xref: /linux/drivers/net/wireless/intel/iwlwifi/dvm/eeprom.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2019, 2021, 2024 Intel Corporation
4  */
5 #include <linux/types.h>
6 #include <linux/slab.h>
7 #include <linux/export.h>
8 
9 #include "iwl-drv.h"
10 #include "iwl-debug.h"
11 #include "iwl-io.h"
12 #include "iwl-prph.h"
13 #include "iwl-csr.h"
14 #include "agn.h"
15 
16 /* EEPROM offset definitions */
17 
18 /* indirect access definitions */
19 #define ADDRESS_MSK                 0x0000FFFF
20 #define INDIRECT_TYPE_MSK           0x000F0000
21 #define INDIRECT_HOST               0x00010000
22 #define INDIRECT_GENERAL            0x00020000
23 #define INDIRECT_REGULATORY         0x00030000
24 #define INDIRECT_CALIBRATION        0x00040000
25 #define INDIRECT_PROCESS_ADJST      0x00050000
26 #define INDIRECT_OTHERS             0x00060000
27 #define INDIRECT_TXP_LIMIT          0x00070000
28 #define INDIRECT_TXP_LIMIT_SIZE     0x00080000
29 #define INDIRECT_ADDRESS            0x00100000
30 
31 /* corresponding link offsets in EEPROM */
32 #define EEPROM_LINK_HOST             (2*0x64)
33 #define EEPROM_LINK_GENERAL          (2*0x65)
34 #define EEPROM_LINK_REGULATORY       (2*0x66)
35 #define EEPROM_LINK_CALIBRATION      (2*0x67)
36 #define EEPROM_LINK_PROCESS_ADJST    (2*0x68)
37 #define EEPROM_LINK_OTHERS           (2*0x69)
38 #define EEPROM_LINK_TXP_LIMIT        (2*0x6a)
39 #define EEPROM_LINK_TXP_LIMIT_SIZE   (2*0x6b)
40 
41 /* General */
42 #define EEPROM_DEVICE_ID                    (2*0x08)	/* 2 bytes */
43 #define EEPROM_SUBSYSTEM_ID		    (2*0x0A)	/* 2 bytes */
44 #define EEPROM_MAC_ADDRESS                  (2*0x15)	/* 6  bytes */
45 #define EEPROM_BOARD_REVISION               (2*0x35)	/* 2  bytes */
46 #define EEPROM_BOARD_PBA_NUMBER             (2*0x3B+1)	/* 9  bytes */
47 #define EEPROM_VERSION                      (2*0x44)	/* 2  bytes */
48 #define EEPROM_SKU_CAP                      (2*0x45)	/* 2  bytes */
49 #define EEPROM_OEM_MODE                     (2*0x46)	/* 2  bytes */
50 #define EEPROM_RADIO_CONFIG                 (2*0x48)	/* 2  bytes */
51 #define EEPROM_NUM_MAC_ADDRESS              (2*0x4C)	/* 2  bytes */
52 
53 /* calibration */
54 struct iwl_eeprom_calib_hdr {
55 	u8 version;
56 	u8 pa_type;
57 	__le16 voltage;
58 } __packed;
59 
60 #define EEPROM_CALIB_ALL	(INDIRECT_ADDRESS | INDIRECT_CALIBRATION)
61 #define EEPROM_XTAL		((2*0x128) | EEPROM_CALIB_ALL)
62 
63 /* temperature */
64 #define EEPROM_KELVIN_TEMPERATURE	((2*0x12A) | EEPROM_CALIB_ALL)
65 #define EEPROM_RAW_TEMPERATURE		((2*0x12B) | EEPROM_CALIB_ALL)
66 
67 /* SKU Capabilities (actual values from EEPROM definition) */
68 enum eeprom_sku_bits {
69 	EEPROM_SKU_CAP_BAND_24GHZ	= BIT(4),
70 	EEPROM_SKU_CAP_BAND_52GHZ	= BIT(5),
71 	EEPROM_SKU_CAP_11N_ENABLE	= BIT(6),
72 	EEPROM_SKU_CAP_AMT_ENABLE	= BIT(7),
73 	EEPROM_SKU_CAP_IPAN_ENABLE	= BIT(8)
74 };
75 
76 /* radio config bits (actual values from EEPROM definition) */
77 #define EEPROM_RF_CFG_TYPE_MSK(x)   (x & 0x3)         /* bits 0-1   */
78 #define EEPROM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
79 #define EEPROM_RF_CFG_DASH_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
80 #define EEPROM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
81 #define EEPROM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
82 #define EEPROM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
83 
84 /*
85  * EEPROM bands
86  * These are the channel numbers from each band in the order
87  * that they are stored in the EEPROM band information. Note
88  * that EEPROM bands aren't the same as mac80211 bands, and
89  * there are even special "ht40 bands" in the EEPROM.
