1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ 2 /* 3 * Copyright (C) 2005-2014, 2023 Intel Corporation 4 */ 5 /* 6 * Please use this file (commands.h) only for uCode API definitions. 7 * Please use iwl-xxxx-hw.h for hardware-related definitions. 8 * Please use dev.h for driver implementation definitions. 9 */ 10 11 #ifndef __iwl_commands_h__ 12 #define __iwl_commands_h__ 13 14 #include <linux/ieee80211.h> 15 #include <linux/types.h> 16 17 18 enum { 19 REPLY_ALIVE = 0x1, 20 REPLY_ERROR = 0x2, 21 REPLY_ECHO = 0x3, /* test command */ 22 23 /* RXON and QOS commands */ 24 REPLY_RXON = 0x10, 25 REPLY_RXON_ASSOC = 0x11, 26 REPLY_QOS_PARAM = 0x13, 27 REPLY_RXON_TIMING = 0x14, 28 29 /* Multi-Station support */ 30 REPLY_ADD_STA = 0x18, 31 REPLY_REMOVE_STA = 0x19, 32 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */ 33 REPLY_TXFIFO_FLUSH = 0x1e, 34 35 /* Security */ 36 REPLY_WEPKEY = 0x20, 37 38 /* RX, TX, LEDs */ 39 REPLY_TX = 0x1c, 40 REPLY_LEDS_CMD = 0x48, 41 REPLY_TX_LINK_QUALITY_CMD = 0x4e, 42 43 /* WiMAX coexistence */ 44 COEX_PRIORITY_TABLE_CMD = 0x5a, 45 COEX_MEDIUM_NOTIFICATION = 0x5b, 46 COEX_EVENT_CMD = 0x5c, 47 48 /* Calibration */ 49 TEMPERATURE_NOTIFICATION = 0x62, 50 CALIBRATION_CFG_CMD = 0x65, 51 CALIBRATION_RES_NOTIFICATION = 0x66, 52 CALIBRATION_COMPLETE_NOTIFICATION = 0x67, 53 54 /* 802.11h related */ 55 REPLY_QUIET_CMD = 0x71, /* not used */ 56 REPLY_CHANNEL_SWITCH = 0x72, 57 CHANNEL_SWITCH_NOTIFICATION = 0x73, 58 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74, 59 SPECTRUM_MEASURE_NOTIFICATION = 0x75, 60 61 /* Power Management */ 62 POWER_TABLE_CMD = 0x77, 63 PM_SLEEP_NOTIFICATION = 0x7A, 64 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B, 65 66 /* Scan commands and notifications */ 67 REPLY_SCAN_CMD = 0x80, 68 REPLY_SCAN_ABORT_CMD = 0x81, 69 SCAN_START_NOTIFICATION = 0x82, 70 SCAN_RESULTS_NOTIFICATION = 0x83, 71 SCAN_COMPLETE_NOTIFICATION = 0x84, 72 73 /* IBSS/AP commands */ 74 BEACON_NOTIFICATION = 0x90, 75 REPLY_TX_BEACON = 0x91, 76 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */ 77 78 /* Miscellaneous commands */ 79 REPLY_TX_POWER_DBM_CMD = 0x95, 80 QUIET_NOTIFICATION = 0x96, /* not used */ 81 REPLY_TX_PWR_TABLE_CMD = 0x97, 82 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */ 83 TX_ANT_CONFIGURATION_CMD = 0x98, 84 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */ 85 86 /* Bluetooth device coexistence config command */ 87 REPLY_BT_CONFIG = 0x9b, 88 89 /* Statistics */ 90 REPLY_STATISTICS_CMD = 0x9c, 91 STATISTICS_NOTIFICATION = 0x9d, 92 93 /* RF-KILL commands and notifications */ 94 REPLY_CARD_STATE_CMD = 0xa0, 95 CARD_STATE_NOTIFICATION = 0xa1, 96 97 /* Missed beacons notification */ 98 MISSED_BEACONS_NOTIFICATION = 0xa2, 99 100 REPLY_CT_KILL_CONFIG_CMD = 0xa4, 101 SENSITIVITY_CMD = 0xa8, 102 REPLY_PHY_CALIBRATION_CMD = 0xb0, 103 REPLY_RX_PHY_CMD = 0xc0, 104 REPLY_RX_MPDU_CMD = 0xc1, 105 REPLY_RX = 0xc3, 106 REPLY_COMPRESSED_BA = 0xc5, 107 108 /* BT Coex */ 109 REPLY_BT_COEX_PRIO_TABLE = 0xcc, 110 REPLY_BT_COEX_PROT_ENV = 0xcd, 111 REPLY_BT_COEX_PROFILE_NOTIF = 0xce, 112 113 /* PAN commands */ 114 REPLY_WIPAN_PARAMS = 0xb2, 115 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */ 116 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */ 117 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */ 118 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */ 119 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */ 120 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9, 121 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc, 122 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd, 123 124 REPLY_WOWLAN_PATTERNS = 0xe0, 125 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1, 126 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2, 127 REPLY_WOWLAN_TKIP_PARAMS = 0xe3, 128 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4, 129 REPLY_WOWLAN_GET_STATUS = 0xe5, 130 REPLY_D3_CONFIG = 0xd3, 131 132 REPLY_MAX = 0xff 133 }; 134 135 /* 136 * Minimum number of queues. MAX_NUM is defined in hw specific files. 137 * Set the minimum to accommodate 138 * - 4 standard TX queues 139 * - the command queue 140 * - 4 PAN TX queues 141 * - the PAN multicast queue, and 142 * - the AUX (TX during scan dwell) queue. 143 */ 144 #define IWL_MIN_NUM_QUEUES 11 145 146 /* 147 * Command queue depends on iPAN support. 148 */ 149 #define IWL_DEFAULT_CMD_QUEUE_NUM 4 150 #define IWL_IPAN_CMD_QUEUE_NUM 9 151 152 #define IWL_TX_FIFO_BK 0 /* shared */ 153 #define IWL_TX_FIFO_BE 1 154 #define IWL_TX_FIFO_VI 2 /* shared */ 155 #define IWL_TX_FIFO_VO 3 156 #define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK 157 #define IWL_TX_FIFO_BE_IPAN 4 158 #define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI 159 #define IWL_TX_FIFO_VO_IPAN 5 160 /* re-uses the VO FIFO, uCode will properly flush/schedule */ 161 #define IWL_TX_FIFO_AUX 5 162 #define IWL_TX_FIFO_UNUSED 255 163 164 #define IWLAGN_CMD_FIFO_NUM 7 165 166 /* 167 * This queue number is required for proper operation 168 * because the ucode will stop/start the scheduler as 169 * required. 170 */ 171 #define IWL_IPAN_MCAST_QUEUE 8 172 173 /****************************************************************************** 174 * (0) 175 * Commonly used structures and definitions: 176 * Command header, rate_n_flags, txpower 177 * 178 *****************************************************************************/ 179 180 /** 181 * iwlagn rate_n_flags bit fields 182 * 183 * rate_n_flags format is used in following iwlagn commands: 184 * REPLY_RX (response only) 185 * REPLY_RX_MPDU (response only) 186 * REPLY_TX (both command and response) 187 * REPLY_TX_LINK_QUALITY_CMD 188 * 189 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"): 190 * 2-0: 0) 6 Mbps 191 * 1) 12 Mbps 192 * 2) 18 Mbps 193 * 3) 24 Mbps 194 * 4) 36 Mbps 195 * 5) 48 Mbps 196 * 6) 54 Mbps 197 * 7) 60 Mbps 198 * 199 * 4-3: 0) Single stream (SISO) 200 * 1) Dual stream (MIMO) 201 * 2) Triple stream (MIMO) 202 * 203 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data 204 * 205 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"): 206 * 3-0: 0xD) 6 Mbps 207 * 0xF) 9 Mbps 208 * 0x5) 12 Mbps 209 * 0x7) 18 Mbps 210 * 0x9) 24 Mbps 211 * 0xB) 36 Mbps 212 * 0x1) 48 Mbps 213 * 0x3) 54 Mbps 214 * 215 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"): 216 * 6-0: 10) 1 Mbps 217 * 20) 2 Mbps 218 * 55) 5.5 Mbps 219 * 110) 11 Mbps 220 */ 221 #define RATE_MCS_CODE_MSK 0x7 222 #define RATE_MCS_SPATIAL_POS 3 223 #define RATE_MCS_SPATIAL_MSK 0x18 224 #define RATE_MCS_HT_DUP_POS 5 225 #define RATE_MCS_HT_DUP_MSK 0x20 226 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */ 227 #define RATE_MCS_RATE_MSK 0xff 228 229 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */ 230 #define RATE_MCS_FLAGS_POS 8 231 #define RATE_MCS_HT_POS 8 232 #define RATE_MCS_HT_MSK 0x100 233 234 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */ 235 #define RATE_MCS_CCK_POS 9 236 #define RATE_MCS_CCK_MSK 0x200 237 238 /* Bit 10: (1) Use Green Field preamble */ 239 #define RATE_MCS_GF_POS 10 240 #define RATE_MCS_GF_MSK 0x400 241 242 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */ 243 #define RATE_MCS_HT40_POS 11 244 #define RATE_MCS_HT40_MSK 0x800 245 246 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */ 247 #define RATE_MCS_DUP_POS 12 248 #define RATE_MCS_DUP_MSK 0x1000 249 250 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */ 251 #define RATE_MCS_SGI_POS 13 252 #define RATE_MCS_SGI_MSK 0x2000 253 254 /** 255 * rate_n_flags Tx antenna masks 256 * bit14:16 257 */ 258 #define RATE_MCS_ANT_POS 14 259 #define RATE_MCS_ANT_A_MSK 0x04000 260 #define RATE_MCS_ANT_B_MSK 0x08000 261 #define RATE_MCS_ANT_C_MSK 0x10000 262 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK) 263 #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK) 264 #define RATE_ANT_NUM 3 265 266 #define POWER_TABLE_NUM_ENTRIES 33 267 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32 268 #define POWER_TABLE_CCK_ENTRY 32 269 270 #define IWL_PWR_NUM_HT_OFDM_ENTRIES 24 271 #define IWL_PWR_CCK_ENTRIES 2 272 273 /* 274 * struct tx_power_dual_stream 275 * 276 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH 277 * 278 * Same format as iwl_tx_power_dual_stream, but __le32 279 */ 280 struct tx_power_dual_stream { 281 __le32 dw; 282 } __packed; 283 284 /* 285 * Command REPLY_TX_POWER_DBM_CMD = 0x98 286 * struct iwlagn_tx_power_dbm_cmd 287 */ 288 #define IWLAGN_TX_POWER_AUTO 0x7f 289 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6) 290 291 struct iwlagn_tx_power_dbm_cmd { 292 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */ 293 u8 flags; 294 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */ 295 u8 reserved; 296 } __packed; 297 298 /* 299 * Command TX_ANT_CONFIGURATION_CMD = 0x98 300 * This command is used to configure valid Tx antenna. 301 * By default uCode concludes the valid antenna according to the radio flavor. 302 * This command enables the driver to override/modify this conclusion. 303 */ 304 struct iwl_tx_ant_config_cmd { 305 __le32 valid; 306 } __packed; 307 308 /****************************************************************************** 309 * (0a) 310 * Alive and Error Commands & Responses: 311 * 312 *****************************************************************************/ 313 314 #define UCODE_VALID_OK cpu_to_le32(0x1) 315 316 /* 317 * REPLY_ALIVE = 0x1 (response only, not a command) 318 * 319 * uCode issues this "alive" notification once the runtime image is ready 320 * to receive commands from the driver. This is the *second* "alive" 321 * notification that the driver will receive after rebooting uCode; 322 * this "alive" is indicated by subtype field != 9. 323 * 324 * See comments documenting "BSM" (bootstrap state machine). 325 * 326 * This response includes two pointers to structures within the device's 327 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging: 328 * 329 * 1) log_event_table_ptr indicates base of the event log. This traces 330 * a 256-entry history of uCode execution within a circular buffer. 331 * Its header format is: 332 * 333 * __le32 log_size; log capacity (in number of entries) 334 * __le32 type; (1) timestamp with each entry, (0) no timestamp 335 * __le32 wraps; # times uCode has wrapped to top of circular buffer 336 * __le32 write_index; next circular buffer entry that uCode would fill 337 * 338 * The header is followed by the circular buffer of log entries. Entries 339 * with timestamps have the following format: 340 * 341 * __le32 event_id; range 0 - 1500 342 * __le32 timestamp; low 32 bits of TSF (of network, if associated) 343 * __le32 data; event_id-specific data value 344 * 345 * Entries without timestamps contain only event_id and data. 346 * 347 * 348 * 2) error_event_table_ptr indicates base of the error log. This contains 349 * information about any uCode error that occurs. For agn, the format 350 * of the error log is defined by struct iwl_error_event_table. 351 * 352 * The Linux driver can print both logs to the system log when a uCode error 353 * occurs. 354 */ 355 356 /* 357 * Note: This structure is read from the device with IO accesses, 358 * and the reading already does the endian conversion. As it is 359 * read with u32-sized accesses, any members with a different size 360 * need to be ordered correctly though! 361 */ 362 struct iwl_error_event_table { 363 u32 valid; /* (nonzero) valid, (0) log is empty */ 364 u32 error_id; /* type of error */ 365 u32 pc; /* program counter */ 366 u32 blink1; /* branch link */ 367 u32 blink2; /* branch link */ 368 u32 ilink1; /* interrupt link */ 369 u32 ilink2; /* interrupt link */ 370 u32 data1; /* error-specific data */ 371 u32 data2; /* error-specific data */ 372 u32 line; /* source code line of error */ 373 u32 bcon_time; /* beacon timer */ 374 u32 tsf_low; /* network timestamp function timer */ 375 u32 tsf_hi; /* network timestamp function timer */ 376 u32 gp1; /* GP1 timer register */ 377 u32 gp2; /* GP2 timer register */ 378 u32 gp3; /* GP3 timer register */ 379 u32 ucode_ver; /* uCode version */ 380 u32 hw_ver; /* HW Silicon version */ 381 u32 brd_ver; /* HW board version */ 382 u32 log_pc; /* log program counter */ 383 u32 frame_ptr; /* frame pointer */ 384 u32 stack_ptr; /* stack pointer */ 385 u32 hcmd; /* last host command header */ 386 u32 isr0; /* isr status register LMPM_NIC_ISR0: 387 * rxtx_flag */ 388 u32 isr1; /* isr status register LMPM_NIC_ISR1: 389 * host_flag */ 390 u32 isr2; /* isr status register LMPM_NIC_ISR2: 391 * enc_flag */ 392 u32 isr3; /* isr status register LMPM_NIC_ISR3: 393 * time_flag */ 394 u32 isr4; /* isr status register LMPM_NIC_ISR4: 395 * wico interrupt */ 396 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */ 397 u32 wait_event; /* wait event() caller address */ 398 u32 l2p_control; /* L2pControlField */ 399 u32 l2p_duration; /* L2pDurationField */ 400 u32 l2p_mhvalid; /* L2pMhValidBits */ 401 u32 l2p_addr_match; /* L2pAddrMatchStat */ 402 u32 lmpm_pmg_sel; /* indicate which clocks are turned on 403 * (LMPM_PMG_SEL) */ 404 u32 u_timestamp; /* indicate when the date and time of the 405 * compilation */ 406 u32 flow_handler; /* FH read/write pointers, RX credit */ 407 } __packed; 408 409 struct iwl_alive_resp { 410 u8 ucode_minor; 411 u8 ucode_major; 412 __le16 reserved1; 413 u8 sw_rev[8]; 414 u8 ver_type; 415 u8 ver_subtype; /* not "9" for runtime alive */ 416 __le16 reserved2; 417 __le32 log_event_table_ptr; /* SRAM address for event log */ 418 __le32 error_event_table_ptr; /* SRAM address for error log */ 419 __le32 timestamp; 420 __le32 is_valid; 421 } __packed; 422 423 /* 424 * REPLY_ERROR = 0x2 (response only, not a command) 425 */ 426 struct iwl_error_resp { 427 __le32 error_type; 428 u8 cmd_id; 429 u8 reserved1; 430 __le16 bad_cmd_seq_num; 431 __le32 error_info; 432 __le64 timestamp; 433 } __packed; 434 435 /****************************************************************************** 436 * (1) 437 * RXON Commands & Responses: 438 * 439 *****************************************************************************/ 440 441 /* 442 * Rx config defines & structure 443 */ 444 /* rx_config device types */ 445 enum { 446 RXON_DEV_TYPE_AP = 1, 447 RXON_DEV_TYPE_ESS = 3, 448 RXON_DEV_TYPE_IBSS = 4, 449 RXON_DEV_TYPE_SNIFFER = 6, 450 RXON_DEV_TYPE_CP = 7, 451 RXON_DEV_TYPE_2STA = 8, 452 RXON_DEV_TYPE_P2P = 9, 453 }; 454 455 456 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0) 457 #define RXON_RX_CHAIN_DRIVER_FORCE_POS (0) 458 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1) 459 #define RXON_RX_CHAIN_VALID_POS (1) 460 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4) 461 #define RXON_RX_CHAIN_FORCE_SEL_POS (4) 462 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7) 463 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7) 464 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10) 465 #define RXON_RX_CHAIN_CNT_POS (10) 466 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12) 467 #define RXON_RX_CHAIN_MIMO_CNT_POS (12) 468 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14) 469 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14) 470 471 /* rx_config flags */ 472 /* band & modulation selection */ 473 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0) 474 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1) 475 /* auto detection enable */ 476 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2) 477 /* TGg protection when tx */ 478 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3) 479 /* cck short slot & preamble */ 480 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4) 481 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5) 482 /* antenna selection */ 483 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7) 484 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00) 485 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8) 486 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9) 487 /* radar detection enable */ 488 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12) 489 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13) 490 /* rx response to host with 8-byte TSF 491 * (according to ON_AIR deassertion) */ 492 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15) 493 494 495 /* HT flags */ 496 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22) 497 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22) 498 499 #define RXON_FLG_HT_OPERATING_MODE_POS (23) 500 501 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23) 502 #define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23) 503 504 #define RXON_FLG_CHANNEL_MODE_POS (25) 505 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25) 506 507 /* channel mode */ 508 enum { 509 CHANNEL_MODE_LEGACY = 0, 510 CHANNEL_MODE_PURE_40 = 1, 511 CHANNEL_MODE_MIXED = 2, 512 CHANNEL_MODE_RESERVED = 3, 513 }; 514 #define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS) 515 #define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS) 516 #define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS) 517 518 /* CTS to self (if spec allows) flag */ 519 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30) 520 521 /* rx_config filter flags */ 522 /* accept all data frames */ 523 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0) 524 /* pass control & management to host */ 525 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1) 526 /* accept multi-cast */ 527 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2) 528 /* don't decrypt uni-cast frames */ 529 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3) 530 /* don't decrypt multi-cast frames */ 531 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4) 532 /* STA is associated */ 533 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5) 534 /* transfer to host non bssid beacons in associated state */ 535 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6) 536 537 /* 538 * REPLY_RXON = 0x10 (command, has simple generic response) 539 * 540 * RXON tunes the radio tuner to a service channel, and sets up a number 541 * of parameters that are used primarily for Rx, but also for Tx operations. 