xref: /linux/drivers/net/wireless/intel/iwlwifi/dvm/eeprom.c (revision fcab107abe1ab5be9dbe874baa722372da8f4f73)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2019, 2021, 2024-2025 Intel Corporation
4  */
5 #include <linux/types.h>
6 #include <linux/slab.h>
7 #include <linux/export.h>
8 
9 #include "iwl-drv.h"
10 #include "iwl-debug.h"
11 #include "iwl-io.h"
12 #include "iwl-prph.h"
13 #include "iwl-csr.h"
14 #include "agn.h"
15 
16 /* EEPROM offset definitions */
17 
18 /* indirect access definitions */
19 #define ADDRESS_MSK                 0x0000FFFF
20 #define INDIRECT_TYPE_MSK           0x000F0000
21 #define INDIRECT_HOST               0x00010000
22 #define INDIRECT_GENERAL            0x00020000
23 #define INDIRECT_REGULATORY         0x00030000
24 #define INDIRECT_CALIBRATION        0x00040000
25 #define INDIRECT_PROCESS_ADJST      0x00050000
26 #define INDIRECT_OTHERS             0x00060000
27 #define INDIRECT_TXP_LIMIT          0x00070000
28 #define INDIRECT_TXP_LIMIT_SIZE     0x00080000
29 #define INDIRECT_ADDRESS            0x00100000
30 
31 /* corresponding link offsets in EEPROM */
32 #define EEPROM_LINK_HOST             (2*0x64)
33 #define EEPROM_LINK_GENERAL          (2*0x65)
34 #define EEPROM_LINK_REGULATORY       (2*0x66)
35 #define EEPROM_LINK_CALIBRATION      (2*0x67)
36 #define EEPROM_LINK_PROCESS_ADJST    (2*0x68)
37 #define EEPROM_LINK_OTHERS           (2*0x69)
38 #define EEPROM_LINK_TXP_LIMIT        (2*0x6a)
39 #define EEPROM_LINK_TXP_LIMIT_SIZE   (2*0x6b)
40 
41 /* General */
42 #define EEPROM_DEVICE_ID                    (2*0x08)	/* 2 bytes */
43 #define EEPROM_SUBSYSTEM_ID		    (2*0x0A)	/* 2 bytes */
44 #define EEPROM_MAC_ADDRESS                  (2*0x15)	/* 6  bytes */
45 #define EEPROM_BOARD_REVISION               (2*0x35)	/* 2  bytes */
46 #define EEPROM_BOARD_PBA_NUMBER             (2*0x3B+1)	/* 9  bytes */
47 #define EEPROM_VERSION                      (2*0x44)	/* 2  bytes */
48 #define EEPROM_SKU_CAP                      (2*0x45)	/* 2  bytes */
49 #define EEPROM_OEM_MODE                     (2*0x46)	/* 2  bytes */
50 #define EEPROM_RADIO_CONFIG                 (2*0x48)	/* 2  bytes */
51 #define EEPROM_NUM_MAC_ADDRESS              (2*0x4C)	/* 2  bytes */
52 
53 /* calibration */
54 struct iwl_eeprom_calib_hdr {
55 	u8 version;
56 	u8 pa_type;
57 	__le16 voltage;
58 } __packed;
59 
60 #define EEPROM_CALIB_ALL	(INDIRECT_ADDRESS | INDIRECT_CALIBRATION)
61 #define EEPROM_XTAL		((2*0x128) | EEPROM_CALIB_ALL)
62 
63 /* temperature */
64 #define EEPROM_KELVIN_TEMPERATURE	((2*0x12A) | EEPROM_CALIB_ALL)
65 #define EEPROM_RAW_TEMPERATURE		((2*0x12B) | EEPROM_CALIB_ALL)
66 
67 /* SKU Capabilities (actual values from EEPROM definition) */
68 enum eeprom_sku_bits {
69 	EEPROM_SKU_CAP_BAND_24GHZ	= BIT(4),
70 	EEPROM_SKU_CAP_BAND_52GHZ	= BIT(5),
71 	EEPROM_SKU_CAP_11N_ENABLE	= BIT(6),
72 	EEPROM_SKU_CAP_AMT_ENABLE	= BIT(7),
73 	EEPROM_SKU_CAP_IPAN_ENABLE	= BIT(8)
74 };
75 
76 /* radio config bits (actual values from EEPROM definition) */
77 #define EEPROM_RF_CFG_TYPE_MSK(x)   (x & 0x3)         /* bits 0-1   */
78 #define EEPROM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
79 #define EEPROM_RF_CFG_DASH_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
80 #define EEPROM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
81 #define EEPROM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
82 #define EEPROM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
83 
84 /*
85  * EEPROM bands
86  * These are the channel numbers from each band in the order
87  * that they are stored in the EEPROM band information. Note
88  * that EEPROM bands aren't the same as mac80211 bands, and
89  * there are even special "ht40 bands" in the EEPROM.
