_QUEUES; i++) {
1448 		priv->queue_to_mac80211[i] = IWL_INVALID_MAC80211_QUEUE;
1449 		if (i < IWLAGN_FIRST_AMPDU_QUEUE &&
1450 		    i != IWL_DEFAULT_CMD_QUEUE_NUM &&
1451 		    i != IWL_IPAN_CMD_QUEUE_NUM)
1452 			priv->queue_to_mac80211[i] = i;
1453 		atomic_set(&priv->queue_stop_count[i], 0);
1454 	}
1455 
1456 	err = iwl_init_drv(priv);
1457 	if (err)
1458 		goto out_free_eeprom;
1459 
1460 	/* At this point both hw and priv are initialized. */
1461 
1462 	/********************
1463 	 * 6. Setup services
1464 	 ********************/
1465 	iwl_setup_deferred_work(priv);
1466 	iwl_setup_rx_handlers(priv);
1467 
1468 	iwl_power_initialize(priv);
1469 	iwl_tt_initialize(priv);
1470 
1471 	snprintf(priv->hw->wiphy->fw_version,
1472 		 sizeof(priv->hw->wiphy->fw_version),
1473 		 "%.31s", fw->fw_version);
1474 
1475 	priv->new_scan_threshold_behaviour =
1476 		!!(ucode_flags & IWL_UCODE_TLV_FLAGS_NEWSCAN);
1477 
1478 	priv->phy_calib_chain_noise_reset_cmd =
1479 		fw->ucode_capa.standard_phy_calibration_size;
1480 	priv->phy_calib_chain_noise_gain_cmd =
1481 		fw->ucode_capa.standard_phy_calibration_size + 1;
1482 
1483 	/* initialize all valid contexts */
1484 	iwl_init_context(priv, ucode_flags);
1485 
1486 	/**************************************************
1487 	 * This is still part of probe() in a sense...
1488 	 *
1489 	 * 7. Setup and register with mac80211 and debugfs
1490 	 **************************************************/
1491 	err = iwlagn_mac_setup_register(priv, &fw->ucode_capa);
1492 	if (err)
1493 		goto out_destroy_workqueue;
1494 
1495 	iwl_dbgfs_register(priv, dbgfs_dir);
1496 
1497 	return op_mode;
1498 
1499 out_destroy_workqueue:
1500 	iwl_tt_exit(priv);
1501 	iwl_cancel_deferred_work(priv);
1502 	destroy_workqueue(priv->workqueue);
1503 	priv->workqueue = NULL;
1504 	iwl_uninit_drv(priv);
1505 out_free_eeprom_blob:
1506 	kfree(priv->eeprom_blob);
1507 out_free_eeprom:
1508 	kfree(priv->nvm_data);
1509 out_leave_trans:
1510 	iwl_trans_op_mode_leave(priv->trans);
1511 out_free_hw:
1512 	ieee80211_free_hw(priv->hw);
1513 out:
1514 	return ERR_PTR(err);
1515 }
1516 
1517 static void iwl_op_mode_dvm_stop(struct iwl_op_mode *op_mode)
1518 {
1519 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1520 
1521 	IWL_DEBUG_INFO(priv, "*** UNLOAD DRIVER ***\n");
1522 
1523 	iwlagn_mac_unregister(priv);
1524 
1525 	iwl_tt_exit(priv);
1526 
1527 	kfree(priv->eeprom_blob);
1528 	kfree(priv->nvm_data);
1529 
1530 	/*netif_stop_queue(dev); */
1531 
1532 	/* ieee80211_unregister_hw calls iwlagn_mac_stop, which flushes
1533 	 * priv->workqueue... so we can't take down the workqueue
1534 	 * until now... */
1535 	destroy_workqueue(priv->workqueue);
1536 	priv->workqueue = NULL;
1537 
