1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 * 4 * Copyright(c) 2003 - 2014, 2018 - 2022 Intel Corporation. All rights reserved. 5 * Copyright(c) 2024 Intel Corporation. All rights reserved. 6 * Copyright(c) 2015 Intel Deutschland GmbH 7 * 8 * Portions of this file are derived from the ipw3945 project, as well 9 * as portions of the ieee80211 subsystem header files. 10 *****************************************************************************/ 11 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/delay.h> 19 #include <linux/sched.h> 20 #include <linux/skbuff.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/if_arp.h> 24 25 #include <net/mac80211.h> 26 27 #include <asm/div64.h> 28 29 #include "iwl-nvm-utils.h" 30 #include "iwl-io.h" 31 #include "iwl-trans.h" 32 #include "iwl-op-mode.h" 33 #include "iwl-drv.h" 34 #include "iwl-modparams.h" 35 #include "iwl-prph.h" 36 37 #include "dev.h" 38 #include "calib.h" 39 #include "agn.h" 40 41 42 /****************************************************************************** 43 * 44 * module boiler plate 45 * 46 ******************************************************************************/ 47 48 #define DRV_DESCRIPTION "Intel(R) Wireless WiFi Link AGN driver for Linux" 49 MODULE_DESCRIPTION(DRV_DESCRIPTION); 50 MODULE_LICENSE("GPL"); 51 MODULE_IMPORT_NS(IWLWIFI); 52 53 /* Please keep this array *SORTED* by hex value. 54 * Access is done through binary search. 55 * A warning will be triggered on violation. 56 */ 57 static const struct iwl_hcmd_names iwl_dvm_cmd_names[] = { 58 HCMD_NAME(REPLY_ALIVE), 59 HCMD_NAME(REPLY_ERROR), 60 HCMD_NAME(REPLY_ECHO), 61 HCMD_NAME(REPLY_RXON), 62 HCMD_NAME(REPLY_RXON_ASSOC), 63 HCMD_NAME(REPLY_QOS_PARAM), 64 HCMD_NAME(REPLY_RXON_TIMING), 65 HCMD_NAME(REPLY_ADD_STA), 66 HCMD_NAME(REPLY_REMOVE_STA), 67 HCMD_NAME(REPLY_REMOVE_ALL_STA), 68 HCMD_NAME(REPLY_TX), 69 HCMD_NAME(REPLY_TXFIFO_FLUSH), 70 HCMD_NAME(REPLY_WEPKEY), 71 HCMD_NAME(REPLY_LEDS_CMD), 72 HCMD_NAME(REPLY_TX_LINK_QUALITY_CMD), 73 HCMD_NAME(COEX_PRIORITY_TABLE_CMD), 74 HCMD_NAME(COEX_MEDIUM_NOTIFICATION), 75 HCMD_NAME(COEX_EVENT_CMD), 76 HCMD_NAME(TEMPERATURE_NOTIFICATION), 77 HCMD_NAME(CALIBRATION_CFG_CMD), 78 HCMD_NAME(CALIBRATION_RES_NOTIFICATION), 79 HCMD_NAME(CALIBRATION_COMPLETE_NOTIFICATION), 80 HCMD_NAME(REPLY_QUIET_CMD), 81 HCMD_NAME(REPLY_CHANNEL_SWITCH), 82 HCMD_NAME(CHANNEL_SWITCH_NOTIFICATION), 83 HCMD_NAME(REPLY_SPECTRUM_MEASUREMENT_CMD), 84 HCMD_NAME(SPECTRUM_MEASURE_NOTIFICATION), 85 HCMD_NAME(POWER_TABLE_CMD), 86 HCMD_NAME(PM_SLEEP_NOTIFICATION), 87 HCMD_NAME(PM_DEBUG_STATISTIC_NOTIFIC), 88 HCMD_NAME(REPLY_SCAN_CMD), 89 HCMD_NAME(REPLY_SCAN_ABORT_CMD), 90 HCMD_NAME(SCAN_START_NOTIFICATION), 91 HCMD_NAME(SCAN_RESULTS_NOTIFICATION), 92 HCMD_NAME(SCAN_COMPLETE_NOTIFICATION), 93 HCMD_NAME(BEACON_NOTIFICATION), 94 HCMD_NAME(REPLY_TX_BEACON), 95 HCMD_NAME(WHO_IS_AWAKE_NOTIFICATION), 96 HCMD_NAME(REPLY_TX_POWER_DBM_CMD), 97 HCMD_NAME(QUIET_NOTIFICATION), 98 HCMD_NAME(REPLY_TX_PWR_TABLE_CMD), 99 HCMD_NAME(REPLY_TX_POWER_DBM_CMD_V1), 100 HCMD_NAME(TX_ANT_CONFIGURATION_CMD), 101 HCMD_NAME(MEASURE_ABORT_NOTIFICATION), 102 HCMD_NAME(REPLY_BT_CONFIG), 103 HCMD_NAME(REPLY_STATISTICS_CMD), 104 HCMD_NAME(STATISTICS_NOTIFICATION), 105 HCMD_NAME(REPLY_CARD_STATE_CMD), 106 HCMD_NAME(CARD_STATE_NOTIFICATION), 107 HCMD_NAME(MISSED_BEACONS_NOTIFICATION), 108 HCMD_NAME(REPLY_CT_KILL_CONFIG_CMD), 109 HCMD_NAME(SENSITIVITY_CMD), 110 HCMD_NAME(REPLY_PHY_CALIBRATION_CMD), 111 HCMD_NAME(REPLY_WIPAN_PARAMS), 112 HCMD_NAME(REPLY_WIPAN_RXON), 113 HCMD_NAME(REPLY_WIPAN_RXON_TIMING), 114 HCMD_NAME(REPLY_WIPAN_RXON_ASSOC), 115 HCMD_NAME(REPLY_WIPAN_QOS_PARAM), 116 HCMD_NAME(REPLY_WIPAN_WEPKEY), 117 HCMD_NAME(REPLY_WIPAN_P2P_CHANNEL_SWITCH), 118 HCMD_NAME(REPLY_WIPAN_NOA_NOTIFICATION), 119 HCMD_NAME(REPLY_WIPAN_DEACTIVATION_COMPLETE), 120 HCMD_NAME(REPLY_RX_PHY_CMD), 121 HCMD_NAME(REPLY_RX_MPDU_CMD), 122 HCMD_NAME(REPLY_RX), 123 HCMD_NAME(REPLY_COMPRESSED_BA), 124 HCMD_NAME(REPLY_BT_COEX_PRIO_TABLE), 125 HCMD_NAME(REPLY_BT_COEX_PROT_ENV), 126 HCMD_NAME(REPLY_BT_COEX_PROFILE_NOTIF), 127 HCMD_NAME(REPLY_D3_CONFIG), 128 HCMD_NAME(REPLY_WOWLAN_PATTERNS), 129 HCMD_NAME(REPLY_WOWLAN_WAKEUP_FILTER), 130 HCMD_NAME(REPLY_WOWLAN_TSC_RSC_PARAMS), 131 HCMD_NAME(REPLY_WOWLAN_TKIP_PARAMS), 132 HCMD_NAME(REPLY_WOWLAN_KEK_KCK_MATERIAL), 133 HCMD_NAME(REPLY_WOWLAN_GET_STATUS), 134 }; 135 136 static const struct iwl_hcmd_arr iwl_dvm_groups[] = { 137 [0x0] = HCMD_ARR(iwl_dvm_cmd_names), 138 }; 139 140 static const struct iwl_op_mode_ops iwl_dvm_ops; 141 142 void iwl_update_chain_flags(struct iwl_priv *priv) 143 { 144 struct iwl_rxon_context *ctx; 145 146 for_each_context(priv, ctx) { 147 iwlagn_set_rxon_chain(priv, ctx); 148 if (ctx->active.rx_chain != ctx->staging.rx_chain) 149 iwlagn_commit_rxon(priv, ctx); 150 } 151 } 152 153 /* Parse the beacon frame to find the TIM element and set tim_idx & tim_size */ 154 static void iwl_set_beacon_tim(struct iwl_priv *priv, 155 struct iwl_tx_beacon_cmd *tx_beacon_cmd, 156 u8 *beacon, u32 frame_size) 157 { 158 u16 tim_idx; 159 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)beacon; 160 161 /* 162 * The index is relative to frame start but we start looking at the 163 * variable-length part of the beacon. 164 */ 165 tim_idx = mgmt->u.beacon.variable - beacon; 166 167 /* Parse variable-length elements of beacon to find WLAN_EID_TIM */ 168 while ((tim_idx < (frame_size - 2)) && 169 (beacon[tim_idx] != WLAN_EID_TIM)) 170 tim_idx += beacon[tim_idx+1] + 2; 171 172 /* If TIM field was found, set variables */ 173 if ((tim_idx < (frame_size - 1)) && (beacon[tim_idx] == WLAN_EID_TIM)) { 174 tx_beacon_cmd->tim_idx = cpu_to_le16(tim_idx); 175 tx_beacon_cmd->tim_size = beacon[tim_idx+1]; 176 } else 177 IWL_WARN(priv, "Unable to find TIM Element in beacon\n"); 178 } 179 180 int iwlagn_send_beacon_cmd(struct iwl_priv *priv) 181 { 182 struct iwl_tx_beacon_cmd *tx_beacon_cmd; 183 struct iwl_host_cmd cmd = { 184 .id = REPLY_TX_BEACON, 185 }; 186 struct ieee80211_tx_info *info; 187 u32 frame_size; 188 u32 rate_flags; 189 u32 rate; 190 191 /* 192 * We have to set up the TX command, the TX Beacon command, and the 193 * beacon contents. 194 */ 195 196 lockdep_assert_held(&priv->mutex); 197 198 if (!priv->beacon_ctx) { 199 IWL_ERR(priv, "trying to build beacon w/o beacon context!\n"); 200 return 0; 201 } 202 203 if (WARN_ON(!priv->beacon_skb)) 204 return -EINVAL; 205 206 /* Allocate beacon command */ 207 if (!priv->beacon_cmd) 208 priv->beacon_cmd = kzalloc(sizeof(*tx_beacon_cmd), GFP_KERNEL); 209 tx_beacon_cmd = priv->beacon_cmd; 210 if (!tx_beacon_cmd) 211 return -ENOMEM; 212 213 frame_size = priv->beacon_skb->len; 214 215 /* Set up TX command fields */ 216 tx_beacon_cmd->tx.len = cpu_to_le16((u16)frame_size); 217 tx_beacon_cmd->tx.sta_id = priv->beacon_ctx->bcast_sta_id; 218 tx_beacon_cmd->tx.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE; 219 tx_beacon_cmd->tx.tx_flags = TX_CMD_FLG_SEQ_CTL_MSK | 220 TX_CMD_FLG_TSF_MSK | TX_CMD_FLG_STA_RATE_MSK; 221 222 /* Set up TX beacon command fields */ 223 iwl_set_beacon_tim(priv, tx_beacon_cmd, priv->beacon_skb->data, 224 frame_size); 225 226 /* Set up packet rate and flags */ 227 info = IEEE80211_SKB_CB(priv->beacon_skb); 228 229 /* 230 * Let's set up the rate at least somewhat correctly; 231 * it will currently not actually be used by the uCode, 232 * it uses the broadcast station's rate instead. 233 */ 234 if (info->control.rates[0].idx < 0 || 235 info->control.rates[0].flags & IEEE80211_TX_RC_MCS) 236 rate = 0; 237 else 238 rate = info->control.rates[0].idx; 239 240 priv->mgmt_tx_ant = iwl_toggle_tx_ant(priv, priv->mgmt_tx_ant, 241 priv->nvm_data->valid_tx_ant); 242 rate_flags = iwl_ant_idx_to_flags(priv->mgmt_tx_ant); 243 244 /* In mac80211, rates for 5 GHz start at 0 */ 245 if (info->band == NL80211_BAND_5GHZ) 246 rate += IWL_FIRST_OFDM_RATE; 247 else if (rate >= IWL_FIRST_CCK_RATE && rate <= IWL_LAST_CCK_RATE) 248 rate_flags |= RATE_MCS_CCK_MSK; 249 250 tx_beacon_cmd->tx.rate_n_flags = 251 iwl_hw_set_rate_n_flags(rate, rate_flags); 252 253 /* Submit command */ 254 cmd.len[0] = sizeof(*tx_beacon_cmd); 255 cmd.data[0] = tx_beacon_cmd; 256 cmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY; 257 cmd.len[1] = frame_size; 258 cmd.data[1] = priv->beacon_skb->data; 259 cmd.dataflags[1] = IWL_HCMD_DFL_NOCOPY; 260 261 return iwl_dvm_send_cmd(priv, &cmd); 262 } 263 264 static void iwl_bg_beacon_update(struct work_struct *work) 265 { 266 struct iwl_priv *priv = 267 container_of(work, struct iwl_priv, beacon_update); 268 struct sk_buff *beacon; 269 270 mutex_lock(&priv->mutex); 271 if (!priv->beacon_ctx) { 272 IWL_ERR(priv, "updating beacon w/o beacon context!