90  */
91 static const u8 iwl_eeprom_band_1[14] = { /* 2.4 GHz */
92 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
93 };
94 
95 static const u8 iwl_eeprom_band_2[] = {	/* 4915-5080MHz */
96 	183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
97 };
98 
99 static const u8 iwl_eeprom_band_3[] = {	/* 5170-5320MHz */
100 	34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
101 };
102 
103 static const u8 iwl_eeprom_band_4[] = {	/* 5500-5700MHz */
104 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
105 };
106 
107 static const u8 iwl_eeprom_band_5[] = {	/* 5725-5825MHz */
108 	145, 149, 153, 157, 161, 165
109 };
110 
111 static const u8 iwl_eeprom_band_6[] = {	/* 2.4 ht40 channel */
112 	1, 2, 3, 4, 5, 6, 7
113 };
114 
115 static const u8 iwl_eeprom_band_7[] = {	/* 5.2 ht40 channel */
116 	36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
117 };
118 
119 #define IWL_NUM_CHANNELS	(ARRAY_SIZE(iwl_eeprom_band_1) + \
120 				 ARRAY_SIZE(iwl_eeprom_band_2) + \
121 				 ARRAY_SIZE(iwl_eeprom_band_3) + \
122 				 ARRAY_SIZE(iwl_eeprom_band_4) + \
123 				 ARRAY_SIZE(iwl_eeprom_band_5))
124 
125 /* rate data (static) */
126 static struct ieee80211_rate iwl_cfg80211_rates[] = {
127 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
128 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
129 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
131 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
132 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
133 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
134 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
135 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
136 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
137 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
138 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
139 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
140 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
141 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
142 };
143 #define RATES_24_OFFS	0
144 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
145 #define RATES_52_OFFS	4
146 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
147 
148 /* EEPROM reading functions */
149 
150 static u16 iwl_eeprom_query16(const u8 *eeprom, size_t eeprom_size, int offset)
151 {
152 	if (WARN_ON(offset + sizeof(u16) > eeprom_size))
153 		return 0;
154 	return le16_to_cpup((__le16 *)(eeprom + offset));
155 }
156 
157 static u32 eeprom_indirect_address(const u8 *eeprom, size_t eeprom_size,
158 				   u32 address)
159 {
160 	u16 offset = 0;
161 
162 	if ((address & INDIRECT_ADDRESS) == 0)
163 		return address;
164 
165 	switch (address & INDIRECT_TYPE_MSK) {
166 	case INDIRECT_HOST:
167 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
168 					    EEPROM_LINK_HOST);
169 		break;
170 	case INDIRECT_GENERAL:
171 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
172 					    EEPROM_LINK_GENERAL);
173 		break;
174 	case INDIRECT_REGULATORY:
175 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
176 					    EEPROM_LINK_REGULATORY);
177 		break;
178 	case INDIRECT_TXP_LIMIT:
179 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
180 					    EEPROM_LINK_TXP_LIMIT);
181 		break;
182 	case INDIRECT_TXP_LIMIT_SIZE:
183 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
184 					    EEPROM_LINK_TXP_LIMIT_SIZE);
185 		break;
186 	case INDIRECT_CALIBRATION:
187 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
188 					    EEPROM_LINK_CALIBRATION);
189 		break;
190 	case INDIRECT_PROCESS_ADJST:
191 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
192 					    EEPROM_LINK_PROCESS_ADJST);
193 		break;
194 	case INDIRECT_OTHERS:
195 		offset = iwl_eeprom_query16(eeprom, eeprom_size,
196 					    EEPROM_LINK_OTHERS);
197 		break;
198 	default:
199 		WARN_ON(1);
200 		break;
201 	}
202 
203 	/* translate the offset from words to byte */
204 	return (address & ADDRESS_MSK) + (offset << 1);
205 }
206 
207 static const u8 *iwl_eeprom_query_addr(const u8 *eeprom, size_t eeprom_size,
208 				       u32 offset)
209 {
210 	u32 address = eeprom_indirect_address(eeprom, eeprom_size, offset);
211 
212 	if (WARN_ON(address >= eeprom_size))
213 		return NULL;
214 
215 	return &eeprom[address];
216 }
217 
218 static int iwl_eeprom_read_calib(const u8 *eeprom, size_t eeprom_size,
219 				 struct iwl_nvm_data *data)
220 {
221 	struct iwl_eeprom_calib_hdr *hdr;
222 
223 	hdr = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size,
224 					    EEPROM_CALIB_ALL);
225 	if (!hdr)
226 		return -ENODATA;
227 	data->calib_version = hdr->version;
228 	data->calib_voltage = hdr->voltage;
229 
230 	return 0;
231 }
232 
233 /**
234  * enum iwl_eeprom_channel_flags - channel flags in EEPROM
235  * @EEPROM_CHANNEL_VALID: channel is usable for this SKU/geo
236  * @EEPROM_CHANNEL_IBSS: usable as an IBSS channel
237  * @EEPROM_CHANNEL_ACTIVE: active scanning allowed
238  * @EEPROM_CHANNEL_RADAR: radar detection required
239  * @EEPROM_CHANNEL_WIDE: 20 MHz channel okay (?)
240  * @EEPROM_CHANNEL_DFS: dynamic freq selection candidate
241  */
242 enum iwl_eeprom_channel_flags {
243 	EEPROM_CHANNEL_VALID = BIT(0),
244 	EEPROM_CHANNEL_IBSS = BIT(1),
245 	EEPROM_CHANNEL_ACTIVE = BIT(3),
246 	EEPROM_CHANNEL_RADAR = BIT(4),
247 	EEPROM_CHANNEL_WIDE = BIT(5),
248 	EEPROM_CHANNEL_DFS = BIT(7),
249 };
250 
251 /**
252  * struct iwl_eeprom_channel - EEPROM channel data
253  * @flags: %EEPROM_CHANNEL_* flags
254  * @max_power_avg: max power (in dBm) on this channel, at most 31 dBm
255  */
256 struct iwl_eeprom_channel {
257 	u8 flags;
258 	s8 max_power_avg;
259 } __packed;
260 
261 enum iwl_eeprom_enhanced_txpwr_flags {
262 	IWL_EEPROM_ENH_TXP_FL_VALID = BIT(0),
263 	IWL_EEPROM_ENH_TXP_FL_BAND_52G = BIT(1),
264 	IWL_EEPROM_ENH_TXP_FL_OFDM = BIT(2),
265 	IWL_EEPROM_ENH_TXP_FL_40MHZ = BIT(3),
266 	IWL_EEPROM_ENH_TXP_FL_HT_AP = BIT(4),
267 	IWL_EEPROM_ENH_TXP_FL_RES1 = BIT(5),
268 	IWL_EEPROM_ENH_TXP_FL_RES2 = BIT(6),
269 	IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE = BIT(7),
270 };
271 
272 /**
273  * struct iwl_eeprom_enhanced_txpwr - enhanced regulatory TX power limits
274  * @flags: entry flags
275  * @channel: channel number
276  * @chain_a_max: chain a max power in 1/2 dBm
277  * @chain_b_max: chain b max power in 1/2 dBm
278  * @chain_c_max: chain c max power in 1/2 dBm
279  * @delta_20_in_40: 20-in-40 deltas (hi/lo)
280  * @mimo2_max: mimo2 max power in 1/2 dBm
281  * @mimo3_max: mimo3 max power in 1/2 dBm
282  *
283  * This structure presents the enhanced regulatory tx power limit layout
284  * in an EEPROM image.