90  */
91 static const u8 iwl_eeprom_band_1[14] = { /* 2.4 GHz */
92 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
93 };
94 
95 static const u8 iwl_eeprom_band_2[] = {	/* 4915-5080MHz */
96 	183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
97 };
98 
99 static const u8 iwl_eeprom_band_3[] = {	/* 5170-5320MHz */
100 	34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
101 };
102 
103 static const u8 iwl_eeprom_band_4[] = {	/* 5500-5700MHz */
104 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
105 };
106 
107 static const u8 iwl_eeprom_band_5[] = {	/* 5725-5825MHz */
108 	145, 149, 153, 157, 161, 165
109 };
110 
111 static const u8 iwl_eeprom_band_6[] = {	/* 2.4 ht40 channel */
112 	1, 2, 3, 4, 5, 6, 7
113 };
114 
115 static const u8 iwl_eeprom_band_7[] = {	/* 5.2 ht40 channel */
116 	36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
117 };
118 
119 #define IWL_NUM_CHANNELS	(ARRAY_SIZE(iwl_eeprom_band_1) + \
120 				 ARRAY_SIZE(iwl_eeprom_band_2) + \
121 				 ARRAY_SIZE(iwl_eeprom_band_3) + \
122 				 ARRAY_SIZE(iwl_eeprom_band_4) + \
123 				 ARRAY_SIZE(iwl_eeprom_band_5))
124 
125 /* rate data (static) */
126 static struct ieee80211_rate iwl_cfg80211_rates[] = {
127 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
128 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
129 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
131 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
132 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
133 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
134 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
135 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
136 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
137 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
138 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
139 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
140 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
141 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
142 };
143 #define RATES_24_OFFS	0
144 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
145 #define RATES_52_OFFS	4
146 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
147 
148 /* EEPROM reading functions */
149 
150 static u16 iwl_eeprom_query16(const u8 *eeprom, size_t eeprom_size, int offset)
151 {
152 	if (WARN_ON(offset + sizeof(u16) > eeprom_size))
153 		return 0;
154 	return le16_to_cpup((const __le16 *)(eeprom + offset));
155 }
156 
157 static u32 eeprom_indirect_address(const u8 *eeprom, size_t eeprom_size,
158 				   u32 address)
159 {
160 	u16 offset = 0;
161 
162 	if ((address & INDIRECT_ADDRESS) == 0)
163 		return address;
164 
165 	switch (address & INDIRECT_TYPE_MSK) {
166 	case INDIRECT_HOST:
167 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
168 					    EEPROM_LINK_HOST);
169 		break;
170 	case INDIRECT_GENERAL:
171 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
172 					    EEPROM_LINK_GENERAL);
173 		break;
174 	case INDIRECT_REGULATORY:
175 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
176 					    EEPROM_LINK_REGULATORY);
177 		break;
178 	case INDIRECT_TXP_LIMIT:
179 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
180 					    EEPROM_LINK_TXP_LIMIT);
181 		break;
182 	case INDIRECT_TXP_LIMIT_SIZE:
183 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
184 					    EEPROM_LINK_TXP_LIMIT_SIZE);
185 		break;
186 	case INDIRECT_CALIBRATION:
187 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
188 					    EEPROM_LINK_CALIBRATION);
189 		break;
190 	case INDIRECT_PROCESS_ADJST:
191 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
192 					    EEPROM_LINK_PROCESS_ADJST);
193 		break;
194 	case INDIRECT_OTHERS:
195 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
196 					    EEPROM_LINK_OTHERS);
197 		break;
198 	default:
199 		WARN_ON(1);
200 		break;
201 	}
202 
203 	/* translate the offset from words to byte */
204 	return (address & ADDRESS_MSK) + (offset << 1);
205 }
206 
207 static const void *iwl_eeprom_query_addr(const u8 *eeprom, size_t eeprom_size,
208 					 u32 offset)
209 {
210 	u32 address = eeprom_indirect_address(eeprom, eeprom_size, offset);
211 
212 	if (WARN_ON(address >= eeprom_size))
213 		return NULL;
214 
215 	return &eeprom[address];
216 }
217 
218 static int iwl_eeprom_read_calib(const u8 *eeprom, size_t eeprom_size,
219 				 struct iwl_nvm_data *data)
220 {
221 	const struct iwl_eeprom_calib_hdr *hdr;
222 
223 	hdr = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_CALIB_ALL);
224 	if (!hdr)
225 		return -ENODATA;
226 	data->calib_version = hdr->version;
227 	data->calib_voltage = hdr->voltage;
228 
229 	return 0;
230 }
231 
232 /**
233  * enum iwl_eeprom_channel_flags - channel flags in EEPROM
234  * @EEPROM_CHANNEL_VALID: channel is usable for this SKU/geo
235  * @EEPROM_CHANNEL_IBSS: usable as an IBSS channel
236  * @EEPROM_CHANNEL_ACTIVE: active scanning allowed
237  * @EEPROM_CHANNEL_RADAR: radar detection required
238  * @EEPROM_CHANNEL_WIDE: 20 MHz channel okay (?)
239  * @EEPROM_CHANNEL_DFS: dynamic freq selection candidate
240  */
241 enum iwl_eeprom_channel_flags {
242 	EEPROM_CHANNEL_VALID = BIT(0),
243 	EEPROM_CHANNEL_IBSS = BIT(1),
244 	EEPROM_CHANNEL_ACTIVE = BIT(3),
245 	EEPROM_CHANNEL_RADAR = BIT(4),
246 	EEPROM_CHANNEL_WIDE = BIT(5),
247 	EEPROM_CHANNEL_DFS = BIT(7),
248 };
249 
250 /**
251  * struct iwl_eeprom_channel - EEPROM channel data
252  * @flags: %EEPROM_CHANNEL_* flags
253  * @max_power_avg: max power (in dBm) on this channel, at most 31 dBm
254  */
255 struct iwl_eeprom_channel {
256 	u8 flags;
257 	s8 max_power_avg;
258 } __packed;
259 
260 enum iwl_eeprom_enhanced_txpwr_flags {
261 	IWL_EEPROM_ENH_TXP_FL_VALID = BIT(0),
262 	IWL_EEPROM_ENH_TXP_FL_BAND_52G = BIT(1),
263 	IWL_EEPROM_ENH_TXP_FL_OFDM = BIT(2),
264 	IWL_EEPROM_ENH_TXP_FL_40MHZ = BIT(3),
265 	IWL_EEPROM_ENH_TXP_FL_HT_AP = BIT(4),
266 	IWL_EEPROM_ENH_TXP_FL_RES1 = BIT(5),
267 	IWL_EEPROM_ENH_TXP_FL_RES2 = BIT(6),
268 	IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE = BIT(7),
269 };
270 
271 /**
272  * struct iwl_eeprom_enhanced_txpwr - enhanced regulatory TX power limits
273  * @flags: entry flags
274  * @channel: channel number
275  * @chain_a_max: chain a max power in 1/2 dBm
276  * @chain_b_max: chain b max power in 1/2 dBm
277  * @chain_c_max: chain c max power in 1/2 dBm
278  * @delta_20_in_40: 20-in-40 deltas (hi/lo)
279  * @mimo2_max: mimo2 max power in 1/2 dBm
280  * @mimo3_max: mimo3 max power in 1/2 dBm
281  *
282  * This structure presents the enhanced regulatory tx power limit layout
283  * in an EEPROM image.
