1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 22 * USA 23 * 24 * The full GNU General Public License is included in this distribution 25 * in the file called COPYING. 26 * 27 * Contact Information: 28 * Intel Linux Wireless <linuxwifi@intel.com> 29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 30 * 31 * BSD LICENSE 32 * 33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 40 * * Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * * Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in 44 * the documentation and/or other materials provided with the 45 * distribution. 46 * * Neither the name Intel Corporation nor the names of its 47 * contributors may be used to endorse or promote products derived 48 * from this software without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 61 *****************************************************************************/ 62 63 #include <linux/slab.h> 64 #include <net/mac80211.h> 65 66 #include "iwl-trans.h" 67 68 #include "dev.h" 69 #include "calib.h" 70 #include "agn.h" 71 72 /***************************************************************************** 73 * INIT calibrations framework 74 *****************************************************************************/ 75 76 /* Opaque calibration results */ 77 struct iwl_calib_result { 78 struct list_head list; 79 size_t cmd_len; 80 struct iwl_calib_hdr hdr; 81 /* data follows */ 82 }; 83 84 struct statistics_general_data { 85 u32 beacon_silence_rssi_a; 86 u32 beacon_silence_rssi_b; 87 u32 beacon_silence_rssi_c; 88 u32 beacon_energy_a; 89 u32 beacon_energy_b; 90 u32 beacon_energy_c; 91 }; 92 93 int iwl_send_calib_results(struct iwl_priv *priv) 94 { 95 struct iwl_host_cmd hcmd = { 96 .id = REPLY_PHY_CALIBRATION_CMD, 97 }; 98 struct iwl_calib_result *res; 99 100 list_for_each_entry(res, &priv->calib_results, list) { 101 int ret; 102 103 hcmd.len[0] = res->cmd_len; 104 hcmd.data[0] = &res->hdr; 105 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY; 106 ret = iwl_dvm_send_cmd(priv, &hcmd); 107 if (ret) { 108 IWL_ERR(priv, "Error %d on calib cmd %d\n", 109 ret, res->hdr.op_code); 110 return ret; 111 } 112 } 113 114 return 0; 115 } 116 117 int iwl_calib_set(struct iwl_priv *priv, 118 const struct iwl_calib_hdr *cmd, int len) 119 { 120 struct iwl_calib_result *res, *tmp; 121 122 res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr), 123 GFP_ATOMIC); 124 if (!res) 125 return -ENOMEM; 126 memcpy(&res->hdr, cmd, len); 127 res->cmd_len = len; 128 129 list_for_each_entry(tmp, &priv->calib_results, list) { 130 if (tmp->hdr.op_code == res->hdr.op_code) { 131 list_replace(&tmp->list, &res->list); 132 kfree(tmp); 133 return 0; 134 } 135 } 136 137 /* wasn't in list already */ 138 list_add_tail(&res->list, &priv->calib_results); 139 140 return 0; 141 } 142 143 void iwl_calib_free_results(struct iwl_priv *priv) 144 { 145 struct iwl_calib_result *res, *tmp; 146 147 list_for_each_entry_safe(res, tmp, &priv->calib_results, list) { 148 list_del(&res->list); 149 kfree(res); 150 } 151 } 152 153 /***************************************************************************** 154 * RUNTIME calibrations framework 155 *****************************************************************************/ 156 157 /* "false alarms" are signals that our DSP tries to lock onto, 158 * but then determines that they are either noise, or transmissions 159 * from a distant wireless network (also "noise", really) that get 160 * "stepped on" by stronger transmissions within our own network. 161 * This algorithm attempts to set a sensitivity level that is high 162 * enough to receive all of our own network traffic, but not so 163 * high that our DSP gets too busy trying to lock onto non-network 164 * activity/noise. */ 165 static int iwl_sens_energy_cck(struct iwl_priv *priv, 166 u32 norm_fa, 167 u32 rx_enable_time, 168 struct statistics_general_data *rx_info) 169 { 170 u32 max_nrg_cck = 0; 171 int i = 0; 172 u8 max_silence_rssi = 0; 173 u32 silence_ref = 0; 174 u8 silence_rssi_a = 0; 175 u8 silence_rssi_b = 0; 176 u8 silence_rssi_c = 0; 177 u32 val; 178 179 /* "false_alarms" values below are cross-multiplications to assess the 180 * numbers of false alarms within the measured period of actual Rx 181 * (Rx is off when we're txing), vs the min/max expected false alarms 182 * (some should be expected if rx is sensitive enough) in a 183 * hypothetical listening period of 200 time units (TU), 204.8 msec: 184 * 185 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time 186 * 187 * */ 188 u32 false_alarms = norm_fa * 200 * 1024; 189 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; 190 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; 191 struct iwl_sensitivity_data *data = NULL; 192 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; 193 194 data = &(priv->sensitivity_data); 195 196 data->nrg_auto_corr_silence_diff = 0; 197 198 /* Find max silence rssi among all 3 receivers. 