285  */
286 struct iwl_eeprom_enhanced_txpwr {
287 	u8 flags;
288 	u8 channel;
289 	s8 chain_a_max;
290 	s8 chain_b_max;
291 	s8 chain_c_max;
292 	u8 delta_20_in_40;
293 	s8 mimo2_max;
294 	s8 mimo3_max;
295 } __packed;
296 
297 static s8 iwl_get_max_txpwr_half_dbm(const struct iwl_nvm_data *data,
298 				     struct iwl_eeprom_enhanced_txpwr *txp)
299 {
300 	s8 result = 0; /* (.5 dBm) */
301 
302 	/* Take the highest tx power from any valid chains */
303 	if (data->valid_tx_ant & ANT_A && txp->chain_a_max > result)
304 		result = txp->chain_a_max;
305 
306 	if (data->valid_tx_ant & ANT_B && txp->chain_b_max > result)
307 		result = txp->chain_b_max;
308 
309 	if (data->valid_tx_ant & ANT_C && txp->chain_c_max > result)
310 		result = txp->chain_c_max;
311 
312 	if ((data->valid_tx_ant == ANT_AB ||
313 	     data->valid_tx_ant == ANT_BC ||
314 	     data->valid_tx_ant == ANT_AC) && txp->mimo2_max > result)
315 		result = txp->mimo2_max;
316 
317 	if (data->valid_tx_ant == ANT_ABC && txp->mimo3_max > result)
318 		result = txp->mimo3_max;
319 
320 	return result;
321 }
322 
323 #define EEPROM_TXP_OFFS	(0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
324 #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
325 #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
326 
327 #define TXP_CHECK_AND_PRINT(x) \
328 	((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) ? # x " " : "")
329 
330 static void
331 iwl_eeprom_enh_txp_read_element(struct iwl_nvm_data *data,
332 				struct iwl_eeprom_enhanced_txpwr *txp,
333 				int n_channels, s8 max_txpower_avg)
334 {
335 	int ch_idx;
336 	enum nl80211_band band;
337 
338 	band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
339 		NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
340 
341 	for (ch_idx = 0; ch_idx < n_channels; ch_idx++) {
342 		struct ieee80211_channel *chan = &data->channels[ch_idx];
343 
344 		/* update matching channel or from common data only */
345 		if (txp->channel != 0 && chan->hw_value != txp->channel)
346 			continue;
347 
348 		/* update matching band only */
349 		if (band != chan->band)
350 			continue;
351 
352 		if (chan->max_power < max_txpower_avg &&
353 		    !(txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ))
354 			chan->max_power = max_txpower_avg;
355 	}
356 }
357 
358 static void iwl_eeprom_enhanced_txpower(struct device *dev,
359 					struct iwl_nvm_data *data,
360 					const u8 *eeprom, size_t eeprom_size,
361 					int n_channels)
362 {
363 	struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
364 	int idx, entries;
365 	__le16 *txp_len;
366 	s8 max_txp_avg_halfdbm;
367 
368 	BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
369 
370 	/* the length is in 16-bit words, but we want entries */
371 	txp_len = (__le16 *)iwl_eeprom_query_addr(eeprom, eeprom_size,
372 						  EEPROM_TXP_SZ_OFFS);
373 	entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
374 
375 	txp_array = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size,
376 						  EEPROM_TXP_OFFS);
377 
378 	for (idx = 0; idx < entries; idx++) {
379 		txp = &txp_array[idx];
380 		/* skip invalid entries */
381 		if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
382 			continue;
383 
384 		IWL_DEBUG_EEPROM(dev, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
385 				 (txp->channel && (txp->flags &
386 					IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
387 					"Common " : (txp->channel) ?