\n"); 273 goto out; 274 } 275 276 if (priv->beacon_ctx->vif->type != NL80211_IFTYPE_AP) { 277 /* 278 * The ucode will send beacon notifications even in 279 * IBSS mode, but we don't want to process them. But 280 * we need to defer the type check to here due to 281 * requiring locking around the beacon_ctx access. 282 */ 283 goto out; 284 } 285 286 /* Pull updated AP beacon from mac80211. will fail if not in AP mode */ 287 beacon = ieee80211_beacon_get(priv->hw, priv->beacon_ctx->vif, 0); 288 if (!beacon) { 289 IWL_ERR(priv, "update beacon failed -- keeping old\n"); 290 goto out; 291 } 292 293 /* new beacon skb is allocated every time; dispose previous.*/ 294 dev_kfree_skb(priv->beacon_skb); 295 296 priv->beacon_skb = beacon; 297 298 iwlagn_send_beacon_cmd(priv); 299 out: 300 mutex_unlock(&priv->mutex); 301 } 302 303 static void iwl_bg_bt_runtime_config(struct work_struct *work) 304 { 305 struct iwl_priv *priv = 306 container_of(work, struct iwl_priv, bt_runtime_config); 307 308 mutex_lock(&priv->mutex); 309 if (test_bit(STATUS_EXIT_PENDING, &priv->status)) 310 goto out; 311 312 /* dont send host command if rf-kill is on */ 313 if (!iwl_is_ready_rf(priv)) 314 goto out; 315 316 iwlagn_send_advance_bt_config(priv); 317 out: 318 mutex_unlock(&priv->mutex); 319 } 320 321 static void iwl_bg_bt_full_concurrency(struct work_struct *work) 322 { 323 struct iwl_priv *priv = 324 container_of(work, struct iwl_priv, bt_full_concurrency); 325 struct iwl_rxon_context *ctx; 326 327 mutex_lock(&priv->mutex); 328 329 if (test_bit(STATUS_EXIT_PENDING, &priv->status)) 330 goto out; 331 332 /* dont send host command if rf-kill is on */ 333 if (!iwl_is_ready_rf(priv)) 334 goto out; 335 336 IWL_DEBUG_INFO(priv, "BT coex in %s mode\n", 337 priv->bt_full_concurrent ? 338 "full concurrency" : "3-wire"); 339 340 /* 341 * LQ & RXON updated cmds must be sent before BT Config cmd 342 * to avoid 3-wire collisions 343 */ 344 for_each_context(priv, ctx) { 345 iwlagn_set_rxon_chain(priv, ctx); 346 iwlagn_commit_rxon(priv, ctx); 347 } 348 349 iwlagn_send_advance_bt_config(priv); 350 out: 351 mutex_unlock(&priv->mutex); 352 } 353 354 int iwl_send_statistics_request(struct iwl_priv *priv, u8 flags, bool clear) 355 { 356 struct iwl_statistics_cmd statistics_cmd = { 357 .configuration_flags = 358 clear ? IWL_STATS_CONF_CLEAR_STATS : 0, 359 }; 360 361 if (flags & CMD_ASYNC) 362 return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD, 363 CMD_ASYNC, 364 sizeof(struct iwl_statistics_cmd), 365 &statistics_cmd); 366 else 367 return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD, 0, 368 sizeof(struct iwl_statistics_cmd), 369 &statistics_cmd); 370 } 371 372 /* 373 * iwl_bg_statistics_periodic - Timer callback to queue statistics 374 * 375 * This callback is provided in order to send a statistics request. 376 * 377 * This timer function is continually reset to execute within 378 * REG_RECALIB_PERIOD seconds since the last STATISTICS_NOTIFICATION 379 * was received. We need to ensure we receive the statistics in order 380 * to update the temperature used for calibrating the TXPOWER. 381 */ 382 static void iwl_bg_statistics_periodic(struct timer_list *t) 383 { 384 struct iwl_priv *priv = from_timer(priv, t, statistics_periodic); 385 386 if (test_bit(STATUS_EXIT_PENDING, &priv->status)) 387 return; 388 389 /* dont send host command if rf-kill is on */ 390 if (!iwl_is_ready_rf(priv)) 391 return; 392 393 iwl_send_statistics_request(priv, CMD_ASYNC, false); 394 } 395 396 397 static void iwl_print_cont_event_trace(struct iwl_priv *priv, u32 base, 398 u32 start_idx, u32 num_events, 399 u32 capacity, u32 mode) 400 { 401 u32 i; 402 u32 ptr; /* SRAM byte address of log data */ 403 u32 ev, time, data; /* event log data */ 404 405 if (mode == 0) 406 ptr = base + (4 * sizeof(u32)) + (start_idx * 2 * sizeof(u32)); 407 else 408 ptr = base + (4 * sizeof(u32)) + (start_idx * 3 * sizeof(u32)); 409 410 /* Make sure device is powered up for SRAM reads */ 411 if (!iwl_trans_grab_nic_access(priv->trans)) 412 return; 413 414 /* Set starting address; reads will auto-increment */ 415 iwl_write32(priv->trans, HBUS_TARG_MEM_RADDR, ptr); 416 417 /* 418 * Refuse to read more than would have fit into the log from 419 * the current start_idx. This used to happen due to the race 420 * described below, but now WARN because the code below should 421 * prevent it from happening here. 422 */ 423 if (WARN_ON(num_events > capacity - start_idx)) 424 num_events = capacity - start_idx; 425 426 /* 427 * "time" is actually "data" for mode 0 (no timestamp). 428 * place event id # at far right for easier visual parsing. 429 */ 430 for (i = 0; i < num_events; i++) { 431 ev = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT); 432 time = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT); 433 if (mode == 0) { 434 trace_iwlwifi_dev_ucode_cont_event( 435 priv->trans->dev, 0, time, ev); 436 } else { 437 data = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT); 438 trace_iwlwifi_dev_ucode_cont_event( 439 priv->trans->dev, time, data, ev); 440 } 441 } 442 /* Allow device to power down */ 443 iwl_trans_release_nic_access(priv->trans); 444 } 445 446 static void iwl_continuous_event_trace(struct iwl_priv *priv) 447 { 448 u32 capacity; /* event log capacity in # entries */ 449 struct { 450 u32 capacity; 451 u32 mode; 452 u32 wrap_counter; 453 u32 write_counter; 454 } __packed read; 455 u32 base; /* SRAM byte address of event log header */ 456 u32 mode; /* 0 - no timestamp, 1 - timestamp recorded */ 457 u32 num_wraps; /* # times uCode wrapped to top of log */ 458 u32 next_entry; /* index of next entry to be written by uCode */ 459 460 base = priv->device_pointers.log_event_table; 461 if (iwlagn_hw_valid_rtc_data_addr(base)) { 462 iwl_trans_read_mem_bytes(priv->trans, base, 463 &read, sizeof(read)); 464 capacity = read.capacity; 465 mode = read.mode; 466 num_wraps = read.wrap_counter; 467 next_entry = read.write_counter; 468 } else 469 return; 470 471 /* 472 * Unfortunately, the uCode doesn't use temporary variables. 473 * Therefore, it can happen that we read next_entry == capacity, 474 * which really means next_entry == 0. 475 */ 476 if (unlikely(next_entry == capacity)) 477 next_entry = 0; 478 /* 479 * Additionally, the uCode increases the write pointer before 480 * the wraps counter, so if the write pointer is smaller than 481 * the old write pointer (wrap occurred) but we read that no 482 * wrap occurred, we actually read between the next_entry and 483 * num_wraps update (this does happen in practice!!) -- take 484 * that into account by increasing num_wraps. 485 */ 486 if (unlikely(next_entry < priv->event_log.next_entry && 487 num_wraps == priv->event_log.num_wraps)) 488 num_wraps++; 489 490 if (num_wraps == priv->event_log.num_wraps) { 491 iwl_print_cont_event_trace( 492 priv, base, priv->event_log.next_entry, 493 next_entry - priv->event_log.next_entry, 494 capacity, mode); 495 496 priv->event_log.non_wraps_count++; 497 } else { 498 if (num_wraps - priv->event_log.num_wraps > 1) 499 priv->event_log.wraps_more_count++; 500 else 501 priv->event_log.wraps_once_count++; 502 503 trace_iwlwifi_dev_ucode_wrap_event(priv->trans->dev, 504 num_wraps - priv->event_log.num_wraps, 505 next_entry, priv->event_log.next_entry); 506 507 if (next_entry < priv->event_log.next_entry) { 508 iwl_print_cont_event_trace( 509 priv, base, priv->event_log.next_entry, 510 capacity - priv->event_log.next_entry, 511 capacity, mode); 512 513 iwl_print_cont_event_trace( 514 priv, base, 0, next_entry, capacity, mode); 515 } else { 516 iwl_print_cont_event_trace( 517 priv, base, next_entry, 518 capacity - next_entry, 519 capacity, mode); 520 521 iwl_print_cont_event_trace( 522 priv, base, 0, next_entry, capacity, mode); 523 } 524 } 525 526 priv->event_log.num_wraps = num_wraps; 527 priv->event_log.next_entry = next_entry; 528 } 529 530 /* 531 * iwl_bg_ucode_trace - Timer callback to log ucode event 532 * 533 * The timer is continually set to execute every 534 * UCODE_TRACE_PERIOD milliseconds after the last timer expired 535 * this function is to perform continuous uCode event logging operation 536 * if enabled 537 */ 538 static void iwl_bg_ucode_trace(struct timer_list *t) 539 { 540 struct iwl_priv *priv = from_timer(priv, t, ucode_trace); 541 542 if (test_bit(STATUS_EXIT_PENDING, &priv->status)) 543 return; 544 545 if (priv->event_log.ucode_trace) { 546 iwl_continuous_event_trace(priv); 547 /* Reschedule the timer to occur in UCODE_TRACE_PERIOD */ 548 mod_timer(&priv->ucode_trace, 549 jiffies + msecs_to_jiffies(UCODE_TRACE_PERIOD)); 550 } 551 } 552 553 static void iwl_bg_tx_flush(struct work_struct *work) 554 { 555 struct iwl_priv *priv = 556 container_of(work, struct iwl_priv, tx_flush); 557 558 if (test_bit(STATUS_EXIT_PENDING, &priv->status)) 559 return; 560 561 /* do nothing if rf-kill is on */ 562 if (!iwl_is_ready_rf(priv)) 563 return; 564 565 IWL_DEBUG_INFO(priv, "device request: flush all tx frames\n"); 566 iwlagn_dev_txfifo_flush(priv); 567 } 568 569 /* 570 * queue/FIFO/AC mapping definitions 571 */ 572 573 static const u8 iwlagn_bss_ac_to_fifo[] = { 574 IWL_TX_FIFO_VO, 575 IWL_TX_FIFO_VI, 576 IWL_TX_FIFO_BE, 577 IWL_TX_FIFO_BK, 578 }; 579 580 static const u8 iwlagn_bss_ac_to_queue[] = { 581 0, 1, 2, 3, 582 }; 583 584 static const u8 iwlagn_pan_ac_to_fifo[] = { 585 IWL_TX_FIFO_VO_IPAN, 586 IWL_TX_FIFO_VI_IPAN, 587 IWL_TX_FIFO_BE_IPAN, 588 IWL_TX_FIFO_BK_IPAN, 589 }; 590 591 static const u8 iwlagn_pan_ac_to_queue[] = { 592 7, 6, 5, 4, 593 }; 594 595 static void iwl_init_context(struct iwl_priv *priv, u32 ucode_flags) 596 { 597 int i; 598 599 /* 600 * The default context is always valid, 601 * the PAN context depends on uCode. 602 */ 603 priv->valid_contexts = BIT(IWL_RXON_CTX_BSS); 604 if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN) 605 priv->valid_contexts |= BIT(IWL_RXON_CTX_PAN); 606 607 for (i = 0; i < NUM_IWL_RXON_CTX; i++) 608 priv->contexts[i].ctxid = i; 609 610 priv->contexts[IWL_RXON_CTX_BSS].always_active = true; 611 priv->contexts[IWL_RXON_CTX_BSS].is_active = true; 612 priv->contexts[IWL_RXON_CTX_BSS].rxon_cmd = REPLY_RXON; 613 priv->contexts[IWL_RXON_CTX_BSS].rxon_timing_cmd = REPLY_RXON_TIMING; 614 priv->contexts[IWL_RXON_CTX_BSS].rxon_assoc_cmd = REPLY_RXON_ASSOC; 615 priv->contexts[IWL_RXON_CTX_BSS].qos_cmd = REPLY_QOS_PARAM; 616 priv->contexts[IWL_RXON_CTX_BSS].ap_sta_id = IWL_AP_ID; 617 priv->contexts[IWL_RXON_CTX_BSS].wep_key_cmd = REPLY_WEPKEY; 618 priv->contexts[IWL_RXON_CTX_BSS].bcast_sta_id = IWLAGN_BROADCAST_ID; 619 priv->contexts[IWL_RXON_CTX_BSS].exclusive_interface_modes = 620 BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MONITOR); 621 priv->contexts[IWL_RXON_CTX_BSS].interface_modes = 622 BIT(NL80211_IFTYPE_STATION); 623 priv->contexts[IWL_RXON_CTX_BSS].ap_devtype = RXON_DEV_TYPE_AP; 624 priv->contexts[IWL_RXON_CTX_BSS].ibss_devtype = RXON_DEV_TYPE_IBSS; 625 priv->contexts[IWL_RXON_CTX_BSS].station_devtype = RXON_DEV_TYPE_ESS; 626 priv->contexts[IWL_RXON_CTX_BSS].unused_devtype = RXON_DEV_TYPE_ESS; 627 memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_queue, 628 iwlagn_bss_ac_to_queue, sizeof(iwlagn_bss_ac_to_queue)); 629 memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_fifo, 630 iwlagn_bss_ac_to_fifo, sizeof(iwlagn_bss_ac_to_fifo)); 631 632 priv->contexts[IWL_RXON_CTX_PAN].rxon_cmd = REPLY_WIPAN_RXON; 633 priv->contexts[IWL_RXON_CTX_PAN].rxon_timing_cmd = 634 REPLY_WIPAN_RXON_TIMING; 635 priv->contexts[IWL_RXON_CTX_PAN].rxon_assoc_cmd = 636 REPLY_WIPAN_RXON_ASSOC; 637 priv->contexts[IWL_RXON_CTX_PAN].qos_cmd = REPLY_WIPAN_QOS_PARAM; 638 priv->contexts[IWL_RXON_CTX_PAN].ap_sta_id = IWL_AP_ID_PAN; 639 priv->contexts[IWL_RXON_CTX_PAN].wep_key_cmd = REPLY_WIPAN_WEPKEY; 640 priv->contexts[IWL_RXON_CTX_PAN].bcast_sta_id = IWLAGN_PAN_BCAST_ID; 641 priv->contexts[IWL_RXON_CTX_PAN].station_flags = STA_FLG_PAN_STATION; 642 priv->contexts[IWL_RXON_CTX_PAN].interface_modes = 643 BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP); 644 645 priv->contexts[IWL_RXON_CTX_PAN].ap_devtype = RXON_DEV_TYPE_CP; 646 priv->contexts[IWL_RXON_CTX_PAN].station_devtype = RXON_DEV_TYPE_2STA; 647 priv->contexts[IWL_RXON_CTX_PAN].unused_devtype = RXON_DEV_TYPE_P2P; 648 memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_queue, 649 iwlagn_pan_ac_to_queue, sizeof(iwlagn_pan_ac_to_queue)); 650 memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_fifo, 651 iwlagn_pan_ac_to_fifo, sizeof(iwlagn_pan_ac_to_fifo)); 652 priv->contexts[IWL_RXON_CTX_PAN].mcast_queue = IWL_IPAN_MCAST_QUEUE; 653 654 BUILD_BUG_ON(NUM_IWL_RXON_CTX != 2); 655 } 656 657 static void iwl_rf_kill_ct_config(struct iwl_priv *priv) 658 { 659 struct iwl_ct_kill_config cmd; 660 struct iwl_ct_kill_throttling_config adv_cmd; 661 int ret = 0; 662 663 iwl_write32(priv->trans, CSR_UCODE_DRV_GP1_CLR, 664 CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT); 665 666 priv->thermal_throttle.ct_kill_toggle = false; 667 668 if (priv->lib->support_ct_kill_exit) { 669 adv_cmd.critical_temperature_enter = 670 cpu_to_le32(priv->hw_params.ct_kill_threshold); 671 adv_cmd.critical_temperature_exit = 672 cpu_to_le32(priv->hw_params.ct_kill_exit_threshold); 673 674 ret = iwl_dvm_send_cmd_pdu(priv, 675 REPLY_CT_KILL_CONFIG_CMD, 676 0, sizeof(adv_cmd), &adv_cmd); 677 if (ret) 678 IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n"); 679 else 680 IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD " 681 "succeeded, critical temperature enter is %d," 682 "exit is %d\n", 683 priv->hw_params.ct_kill_threshold, 684 priv->hw_params.ct_kill_exit_threshold); 685 } else { 686 cmd.critical_temperature_R = 687 cpu_to_le32(priv->hw_params.ct_kill_threshold); 688 689 ret = iwl_dvm_send_cmd_pdu(priv, 690 REPLY_CT_KILL_CONFIG_CMD, 691 0, sizeof(cmd), &cmd); 692 if (ret) 693 IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n"); 694 else 695 IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD " 696 "succeeded, " 697 "critical temperature is %d\n", 698 priv->hw_params.ct_kill_threshold); 699 } 700 } 701 702 static int iwlagn_send_calib_cfg_rt(struct iwl_priv *priv, u32 cfg) 703 { 704 struct iwl_calib_cfg_cmd calib_cfg_cmd; 705 struct iwl_host_cmd cmd = { 706 .id = CALIBRATION_CFG_CMD, 707 .len = { sizeof(struct iwl_calib_cfg_cmd), }, 708 .data = { &calib_cfg_cmd, }, 709 }; 710 711 memset(&calib_cfg_cmd, 0, sizeof(calib_cfg_cmd)); 712 calib_cfg_cmd.ucd_calib_cfg.once.is_enable = IWL_CALIB_RT_CFG_ALL; 713 calib_cfg_cmd.ucd_calib_cfg.once.start = cpu_to_le32(cfg); 714 715 return iwl_dvm_send_cmd(priv, &cmd); 716 } 717 718 719 static int iwlagn_send_tx_ant_config(struct iwl_priv *priv, u8 valid_tx_ant) 720 { 721 struct iwl_tx_ant_config_cmd tx_ant_cmd = { 722 .valid = cpu_to_le32(valid_tx_ant), 723 }; 724 725 if (IWL_UCODE_API(priv->fw->ucode_ver) > 1) { 726 IWL_DEBUG_HC(priv, "select valid tx ant: %u\n", valid_tx_ant); 727 return iwl_dvm_send_cmd_pdu(priv, TX_ANT_CONFIGURATION_CMD, 0, 728 sizeof(struct iwl_tx_ant_config_cmd), 729 &tx_ant_cmd); 730 } else { 731 IWL_DEBUG_HC(priv, "TX_ANT_CONFIGURATION_CMD not supported\n"); 732 return -EOPNOTSUPP; 733 } 734 } 735 736 static void iwl_send_bt_config(struct iwl_priv *priv) 737 { 738 struct iwl_bt_cmd bt_cmd = { 739 .lead_time = BT_LEAD_TIME_DEF, 740 .max_kill = BT_MAX_KILL_DEF, 741 .kill_ack_mask = 0, 742 .kill_cts_mask = 0, 743 }; 744 745 if (!iwlwifi_mod_params.bt_coex_active) 746 bt_cmd.flags = BT_COEX_DISABLE; 747 else 748 bt_cmd.flags = BT_COEX_ENABLE; 749 750 priv->bt_enable_flag = bt_cmd.flags; 751 IWL_DEBUG_INFO(priv, "BT coex %s\n", 752 (bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active"); 753 754 if (iwl_dvm_send_cmd_pdu(priv, REPLY_BT_CONFIG, 755 0, sizeof(struct iwl_bt_cmd), &bt_cmd)) 756 IWL_ERR(priv, "failed to send BT Coex Config\n"); 757 } 758 759 /* 760 * iwl_alive_start - called after REPLY_ALIVE notification received 761 * from protocol/runtime uCode (initialization uCode's 762 * Alive gets handled by iwl_init_alive_start()). 763 */ 764 int iwl_alive_start(struct iwl_priv *priv) 765 { 766 int ret = 0; 767 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; 768 769 IWL_DEBUG_INFO(priv, "Runtime Alive received.