199 * This is background noise, which may include transmissions from other 200 * networks, measured during silence before our network's beacon */ 201 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a & 202 ALL_BAND_FILTER) >> 8); 203 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b & 204 ALL_BAND_FILTER) >> 8); 205 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c & 206 ALL_BAND_FILTER) >> 8); 207 208 val = max(silence_rssi_b, silence_rssi_c); 209 max_silence_rssi = max(silence_rssi_a, (u8) val); 210 211 /* Store silence rssi in 20-beacon history table */ 212 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; 213 data->nrg_silence_idx++; 214 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) 215 data->nrg_silence_idx = 0; 216 217 /* Find max silence rssi across 20 beacon history */ 218 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { 219 val = data->nrg_silence_rssi[i]; 220 silence_ref = max(silence_ref, val); 221 } 222 IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n", 223 silence_rssi_a, silence_rssi_b, silence_rssi_c, 224 silence_ref); 225 226 /* Find max rx energy (min value!) among all 3 receivers, 227 * measured during beacon frame. 228 * Save it in 10-beacon history table. */ 229 i = data->nrg_energy_idx; 230 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); 231 data->nrg_value[i] = min(rx_info->beacon_energy_a, val); 232 233 data->nrg_energy_idx++; 234 if (data->nrg_energy_idx >= 10) 235 data->nrg_energy_idx = 0; 236 237 /* Find min rx energy (max value) across 10 beacon history. 238 * This is the minimum signal level that we want to receive well. 239 * Add backoff (margin so we don't miss slightly lower energy frames). 240 * This establishes an upper bound (min value) for energy threshold. */ 241 max_nrg_cck = data->nrg_value[0]; 242 for (i = 1; i < 10; i++) 243 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); 244 max_nrg_cck += 6; 245 246 IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", 247 rx_info->beacon_energy_a, rx_info->beacon_energy_b, 248 rx_info->beacon_energy_c, max_nrg_cck - 6); 249 250 /* Count number of consecutive beacons with fewer-than-desired 251 * false alarms. */ 252 if (false_alarms < min_false_alarms) 253 data->num_in_cck_no_fa++; 254 else 255 data->num_in_cck_no_fa = 0; 256 IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n", 257 data->num_in_cck_no_fa); 258 259 /* If we got too many false alarms this time, reduce sensitivity */ 260 if ((false_alarms > max_false_alarms) && 261 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) { 262 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n", 263 false_alarms, max_false_alarms); 264 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n"); 265 data->nrg_curr_state = IWL_FA_TOO_MANY; 266 /* Store for "fewer than desired" on later beacon */ 267 data->nrg_silence_ref = silence_ref; 268 269 /* increase energy threshold (reduce nrg value) 270 * to decrease sensitivity */ 271 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK; 272 /* Else if we got fewer than desired, increase sensitivity */ 273 } else if (false_alarms < min_false_alarms) { 274 data->nrg_curr_state = IWL_FA_TOO_FEW; 275 276 /* Compare silence level with silence level for most recent 277 * healthy number or too many false alarms */ 278 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref - 279 (s32)silence_ref; 280 281 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n", 282 false_alarms, min_false_alarms, 283 data->nrg_auto_corr_silence_diff); 284 285 /* Increase value to increase sensitivity, but only if: 286 * 1a) previous beacon did *not* have *too many* false alarms 287 * 1b) AND there's a significant difference in Rx levels 288 * from a previous beacon with too many, or healthy # FAs 289 * OR 2) We've seen a lot of beacons (100) with too few 290 * false alarms */ 291 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) && 292 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || 293 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { 294 295 IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n"); 296 /* Increase nrg value to increase sensitivity */ 297 val = data->nrg_th_cck + NRG_STEP_CCK; 298 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val); 299 } else { 300 IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n"); 301 } 302 303 /* Else we got a healthy number of false alarms, keep status quo */ 304 } else { 305 IWL_DEBUG_CALIB(priv, " FA in safe zone\n"); 306 