388 					"Channel" : "Common",
389 				 (txp->channel),
390 				 TXP_CHECK_AND_PRINT(VALID),
391 				 TXP_CHECK_AND_PRINT(BAND_52G),
392 				 TXP_CHECK_AND_PRINT(OFDM),
393 				 TXP_CHECK_AND_PRINT(40MHZ),
394 				 TXP_CHECK_AND_PRINT(HT_AP),
395 				 TXP_CHECK_AND_PRINT(RES1),
396 				 TXP_CHECK_AND_PRINT(RES2),
397 				 TXP_CHECK_AND_PRINT(COMMON_TYPE),
398 				 txp->flags);
399 		IWL_DEBUG_EEPROM(dev,
400 				 "\t\t chain_A: %d chain_B: %d chain_C: %d\n",
401 				 txp->chain_a_max, txp->chain_b_max,
402 				 txp->chain_c_max);
403 		IWL_DEBUG_EEPROM(dev,
404 				 "\t\t MIMO2: %d MIMO3: %d High 20_on_40: 0x%02x Low 20_on_40: 0x%02x\n",
405 				 txp->mimo2_max, txp->mimo3_max,
406 				 ((txp->delta_20_in_40 & 0xf0) >> 4),
407 				 (txp->delta_20_in_40 & 0x0f));
408 
409 		max_txp_avg_halfdbm = iwl_get_max_txpwr_half_dbm(data, txp);
410 
411 		iwl_eeprom_enh_txp_read_element(data, txp, n_channels,
412 				DIV_ROUND_UP(max_txp_avg_halfdbm, 2));
413 
414 		if (max_txp_avg_halfdbm > data->max_tx_pwr_half_dbm)
415 			data->max_tx_pwr_half_dbm = max_txp_avg_halfdbm;
416 	}
417 }
418 
419 static void iwl_init_band_reference(const struct iwl_cfg *cfg,
420 				    const u8 *eeprom, size_t eeprom_size,
421 				    int eeprom_band, int *eeprom_ch_count,
422 				    const struct iwl_eeprom_channel **ch_info,
423 				    const u8 **eeprom_ch_array)
424 {
425 	u32 offset = cfg->eeprom_params->regulatory_bands[eeprom_band - 1];
426 
427 	offset |= INDIRECT_ADDRESS | INDIRECT_REGULATORY;
428 
429 	*ch_info = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size, offset);
430 
431 	switch (eeprom_band) {
432 	case 1:		/* 2.4GHz band */
433 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
434 		*eeprom_ch_array = iwl_eeprom_band_1;
435 		break;
436 	case 2:		/* 4.9GHz band */
437 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
438 		*eeprom_ch_array = iwl_eeprom_band_2;
439 		break;
440 	case 3:		/* 5.2GHz band */
441 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
442 		*eeprom_ch_array = iwl_eeprom_band_3;
443 		break;
444 	case 4:		/* 5.5GHz band */
445 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
446 		*eeprom_ch_array = iwl_eeprom_band_4;
447 		break;
448 	case 5:		/* 5.7GHz band */
449 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
450 		*eeprom_ch_array = iwl_eeprom_band_5;
451 		break;
452 	case 6:		/* 2.4GHz ht40 channels */
453 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
454 		*eeprom_ch_array = iwl_eeprom_band_6;
455 		break;
456 	case 7:		/* 5 GHz ht40 channels */
457 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
458 		*eeprom_ch_array = iwl_eeprom_band_7;
459 		break;
460 	default:
461 		*eeprom_ch_count = 0;
462 		*eeprom_ch_array = NULL;
463 		WARN_ON(1);
464 	}
465 }
466 
467 #define CHECK_AND_PRINT(x) \
468 	((eeprom_ch->flags & EEPROM_CHANNEL_##x) ? # x " " : "")
469 
470 static void iwl_mod_ht40_chan_info(struct device *dev,
471 				   struct iwl_nvm_data *data, int n_channels,
472 				   enum nl80211_band band, u16 channel,
473 				   const struct iwl_eeprom_channel *eeprom_ch,
474 				   u8 clear_ht40_extension_channel)
475 {
476 	struct ieee80211_channel *chan = NULL;
477 	int i;
478 
479 	for (i = 0; i < n_channels; i++) {
480 		if (data->channels[i].band != band)
481 			continue;
482 		if (data->channels[i].hw_value != channel)
483 			continue;
484 		chan = &data->channels[i];
485 		break;
486 	}
487 
488 	if (!chan)
489 		return;
490 
491 	IWL_DEBUG_EEPROM(dev,
492 			 "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
493 			 channel,
494 			 band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
495 			 CHECK_AND_PRINT(IBSS),
496 			 CHECK_AND_PRINT(ACTIVE),
497 			 CHECK_AND_PRINT(RADAR),
498 			 CHECK_AND_PRINT(WIDE),
499 			 CHECK_AND_PRINT(DFS),
500 			 eeprom_ch->flags,
501 			 eeprom_ch->max_power_avg,
502 			 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
503 			  !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? ""
504 								      : "not ");
505 
506 	if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
507 		chan->flags &= ~clear_ht40_extension_channel;
508 }
509 
510 #define CHECK_AND_PRINT_I(x)	\
511 	((eeprom_ch_info[ch_idx].flags & EEPROM_CHANNEL_##x) ? # x " " : "")
512 
513 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
514 				struct iwl_nvm_data *data,
515 				const u8 *eeprom, size_t eeprom_size)
516 {
517 	int band, ch_idx;
518 	const struct iwl_eeprom_channel *eeprom_ch_info;
519 	const u8 *eeprom_ch_array;
520 	int eeprom_ch_count;
521 	int n_channels = 0;
522 
523 	/*
524 	 * Loop through the 5 EEPROM bands and add them to the parse list
525 	 */
526 	for (band = 1; band <= 5; band++) {
527 		struct ieee80211_channel *channel;
528 
529 		iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
530 					&eeprom_ch_count, &eeprom_ch_info,