1538 	iwl_uninit_drv(priv);
1539 
1540 	dev_kfree_skb(priv->beacon_skb);
1541 
1542 	iwl_trans_op_mode_leave(priv->trans);
1543 	ieee80211_free_hw(priv->hw);
1544 }
1545 
1546 static const char * const desc_lookup_text[] = {
1547 	"OK",
1548 	"FAIL",
1549 	"BAD_PARAM",
1550 	"BAD_CHECKSUM",
1551 	"NMI_INTERRUPT_WDG",
1552 	"SYSASSERT",
1553 	"FATAL_ERROR",
1554 	"BAD_COMMAND",
1555 	"HW_ERROR_TUNE_LOCK",
1556 	"HW_ERROR_TEMPERATURE",
1557 	"ILLEGAL_CHAN_FREQ",
1558 	"VCC_NOT_STABLE",
1559 	"FH_ERROR",
1560 	"NMI_INTERRUPT_HOST",
1561 	"NMI_INTERRUPT_ACTION_PT",
1562 	"NMI_INTERRUPT_UNKNOWN",
1563 	"UCODE_VERSION_MISMATCH",
1564 	"HW_ERROR_ABS_LOCK",
1565 	"HW_ERROR_CAL_LOCK_FAIL",
1566 	"NMI_INTERRUPT_INST_ACTION_PT",
1567 	"NMI_INTERRUPT_DATA_ACTION_PT",
1568 	"NMI_TRM_HW_ER",
1569 	"NMI_INTERRUPT_TRM",
1570 	"NMI_INTERRUPT_BREAK_POINT",
1571 	"DEBUG_0",
1572 	"DEBUG_1",
1573 	"DEBUG_2",
1574 	"DEBUG_3",
1575 };
1576 
1577 static struct { char *name; u8 num; } advanced_lookup[] = {
1578 	{ "NMI_INTERRUPT_WDG", 0x34 },
1579 	{ "SYSASSERT", 0x35 },
1580 	{ "UCODE_VERSION_MISMATCH", 0x37 },
1581 	{ "BAD_COMMAND", 0x38 },
1582 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
1583 	{ "FATAL_ERROR", 0x3D },
1584 	{ "NMI_TRM_HW_ERR", 0x46 },
1585 	{ "NMI_INTERRUPT_TRM", 0x4C },
1586 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
1587 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
1588 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
1589 	{ "NMI_INTERRUPT_HOST", 0x66 },
1590 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
1591 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
1592 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
1593 	{ "ADVANCED_SYSASSERT", 0 },
1594 };
1595 
1596 static const char *desc_lookup(u32 num)
1597 {
1598 	int i;
1599 	int max = ARRAY_SIZE(desc_lookup_text);
1600 
1601 	if (num < max)
1602 		return desc_lookup_text[num];
1603 
1604 	max = ARRAY_SIZE(advanced_lookup) - 1;
1605 	for (i = 0; i < max; i++) {
1606 		if (advanced_lookup[i].num == num)
1607 			break;
1608 	}
1609 	return advanced_lookup[i].name;
1610 }
1611 
1612 #define ERROR_START_OFFSET  (1 * sizeof(u32))
1613 #define ERROR_ELEM_SIZE     (7 * sizeof(u32))
1614 
1615 static void iwl_dump_nic_error_log(struct iwl_priv *priv)
1616 {
1617 	struct iwl_trans *trans = priv->trans;
1618 	u32 base;
1619 	struct iwl_error_event_table table;
1620 
1621 	base = priv->device_pointers.error_event_table;
1622 	if (priv->cur_ucode == IWL_UCODE_INIT) {
1623 		if (!base)
1624 			base = priv->fw->init_errlog_ptr;
1625 	} else {
1626 		if (!base)
1627 			base = priv->fw->inst_errlog_ptr;
1628 	}
1629 
1630 	if (!iwlagn_hw_valid_rtc_data_addr(base)) {
1631 		IWL_ERR(priv,
1632 			"Not valid error log pointer 0x%08X for %s uCode\n",