data->nrg_curr_state = IWL_FA_GOOD_RANGE; 307 308 /* Store for use in "fewer than desired" with later beacon */ 309 data->nrg_silence_ref = silence_ref; 310 311 /* If previous beacon had too many false alarms, 312 * give it some extra margin by reducing sensitivity again 313 * (but don't go below measured energy of desired Rx) */ 314 if (data->nrg_prev_state == IWL_FA_TOO_MANY) { 315 IWL_DEBUG_CALIB(priv, "... increasing margin\n"); 316 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) 317 data->nrg_th_cck -= NRG_MARGIN; 318 else 319 data->nrg_th_cck = max_nrg_cck; 320 } 321 } 322 323 /* Make sure the energy threshold does not go above the measured 324 * energy of the desired Rx signals (reduced by backoff margin), 325 * or else we might start missing Rx frames. 326 * Lower value is higher energy, so we use max()! 327 */ 328 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); 329 IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck); 330 331 data->nrg_prev_state = data->nrg_curr_state; 332 333 /* Auto-correlation CCK algorithm */ 334 if (false_alarms > min_false_alarms) { 335 336 /* increase auto_corr values to decrease sensitivity 337 * so the DSP won't be disturbed by the noise 338 */ 339 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) 340 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; 341 else { 342 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; 343 data->auto_corr_cck = 344 min((u32)ranges->auto_corr_max_cck, val); 345 } 346 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; 347 data->auto_corr_cck_mrc = 348 min((u32)ranges->auto_corr_max_cck_mrc, val); 349 } else if ((false_alarms < min_false_alarms) && 350 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || 351 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { 352 353 /* Decrease auto_corr values to increase sensitivity */ 354 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; 355 data->auto_corr_cck = 356 max((u32)ranges->auto_corr_min_cck, val); 357 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; 358 data->auto_corr_cck_mrc = 359 max((u32)ranges->auto_corr_min_cck_mrc, val); 360 } 361 362 return 0; 363 } 364 365 366 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv, 367 u32 norm_fa, 368 u32 rx_enable_time) 369 { 370 u32 val; 371 u32 false_alarms = norm_fa * 200 * 1024; 372 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; 373 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; 374 struct iwl_sensitivity_data *data = NULL; 375 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; 376 377 data = &(priv->sensitivity_data); 378 379 /* If we got too many false alarms this time, reduce sensitivity */ 380 if (false_alarms > max_false_alarms) { 381 382 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n", 383 false_alarms, max_false_alarms); 384 385 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; 386 data->auto_corr_ofdm = 387 min((u32)ranges->auto_corr_max_ofdm, val); 388 389 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; 390 data->auto_corr_ofdm_mrc = 391 min((u32)ranges->auto_corr_max_ofdm_mrc, val); 392 393 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; 394 data->auto_corr_ofdm_x1 = 395 min((u32)ranges->auto_corr_max_ofdm_x1, val); 396 397 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; 398 data->auto_corr_ofdm_mrc_x1 = 399 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val); 400 } 401 402 /* Else if we got fewer than desired, increase sensitivity */ 403 else if (false_alarms < min_false_alarms) { 404 405 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n", 406 false_alarms, min_false_alarms); 407 408 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; 409 data->auto_corr_ofdm = 410 max((u32)ranges->auto_corr_min_ofdm, val); 411 412 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; 413 data->auto_corr_ofdm_mrc = 414 max((u32)ranges->auto_corr_min_ofdm_mrc, val); 415 416 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; 417 data->auto_corr_ofdm_x1 = 418 max((u32)ranges->auto_corr_min_ofdm_x1, val); 419 420 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; 421 data->auto_corr_ofdm_mrc_x1 = 422 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val); 423 } else { 424 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n", 425 min_false_alarms, false_alarms, max_false_alarms); 426 } 427 return 0; 428 } 429 430 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv, 431 struct iwl_sensitivity_data *data, 432 __le16 *tbl) 433 { 434 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] = 435 cpu_to_le16((u16)data->auto_corr_ofdm); 436 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] = 437 cpu_to_le16((u16)data->auto_corr_ofdm_mrc); 438 