284  */
285 struct iwl_eeprom_enhanced_txpwr {
286 	u8 flags;
287 	u8 channel;
288 	s8 chain_a_max;
289 	s8 chain_b_max;
290 	s8 chain_c_max;
291 	u8 delta_20_in_40;
292 	s8 mimo2_max;
293 	s8 mimo3_max;
294 } __packed;
295 
296 static s8 iwl_get_max_txpwr_half_dbm(const struct iwl_nvm_data *data,
297 				     const struct iwl_eeprom_enhanced_txpwr *txp)
298 {
299 	s8 result = 0; /* (.5 dBm) */
300 
301 	/* Take the highest tx power from any valid chains */
302 	if (data->valid_tx_ant & ANT_A && txp->chain_a_max > result)
303 		result = txp->chain_a_max;
304 
305 	if (data->valid_tx_ant & ANT_B && txp->chain_b_max > result)
306 		result = txp->chain_b_max;
307 
308 	if (data->valid_tx_ant & ANT_C && txp->chain_c_max > result)
309 		result = txp->chain_c_max;
310 
311 	if ((data->valid_tx_ant == ANT_AB ||
312 	     data->valid_tx_ant == ANT_BC ||
313 	     data->valid_tx_ant == ANT_AC) && txp->mimo2_max > result)
314 		result = txp->mimo2_max;
315 
316 	if (data->valid_tx_ant == ANT_ABC && txp->mimo3_max > result)
317 		result = txp->mimo3_max;
318 
319 	return result;
320 }
321 
322 #define EEPROM_TXP_OFFS	(0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
323 #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
324 #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
325 
326 #define TXP_CHECK_AND_PRINT(x) \
327 	((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) ? # x " " : "")
328 
329 static void
330 iwl_eeprom_enh_txp_read_element(struct iwl_nvm_data *data,
331 				const struct iwl_eeprom_enhanced_txpwr *txp,
332 				int n_channels, s8 max_txpower_avg)
333 {
334 	int ch_idx;
335 	enum nl80211_band band;
336 
337 	band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
338 		NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
339 
340 	for (ch_idx = 0; ch_idx < n_channels; ch_idx++) {
341 		struct ieee80211_channel *chan = &data->channels[ch_idx];
342 
343 		/* update matching channel or from common data only */
344 		if (txp->channel != 0 && chan->hw_value != txp->channel)
345 			continue;
346 
347 		/* update matching band only */
348 		if (band != chan->band)
349 			continue;
350 
351 		if (chan->max_power < max_txpower_avg &&
352 		    !(txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ))
353 			chan->max_power = max_txpower_avg;
354 	}
355 }
356 
357 static void iwl_eeprom_enhanced_txpower(struct device *dev,
358 					struct iwl_nvm_data *data,
359 					const u8 *eeprom, size_t eeprom_size,
360 					int n_channels)
361 {
362 	const struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
363 	int idx, entries;
364 	const __le16 *txp_len;
365 	s8 max_txp_avg_halfdbm;
366 
367 	BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
368 
369 	/* the length is in 16-bit words, but we want entries */
370 	txp_len = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_TXP_SZ_OFFS);
371 	entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
372 
373 	txp_array = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_TXP_OFFS);
374 
375 	for (idx = 0; idx < entries; idx++) {
376 		txp = &txp_array[idx];
377 		/* skip invalid entries */
378 		if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
379 			continue;
380 
381 		IWL_DEBUG_EEPROM(dev, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
382 				 (txp->channel && (txp->flags &
383 					IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
384 					"Common " : (txp->channel) ?