\n"); 770 771 /* After the ALIVE response, we can send host commands to the uCode */ 772 set_bit(STATUS_ALIVE, &priv->status); 773 774 if (iwl_is_rfkill(priv)) 775 return -ERFKILL; 776 777 if (priv->event_log.ucode_trace) { 778 /* start collecting data now */ 779 mod_timer(&priv->ucode_trace, jiffies); 780 } 781 782 /* download priority table before any calibration request */ 783 if (priv->lib->bt_params && 784 priv->lib->bt_params->advanced_bt_coexist) { 785 /* Configure Bluetooth device coexistence support */ 786 if (priv->lib->bt_params->bt_sco_disable) 787 priv->bt_enable_pspoll = false; 788 else 789 priv->bt_enable_pspoll = true; 790 791 priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK; 792 priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT; 793 priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT; 794 iwlagn_send_advance_bt_config(priv); 795 priv->bt_valid = IWLAGN_BT_VALID_ENABLE_FLAGS; 796 priv->cur_rssi_ctx = NULL; 797 798 iwl_send_prio_tbl(priv); 799 800 /* FIXME: w/a to force change uCode BT state machine */ 801 ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_OPEN, 802 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2); 803 if (ret) 804 return ret; 805 ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_CLOSE, 806 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2); 807 if (ret) 808 return ret; 809 } else if (priv->lib->bt_params) { 810 /* 811 * default is 2-wire BT coexexistence support 812 */ 813 iwl_send_bt_config(priv); 814 } 815 816 /* 817 * Perform runtime calibrations, including DC calibration. 818 */ 819 iwlagn_send_calib_cfg_rt(priv, IWL_CALIB_CFG_DC_IDX); 820 821 ieee80211_wake_queues(priv->hw); 822 823 /* Configure Tx antenna selection based on H/W config */ 824 iwlagn_send_tx_ant_config(priv, priv->nvm_data->valid_tx_ant); 825 826 if (iwl_is_associated_ctx(ctx) && !priv->wowlan) { 827 struct iwl_rxon_cmd *active_rxon = 828 (struct iwl_rxon_cmd *)&ctx->active; 829 /* apply any changes in staging */ 830 ctx->staging.filter_flags |= RXON_FILTER_ASSOC_MSK; 831 active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK; 832 } else { 833 struct iwl_rxon_context *tmp; 834 /* Initialize our rx_config data */ 835 for_each_context(priv, tmp) 836 iwl_connection_init_rx_config(priv, tmp); 837 838 iwlagn_set_rxon_chain(priv, ctx); 839 } 840 841 if (!priv->wowlan) { 842 /* WoWLAN ucode will not reply in the same way, skip it */ 843 iwl_reset_run_time_calib(priv); 844 } 845 846 set_bit(STATUS_READY, &priv->status); 847 848 /* Configure the adapter for unassociated operation */ 849 ret = iwlagn_commit_rxon(priv, ctx); 850 if (ret) 851 return ret; 852 853 /* At this point, the NIC is initialized and operational */ 854 iwl_rf_kill_ct_config(priv); 855 856 IWL_DEBUG_INFO(priv, "ALIVE processing complete.\n"); 857 858 return iwl_power_update_mode(priv, true); 859 } 860 861 /** 862 * iwl_clear_driver_stations - clear knowledge of all stations from driver 863 * @priv: iwl priv struct 864 * 865 * This is called during iwl_down() to make sure that in the case 866 * we're coming there from a hardware restart mac80211 will be 867 * able to reconfigure stations -- if we're getting there in the 868 * normal down flow then the stations will already be cleared. 869 */ 870 static void iwl_clear_driver_stations(struct iwl_priv *priv) 871 { 872 struct iwl_rxon_context *ctx; 873 874 spin_lock_bh(&priv->sta_lock); 875 memset(priv->stations, 0, sizeof(priv->stations)); 876 priv->num_stations = 0; 877 878 priv->ucode_key_table = 0; 879 880 for_each_context(priv, ctx) { 881 /* 882 * Remove all key information that is not stored as part 883 * of station information since mac80211 may not have had 884 * a chance to remove all the keys. When device is 885 * reconfigured by mac80211 after an error all keys will 886 * be reconfigured. 887 */ 888 memset(ctx->wep_keys, 0, sizeof(ctx->wep_keys)); 889 ctx->key_mapping_keys = 0; 890 } 891 892 spin_unlock_bh(&priv->sta_lock); 893 } 894 895 void iwl_down(struct iwl_priv *priv) 896 { 897 int exit_pending; 898 899 IWL_DEBUG_INFO(priv, DRV_NAME " is going down\n"); 900 901 lockdep_assert_held(&priv->mutex); 902 903 iwl_scan_cancel_timeout(priv, 200); 904 905 exit_pending = 906 test_and_set_bit(STATUS_EXIT_PENDING, &priv->status); 907 908 iwl_clear_ucode_stations(priv, NULL); 909 iwl_dealloc_bcast_stations(priv); 910 iwl_clear_driver_stations(priv); 911 912 /* reset BT coex data */ 913 priv->bt_status = 0; 914 priv->cur_rssi_ctx = NULL; 915 priv->bt_is_sco = 0; 916 if (priv->lib->bt_params) 917 priv->bt_traffic_load = 918 priv->lib->bt_params->bt_init_traffic_load; 919 else 920 priv->bt_traffic_load = 0; 921 priv->bt_full_concurrent = false; 922 priv->bt_ci_compliance = 0; 923 924 /* Wipe out the EXIT_PENDING status bit if we are not actually 925 * exiting the module */ 926 if (!exit_pending) 927 clear_bit(STATUS_EXIT_PENDING, &priv->status); 928 929 if (priv->mac80211_registered) 930 ieee80211_stop_queues(priv->hw); 931 932 priv->ucode_loaded = false; 933 iwl_trans_stop_device(priv->trans); 934 935 /* Set num_aux_in_flight must be done after the transport is stopped */ 936 atomic_set(&priv->num_aux_in_flight, 0); 937 938 /* Clear out all status bits but a few that are stable across reset */ 939 priv->status &= test_bit(STATUS_RF_KILL_HW, &priv->status) << 940 STATUS_RF_KILL_HW | 941 test_bit(STATUS_FW_ERROR, &priv->status) << 942 STATUS_FW_ERROR | 943 test_bit(STATUS_EXIT_PENDING, &priv->status) << 944 STATUS_EXIT_PENDING; 945 946 dev_kfree_skb(priv->beacon_skb); 947 priv->beacon_skb = NULL; 948 } 949 950 /***************************************************************************** 951 * 952 * Workqueue callbacks 953 * 954 *****************************************************************************/ 955 956 static void iwl_bg_run_time_calib_work(struct work_struct *work) 957 { 958 struct iwl_priv *priv = container_of(work, struct iwl_priv, 959 run_time_calib_work); 960 961 mutex_lock(&priv->mutex); 962 963 if (test_bit(STATUS_EXIT_PENDING, &priv->status) || 964 test_bit(STATUS_SCANNING, &priv->status)) { 965 mutex_unlock(&priv->mutex); 966 return; 967 } 968 969 if (priv->start_calib) { 970 iwl_chain_noise_calibration(priv); 971 iwl_sensitivity_calibration(priv); 972 } 973 974 mutex_unlock(&priv->mutex); 975 } 976 977 void iwlagn_prepare_restart(struct iwl_priv *priv) 978 { 979 bool bt_full_concurrent; 980 u8 bt_ci_compliance; 981 u8 bt_load; 982 u8 bt_status; 983 bool bt_is_sco; 984 int i; 985 986 lockdep_assert_held(&priv->mutex); 987 988 priv->is_open = 0; 989 990 /* 991 * __iwl_down() will clear the BT status variables, 992 * which is correct, but when we restart we really 993 * want to keep them so restore them afterwards. 994 * 995 * The restart process will later pick them up and 996 * re-configure the hw when we reconfigure the BT 997 * command. 998 */ 999 bt_full_concurrent = priv->bt_full_concurrent; 1000 bt_ci_compliance = priv->bt_ci_compliance; 1001 bt_load = priv->bt_traffic_load; 1002 bt_status = priv->bt_status; 1003 bt_is_sco = priv->bt_is_sco; 1004 1005 iwl_down(priv); 1006 1007 priv->bt_full_concurrent = bt_full_concurrent; 1008 priv->bt_ci_compliance = bt_ci_compliance; 1009 priv->bt_traffic_load = bt_load; 1010 priv->bt_status = bt_status; 1011 priv->bt_is_sco = bt_is_sco; 1012 1013 /* reset aggregation queues */ 1014 for (i = IWLAGN_FIRST_AMPDU_QUEUE; i < IWL_MAX_HW_QUEUES; i++) 1015 priv->queue_to_mac80211[i] = IWL_INVALID_MAC80211_QUEUE; 1016 /* and stop counts */ 1017 for (i = 0; i < IWL_MAX_HW_QUEUES; i++) 1018 atomic_set(&priv->queue_stop_count[i], 0); 1019 1020 memset(priv->agg_q_alloc, 0, sizeof(priv->agg_q_alloc)); 1021 } 1022 1023 static void iwl_bg_restart(struct work_struct *data) 1024 { 1025 struct iwl_priv *priv = container_of(data, struct iwl_priv, restart); 1026 1027 if (test_bit(STATUS_EXIT_PENDING, &priv->status)) 1028 return; 1029 1030 if (test_and_clear_bit(STATUS_FW_ERROR, &priv->status)) { 1031 mutex_lock(&priv->mutex); 1032 iwlagn_prepare_restart(priv); 1033 mutex_unlock(&priv->mutex); 1034 iwl_cancel_deferred_work(priv); 1035 if (priv->mac80211_registered) 1036 ieee80211_restart_hw(priv->hw); 1037 else 1038 IWL_ERR(priv, 1039 "Cannot request restart before registering with mac80211\n"); 1040 } else { 1041 WARN_ON(1); 1042 } 1043 } 1044 1045 /***************************************************************************** 1046 * 1047 * driver setup and teardown 1048 * 1049 *****************************************************************************/ 1050 1051 static void iwl_setup_deferred_work(struct iwl_priv *priv) 1052 { 1053 priv->workqueue = alloc_ordered_workqueue(DRV_NAME, 0); 1054 1055 INIT_WORK(&priv->restart, iwl_bg_restart); 1056 INIT_WORK(&priv->beacon_update, iwl_bg_beacon_update); 1057 INIT_WORK(&priv->run_time_calib_work, iwl_bg_run_time_calib_work); 1058 INIT_WORK(&priv->tx_flush, iwl_bg_tx_flush); 1059 INIT_WORK(&priv->bt_full_concurrency, iwl_bg_bt_full_concurrency); 1060 INIT_WORK(&priv->bt_runtime_config, iwl_bg_bt_runtime_config); 1061 1062 iwl_setup_scan_deferred_work(priv); 