1633 			base,
1634 			(priv->cur_ucode == IWL_UCODE_INIT)
1635 					? "Init" : "RT");
1636 		return;
1637 	}
1638 
1639 	/*TODO: Update dbgfs with ISR error stats obtained below */
1640 	iwl_trans_read_mem_bytes(trans, base, &table, sizeof(table));
1641 
1642 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
1643 		IWL_ERR(trans, "Start IWL Error Log Dump:\n");
1644 		IWL_ERR(trans, "Status: 0x%08lX, count: %d\n",
1645 			priv->status, table.valid);
1646 	}
1647 
1648 	IWL_ERR(priv, "0x%08X | %-28s\n", table.error_id,
1649 		desc_lookup(table.error_id));
1650 	IWL_ERR(priv, "0x%08X | uPc\n", table.pc);
1651 	IWL_ERR(priv, "0x%08X | branchlink1\n", table.blink1);
1652 	IWL_ERR(priv, "0x%08X | branchlink2\n", table.blink2);
1653 	IWL_ERR(priv, "0x%08X | interruptlink1\n", table.ilink1);
1654 	IWL_ERR(priv, "0x%08X | interruptlink2\n", table.ilink2);
1655 	IWL_ERR(priv, "0x%08X | data1\n", table.data1);
1656 	IWL_ERR(priv, "0x%08X | data2\n", table.data2);
1657 	IWL_ERR(priv, "0x%08X | line\n", table.line);
1658 	IWL_ERR(priv, "0x%08X | beacon time\n", table.bcon_time);
1659 	IWL_ERR(priv, "0x%08X | tsf low\n", table.tsf_low);
1660 	IWL_ERR(priv, "0x%08X | tsf hi\n", table.tsf_hi);
1661 	IWL_ERR(priv, "0x%08X | time gp1\n", table.gp1);
1662 	IWL_ERR(priv, "0x%08X | time gp2\n", table.gp2);
1663 	IWL_ERR(priv, "0x%08X | time gp3\n", table.gp3);
1664 	IWL_ERR(priv, "0x%08X | uCode version\n", table.ucode_ver);
1665 	IWL_ERR(priv, "0x%08X | hw version\n", table.hw_ver);
1666 	IWL_ERR(priv, "0x%08X | board version\n", table.brd_ver);
1667 	IWL_ERR(priv, "0x%08X | hcmd\n", table.hcmd);
1668 	IWL_ERR(priv, "0x%08X | isr0\n", table.isr0);
1669 	IWL_ERR(priv, "0x%08X | isr1\n", table.isr1);
1670 	IWL_ERR(priv, "0x%08X | isr2\n", table.isr2);
1671 	IWL_ERR(priv, "0x%08X | isr3\n", table.isr3);
1672 	IWL_ERR(priv, "0x%08X | isr4\n", table.isr4);
1673 	IWL_ERR(priv, "0x%08X | isr_pref\n", table.isr_pref);
1674 	IWL_ERR(priv, "0x%08X | wait_event\n", table.wait_event);
1675 	IWL_ERR(priv, "0x%08X | l2p_control\n", table.l2p_control);
1676 	IWL_ERR(priv, "0x%08X | l2p_duration\n", table.l2p_duration);
1677 	IWL_ERR(priv, "0x%08X | l2p_mhvalid\n", table.l2p_mhvalid);
1678 	IWL_ERR(priv, "0x%08X | l2p_addr_match\n", table.l2p_addr_match);
1679 	IWL_ERR(priv, "0x%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
1680 	IWL_ERR(priv, "0x%08X | timestamp\n", table.u_timestamp);
1681 	IWL_ERR(priv, "0x%08X | flow_handler\n", table.flow_handler);
1682 }
1683 
1684 #define EVENT_START_OFFSET  (4 * sizeof(u32))
1685 
1686 /*
1687  * iwl_print_event_log - Dump error event log to syslog
1688  */
1689 static int iwl_print_event_log(struct iwl_priv *priv, u32 start_idx,
1690 			       u32 num_events, u32 mode,