385 					"Channel" : "Common",
386 				 (txp->channel),
387 				 TXP_CHECK_AND_PRINT(VALID),
388 				 TXP_CHECK_AND_PRINT(BAND_52G),
389 				 TXP_CHECK_AND_PRINT(OFDM),
390 				 TXP_CHECK_AND_PRINT(40MHZ),
391 				 TXP_CHECK_AND_PRINT(HT_AP),
392 				 TXP_CHECK_AND_PRINT(RES1),
393 				 TXP_CHECK_AND_PRINT(RES2),
394 				 TXP_CHECK_AND_PRINT(COMMON_TYPE),
395 				 txp->flags);
396 		IWL_DEBUG_EEPROM(dev,
397 				 "\t\t chain_A: %d chain_B: %d chain_C: %d\n",
398 				 txp->chain_a_max, txp->chain_b_max,
399 				 txp->chain_c_max);
400 		IWL_DEBUG_EEPROM(dev,
401 				 "\t\t MIMO2: %d MIMO3: %d High 20_on_40: 0x%02x Low 20_on_40: 0x%02x\n",
402 				 txp->mimo2_max, txp->mimo3_max,
403 				 ((txp->delta_20_in_40 & 0xf0) >> 4),
404 				 (txp->delta_20_in_40 & 0x0f));
405 
406 		max_txp_avg_halfdbm = iwl_get_max_txpwr_half_dbm(data, txp);
407 
408 		iwl_eeprom_enh_txp_read_element(data, txp, n_channels,
409 				DIV_ROUND_UP(max_txp_avg_halfdbm, 2));
410 
411 		if (max_txp_avg_halfdbm > data->max_tx_pwr_half_dbm)
412 			data->max_tx_pwr_half_dbm = max_txp_avg_halfdbm;
413 	}
414 }
415 
416 static void iwl_init_band_reference(const struct iwl_rf_cfg *cfg,
417 				    const u8 *eeprom, size_t eeprom_size,
418 				    int eeprom_band, int *eeprom_ch_count,
419 				    const struct iwl_eeprom_channel **ch_info,
420 				    const u8 **eeprom_ch_array)
421 {
422 	u32 offset = cfg->eeprom_params->regulatory_bands[eeprom_band - 1];
423 
424 	offset |= INDIRECT_ADDRESS | INDIRECT_REGULATORY;
425 
426 	*ch_info = iwl_eeprom_query_addr(eeprom, eeprom_size, offset);
427 
428 	switch (eeprom_band) {
429 	case 1:		/* 2.4GHz band */
430 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
431 		*eeprom_ch_array = iwl_eeprom_band_1;
432 		break;
433 	case 2:		/* 4.9GHz band */
434 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
435 		*eeprom_ch_array = iwl_eeprom_band_2;
436 		break;
437 	case 3:		/* 5.2GHz band */
438 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
439 		*eeprom_ch_array = iwl_eeprom_band_3;
440 		break;
441 	case 4:		/* 5.5GHz band */
442 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
443 		*eeprom_ch_array = iwl_eeprom_band_4;
444 		break;
445 	case 5:		/* 5.7GHz band */
446 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
447 		*eeprom_ch_array = iwl_eeprom_band_5;
448 		break;
449 	case 6:		/* 2.4GHz ht40 channels */
450 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
451 		*eeprom_ch_array = iwl_eeprom_band_6;
452 		break;
453 	case 7:		/* 5 GHz ht40 channels */
454 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
455 		*eeprom_ch_array = iwl_eeprom_band_7;
456 		break;
457 	default:
458 		*eeprom_ch_count = 0;
459 		*eeprom_ch_array = NULL;
460 		WARN_ON(1);
461 	}
462 }
463 
464 #define CHECK_AND_PRINT(x) \
465 	((eeprom_ch->flags & EEPROM_CHANNEL_##x) ? # x " " : "")
466 
467 static void iwl_mod_ht40_chan_info(struct device *dev,
468 				   struct iwl_nvm_data *data, int n_channels,
469 				   enum nl80211_band band, u16 channel,
470 				   const struct iwl_eeprom_channel *eeprom_ch,
471 				   u8 clear_ht40_extension_channel)
472 {
473 	struct ieee80211_channel *chan = NULL;
474 	int i;
475 
476 	for (i = 0; i < n_channels; i++) {
477 		if (data->channels[i].band != band)
478 			continue;
479 		if (data->channels[i].hw_value != channel)
480 			continue;
481 		chan = &data->channels[i];
482 		break;
483 	}
484 
485 	if (!chan)
486 		return;
487 
488 	IWL_DEBUG_EEPROM(dev,
489 			 "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
490 			 channel,
491 			 band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
492 			 CHECK_AND_PRINT(IBSS),
493 			 CHECK_AND_PRINT(ACTIVE),
494 			 CHECK_AND_PRINT(RADAR),
495 			 CHECK_AND_PRINT(WIDE),
496 			 CHECK_AND_PRINT(DFS),
497 			 eeprom_ch->flags,
498 			 eeprom_ch->max_power_avg,
499 			 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
500 			  !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? ""
501 								      : "not ");
502 
503 	if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
504 		chan->flags &= ~clear_ht40_extension_channel;
505 }
506 
507 #define CHECK_AND_PRINT_I(x)	\
508 	((eeprom_ch_info[ch_idx].flags & EEPROM_CHANNEL_##x) ? # x " " : "")
509 
510 static int iwl_init_channel_map(struct device *dev, const struct iwl_rf_cfg *cfg,
511 				struct iwl_nvm_data *data,
512 				const u8 *eeprom, size_t eeprom_size)
513 {
514 	int band, ch_idx;
515 	const struct iwl_eeprom_channel *eeprom_ch_info;
516 	const u8 *eeprom_ch_array;
517 	int eeprom_ch_count;
518 	int n_channels = 0;
519 
520 	/*
521 	 * Loop through the 5 EEPROM bands and add them to the parse list
522 	 */
523 	for (band = 1; band <= 5; band++) {
524 		struct ieee80211_channel *channel;
525 
526 		iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
527 					&eeprom_ch_count, &eeprom_ch_info,