1063 1064 if (priv->lib->bt_params) 1065 iwlagn_bt_setup_deferred_work(priv); 1066 1067 timer_setup(&priv->statistics_periodic, iwl_bg_statistics_periodic, 0); 1068 1069 timer_setup(&priv->ucode_trace, iwl_bg_ucode_trace, 0); 1070 } 1071 1072 void iwl_cancel_deferred_work(struct iwl_priv *priv) 1073 { 1074 if (priv->lib->bt_params) 1075 iwlagn_bt_cancel_deferred_work(priv); 1076 1077 cancel_work_sync(&priv->run_time_calib_work); 1078 cancel_work_sync(&priv->beacon_update); 1079 1080 iwl_cancel_scan_deferred_work(priv); 1081 1082 cancel_work_sync(&priv->bt_full_concurrency); 1083 cancel_work_sync(&priv->bt_runtime_config); 1084 1085 del_timer_sync(&priv->statistics_periodic); 1086 del_timer_sync(&priv->ucode_trace); 1087 } 1088 1089 static int iwl_init_drv(struct iwl_priv *priv) 1090 { 1091 spin_lock_init(&priv->sta_lock); 1092 1093 mutex_init(&priv->mutex); 1094 1095 INIT_LIST_HEAD(&priv->calib_results); 1096 1097 priv->band = NL80211_BAND_2GHZ; 1098 1099 priv->plcp_delta_threshold = priv->lib->plcp_delta_threshold; 1100 1101 priv->iw_mode = NL80211_IFTYPE_STATION; 1102 priv->current_ht_config.smps = IEEE80211_SMPS_STATIC; 1103 priv->missed_beacon_threshold = IWL_MISSED_BEACON_THRESHOLD_DEF; 1104 priv->agg_tids_count = 0; 1105 1106 priv->rx_statistics_jiffies = jiffies; 1107 1108 /* Choose which receivers/antennas to use */ 1109 iwlagn_set_rxon_chain(priv, &priv->contexts[IWL_RXON_CTX_BSS]); 1110 1111 iwl_init_scan_params(priv); 1112 1113 /* init bt coex */ 1114 if (priv->lib->bt_params && 1115 priv->lib->bt_params->advanced_bt_coexist) { 1116 priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT; 1117 priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT; 1118 priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK; 1119 priv->bt_on_thresh = BT_ON_THRESHOLD_DEF; 1120 priv->bt_duration = BT_DURATION_LIMIT_DEF; 1121 priv->dynamic_frag_thresh = BT_FRAG_THRESHOLD_DEF; 1122 } 1123 1124 return 0; 1125 } 1126 1127 static void iwl_uninit_drv(struct iwl_priv *priv) 1128 { 1129 kfree(priv->scan_cmd); 1130 kfree(priv->beacon_cmd); 1131 kfree(rcu_dereference_raw(priv->noa_data)); 1132 iwl_calib_free_results(priv); 1133 #ifdef CONFIG_IWLWIFI_DEBUGFS 1134 kfree(priv->wowlan_sram); 1135 #endif 1136 } 1137 1138 static void iwl_set_hw_params(struct iwl_priv *priv) 1139 { 1140 if (priv->cfg->ht_params) 1141 priv->hw_params.use_rts_for_aggregation = 1142 priv->cfg->ht_params->use_rts_for_aggregation; 1143 1144 /* Device-specific setup */ 1145 priv->lib->set_hw_params(priv); 1146 } 1147 1148 1149 1150 /* show what optional capabilities we have */ 1151 static void iwl_option_config(struct iwl_priv *priv) 1152 { 1153 #ifdef CONFIG_IWLWIFI_DEBUG 1154 IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUG enabled\n"); 1155 #else 1156 IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUG disabled\n"); 1157 #endif 1158 1159 #ifdef CONFIG_IWLWIFI_DEBUGFS 1160 IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUGFS enabled\n"); 1161 #else 1162 IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUGFS disabled\n"); 1163 #endif 1164 1165 #ifdef CONFIG_IWLWIFI_DEVICE_TRACING 1166 IWL_INFO(priv, "CONFIG_IWLWIFI_DEVICE_TRACING enabled\n"); 1167 #else 1168 IWL_INFO(priv, "CONFIG_IWLWIFI_DEVICE_TRACING disabled\n"); 1169 #endif 1170 } 1171 1172 static int iwl_eeprom_init_hw_params(struct iwl_priv *priv) 1173 { 1174 struct iwl_nvm_data *data = priv->nvm_data; 1175 1176 if (data->sku_cap_11n_enable && 1177 !priv->cfg->ht_params) { 1178 IWL_ERR(priv, "Invalid 11n configuration\n"); 1179 return -EINVAL; 1180 } 1181 1182 if (!data->sku_cap_11n_enable && !data->sku_cap_band_24ghz_enable && 1183 !data->sku_cap_band_52ghz_enable) { 1184 IWL_ERR(priv, "Invalid device sku\n"); 1185 return -EINVAL; 1186 } 1187 1188 IWL_DEBUG_INFO(priv, 1189 "Device SKU: 24GHz %s %s, 52GHz %s %s, 11.n %s %s\n", 1190 data->sku_cap_band_24ghz_enable ? "" : "NOT", "enabled", 1191 data->sku_cap_band_52ghz_enable ? "" : "NOT", "enabled", 1192 data->sku_cap_11n_enable ? "" : "NOT", "enabled"); 1193 1194 priv->hw_params.tx_chains_num = 1195 num_of_ant(data->valid_tx_ant); 1196 if (priv->cfg->rx_with_siso_diversity) 1197 priv->hw_params.rx_chains_num = 1; 1198 else 1199 priv->hw_params.rx_chains_num = 1200 num_of_ant(data->valid_rx_ant); 1201 1202 IWL_DEBUG_INFO(priv, "Valid Tx ant: 0x%X, Valid Rx ant: 0x%X\n", 1203 data->valid_tx_ant, 1204 data->valid_rx_ant); 1205 1206 return 0; 1207 } 1208 1209 static int iwl_nvm_check_version(struct iwl_nvm_data *data, 1210 struct iwl_trans *trans) 1211 { 1212 if (data->nvm_version >= trans->cfg->nvm_ver || 1213 data->calib_version >= trans->cfg->nvm_calib_ver) { 1214 IWL_DEBUG_INFO(trans, "device EEPROM VER=0x%x, CALIB=0x%x\n", 1215 data->nvm_version, data->calib_version); 1216 return 0; 1217 } 1218 1219 IWL_ERR(trans, 1220 "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n", 1221 data->nvm_version, trans->cfg->nvm_ver, 1222 data->calib_version, trans->cfg->nvm_calib_ver); 1223 return -EINVAL; 1224 } 1225 1226 static struct iwl_op_mode *iwl_op_mode_dvm_start(struct iwl_trans *trans, 1227 const struct iwl_cfg *cfg, 1228 const struct iwl_fw *fw, 1229 struct dentry *dbgfs_dir) 1230 { 1231 struct iwl_priv *priv; 1232 struct ieee80211_hw *hw; 1233 struct iwl_op_mode *op_mode; 1234 u16 num_mac; 1235 u32 ucode_flags; 1236 struct iwl_trans_config trans_cfg = {}; 1237 static const u8 no_reclaim_cmds[] = { 1238 REPLY_RX_PHY_CMD, 1239 REPLY_RX_MPDU_CMD, 1240 REPLY_COMPRESSED_BA, 1241 STATISTICS_NOTIFICATION, 1242 REPLY_TX, 1243 }; 1244 int i; 1245 1246 /************************ 1247 * 1. Allocating HW data 1248 ************************/ 1249 hw = iwl_alloc_all(); 1250 if (!hw) { 1251 pr_err("%s: Cannot allocate network device\n", trans->name); 1252 goto out; 1253 } 1254 1255 op_mode = hw->priv; 1256 op_mode->ops = &iwl_dvm_ops; 1257 priv = IWL_OP_MODE_GET_DVM(op_mode); 1258 priv->trans = trans; 1259 priv->dev = trans->dev; 1260 priv->cfg = cfg; 1261 priv->fw = fw; 1262 1263 switch (priv->trans->trans_cfg->device_family) { 1264 case IWL_DEVICE_FAMILY_1000: 1265 case IWL_DEVICE_FAMILY_100: 1266 priv->lib = &iwl_dvm_1000_cfg; 1267 break; 1268 case IWL_DEVICE_FAMILY_2000: 1269 priv->lib = &iwl_dvm_2000_cfg; 1270 break; 1271 case IWL_DEVICE_FAMILY_105: 1272 priv->lib = &iwl_dvm_105_cfg; 1273 break; 1274 case IWL_DEVICE_FAMILY_2030: 1275 case IWL_DEVICE_FAMILY_135: 1276 priv->lib = &iwl_dvm_2030_cfg; 1277 break; 1278 case IWL_DEVICE_FAMILY_5000: 1279 priv->lib = &iwl_dvm_5000_cfg; 1280 break; 1281 case IWL_DEVICE_FAMILY_5150: 1282 priv->lib = &iwl_dvm_5150_cfg; 1283 break; 1284 case IWL_DEVICE_FAMILY_6000: 1285 case IWL_DEVICE_FAMILY_6000i: 1286 priv->lib = &iwl_dvm_6000_cfg; 1287 break; 1288 case IWL_DEVICE_FAMILY_6005: 1289 priv->lib = &iwl_dvm_6005_cfg; 1290 break; 1291 case IWL_DEVICE_FAMILY_6050: 1292 case IWL_DEVICE_FAMILY_6150: 1293 priv->lib = &iwl_dvm_6050_cfg; 1294 break; 1295 case IWL_DEVICE_FAMILY_6030: 1296 priv->lib = &iwl_dvm_6030_cfg; 1297 break; 1298 default: 1299 break; 1300 } 1301 1302 if (WARN_ON(!priv->lib)) 1303 goto out_free_hw; 1304 1305 /* 1306 * Populate the state variables that the transport layer needs 1307 * to know about. 1308 */ 1309 trans_cfg.op_mode = op_mode; 1310 trans_cfg.no_reclaim_cmds = no_reclaim_cmds; 1311 trans_cfg.n_no_reclaim_cmds = ARRAY_SIZE(no_reclaim_cmds); 1312 1313 switch (iwlwifi_mod_params.amsdu_size) { 1314 case IWL_AMSDU_DEF: 1315 case IWL_AMSDU_4K: 1316 trans_cfg.rx_buf_size = IWL_AMSDU_4K; 1317 break; 1318 case IWL_AMSDU_8K: 1319 trans_cfg.rx_buf_size = IWL_AMSDU_8K; 1320 break; 1321 case IWL_AMSDU_12K: 1322 default: 1323 trans_cfg.rx_buf_size = IWL_AMSDU_4K; 1324 pr_err("Unsupported amsdu_size: %d\n", 1325 iwlwifi_mod_params.amsdu_size); 1326 } 1327 1328 trans_cfg.command_groups = iwl_dvm_groups; 1329 trans_cfg.command_groups_size = ARRAY_SIZE(iwl_dvm_groups); 1330 1331 trans_cfg.cmd_fifo = IWLAGN_CMD_FIFO_NUM; 1332 trans_cfg.cb_data_offs = offsetof(struct ieee80211_tx_info, 1333 driver_data[2]); 1334 1335 WARN_ON(sizeof(priv->transport_queue_stop) * BITS_PER_BYTE < 1336 priv->trans->trans_cfg->base_params->num_of_queues); 1337 1338 ucode_flags = fw->ucode_capa.flags; 1339 1340 if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN) { 1341 priv->sta_key_max_num = STA_KEY_MAX_NUM_PAN; 1342 trans_cfg.cmd_queue = IWL_IPAN_CMD_QUEUE_NUM; 1343 } else { 1344 priv->sta_key_max_num = STA_KEY_MAX_NUM; 1345 trans_cfg.