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] = 439 cpu_to_le16((u16)data->auto_corr_ofdm_x1); 440 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] = 441 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1); 442 443 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] = 444 cpu_to_le16((u16)data->auto_corr_cck); 445 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] = 446 cpu_to_le16((u16)data->auto_corr_cck_mrc); 447 448 tbl[HD_MIN_ENERGY_CCK_DET_INDEX] = 449 cpu_to_le16((u16)data->nrg_th_cck); 450 tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] = 451 cpu_to_le16((u16)data->nrg_th_ofdm); 452 453 tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] = 454 cpu_to_le16(data->barker_corr_th_min); 455 tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] = 456 cpu_to_le16(data->barker_corr_th_min_mrc); 457 tbl[HD_OFDM_ENERGY_TH_IN_INDEX] = 458 cpu_to_le16(data->nrg_th_cca); 459 460 IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", 461 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, 462 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, 463 data->nrg_th_ofdm); 464 465 IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n", 466 data->auto_corr_cck, data->auto_corr_cck_mrc, 467 data->nrg_th_cck); 468 } 469 470 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ 471 static int iwl_sensitivity_write(struct iwl_priv *priv) 472 { 473 struct iwl_sensitivity_cmd cmd; 474 struct iwl_sensitivity_data *data = NULL; 475 struct iwl_host_cmd cmd_out = { 476 .id = SENSITIVITY_CMD, 477 .len = { sizeof(struct iwl_sensitivity_cmd), }, 478 .flags = CMD_ASYNC, 479 .data = { &cmd, }, 480 }; 481 482 data = &(priv->sensitivity_data); 483 484 memset(&cmd, 0, sizeof(cmd)); 485 486 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]); 487 488 /* Update uCode's "work" table, and copy it to DSP */ 489 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; 490 491 /* Don't send command to uCode if nothing has changed */ 492 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]), 493 sizeof(u16)*HD_TABLE_SIZE)) { 494 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); 495 return 0; 496 } 497 498 /* Copy table for comparison next time */ 499 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]), 500 sizeof(u16)*HD_TABLE_SIZE); 501 502 return iwl_dvm_send_cmd(priv, &cmd_out); 503 } 504 505 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ 506 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv) 507 { 508 struct iwl_enhance_sensitivity_cmd cmd; 509 struct iwl_sensitivity_data *data = NULL; 510 struct iwl_host_cmd cmd_out = { 511 .id = SENSITIVITY_CMD, 512 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), }, 513 .flags = CMD_ASYNC, 514 .data = { &cmd, }, 515 }; 516 517 data = &(priv->sensitivity_data); 518 519 memset(&cmd, 0, sizeof(cmd)); 520 521 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]); 522 523 if (priv->lib->hd_v2) { 524 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = 525 HD_INA_NON_SQUARE_DET_OFDM_DATA_V2; 526 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = 527 HD_INA_NON_SQUARE_DET_CCK_DATA_V2; 528 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = 529 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2; 530 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = 531 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; 532 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = 533 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; 534 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = 535 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2; 536 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = 537 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2; 538 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = 539 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; 540 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = 541 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; 542 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = 543 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2; 544 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = 545 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2; 546 } else { 547 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = 548 HD_INA_NON_SQUARE_DET_OFDM_DATA_V1; 549 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = 550 HD_INA_NON_SQUARE_DET_CCK_DATA_V1; 551 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = 552 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1; 553 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = 554 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; 555 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = 556 