1691 			       int pos, char **buf, size_t bufsz)
1692 {
1693 	u32 i;
1694 	u32 base;       /* SRAM byte address of event log header */
1695 	u32 event_size; /* 2 u32s, or 3 u32s if timestamp recorded */
1696 	u32 ptr;        /* SRAM byte address of log data */
1697 	u32 ev, time, data; /* event log data */
1698 
1699 	struct iwl_trans *trans = priv->trans;
1700 
1701 	if (num_events == 0)
1702 		return pos;
1703 
1704 	base = priv->device_pointers.log_event_table;
1705 	if (priv->cur_ucode == IWL_UCODE_INIT) {
1706 		if (!base)
1707 			base = priv->fw->init_evtlog_ptr;
1708 	} else {
1709 		if (!base)
1710 			base = priv->fw->inst_evtlog_ptr;
1711 	}
1712 
1713 	if (mode == 0)
1714 		event_size = 2 * sizeof(u32);
1715 	else
1716 		event_size = 3 * sizeof(u32);
1717 
1718 	ptr = base + EVENT_START_OFFSET + (start_idx * event_size);
1719 
1720 	/* Make sure device is powered up for SRAM reads */
1721 	if (!iwl_trans_grab_nic_access(trans))
1722 		return pos;
1723 
1724 	/* Set starting address; reads will auto-increment */
1725 	iwl_write32(trans, HBUS_TARG_MEM_RADDR, ptr);
1726 
1727 	/* "time" is actually "data" for mode 0 (no timestamp).
1728 	* place event id # at far right for easier visual parsing. */
1729 	for (i = 0; i < num_events; i++) {
1730 		ev = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1731 		time = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1732 		if (mode == 0) {
1733 			/* data, ev */
1734 			if (bufsz) {
1735 				pos += scnprintf(*buf + pos, bufsz - pos,
1736 						"EVT_LOG:0x%08x:%04u\n",
1737 						time, ev);
1738 			} else {
1739 				trace_iwlwifi_dev_ucode_event(trans->dev, 0,
1740 					time, ev);
1741 				IWL_ERR(priv, "EVT_LOG:0x%08x:%04u\n",
1742 					time, ev);
1743 			}
1744 		} else {
1745 			data = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1746 			if (bufsz) {
1747 				pos += scnprintf(*buf + pos, bufsz - pos,
1748 						"EVT_LOGT:%010u:0x%08x:%04u\n",
1749 						 time, data, ev);
1750 			} else {
1751 				IWL_ERR(priv, "EVT_LOGT:%010u:0x%08x:%04u\n",
1752 					time, data, ev);
1753 				trace_iwlwifi_dev_ucode_event(trans->dev, time,
1754 					data, ev);
1755 			}
1756 		}
1757 	}
1758 
1759 	/* Allow device to power down */
1760 	iwl_trans_release_nic_access(trans);
1761 	return pos;
1762 }
1763 
1764 /*
1765  * iwl_print_last_event_logs - Dump the newest # of event log to syslog
1766  */
1767 static int iwl_print_last_event_logs(struct iwl_priv *priv, u32 capacity,
1768 				    u32 num_wraps, u32 next_entry,
1769 				    u32 size, u32 mode,
1770 				    int pos, char **buf, size_t bufsz)
1771 {
1772 	/*
1773 	 * display the newest DEFAULT_LOG_ENTRIES entries
1774 	 * i.e the entries just before the next ont that uCode would fill.