528 					&eeprom_ch_array);
529 
530 		/* Loop through each band adding each of the channels */
531 		for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
532 			const struct iwl_eeprom_channel *eeprom_ch;
533 
534 			eeprom_ch = &eeprom_ch_info[ch_idx];
535 
536 			if (!(eeprom_ch->flags & EEPROM_CHANNEL_VALID)) {
537 				IWL_DEBUG_EEPROM(dev,
538 						 "Ch. %d Flags %x [%sGHz] - No traffic\n",
539 						 eeprom_ch_array[ch_idx],
540 						 eeprom_ch_info[ch_idx].flags,
541 						 (band != 1) ? "5.2" : "2.4");
542 				continue;
543 			}
544 
545 			channel = &data->channels[n_channels];
546 			n_channels++;
547 
548 			channel->hw_value = eeprom_ch_array[ch_idx];
549 			channel->band = (band == 1) ? NL80211_BAND_2GHZ
550 						    : NL80211_BAND_5GHZ;
551 			channel->center_freq =
552 				ieee80211_channel_to_frequency(
553 					channel->hw_value, channel->band);
554 
555 			/* set no-HT40, will enable as appropriate later */
556 			channel->flags = IEEE80211_CHAN_NO_HT40;
557 
558 			if (!(eeprom_ch->flags & EEPROM_CHANNEL_IBSS))
559 				channel->flags |= IEEE80211_CHAN_NO_IR;
560 
561 			if (!(eeprom_ch->flags & EEPROM_CHANNEL_ACTIVE))
562 				channel->flags |= IEEE80211_CHAN_NO_IR;
563 
564 			if (eeprom_ch->flags & EEPROM_CHANNEL_RADAR)
565 				channel->flags |= IEEE80211_CHAN_RADAR;
566 
567 			/* Initialize regulatory-based run-time data */
568 			channel->max_power =
569 				eeprom_ch_info[ch_idx].max_power_avg;
570 			IWL_DEBUG_EEPROM(dev,
571 					 "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
572 					 channel->hw_value,
573 					 (band != 1) ? "5.2" : "2.4",
574 					 CHECK_AND_PRINT_I(VALID),
575 					 CHECK_AND_PRINT_I(IBSS),
576 					 CHECK_AND_PRINT_I(ACTIVE),
577 					 CHECK_AND_PRINT_I(RADAR),
578 					 CHECK_AND_PRINT_I(WIDE),
579 					 CHECK_AND_PRINT_I(DFS),
580 					 eeprom_ch_info[ch_idx].flags,
581 					 eeprom_ch_info[ch_idx].max_power_avg,
582 					 ((eeprom_ch_info[ch_idx].flags &
583 							EEPROM_CHANNEL_IBSS) &&
584 					  !(eeprom_ch_info[ch_idx].flags &
585 							EEPROM_CHANNEL_RADAR))
586 						? "" : "not ");
587 		}
588 	}
589 
590 	if (cfg->eeprom_params->enhanced_txpower) {
591 		/*
592 		 * for newer device (6000 series and up)
593 		 * EEPROM contain enhanced tx power information
594 		 * driver need to process addition information
595 		 * to determine the max channel tx power limits
596 		 */
597 		iwl_eeprom_enhanced_txpower(dev, data, eeprom, eeprom_size,
598 					    n_channels);
599 	} else {
600 		/* All others use data from channel map */
601 		int i;
602 
603 		data->max_tx_pwr_half_dbm = -128;
604 
605 		for (i = 0; i < n_channels; i++)
606 			data->max_tx_pwr_half_dbm =
607 				max_t(s8, data->max_tx_pwr_half_dbm,
608 				      data->channels[i].max_power * 2);
609 	}
610 
611 	/* Check if we do have HT40 channels */
612 	if (cfg->eeprom_params->regulatory_bands[5] ==
613 				EEPROM_REGULATORY_BAND_NO_HT40 &&
614 	    cfg->eeprom_params->regulatory_bands[6] ==
615 				EEPROM_REGULATORY_BAND_NO_HT40)
616 		return n_channels;
617 
618 	/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
619 	for (band = 6; band <= 7; band++) {
620 		enum nl80211_band ieeeband;
621 
622 		iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
623 					&eeprom_ch_count, &eeprom_ch_info,
624 					&eeprom_ch_array);
625 
626 		/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
627 		ieeeband = (band == 6) ? NL80211_BAND_2GHZ
628 				       : NL80211_BAND_5GHZ;
629 
630 		/* Loop through each band adding each of the channels */
631 		for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
632 			/* Set up driver's info for lower half */
633 			iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
634 					       eeprom_ch_array[ch_idx],
635 					       &eeprom_ch_info[ch_idx],
636 					       IEEE80211_CHAN_NO_HT40PLUS);
637 
638 			/* Set up driver's info for upper half */
639 			iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
640 					       eeprom_ch_array[ch_idx] + 4,
641 					       &eeprom_ch_info[ch_idx],
642 					       IEEE80211_CHAN_NO_HT40MINUS);
643 		}
644 	}
645 
646 	return n_channels;
647 }
648 /*
649  * EEPROM access time values:
650  *
651  * Driver initiates EEPROM read by writing byte address << 1 to CSR_EEPROM_REG.
652  * Driver then polls CSR_EEPROM_REG for CSR_EEPROM_REG_READ_VALID_MSK (0x1).
653  * When polling, wait 10 uSec between polling loops, up to a maximum 5000 uSec.
654  * Driver reads 16-bit value from bits 31-16 of CSR_EEPROM_REG.
655  */
656 #define IWL_EEPROM_ACCESS_TIMEOUT	5000 /* uSec */
657 
658 /*
659  * The device's EEPROM semaphore prevents conflicts between driver and uCode
660  * when accessing the EEPROM; each access is a series of pulses to/from the
661  * EEPROM chip, not a single event, so even reads could conflict if they
662  * weren't arbitrated by the semaphore.