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; 557 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = 558 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1; 559 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = 560 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1; 561 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = 562 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; 563 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = 564 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; 565 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = 566 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1; 567 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = 568 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1; 569 } 570 571 /* Update uCode's "work" table, and copy it to DSP */ 572 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; 573 574 /* Don't send command to uCode if nothing has changed */ 575 if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]), 576 sizeof(u16)*HD_TABLE_SIZE) && 577 !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX], 578 &(priv->enhance_sensitivity_tbl[0]), 579 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) { 580 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); 581 return 0; 582 } 583 584 /* Copy table for comparison next time */ 585 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]), 586 sizeof(u16)*HD_TABLE_SIZE); 587 memcpy(&(priv->enhance_sensitivity_tbl[0]), 588 &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]), 589 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES); 590 591 return iwl_dvm_send_cmd(priv, &cmd_out); 592 } 593 594 void iwl_init_sensitivity(struct iwl_priv *priv) 595 { 596 int ret = 0; 597 int i; 598 struct iwl_sensitivity_data *data = NULL; 599 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; 600 601 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED) 602 return; 603 604 IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n"); 605 606 /* Clear driver's sensitivity algo data */ 607 data = &(priv->sensitivity_data); 608 609 if (ranges == NULL) 610 return; 611 612 memset(data, 0, sizeof(struct iwl_sensitivity_data)); 613 614 data->num_in_cck_no_fa = 0; 615 data->nrg_curr_state = IWL_FA_TOO_MANY; 616 data->nrg_prev_state = IWL_FA_TOO_MANY; 617 data->nrg_silence_ref = 0; 618 data->nrg_silence_idx = 0; 619 data->nrg_energy_idx = 0; 620 621 for (i = 0; i < 10; i++) 622 data->nrg_value[i] = 0; 623 624 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) 625 data->nrg_silence_rssi[i] = 0; 626 627 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm; 628 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; 629 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1; 630 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; 631 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; 632 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; 633 data->nrg_th_cck = ranges->nrg_th_cck; 634 data->nrg_th_ofdm = ranges->nrg_th_ofdm; 635 data->barker_corr_th_min = ranges->barker_corr_th_min; 636 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc; 637 data->nrg_th_cca = ranges->nrg_th_cca; 638 639 data->last_bad_plcp_cnt_ofdm = 0; 640 data->last_fa_cnt_ofdm = 0; 641 data->last_bad_plcp_cnt_cck = 0; 642 data->last_fa_cnt_cck = 0; 643 644 if (priv->fw->enhance_sensitivity_table) 645 ret |= iwl_enhance_sensitivity_write(priv); 646 else 647 ret |= iwl_sensitivity_write(priv); 648 IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret); 649 } 650 651 void iwl_sensitivity_calibration(struct iwl_priv *priv) 652 { 653 u32 rx_enable_time; 654 u32 fa_cck; 655 u32 fa_ofdm; 656 u32 bad_plcp_cck; 657 u32 bad_plcp_ofdm; 658 u32 norm_fa_ofdm; 659 u32 norm_fa_cck; 660 struct iwl_sensitivity_data *data = NULL; 661 struct statistics_rx_non_phy *rx_info; 662 struct statistics_rx_phy *ofdm, *cck; 663 struct statistics_general_data statis; 664 665 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED) 666 return; 667 668 data = &(priv->sensitivity_data); 669 670 if (!iwl_is_any_associated(priv)) { 671 IWL_DEBUG_CALIB(priv, "<< - not associated\n"); 672 return; 673 } 674 675 spin_lock_bh(&priv->statistics.lock); 676 rx_info = &priv->statistics.rx_non_phy; 677 ofdm = &priv->statistics.rx_ofdm; 678 cck = &priv->statistics.rx_cck; 679 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { 680 IWL_DEBUG_CALIB(priv, "<< invalid data.