1775 	 */
1776 	if (num_wraps) {
1777 		if (next_entry < size) {
1778 			pos = iwl_print_event_log(priv,
1779 						capacity - (size - next_entry),
1780 						size - next_entry, mode,
1781 						pos, buf, bufsz);
1782 			pos = iwl_print_event_log(priv, 0,
1783 						  next_entry, mode,
1784 						  pos, buf, bufsz);
1785 		} else
1786 			pos = iwl_print_event_log(priv, next_entry - size,
1787 						  size, mode, pos, buf, bufsz);
1788 	} else {
1789 		if (next_entry < size) {
1790 			pos = iwl_print_event_log(priv, 0, next_entry,
1791 						  mode, pos, buf, bufsz);
1792 		} else {
1793 			pos = iwl_print_event_log(priv, next_entry - size,
1794 						  size, mode, pos, buf, bufsz);
1795 		}
1796 	}
1797 	return pos;
1798 }
1799 
1800 #define DEFAULT_DUMP_EVENT_LOG_ENTRIES (20)
1801 
1802 int iwl_dump_nic_event_log(struct iwl_priv *priv, bool full_log,
1803 			    char **buf)
1804 {
1805 	u32 base;       /* SRAM byte address of event log header */
1806 	u32 capacity;   /* event log capacity in # entries */
1807 	u32 mode;       /* 0 - no timestamp, 1 - timestamp recorded */
1808 	u32 num_wraps;  /* # times uCode wrapped to top of log */
1809 	u32 next_entry; /* index of next entry to be written by uCode */
1810 	u32 size;       /* # entries that we'll print */
1811 	u32 logsize;
1812 	int pos = 0;
1813 	size_t bufsz = 0;
1814 	struct iwl_trans *trans = priv->trans;
1815 
1816 	base = priv->device_pointers.log_event_table;
1817 	if (priv->cur_ucode == IWL_UCODE_INIT) {
1818 		logsize = priv->fw->init_evtlog_size;
1819 		if (!base)
1820 			base = priv->fw->init_evtlog_ptr;
1821 	} else {
1822 		logsize = priv->fw->inst_evtlog_size;
1823 		if (!base)
1824 			base = priv->fw->inst_evtlog_ptr;
1825 	}
1826 
1827 	if (!iwlagn_hw_valid_rtc_data_addr(base)) {
1828 		IWL_ERR(priv,
1829 			"Invalid event log pointer 0x%08X for %s uCode\n",
1830 			base,
1831 			(priv->cur_ucode == IWL_UCODE_INIT)
1832 					? "Init" : "RT");
1833 		return -EINVAL;
1834 	}
1835 
1836 	/* event log header */
1837 	capacity = iwl_trans_read_mem32(trans, base);
1838 	mode = iwl_trans_read_mem32(trans, base + (1 * sizeof(u32)));
1839 	num_wraps = iwl_trans_read_mem32(trans, base + (2 * sizeof(u32)));
1840 	next_entry = iwl_trans_read_mem32(trans, base + (3 * sizeof(u32)));
1841 
1842 	if (capacity > logsize) {
1843 		IWL_ERR(priv, "Log capacity %d is bogus, limit to %d "
1844 			"entries\n", capacity, logsize);
1845 		capacity = logsize;
1846 	}
1847 
1848 	if (next_entry > logsize) {
1849 		IWL_ERR(priv, "Log write index %d is bogus, limit to %d\n",
1850 			next_entry, logsize);
1851 		next_entry = logsize;
1852 	}
1853 
1854 	size = num_wraps ? capacity : next_entry;
1855 
1856 	/* bail out if nothing in log */
1857 	if (size == 0) {
1858 		IWL_ERR(trans, "Start IWL Event Log Dump: nothing in log\n");
1859 		return pos;
1860 	}
1861 
1862 	if (!(iwl_have_debug_level(IWL_DL_FW)) && !full_log)
1863 		size = (size > DEFAULT_DUMP_EVENT_LOG_ENTRIES)
1864 			? DEFAULT_DUMP_EVENT_LOG_ENTRIES : size;
1865 	IWL_ERR(priv, "Start IWL Event Log Dump: display last %u entries\n",
1866 		size);
1867 
1868 #ifdef CONFIG_IWLWIFI_DEBUG
1869 	if (buf) {
1870 		if (full_log)
1871 			bufsz = capacity * 48;
1872 		else
1873 			bufsz = size * 48;
1874 		*buf = kmalloc(bufsz, GFP_KERNEL);
1875 		if (!*buf)
1876 			return -ENOMEM;
1877 	}
1878 	if (iwl_have_debug_level(IWL_DL_FW) || full_log) {
1879 		/*
1880 		 * if uCode has wrapped back to top of log,
1881 		 * start at the oldest entry,
1882 		 * i.e the next one that uCode would fill.