531 					&eeprom_ch_array);
532 
533 		/* Loop through each band adding each of the channels */
534 		for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
535 			const struct iwl_eeprom_channel *eeprom_ch;
536 
537 			eeprom_ch = &eeprom_ch_info[ch_idx];
538 
539 			if (!(eeprom_ch->flags & EEPROM_CHANNEL_VALID)) {
540 				IWL_DEBUG_EEPROM(dev,
541 						 "Ch. %d Flags %x [%sGHz] - No traffic\n",
542 						 eeprom_ch_array[ch_idx],
543 						 eeprom_ch_info[ch_idx].flags,
544 						 (band != 1) ? "5.2" : "2.4");
545 				continue;
546 			}
547 
548 			channel = &data->channels[n_channels];
549 			n_channels++;
550 
551 			channel->hw_value = eeprom_ch_array[ch_idx];
552 			channel->band = (band == 1) ? NL80211_BAND_2GHZ
553 						    : NL80211_BAND_5GHZ;
554 			channel->center_freq =
555 				ieee80211_channel_to_frequency(
556 					channel->hw_value, channel->band);
557 
558 			/* set no-HT40, will enable as appropriate later */
559 			channel->flags = IEEE80211_CHAN_NO_HT40;
560 
561 			if (!(eeprom_ch->flags & EEPROM_CHANNEL_IBSS))
562 				channel->flags |= IEEE80211_CHAN_NO_IR;
563 
564 			if (!(eeprom_ch->flags & EEPROM_CHANNEL_ACTIVE))
565 				channel->flags |= IEEE80211_CHAN_NO_IR;
566 
567 			if (eeprom_ch->flags & EEPROM_CHANNEL_RADAR)
568 				channel->flags |= IEEE80211_CHAN_RADAR;
569 
570 			/* Initialize regulatory-based run-time data */
571 			channel->max_power =
572 				eeprom_ch_info[ch_idx].max_power_avg;
573 			IWL_DEBUG_EEPROM(dev,
574 					 "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
575 					 channel->hw_value,
576 					 (band != 1) ? "5.2" : "2.4",
577 					 CHECK_AND_PRINT_I(VALID),
578 					 CHECK_AND_PRINT_I(IBSS),
579 					 CHECK_AND_PRINT_I(ACTIVE),
580 					 CHECK_AND_PRINT_I(RADAR),
581 					 CHECK_AND_PRINT_I(WIDE),
582 					 CHECK_AND_PRINT_I(DFS),
583 					 eeprom_ch_info[ch_idx].flags,
584 					 eeprom_ch_info[ch_idx].max_power_avg,
585 					 ((eeprom_ch_info[ch_idx].flags &
586 							EEPROM_CHANNEL_IBSS) &&
587 					  !(eeprom_ch_info[ch_idx].flags &
588 							EEPROM_CHANNEL_RADAR))
589 						? "" : "not ");
590 		}
591 	}
592 
593 	if (cfg->eeprom_params->enhanced_txpower) {
594 		/*
595 		 * for newer device (6000 series and up)
596 		 * EEPROM contain enhanced tx power information
597 		 * driver need to process addition information
598 		 * to determine the max channel tx power limits
599 		 */
600 		iwl_eeprom_enhanced_txpower(dev, data, eeprom, eeprom_size,
601 					    n_channels);
602 	} else {
603 		/* All others use data from channel map */
604 		int i;
605 
606 		data->max_tx_pwr_half_dbm = -128;
607 
608 		for (i = 0; i < n_channels; i++)
609 			data->max_tx_pwr_half_dbm =
610 				max_t(s8, data->max_tx_pwr_half_dbm,
611 				      data->channels[i].max_power * 2);
612 	}
613 
614 	/* Check if we do have HT40 channels */
615 	if (cfg->eeprom_params->regulatory_bands[5] ==
616 				EEPROM_REGULATORY_BAND_NO_HT40 &&
617 	    cfg->eeprom_params->regulatory_bands[6] ==
618 				EEPROM_REGULATORY_BAND_NO_HT40)
619 		return n_channels;
620 
621 	/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
622 	for (band = 6; band <= 7; band++) {
623 		enum nl80211_band ieeeband;
624 
625 		iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
626 					&eeprom_ch_count, &eeprom_ch_info,
627 					&eeprom_ch_array);
628 
629 		/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
630 		ieeeband = (band == 6) ? NL80211_BAND_2GHZ
631 				       : NL80211_BAND_5GHZ;
632 
633 		/* Loop through each band adding each of the channels */
634 		for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
635 			/* Set up driver's info for lower half */
636 			iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
637 					       eeprom_ch_array[ch_idx],
638 					       &eeprom_ch_info[ch_idx],
639 					       IEEE80211_CHAN_NO_HT40PLUS);
640 
641 			/* Set up driver's info for upper half */
642 			iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
643 					       eeprom_ch_array[ch_idx] + 4,
644 					       &eeprom_ch_info[ch_idx],
645 					       IEEE80211_CHAN_NO_HT40MINUS);
646 		}
647 	}
648 
649 	return n_channels;
650 }
651 /*
652  * EEPROM access time values:
653  *
654  * Driver initiates EEPROM read by writing byte address << 1 to CSR_EEPROM_REG.
655  * Driver then polls CSR_EEPROM_REG for CSR_EEPROM_REG_READ_VALID_MSK (0x1).
656  * When polling, wait 10 uSec between polling loops, up to a maximum 5000 uSec.
657  * Driver reads 16-bit value from bits 31-16 of CSR_EEPROM_REG.
658  */
659 #define IWL_EEPROM_ACCESS_TIMEOUT	5000 /* uSec */
660 
661 /*
662  * The device's EEPROM semaphore prevents conflicts between driver and uCode
663  * when accessing the EEPROM; each access is a series of pulses to/from the
664  * EEPROM chip, not a single event, so even reads could conflict if they
665  * weren't arbitrated by the semaphore.