542 * 543 * NOTE: When tuning to a new channel, driver must set the 544 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent 545 * info within the device, including the station tables, tx retry 546 * rate tables, and txpower tables. Driver must build a new station 547 * table and txpower table before transmitting anything on the RXON 548 * channel. 549 * 550 * NOTE: All RXONs wipe clean the internal txpower table. Driver must 551 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10), 552 * regardless of whether RXON_FILTER_ASSOC_MSK is set. 553 */ 554 555 struct iwl_rxon_cmd { 556 u8 node_addr[6]; 557 __le16 reserved1; 558 u8 bssid_addr[6]; 559 __le16 reserved2; 560 u8 wlap_bssid_addr[6]; 561 __le16 reserved3; 562 u8 dev_type; 563 u8 air_propagation; 564 __le16 rx_chain; 565 u8 ofdm_basic_rates; 566 u8 cck_basic_rates; 567 __le16 assoc_id; 568 __le32 flags; 569 __le32 filter_flags; 570 __le16 channel; 571 u8 ofdm_ht_single_stream_basic_rates; 572 u8 ofdm_ht_dual_stream_basic_rates; 573 u8 ofdm_ht_triple_stream_basic_rates; 574 u8 reserved5; 575 __le16 acquisition_data; 576 __le16 reserved6; 577 } __packed; 578 579 /* 580 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response) 581 */ 582 struct iwl_rxon_assoc_cmd { 583 __le32 flags; 584 __le32 filter_flags; 585 u8 ofdm_basic_rates; 586 u8 cck_basic_rates; 587 __le16 reserved1; 588 u8 ofdm_ht_single_stream_basic_rates; 589 u8 ofdm_ht_dual_stream_basic_rates; 590 u8 ofdm_ht_triple_stream_basic_rates; 591 u8 reserved2; 592 __le16 rx_chain_select_flags; 593 __le16 acquisition_data; 594 __le32 reserved3; 595 } __packed; 596 597 #define IWL_CONN_MAX_LISTEN_INTERVAL 10 598 #define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */ 599 600 /* 601 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response) 602 */ 603 struct iwl_rxon_time_cmd { 604 __le64 timestamp; 605 __le16 beacon_interval; 606 __le16 atim_window; 607 __le32 beacon_init_val; 608 __le16 listen_interval; 609 u8 dtim_period; 610 u8 delta_cp_bss_tbtts; 611 } __packed; 612 613 /* 614 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response) 615 */ 616 /** 617 * struct iwl5000_channel_switch_cmd 618 * @band: 0- 5.2GHz, 1- 2.4GHz 619 * @expect_beacon: 0- resume transmits after channel switch 620 * 1- wait for beacon to resume transmits 621 * @channel: new channel number 622 * @rxon_flags: Rx on flags 623 * @rxon_filter_flags: filtering parameters 624 * @switch_time: switch time in extended beacon format 625 * @reserved: reserved bytes 626 */ 627 struct iwl5000_channel_switch_cmd { 628 u8 band; 629 u8 expect_beacon; 630 __le16 channel; 631 __le32 rxon_flags; 632 __le32 rxon_filter_flags; 633 __le32 switch_time; 634 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES]; 635 } __packed; 636 637 /** 638 * struct iwl6000_channel_switch_cmd 639 * @band: 0- 5.2GHz, 1- 2.4GHz 640 * @expect_beacon: 0- resume transmits after channel switch 641 * 1- wait for beacon to resume transmits 642 * @channel: new channel number 643 * @rxon_flags: Rx on flags 644 * @rxon_filter_flags: filtering parameters 645 * @switch_time: switch time in extended beacon format 646 * @reserved: reserved bytes 647 */ 648 struct iwl6000_channel_switch_cmd { 649 u8 band; 650 u8 expect_beacon; 651 __le16 channel; 652 __le32 rxon_flags; 653 __le32 rxon_filter_flags; 654 __le32 switch_time; 655 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES]; 656 } __packed; 657 658 /* 659 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command) 660 */ 661 struct iwl_csa_notification { 662 __le16 band; 663 __le16 channel; 664 __le32 status; /* 0 - OK, 1 - fail */ 665 } __packed; 666 667 /****************************************************************************** 668 * (2) 669 * Quality-of-Service (QOS) Commands & Responses: 670 * 671 *****************************************************************************/ 672 673 /** 674 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM 675 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd 676 * 677 * @cw_min: Contention window, start value in numbers of slots. 678 * Should be a power-of-2, minus 1. Device's default is 0x0f. 679 * @cw_max: Contention window, max value in numbers of slots. 680 * Should be a power-of-2, minus 1. Device's default is 0x3f. 681 * @aifsn: Number of slots in Arbitration Interframe Space (before 682 * performing random backoff timing prior to Tx). Device default 1. 683 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0. 684 * @reserved1: reserved for alignment 685 * 686 * Device will automatically increase contention window by (2*CW) + 1 for each 687 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW 688 * value, to cap the CW value. 689 */ 690 struct iwl_ac_qos { 691 __le16 cw_min; 692 __le16 cw_max; 693 u8 aifsn; 694 u8 reserved1; 695 __le16 edca_txop; 696 } __packed; 697 698 /* QoS flags defines */ 699 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01) 700 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02) 701 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10) 702 703 /* Number of Access Categories (AC) (EDCA), queues 0..3 */ 704 #define AC_NUM 4 705 706 /* 707 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response) 708 * 709 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs 710 * 0: Background, 1: Best Effort, 2: Video, 3: Voice. 711 */ 712 struct iwl_qosparam_cmd { 713 __le32 qos_flags; 714 struct iwl_ac_qos ac[AC_NUM]; 715 } __packed; 716 717 /****************************************************************************** 718 * (3) 719 * Add/Modify Stations Commands & Responses: 720 * 721 *****************************************************************************/ 722 /* 723 * Multi station support 724 */ 725 726 /* Special, dedicated locations within device's station table */ 727 #define IWL_AP_ID 0 728 #define IWL_AP_ID_PAN 1 729 #define IWL_STA_ID 2 730 #define IWLAGN_PAN_BCAST_ID 14 731 #define IWLAGN_BROADCAST_ID 15 732 #define IWLAGN_STATION_COUNT 16 733 734 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT 735 736 #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2) 737 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8) 738 #define STA_FLG_PAN_STATION cpu_to_le32(1 << 13) 739 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17) 740 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18) 741 #define STA_FLG_MAX_AGG_SIZE_POS (19) 742 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19) 743 #define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21) 744 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22) 745 #define STA_FLG_AGG_MPDU_DENSITY_POS (23) 746 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23) 747 748 /* Use in mode field. 1: modify existing entry, 0: add new station entry */ 749 #define STA_CONTROL_MODIFY_MSK 0x01 750 751 /* key flags __le16*/ 752 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007) 753 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000) 754 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001) 755 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002) 756 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003) 757 758 #define STA_KEY_FLG_KEYID_POS 8 759 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800) 760 /* wep key is either from global key (0) or from station info array (1) */ 761 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008) 762 763 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */ 764 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000) 765 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000) 766 #define STA_KEY_MAX_NUM 8 767 #define STA_KEY_MAX_NUM_PAN 16 768 /* must not match WEP_INVALID_OFFSET */ 769 #define IWLAGN_HW_KEY_DEFAULT 0xfe 770 771 /* Flags indicate whether to modify vs. don't change various station params */ 772 #define STA_MODIFY_KEY_MASK 0x01 773 #define STA_MODIFY_TID_DISABLE_TX 0x02 774 #define STA_MODIFY_TX_RATE_MSK 0x04 775 #define STA_MODIFY_ADDBA_TID_MSK 0x08 776 #define STA_MODIFY_DELBA_TID_MSK 0x10 777 #define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20 778 779 /* agn */ 780 struct iwl_keyinfo { 781 __le16 key_flags; 782 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */ 783 u8 reserved1; 784 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */ 785 u8 key_offset; 786 u8 reserved2; 787 u8 key[16]; /* 16-byte unicast decryption key */ 788 __le64 tx_secur_seq_cnt; 789 __le64 hw_tkip_mic_rx_key; 790 __le64 hw_tkip_mic_tx_key; 791 } __packed; 792 793 /** 794 * struct sta_id_modify 795 * @addr: station's MAC address 796 * @reserved1: reserved for alignment 797 * @sta_id: index of station in uCode's station table 798 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change 799 * @reserved2: reserved for alignment 800 * 801 * Driver selects unused table index when adding new station, 802 * or the index to a pre-existing station entry when modifying that station. 803 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP). 804 * 805 * modify_mask flags select which parameters to modify vs. leave alone. 806 */ 807 struct sta_id_modify { 808 u8 addr[ETH_ALEN]; 809 __le16 reserved1; 810 u8 sta_id; 811 u8 modify_mask; 812 __le16 reserved2; 813 } __packed; 814 815 /* 816 * REPLY_ADD_STA = 0x18 (command) 817 * 818 * The device contains an internal table of per-station information, 819 * with info on security keys, aggregation parameters, and Tx rates for 820 * initial Tx attempt and any retries (agn devices uses 821 * REPLY_TX_LINK_QUALITY_CMD, 822 * 823 * REPLY_ADD_STA sets up the table entry for one station, either creating 824 * a new entry, or modifying a pre-existing one. 825 * 826 * NOTE: RXON command (without "associated" bit set) wipes the station table 827 * clean. Moving into RF_KILL state does this also. Driver must set up 828 * new station table before transmitting anything on the RXON channel 829 * (except active scans or active measurements; those commands carry 830 * their own txpower/rate setup data). 831 * 832 * When getting started on a new channel, driver must set up the 833 * IWL_BROADCAST_ID entry (last entry in the table). For a client 834 * station in a BSS, once an AP is selected, driver sets up the AP STA 835 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP 836 * are all that are needed for a BSS client station. If the device is 837 * used as AP, or in an IBSS network, driver must set up station table 838 * entries for all STAs in network, starting with index IWL_STA_ID. 839 */ 840 841 struct iwl_addsta_cmd { 842 u8 mode; /* 1: modify existing, 0: add new station */ 843 u8 reserved[3]; 844 struct sta_id_modify sta; 845 struct iwl_keyinfo key; 846 __le32 station_flags; /* STA_FLG_* */ 847 __le32 station_flags_msk; /* STA_FLG_* */ 848 849 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID) 850 * corresponding to bit (e.g. bit 5 controls TID 5). 851 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */ 852 __le16 tid_disable_tx; 853 __le16 legacy_reserved; 854 855 /* TID for which to add block-ack support. 856 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */ 857 u8 add_immediate_ba_tid; 858 859 /* TID for which to remove block-ack support. 860 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */ 861 u8 remove_immediate_ba_tid; 862 863 /* Starting Sequence Number for added block-ack support. 864 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */ 865 __le16 add_immediate_ba_ssn; 866 867 /* 868 * Number of packets OK to transmit to station even though 869 * it is asleep -- used to synchronise PS-poll and u-APSD 870 * responses while ucode keeps track of STA sleep state. 871 */ 872 __le16 sleep_tx_count; 873 874 __le16 reserved2; 875 } __packed; 876 877 878 #define ADD_STA_SUCCESS_MSK 0x1 879 #define ADD_STA_NO_ROOM_IN_TABLE 0x2 880 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4 881 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8 882 /* 883 * REPLY_ADD_STA = 0x18 (response) 884 */ 885 struct iwl_add_sta_resp { 886 u8 status; /* ADD_STA_* */ 887 } __packed; 888 889 #define REM_STA_SUCCESS_MSK 0x1 890 /* 891 * REPLY_REM_STA = 0x19 (response) 892 */ 893 struct iwl_rem_sta_resp { 894 u8 status; 895 } __packed; 896 897 /* 898 * REPLY_REM_STA = 0x19 (command) 899 */ 900 struct iwl_rem_sta_cmd { 901 u8 num_sta; /* number of removed stations */ 902 u8 reserved[3]; 903 u8 addr[ETH_ALEN]; /* MAC addr of the first station */ 904 u8 reserved2[2]; 905 } __packed; 906 907 908 /* WiFi queues mask */ 909 #define IWL_SCD_BK_MSK BIT(0) 910 #define IWL_SCD_BE_MSK BIT(1) 911 #define IWL_SCD_VI_MSK BIT(2) 912 #define IWL_SCD_VO_MSK BIT(3) 913 #define IWL_SCD_MGMT_MSK BIT(3) 914 915 /* PAN queues mask */ 916 #define IWL_PAN_SCD_BK_MSK BIT(4) 917 #define IWL_PAN_SCD_BE_MSK BIT(5) 918 #define IWL_PAN_SCD_VI_MSK BIT(6) 919 #define IWL_PAN_SCD_VO_MSK BIT(7) 920 #define IWL_PAN_SCD_MGMT_MSK BIT(7) 921 #define IWL_PAN_SCD_MULTICAST_MSK BIT(8) 922 923 #define IWL_AGG_TX_QUEUE_MSK 0xffc00 924 925 #define IWL_DROP_ALL BIT(1) 926 927 /* 928 * REPLY_TXFIFO_FLUSH = 0x1e(command and response) 929 * 930 * When using full FIFO flush this command checks the scheduler HW block WR/RD 931 * pointers to check if all the frames were transferred by DMA into the 932 * relevant TX FIFO queue. Only when the DMA is finished and the queue is 933 * empty the command can finish. 934 * This command is used to flush the TXFIFO from transmit commands, it may 935 * operate on single or multiple queues, the command queue can't be flushed by 936 * this command. The command response is returned when all the queue flush 937 * operations are done. Each TX command flushed return response with the FLUSH 938 * status set in the TX response status. When FIFO flush operation is used, 939 * the flush operation ends when both the scheduler DMA done and TXFIFO empty 940 * are set. 941 * 942 * @queue_control: bit mask for which queues to flush 943 * @flush_control: flush controls 944 * 0: Dump single MSDU 945 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable. 946 * 2: Dump all FIFO 947 */ 948 struct iwl_txfifo_flush_cmd_v3 { 949 __le32 queue_control; 950 __le16 flush_control; 951 __le16 reserved; 952 } __packed; 953 954 struct iwl_txfifo_flush_cmd_v2 { 955 __le16 queue_control; 956 __le16 flush_control; 957 } __packed; 958 959 /* 960 * REPLY_WEP_KEY = 0x20 961 */ 962 struct iwl_wep_key { 963 u8 key_index; 964 u8 key_offset; 965 u8 reserved1[2]; 966 u8 key_size; 967 u8 reserved2[3]; 968 u8 key[16]; 969 } __packed; 970 971 struct iwl_wep_cmd { 972 u8 num_keys; 973 u8 global_key_type; 974 u8 flags; 975 u8 reserved; 976 struct iwl_wep_key key[]; 977 } __packed; 978 979 #define WEP_KEY_WEP_TYPE 1 980 #define WEP_KEYS_MAX 4 981 #define WEP_INVALID_OFFSET 0xff 982 #define WEP_KEY_LEN_64 5 983 #define WEP_KEY_LEN_128 13 984 985 /****************************************************************************** 986 * (4) 987 * Rx Responses: 988 * 989 *****************************************************************************/ 990 991 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0) 992 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1) 993 994 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0) 995 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1) 996 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2) 997 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3) 998 #define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70 999 #define RX_RES_PHY_FLAGS_ANTENNA_POS 4 1000 #define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7) 1001 1002 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8) 1003 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8) 1004 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8) 1005 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8) 1006 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8) 1007 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8) 1008 1009 #define RX_RES_STATUS_STATION_FOUND (1<<6) 1010 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7) 1011 1012 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11) 1013 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11) 1014 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11) 1015 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11) 1016 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11) 1017 1018 #define RX_MPDU_RES_STATUS_ICV_OK (0x20) 1019 #define RX_MPDU_RES_STATUS_MIC_OK (0x40) 1020 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7) 1021 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800) 1022 1023 1024 #define IWLAGN_RX_RES_PHY_CNT 8 1025 #define IWLAGN_RX_RES_AGC_IDX 1 1026 #define IWLAGN_RX_RES_RSSI_AB_IDX 2 1027 #define IWLAGN_RX_RES_RSSI_C_IDX 3 1028 #define IWLAGN_OFDM_AGC_MSK 0xfe00 1029 #define IWLAGN_OFDM_AGC_BIT_POS 9 1030 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff 1031 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00 1032 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0 1033 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000 1034 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000 1035 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16 1036 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff 1037 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00 1038 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0 1039 1040 struct iwlagn_non_cfg_phy { 1041 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */ 1042 } __packed; 1043 1044 1045 /* 1046 * REPLY_RX = 0xc3 (response only, not a command) 1047 * Used only for legacy (non 11n) frames. 