1883 		 */
1884 		if (num_wraps)
1885 			pos = iwl_print_event_log(priv, next_entry,
1886 						capacity - next_entry, mode,
1887 						pos, buf, bufsz);
1888 		/* (then/else) start at top of log */
1889 		pos = iwl_print_event_log(priv, 0,
1890 					  next_entry, mode, pos, buf, bufsz);
1891 	} else
1892 		pos = iwl_print_last_event_logs(priv, capacity, num_wraps,
1893 						next_entry, size, mode,
1894 						pos, buf, bufsz);
1895 #else
1896 	pos = iwl_print_last_event_logs(priv, capacity, num_wraps,
1897 					next_entry, size, mode,
1898 					pos, buf, bufsz);
1899 #endif
1900 	return pos;
1901 }
1902 
1903 static void iwlagn_fw_error(struct iwl_priv *priv, bool ondemand)
1904 {
1905 	unsigned int reload_msec;
1906 	unsigned long reload_jiffies;
1907 
1908 	/* uCode is no longer loaded. */
1909 	priv->ucode_loaded = false;
1910 
1911 	/* Keep the restart process from trying to send host
1912 	 * commands by clearing the ready bit */
1913 	clear_bit(STATUS_READY, &priv->status);
1914 
1915 	if (!ondemand) {
1916 		/*
1917 		 * If firmware keep reloading, then it indicate something
1918 		 * serious wrong and firmware having problem to recover
1919 		 * from it. Instead of keep trying which will fill the syslog
1920 		 * and hang the system, let's just stop it
1921 		 */
1922 		reload_jiffies = jiffies;
1923 		reload_msec = jiffies_to_msecs((long) reload_jiffies -
1924 					(long) priv->reload_jiffies);
1925 		priv->reload_jiffies = reload_jiffies;
1926 		if (reload_msec <= IWL_MIN_RELOAD_DURATION) {
1927 			priv->reload_count++;
1928 			if (priv->reload_count >= IWL_MAX_CONTINUE_RELOAD_CNT) {
1929 				IWL_ERR(priv, "BUG_ON, Stop restarting\n");
1930 				return;
1931 			}
1932 		} else
1933 			priv->reload_count = 0;
1934 	}
1935 
1936 	if (!test_bit(STATUS_EXIT_PENDING, &priv->status)) {
1937 		if (iwlwifi_mod_params.fw_restart) {
1938 			IWL_DEBUG_FW(priv,
1939 				     "Restarting adapter due to uCode error.\n");
1940 			queue_work(priv->workqueue, &priv->restart);
1941 		} else
1942 			IWL_DEBUG_FW(priv,
1943 				     "Detected FW error, but not restarting\n");
1944 	}
1945 }
1946 
1947 static void iwl_nic_error(struct iwl_op_mode *op_mode,
1948 			  enum iwl_fw_error_type type)
1949 {
1950 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1951 
1952 	/* Set the FW error flag -- cleared on iwl_down */
1953 	set_bit(STATUS_FW_ERROR, &priv->status);
1954 
1955 	iwl_abort_notification_waits(&priv->notif_wait);
1956 
1957 	if (type == IWL_ERR_TYPE_CMD_QUEUE_FULL && iwl_check_for_ct_kill(priv))
1958 		return;
1959 
1960 	IWL_ERR(priv, "Loaded firmware version: %s\n",
1961 		priv->fw->fw_version);
1962 
1963 	if (type == IWL_ERR_TYPE_CMD_QUEUE_FULL) {
1964 		IWL_ERR(priv, "Command queue full!\n");
1965 	} else {
1966 		iwl_dump_nic_error_log(priv);
1967 		iwl_dump_nic_event_log(priv, false, NULL);
1968 	}
1969 
1970 	if (iwl_have_debug_level(IWL_DL_FW))
1971 		iwl_print_rx_config_cmd(priv, IWL_RXON_CTX_BSS);
1972 }
1973 
1974 static bool iwlagn_sw_reset(struct iwl_op_mode *op_mode,
1975 			    enum iwl_fw_error_type type)
1976 {
1977 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1978 