666  */
667 #define IWL_EEPROM_SEM_TIMEOUT		10   /* microseconds */
668 #define IWL_EEPROM_SEM_RETRY_LIMIT	1000 /* number of attempts (not time) */
669 
670 
671 static int iwl_eeprom_acquire_semaphore(struct iwl_trans *trans)
672 {
673 	u16 count;
674 	int ret;
675 
676 	for (count = 0; count < IWL_EEPROM_SEM_RETRY_LIMIT; count++) {
677 		/* Request semaphore */
678 		iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
679 			    CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
680 
681 		/* See if we got it */
682 		ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
683 				CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
684 				CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
685 				IWL_EEPROM_SEM_TIMEOUT);
686 		if (ret >= 0) {
687 			IWL_DEBUG_EEPROM(trans->dev,
688 					 "Acquired semaphore after %d tries.\n",
689 					 count+1);
690 			return ret;
691 		}
692 	}
693 
694 	return ret;
695 }
696 
697 static void iwl_eeprom_release_semaphore(struct iwl_trans *trans)
698 {
699 	iwl_clear_bit(trans, CSR_HW_IF_CONFIG_REG,
700 		      CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
701 }
702 
703 static int iwl_eeprom_verify_signature(struct iwl_trans *trans, bool nvm_is_otp)
704 {
705 	u32 gp = iwl_read32(trans, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
706 
707 	IWL_DEBUG_EEPROM(trans->dev, "EEPROM signature=0x%08x\n", gp);
708 
709 	switch (gp) {
710 	case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
711 		if (!nvm_is_otp) {
712 			IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n",
713 				gp);
714 			return -ENOENT;
715 		}
716 		return 0;
717 	case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
718 	case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
719 		if (nvm_is_otp) {
720 			IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp);
721 			return -ENOENT;
722 		}
723 		return 0;
724 	case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
725 	default:
726 		IWL_ERR(trans,
727 			"bad EEPROM/OTP signature, type=%s, EEPROM_GP=0x%08x\n",
728 			nvm_is_otp ? "OTP" : "EEPROM", gp);
729 		return -ENOENT;
730 	}
731 }
732 
733 /******************************************************************************
734  *
735  * OTP related functions
736  *
737 ******************************************************************************/
738 
739 static void iwl_set_otp_access_absolute(struct iwl_trans *trans)
740 {
741 	iwl_read32(trans, CSR_OTP_GP_REG);
742 
743 	iwl_clear_bit(trans, CSR_OTP_GP_REG,
744 		      CSR_OTP_GP_REG_OTP_ACCESS_MODE);
745 }
746 
747 static int iwl_nvm_is_otp(struct iwl_trans *trans)
748 {
749 	u32 otpgp;
750 
751 	/* OTP only valid for CP/PP and after */
752 	switch (trans->hw_rev & CSR_HW_REV_TYPE_MSK) {
753 	case CSR_HW_REV_TYPE_NONE:
754 		IWL_ERR(trans, "Unknown hardware type\n");
755 		return -EIO;
756 	case CSR_HW_REV_TYPE_5300:
757 	case CSR_HW_REV_TYPE_5350:
758 	case CSR_HW_REV_TYPE_5100:
759 	case CSR_HW_REV_TYPE_5150:
760 		return 0;
761 	default:
762 		otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
763 		if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
764 			return 1;
765 		return 0;
766 	}
767 }
768 
769 static int iwl_init_otp_access(struct iwl_trans *trans)
770 {
771 	int ret;
772 
773 	ret = iwl_finish_nic_init(trans);
774 	if (ret)
775 		return ret;
776 
777 	iwl_set_bits_prph(trans, APMG_PS_CTRL_REG,
778 			  APMG_PS_CTRL_VAL_RESET_REQ);
779 	udelay(5);
780 	iwl_clear_bits_prph(trans, APMG_PS_CTRL_REG,
781 			    APMG_PS_CTRL_VAL_RESET_REQ);
782 
783 	/*
784 	 * CSR auto clock gate disable bit -
785 	 * this is only applicable for HW with OTP shadow RAM
786 	 */
787 	if (trans->trans_cfg->base_params->shadow_ram_support)
788 		iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
789 			    CSR_RESET_LINK_PWR_MGMT_DISABLED);
790 
791 	return 0;
792 }
793 
794 static int iwl_read_otp_word(struct iwl_trans *trans, u16 addr,
795 			     __le16 *eeprom_data)
796 {
797 	int ret = 0;
798 	u32 r;
799 	u32 otpgp;
800 
801 	iwl_write32(trans, CSR_EEPROM_REG,
802 		    CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
803 	ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
804 				 CSR_EEPROM_REG_READ_VALID_MSK,
805 				 CSR_EEPROM_REG_READ_VALID_MSK,
806 				 IWL_EEPROM_ACCESS_TIMEOUT);
807 	if (ret < 0) {
808 		IWL_ERR(trans, "Time out reading OTP[%d]\n", addr);
809 		return ret;
810 	}
811 	r = iwl_read32(trans, CSR_EEPROM_REG);
812 	/* check for ECC errors: */
813 	otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
814 	if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
815 		/* stop in this case */
816 		/* set the uncorrectable OTP ECC bit for acknowledgment */
817 		iwl_set_bit(trans, CSR_OTP_GP_REG,
818 			    CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
819 		IWL_ERR(trans, "Uncorrectable OTP ECC error, abort OTP read\n");
820 		return -EINVAL;
821 	}
822 	if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
823 		/* continue in this case */
824 		/* set the correctable OTP ECC bit for acknowledgment */
825 		iwl_set_bit(trans, CSR_OTP_GP_REG,
826 			    CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
827 		IWL_ERR(trans, "Correctable OTP ECC error, continue read\n");
828 	}
829 	*eeprom_data = cpu_to_le16(r >> 16);
830 	return 0;
831 }
832 
833 /*
834  * iwl_is_otp_empty: check for empty OTP
835  */
836 static bool iwl_is_otp_empty(struct iwl_trans *trans)
837 {
838 	u16 next_link_addr = 0;
839 	__le16 link_value;
840 	bool is_empty = false;
841 
842 	/* locate the beginning of OTP link list */
843 	if (!iwl_read_otp_word(trans, next_link_addr, &link_value)) {
844 		if (!link_value) {
845 			IWL_ERR(trans, "OTP is empty\n");
846 			is_empty = true;
847 		}
848 	} else {
849 		IWL_ERR(trans, "Unable to read first block of OTP list.\n");
850 		is_empty = true;
851 	}
852 
853 	return is_empty;
854 }
855 
856 
857 /*
858  * iwl_find_otp_image: find EEPROM image in OTP
859  *   finding the OTP block that contains the EEPROM image.
860  *   the last valid block on the link list (the block _before_ the last block)
861  *   is the block we should read and used to configure the device.
862  *   If all the available OTP blocks are full, the last block will be the block
863  *   we should read and used to configure the device.