1048 */ 1049 struct iwl_rx_phy_res { 1050 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */ 1051 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */ 1052 u8 stat_id; /* configurable DSP phy data set ID */ 1053 u8 reserved1; 1054 __le64 timestamp; /* TSF at on air rise */ 1055 __le32 beacon_time_stamp; /* beacon at on-air rise */ 1056 __le16 phy_flags; /* general phy flags: band, modulation, ... */ 1057 __le16 channel; /* channel number */ 1058 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */ 1059 __le32 rate_n_flags; /* RATE_MCS_* */ 1060 __le16 byte_count; /* frame's byte-count */ 1061 __le16 frame_time; /* frame's time on the air */ 1062 } __packed; 1063 1064 struct iwl_rx_mpdu_res_start { 1065 __le16 byte_count; 1066 __le16 reserved; 1067 } __packed; 1068 1069 1070 /****************************************************************************** 1071 * (5) 1072 * Tx Commands & Responses: 1073 * 1074 * Driver must place each REPLY_TX command into one of the prioritized Tx 1075 * queues in host DRAM, shared between driver and device (see comments for 1076 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode 1077 * are preparing to transmit, the device pulls the Tx command over the PCI 1078 * bus via one of the device's Tx DMA channels, to fill an internal FIFO 1079 * from which data will be transmitted. 1080 * 1081 * uCode handles all timing and protocol related to control frames 1082 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler 1083 * handle reception of block-acks; uCode updates the host driver via 1084 * REPLY_COMPRESSED_BA. 1085 * 1086 * uCode handles retrying Tx when an ACK is expected but not received. 1087 * This includes trying lower data rates than the one requested in the Tx 1088 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn). 1089 * 1090 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD. 1091 * This command must be executed after every RXON command, before Tx can occur. 1092 *****************************************************************************/ 1093 1094 /* REPLY_TX Tx flags field */ 1095 1096 /* 1097 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it 1098 * before this frame. if CTS-to-self required check 1099 * RXON_FLG_SELF_CTS_EN status. 1100 */ 1101 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0) 1102 1103 /* 1: Expect ACK from receiving station 1104 * 0: Don't expect ACK (MAC header's duration field s/b 0) 1105 * Set this for unicast frames, but not broadcast/multicast. */ 1106 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3) 1107 1108 /* For agn devices: 1109 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD). 1110 * Tx command's initial_rate_index indicates first rate to try; 1111 * uCode walks through table for additional Tx attempts. 1112 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field. 1113 * This rate will be used for all Tx attempts; it will not be scaled. */ 1114 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4) 1115 1116 /* 1: Expect immediate block-ack. 1117 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */ 1118 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6) 1119 1120 /* Tx antenna selection field; reserved (0) for agn devices. */ 1121 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00) 1122 1123 /* 1: Ignore Bluetooth priority for this frame. 1124 * 0: Delay Tx until Bluetooth device is done (normal usage). */ 1125 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12) 1126 1127 /* 1: uCode overrides sequence control field in MAC header. 1128 * 0: Driver provides sequence control field in MAC header. 1129 * Set this for management frames, non-QOS data frames, non-unicast frames, 1130 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */ 1131 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13) 1132 1133 /* 1: This frame is non-last MPDU; more fragments are coming. 1134 * 0: Last fragment, or not using fragmentation. */ 1135 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14) 1136 1137 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame. 1138 * 0: No TSF required in outgoing frame. 1139 * Set this for transmitting beacons and probe responses. */ 1140 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16) 1141 1142 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword 1143 * alignment of frame's payload data field. 1144 * 0: No pad 1145 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4 1146 * field (but not both). Driver must align frame data (i.e. data following 1147 * MAC header) to DWORD boundary. */ 1148 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20) 1149 1150 /* accelerate aggregation support 1151 * 0 - no CCMP encryption; 1 - CCMP encryption */ 1152 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22) 1153 1154 /* HCCA-AP - disable duration overwriting. */ 1155 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25) 1156 1157 1158 /* 1159 * TX command security control 1160 */ 1161 #define TX_CMD_SEC_WEP 0x01 1162 #define TX_CMD_SEC_CCM 0x02 1163 #define TX_CMD_SEC_TKIP 0x03 1164 #define TX_CMD_SEC_MSK 0x03 1165 #define TX_CMD_SEC_SHIFT 6 1166 #define TX_CMD_SEC_KEY128 0x08 1167 1168 /* 1169 * REPLY_TX = 0x1c (command) 1170 */ 1171 1172 /* 1173 * Used for managing Tx retries when expecting block-acks. 1174 * Driver should set these fields to 0. 1175 */ 1176 struct iwl_dram_scratch { 1177 u8 try_cnt; /* Tx attempts */ 1178 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */ 1179 __le16 reserved; 1180 } __packed; 1181 1182 struct iwl_tx_cmd { 1183 /* 1184 * MPDU byte count: 1185 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size, 1186 * + 8 byte IV for CCM or TKIP (not used for WEP) 1187 * + Data payload 1188 * + 8-byte MIC (not used for CCM/WEP) 1189 * NOTE: Does not include Tx command bytes, post-MAC pad bytes, 1190 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i 1191 * Range: 14-2342 bytes. 1192 */ 1193 __le16 len; 1194 1195 /* 1196 * MPDU or MSDU byte count for next frame. 1197 * Used for fragmentation and bursting, but not 11n aggregation. 1198 * Same as "len", but for next frame. Set to 0 if not applicable. 1199 */ 1200 __le16 next_frame_len; 1201 1202 __le32 tx_flags; /* TX_CMD_FLG_* */ 1203 1204 /* uCode may modify this field of the Tx command (in host DRAM!). 1205 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */ 1206 struct iwl_dram_scratch scratch; 1207 1208 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */ 1209 __le32 rate_n_flags; /* RATE_MCS_* */ 1210 1211 /* Index of destination station in uCode's station table */ 1212 u8 sta_id; 1213 1214 /* Type of security encryption: CCM or TKIP */ 1215 u8 sec_ctl; /* TX_CMD_SEC_* */ 1216 1217 /* 1218 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial 1219 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for 1220 * data frames, this field may be used to selectively reduce initial 1221 * rate (via non-0 value) for special frames (e.g. management), while 1222 * still supporting rate scaling for all frames. 1223 */ 1224 u8 initial_rate_index; 1225 u8 reserved; 1226 u8 key[16]; 1227 __le16 next_frame_flags; 1228 __le16 reserved2; 1229 union { 1230 __le32 life_time; 1231 __le32 attempt; 1232 } stop_time; 1233 1234 /* Host DRAM physical address pointer to "scratch" in this command. 1235 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */ 1236 __le32 dram_lsb_ptr; 1237 u8 dram_msb_ptr; 1238 1239 u8 rts_retry_limit; /*byte 50 */ 1240 u8 data_retry_limit; /*byte 51 */ 1241 u8 tid_tspec; 1242 union { 1243 __le16 pm_frame_timeout; 1244 __le16 attempt_duration; 1245 } timeout; 1246 1247 /* 1248 * Duration of EDCA burst Tx Opportunity, in 32-usec units. 1249 * Set this if txop time is not specified by HCCA protocol (e.g. by AP). 1250 */ 1251 __le16 driver_txop; 1252 1253 /* 1254 * MAC header goes here, followed by 2 bytes padding if MAC header 1255 * length is 26 or 30 bytes, followed by payload data 1256 */ 1257 union { 1258 DECLARE_FLEX_ARRAY(u8, payload); 1259 DECLARE_FLEX_ARRAY(struct ieee80211_hdr, hdr); 1260 }; 1261 } __packed; 1262 1263 /* 1264 * TX command response is sent after *agn* transmission attempts. 1265 * 1266 * both postpone and abort status are expected behavior from uCode. there is 1267 * no special operation required from driver; except for RFKILL_FLUSH, 1268 * which required tx flush host command to flush all the tx frames in queues 1269 */ 1270 enum { 1271 TX_STATUS_SUCCESS = 0x01, 1272 TX_STATUS_DIRECT_DONE = 0x02, 1273 /* postpone TX */ 1274 TX_STATUS_POSTPONE_DELAY = 0x40, 1275 TX_STATUS_POSTPONE_FEW_BYTES = 0x41, 1276 TX_STATUS_POSTPONE_BT_PRIO = 0x42, 1277 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43, 1278 TX_STATUS_POSTPONE_CALC_TTAK = 0x44, 1279 /* abort TX */ 1280 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81, 1281 TX_STATUS_FAIL_SHORT_LIMIT = 0x82, 1282 TX_STATUS_FAIL_LONG_LIMIT = 0x83, 1283 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84, 1284 TX_STATUS_FAIL_DRAIN_FLOW = 0x85, 1285 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86, 1286 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87, 1287 TX_STATUS_FAIL_DEST_PS = 0x88, 1288 TX_STATUS_FAIL_HOST_ABORTED = 0x89, 1289 TX_STATUS_FAIL_BT_RETRY = 0x8a, 1290 TX_STATUS_FAIL_STA_INVALID = 0x8b, 1291 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c, 1292 TX_STATUS_FAIL_TID_DISABLE = 0x8d, 1293 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e, 1294 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f, 1295 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90, 1296 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91, 1297 }; 1298 1299 #define TX_PACKET_MODE_REGULAR 0x0000 1300 #define TX_PACKET_MODE_BURST_SEQ 0x0100 1301 #define TX_PACKET_MODE_BURST_FIRST 0x0200 1302 1303 enum { 1304 TX_POWER_PA_NOT_ACTIVE = 0x0, 1305 }; 1306 1307 enum { 1308 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */ 1309 TX_STATUS_DELAY_MSK = 0x00000040, 1310 TX_STATUS_ABORT_MSK = 0x00000080, 1311 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */ 1312 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */ 1313 TX_RESERVED = 0x00780000, /* bits 19:22 */ 1314 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */ 1315 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */ 1316 }; 1317 1318 /* ******************************* 1319 * TX aggregation status 1320 ******************************* */ 1321 1322 enum { 1323 AGG_TX_STATE_TRANSMITTED = 0x00, 1324 AGG_TX_STATE_UNDERRUN_MSK = 0x01, 1325 AGG_TX_STATE_BT_PRIO_MSK = 0x02, 1326 AGG_TX_STATE_FEW_BYTES_MSK = 0x04, 1327 AGG_TX_STATE_ABORT_MSK = 0x08, 1328 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10, 1329 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20, 1330 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40, 1331 AGG_TX_STATE_SCD_QUERY_MSK = 0x80, 1332 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100, 1333 AGG_TX_STATE_RESPONSE_MSK = 0x1ff, 1334 AGG_TX_STATE_DUMP_TX_MSK = 0x200, 1335 AGG_TX_STATE_DELAY_TX_MSK = 0x400 1336 }; 1337 1338 #define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */ 1339 #define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */ 1340 #define AGG_TX_TRY_POS 12 1341 1342 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \ 1343 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \ 1344 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK) 1345 1346 /* # tx attempts for first frame in aggregation */ 1347 #define AGG_TX_STATE_TRY_CNT_POS 12 1348 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000 1349 1350 /* Command ID and sequence number of Tx command for this frame */ 1351 #define AGG_TX_STATE_SEQ_NUM_POS 16 1352 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000 1353 1354 /* 1355 * REPLY_TX = 0x1c (response) 1356 * 1357 * This response may be in one of two slightly different formats, indicated 1358 * by the frame_count field: 1359 * 1360 * 1) No aggregation (frame_count == 1). This reports Tx results for 1361 * a single frame. Multiple attempts, at various bit rates, may have 1362 * been made for this frame. 1363 * 1364 * 2) Aggregation (frame_count > 1). This reports Tx results for 1365 * 2 or more frames that used block-acknowledge. All frames were 1366 * transmitted at same rate. Rate scaling may have been used if first 1367 * frame in this new agg block failed in previous agg block(s). 1368 * 1369 * Note that, for aggregation, ACK (block-ack) status is not delivered here; 1370 * block-ack has not been received by the time the agn device records 1371 * this status. 1372 * This status relates to reasons the tx might have been blocked or aborted 1373 * within the sending station (this agn device), rather than whether it was 1374 * received successfully by the destination station. 1375 */ 1376 struct agg_tx_status { 1377 __le16 status; 1378 __le16 sequence; 1379 } __packed; 1380 1381 /* refer to ra_tid */ 1382 #define IWLAGN_TX_RES_TID_POS 0 1383 #define IWLAGN_TX_RES_TID_MSK 0x0f 1384 #define IWLAGN_TX_RES_RA_POS 4 1385 #define IWLAGN_TX_RES_RA_MSK 0xf0 1386 1387 struct iwlagn_tx_resp { 1388 u8 frame_count; /* 1 no aggregation, >1 aggregation */ 1389 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */ 1390 u8 failure_rts; /* # failures due to unsuccessful RTS */ 1391 u8 failure_frame; /* # failures due to no ACK (unused for agg) */ 1392 1393 /* For non-agg: Rate at which frame was successful. 1394 * For agg: Rate at which all frames were transmitted. */ 1395 __le32 rate_n_flags; /* RATE_MCS_* */ 1396 1397 /* For non-agg: RTS + CTS + frame tx attempts time + ACK. 1398 * For agg: RTS + CTS + aggregation tx time + block-ack time. */ 1399 __le16 wireless_media_time; /* uSecs */ 1400 1401 u8 pa_status; /* RF power amplifier measurement (not used) */ 1402 u8 pa_integ_res_a[3]; 1403 u8 pa_integ_res_b[3]; 1404 u8 pa_integ_res_C[3]; 1405 1406 __le32 tfd_info; 1407 __le16 seq_ctl; 1408 __le16 byte_cnt; 1409 u8 tlc_info; 1410 u8 ra_tid; /* tid (0:3), sta_id (4:7) */ 1411 __le16 frame_ctrl; 1412 /* 1413 * For non-agg: frame status TX_STATUS_* 1414 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status 1415 * fields follow this one, up to frame_count. 1416 * Bit fields: 1417 * 11- 0: AGG_TX_STATE_* status code 1418 * 15-12: Retry count for 1st frame in aggregation (retries 1419 * occur if tx failed for this frame when it was a 1420 * member of a previous aggregation block). If rate 1421 * scaling is used, retry count indicates the rate 1422 * table entry used for all frames in the new agg. 1423 * 31-16: Sequence # for this frame's Tx cmd (not SSN!) 1424 */ 1425 struct agg_tx_status status; /* TX status (in aggregation - 1426 * status of 1st frame) */ 1427 } __packed; 1428 /* 1429 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command) 1430 * 1431 * Reports Block-Acknowledge from recipient station 1432 */ 1433 struct iwl_compressed_ba_resp { 1434 __le32 sta_addr_lo32; 1435 __le16 sta_addr_hi16; 1436 __le16 reserved; 1437 1438 /* Index of recipient (BA-sending) station in uCode's station table */ 1439 u8 sta_id; 1440 u8 tid; 1441 __le16 seq_ctl; 1442 __le64 bitmap; 1443 __le16 scd_flow; 1444 __le16 scd_ssn; 1445 u8 txed; /* number of frames sent */ 1446 u8 txed_2_done; /* number of frames acked */ 1447 __le16 reserved1; 1448 } __packed; 1449 1450 /* 1451 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response) 1452 * 1453 */ 1454 1455 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */ 1456 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0) 1457 1458 /* # of EDCA prioritized tx fifos */ 1459 #define LINK_QUAL_AC_NUM AC_NUM 1460 1461 /* # entries in rate scale table to support Tx retries */ 1462 #define LINK_QUAL_MAX_RETRY_NUM 16 1463 1464 /* Tx antenna selection values */ 1465 #define LINK_QUAL_ANT_A_MSK (1 << 0) 1466 #define LINK_QUAL_ANT_B_MSK (1 << 1) 1467 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK) 1468 1469 1470 /* 1471 * struct iwl_link_qual_general_params 1472 * 1473 * Used in REPLY_TX_LINK_QUALITY_CMD 1474 */ 1475 struct iwl_link_qual_general_params { 1476 u8 flags; 1477 1478 /* No entries at or above this (driver chosen) index contain MIMO */ 1479 u8 mimo_delimiter; 1480 1481 /* Best single antenna to use for single stream (legacy, SISO). */ 1482 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */ 1483 1484 /* Best antennas to use for MIMO */ 1485 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */ 1486 1487 /* 1488 * If driver needs to use different initial rates for different 1489 * EDCA QOS access categories (as implemented by tx fifos 0-3), 1490 * this table will set that up, by indicating the indexes in the 1491 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start. 1492 * Otherwise, driver should set all entries to 0. 1493 * 1494 * Entry usage: 1495 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice 1496 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3. 1497 */ 1498 u8 start_rate_index[LINK_QUAL_AC_NUM]; 1499 } __packed; 1500 1501 #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */ 1502 #define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000) 1503 #define LINK_QUAL_AGG_TIME_LIMIT_MIN (100) 1504 1505 #define LINK_QUAL_AGG_DISABLE_START_DEF (3) 1506 #define LINK_QUAL_AGG_DISABLE_START_MAX (255) 1507 #define LINK_QUAL_AGG_DISABLE_START_MIN (0) 1508 1509 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63) 1510 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63) 1511 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0) 1512 1513 /* 1514 * struct iwl_link_qual_agg_params 1515 * 1516 * Used in REPLY_TX_LINK_QUALITY_CMD 1517 */ 1518 struct iwl_link_qual_agg_params { 1519 1520 /* 1521 *Maximum number of uSec in aggregation. 1522 * default set to 4000 (4 milliseconds) if not configured in .cfg 1523 */ 1524 __le16 agg_time_limit; 1525 1526 /* 1527 * Number of Tx retries allowed for a frame, before that frame will 1528 * no longer be considered for the start of an aggregation sequence 1529 * (scheduler will then try to tx it as single frame). 1530 * Driver should set this to 3. 1531 */ 1532 u8 agg_dis_start_th; 1533 1534 /* 1535 * Maximum number of frames in aggregation. 1536 * 0 = no limit (default). 1 = no aggregation. 1537 * Other values = max # frames in aggregation. 1538 */ 1539 u8 agg_frame_cnt_limit; 1540 1541 __le32 reserved; 1542 } __packed; 1543 1544 /* 1545 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response) 1546 * 1547 * For agn devices 1548 * 1549 * Each station in the agn device's internal station table has its own table 1550 * of 16 1551 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when 1552 * an ACK is not received. This command replaces the entire table for 1553 * one station. 