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM; 1346 } 1347 1348 /* Configure transport layer */ 1349 iwl_trans_configure(priv->trans, &trans_cfg); 1350 1351 trans->rx_mpdu_cmd = REPLY_RX_MPDU_CMD; 1352 trans->rx_mpdu_cmd_hdr_size = sizeof(struct iwl_rx_mpdu_res_start); 1353 trans->command_groups = trans_cfg.command_groups; 1354 trans->command_groups_size = trans_cfg.command_groups_size; 1355 1356 /* At this point both hw and priv are allocated. */ 1357 1358 SET_IEEE80211_DEV(priv->hw, priv->trans->dev); 1359 1360 iwl_option_config(priv); 1361 1362 IWL_DEBUG_INFO(priv, "*** LOAD DRIVER ***\n"); 1363 1364 /* bt channel inhibition enabled*/ 1365 priv->bt_ch_announce = true; 1366 IWL_DEBUG_INFO(priv, "BT channel inhibition is %s\n", 1367 (priv->bt_ch_announce) ? "On" : "Off"); 1368 1369 /* these spin locks will be used in apm_ops.init and EEPROM access 1370 * we should init now 1371 */ 1372 spin_lock_init(&priv->statistics.lock); 1373 1374 /*********************** 1375 * 2. Read REV register 1376 ***********************/ 1377 IWL_INFO(priv, "Detected %s, REV=0x%X\n", 1378 priv->trans->name, priv->trans->hw_rev); 1379 1380 if (iwl_trans_start_hw(priv->trans)) 1381 goto out_free_hw; 1382 1383 /* Read the EEPROM */ 1384 if (iwl_read_eeprom(priv->trans, &priv->eeprom_blob, 1385 &priv->eeprom_blob_size)) { 1386 IWL_ERR(priv, "Unable to init EEPROM\n"); 1387 goto out_free_hw; 1388 } 1389 1390 /* Reset chip to save power until we load uCode during "up". */ 1391 iwl_trans_stop_device(priv->trans); 1392 1393 priv->nvm_data = iwl_parse_eeprom_data(priv->trans, priv->cfg, 1394 priv->eeprom_blob, 1395 priv->eeprom_blob_size); 1396 if (!priv->nvm_data) 1397 goto out_free_eeprom_blob; 1398 1399 if (iwl_nvm_check_version(priv->nvm_data, priv->trans)) 1400 goto out_free_eeprom; 1401 1402 if (iwl_eeprom_init_hw_params(priv)) 1403 goto out_free_eeprom; 1404 1405 /* extract MAC Address */ 1406 memcpy(priv->addresses[0].addr, priv->nvm_data->hw_addr, ETH_ALEN); 1407 IWL_DEBUG_INFO(priv, "MAC address: %pM\n", priv->addresses[0].addr); 1408 priv->hw->wiphy->addresses = priv->addresses; 1409 priv->hw->wiphy->n_addresses = 1; 1410 num_mac = priv->nvm_data->n_hw_addrs; 1411 if (num_mac > 1) { 1412 memcpy(priv->addresses[1].addr, priv->addresses[0].addr, 1413 ETH_ALEN); 1414 priv->addresses[1].addr[5]++; 1415 priv->hw->wiphy->n_addresses++; 1416 } 1417 1418 /************************ 1419 * 4. Setup HW constants 1420 ************************/ 1421 iwl_set_hw_params(priv); 1422 1423 if (!(priv->nvm_data->sku_cap_ipan_enable)) { 1424 IWL_DEBUG_INFO(priv, "Your EEPROM disabled PAN\n"); 1425 ucode_flags &= ~IWL_UCODE_TLV_FLAGS_PAN; 1426 /* 1427 * if not PAN, then don't support P2P -- might be a uCode 1428 * packaging bug or due to the eeprom check above 1429 */ 1430 priv->sta_key_max_num = STA_KEY_MAX_NUM; 1431 trans_cfg.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM; 1432 1433 /* Configure transport layer again*/ 1434 iwl_trans_configure(priv->trans, &trans_cfg); 1435 } 1436 1437 /******************* 1438 * 5. Setup priv 1439 *******************/ 1440 for (i = 0; i < IWL_MAX_HW_QUEUES; i++) { 1441 priv->queue_to_mac80211[i] = IWL_INVALID_MAC80211_QUEUE; 1442 if (i < IWLAGN_FIRST_AMPDU_QUEUE && 1443 i != IWL_DEFAULT_CMD_QUEUE_NUM && 1444 i != IWL_IPAN_CMD_QUEUE_NUM) 1445 priv->queue_to_mac80211[i] = i; 1446 atomic_set(&priv->queue_stop_count[i], 0); 1447 } 1448 1449 if (iwl_init_drv(priv)) 1450 goto out_free_eeprom; 1451 1452 /* At this point both hw and priv are initialized. */ 1453 1454 /******************** 1455 * 6. Setup services 1456 ********************/ 1457 iwl_setup_deferred_work(priv); 1458 iwl_setup_rx_handlers(priv); 1459 1460 iwl_power_initialize(priv); 1461 iwl_tt_initialize(priv); 1462 1463 snprintf(priv->hw->wiphy->fw_version, 1464 sizeof(priv->hw->wiphy->fw_version), 1465 "%.31s", fw->fw_version); 1466 1467 priv->new_scan_threshold_behaviour = 1468 !!(ucode_flags & IWL_UCODE_TLV_FLAGS_NEWSCAN); 1469 1470 priv->phy_calib_chain_noise_reset_cmd = 1471 fw->ucode_capa.standard_phy_calibration_size; 1472 priv->phy_calib_chain_noise_gain_cmd = 1473 fw->ucode_capa.standard_phy_calibration_size + 1; 1474 1475 /* initialize all valid contexts */ 1476 iwl_init_context(priv, ucode_flags); 1477 1478 /************************************************** 1479 * This is still part of probe() in a sense... 1480 * 1481 * 7. Setup and register with mac80211 and debugfs 1482 **************************************************/ 1483 if (iwlagn_mac_setup_register(priv, &fw->ucode_capa)) 1484 goto out_destroy_workqueue; 1485 1486 iwl_dbgfs_register(priv, dbgfs_dir); 1487 1488 return op_mode; 1489 1490 out_destroy_workqueue: 1491 iwl_tt_exit(priv); 1492 iwl_cancel_deferred_work(priv); 1493 destroy_workqueue(priv->workqueue); 1494 priv->workqueue = NULL; 1495 iwl_uninit_drv(priv); 1496 out_free_eeprom_blob: 1497 kfree(priv->eeprom_blob); 1498 out_free_eeprom: 1499 kfree(priv->nvm_data); 1500 out_free_hw: 1501 ieee80211_free_hw(priv->hw); 1502 out: 1503 op_mode = NULL; 1504 return op_mode; 1505 } 1506 1507 static void iwl_op_mode_dvm_stop(struct iwl_op_mode *op_mode) 1508 { 1509 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode); 1510 1511 IWL_DEBUG_INFO(priv, "*** UNLOAD DRIVER ***\n"); 1512 1513 iwlagn_mac_unregister(priv); 1514 1515 iwl_tt_exit(priv); 1516 1517 kfree(priv->eeprom_blob); 1518 kfree(priv->nvm_data); 1519 1520 /*netif_stop_queue(dev); */ 1521 1522 /* ieee80211_unregister_hw calls iwlagn_mac_stop, which flushes 1523 * priv->workqueue... so we can't take down the workqueue 1524 * until now... */ 1525 destroy_workqueue(priv->workqueue); 1526 priv->workqueue = NULL; 1527 1528 iwl_uninit_drv(priv); 1529 1530 dev_kfree_skb(priv->beacon_skb); 1531 1532 iwl_trans_op_mode_leave(priv->trans); 1533 ieee80211_free_hw(priv->hw); 1534 } 1535 1536 static const char * const desc_lookup_text[] = { 1537 "OK", 1538 "FAIL", 1539 "BAD_PARAM", 1540 "BAD_CHECKSUM", 1541 "NMI_INTERRUPT_WDG", 1542 "SYSASSERT", 1543 "FATAL_ERROR", 1544 "BAD_COMMAND", 1545 "HW_ERROR_TUNE_LOCK", 1546 "HW_ERROR_TEMPERATURE", 1547 "ILLEGAL_CHAN_FREQ", 1548 "VCC_NOT_STABLE", 1549 "FH_ERROR", 1550 "NMI_INTERRUPT_HOST", 1551 "NMI_INTERRUPT_ACTION_PT", 1552 "NMI_INTERRUPT_UNKNOWN", 1553 "UCODE_VERSION_MISMATCH", 1554 "HW_ERROR_ABS_LOCK", 1555 "HW_ERROR_CAL_LOCK_FAIL", 1556 "NMI_INTERRUPT_INST_ACTION_PT", 1557 "NMI_INTERRUPT_DATA_ACTION_PT", 1558 "NMI_TRM_HW_ER", 1559 "NMI_INTERRUPT_TRM", 1560 "NMI_INTERRUPT_BREAK_POINT", 1561 "DEBUG_0", 1562 "DEBUG_1", 1563 "DEBUG_2", 1564 "DEBUG_3", 1565 }; 1566 1567 static struct { char *name; u8 num; } advanced_lookup[] = { 1568 { "NMI_INTERRUPT_WDG", 0x34 }, 1569 { "SYSASSERT", 0x35 }, 1570 { "UCODE_VERSION_MISMATCH", 0x37 }, 1571 { "BAD_COMMAND", 0x38 }, 1572 { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C }, 1573 { "FATAL_ERROR", 0x3D }, 1574 { "NMI_TRM_HW_ERR", 0x46 }, 1575 { "NMI_INTERRUPT_TRM", 0x4C }, 1576 { "NMI_INTERRUPT_BREAK_POINT", 0x54 }, 1577 { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C }, 1578 { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 }, 1579 { "NMI_INTERRUPT_HOST", 0x66 }, 1580 { "NMI_INTERRUPT_ACTION_PT", 0x7C }, 1581 { "NMI_INTERRUPT_UNKNOWN", 0x84 }, 1582 { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 }, 1583 { "ADVANCED_SYSASSERT", 0 }, 1584 }; 1585 1586 static const char *desc_lookup(u32 num) 1587 { 1588 int i; 1589 int max = ARRAY_SIZE(desc_lookup_text); 1590 1591 if (num < max) 1592 return desc_lookup_text[num]; 1593 1594 max = ARRAY_SIZE(advanced_lookup) - 1; 1595 for (i = 0; i < max; i++) { 1596 if (advanced_lookup[i].num == num) 1597 break; 1598 } 1599 return advanced_lookup[i].name; 1600 } 1601 1602 #define ERROR_START_OFFSET (1 * sizeof(u32)) 1603 #define ERROR_ELEM_SIZE (7 * sizeof(u32)) 1604 1605 static void iwl_dump_nic_error_log(struct iwl_priv *priv) 1606 { 1607 struct iwl_trans *trans = priv->trans; 1608 u32 base; 1609 struct iwl_error_event_table table; 1610 1611 base = priv->device_pointers.error_event_table; 1612 if (priv->cur_ucode == IWL_UCODE_INIT) { 1613 if (!base) 1614 base = priv->fw->init_errlog_ptr; 1615 } else { 1616 if (!base) 1617 base = priv->fw->inst_errlog_ptr; 1618 } 1619 1620 if (!iwlagn_hw_valid_rtc_data_addr(base)) { 1621 IWL_ERR(priv, 1622 "Not valid error log pointer 0x%08X for %s uCode\n", 1623 base, 1624 (priv->cur_ucode == IWL_UCODE_INIT) 1625 ? "Init" : "RT"); 1626 return; 1627 } 1628 1629 /*TODO: Update dbgfs with ISR error stats obtained below */ 1630 iwl_trans_read_mem_bytes(trans, base, &table, sizeof(table)); 1631 1632 