\n"); 681 spin_unlock_bh(&priv->statistics.lock); 682 return; 683 } 684 685 /* Extract Statistics: */ 686 rx_enable_time = le32_to_cpu(rx_info->channel_load); 687 fa_cck = le32_to_cpu(cck->false_alarm_cnt); 688 fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt); 689 bad_plcp_cck = le32_to_cpu(cck->plcp_err); 690 bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err); 691 692 statis.beacon_silence_rssi_a = 693 le32_to_cpu(rx_info->beacon_silence_rssi_a); 694 statis.beacon_silence_rssi_b = 695 le32_to_cpu(rx_info->beacon_silence_rssi_b); 696 statis.beacon_silence_rssi_c = 697 le32_to_cpu(rx_info->beacon_silence_rssi_c); 698 statis.beacon_energy_a = 699 le32_to_cpu(rx_info->beacon_energy_a); 700 statis.beacon_energy_b = 701 le32_to_cpu(rx_info->beacon_energy_b); 702 statis.beacon_energy_c = 703 le32_to_cpu(rx_info->beacon_energy_c); 704 705 spin_unlock_bh(&priv->statistics.lock); 706 707 IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time); 708 709 if (!rx_enable_time) { 710 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n"); 711 return; 712 } 713 714 /* These statistics increase monotonically, and do not reset 715 * at each beacon. Calculate difference from last value, or just 716 * use the new statistics value if it has reset or wrapped around. */ 717 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) 718 data->last_bad_plcp_cnt_cck = bad_plcp_cck; 719 else { 720 bad_plcp_cck -= data->last_bad_plcp_cnt_cck; 721 data->last_bad_plcp_cnt_cck += bad_plcp_cck; 722 } 723 724 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) 725 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; 726 else { 727 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; 728 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; 729 } 730 731 if (data->last_fa_cnt_ofdm > fa_ofdm) 732 data->last_fa_cnt_ofdm = fa_ofdm; 733 else { 734 fa_ofdm -= data->last_fa_cnt_ofdm; 735 data->last_fa_cnt_ofdm += fa_ofdm; 736 } 737 738 if (data->last_fa_cnt_cck > fa_cck) 739 data->last_fa_cnt_cck = fa_cck; 740 else { 741 fa_cck -= data->last_fa_cnt_cck; 742 data->last_fa_cnt_cck += fa_cck; 743 } 744 745 /* Total aborted signal locks */ 746 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; 747 norm_fa_cck = fa_cck + bad_plcp_cck; 748 749 IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck, 750 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); 751 752 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time); 753 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis); 754 if (priv->fw->enhance_sensitivity_table) 755 iwl_enhance_sensitivity_write(priv); 756 else 757 iwl_sensitivity_write(priv); 758 } 759 760 static inline u8 find_first_chain(u8 mask) 761 { 762 if (mask & ANT_A) 763 return CHAIN_A; 764 if (mask & ANT_B) 765 return CHAIN_B; 766 return CHAIN_C; 767 } 768 769 /** 770 * Run disconnected antenna algorithm to find out which antennas are 771 * disconnected. 772 */ 773 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig, 774 struct iwl_chain_noise_data *data) 775 { 776 u32 active_chains = 0; 777 u32 max_average_sig; 778 u16 max_average_sig_antenna_i; 779 u8 num_tx_chains; 780 u8 first_chain; 781 u16 i = 0; 782 783 average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS; 784 average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS; 785 average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS; 786 787 if (average_sig[0] >= average_sig[1]) { 788 max_average_sig = average_sig[0]; 789 max_average_sig_antenna_i = 0; 790 active_chains = (1 << max_average_sig_antenna_i); 791 } else { 792 max_average_sig = average_sig[1]; 793 max_average_sig_antenna_i = 1; 794 active_chains = (1 << max_average_sig_antenna_i); 795 } 796 797 if (average_sig[2] >= max_average_sig) { 798 max_average_sig = average_sig[2]; 799 max_average_sig_antenna_i = 2; 800 active_chains = (1 << max_average_sig_antenna_i); 801 } 802 803 IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n", 804 average_sig[0], average_sig[1], average_sig[2]); 805 IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n", 806 max_average_sig, max_average_sig_antenna_i); 807 808 /* Compare signal strengths for all 3 receivers. */ 809 for (i = 0; i < NUM_RX_CHAINS; i++) { 810 if (i != max_average_sig_antenna_i) { 811 s32 rssi_delta = (max_average_sig - average_sig[i]); 812 813 /* If signal is very weak, compared with 814 * strongest, mark it as disconnected. */ 815 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) 816 data->disconn_array[i] = 1; 817 else 818 active_chains |= (1 << i); 819 IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d " 820 "disconn_array[i] = %d\n", 821 i, rssi_delta, data->disconn_array[i]); 822 } 823 } 824 825 /* 826 * The above algorithm sometimes fails when the ucode 827 * reports 0 for all chains. It's not clear why that 828 * happens to start with, but it is then causing trouble 829 * because this can make us enable more chains than the 830 * hardware really has. 831 * 832 * To be safe, simply mask out any chains that we know 833 * are not on the device. 