663  */
664 #define IWL_EEPROM_SEM_TIMEOUT		10   /* microseconds */
665 #define IWL_EEPROM_SEM_RETRY_LIMIT	1000 /* number of attempts (not time) */
666 
667 
668 static int iwl_eeprom_acquire_semaphore(struct iwl_trans *trans)
669 {
670 	u16 count;
671 	int ret;
672 
673 	for (count = 0; count < IWL_EEPROM_SEM_RETRY_LIMIT; count++) {
674 		/* Request semaphore */
675 		iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
676 			    CSR_HW_IF_CONFIG_REG_EEPROM_OWN_SEM);
677 
678 		/* See if we got it */
679 		ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
680 				CSR_HW_IF_CONFIG_REG_EEPROM_OWN_SEM,
681 				CSR_HW_IF_CONFIG_REG_EEPROM_OWN_SEM,
682 				IWL_EEPROM_SEM_TIMEOUT);
683 		if (ret >= 0) {
684 			IWL_DEBUG_EEPROM(trans->dev,
685 					 "Acquired semaphore after %d tries.\n",
686 					 count+1);
687 			return ret;
688 		}
689 	}
690 
691 	return ret;
692 }
693 
694 static void iwl_eeprom_release_semaphore(struct iwl_trans *trans)
695 {
696 	iwl_clear_bit(trans, CSR_HW_IF_CONFIG_REG,
697 		      CSR_HW_IF_CONFIG_REG_EEPROM_OWN_SEM);
698 }
699 
700 static int iwl_eeprom_verify_signature(struct iwl_trans *trans, bool nvm_is_otp)
701 {
702 	u32 gp = iwl_read32(trans, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
703 
704 	IWL_DEBUG_EEPROM(trans->dev, "EEPROM signature=0x%08x\n", gp);
705 
706 	switch (gp) {
707 	case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
708 		if (!nvm_is_otp) {
709 			IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n",
710 				gp);
711 			return -ENOENT;
712 		}
713 		return 0;
714 	case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
715 	case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
716 		if (nvm_is_otp) {
717 			IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp);
718 			return -ENOENT;
719 		}
720 		return 0;
721 	case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
722 	default:
723 		IWL_ERR(trans,
724 			"bad EEPROM/OTP signature, type=%s, EEPROM_GP=0x%08x\n",
725 			nvm_is_otp ? "OTP" : "EEPROM", gp);
726 		return -ENOENT;
727 	}
728 }
729 
730 /******************************************************************************
731  *
732  * OTP related functions
733  *
734 ******************************************************************************/
735 
736 static void iwl_set_otp_access_absolute(struct iwl_trans *trans)
737 {
738 	iwl_read32(trans, CSR_OTP_GP_REG);
739 
740 	iwl_clear_bit(trans, CSR_OTP_GP_REG,
741 		      CSR_OTP_GP_REG_OTP_ACCESS_MODE);
742 }
743 
744 static int iwl_nvm_is_otp(struct iwl_trans *trans)
745 {
746 	u32 otpgp;
747 
748 	/* OTP only valid for CP/PP and after */
749 	switch (trans->info.hw_rev & CSR_HW_REV_TYPE_MSK) {
750 	case CSR_HW_REV_TYPE_NONE:
751 		IWL_ERR(trans, "Unknown hardware type\n");
752 		return -EIO;
753 	case CSR_HW_REV_TYPE_5300:
754 	case CSR_HW_REV_TYPE_5350:
755 	case CSR_HW_REV_TYPE_5100:
756 	case CSR_HW_REV_TYPE_5150:
757 		return 0;
758 	default:
759 		otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
760 		if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
761 			return 1;
762 		return 0;
763 	}
764 }
765 
766 static int iwl_init_otp_access(struct iwl_trans *trans)
767 {
768 	int ret;
769 
770 	ret = iwl_finish_nic_init(trans);
771 	if (ret)
772 		return ret;
773 
774 	iwl_set_bits_prph(trans, APMG_PS_CTRL_REG,
775 			  APMG_PS_CTRL_VAL_RESET_REQ);
776 	udelay(5);
777 	iwl_clear_bits_prph(trans, APMG_PS_CTRL_REG,
778 			    APMG_PS_CTRL_VAL_RESET_REQ);
779 
780 	/*
781 	 * CSR auto clock gate disable bit -
782 	 * this is only applicable for HW with OTP shadow RAM
783 	 */
784 	if (trans->mac_cfg->base->shadow_ram_support)
785 		iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
786 			    CSR_RESET_LINK_PWR_MGMT_DISABLED);
787 
788 	return 0;
789 }
790 
791 static int iwl_read_otp_word(struct iwl_trans *trans, u16 addr,
792 			     __le16 *eeprom_data)
793 {
794 	int ret = 0;
795 	u32 r;
796 	u32 otpgp;
797 
798 	iwl_write32(trans, CSR_EEPROM_REG,
799 		    CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
800 	ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
801 				 CSR_EEPROM_REG_READ_VALID_MSK,
802 				 CSR_EEPROM_REG_READ_VALID_MSK,
803 				 IWL_EEPROM_ACCESS_TIMEOUT);
804 	if (ret < 0) {
805 		IWL_ERR(trans, "Time out reading OTP[%d]\n", addr);
806 		return ret;
807 	}
808 	r = iwl_read32(trans, CSR_EEPROM_REG);
809 	/* check for ECC errors: */
810 	otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
811 	if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
812 		/* stop in this case */
813 		/* set the uncorrectable OTP ECC bit for acknowledgment */
814 		iwl_set_bit(trans, CSR_OTP_GP_REG,
815 			    CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
816 		IWL_ERR(trans, "Uncorrectable OTP ECC error, abort OTP read\n");
817 		return -EINVAL;
818 	}
819 	if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
820 		/* continue in this case */
821 		/* set the correctable OTP ECC bit for acknowledgment */
822 		iwl_set_bit(trans, CSR_OTP_GP_REG,
823 			    CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
824 		IWL_ERR(trans, "Correctable OTP ECC error, continue read\n");
825 	}
826 	*eeprom_data = cpu_to_le16(r >> 16);
827 	return 0;
828 }
829 
830 /*
831  * iwl_is_otp_empty: check for empty OTP
832  */
833 static bool iwl_is_otp_empty(struct iwl_trans *trans)
834 {
835 	u16 next_link_addr = 0;
836 	__le16 link_value;
837 	bool is_empty = false;
838 
839 	/* locate the beginning of OTP link list */
840 	if (!iwl_read_otp_word(trans, next_link_addr, &link_value)) {
841 		if (!link_value) {
842 			IWL_ERR(trans, "OTP is empty\n");
843 			is_empty = true;
844 		}
845 	} else {
846 		IWL_ERR(trans, "Unable to read first block of OTP list.\n");
847 		is_empty = true;
848 	}
849 
850 	return is_empty;
851 }
852 
853 
854 /*
855  * iwl_find_otp_image: find EEPROM image in OTP
856  *   finding the OTP block that contains the EEPROM image.
857  *   the last valid block on the link list (the block _before_ the last block)
858  *   is the block we should read and used to configure the device.
859  *   If all the available OTP blocks are full, the last block will be the block
860  *   we should read and used to configure the device.