1979 	if (type == IWL_ERR_TYPE_CMD_QUEUE_FULL && iwl_check_for_ct_kill(priv))
1980 		return false;
1981 
1982 	iwlagn_fw_error(priv, false);
1983 	return true;
1984 }
1985 
1986 #define EEPROM_RF_CONFIG_TYPE_MAX      0x3
1987 
1988 static void iwl_nic_config(struct iwl_op_mode *op_mode)
1989 {
1990 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1991 
1992 	/* SKU Control */
1993 	iwl_trans_set_bits_mask(priv->trans, CSR_HW_IF_CONFIG_REG,
1994 				CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP_DASH,
1995 				CSR_HW_REV_STEP_DASH(priv->trans->info.hw_rev));
1996 
1997 	/* write radio config values to register */
1998 	if (priv->nvm_data->radio_cfg_type <= EEPROM_RF_CONFIG_TYPE_MAX) {
1999 		u32 reg_val =
2000 			priv->nvm_data->radio_cfg_type <<
2001 				CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE |
2002 			priv->nvm_data->radio_cfg_step <<
2003 				CSR_HW_IF_CONFIG_REG_POS_PHY_STEP |
2004 			priv->nvm_data->radio_cfg_dash <<
2005 				CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
2006 
2007 		iwl_trans_set_bits_mask(priv->trans, CSR_HW_IF_CONFIG_REG,
2008 					CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE |
2009 					CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP |
2010 					CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH,
2011 					reg_val);
2012 
2013 		IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n",
2014 			 priv->nvm_data->radio_cfg_type,
2015 			 priv->nvm_data->radio_cfg_step,
2016 			 priv->nvm_data->radio_cfg_dash);
2017 	} else {
2018 		WARN_ON(1);
2019 	}
2020 
2021 	/* set CSR_HW_CONFIG_REG for uCode use */
2022 	iwl_set_bit(priv->trans, CSR_HW_IF_CONFIG_REG,
2023 		    CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
2024 		    CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
2025 
2026 	/* W/A : NIC is stuck in a reset state after Early PCIe power off
2027 	 * (PCIe power is lost before PERST# is asserted),
2028 	 * causing ME FW to lose ownership and not being able to obtain it back.
2029 	 */
2030 	iwl_set_bits_mask_prph(priv->trans, APMG_PS_CTRL_REG,
2031 			       APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
2032 			       ~APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
2033 
2034 	if (priv->lib->nic_config)
2035 		priv->lib->nic_config(priv);
2036 }
2037 
2038 static void iwl_wimax_active(struct iwl_op_mode *op_mode)
2039 {
2040 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2041 
2042 	clear_bit(STATUS_READY, &priv->status);
2043 	IWL_ERR(priv, "RF is used by WiMAX\n");
2044 }
2045 
2046 static void iwl_stop_sw_queue(struct iwl_op_mode *op_mode, int queue)
2047 {
2048 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2049 	int mq = priv->queue_to_mac80211[queue];
2050 
2051 	if (WARN_ON_ONCE(mq == IWL_INVALID_MAC80211_QUEUE))
2052 		return;
2053 
2054 	if (atomic_inc_return(&priv->queue_stop_count[mq]) > 1) {
2055 		IWL_DEBUG_TX_QUEUES(priv,
2056 			"queue %d (mac80211 %d) already stopped\n",
2057 			queue, mq);
2058 		return;
2059 	}
2060 
2061 	set_bit(mq, &priv->transport_queue_stop);
2062 	ieee80211_stop_queue(priv->hw, mq);
2063 }
2064 
2065 static void iwl_wake_sw_queue(struct iwl_op_mode *op_mode, int queue)