834 */ 835 active_chains &= priv->nvm_data->valid_rx_ant; 836 837 num_tx_chains = 0; 838 for (i = 0; i < NUM_RX_CHAINS; i++) { 839 /* loops on all the bits of 840 * priv->hw_setting.valid_tx_ant */ 841 u8 ant_msk = (1 << i); 842 if (!(priv->nvm_data->valid_tx_ant & ant_msk)) 843 continue; 844 845 num_tx_chains++; 846 if (data->disconn_array[i] == 0) 847 /* there is a Tx antenna connected */ 848 break; 849 if (num_tx_chains == priv->hw_params.tx_chains_num && 850 data->disconn_array[i]) { 851 /* 852 * If all chains are disconnected 853 * connect the first valid tx chain 854 */ 855 first_chain = 856 find_first_chain(priv->nvm_data->valid_tx_ant); 857 data->disconn_array[first_chain] = 0; 858 active_chains |= BIT(first_chain); 859 IWL_DEBUG_CALIB(priv, 860 "All Tx chains are disconnected W/A - declare %d as connected\n", 861 first_chain); 862 break; 863 } 864 } 865 866 if (active_chains != priv->nvm_data->valid_rx_ant && 867 active_chains != priv->chain_noise_data.active_chains) 868 IWL_DEBUG_CALIB(priv, 869 "Detected that not all antennas are connected! " 870 "Connected: %#x, valid: %#x.\n", 871 active_chains, 872 priv->nvm_data->valid_rx_ant); 873 874 /* Save for use within RXON, TX, SCAN commands, etc. */ 875 data->active_chains = active_chains; 876 IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n", 877 active_chains); 878 } 879 880 static void iwlagn_gain_computation(struct iwl_priv *priv, 881 u32 average_noise[NUM_RX_CHAINS], 882 u8 default_chain) 883 { 884 int i; 885 s32 delta_g; 886 struct iwl_chain_noise_data *data = &priv->chain_noise_data; 887 888 /* 889 * Find Gain Code for the chains based on "default chain" 890 */ 891 for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) { 892 if ((data->disconn_array[i])) { 893 data->delta_gain_code[i] = 0; 894 continue; 895 } 896 897 delta_g = (priv->lib->chain_noise_scale * 898 ((s32)average_noise[default_chain] - 899 (s32)average_noise[i])) / 1500; 900 901 /* bound gain by 2 bits value max, 3rd bit is sign */ 902 data->delta_gain_code[i] = 903 min(abs(delta_g), 904 (s32) CHAIN_NOISE_MAX_DELTA_GAIN_CODE); 905 906 if (delta_g < 0) 907 /* 908 * set negative sign ... 909 * note to Intel developers: This is uCode API format, 910 * not the format of any internal device registers. 911 * Do not change this format for e.g. 6050 or similar 912 * devices. Change format only if more resolution 913 * (i.e. more than 2 bits magnitude) is needed. 914 */ 915 data->delta_gain_code[i] |= (1 << 2); 916 } 917 918 IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n", 919 data->delta_gain_code[1], data->delta_gain_code[2]); 920 921 if (!data->radio_write) { 922 struct iwl_calib_chain_noise_gain_cmd cmd; 923 924 memset(&cmd, 0, sizeof(cmd)); 925 926 iwl_set_calib_hdr(&cmd.hdr, 927 priv->phy_calib_chain_noise_gain_cmd); 928 cmd.delta_gain_1 = data->delta_gain_code[1]; 929 cmd.delta_gain_2 = data->delta_gain_code[2]; 930 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD, 931 CMD_ASYNC, sizeof(cmd), &cmd); 932 933 data->radio_write = 1; 934 data->state = IWL_CHAIN_NOISE_CALIBRATED; 935 } 936 } 937 938 /* 939 * Accumulate 16 beacons of signal and noise statistics for each of 940 * 3 receivers/antennas/rx-chains, then figure out: 941 * 1) Which antennas are connected. 942 * 2) Differential rx gain settings to balance the 3 receivers. 943 */ 944 void iwl_chain_noise_calibration(struct iwl_priv *priv) 945 { 946 struct iwl_chain_noise_data *data = NULL; 947 948 u32 chain_noise_a; 949 u32 chain_noise_b; 950 u32 chain_noise_c; 951 u32 chain_sig_a; 952 u32 chain_sig_b; 953 u32 chain_sig_c; 954 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; 955 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; 956 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; 957 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; 958 u16 i = 0; 959 u16 rxon_chnum = INITIALIZATION_VALUE; 960 u16 stat_chnum = INITIALIZATION_VALUE; 961 u8 rxon_band24; 962 u8 stat_band24; 963 struct statistics_rx_non_phy *rx_info; 964 965 /* 966 * MULTI-FIXME: 967 * When we support multiple interfaces on different channels, 968 * this must be modified/fixed. 969 */ 970 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; 971 972 if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED) 973 return; 974 975 data = &(priv->chain_noise_data); 976 977 /* 978 * Accumulate just the first "chain_noise_num_beacons" after 979 * the first association, then we're done forever. 