1554 * 1555 * NOTE: Station must already be in agn device's station table. 1556 * Use REPLY_ADD_STA. 1557 * 1558 * The rate scaling procedures described below work well. Of course, other 1559 * procedures are possible, and may work better for particular environments. 1560 * 1561 * 1562 * FILLING THE RATE TABLE 1563 * 1564 * Given a particular initial rate and mode, as determined by the rate 1565 * scaling algorithm described below, the Linux driver uses the following 1566 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the 1567 * Link Quality command: 1568 * 1569 * 1570 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate: 1571 * a) Use this same initial rate for first 3 entries. 1572 * b) Find next lower available rate using same mode (SISO or MIMO), 1573 * use for next 3 entries. If no lower rate available, switch to 1574 * legacy mode (no HT40 channel, no MIMO, no short guard interval). 1575 * c) If using MIMO, set command's mimo_delimiter to number of entries 1576 * using MIMO (3 or 6). 1577 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel, 1578 * no MIMO, no short guard interval), at the next lower bit rate 1579 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow 1580 * legacy procedure for remaining table entries. 1581 * 1582 * 2) If using legacy initial rate: 1583 * a) Use the initial rate for only one entry. 1584 * b) For each following entry, reduce the rate to next lower available 1585 * rate, until reaching the lowest available rate. 1586 * c) When reducing rate, also switch antenna selection. 1587 * d) Once lowest available rate is reached, repeat this rate until 1588 * rate table is filled (16 entries), switching antenna each entry. 1589 * 1590 * 1591 * ACCUMULATING HISTORY 1592 * 1593 * The rate scaling algorithm for agn devices, as implemented in Linux driver, 1594 * uses two sets of frame Tx success history: One for the current/active 1595 * modulation mode, and one for a speculative/search mode that is being 1596 * attempted. If the speculative mode turns out to be more effective (i.e. 1597 * actual transfer rate is better), then the driver continues to use the 1598 * speculative mode as the new current active mode. 1599 * 1600 * Each history set contains, separately for each possible rate, data for a 1601 * sliding window of the 62 most recent tx attempts at that rate. The data 1602 * includes a shifting bitmap of success(1)/failure(0), and sums of successful 1603 * and attempted frames, from which the driver can additionally calculate a 1604 * success ratio (success / attempted) and number of failures 1605 * (attempted - success), and control the size of the window (attempted). 1606 * The driver uses the bit map to remove successes from the success sum, as 1607 * the oldest tx attempts fall out of the window. 1608 * 1609 * When the agn device makes multiple tx attempts for a given frame, each 1610 * attempt might be at a different rate, and have different modulation 1611 * characteristics (e.g. antenna, fat channel, short guard interval), as set 1612 * up in the rate scaling table in the Link Quality command. The driver must 1613 * determine which rate table entry was used for each tx attempt, to determine 1614 * which rate-specific history to update, and record only those attempts that 1615 * match the modulation characteristics of the history set. 1616 * 1617 * When using block-ack (aggregation), all frames are transmitted at the same 1618 * rate, since there is no per-attempt acknowledgment from the destination 1619 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in 1620 * rate_n_flags field. After receiving a block-ack, the driver can update 1621 * history for the entire block all at once. 1622 * 1623 * 1624 * FINDING BEST STARTING RATE: 1625 * 1626 * When working with a selected initial modulation mode (see below), the 1627 * driver attempts to find a best initial rate. The initial rate is the 1628 * first entry in the Link Quality command's rate table. 1629 * 1630 * 1) Calculate actual throughput (success ratio * expected throughput, see 1631 * table below) for current initial rate. Do this only if enough frames 1632 * have been attempted to make the value meaningful: at least 6 failed 1633 * tx attempts, or at least 8 successes. If not enough, don't try rate 1634 * scaling yet. 1635 * 1636 * 2) Find available rates adjacent to current initial rate. Available means: 1637 * a) supported by hardware && 1638 * b) supported by association && 1639 * c) within any constraints selected by user 1640 * 1641 * 3) Gather measured throughputs for adjacent rates. These might not have 1642 * enough history to calculate a throughput. That's okay, we might try 1643 * using one of them anyway! 1644 * 1645 * 4) Try decreasing rate if, for current rate: 1646 * a) success ratio is < 15% || 1647 * b) lower adjacent rate has better measured throughput || 1648 * c) higher adjacent rate has worse throughput, and lower is unmeasured 1649 * 1650 * As a sanity check, if decrease was determined above, leave rate 1651 * unchanged if: 1652 * a) lower rate unavailable 1653 * b) success ratio at current rate > 85% (very good) 1654 * c) current measured throughput is better than expected throughput 1655 * of lower rate (under perfect 100% tx conditions, see table below) 1656 * 1657 * 5) Try increasing rate if, for current rate: 1658 * a) success ratio is < 15% || 1659 * b) both adjacent rates' throughputs are unmeasured (try it!) || 1660 * b) higher adjacent rate has better measured throughput || 1661 * c) lower adjacent rate has worse throughput, and higher is unmeasured 1662 * 1663 * As a sanity check, if increase was determined above, leave rate 1664 * unchanged if: 1665 * a) success ratio at current rate < 70%. This is not particularly 1666 * good performance; higher rate is sure to have poorer success. 1667 * 1668 * 6) Re-evaluate the rate after each tx frame. If working with block- 1669 * acknowledge, history and statistics may be calculated for the entire 1670 * block (including prior history that fits within the history windows), 1671 * before re-evaluation. 1672 * 1673 * FINDING BEST STARTING MODULATION MODE: 1674 * 1675 * After working with a modulation mode for a "while" (and doing rate scaling), 1676 * the driver searches for a new initial mode in an attempt to improve 1677 * throughput. The "while" is measured by numbers of attempted frames: 1678 * 1679 * For legacy mode, search for new mode after: 1680 * 480 successful frames, or 160 failed frames 1681 * For high-throughput modes (SISO or MIMO), search for new mode after: 1682 * 4500 successful frames, or 400 failed frames 1683 * 1684 * Mode switch possibilities are (3 for each mode): 1685 * 1686 * For legacy: 1687 * Change antenna, try SISO (if HT association), try MIMO (if HT association) 1688 * For SISO: 1689 * Change antenna, try MIMO, try shortened guard interval (SGI) 1690 * For MIMO: 1691 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI) 1692 * 1693 * When trying a new mode, use the same bit rate as the old/current mode when 1694 * trying antenna switches and shortened guard interval. When switching to 1695 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate 1696 * for which the expected throughput (under perfect conditions) is about the 1697 * same or slightly better than the actual measured throughput delivered by 1698 * the old/current mode. 1699 * 1700 * Actual throughput can be estimated by multiplying the expected throughput 1701 * by the success ratio (successful / attempted tx frames). Frame size is 1702 * not considered in this calculation; it assumes that frame size will average 1703 * out to be fairly consistent over several samples. The following are 1704 * metric values for expected throughput assuming 100% success ratio. 1705 * Only G band has support for CCK rates: 1706 * 1707 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60 1708 * 1709 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186 1710 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186 1711 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202 1712 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211 1713 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251 1714 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257 1715 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257 1716 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264 1717 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289 1718 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293 1719 * 1720 * After the new mode has been tried for a short while (minimum of 6 failed 1721 * frames or 8 successful frames), compare success ratio and actual throughput 1722 * estimate of the new mode with the old. If either is better with the new 1723 * mode, continue to use the new mode. 1724 * 1725 * Continue comparing modes until all 3 possibilities have been tried. 1726 * If moving from legacy to HT, try all 3 possibilities from the new HT 1727 * mode. After trying all 3, a best mode is found. Continue to use this mode 1728 * for the longer "while" described above (e.g. 480 successful frames for 1729 * legacy), and then repeat the search process. 1730 * 1731 */ 1732 struct iwl_link_quality_cmd { 1733 1734 /* Index of destination/recipient station in uCode's station table */ 1735 u8 sta_id; 1736 u8 reserved1; 1737 __le16 control; /* not used */ 1738 struct iwl_link_qual_general_params general_params; 1739 struct iwl_link_qual_agg_params agg_params; 1740 1741 /* 1742 * Rate info; when using rate-scaling, Tx command's initial_rate_index 1743 * specifies 1st Tx rate attempted, via index into this table. 1744 * agn devices works its way through table when retrying Tx. 1745 */ 1746 struct { 1747 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */ 1748 } rs_table[LINK_QUAL_MAX_RETRY_NUM]; 1749 __le32 reserved2; 1750 } __packed; 1751 1752 /* 1753 * BT configuration enable flags: 1754 * bit 0 - 1: BT channel announcement enabled 1755 * 0: disable 1756 * bit 1 - 1: priority of BT device enabled 1757 * 0: disable 1758 * bit 2 - 1: BT 2 wire support enabled 1759 * 0: disable 1760 */ 1761 #define BT_COEX_DISABLE (0x0) 1762 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0) 1763 #define BT_ENABLE_PRIORITY BIT(1) 1764 #define BT_ENABLE_2_WIRE BIT(2) 1765 1766 #define BT_COEX_DISABLE (0x0) 1767 #define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY) 1768 1769 #define BT_LEAD_TIME_MIN (0x0) 1770 #define BT_LEAD_TIME_DEF (0x1E) 1771 #define BT_LEAD_TIME_MAX (0xFF) 1772 1773 #define BT_MAX_KILL_MIN (0x1) 1774 #define BT_MAX_KILL_DEF (0x5) 1775 #define BT_MAX_KILL_MAX (0xFF) 1776 1777 #define BT_DURATION_LIMIT_DEF 625 1778 #define BT_DURATION_LIMIT_MAX 1250 1779 #define BT_DURATION_LIMIT_MIN 625 1780 1781 #define BT_ON_THRESHOLD_DEF 4 1782 #define BT_ON_THRESHOLD_MAX 1000 1783 #define BT_ON_THRESHOLD_MIN 1 1784 1785 #define BT_FRAG_THRESHOLD_DEF 0 1786 #define BT_FRAG_THRESHOLD_MAX 0 1787 #define BT_FRAG_THRESHOLD_MIN 0 1788 1789 #define BT_AGG_THRESHOLD_DEF 1200 1790 #define BT_AGG_THRESHOLD_MAX 8000 1791 #define BT_AGG_THRESHOLD_MIN 400 1792 1793 /* 1794 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response) 1795 * 1796 * agn devices support hardware handshake with Bluetooth device on 1797 * same platform. Bluetooth device alerts wireless device when it will Tx; 1798 * wireless device can delay or kill its own Tx to accommodate. 1799 */ 1800 struct iwl_bt_cmd { 1801 u8 flags; 1802 u8 lead_time; 1803 u8 max_kill; 1804 u8 reserved; 1805 __le32 kill_ack_mask; 1806 __le32 kill_cts_mask; 1807 } __packed; 1808 1809 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0) 1810 1811 #define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5)) 1812 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3 1813 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0 1814 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1 1815 #define IWLAGN_BT_FLAG_COEX_MODE_3W 2 1816 #define IWLAGN_BT_FLAG_COEX_MODE_4W 3 1817 1818 #define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6) 1819 /* Disable Sync PSPoll on SCO/eSCO */ 1820 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7) 1821 1822 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */ 1823 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */ 1824 1825 #define IWLAGN_BT_PRIO_BOOST_MAX 0xFF 1826 #define IWLAGN_BT_PRIO_BOOST_MIN 0x00 1827 #define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0 1828 #define IWLAGN_BT_PRIO_BOOST_DEFAULT32 0xF0F0F0F0 1829 1830 #define IWLAGN_BT_MAX_KILL_DEFAULT 5 1831 1832 #define IWLAGN_BT3_T7_DEFAULT 1 1833 1834 enum iwl_bt_kill_idx { 1835 IWL_BT_KILL_DEFAULT = 0, 1836 IWL_BT_KILL_OVERRIDE = 1, 1837 IWL_BT_KILL_REDUCE = 2, 1838 }; 1839 1840 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000) 1841 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000) 1842 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff) 1843 #define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0) 1844 1845 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2 1846 1847 #define IWLAGN_BT3_T2_DEFAULT 0xc 1848 1849 #define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0)) 1850 #define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1)) 1851 #define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2)) 1852 #define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3)) 1853 #define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4)) 1854 #define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5)) 1855 #define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6)) 1856 #define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7)) 1857 1858 #define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \ 1859 IWLAGN_BT_VALID_BOOST | \ 1860 IWLAGN_BT_VALID_MAX_KILL | \ 1861 IWLAGN_BT_VALID_3W_TIMERS | \ 1862 IWLAGN_BT_VALID_KILL_ACK_MASK | \ 1863 IWLAGN_BT_VALID_KILL_CTS_MASK | \ 1864 IWLAGN_BT_VALID_REDUCED_TX_PWR | \ 1865 IWLAGN_BT_VALID_3W_LUT) 1866 1867 #define IWLAGN_BT_REDUCED_TX_PWR BIT(0) 1868 1869 #define IWLAGN_BT_DECISION_LUT_SIZE 12 1870 1871 struct iwl_basic_bt_cmd { 1872 u8 flags; 1873 u8 ledtime; /* unused */ 1874 u8 max_kill; 1875 u8 bt3_timer_t7_value; 1876 __le32 kill_ack_mask; 1877 __le32 kill_cts_mask; 1878 u8 bt3_prio_sample_time; 1879 u8 bt3_timer_t2_value; 1880 __le16 bt4_reaction_time; /* unused */ 1881 __le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE]; 1882 /* 1883 * bit 0: use reduced tx power for control frame 1884 * bit 1 - 7: reserved 1885 */ 1886 u8 reduce_txpower; 1887 u8 reserved; 1888 __le16 valid; 1889 }; 1890 1891 struct iwl_bt_cmd_v1 { 1892 struct iwl_basic_bt_cmd basic; 1893 u8 prio_boost; 1894 /* 1895 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask 1896 * if configure the following patterns 1897 */ 1898 u8 tx_prio_boost; /* SW boost of WiFi tx priority */ 1899 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */ 1900 }; 1901 1902 struct iwl_bt_cmd_v2 { 1903 struct iwl_basic_bt_cmd basic; 1904 __le32 prio_boost; 1905 /* 1906 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask 1907 * if configure the following patterns 1908 */ 1909 u8 reserved; 1910 u8 tx_prio_boost; /* SW boost of WiFi tx priority */ 1911 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */ 1912 }; 1913 1914 #define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0)) 1915 1916 struct iwlagn_bt_sco_cmd { 1917 __le32 flags; 1918 }; 1919 1920 /****************************************************************************** 1921 * (6) 1922 * Spectrum Management (802.11h) Commands, Responses, Notifications: 1923 * 1924 *****************************************************************************/ 1925 1926 /* 1927 * Spectrum Management 1928 */ 1929 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \ 1930 RXON_FILTER_CTL2HOST_MSK | \ 1931 RXON_FILTER_ACCEPT_GRP_MSK | \ 1932 RXON_FILTER_DIS_DECRYPT_MSK | \ 1933 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \ 1934 RXON_FILTER_ASSOC_MSK | \ 1935 RXON_FILTER_BCON_AWARE_MSK) 1936 1937 struct iwl_measure_channel { 1938 __le32 duration; /* measurement duration in extended beacon 1939 * format */ 1940 u8 channel; /* channel to measure */ 1941 u8 type; /* see enum iwl_measure_type */ 1942 __le16 reserved; 1943 } __packed; 1944 1945 /* 1946 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command) 1947 */ 1948 struct iwl_spectrum_cmd { 1949 __le16 len; /* number of bytes starting from token */ 1950 u8 token; /* token id */ 1951 u8 id; /* measurement id -- 0 or 1 */ 1952 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */ 1953 u8 periodic; /* 1 = periodic */ 1954 __le16 path_loss_timeout; 1955 __le32 start_time; /* start time in extended beacon format */ 1956 __le32 reserved2; 1957 __le32 flags; /* rxon flags */ 1958 __le32 filter_flags; /* rxon filter flags */ 1959 __le16 channel_count; /* minimum 1, maximum 10 */ 1960 __le16 reserved3; 1961 struct iwl_measure_channel channels[10]; 1962 } __packed; 1963 1964 /* 1965 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response) 1966 */ 1967 struct iwl_spectrum_resp { 1968 u8 token; 1969 u8 id; /* id of the prior command replaced, or 0xff */ 1970 __le16 status; /* 0 - command will be handled 1971 * 1 - cannot handle (conflicts with another 1972 * measurement) */ 1973 } __packed; 1974 1975 enum iwl_measurement_state { 1976 IWL_MEASUREMENT_START = 0, 1977 IWL_MEASUREMENT_STOP = 1, 1978 }; 1979 1980 enum iwl_measurement_status { 1981 IWL_MEASUREMENT_OK = 0, 1982 IWL_MEASUREMENT_CONCURRENT = 1, 1983 IWL_MEASUREMENT_CSA_CONFLICT = 2, 1984 IWL_MEASUREMENT_TGH_CONFLICT = 3, 1985 /* 4-5 reserved */ 1986 IWL_MEASUREMENT_STOPPED = 6, 1987 IWL_MEASUREMENT_TIMEOUT = 7, 1988 IWL_MEASUREMENT_PERIODIC_FAILED = 8, 1989 }; 1990 1991 #define NUM_ELEMENTS_IN_HISTOGRAM 8 1992 1993 struct iwl_measurement_histogram { 1994 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */ 1995 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */ 1996 } __packed; 1997 1998 /* clear channel availability counters */ 1999 struct iwl_measurement_cca_counters { 2000 __le32 ofdm; 2001 __le32 cck; 2002 } __packed; 2003 2004 enum iwl_measure_type { 2005 IWL_MEASURE_BASIC = (1 << 0), 2006 IWL_MEASURE_CHANNEL_LOAD = (1 << 1), 2007 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2), 2008 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3), 2009 IWL_MEASURE_FRAME = (1 << 4), 2010 /* bits 5:6 are reserved */ 2011 IWL_MEASURE_IDLE = (1 << 7), 2012 }; 2013 2014 /* 2015 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command) 2016 */ 2017 struct iwl_spectrum_notification { 2018 u8 id; /* measurement id -- 0 or 1 */ 2019 u8 token; 2020 u8 channel_index; /* index in measurement channel list */ 2021 u8 state; /* 0 - start, 1 - stop */ 2022 __le32 start_time; /* lower 32-bits of TSF */ 2023 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */ 2024 u8 channel; 2025 u8 type; /* see enum iwl_measurement_type */ 2026 u8 reserved1; 2027 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only 2028 * valid if applicable for measurement type requested. */ 2029 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */ 2030 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */ 2031 __le32 cca_time; /* channel load time in usecs */ 2032 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 - 2033 * unidentified */ 2034 u8 reserved2[3]; 2035 struct iwl_measurement_histogram histogram; 2036 __le32 stop_time; /* lower 32-bits of TSF */ 2037 __le32 status; /* see iwl_measurement_status */ 2038 } __packed; 2039 2040 /****************************************************************************** 2041 * (7) 2042 * Power Management Commands, Responses, Notifications: 2043 * 2044 *****************************************************************************/ 2045 2046 /* 2047 * struct iwl_powertable_cmd - Power Table Command 2048 * @flags: See below: 2049 * 2050 * POWER_TABLE_CMD = 0x77 (command, has simple generic response) 2051 * 2052 * PM allow: 2053 * bit 0 - '0' Driver not allow power management 2054 * '1' Driver allow PM (use rest of parameters) 2055 * 2056 * uCode send sleep notifications: 2057 * bit 1 - '0' Don't send sleep notification 2058 * '1' send sleep notification (SEND_PM_NOTIFICATION) 2059 * 2060 * Sleep over DTIM 2061 * bit 2 - '0' PM have to walk up every DTIM 2062 * '1' PM could sleep over DTIM till listen Interval. 