864  *   only perform this operation if shadow RAM is disabled
865  */
866 static int iwl_find_otp_image(struct iwl_trans *trans,
867 					u16 *validblockaddr)
868 {
869 	u16 next_link_addr = 0, valid_addr;
870 	__le16 link_value = 0;
871 	int usedblocks = 0;
872 
873 	/* set addressing mode to absolute to traverse the link list */
874 	iwl_set_otp_access_absolute(trans);
875 
876 	/* checking for empty OTP or error */
877 	if (iwl_is_otp_empty(trans))
878 		return -EINVAL;
879 
880 	/*
881 	 * start traverse link list
882 	 * until reach the max number of OTP blocks
883 	 * different devices have different number of OTP blocks
884 	 */
885 	do {
886 		/* save current valid block address
887 		 * check for more block on the link list
888 		 */
889 		valid_addr = next_link_addr;
890 		next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
891 		IWL_DEBUG_EEPROM(trans->dev, "OTP blocks %d addr 0x%x\n",
892 				 usedblocks, next_link_addr);
893 		if (iwl_read_otp_word(trans, next_link_addr, &link_value))
894 			return -EINVAL;
895 		if (!link_value) {
896 			/*
897 			 * reach the end of link list, return success and
898 			 * set address point to the starting address
899 			 * of the image
900 			 */
901 			*validblockaddr = valid_addr;
902 			/* skip first 2 bytes (link list pointer) */
903 			*validblockaddr += 2;
904 			return 0;
905 		}
906 		/* more in the link list, continue */
907 		usedblocks++;
908 	} while (usedblocks <= trans->trans_cfg->base_params->max_ll_items);
909 
910 	/* OTP has no valid blocks */
911 	IWL_DEBUG_EEPROM(trans->dev, "OTP has no valid blocks\n");
912 	return -EINVAL;
913 }
914 
915 /*
916  * iwl_read_eeprom - read EEPROM contents
917  *
918  * Load the EEPROM contents from adapter and return it
919  * and its size.
920  *
921  * NOTE:  This routine uses the non-debug IO access functions.
922  */
923 int iwl_read_eeprom(struct iwl_trans *trans, u8 **eeprom, size_t *eeprom_size)
924 {
925 	__le16 *e;
926 	u32 gp = iwl_read32(trans, CSR_EEPROM_GP);
927 	int sz;
928 	int ret;
929 	u16 addr;
930 	u16 validblockaddr = 0;
931 	u16 cache_addr = 0;
932 	int nvm_is_otp;
933 
934 	if (!eeprom || !eeprom_size)
935 		return -EINVAL;
936 
937 	nvm_is_otp = iwl_nvm_is_otp(trans);
938 	if (nvm_is_otp < 0)
939 		return nvm_is_otp;
940 
941 	sz = trans->trans_cfg->base_params->eeprom_size;
942 	IWL_DEBUG_EEPROM(trans->dev, "NVM size = %d\n", sz);
943 
944 	e = kmalloc(sz, GFP_KERNEL);
945 	if (!e)
946 		return -ENOMEM;
947 
948 	ret = iwl_eeprom_verify_signature(trans, nvm_is_otp);
949 	if (ret < 0) {
950 		IWL_ERR(trans, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
951 		goto err_free;
952 	}
953 
954 	/* Make sure driver (instead of uCode) is allowed to read EEPROM */
955 	ret = iwl_eeprom_acquire_semaphore(trans);
956 	if (ret < 0) {
957 		IWL_ERR(trans, "Failed to acquire EEPROM semaphore.\n");
958 		goto err_free;
959 	}
960 
961 	if (nvm_is_otp) {
962 		ret = iwl_init_otp_access(trans);
963 		if (ret) {
964 			IWL_ERR(trans, "Failed to initialize OTP access.\n");
965 			goto err_unlock;
966 		}
967 
968 		iwl_write32(trans, CSR_EEPROM_GP,
969 			    iwl_read32(trans, CSR_EEPROM_GP) &
970 			    ~CSR_EEPROM_GP_IF_OWNER_MSK);
971 
972 		iwl_set_bit(trans, CSR_OTP_GP_REG,
973 			    CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
974 			    CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
975 		/* traversing the linked list if no shadow ram supported */
976 		if (!trans->trans_cfg->base_params->shadow_ram_support) {
977 			ret = iwl_find_otp_image(trans, &validblockaddr);
978 			if (ret)
979 				goto err_unlock;
980 		}
981 		for (addr = validblockaddr; addr < validblockaddr + sz;
982 		     addr += sizeof(u16)) {
983 			__le16 eeprom_data;
984 
985 			ret = iwl_read_otp_word(trans, addr, &eeprom_data);
986 			if (ret)
987 				goto err_unlock;
988 			e[cache_addr / 2] = eeprom_data;
989 			cache_addr += sizeof(u16);
990 		}
991 	} else {
992 		/* eeprom is an array of 16bit values */
993 		for (addr = 0; addr < sz; addr += sizeof(u16)) {
994 			u32 r;
995 
996 			iwl_write32(trans, CSR_EEPROM_REG,
997 				    CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
998 
999 			ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
1000 					   CSR_EEPROM_REG_READ_VALID_MSK,
1001 					   CSR_EEPROM_REG_READ_VALID_MSK,
1002 					   IWL_EEPROM_ACCESS_TIMEOUT);
1003 			if (ret < 0) {
1004 				IWL_ERR(trans,
1005 					"Time out reading EEPROM[%d]\n", addr);
1006 				goto err_unlock;
1007 			}
1008 			r = iwl_read32(trans, CSR_EEPROM_REG);
1009 			e[addr / 2] = cpu_to_le16(r >> 16);
1010 		}
1011 	}
1012 
1013 	IWL_DEBUG_EEPROM(trans->dev, "NVM Type: %s\n",
1014 			 nvm_is_otp ? "OTP" : "EEPROM");
1015 
1016 	iwl_eeprom_release_semaphore(trans);