2066 {
2067 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2068 	int mq = priv->queue_to_mac80211[queue];
2069 
2070 	if (WARN_ON_ONCE(mq == IWL_INVALID_MAC80211_QUEUE))
2071 		return;
2072 
2073 	if (atomic_dec_return(&priv->queue_stop_count[mq]) > 0) {
2074 		IWL_DEBUG_TX_QUEUES(priv,
2075 			"queue %d (mac80211 %d) already awake\n",
2076 			queue, mq);
2077 		return;
2078 	}
2079 
2080 	clear_bit(mq, &priv->transport_queue_stop);
2081 
2082 	if (!priv->passive_no_rx)
2083 		ieee80211_wake_queue(priv->hw, mq);
2084 }
2085 
2086 void iwlagn_lift_passive_no_rx(struct iwl_priv *priv)
2087 {
2088 	int mq;
2089 
2090 	if (!priv->passive_no_rx)
2091 		return;
2092 
2093 	for (mq = 0; mq < IWLAGN_FIRST_AMPDU_QUEUE; mq++) {
2094 		if (!test_bit(mq, &priv->transport_queue_stop)) {
2095 			IWL_DEBUG_TX_QUEUES(priv, "Wake queue %d\n", mq);
2096 			ieee80211_wake_queue(priv->hw, mq);
2097 		} else {
2098 			IWL_DEBUG_TX_QUEUES(priv, "Don't wake queue %d\n", mq);
2099 		}
2100 	}
2101 
2102 	priv->passive_no_rx = false;
2103 }
2104 
2105 static void iwl_free_skb(struct iwl_op_mode *op_mode, struct sk_buff *skb)
2106 {
2107 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2108 	struct ieee80211_tx_info *info;
2109 
2110 	info = IEEE80211_SKB_CB(skb);
2111 	iwl_trans_free_tx_cmd(priv->trans, info->driver_data[1]);
2112 	ieee80211_free_txskb(priv->hw, skb);
2113 }
2114 
2115 static bool iwl_set_hw_rfkill_state(struct iwl_op_mode *op_mode, bool state)
2116 {
2117 	struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2118 
2119 	if (state)
2120 		set_bit(STATUS_RF_KILL_HW, &priv->status);
2121 	else
2122 		clear_bit(STATUS_RF_KILL_HW, &priv->status);
2123 
2124 	wiphy_rfkill_set_hw_state(priv->hw->wiphy, state);
2125 
2126 	return false;
2127 }
2128 
2129 static const struct iwl_op_mode_ops iwl_dvm_ops = {
2130 	.start = iwl_op_mode_dvm_start,
2131 	.stop = iwl_op_mode_dvm_stop,
2132 	.rx = iwl_rx_dispatch,
2133 	.queue_full = iwl_stop_sw_queue,
2134 	.queue_not_full = iwl_wake_sw_queue,
2135 	.hw_rf_kill = iwl_set_hw_rfkill_state,
2136 	.free_skb = iwl_free_skb,
2137 	.nic_error = iwl_nic_error,
2138 	.sw_reset = iwlagn_sw_reset,
2139 	.nic_config = iwl_nic_config,
2140 	.wimax_active = iwl_wimax_active,
2141 };
2142 
2143 /*****************************************************************************
2144  *
2145  * driver and module entry point
2146  *
2147  *****************************************************************************/
2148 static int __init iwl_init(void)
2149 {
2150 
2151 	int ret;
2152 
2153 	ret = iwlagn_rate_control_register();
2154 	if (ret) {
2155 		pr_err("Unable to register rate control algorithm: %d\n", ret);
2156 		return ret;
2157 	}
2158 
2159 	ret = iwl_opmode_register("iwldvm", &iwl_dvm_ops);
2160 	if (ret) {
2161 		pr_err("Unable to register op_mode: %d\n", ret);
2162 		iwlagn_rate_control_unregister();
2163 	}
2164 
2165 	return ret;
2166 }
2167 module_init(iwl_init);
2168 
2169 static void __exit iwl_exit(void)
2170 {
2171 	iwl_opmode_deregister("iwldvm");
2172 	iwlagn_rate_control_unregister();
2173 }
2174 module_exit(iwl_exit);
2175