2063 * 2064 * PCI power managed 2065 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1) 2066 * '1' !(PCI_CFG_LINK_CTRL & 0x1) 2067 * 2068 * Fast PD 2069 * bit 4 - '1' Put radio to sleep when receiving frame for others 2070 * 2071 * Force sleep Modes 2072 * bit 31/30- '00' use both mac/xtal sleeps 2073 * '01' force Mac sleep 2074 * '10' force xtal sleep 2075 * '11' Illegal set 2076 * 2077 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then 2078 * ucode assume sleep over DTIM is allowed and we don't need to wake up 2079 * for every DTIM. 2080 */ 2081 #define IWL_POWER_VEC_SIZE 5 2082 2083 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0)) 2084 #define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0)) 2085 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1)) 2086 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2)) 2087 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3)) 2088 #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4)) 2089 #define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5)) 2090 #define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6)) 2091 #define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7)) 2092 #define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8)) 2093 #define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9)) 2094 2095 struct iwl_powertable_cmd { 2096 __le16 flags; 2097 u8 keep_alive_seconds; 2098 u8 debug_flags; 2099 __le32 rx_data_timeout; 2100 __le32 tx_data_timeout; 2101 __le32 sleep_interval[IWL_POWER_VEC_SIZE]; 2102 __le32 keep_alive_beacons; 2103 } __packed; 2104 2105 /* 2106 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command) 2107 * all devices identical. 2108 */ 2109 struct iwl_sleep_notification { 2110 u8 pm_sleep_mode; 2111 u8 pm_wakeup_src; 2112 __le16 reserved; 2113 __le32 sleep_time; 2114 __le32 tsf_low; 2115 __le32 bcon_timer; 2116 } __packed; 2117 2118 /* Sleep states. all devices identical. */ 2119 enum { 2120 IWL_PM_NO_SLEEP = 0, 2121 IWL_PM_SLP_MAC = 1, 2122 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2, 2123 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3, 2124 IWL_PM_SLP_PHY = 4, 2125 IWL_PM_SLP_REPENT = 5, 2126 IWL_PM_WAKEUP_BY_TIMER = 6, 2127 IWL_PM_WAKEUP_BY_DRIVER = 7, 2128 IWL_PM_WAKEUP_BY_RFKILL = 8, 2129 /* 3 reserved */ 2130 IWL_PM_NUM_OF_MODES = 12, 2131 }; 2132 2133 /* 2134 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response) 2135 */ 2136 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */ 2137 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */ 2138 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */ 2139 struct iwl_card_state_cmd { 2140 __le32 status; /* CARD_STATE_CMD_* request new power state */ 2141 } __packed; 2142 2143 /* 2144 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command) 2145 */ 2146 struct iwl_card_state_notif { 2147 __le32 flags; 2148 } __packed; 2149 2150 #define HW_CARD_DISABLED 0x01 2151 #define SW_CARD_DISABLED 0x02 2152 #define CT_CARD_DISABLED 0x04 2153 #define RXON_CARD_DISABLED 0x10 2154 2155 struct iwl_ct_kill_config { 2156 __le32 reserved; 2157 __le32 critical_temperature_M; 2158 __le32 critical_temperature_R; 2159 } __packed; 2160 2161 /* 1000, and 6x00 */ 2162 struct iwl_ct_kill_throttling_config { 2163 __le32 critical_temperature_exit; 2164 __le32 reserved; 2165 __le32 critical_temperature_enter; 2166 } __packed; 2167 2168 /****************************************************************************** 2169 * (8) 2170 * Scan Commands, Responses, Notifications: 2171 * 2172 *****************************************************************************/ 2173 2174 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0) 2175 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1) 2176 2177 /* 2178 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table 2179 * 2180 * One for each channel in the scan list. 2181 * Each channel can independently select: 2182 * 1) SSID for directed active scans 2183 * 2) Txpower setting (for rate specified within Tx command) 2184 * 3) How long to stay on-channel (behavior may be modified by quiet_time, 2185 * quiet_plcp_th, good_CRC_th) 2186 * 2187 * To avoid uCode errors, make sure the following are true (see comments 2188 * under struct iwl_scan_cmd about max_out_time and quiet_time): 2189 * 1) If using passive_dwell (i.e. passive_dwell != 0): 2190 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0) 2191 * 2) quiet_time <= active_dwell 2192 * 3) If restricting off-channel time (i.e. max_out_time !=0): 2193 * passive_dwell < max_out_time 2194 * active_dwell < max_out_time 2195 */ 2196 2197 struct iwl_scan_channel { 2198 /* 2199 * type is defined as: 2200 * 0:0 1 = active, 0 = passive 2201 * 1:20 SSID direct bit map; if a bit is set, then corresponding 2202 * SSID IE is transmitted in probe request. 2203 * 21:31 reserved 2204 */ 2205 __le32 type; 2206 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */ 2207 u8 tx_gain; /* gain for analog radio */ 2208 u8 dsp_atten; /* gain for DSP */ 2209 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */ 2210 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */ 2211 } __packed; 2212 2213 /* set number of direct probes __le32 type */ 2214 #define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1)))) 2215 2216 /* 2217 * struct iwl_ssid_ie - directed scan network information element 2218 * 2219 * Up to 20 of these may appear in REPLY_SCAN_CMD, 2220 * selected by "type" bit field in struct iwl_scan_channel; 2221 * each channel may select different ssids from among the 20 entries. 2222 * SSID IEs get transmitted in reverse order of entry. 2223 */ 2224 struct iwl_ssid_ie { 2225 u8 id; 2226 u8 len; 2227 u8 ssid[32]; 2228 } __packed; 2229 2230 #define PROBE_OPTION_MAX 20 2231 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF) 2232 #define IWL_GOOD_CRC_TH_DISABLED 0 2233 #define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1) 2234 #define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff) 2235 #define IWL_MAX_CMD_SIZE 4096 2236 2237 /* 2238 * REPLY_SCAN_CMD = 0x80 (command) 2239 * 2240 * The hardware scan command is very powerful; the driver can set it up to 2241 * maintain (relatively) normal network traffic while doing a scan in the 2242 * background. The max_out_time and suspend_time control the ratio of how 2243 * long the device stays on an associated network channel ("service channel") 2244 * vs. how long it's away from the service channel, i.e. tuned to other channels 2245 * for scanning. 2246 * 2247 * max_out_time is the max time off-channel (in usec), and suspend_time 2248 * is how long (in "extended beacon" format) that the scan is "suspended" 2249 * after returning to the service channel. That is, suspend_time is the 2250 * time that we stay on the service channel, doing normal work, between 2251 * scan segments. The driver may set these parameters differently to support 2252 * scanning when associated vs. not associated, and light vs. heavy traffic 2253 * loads when associated. 2254 * 2255 * After receiving this command, the device's scan engine does the following; 2256 * 2257 * 1) Sends SCAN_START notification to driver 2258 * 2) Checks to see if it has time to do scan for one channel 2259 * 3) Sends NULL packet, with power-save (PS) bit set to 1, 2260 * to tell AP that we're going off-channel 2261 * 4) Tunes to first channel in scan list, does active or passive scan 2262 * 5) Sends SCAN_RESULT notification to driver 2263 * 6) Checks to see if it has time to do scan on *next* channel in list 2264 * 7) Repeats 4-6 until it no longer has time to scan the next channel 2265 * before max_out_time expires 2266 * 8) Returns to service channel 2267 * 9) Sends NULL packet with PS=0 to tell AP that we're back 2268 * 10) Stays on service channel until suspend_time expires 2269 * 11) Repeats entire process 2-10 until list is complete 2270 * 12) Sends SCAN_COMPLETE notification 2271 * 2272 * For fast, efficient scans, the scan command also has support for staying on 2273 * a channel for just a short time, if doing active scanning and getting no 2274 * responses to the transmitted probe request. This time is controlled by 2275 * quiet_time, and the number of received packets below which a channel is 2276 * considered "quiet" is controlled by quiet_plcp_threshold. 2277 * 2278 * For active scanning on channels that have regulatory restrictions against 2279 * blindly transmitting, the scan can listen before transmitting, to make sure 2280 * that there is already legitimate activity on the channel. If enough 2281 * packets are cleanly received on the channel (controlled by good_CRC_th, 2282 * typical value 1), the scan engine starts transmitting probe requests. 2283 * 2284 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands. 2285 * 2286 * To avoid uCode errors, see timing restrictions described under 2287 * struct iwl_scan_channel. 2288 */ 2289 2290 enum iwl_scan_flags { 2291 /* BIT(0) currently unused */ 2292 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1), 2293 /* bits 2-7 reserved */ 2294 }; 2295 2296 struct iwl_scan_cmd { 2297 __le16 len; 2298 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */ 2299 u8 channel_count; /* # channels in channel list */ 2300 __le16 quiet_time; /* dwell only this # millisecs on quiet channel 2301 * (only for active scan) */ 2302 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */ 2303 __le16 good_CRC_th; /* passive -> active promotion threshold */ 2304 __le16 rx_chain; /* RXON_RX_CHAIN_* */ 2305 __le32 max_out_time; /* max usec to be away from associated (service) 2306 * channel */ 2307 __le32 suspend_time; /* pause scan this long (in "extended beacon 2308 * format") when returning to service chnl: 2309 */ 2310 __le32 flags; /* RXON_FLG_* */ 2311 __le32 filter_flags; /* RXON_FILTER_* */ 2312 2313 /* For active scans (set to all-0s for passive scans). 2314 * Does not include payload. Must specify Tx rate; no rate scaling. */ 2315 struct iwl_tx_cmd tx_cmd; 2316 2317 /* For directed active scans (set to all-0s otherwise) */ 2318 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX]; 2319 2320 /* 2321 * Probe request frame, followed by channel list. 2322 * 2323 * Size of probe request frame is specified by byte count in tx_cmd. 2324 * Channel list follows immediately after probe request frame. 2325 * Number of channels in list is specified by channel_count. 2326 * Each channel in list is of type: 2327 * 2328 * struct iwl_scan_channel channels[0]; 2329 * 2330 * NOTE: Only one band of channels can be scanned per pass. You 2331 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait 2332 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION) 2333 * before requesting another scan. 2334 */ 2335 u8 data[]; 2336 } __packed; 2337 2338 /* Can abort will notify by complete notification with abort status. */ 2339 #define CAN_ABORT_STATUS cpu_to_le32(0x1) 2340 /* complete notification statuses */ 2341 #define ABORT_STATUS 0x2 2342 2343 /* 2344 * REPLY_SCAN_CMD = 0x80 (response) 2345 */ 2346 struct iwl_scanreq_notification { 2347 __le32 status; /* 1: okay, 2: cannot fulfill request */ 2348 } __packed; 2349 2350 /* 2351 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command) 2352 */ 2353 struct iwl_scanstart_notification { 2354 __le32 tsf_low; 2355 __le32 tsf_high; 2356 __le32 beacon_timer; 2357 u8 channel; 2358 u8 band; 2359 u8 reserved[2]; 2360 __le32 status; 2361 } __packed; 2362 2363 #define SCAN_OWNER_STATUS 0x1 2364 #define MEASURE_OWNER_STATUS 0x2 2365 2366 #define IWL_PROBE_STATUS_OK 0 2367 #define IWL_PROBE_STATUS_TX_FAILED BIT(0) 2368 /* error statuses combined with TX_FAILED */ 2369 #define IWL_PROBE_STATUS_FAIL_TTL BIT(1) 2370 #define IWL_PROBE_STATUS_FAIL_BT BIT(2) 2371 2372 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */ 2373 /* 2374 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command) 2375 */ 2376 struct iwl_scanresults_notification { 2377 u8 channel; 2378 u8 band; 2379 u8 probe_status; 2380 u8 num_probe_not_sent; /* not enough time to send */ 2381 __le32 tsf_low; 2382 __le32 tsf_high; 2383 __le32 statistics[NUMBER_OF_STATISTICS]; 2384 } __packed; 2385 2386 /* 2387 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command) 2388 */ 2389 struct iwl_scancomplete_notification { 2390 u8 scanned_channels; 2391 u8 status; 2392 u8 bt_status; /* BT On/Off status */ 2393 u8 last_channel; 2394 __le32 tsf_low; 2395 __le32 tsf_high; 2396 } __packed; 2397 2398 2399 /****************************************************************************** 2400 * (9) 2401 * IBSS/AP Commands and Notifications: 2402 * 2403 *****************************************************************************/ 2404 2405 enum iwl_ibss_manager { 2406 IWL_NOT_IBSS_MANAGER = 0, 2407 IWL_IBSS_MANAGER = 1, 2408 }; 2409 2410 /* 2411 * BEACON_NOTIFICATION = 0x90 (notification only, not a command) 2412 */ 2413 2414 struct iwlagn_beacon_notif { 2415 struct iwlagn_tx_resp beacon_notify_hdr; 2416 __le32 low_tsf; 2417 __le32 high_tsf; 2418 __le32 ibss_mgr_status; 2419 } __packed; 2420 2421 /* 2422 * REPLY_TX_BEACON = 0x91 (command, has simple generic response) 2423 */ 2424 2425 struct iwl_tx_beacon_cmd { 2426 struct iwl_tx_cmd tx; 2427 __le16 tim_idx; 2428 u8 tim_size; 2429 u8 reserved1; 2430 struct ieee80211_hdr frame[]; /* beacon frame */ 2431 } __packed; 2432 2433 /****************************************************************************** 2434 * (10) 2435 * Statistics Commands and Notifications: 2436 * 2437 *****************************************************************************/ 2438 2439 #define IWL_TEMP_CONVERT 260 2440 2441 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8 2442 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4 2443 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12 2444 2445 /* Used for passing to driver number of successes and failures per rate */ 2446 struct rate_histogram { 2447 union { 2448 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS]; 2449 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS]; 2450 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS]; 2451 } success; 2452 union { 2453 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS]; 2454 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS]; 2455 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS]; 2456 } failed; 2457 } __packed; 2458 2459 /* statistics command response */ 2460 2461 struct statistics_dbg { 2462 __le32 burst_check; 2463 __le32 burst_count; 2464 __le32 wait_for_silence_timeout_cnt; 2465 __le32 reserved[3]; 2466 } __packed; 2467 2468 struct statistics_rx_phy { 2469 __le32 ina_cnt; 2470 __le32 fina_cnt; 2471 __le32 plcp_err; 2472 __le32 crc32_err; 2473 __le32 overrun_err; 2474 __le32 early_overrun_err; 2475 __le32 crc32_good; 2476 __le32 false_alarm_cnt; 2477 __le32 fina_sync_err_cnt; 2478 __le32 sfd_timeout; 2479 __le32 fina_timeout; 2480 __le32 unresponded_rts; 2481 __le32 rxe_frame_limit_overrun; 2482 __le32 sent_ack_cnt; 2483 __le32 sent_cts_cnt; 2484 __le32 sent_ba_rsp_cnt; 2485 __le32 dsp_self_kill; 2486 __le32 mh_format_err; 2487 __le32 re_acq_main_rssi_sum; 2488 __le32 reserved3; 2489 } __packed; 2490 2491 struct statistics_rx_ht_phy { 2492 __le32 plcp_err; 2493 __le32 overrun_err; 2494 __le32 early_overrun_err; 2495 __le32 crc32_good; 2496 __le32 crc32_err; 2497 __le32 mh_format_err; 2498 __le32 agg_crc32_good; 2499 __le32 agg_mpdu_cnt; 2500 __le32 agg_cnt; 2501 __le32 unsupport_mcs; 2502 } __packed; 2503 2504 #define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1) 2505 2506 struct statistics_rx_non_phy { 2507 __le32 bogus_cts; /* CTS received when not expecting CTS */ 2508 __le32 bogus_ack; /* ACK received when not expecting ACK */ 2509 __le32 non_bssid_frames; /* number of frames with BSSID that 2510 * doesn't belong to the STA BSSID */ 2511 __le32 filtered_frames; /* count frames that were dumped in the 2512 * filtering process */ 2513 __le32 non_channel_beacons; /* beacons with our bss id but not on 2514 * our serving channel */ 2515 __le32 channel_beacons; /* beacons with our bss id and in our 2516 * serving channel */ 2517 __le32 num_missed_bcon; /* number of missed beacons */ 2518 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the 2519 * ADC was in saturation */ 2520 __le32 ina_detection_search_time;/* total time (in 0.8us) searched 2521 * for INA */ 2522 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */ 2523 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */ 2524 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */ 2525 __le32 interference_data_flag; /* flag for interference data 2526 * availability. 