980 */ 981 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) { 982 if (data->state == IWL_CHAIN_NOISE_ALIVE) 983 IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n"); 984 return; 985 } 986 987 spin_lock_bh(&priv->statistics.lock); 988 989 rx_info = &priv->statistics.rx_non_phy; 990 991 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { 992 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n"); 993 spin_unlock_bh(&priv->statistics.lock); 994 return; 995 } 996 997 rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK); 998 rxon_chnum = le16_to_cpu(ctx->staging.channel); 999 stat_band24 = 1000 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK); 1001 stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16; 1002 1003 /* Make sure we accumulate data for just the associated channel 1004 * (even if scanning). */ 1005 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) { 1006 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n", 1007 rxon_chnum, rxon_band24); 1008 spin_unlock_bh(&priv->statistics.lock); 1009 return; 1010 } 1011 1012 /* 1013 * Accumulate beacon statistics values across 1014 * "chain_noise_num_beacons" 1015 */ 1016 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) & 1017 IN_BAND_FILTER; 1018 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) & 1019 IN_BAND_FILTER; 1020 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) & 1021 IN_BAND_FILTER; 1022 1023 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; 1024 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; 1025 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; 1026 1027 spin_unlock_bh(&priv->statistics.lock); 1028 1029 data->beacon_count++; 1030 1031 data->chain_noise_a = (chain_noise_a + data->chain_noise_a); 1032 data->chain_noise_b = (chain_noise_b + data->chain_noise_b); 1033 data->chain_noise_c = (chain_noise_c + data->chain_noise_c); 1034 1035 data->chain_signal_a = (chain_sig_a + data->chain_signal_a); 1036 data->chain_signal_b = (chain_sig_b + data->chain_signal_b); 1037 data->chain_signal_c = (chain_sig_c + data->chain_signal_c); 1038 1039 IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n", 1040 rxon_chnum, rxon_band24, data->beacon_count); 1041 IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n", 1042 chain_sig_a, chain_sig_b, chain_sig_c); 1043 IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n", 1044 chain_noise_a, chain_noise_b, chain_noise_c); 1045 1046 /* If this is the "chain_noise_num_beacons", determine: 1047 * 1) Disconnected antennas (using signal strengths) 1048 * 2) Differential gain (using silence noise) to balance receivers */ 1049 if (data->beacon_count != IWL_CAL_NUM_BEACONS) 1050 return; 1051 1052 /* Analyze signal for disconnected antenna */ 1053 if (priv->lib->bt_params && 1054 priv->lib->bt_params->advanced_bt_coexist) { 1055 /* Disable disconnected antenna algorithm for advanced 1056 bt coex, assuming valid antennas are connected */ 1057 data->active_chains = priv->nvm_data->valid_rx_ant; 1058 for (i = 0; i < NUM_RX_CHAINS; i++) 1059 if (!(data->active_chains & (1<<i))) 1060 data->disconn_array[i] = 1; 1061 } else 1062 iwl_find_disconn_antenna(priv, average_sig, data); 1063 1064 /* Analyze noise for rx balance */ 1065 average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS; 1066 average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS; 1067 average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS; 1068 1069 for (i = 0; i < NUM_RX_CHAINS; i++) { 1070 if (!(data->disconn_array[i]) && 1071 (average_noise[i] <= min_average_noise)) { 1072 /* This means that chain i is active and has 1073 * lower noise values so far: */ 1074 min_average_noise = average_noise[i]; 1075 min_average_noise_antenna_i = i; 1076 } 1077 } 1078 1079 IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n", 1080 average_noise[0], average_noise[1], 1081 average_noise[2]); 1082 1083 IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n", 1084 min_average_noise, min_average_noise_antenna_i); 1085 1086 iwlagn_gain_computation( 1087 priv, average_noise, 1088 find_first_chain(priv->nvm_data->valid_rx_ant)); 1089 1090 /* Some power changes may have been made during the calibration. 1091 * Update and commit the RXON 1092 */ 1093 iwl_update_chain_flags(priv); 1094 1095 data->state = IWL_CHAIN_NOISE_DONE; 1096 iwl_power_update_mode(priv, false); 1097 } 1098 1099 void iwl_reset_run_time_calib(struct iwl_priv *priv) 1100 { 1101 int i; 1102 memset(&(priv->sensitivity_data), 0, 1103 sizeof(struct iwl_sensitivity_data)); 1104 memset(&(priv->chain_noise_data), 0, 1105 sizeof(struct iwl_chain_noise_data)); 1106 for (i = 0; i < NUM_RX_CHAINS; i++) 1107 priv->chain_noise_data.delta_gain_code[i] = 1108 CHAIN_NOISE_DELTA_GAIN_INIT_VAL; 1109 1110 /* Ask for statistics now, the uCode will send notification 1111 * periodically after association */ 1112 iwl_send_statistics_request(priv, CMD_ASYNC, true); 1113 } 1114