861  *   only perform this operation if shadow RAM is disabled
862  */
863 static int iwl_find_otp_image(struct iwl_trans *trans,
864 					u16 *validblockaddr)
865 {
866 	u16 next_link_addr = 0, valid_addr;
867 	__le16 link_value = 0;
868 	int usedblocks = 0;
869 
870 	/* set addressing mode to absolute to traverse the link list */
871 	iwl_set_otp_access_absolute(trans);
872 
873 	/* checking for empty OTP or error */
874 	if (iwl_is_otp_empty(trans))
875 		return -EINVAL;
876 
877 	/*
878 	 * start traverse link list
879 	 * until reach the max number of OTP blocks
880 	 * different devices have different number of OTP blocks
881 	 */
882 	do {
883 		/* save current valid block address
884 		 * check for more block on the link list
885 		 */
886 		valid_addr = next_link_addr;
887 		next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
888 		IWL_DEBUG_EEPROM(trans->dev, "OTP blocks %d addr 0x%x\n",
889 				 usedblocks, next_link_addr);
890 		if (iwl_read_otp_word(trans, next_link_addr, &link_value))
891 			return -EINVAL;
892 		if (!link_value) {
893 			/*
894 			 * reach the end of link list, return success and
895 			 * set address point to the starting address
896 			 * of the image
897 			 */
898 			*validblockaddr = valid_addr;
899 			/* skip first 2 bytes (link list pointer) */
900 			*validblockaddr += 2;
901 			return 0;
902 		}
903 		/* more in the link list, continue */
904 		usedblocks++;
905 	} while (usedblocks <= trans->mac_cfg->base->max_ll_items);
906 
907 	/* OTP has no valid blocks */
908 	IWL_DEBUG_EEPROM(trans->dev, "OTP has no valid blocks\n");
909 	return -EINVAL;
910 }
911 
912 /*
913  * iwl_read_eeprom - read EEPROM contents
914  *
915  * Load the EEPROM contents from adapter and return it
916  * and its size.
917  *
918  * NOTE:  This routine uses the non-debug IO access functions.
919  */
920 int iwl_read_eeprom(struct iwl_trans *trans, u8 **eeprom, size_t *eeprom_size)
921 {
922 	__le16 *e;
923 	u32 gp = iwl_read32(trans, CSR_EEPROM_GP);
924 	int sz;
925 	int ret;
926 	u16 addr;
927 	u16 validblockaddr = 0;
928 	u16 cache_addr = 0;
929 	int nvm_is_otp;
930 
931 	if (!eeprom || !eeprom_size)
932 		return -EINVAL;
933 
934 	nvm_is_otp = iwl_nvm_is_otp(trans);
935 	if (nvm_is_otp < 0)
936 		return nvm_is_otp;
937 
938 	sz = trans->mac_cfg->base->eeprom_size;
939 	IWL_DEBUG_EEPROM(trans->dev, "NVM size = %d\n", sz);
940 
941 	e = kmalloc(sz, GFP_KERNEL);
942 	if (!e)
943 		return -ENOMEM;
944 
945 	ret = iwl_eeprom_verify_signature(trans, nvm_is_otp);
946 	if (ret < 0) {
947 		IWL_ERR(trans, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
948 		goto err_free;
949 	}
950 
951 	/* Make sure driver (instead of uCode) is allowed to read EEPROM */
952 	ret = iwl_eeprom_acquire_semaphore(trans);
953 	if (ret < 0) {
954 		IWL_ERR(trans, "Failed to acquire EEPROM semaphore.\n");
955 		goto err_free;
956 	}
957 
958 	if (nvm_is_otp) {
959 		ret = iwl_init_otp_access(trans);
960 		if (ret) {
961 			IWL_ERR(trans, "Failed to initialize OTP access.\n");
962 			goto err_unlock;
963 		}
964 
965 		iwl_write32(trans, CSR_EEPROM_GP,
966 			    iwl_read32(trans, CSR_EEPROM_GP) &
967 			    ~CSR_EEPROM_GP_IF_OWNER_MSK);
968 
969 		iwl_set_bit(trans, CSR_OTP_GP_REG,
970 			    CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
971 			    CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
972 		/* traversing the linked list if no shadow ram supported */
973 		if (!trans->mac_cfg->base->shadow_ram_support) {
974 			ret = iwl_find_otp_image(trans, &validblockaddr);
975 			if (ret)
976 				goto err_unlock;
977 		}
978 		for (addr = validblockaddr; addr < validblockaddr + sz;
979 		     addr += sizeof(u16)) {
980 			__le16 eeprom_data;
981 
982 			ret = iwl_read_otp_word(trans, addr, &eeprom_data);
983 			if (ret)
984 				goto err_unlock;
985 			e[cache_addr / 2] = eeprom_data;
986 			cache_addr += sizeof(u16);
987 		}
988 	} else {
989 		/* eeprom is an array of 16bit values */
990 		for (addr = 0; addr < sz; addr += sizeof(u16)) {
991 			u32 r;
992 
993 			iwl_write32(trans, CSR_EEPROM_REG,
994 				    CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
995 
996 			ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
997 					   CSR_EEPROM_REG_READ_VALID_MSK,
998 					   CSR_EEPROM_REG_READ_VALID_MSK,
999 					   IWL_EEPROM_ACCESS_TIMEOUT);
1000 			if (ret < 0) {
1001 				IWL_ERR(trans,
1002 					"Time out reading EEPROM[%d]\n", addr);
1003 				goto err_unlock;
1004 			}
1005 			r = iwl_read32(trans, CSR_EEPROM_REG);
1006 			e[addr / 2] = cpu_to_le16(r >> 16);
1007 		}
1008 	}
1009 
1010 	IWL_DEBUG_EEPROM(trans->dev, "NVM Type: %s\n",
1011 			 nvm_is_otp ? "OTP" : "EEPROM");
1012 
1013 	iwl_eeprom_release_semaphore(trans);
1014 
1015 	*eeprom_size = sz;