1 when data is 2527 * available. */ 2528 __le32 channel_load; /* counts RX Enable time in uSec */ 2529 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM 2530 * and CCK) counter */ 2531 __le32 beacon_rssi_a; 2532 __le32 beacon_rssi_b; 2533 __le32 beacon_rssi_c; 2534 __le32 beacon_energy_a; 2535 __le32 beacon_energy_b; 2536 __le32 beacon_energy_c; 2537 } __packed; 2538 2539 struct statistics_rx_non_phy_bt { 2540 struct statistics_rx_non_phy common; 2541 /* additional stats for bt */ 2542 __le32 num_bt_kills; 2543 __le32 reserved[2]; 2544 } __packed; 2545 2546 struct statistics_rx { 2547 struct statistics_rx_phy ofdm; 2548 struct statistics_rx_phy cck; 2549 struct statistics_rx_non_phy general; 2550 struct statistics_rx_ht_phy ofdm_ht; 2551 } __packed; 2552 2553 struct statistics_rx_bt { 2554 struct statistics_rx_phy ofdm; 2555 struct statistics_rx_phy cck; 2556 struct statistics_rx_non_phy_bt general; 2557 struct statistics_rx_ht_phy ofdm_ht; 2558 } __packed; 2559 2560 /** 2561 * struct statistics_tx_power - current tx power 2562 * 2563 * @ant_a: current tx power on chain a in 1/2 dB step 2564 * @ant_b: current tx power on chain b in 1/2 dB step 2565 * @ant_c: current tx power on chain c in 1/2 dB step 2566 * @reserved: reserved for alignment 2567 */ 2568 struct statistics_tx_power { 2569 u8 ant_a; 2570 u8 ant_b; 2571 u8 ant_c; 2572 u8 reserved; 2573 } __packed; 2574 2575 struct statistics_tx_non_phy_agg { 2576 __le32 ba_timeout; 2577 __le32 ba_reschedule_frames; 2578 __le32 scd_query_agg_frame_cnt; 2579 __le32 scd_query_no_agg; 2580 __le32 scd_query_agg; 2581 __le32 scd_query_mismatch; 2582 __le32 frame_not_ready; 2583 __le32 underrun; 2584 __le32 bt_prio_kill; 2585 __le32 rx_ba_rsp_cnt; 2586 } __packed; 2587 2588 struct statistics_tx { 2589 __le32 preamble_cnt; 2590 __le32 rx_detected_cnt; 2591 __le32 bt_prio_defer_cnt; 2592 __le32 bt_prio_kill_cnt; 2593 __le32 few_bytes_cnt; 2594 __le32 cts_timeout; 2595 __le32 ack_timeout; 2596 __le32 expected_ack_cnt; 2597 __le32 actual_ack_cnt; 2598 __le32 dump_msdu_cnt; 2599 __le32 burst_abort_next_frame_mismatch_cnt; 2600 __le32 burst_abort_missing_next_frame_cnt; 2601 __le32 cts_timeout_collision; 2602 __le32 ack_or_ba_timeout_collision; 2603 struct statistics_tx_non_phy_agg agg; 2604 /* 2605 * "tx_power" are optional parameters provided by uCode, 2606 * 6000 series is the only device provide the information, 2607 * Those are reserved fields for all the other devices 2608 */ 2609 struct statistics_tx_power tx_power; 2610 __le32 reserved1; 2611 } __packed; 2612 2613 2614 struct statistics_div { 2615 __le32 tx_on_a; 2616 __le32 tx_on_b; 2617 __le32 exec_time; 2618 __le32 probe_time; 2619 __le32 reserved1; 2620 __le32 reserved2; 2621 } __packed; 2622 2623 struct statistics_general_common { 2624 __le32 temperature; /* radio temperature */ 2625 __le32 temperature_m; /* radio voltage */ 2626 struct statistics_dbg dbg; 2627 __le32 sleep_time; 2628 __le32 slots_out; 2629 __le32 slots_idle; 2630 __le32 ttl_timestamp; 2631 struct statistics_div div; 2632 __le32 rx_enable_counter; 2633 /* 2634 * num_of_sos_states: 2635 * count the number of times we have to re-tune 2636 * in order to get out of bad PHY status 2637 */ 2638 __le32 num_of_sos_states; 2639 } __packed; 2640 2641 struct statistics_bt_activity { 2642 /* Tx statistics */ 2643 __le32 hi_priority_tx_req_cnt; 2644 __le32 hi_priority_tx_denied_cnt; 2645 __le32 lo_priority_tx_req_cnt; 2646 __le32 lo_priority_tx_denied_cnt; 2647 /* Rx statistics */ 2648 __le32 hi_priority_rx_req_cnt; 2649 __le32 hi_priority_rx_denied_cnt; 2650 __le32 lo_priority_rx_req_cnt; 2651 __le32 lo_priority_rx_denied_cnt; 2652 } __packed; 2653 2654 struct statistics_general { 2655 struct statistics_general_common common; 2656 __le32 reserved2; 2657 __le32 reserved3; 2658 } __packed; 2659 2660 struct statistics_general_bt { 2661 struct statistics_general_common common; 2662 struct statistics_bt_activity activity; 2663 __le32 reserved2; 2664 __le32 reserved3; 2665 } __packed; 2666 2667 #define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0) 2668 #define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1) 2669 #define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2) 2670 2671 /* 2672 * REPLY_STATISTICS_CMD = 0x9c, 2673 * all devices identical. 2674 * 2675 * This command triggers an immediate response containing uCode statistics. 2676 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below. 2677 * 2678 * If the CLEAR_STATS configuration flag is set, uCode will clear its 2679 * internal copy of the statistics (counters) after issuing the response. 2680 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below). 2681 * 2682 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue 2683 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag 2684 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself. 2685 */ 2686 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */ 2687 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */ 2688 struct iwl_statistics_cmd { 2689 __le32 configuration_flags; /* IWL_STATS_CONF_* */ 2690 } __packed; 2691 2692 /* 2693 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command) 2694 * 2695 * By default, uCode issues this notification after receiving a beacon 2696 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the 2697 * REPLY_STATISTICS_CMD 0x9c, above. 2698 * 2699 * Statistics counters continue to increment beacon after beacon, but are 2700 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD 2701 * 0x9c with CLEAR_STATS bit set (see above). 2702 * 2703 * uCode also issues this notification during scans. uCode clears statistics 2704 * appropriately so that each notification contains statistics for only the 2705 * one channel that has just been scanned. 2706 */ 2707 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2) 2708 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8) 2709 2710 struct iwl_notif_statistics { 2711 __le32 flag; 2712 struct statistics_rx rx; 2713 struct statistics_tx tx; 2714 struct statistics_general general; 2715 } __packed; 2716 2717 struct iwl_bt_notif_statistics { 2718 __le32 flag; 2719 struct statistics_rx_bt rx; 2720 struct statistics_tx tx; 2721 struct statistics_general_bt general; 2722 } __packed; 2723 2724 /* 2725 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command) 2726 * 2727 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed 2728 * in regardless of how many missed beacons, which mean when driver receive the 2729 * notification, inside the command, it can find all the beacons information 2730 * which include number of total missed beacons, number of consecutive missed 2731 * beacons, number of beacons received and number of beacons expected to 2732 * receive. 2733 * 2734 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio 2735 * in order to bring the radio/PHY back to working state; which has no relation 2736 * to when driver will perform sensitivity calibration. 2737 * 2738 * Driver should set it own missed_beacon_threshold to decide when to perform 2739 * sensitivity calibration based on number of consecutive missed beacons in 2740 * order to improve overall performance, especially in noisy environment. 2741 * 2742 */ 2743 2744 #define IWL_MISSED_BEACON_THRESHOLD_MIN (1) 2745 #define IWL_MISSED_BEACON_THRESHOLD_DEF (5) 2746 #define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF 2747 2748 struct iwl_missed_beacon_notif { 2749 __le32 consecutive_missed_beacons; 2750 __le32 total_missed_becons; 2751 __le32 num_expected_beacons; 2752 __le32 num_recvd_beacons; 2753 } __packed; 2754 2755 2756 /****************************************************************************** 2757 * (11) 2758 * Rx Calibration Commands: 2759 * 2760 * With the uCode used for open source drivers, most Tx calibration (except 2761 * for Tx Power) and most Rx calibration is done by uCode during the 2762 * "initialize" phase of uCode boot. Driver must calibrate only: 2763 * 2764 * 1) Tx power (depends on temperature), described elsewhere 2765 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas) 2766 * 3) Receiver sensitivity (to optimize signal detection) 2767 * 2768 *****************************************************************************/ 2769 2770 /** 2771 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response) 2772 * 2773 * This command sets up the Rx signal detector for a sensitivity level that 2774 * is high enough to lock onto all signals within the associated network, 2775 * but low enough to ignore signals that are below a certain threshold, so as 2776 * not to have too many "false alarms". False alarms are signals that the 2777 * Rx DSP tries to lock onto, but then discards after determining that they 2778 * are noise. 2779 * 2780 * The optimum number of false alarms is between 5 and 50 per 200 TUs 2781 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e. 2782 * time listening, not transmitting). Driver must adjust sensitivity so that 2783 * the ratio of actual false alarms to actual Rx time falls within this range. 2784 * 2785 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each 2786 * received beacon. These provide information to the driver to analyze the 2787 * sensitivity. Don't analyze statistics that come in from scanning, or any 2788 * other non-associated-network source. Pertinent statistics include: 2789 * 2790 * From "general" statistics (struct statistics_rx_non_phy): 2791 * 2792 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level) 2793 * Measure of energy of desired signal. Used for establishing a level 2794 * below which the device does not detect signals. 2795 * 2796 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB) 2797 * Measure of background noise in silent period after beacon. 2798 * 2799 * channel_load 2800 * uSecs of actual Rx time during beacon period (varies according to 2801 * how much time was spent transmitting). 2802 * 2803 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately: 2804 * 2805 * false_alarm_cnt 2806 * Signal locks abandoned early (before phy-level header). 2807 * 2808 * plcp_err 2809 * Signal locks abandoned late (during phy-level header). 2810 * 2811 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from 2812 * beacon to beacon, i.e. each value is an accumulation of all errors 2813 * before and including the latest beacon. Values will wrap around to 0 2814 * after counting up to 2^32 - 1. Driver must differentiate vs. 2815 * previous beacon's values to determine # false alarms in the current 2816 * beacon period. 2817 * 2818 * Total number of false alarms = false_alarms + plcp_errs 2819 * 2820 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd 2821 * (notice that the start points for OFDM are at or close to settings for 2822 * maximum sensitivity): 2823 * 2824 * START / MIN / MAX 2825 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120 2826 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210 2827 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140 2828 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270 2829 * 2830 * If actual rate of OFDM false alarms (+ plcp_errors) is too high 2831 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity 2832 * by *adding* 1 to all 4 of the table entries above, up to the max for 2833 * each entry. Conversely, if false alarm rate is too low (less than 5 2834 * for each 204.8 msecs listening), *subtract* 1 from each entry to 2835 * increase sensitivity. 2836 * 2837 * For CCK sensitivity, keep track of the following: 2838 * 2839 * 1). 20-beacon history of maximum background noise, indicated by 2840 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the 2841 * 3 receivers. For any given beacon, the "silence reference" is 2842 * the maximum of last 60 samples (20 beacons * 3 receivers). 2843 * 2844 * 2). 10-beacon history of strongest signal level, as indicated 2845 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers, 2846 * i.e. the strength of the signal through the best receiver at the 2847 * moment. These measurements are "upside down", with lower values 2848 * for stronger signals, so max energy will be *minimum* value. 2849 * 2850 * Then for any given beacon, the driver must determine the *weakest* 2851 * of the strongest signals; this is the minimum level that needs to be 2852 * successfully detected, when using the best receiver at the moment. 2853 * "Max cck energy" is the maximum (higher value means lower energy!) 2854 * of the last 10 minima. Once this is determined, driver must add 2855 * a little margin by adding "6" to it. 2856 * 2857 * 3). Number of consecutive beacon periods with too few false alarms. 2858 * Reset this to 0 at the first beacon period that falls within the 2859 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx). 2860 * 2861 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd 2862 * (notice that the start points for CCK are at maximum sensitivity): 2863 * 2864 * START / MIN / MAX 2865 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200 2866 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400 2867 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100 2868 * 2869 * If actual rate of CCK false alarms (+ plcp_errors) is too high 2870 * (greater than 50 for each 204.8 msecs listening), method for reducing 2871 * sensitivity is: 2872 * 2873 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX, 2874 * up to max 400. 2875 * 2876 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160, 2877 * sensitivity has been reduced a significant amount; bring it up to 2878 * a moderate 161. Otherwise, *add* 3, up to max 200. 2879 * 2880 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160, 2881 * sensitivity has been reduced only a moderate or small amount; 2882 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX, 2883 * down to min 0. Otherwise (if gain has been significantly reduced), 2884 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value. 2885 * 2886 * b) Save a snapshot of the "silence reference". 2887 * 2888 * If actual rate of CCK false alarms (+ plcp_errors) is too low 2889 * (less than 5 for each 204.8 msecs listening), method for increasing 2890 * sensitivity is used only if: 2891 * 2892 * 1a) Previous beacon did not have too many false alarms 2893 * 1b) AND difference between previous "silence reference" and current 2894 * "silence reference" (prev - current) is 2 or more, 2895 * OR 2) 100 or more consecutive beacon periods have had rate of 2896 * less than 5 false alarms per 204.8 milliseconds rx time. 2897 * 2898 * Method for increasing sensitivity: 2899 * 2900 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX, 2901 * down to min 125. 2902 * 2903 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX, 2904 * down to min 200. 2905 * 2906 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100. 2907 * 2908 * If actual rate of CCK false alarms (+ plcp_errors) is within good range 2909 * (between 5 and 50 for each 204.8 msecs listening): 2910 * 2911 * 1) Save a snapshot of the silence reference. 2912 * 2913 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors), 2914 * give some extra margin to energy threshold by *subtracting* 8 2915 * from value in HD_MIN_ENERGY_CCK_DET_INDEX. 2916 * 2917 * For all cases (too few, too many, good range), make sure that the CCK 2918 * detection threshold (energy) is below the energy level for robust 2919 * detection over the past 10 beacon periods, the "Max cck energy". 2920 * Lower values mean higher energy; this means making sure that the value 2921 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy". 