1017 
1018 	*eeprom_size = sz;
1019 	*eeprom = (u8 *)e;
1020 	return 0;
1021 
1022  err_unlock:
1023 	iwl_eeprom_release_semaphore(trans);
1024  err_free:
1025 	kfree(e);
1026 
1027 	return ret;
1028 }
1029 
1030 static void iwl_init_sbands(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1031 			    struct iwl_nvm_data *data,
1032 			    const u8 *eeprom, size_t eeprom_size)
1033 {
1034 	struct device *dev = trans->dev;
1035 	int n_channels = iwl_init_channel_map(dev, cfg, data,
1036 					      eeprom, eeprom_size);
1037 	int n_used = 0;
1038 	struct ieee80211_supported_band *sband;
1039 
1040 	sband = &data->bands[NL80211_BAND_2GHZ];
1041 	sband->band = NL80211_BAND_2GHZ;
1042 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1043 	sband->n_bitrates = N_RATES_24;
1044 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1045 					  NL80211_BAND_2GHZ);
1046 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1047 			     data->valid_tx_ant, data->valid_rx_ant);
1048 
1049 	sband = &data->bands[NL80211_BAND_5GHZ];
1050 	sband->band = NL80211_BAND_5GHZ;
1051 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1052 	sband->n_bitrates = N_RATES_52;
1053 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1054 					  NL80211_BAND_5GHZ);
1055 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1056 			     data->valid_tx_ant, data->valid_rx_ant);
1057 
1058 	if (n_channels != n_used)
1059 		IWL_ERR_DEV(dev, "EEPROM: used only %d of %d channels\n",
1060 			    n_used, n_channels);
1061 }
1062 
1063 /* EEPROM data functions */
1064 struct iwl_nvm_data *
1065 iwl_parse_eeprom_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1066 		      const u8 *eeprom, size_t eeprom_size)
1067 {
1068 	struct iwl_nvm_data *data;
1069 	struct device *dev = trans->dev;
1070 	const void *tmp;
1071 	u16 radio_cfg, sku;
1072 
1073 	if (WARN_ON(!cfg || !cfg->eeprom_params))
1074 		return NULL;
1075 
1076 	data = kzalloc(struct_size(data, channels, IWL_NUM_CHANNELS),
1077 		       GFP_KERNEL);
1078 	if (!data)
1079 		return NULL;
1080 
1081 	/* get MAC address(es) */
1082 	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_MAC_ADDRESS);
1083 	if (!tmp)
1084 		goto err_free;
1085 	memcpy(data->hw_addr, tmp, ETH_ALEN);
1086 	data->n_hw_addrs = iwl_eeprom_query16(eeprom, eeprom_size,
1087 					      EEPROM_NUM_MAC_ADDRESS);
1088 
1089 	if (iwl_eeprom_read_calib(eeprom, eeprom_size, data))
1090 		goto err_free;
1091 
1092 	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_XTAL);
1093 	if (!tmp)
1094 		goto err_free;
1095 	memcpy(data->xtal_calib, tmp, sizeof(data->xtal_calib));
1096 
1097 	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
1098 				    EEPROM_RAW_TEMPERATURE);
1099 	if (!tmp)
1100 		goto err_free;
1101 	data->raw_temperature = *(__le16 *)tmp;
1102 
1103 	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
1104 				    EEPROM_KELVIN_TEMPERATURE);
1105 	if (!tmp)
1106 		goto err_free;
1107 	data->kelvin_temperature = *(__le16 *)tmp;
1108 	data->kelvin_voltage = *((__le16 *)tmp + 1);
1109 
1110 	radio_cfg =
1111 		iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_RADIO_CONFIG);
1112 	data->radio_cfg_dash = EEPROM_RF_CFG_DASH_MSK(radio_cfg);
1113 	data->radio_cfg_pnum = EEPROM_RF_CFG_PNUM_MSK(radio_cfg);
1114 	data->radio_cfg_step = EEPROM_RF_CFG_STEP_MSK(radio_cfg);
1115 	data->radio_cfg_type = EEPROM_RF_CFG_TYPE_MSK(radio_cfg);
1116 	data->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
1117 	data->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
1118 
1119 	sku = iwl_eeprom_query16(eeprom, eeprom_size,
1120 				 EEPROM_SKU_CAP);
1121 	data->sku_cap_11n_enable = sku & EEPROM_SKU_CAP_11N_ENABLE;
1122 	data->sku_cap_amt_enable = sku & EEPROM_SKU_CAP_AMT_ENABLE;
1123 	data->sku_cap_band_24ghz_enable = sku & EEPROM_SKU_CAP_BAND_24GHZ;
1124 	data->sku_cap_band_52ghz_enable = sku & EEPROM_SKU_CAP_BAND_52GHZ;
1125 	data->sku_cap_ipan_enable = sku & EEPROM_SKU_CAP_IPAN_ENABLE;
1126 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1127 		data->sku_cap_11n_enable = false;
1128 
1129 	data->nvm_version = iwl_eeprom_query16(eeprom, eeprom_size,
1130 					       EEPROM_VERSION);
1131 
1132 	/* check overrides (some devices have wrong EEPROM) */
1133 	if (cfg->valid_tx_ant)
1134 		data->valid_tx_ant = cfg->valid_tx_ant;
1135 	if (cfg->valid_rx_ant)
1136 		data->valid_rx_ant = cfg->valid_rx_ant;
1137 
1138 	if (!data->valid_tx_ant || !data->valid_rx_ant) {
1139 		IWL_ERR_DEV(dev, "invalid antennas (0x%x, 0x%x)\n",
1140 			    data->valid_tx_ant, data->valid_rx_ant);
1141 		goto err_free;
1142 	}
1143 
1144 	iwl_init_sbands(trans, cfg, data, eeprom, eeprom_size);
1145 
1146 	return data;
1147  err_free:
1148 	kfree(data);
1149 	return NULL;
1150 }
1151