1016 	*eeprom = (u8 *)e;
1017 	return 0;
1018 
1019  err_unlock:
1020 	iwl_eeprom_release_semaphore(trans);
1021  err_free:
1022 	kfree(e);
1023 
1024 	return ret;
1025 }
1026 
1027 static void iwl_init_sbands(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1028 			    struct iwl_nvm_data *data,
1029 			    const u8 *eeprom, size_t eeprom_size)
1030 {
1031 	struct device *dev = trans->dev;
1032 	int n_channels = iwl_init_channel_map(dev, cfg, data,
1033 					      eeprom, eeprom_size);
1034 	int n_used = 0;
1035 	struct ieee80211_supported_band *sband;
1036 
1037 	sband = &data->bands[NL80211_BAND_2GHZ];
1038 	sband->band = NL80211_BAND_2GHZ;
1039 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1040 	sband->n_bitrates = N_RATES_24;
1041 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1042 					  NL80211_BAND_2GHZ);
1043 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1044 			     data->valid_tx_ant, data->valid_rx_ant);
1045 
1046 	sband = &data->bands[NL80211_BAND_5GHZ];
1047 	sband->band = NL80211_BAND_5GHZ;
1048 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1049 	sband->n_bitrates = N_RATES_52;
1050 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1051 					  NL80211_BAND_5GHZ);
1052 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1053 			     data->valid_tx_ant, data->valid_rx_ant);
1054 
1055 	if (n_channels != n_used)
1056 		IWL_ERR_DEV(dev, "EEPROM: used only %d of %d channels\n",
1057 			    n_used, n_channels);
1058 }
1059 
1060 /* EEPROM data functions */
1061 struct iwl_nvm_data *
1062 iwl_parse_eeprom_data(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1063 		      const u8 *eeprom, size_t eeprom_size)
1064 {
1065 	struct iwl_nvm_data *data;
1066 	struct device *dev = trans->dev;
1067 	const void *tmp;
1068 	u16 radio_cfg, sku;
1069 
1070 	if (WARN_ON(!cfg || !cfg->eeprom_params))
1071 		return NULL;
1072 
1073 	data = kzalloc(struct_size(data, channels, IWL_NUM_CHANNELS),
1074 		       GFP_KERNEL);
1075 	if (!data)
1076 		return NULL;
1077 
1078 	/* get MAC address(es) */
1079 	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_MAC_ADDRESS);
1080 	if (!tmp)
1081 		goto err_free;
1082 	memcpy(data->hw_addr, tmp, ETH_ALEN);
1083 	data->n_hw_addrs = iwl_eeprom_query16(eeprom, eeprom_size,
1084 					      EEPROM_NUM_MAC_ADDRESS);
1085 
1086 	if (iwl_eeprom_read_calib(eeprom, eeprom_size, data))
1087 		goto err_free;
1088 
1089 	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_XTAL);
1090 	if (!tmp)
1091 		goto err_free;
1092 	memcpy(data->xtal_calib, tmp, sizeof(data->xtal_calib));
1093 
1094 	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
1095 				    EEPROM_RAW_TEMPERATURE);
1096 	if (!tmp)
1097 		goto err_free;
1098 	data->raw_temperature = *(const __le16 *)tmp;
1099 
1100 	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
1101 				    EEPROM_KELVIN_TEMPERATURE);
1102 	if (!tmp)
1103 		goto err_free;
1104 	data->kelvin_temperature = *(const __le16 *)tmp;
1105 	data->kelvin_voltage = *((const __le16 *)tmp + 1);
1106 
1107 	radio_cfg =
1108 		iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_RADIO_CONFIG);
1109 	data->radio_cfg_dash = EEPROM_RF_CFG_DASH_MSK(radio_cfg);
1110 	data->radio_cfg_pnum = EEPROM_RF_CFG_PNUM_MSK(radio_cfg);
1111 	data->radio_cfg_step = EEPROM_RF_CFG_STEP_MSK(radio_cfg);
1112 	data->radio_cfg_type = EEPROM_RF_CFG_TYPE_MSK(radio_cfg);
1113 	data->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
1114 	data->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
1115 
1116 	sku = iwl_eeprom_query16(eeprom, eeprom_size,
1117 				 EEPROM_SKU_CAP);
1118 	data->sku_cap_11n_enable = sku & EEPROM_SKU_CAP_11N_ENABLE;
1119 	data->sku_cap_amt_enable = sku & EEPROM_SKU_CAP_AMT_ENABLE;
1120 	data->sku_cap_band_24ghz_enable = sku & EEPROM_SKU_CAP_BAND_24GHZ;
1121 	data->sku_cap_band_52ghz_enable = sku & EEPROM_SKU_CAP_BAND_52GHZ;
1122 	data->sku_cap_ipan_enable = sku & EEPROM_SKU_CAP_IPAN_ENABLE;
1123 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1124 		data->sku_cap_11n_enable = false;
1125 
1126 	data->nvm_version = iwl_eeprom_query16(eeprom, eeprom_size,
1127 					       EEPROM_VERSION);
1128 
1129 	/* check overrides (some devices have wrong EEPROM) */
1130 	if (cfg->valid_tx_ant)
1131 		data->valid_tx_ant = cfg->valid_tx_ant;
1132 	if (cfg->valid_rx_ant)
1133 		data->valid_rx_ant = cfg->valid_rx_ant;
1134 
1135 	if (!data->valid_tx_ant || !data->valid_rx_ant) {
1136 		IWL_ERR_DEV(dev, "invalid antennas (0x%x, 0x%x)\n",
1137 			    data->valid_tx_ant, data->valid_rx_ant);
1138 		goto err_free;
1139 	}
1140 
1141 	iwl_init_sbands(trans, cfg, data, eeprom, eeprom_size);
1142 
1143 	return data;
1144  err_free:
1145 	kfree(data);
1146 	return NULL;
1147 }
1148