2922 * 2923 */ 2924 2925 /* 2926 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd) 2927 */ 2928 #define HD_TABLE_SIZE (11) /* number of entries */ 2929 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */ 2930 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1) 2931 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2) 2932 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3) 2933 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4) 2934 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5) 2935 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6) 2936 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7) 2937 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8) 2938 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9) 2939 #define HD_OFDM_ENERGY_TH_IN_INDEX (10) 2940 2941 /* 2942 * Additional table entries in enhance SENSITIVITY_CMD 2943 */ 2944 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11) 2945 #define HD_INA_NON_SQUARE_DET_CCK_INDEX (12) 2946 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13) 2947 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14) 2948 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15) 2949 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16) 2950 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17) 2951 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18) 2952 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19) 2953 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20) 2954 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21) 2955 #define HD_RESERVED (22) 2956 2957 /* number of entries for enhanced tbl */ 2958 #define ENHANCE_HD_TABLE_SIZE (23) 2959 2960 /* number of additional entries for enhanced tbl */ 2961 #define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE) 2962 2963 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0) 2964 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0) 2965 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0) 2966 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668) 2967 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4) 2968 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486) 2969 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37) 2970 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853) 2971 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4) 2972 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476) 2973 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99) 2974 2975 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1) 2976 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1) 2977 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1) 2978 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600) 2979 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40) 2980 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486) 2981 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45) 2982 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853) 2983 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60) 2984 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476) 2985 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99) 2986 2987 2988 /* Control field in struct iwl_sensitivity_cmd */ 2989 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0) 2990 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1) 2991 2992 /** 2993 * struct iwl_sensitivity_cmd 2994 * @control: (1) updates working table, (0) updates default table 2995 * @table: energy threshold values, use HD_* as index into table 2996 * 2997 * Always use "1" in "control" to update uCode's working table and DSP. 2998 */ 2999 struct iwl_sensitivity_cmd { 3000 __le16 control; /* always use "1" */ 3001 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */ 3002 } __packed; 3003 3004 /* 3005 * 3006 */ 3007 struct iwl_enhance_sensitivity_cmd { 3008 __le16 control; /* always use "1" */ 3009 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */ 3010 } __packed; 3011 3012 3013 /* 3014 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response) 3015 * 3016 * This command sets the relative gains of agn device's 3 radio receiver chains. 3017 * 3018 * After the first association, driver should accumulate signal and noise 3019 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20 3020 * beacons from the associated network (don't collect statistics that come 3021 * in from scanning, or any other non-network source). 3022 * 3023 * DISCONNECTED ANTENNA: 3024 * 3025 * Driver should determine which antennas are actually connected, by comparing 3026 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the 3027 * following values over 20 beacons, one accumulator for each of the chains 3028 * a/b/c, from struct statistics_rx_non_phy: 3029 * 3030 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB) 3031 * 3032 * Find the strongest signal from among a/b/c. Compare the other two to the 3033 * strongest. If any signal is more than 15 dB (times 20, unless you 3034 * divide the accumulated values by 20) below the strongest, the driver 3035 * considers that antenna to be disconnected, and should not try to use that 3036 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected, 3037 * driver should declare the stronger one as connected, and attempt to use it 3038 * (A and B are the only 2 Tx chains!). 3039 * 3040 * 3041 * RX BALANCE: 3042 * 3043 * Driver should balance the 3 receivers (but just the ones that are connected 3044 * to antennas, see above) for gain, by comparing the average signal levels 3045 * detected during the silence after each beacon (background noise). 3046 * Accumulate (add) the following values over 20 beacons, one accumulator for 3047 * each of the chains a/b/c, from struct statistics_rx_non_phy: 3048 * 3049 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB) 3050 * 3051 * Find the weakest background noise level from among a/b/c. This Rx chain 3052 * will be the reference, with 0 gain adjustment. Attenuate other channels by 3053 * finding noise difference: 3054 * 3055 * (accum_noise[i] - accum_noise[reference]) / 30 3056 * 3057 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB. 3058 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the 3059 * driver should limit the difference results to a range of 0-3 (0-4.5 dB), 3060 * and set bit 2 to indicate "reduce gain". The value for the reference 3061 * (weakest) chain should be "0". 3062 * 3063 * diff_gain_[abc] bit fields: 3064 * 2: (1) reduce gain, (0) increase gain 3065 * 1-0: amount of gain, units of 1.5 dB 3066 */ 3067 3068 /* Phy calibration command for series */ 3069 enum { 3070 IWL_PHY_CALIBRATE_DC_CMD = 8, 3071 IWL_PHY_CALIBRATE_LO_CMD = 9, 3072 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11, 3073 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15, 3074 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16, 3075 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17, 3076 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18, 3077 }; 3078 3079 /* This enum defines the bitmap of various calibrations to enable in both 3080 * init ucode and runtime ucode through CALIBRATION_CFG_CMD. 3081 */ 3082 enum iwl_ucode_calib_cfg { 3083 IWL_CALIB_CFG_RX_BB_IDX = BIT(0), 3084 IWL_CALIB_CFG_DC_IDX = BIT(1), 3085 IWL_CALIB_CFG_LO_IDX = BIT(2), 3086 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3), 3087 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4), 3088 IWL_CALIB_CFG_NOISE_IDX = BIT(5), 3089 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6), 3090 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7), 3091 IWL_CALIB_CFG_PAPD_IDX = BIT(8), 3092 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9), 3093 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10), 3094 }; 3095 3096 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \ 3097 IWL_CALIB_CFG_DC_IDX | \ 3098 IWL_CALIB_CFG_LO_IDX | \ 3099 IWL_CALIB_CFG_TX_IQ_IDX | \ 3100 IWL_CALIB_CFG_RX_IQ_IDX | \ 3101 IWL_CALIB_CFG_CRYSTAL_IDX) 3102 3103 #define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \ 3104 IWL_CALIB_CFG_DC_IDX | \ 3105 IWL_CALIB_CFG_LO_IDX | \ 3106 IWL_CALIB_CFG_TX_IQ_IDX | \ 3107 IWL_CALIB_CFG_RX_IQ_IDX | \ 3108 IWL_CALIB_CFG_TEMPERATURE_IDX | \ 3109 IWL_CALIB_CFG_PAPD_IDX | \ 3110 IWL_CALIB_CFG_TX_PWR_IDX | \ 3111 IWL_CALIB_CFG_CRYSTAL_IDX) 3112 3113 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0)) 3114 3115 struct iwl_calib_cfg_elmnt_s { 3116 __le32 is_enable; 3117 __le32 start; 3118 __le32 send_res; 3119 __le32 apply_res; 3120 __le32 reserved; 3121 } __packed; 3122 3123 struct iwl_calib_cfg_status_s { 3124 struct iwl_calib_cfg_elmnt_s once; 3125 struct iwl_calib_cfg_elmnt_s perd; 3126 __le32 flags; 3127 } __packed; 3128 3129 struct iwl_calib_cfg_cmd { 3130 struct iwl_calib_cfg_status_s ucd_calib_cfg; 3131 struct iwl_calib_cfg_status_s drv_calib_cfg; 3132 __le32 reserved1; 3133 } __packed; 3134 3135 struct iwl_calib_hdr { 3136 u8 op_code; 3137 u8 first_group; 3138 u8 groups_num; 3139 u8 data_valid; 3140 } __packed; 3141 3142 struct iwl_calib_cmd { 3143 struct iwl_calib_hdr hdr; 3144 u8 data[]; 3145 } __packed; 3146 3147 struct iwl_calib_xtal_freq_cmd { 3148 struct iwl_calib_hdr hdr; 3149 u8 cap_pin1; 3150 u8 cap_pin2; 3151 u8 pad[2]; 3152 } __packed; 3153 3154 #define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700) 3155 struct iwl_calib_temperature_offset_cmd { 3156 struct iwl_calib_hdr hdr; 3157 __le16 radio_sensor_offset; 3158 __le16 reserved; 3159 } __packed; 3160 3161 struct iwl_calib_temperature_offset_v2_cmd { 3162 struct iwl_calib_hdr hdr; 3163 __le16 radio_sensor_offset_high; 3164 __le16 radio_sensor_offset_low; 3165 __le16 burntVoltageRef; 3166 __le16 reserved; 3167 } __packed; 3168 3169 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */ 3170 struct iwl_calib_chain_noise_reset_cmd { 3171 struct iwl_calib_hdr hdr; 3172 u8 data[]; 3173 }; 3174 3175 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */ 3176 struct iwl_calib_chain_noise_gain_cmd { 3177 struct iwl_calib_hdr hdr; 3178 u8 delta_gain_1; 3179 u8 delta_gain_2; 3180 u8 pad[2]; 3181 } __packed; 3182 3183 /****************************************************************************** 3184 * (12) 3185 * Miscellaneous Commands: 3186 * 3187 *****************************************************************************/ 3188 3189 /* 3190 * LEDs Command & Response 3191 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response) 3192 * 3193 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field), 3194 * this command turns it on or off, or sets up a periodic blinking cycle. 3195 */ 3196 struct iwl_led_cmd { 3197 __le32 interval; /* "interval" in uSec */ 3198 u8 id; /* 1: Activity, 2: Link, 3: Tech */ 3199 u8 off; /* # intervals off while blinking; 3200 * "0", with >0 "on" value, turns LED on */ 3201 u8 on; /* # intervals on while blinking; 3202 * "0", regardless of "off", turns LED off */ 3203 u8 reserved; 3204 } __packed; 3205 3206 /* 3207 * station priority table entries 3208 * also used as potential "events" value for both 3209 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD 3210 */ 3211 3212 /* 3213 * COEX events entry flag masks 3214 * RP - Requested Priority 3215 * WP - Win Medium Priority: priority assigned when the contention has been won 3216 */ 3217 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1) 3218 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2) 3219 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4) 3220 3221 #define COEX_CU_UNASSOC_IDLE_RP 4 3222 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4 3223 #define COEX_CU_UNASSOC_AUTO_SCAN_RP 4 3224 #define COEX_CU_CALIBRATION_RP 4 3225 #define COEX_CU_PERIODIC_CALIBRATION_RP 4 3226 #define COEX_CU_CONNECTION_ESTAB_RP 4 3227 #define COEX_CU_ASSOCIATED_IDLE_RP 4 3228 #define COEX_CU_ASSOC_MANUAL_SCAN_RP 4 3229 #define COEX_CU_ASSOC_AUTO_SCAN_RP 4 3230 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4 3231 #define COEX_CU_RF_ON_RP 6 3232 #define COEX_CU_RF_OFF_RP 4 3233 #define COEX_CU_STAND_ALONE_DEBUG_RP 6 3234 #define COEX_CU_IPAN_ASSOC_LEVEL_RP 4 3235 #define COEX_CU_RSRVD1_RP 4 3236 #define COEX_CU_RSRVD2_RP 4 3237 3238 #define COEX_CU_UNASSOC_IDLE_WP 3 3239 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3 3240 #define COEX_CU_UNASSOC_AUTO_SCAN_WP 3 3241 #define COEX_CU_CALIBRATION_WP 3 3242 #define COEX_CU_PERIODIC_CALIBRATION_WP 3 3243 #define COEX_CU_CONNECTION_ESTAB_WP 3 3244 #define COEX_CU_ASSOCIATED_IDLE_WP 3 3245 #define COEX_CU_ASSOC_MANUAL_SCAN_WP 3 3246 #define COEX_CU_ASSOC_AUTO_SCAN_WP 3 3247 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3 3248 #define COEX_CU_RF_ON_WP 3 3249 #define COEX_CU_RF_OFF_WP 3 3250 #define COEX_CU_STAND_ALONE_DEBUG_WP 6 3251 #define COEX_CU_IPAN_ASSOC_LEVEL_WP 3 3252 #define COEX_CU_RSRVD1_WP 3 3253 #define COEX_CU_RSRVD2_WP 3 3254 3255 #define COEX_UNASSOC_IDLE_FLAGS 0 3256 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS \ 3257 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3258 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3259 #define COEX_UNASSOC_AUTO_SCAN_FLAGS \ 3260 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3261 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3262 #define COEX_CALIBRATION_FLAGS \ 3263 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3264 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3265 #define COEX_PERIODIC_CALIBRATION_FLAGS 0 3266 /* 3267 * COEX_CONNECTION_ESTAB: 3268 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network. 3269 */ 3270 #define COEX_CONNECTION_ESTAB_FLAGS \ 3271 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3272 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ 3273 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) 3274 #define COEX_ASSOCIATED_IDLE_FLAGS 0 3275 #define COEX_ASSOC_MANUAL_SCAN_FLAGS \ 3276 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3277 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3278 #define COEX_ASSOC_AUTO_SCAN_FLAGS \ 3279 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3280 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3281 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0 3282 #define COEX_RF_ON_FLAGS 0 3283 #define COEX_RF_OFF_FLAGS 0 3284 #define COEX_STAND_ALONE_DEBUG_FLAGS \ 3285 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3286 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3287 #define COEX_IPAN_ASSOC_LEVEL_FLAGS \ 3288 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3289 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ 3290 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) 3291 #define COEX_RSRVD1_FLAGS 0 3292 #define COEX_RSRVD2_FLAGS 0 3293 /* 3294 * COEX_CU_RF_ON is the event wrapping all radio ownership. 3295 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network. 3296 */ 3297 #define COEX_CU_RF_ON_FLAGS \ 3298 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3299 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ 3300 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) 3301 3302 3303 enum { 3304 /* un-association part */ 3305 COEX_UNASSOC_IDLE = 0, 3306 COEX_UNASSOC_MANUAL_SCAN = 1, 3307 COEX_UNASSOC_AUTO_SCAN = 2, 3308 /* calibration */ 3309 COEX_CALIBRATION = 3, 3310 COEX_PERIODIC_CALIBRATION = 4, 3311 /* connection */ 3312 COEX_CONNECTION_ESTAB = 5, 3313 /* association part */ 3314 COEX_ASSOCIATED_IDLE = 6, 3315 COEX_ASSOC_MANUAL_SCAN = 7, 3316 COEX_ASSOC_AUTO_SCAN = 8, 3317 COEX_ASSOC_ACTIVE_LEVEL = 9, 3318 /* RF ON/OFF */ 3319 COEX_RF_ON = 10, 3320 COEX_RF_OFF = 11, 3321 COEX_STAND_ALONE_DEBUG = 12, 3322 /* IPAN */ 3323 COEX_IPAN_ASSOC_LEVEL = 13, 3324 /* reserved */ 3325 COEX_RSRVD1 = 14, 3326 COEX_RSRVD2 = 15, 3327 COEX_NUM_OF_EVENTS = 16 3328 }; 3329 3330 /* 3331 * Coexistence WIFI/WIMAX Command 3332 * COEX_PRIORITY_TABLE_CMD = 0x5a 3333 * 3334 */ 3335 struct iwl_wimax_coex_event_entry { 3336 u8 request_prio; 3337 u8 win_medium_prio; 3338 u8 reserved; 3339 u8 flags; 3340 } __packed; 3341 3342 /* COEX flag masks */ 3343 3344 /* Station table is valid */ 3345 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1) 3346 /* UnMask wake up src at unassociated sleep */ 3347 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4) 3348 /* UnMask wake up src at associated sleep */ 3349 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8) 3350 /* Enable CoEx feature. */ 3351 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80) 3352 3353 struct iwl_wimax_coex_cmd { 3354 u8 flags; 3355 u8 reserved[3]; 3356 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS]; 3357 } __packed; 3358 3359 /* 3360 * Coexistence MEDIUM NOTIFICATION 3361 * COEX_MEDIUM_NOTIFICATION = 0x5b 3362 * 3363 * notification from uCode to host to indicate medium changes 3364 * 3365 */ 3366 /* 3367 * status field 3368 * bit 0 - 2: medium status 3369 * bit 3: medium change indication 3370 * bit 4 - 31: reserved 3371 */ 3372 /* status option values, (0 - 2 bits) */ 3373 #define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */ 3374 #define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */ 3375 #define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */ 3376 #define COEX_MEDIUM_MSK (0x7) 3377 3378 /* send notification status (1 bit) */ 3379 #define COEX_MEDIUM_CHANGED (0x8) 3380 #define COEX_MEDIUM_CHANGED_MSK (0x8) 3381 #define COEX_MEDIUM_SHIFT (3) 3382 3383 struct iwl_coex_medium_notification { 3384 __le32 status; 3385 __le32 events; 3386 } __packed; 3387 3388 /* 3389 * Coexistence EVENT Command 3390 * COEX_EVENT_CMD = 0x5c 3391 * 3392 * send from host to uCode for coex event request. 