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { 1633 IWL_ERR(trans, "Start IWL Error Log Dump:\n"); 1634 IWL_ERR(trans, "Status: 0x%08lX, count: %d\n", 1635 priv->status, table.valid); 1636 } 1637 1638 IWL_ERR(priv, "0x%08X | %-28s\n", table.error_id, 1639 desc_lookup(table.error_id)); 1640 IWL_ERR(priv, "0x%08X | uPc\n", table.pc); 1641 IWL_ERR(priv, "0x%08X | branchlink1\n", table.blink1); 1642 IWL_ERR(priv, "0x%08X | branchlink2\n", table.blink2); 1643 IWL_ERR(priv, "0x%08X | interruptlink1\n", table.ilink1); 1644 IWL_ERR(priv, "0x%08X | interruptlink2\n", table.ilink2); 1645 IWL_ERR(priv, "0x%08X | data1\n", table.data1); 1646 IWL_ERR(priv, "0x%08X | data2\n", table.data2); 1647 IWL_ERR(priv, "0x%08X | line\n", table.line); 1648 IWL_ERR(priv, "0x%08X | beacon time\n", table.bcon_time); 1649 IWL_ERR(priv, "0x%08X | tsf low\n", table.tsf_low); 1650 IWL_ERR(priv, "0x%08X | tsf hi\n", table.tsf_hi); 1651 IWL_ERR(priv, "0x%08X | time gp1\n", table.gp1); 1652 IWL_ERR(priv, "0x%08X | time gp2\n", table.gp2); 1653 IWL_ERR(priv, "0x%08X | time gp3\n", table.gp3); 1654 IWL_ERR(priv, "0x%08X | uCode version\n", table.ucode_ver); 1655 IWL_ERR(priv, "0x%08X | hw version\n", table.hw_ver); 1656 IWL_ERR(priv, "0x%08X | board version\n", table.brd_ver); 1657 IWL_ERR(priv, "0x%08X | hcmd\n", table.hcmd); 1658 IWL_ERR(priv, "0x%08X | isr0\n", table.isr0); 1659 IWL_ERR(priv, "0x%08X | isr1\n", table.isr1); 1660 IWL_ERR(priv, "0x%08X | isr2\n", table.isr2); 1661 IWL_ERR(priv, "0x%08X | isr3\n", table.isr3); 1662 IWL_ERR(priv, "0x%08X | isr4\n", table.isr4); 1663 IWL_ERR(priv, "0x%08X | isr_pref\n", table.isr_pref); 1664 IWL_ERR(priv, "0x%08X | wait_event\n", table.wait_event); 1665 IWL_ERR(priv, "0x%08X | l2p_control\n", table.l2p_control); 1666 IWL_ERR(priv, "0x%08X | l2p_duration\n", table.l2p_duration); 1667 IWL_ERR(priv, "0x%08X | l2p_mhvalid\n", table.l2p_mhvalid); 1668 IWL_ERR(priv, "0x%08X | l2p_addr_match\n", table.l2p_addr_match); 1669 IWL_ERR(priv, "0x%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel); 1670 IWL_ERR(priv, "0x%08X | timestamp\n", table.u_timestamp); 1671 IWL_ERR(priv, "0x%08X | flow_handler\n", table.flow_handler); 1672 } 1673 1674 #define EVENT_START_OFFSET (4 * sizeof(u32)) 1675 1676 /* 1677 * iwl_print_event_log - Dump error event log to syslog 1678 */ 1679 static int iwl_print_event_log(struct iwl_priv *priv, u32 start_idx, 1680 u32 num_events, u32 mode, 1681 int pos, char **buf, size_t bufsz) 1682 { 1683 u32 i; 1684 u32 base; /* SRAM byte address of event log header */ 1685 u32 event_size; /* 2 u32s, or 3 u32s if timestamp recorded */ 1686 u32 ptr; /* SRAM byte address of log data */ 1687 u32 ev, time, data; /* event log data */ 1688 1689 struct iwl_trans *trans = priv->trans; 1690 1691 if (num_events == 0) 1692 return pos; 1693 1694 base = priv->device_pointers.log_event_table; 1695 if (priv->cur_ucode == IWL_UCODE_INIT) { 1696 if (!base) 1697 base = priv->fw->init_evtlog_ptr; 1698 } else { 1699 if (!base) 1700 base = priv->fw->inst_evtlog_ptr; 1701 } 1702 1703 if (mode == 0) 1704 event_size = 2 * sizeof(u32); 1705 else 1706 event_size = 3 * sizeof(u32); 1707 1708 ptr = base + EVENT_START_OFFSET + (start_idx * event_size); 1709 1710 /* Make sure device is powered up for SRAM reads */ 1711 if (!iwl_trans_grab_nic_access(trans)) 1712 return pos; 1713 1714 /* Set starting address; reads will auto-increment */ 1715 iwl_write32(trans, HBUS_TARG_MEM_RADDR, ptr); 1716 1717 /* "time" is actually "data" for mode 0 (no timestamp). 1718 * place event id # at far right for easier visual parsing. */ 1719 for (i = 0; i < num_events; i++) { 1720 ev = iwl_read32(trans, HBUS_TARG_MEM_RDAT); 1721 time = iwl_read32(trans, HBUS_TARG_MEM_RDAT); 1722 if (mode == 0) { 1723 /* data, ev */ 1724 if (bufsz) { 1725 pos += scnprintf(*buf + pos, bufsz - pos, 1726 "EVT_LOG:0x%08x:%04u\n", 1727 time, ev); 1728 } else { 1729 trace_iwlwifi_dev_ucode_event(trans->dev, 0, 1730 time, ev); 1731 IWL_ERR(priv, "EVT_LOG:0x%08x:%04u\n", 1732 time, ev); 1733 } 1734 } else { 1735 data = iwl_read32(trans, HBUS_TARG_MEM_RDAT); 1736 if (bufsz) { 1737 pos += scnprintf(*buf + pos, bufsz - pos, 1738 "EVT_LOGT:%010u:0x%08x:%04u\n", 1739 time, data, ev); 1740 } else { 1741 IWL_ERR(priv, "EVT_LOGT:%010u:0x%08x:%04u\n", 1742 time, data, ev); 1743 trace_iwlwifi_dev_ucode_event(trans->dev, time, 1744 data, ev); 1745 } 1746 } 1747 } 1748 1749 /* Allow device to power down */ 1750 iwl_trans_release_nic_access(trans); 1751 return pos; 1752 } 1753 1754 /* 1755 * iwl_print_last_event_logs - Dump the newest # of event log to syslog 1756 */ 1757 static int iwl_print_last_event_logs(struct iwl_priv *priv, u32 capacity, 1758 u32 num_wraps, u32 next_entry, 1759 u32 size, u32 mode, 1760 int pos, char **buf, size_t bufsz) 1761 { 1762 /* 1763 * display the newest DEFAULT_LOG_ENTRIES entries 1764 * i.e the entries just before the next ont that uCode would fill. 1765 */ 1766 if (num_wraps) { 1767 if (next_entry < size) { 1768 pos = iwl_print_event_log(priv, 1769 capacity - (size - next_entry), 1770 size - next_entry, mode, 1771 pos, buf, bufsz); 1772 pos = iwl_print_event_log(priv, 0, 1773 next_entry, mode, 1774 pos, buf, bufsz); 1775 } else 1776 pos = iwl_print_event_log(priv, next_entry - size, 1777 size, mode, pos, buf, bufsz); 1778 } else { 1779 if (next_entry < size) { 1780 pos = iwl_print_event_log(priv, 0, next_entry, 1781 mode, pos, buf, bufsz); 1782 } else { 1783 pos = iwl_print_event_log(priv, next_entry - size, 1784 size, mode, pos, buf, bufsz); 1785 } 1786 } 1787 return pos; 1788 } 1789 1790 #define DEFAULT_DUMP_EVENT_LOG_ENTRIES (20) 1791 1792 int iwl_dump_nic_event_log(struct iwl_priv *priv, bool full_log, 1793 char **buf) 1794 { 1795 u32 base; /* SRAM byte address of event log header */ 1796 u32 capacity; /* event log capacity in # entries */ 1797 u32 mode; /* 0 - no timestamp, 1 - timestamp recorded */ 1798 u32 num_wraps; /* # times uCode wrapped to top of log */ 1799 u32 next_entry; /* index of next entry to be written by uCode */ 1800 u32 size; /* # entries that we'll print */ 1801 u32 logsize; 1802 int pos = 0; 1803 size_t bufsz = 0; 1804 struct iwl_trans *trans = priv->trans; 1805 1806 base = priv->device_pointers.log_event_table; 1807 if (priv->cur_ucode == IWL_UCODE_INIT) { 1808 logsize = priv->fw->init_evtlog_size; 1809 if (!base) 1810 base = priv->fw->init_evtlog_ptr; 1811 } else { 1812 logsize = priv->fw->inst_evtlog_size; 1813 if (!base) 1814 base = priv->fw->inst_evtlog_ptr; 1815 } 1816 1817 if (!iwlagn_hw_valid_rtc_data_addr(base)) { 1818 IWL_ERR(priv, 1819 "Invalid event log pointer 0x%08X for %s uCode\n", 1820 base, 1821 (priv->cur_ucode == IWL_UCODE_INIT) 1822 ? "Init" : "RT"); 1823 return -EINVAL; 1824 } 1825 1826 /* event log header */ 1827 capacity = iwl_trans_read_mem32(trans, base); 1828 mode = iwl_trans_read_mem32(trans, base + (1 * sizeof(u32))); 1829 num_wraps = iwl_trans_read_mem32(trans, base + (2 * sizeof(u32))); 1830 next_entry = iwl_trans_read_mem32(trans, base + (3 * sizeof(u32))); 1831 1832 if (capacity > logsize) { 1833 IWL_ERR(priv, "Log capacity %d is bogus, limit to %d " 1834 "entries\n", capacity, logsize); 1835 capacity = logsize; 1836 } 1837 1838 if (next_entry > logsize) { 1839 IWL_ERR(priv, "Log write index %d is bogus, limit to %d\n", 1840 next_entry, logsize); 1841 next_entry = logsize; 1842 } 1843 1844 size = num_wraps ? capacity : next_entry; 1845 1846 /* bail out if nothing in log */ 1847 if (size == 0) { 1848 IWL_ERR(trans, "Start IWL Event Log Dump: nothing in log\n"); 1849 return pos; 1850 } 1851 1852 if (!(iwl_have_debug_level(IWL_DL_FW)) && !full_log) 1853 size = (size > DEFAULT_DUMP_EVENT_LOG_ENTRIES) 1854 ? DEFAULT_DUMP_EVENT_LOG_ENTRIES : size; 1855 IWL_ERR(priv, "Start IWL Event Log Dump: display last %u entries\n", 1856 size); 1857 1858 #ifdef CONFIG_IWLWIFI_DEBUG 1859 if (buf) { 1860 if (full_log) 1861 bufsz = capacity * 48; 1862 else 1863 bufsz = size * 48; 1864 *buf = kmalloc(bufsz, GFP_KERNEL); 1865 if (!*buf) 1866 return -ENOMEM; 1867 } 1868 if (iwl_have_debug_level(IWL_DL_FW) || full_log) { 1869 /* 1870 * if uCode has wrapped back to top of log, 1871 * start at the oldest entry, 1872 * i.e the next one that uCode would fill. 1873 */ 1874 if (num_wraps) 1875 pos = iwl_print_event_log(priv, next_entry, 1876 capacity - next_entry, mode, 1877 pos, buf, bufsz); 1878 /* (then/else) start at top of log */ 1879 pos = iwl_print_event_log(priv, 0, 1880 next_entry, mode, pos, buf, bufsz); 1881 } else 1882 pos = iwl_print_last_event_logs(priv, capacity, num_wraps, 1883 next_entry, size, mode, 1884 pos, buf, bufsz); 1885 #else 1886 pos = iwl_print_last_event_logs(priv, capacity, num_wraps, 1887 next_entry, size, mode, 1888 pos, buf, bufsz); 1889 #endif 1890 return pos; 1891 } 1892 1893 static void iwlagn_fw_error(struct iwl_priv *priv, bool ondemand) 1894 { 1895 unsigned int reload_msec; 1896 unsigned long reload_jiffies; 1897 1898 if (iwl_have_debug_level(IWL_DL_FW)) 1899 iwl_print_rx_config_cmd(priv, IWL_RXON_CTX_BSS); 1900 1901 /* uCode is no longer loaded. */ 1902 priv->ucode_loaded = false; 1903 1904 /* Set the FW error flag -- cleared on iwl_down */ 1905 set_bit(STATUS_FW_ERROR, &priv->status); 1906 1907 iwl_abort_notification_waits(&priv->notif_wait); 1908 1909 /* Keep the restart process from trying to send host 1910 * commands by clearing the ready bit */ 1911 clear_bit(STATUS_READY, &priv->status); 1912 1913 if (!ondemand) { 1914 /* 1915 * If firmware keep reloading, then it indicate something 1916 * serious wrong and firmware having problem to recover 1917 * from it. Instead of keep trying which will fill the syslog 1918 * and hang the system, let's just stop it 1919 */ 1920 reload_jiffies = jiffies; 1921 reload_msec = jiffies_to_msecs((long) reload_jiffies - 1922 (long) priv->reload_jiffies); 1923 priv->reload_jiffies = reload_jiffies; 1924 if (reload_msec <= IWL_MIN_RELOAD_DURATION) { 1925 priv->reload_count++; 1926 if (priv->reload_count >= IWL_MAX_CONTINUE_RELOAD_CNT) { 1927 IWL_ERR(priv, "BUG_ON, Stop restarting\n"); 1928 return; 1929 } 1930 } else 1931 priv->reload_count = 0; 1932 } 1933 1934 if (!test_bit(STATUS_EXIT_PENDING, &priv->status)) { 1935 if (iwlwifi_mod_params.fw_restart) { 1936 IWL_DEBUG_FW(priv, 1937 "Restarting adapter due to uCode error.\n"); 1938 queue_work(priv->workqueue, &priv->restart); 1939 } else 1940 IWL_DEBUG_FW(priv, 1941 "Detected FW error, but not restarting\n"); 1942 } 1943 } 1944 1945 static void iwl_nic_error(struct iwl_op_mode *op_mode, bool sync) 1946 { 1947 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode); 1948 1949 IWL_ERR(priv, "Loaded firmware version: %s\n", 1950 priv->fw->fw_version); 1951 1952 iwl_dump_nic_error_log(priv); 1953 iwl_dump_nic_event_log(priv, false, NULL); 1954 1955 iwlagn_fw_error(priv, false); 1956 } 1957 1958 static void iwl_cmd_queue_full(struct iwl_op_mode *op_mode) 1959 { 1960 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode); 1961 1962 if (!iwl_check_for_ct_kill(priv)) { 1963 IWL_ERR(priv, "Restarting adapter queue is full\n"); 1964 iwlagn_fw_error(priv, false); 1965 } 1966 } 1967 1968 #define EEPROM_RF_CONFIG_TYPE_MAX 0x3 1969 1970 static void iwl_nic_config(struct iwl_op_mode *op_mode) 1971 { 1972 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode); 1973 1974 /* SKU Control */ 1975 iwl_trans_set_bits_mask(priv->trans, CSR_HW_IF_CONFIG_REG, 1976 CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP_DASH, 1977 CSR_HW_REV_STEP_DASH(priv->trans->hw_rev)); 1978 1979 /* write radio config values to register */ 1980 if (priv->nvm_data->radio_cfg_type <= EEPROM_RF_CONFIG_TYPE_MAX) { 1981 u32 reg_val = 1982 priv->nvm_data->radio_cfg_type << 1983 CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE | 1984 priv->nvm_data->radio_cfg_step << 1985 CSR_HW_IF_CONFIG_REG_POS_PHY_STEP | 1986 priv->nvm_data->radio_cfg_dash << 1987 CSR_HW_IF_CONFIG_REG_POS_PHY_DASH; 1988 1989 iwl_trans_set_bits_mask(priv->trans, CSR_HW_IF_CONFIG_REG, 1990 CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE | 1991 CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP | 1992 CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH, 1993 reg_val); 1994 1995 IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n", 1996 priv->nvm_data->radio_cfg_type, 1997 priv->nvm_data->radio_cfg_step, 1998 priv->nvm_data->radio_cfg_dash); 1999 } else { 2000 WARN_ON(1); 2001 } 2002 2003 /* set CSR_HW_CONFIG_REG for uCode use */ 2004 iwl_set_bit(priv->trans, CSR_HW_IF_CONFIG_REG, 2005 CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI | 2006 CSR_HW_IF_CONFIG_REG_BIT_MAC_SI); 2007 2008 /* W/A : NIC is stuck in a reset state after Early PCIe power off 2009 * (PCIe power is lost before PERST# is asserted), 2010 * causing ME FW to lose ownership and not being able to obtain it back. 2011 */ 2012 iwl_set_bits_mask_prph(priv->trans, APMG_PS_CTRL_REG, 2013 APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS, 2014 ~APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS); 2015 2016 if (priv->lib->nic_config) 2017 priv->lib->nic_config(priv); 2018 } 2019 2020 static void iwl_wimax_active(struct iwl_op_mode *op_mode) 2021 { 2022 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode); 2023 2024 clear_bit(STATUS_READY, &priv->status); 2025 IWL_ERR(priv, "RF is used by WiMAX\n"); 2026 } 2027 2028 static void iwl_stop_sw_queue(struct iwl_op_mode *op_mode, int queue) 2029 { 2030 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode); 2031 int mq = priv->queue_to_mac80211[queue]; 2032 2033 if (WARN_ON_ONCE(mq == IWL_INVALID_MAC80211_QUEUE)) 2034 return; 2035 2036 if (atomic_inc_return(&priv->queue_stop_count[mq]) > 1) { 2037 IWL_DEBUG_TX_QUEUES(priv, 2038 "queue %d (mac80211 %d) already stopped\n", 2039 queue, mq); 2040 return; 2041 } 2042 2043 set_bit(mq, &priv->transport_queue_stop); 2044 ieee80211_stop_queue(priv->hw, mq); 2045 } 2046 2047 static void iwl_wake_sw_queue(struct iwl_op_mode *op_mode, int queue) 2048 { 2049 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode); 2050 int mq = priv->queue_to_mac80211[queue]; 2051 2052 if (WARN_ON_ONCE(mq == IWL_INVALID_MAC80211_QUEUE)) 2053 return; 2054 2055 if (atomic_dec_return(&priv->queue_stop_count[mq]) > 0) { 2056 IWL_DEBUG_TX_QUEUES(priv, 2057 "queue %d (mac80211 %d) already awake\n", 2058 queue, mq); 2059 return; 2060 } 2061 2062 clear_bit(mq, &priv->transport_queue_stop); 2063 2064 if (!priv->passive_no_rx) 2065 ieee80211_wake_queue(priv->hw, mq); 2066 } 2067 2068 void iwlagn_lift_passive_no_rx(struct iwl_priv *priv) 2069 { 2070 int mq; 2071 2072 if (!priv->passive_no_rx) 2073 return; 2074 2075 for (mq = 0; mq < IWLAGN_FIRST_AMPDU_QUEUE; mq++) { 2076 if (!test_bit(mq, &priv->transport_queue_stop)) { 2077 IWL_DEBUG_TX_QUEUES(priv, "Wake queue %d\n", mq); 2078 ieee80211_wake_queue(priv->hw, mq); 2079 } else { 2080 IWL_DEBUG_TX_QUEUES(priv, "Don't wake queue %d\n", mq); 2081 } 2082 } 2083 2084 priv->passive_no_rx = false; 2085 } 2086 2087 static void iwl_free_skb(struct iwl_op_mode *op_mode, struct sk_buff *skb) 2088 { 2089 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode); 2090 struct ieee80211_tx_info *info; 2091 2092 info = IEEE80211_SKB_CB(skb); 2093 iwl_trans_free_tx_cmd(priv->trans, info->driver_data[1]); 2094 ieee80211_free_txskb(priv->hw, skb); 2095 } 2096 2097 static bool iwl_set_hw_rfkill_state(struct iwl_op_mode *op_mode, bool state) 2098 { 2099 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode); 2100 2101 if (state) 2102 set_bit(STATUS_RF_KILL_HW, &priv->status); 2103 else 2104 clear_bit(STATUS_RF_KILL_HW, &priv->status); 2105 2106 wiphy_rfkill_set_hw_state(priv->hw->wiphy, state); 2107 2108 return false; 2109 } 2110 2111 static const struct iwl_op_mode_ops iwl_dvm_ops = { 2112 .start = iwl_op_mode_dvm_start, 2113 .stop = iwl_op_mode_dvm_stop, 2114 .rx = iwl_rx_dispatch, 2115 .queue_full = iwl_stop_sw_queue, 2116 .queue_not_full = iwl_wake_sw_queue, 2117 .hw_rf_kill = iwl_set_hw_rfkill_state, 2118 .free_skb = iwl_free_skb, 2119 .nic_error = iwl_nic_error, 2120 .cmd_queue_full = iwl_cmd_queue_full, 2121 .nic_config = iwl_nic_config, 2122 .wimax_active = iwl_wimax_active, 2123 }; 2124 2125 /***************************************************************************** 2126 * 2127 * driver and module entry point 2128 * 2129 *****************************************************************************/ 2130 static int __init iwl_init(void) 2131 { 2132 2133 int ret; 2134 2135 ret = iwlagn_rate_control_register(); 2136 if (ret) { 2137 pr_err("Unable to register rate control algorithm: %d\n", ret); 2138 return ret; 2139 } 2140 2141 ret = iwl_opmode_register("iwldvm", &iwl_dvm_ops); 2142 if (ret) { 2143 pr_err("Unable to register op_mode: %d\n", ret); 2144 iwlagn_rate_control_unregister(); 2145 } 2146 2147 return ret; 2148 } 2149 module_init(iwl_init); 2150 2151 static void __exit iwl_exit(void) 2152 { 2153 iwl_opmode_deregister("iwldvm"); 2154 iwlagn_rate_control_unregister(); 2155 } 2156 module_exit(iwl_exit); 2157