3393 */ 3394 /* flags options */ 3395 #define COEX_EVENT_REQUEST_MSK (0x1) 3396 3397 struct iwl_coex_event_cmd { 3398 u8 flags; 3399 u8 event; 3400 __le16 reserved; 3401 } __packed; 3402 3403 struct iwl_coex_event_resp { 3404 __le32 status; 3405 } __packed; 3406 3407 3408 /****************************************************************************** 3409 * Bluetooth Coexistence commands 3410 * 3411 *****************************************************************************/ 3412 3413 /* 3414 * BT Status notification 3415 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce 3416 */ 3417 enum iwl_bt_coex_profile_traffic_load { 3418 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0, 3419 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1, 3420 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2, 3421 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3, 3422 /* 3423 * There are no more even though below is a u8, the 3424 * indication from the BT device only has two bits. 3425 */ 3426 }; 3427 3428 #define BT_SESSION_ACTIVITY_1_UART_MSG 0x1 3429 #define BT_SESSION_ACTIVITY_2_UART_MSG 0x2 3430 3431 /* BT UART message - Share Part (BT -> WiFi) */ 3432 #define BT_UART_MSG_FRAME1MSGTYPE_POS (0) 3433 #define BT_UART_MSG_FRAME1MSGTYPE_MSK \ 3434 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS) 3435 #define BT_UART_MSG_FRAME1SSN_POS (3) 3436 #define BT_UART_MSG_FRAME1SSN_MSK \ 3437 (0x3 << BT_UART_MSG_FRAME1SSN_POS) 3438 #define BT_UART_MSG_FRAME1UPDATEREQ_POS (5) 3439 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK \ 3440 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS) 3441 #define BT_UART_MSG_FRAME1RESERVED_POS (6) 3442 #define BT_UART_MSG_FRAME1RESERVED_MSK \ 3443 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS) 3444 3445 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0) 3446 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \ 3447 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS) 3448 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2) 3449 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \ 3450 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS) 3451 #define BT_UART_MSG_FRAME2CHLSEQN_POS (4) 3452 #define BT_UART_MSG_FRAME2CHLSEQN_MSK \ 3453 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS) 3454 #define BT_UART_MSG_FRAME2INBAND_POS (5) 3455 #define BT_UART_MSG_FRAME2INBAND_MSK \ 3456 (0x1 << BT_UART_MSG_FRAME2INBAND_POS) 3457 #define BT_UART_MSG_FRAME2RESERVED_POS (6) 3458 #define BT_UART_MSG_FRAME2RESERVED_MSK \ 3459 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS) 3460 3461 #define BT_UART_MSG_FRAME3SCOESCO_POS (0) 3462 #define BT_UART_MSG_FRAME3SCOESCO_MSK \ 3463 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS) 3464 #define BT_UART_MSG_FRAME3SNIFF_POS (1) 3465 #define BT_UART_MSG_FRAME3SNIFF_MSK \ 3466 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS) 3467 #define BT_UART_MSG_FRAME3A2DP_POS (2) 3468 #define BT_UART_MSG_FRAME3A2DP_MSK \ 3469 (0x1 << BT_UART_MSG_FRAME3A2DP_POS) 3470 #define BT_UART_MSG_FRAME3ACL_POS (3) 3471 #define BT_UART_MSG_FRAME3ACL_MSK \ 3472 (0x1 << BT_UART_MSG_FRAME3ACL_POS) 3473 #define BT_UART_MSG_FRAME3MASTER_POS (4) 3474 #define BT_UART_MSG_FRAME3MASTER_MSK \ 3475 (0x1 << BT_UART_MSG_FRAME3MASTER_POS) 3476 #define BT_UART_MSG_FRAME3OBEX_POS (5) 3477 #define BT_UART_MSG_FRAME3OBEX_MSK \ 3478 (0x1 << BT_UART_MSG_FRAME3OBEX_POS) 3479 #define BT_UART_MSG_FRAME3RESERVED_POS (6) 3480 #define BT_UART_MSG_FRAME3RESERVED_MSK \ 3481 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS) 3482 3483 #define BT_UART_MSG_FRAME4IDLEDURATION_POS (0) 3484 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK \ 3485 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS) 3486 #define BT_UART_MSG_FRAME4RESERVED_POS (6) 3487 #define BT_UART_MSG_FRAME4RESERVED_MSK \ 3488 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS) 3489 3490 #define BT_UART_MSG_FRAME5TXACTIVITY_POS (0) 3491 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK \ 3492 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS) 3493 #define BT_UART_MSG_FRAME5RXACTIVITY_POS (2) 3494 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK \ 3495 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS) 3496 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4) 3497 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \ 3498 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS) 3499 #define BT_UART_MSG_FRAME5RESERVED_POS (6) 3500 #define BT_UART_MSG_FRAME5RESERVED_MSK \ 3501 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS) 3502 3503 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0) 3504 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \ 3505 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS) 3506 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5) 3507 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \ 3508 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS) 3509 #define BT_UART_MSG_FRAME6RESERVED_POS (6) 3510 #define BT_UART_MSG_FRAME6RESERVED_MSK \ 3511 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS) 3512 3513 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0) 3514 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \ 3515 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS) 3516 #define BT_UART_MSG_FRAME7PAGE_POS (3) 3517 #define BT_UART_MSG_FRAME7PAGE_MSK \ 3518 (0x1 << BT_UART_MSG_FRAME7PAGE_POS) 3519 #define BT_UART_MSG_FRAME7INQUIRY_POS (4) 3520 #define BT_UART_MSG_FRAME7INQUIRY_MSK \ 3521 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS) 3522 #define BT_UART_MSG_FRAME7CONNECTABLE_POS (5) 3523 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK \ 3524 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS) 3525 #define BT_UART_MSG_FRAME7RESERVED_POS (6) 3526 #define BT_UART_MSG_FRAME7RESERVED_MSK \ 3527 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS) 3528 3529 /* BT Session Activity 2 UART message (BT -> WiFi) */ 3530 #define BT_UART_MSG_2_FRAME1RESERVED1_POS (5) 3531 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK \ 3532 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS) 3533 #define BT_UART_MSG_2_FRAME1RESERVED2_POS (6) 3534 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK \ 3535 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS) 3536 3537 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0) 3538 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \ 3539 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS) 3540 #define BT_UART_MSG_2_FRAME2RESERVED_POS (6) 3541 #define BT_UART_MSG_2_FRAME2RESERVED_MSK \ 3542 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS) 3543 3544 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0) 3545 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \ 3546 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS) 3547 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4) 3548 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \ 3549 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS) 3550 #define BT_UART_MSG_2_FRAME3LEMASTER_POS (5) 3551 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK \ 3552 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS) 3553 #define BT_UART_MSG_2_FRAME3RESERVED_POS (6) 3554 #define BT_UART_MSG_2_FRAME3RESERVED_MSK \ 3555 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS) 3556 3557 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0) 3558 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \ 3559 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS) 3560 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4) 3561 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \ 3562 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS) 3563 #define BT_UART_MSG_2_FRAME4RESERVED_POS (6) 3564 #define BT_UART_MSG_2_FRAME4RESERVED_MSK \ 3565 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS) 3566 3567 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0) 3568 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \ 3569 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS) 3570 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4) 3571 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \ 3572 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS) 3573 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5) 3574 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \ 3575 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS) 3576 #define BT_UART_MSG_2_FRAME5RESERVED_POS (6) 3577 #define BT_UART_MSG_2_FRAME5RESERVED_MSK \ 3578 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS) 3579 3580 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0) 3581 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \ 3582 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS) 3583 #define BT_UART_MSG_2_FRAME6RFU_POS (5) 3584 #define BT_UART_MSG_2_FRAME6RFU_MSK \ 3585 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS) 3586 #define BT_UART_MSG_2_FRAME6RESERVED_POS (6) 3587 #define BT_UART_MSG_2_FRAME6RESERVED_MSK \ 3588 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS) 3589 3590 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0) 3591 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \ 3592 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS) 3593 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3) 3594 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \ 3595 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS) 3596 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4) 3597 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \ 3598 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS) 3599 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5) 3600 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \ 3601 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS) 3602 #define BT_UART_MSG_2_FRAME7RESERVED_POS (6) 3603 #define BT_UART_MSG_2_FRAME7RESERVED_MSK \ 3604 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS) 3605 3606 3607 #define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62) 3608 #define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65) 3609 3610 struct iwl_bt_uart_msg { 3611 u8 header; 3612 u8 frame1; 3613 u8 frame2; 3614 u8 frame3; 3615 u8 frame4; 3616 u8 frame5; 3617 u8 frame6; 3618 u8 frame7; 3619 } __packed; 3620 3621 struct iwl_bt_coex_profile_notif { 3622 struct iwl_bt_uart_msg last_bt_uart_msg; 3623 u8 bt_status; /* 0 - off, 1 - on */ 3624 u8 bt_traffic_load; /* 0 .. 3? */ 3625 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */ 3626 u8 reserved; 3627 } __packed; 3628 3629 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0 3630 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1 3631 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1 3632 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e 3633 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4 3634 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0 3635 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1 3636 3637 /* 3638 * BT Coexistence Priority table 3639 * REPLY_BT_COEX_PRIO_TABLE = 0xcc 3640 */ 3641 enum bt_coex_prio_table_events { 3642 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0, 3643 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1, 3644 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2, 3645 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */ 3646 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4, 3647 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5, 3648 BT_COEX_PRIO_TBL_EVT_DTIM = 6, 3649 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7, 3650 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8, 3651 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9, 3652 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10, 3653 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11, 3654 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12, 3655 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13, 3656 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14, 3657 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15, 3658 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */ 3659 BT_COEX_PRIO_TBL_EVT_MAX, 3660 }; 3661 3662 enum bt_coex_prio_table_priorities { 3663 BT_COEX_PRIO_TBL_DISABLED = 0, 3664 BT_COEX_PRIO_TBL_PRIO_LOW = 1, 3665 BT_COEX_PRIO_TBL_PRIO_HIGH = 2, 3666 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3, 3667 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4, 3668 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5, 3669 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6, 3670 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7, 3671 BT_COEX_PRIO_TBL_MAX, 3672 }; 3673 3674 struct iwl_bt_coex_prio_table_cmd { 3675 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX]; 3676 } __packed; 3677 3678 #define IWL_BT_COEX_ENV_CLOSE 0 3679 #define IWL_BT_COEX_ENV_OPEN 1 3680 /* 3681 * BT Protection Envelope 3682 * REPLY_BT_COEX_PROT_ENV = 0xcd 3683 */ 3684 struct iwl_bt_coex_prot_env_cmd { 3685 u8 action; /* 0 = closed, 1 = open */ 3686 u8 type; /* 0 .. 15 */ 3687 u8 reserved[2]; 3688 } __packed; 3689 3690 /* 3691 * REPLY_D3_CONFIG 3692 */ 3693 enum iwlagn_d3_wakeup_filters { 3694 IWLAGN_D3_WAKEUP_RFKILL = BIT(0), 3695 IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1), 3696 }; 3697 3698 struct iwlagn_d3_config_cmd { 3699 __le32 min_sleep_time; 3700 __le32 wakeup_flags; 3701 } __packed; 3702 3703 /* 3704 * REPLY_WOWLAN_PATTERNS 3705 */ 3706 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16 3707 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128 3708 3709 struct iwlagn_wowlan_pattern { 3710 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8]; 3711 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN]; 3712 u8 mask_size; 3713 u8 pattern_size; 3714 __le16 reserved; 3715 } __packed; 3716 3717 #define IWLAGN_WOWLAN_MAX_PATTERNS 20 3718 3719 struct iwlagn_wowlan_patterns_cmd { 3720 __le32 n_patterns; 3721 struct iwlagn_wowlan_pattern patterns[]; 3722 } __packed; 3723 3724 /* 3725 * REPLY_WOWLAN_WAKEUP_FILTER 3726 */ 3727 enum iwlagn_wowlan_wakeup_filters { 3728 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0), 3729 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1), 3730 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2), 3731 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3), 3732 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4), 3733 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5), 3734 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6), 3735 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7), 3736 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8), 3737 }; 3738 3739 struct iwlagn_wowlan_wakeup_filter_cmd { 3740 __le32 enabled; 3741 __le16 non_qos_seq; 3742 __le16 reserved; 3743 __le16 qos_seq[8]; 3744 }; 3745 3746 /* 3747 * REPLY_WOWLAN_TSC_RSC_PARAMS 3748 */ 3749 #define IWLAGN_NUM_RSC 16 3750 3751 struct tkip_sc { 3752 __le16 iv16; 3753 __le16 pad; 3754 __le32 iv32; 3755 } __packed; 3756 3757 struct iwlagn_tkip_rsc_tsc { 3758 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC]; 3759 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC]; 3760 struct tkip_sc tsc; 3761 } __packed; 3762 3763 struct aes_sc { 3764 __le64 pn; 3765 } __packed; 3766 3767 struct iwlagn_aes_rsc_tsc { 3768 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC]; 3769 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC]; 3770 struct aes_sc tsc; 3771 } __packed; 3772 3773 union iwlagn_all_tsc_rsc { 3774 struct iwlagn_tkip_rsc_tsc tkip; 3775 struct iwlagn_aes_rsc_tsc aes; 3776 }; 3777 3778 struct iwlagn_wowlan_rsc_tsc_params_cmd { 3779 union iwlagn_all_tsc_rsc all_tsc_rsc; 3780 } __packed; 3781 3782 /* 3783 * REPLY_WOWLAN_TKIP_PARAMS 3784 */ 3785 #define IWLAGN_MIC_KEY_SIZE 8 3786 #define IWLAGN_P1K_SIZE 5 3787 struct iwlagn_mic_keys { 3788 u8 tx[IWLAGN_MIC_KEY_SIZE]; 3789 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE]; 3790 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE]; 3791 } __packed; 3792 3793 struct iwlagn_p1k_cache { 3794 __le16 p1k[IWLAGN_P1K_SIZE]; 3795 } __packed; 3796 3797 #define IWLAGN_NUM_RX_P1K_CACHE 2 3798 3799 struct iwlagn_wowlan_tkip_params_cmd { 3800 struct iwlagn_mic_keys mic_keys; 3801 struct iwlagn_p1k_cache tx; 3802 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE]; 3803 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE]; 3804 } __packed; 3805 3806 /* 3807 * REPLY_WOWLAN_KEK_KCK_MATERIAL 3808 */ 3809 3810 #define IWLAGN_KCK_MAX_SIZE 32 3811 #define IWLAGN_KEK_MAX_SIZE 32 3812 3813 struct iwlagn_wowlan_kek_kck_material_cmd { 3814 u8 kck[IWLAGN_KCK_MAX_SIZE]; 3815 u8 kek[IWLAGN_KEK_MAX_SIZE]; 3816 __le16 kck_len; 3817 __le16 kek_len; 3818 __le64 replay_ctr; 3819 } __packed; 3820 3821 #define RF_KILL_INDICATOR_FOR_WOWLAN 0x87 3822 3823 /* 3824 * REPLY_WOWLAN_GET_STATUS = 0xe5 3825 */ 3826 struct iwlagn_wowlan_status { 3827 __le64 replay_ctr; 3828 __le32 rekey_status; 3829 __le32 wakeup_reason; 3830 u8 pattern_number; 3831 u8 reserved1; 3832 __le16 qos_seq_ctr[8]; 3833 __le16 non_qos_seq_ctr; 3834 __le16 reserved2; 3835 union iwlagn_all_tsc_rsc tsc_rsc; 3836 __le16 reserved3; 3837 } __packed; 3838 3839 /* 3840 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification) 3841 */ 3842 3843 /* 3844 * Minimum slot time in TU 3845 */ 3846 #define IWL_MIN_SLOT_TIME 20 3847 3848 /** 3849 * struct iwl_wipan_slot 3850 * @width: Time in TU 3851 * @type: 3852 * 0 - BSS 3853 * 1 - PAN 3854 * @reserved: reserved for alignment 3855 */ 3856 struct iwl_wipan_slot { 3857 __le16 width; 3858 u8 type; 3859 u8 reserved; 3860 } __packed; 3861 3862 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */ 3863 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */ 3864 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */ 3865 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4) 3866 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5) 3867 3868 /** 3869 * struct iwl_wipan_params_cmd 3870 * @flags: 3871 * bit0: reserved 3872 * bit1: CP leave channel with CTS 3873 * bit2: CP leave channel qith Quiet 3874 * bit3: slotted mode 3875 * 1 - work in slotted mode 3876 * 0 - work in non slotted mode 3877 * bit4: filter beacon notification 3878 * bit5: full tx slotted mode. if this flag is set, 3879 * uCode will perform leaving channel methods in context switch 3880 * also when working in same channel mode 3881 * @num_slots: 1 - 10 3882 * @slots: per-slot data 3883 * @reserved: reserved for alignment 3884 */ 3885 struct iwl_wipan_params_cmd { 3886 __le16 flags; 3887 u8 reserved; 3888 u8 num_slots; 3889 struct iwl_wipan_slot slots[10]; 3890 } __packed; 3891 3892 /* 3893 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9 3894 * 3895 * TODO: Figure out what this is used for, 3896 * it can only switch between 2.4 GHz 3897 * channels!! 3898 */ 3899 3900 struct iwl_wipan_p2p_channel_switch_cmd { 3901 __le16 channel; 3902 __le16 reserved; 3903 }; 3904 3905 /* 3906 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc 3907 * 3908 * This is used by the device to notify us of the 3909 * NoA schedule it determined so we can forward it 3910 * to userspace for inclusion in probe responses. 3911 * 3912 * In beacons, the NoA schedule is simply appended 3913 * to the frame we give the device. 3914 */ 3915 3916 struct iwl_wipan_noa_descriptor { 3917 u8 count; 3918 __le32 duration; 3919 __le32 interval; 3920 __le32 starttime; 3921 } __packed; 3922 3923 struct iwl_wipan_noa_attribute { 3924 u8 id; 3925 __le16 length; 3926 u8 index; 3927 u8 ct_window; 3928 struct iwl_wipan_noa_descriptor descr0, descr1; 3929 u8 reserved; 3930 } __packed; 3931 3932 struct iwl_wipan_noa_notification { 3933 u32 noa_active; 3934 struct iwl_wipan_noa_attribute noa_attribute; 3935 } __packed; 3936 3937 #endif /* __iwl_commands_h__ */ 3938