xref: /linux/drivers/net/wireless/intel/ipw2x00/ipw2200.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 
4   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 
6   802.11 status code portion of this file from ethereal-0.10.6:
7     Copyright 2000, Axis Communications AB
8     Ethereal - Network traffic analyzer
9     By Gerald Combs <gerald@ethereal.com>
10     Copyright 1998 Gerald Combs
11 
12 
13   Contact Information:
14   Intel Linux Wireless <ilw@linux.intel.com>
15   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
16 
17 ******************************************************************************/
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <net/cfg80211-wext.h>
22 #include "ipw2200.h"
23 #include "ipw.h"
24 
25 
26 #ifndef KBUILD_EXTMOD
27 #define VK "k"
28 #else
29 #define VK
30 #endif
31 
32 #ifdef CONFIG_IPW2200_DEBUG
33 #define VD "d"
34 #else
35 #define VD
36 #endif
37 
38 #ifdef CONFIG_IPW2200_MONITOR
39 #define VM "m"
40 #else
41 #define VM
42 #endif
43 
44 #ifdef CONFIG_IPW2200_PROMISCUOUS
45 #define VP "p"
46 #else
47 #define VP
48 #endif
49 
50 #ifdef CONFIG_IPW2200_RADIOTAP
51 #define VR "r"
52 #else
53 #define VR
54 #endif
55 
56 #ifdef CONFIG_IPW2200_QOS
57 #define VQ "q"
58 #else
59 #define VQ
60 #endif
61 
62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
63 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2200/2915 Network Driver"
64 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
65 #define DRV_VERSION     IPW2200_VERSION
66 
67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
68 
69 MODULE_DESCRIPTION(DRV_DESCRIPTION);
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_COPYRIGHT);
72 MODULE_LICENSE("GPL");
73 MODULE_FIRMWARE("ipw2200-ibss.fw");
74 #ifdef CONFIG_IPW2200_MONITOR
75 MODULE_FIRMWARE("ipw2200-sniffer.fw");
76 #endif
77 MODULE_FIRMWARE("ipw2200-bss.fw");
78 
79 static int cmdlog = 0;
80 static int debug = 0;
81 static int default_channel = 0;
82 static int network_mode = 0;
83 
84 static u32 ipw_debug_level;
85 static int associate;
86 static int auto_create = 1;
87 static int led_support = 1;
88 static int disable = 0;
89 static int bt_coexist = 0;
90 static int hwcrypto = 0;
91 static int roaming = 1;
92 static const char ipw_modes[] = {
93 	'a', 'b', 'g', '?'
94 };
95 static int antenna = CFG_SYS_ANTENNA_BOTH;
96 
97 #ifdef CONFIG_IPW2200_PROMISCUOUS
98 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
99 #endif
100 
101 static struct ieee80211_rate ipw2200_rates[] = {
102 	{ .bitrate = 10 },
103 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
104 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
105 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
106 	{ .bitrate = 60 },
107 	{ .bitrate = 90 },
108 	{ .bitrate = 120 },
109 	{ .bitrate = 180 },
110 	{ .bitrate = 240 },
111 	{ .bitrate = 360 },
112 	{ .bitrate = 480 },
113 	{ .bitrate = 540 }
114 };
115 
116 #define ipw2200_a_rates		(ipw2200_rates + 4)
117 #define ipw2200_num_a_rates	8
118 #define ipw2200_bg_rates	(ipw2200_rates + 0)
119 #define ipw2200_num_bg_rates	12
120 
121 /* Ugly macro to convert literal channel numbers into their mhz equivalents
122  * There are certianly some conditions that will break this (like feeding it '30')
123  * but they shouldn't arise since nothing talks on channel 30. */
124 #define ieee80211chan2mhz(x) \
125 	(((x) <= 14) ? \
126 	(((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
127 	((x) + 1000) * 5)
128 
129 #ifdef CONFIG_IPW2200_QOS
130 static int qos_enable = 0;
131 static int qos_burst_enable = 0;
132 static int qos_no_ack_mask = 0;
133 static int burst_duration_CCK = 0;
134 static int burst_duration_OFDM = 0;
135 
136 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
137 	{QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
138 	 QOS_TX3_CW_MIN_OFDM},
139 	{QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
140 	 QOS_TX3_CW_MAX_OFDM},
141 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
142 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
143 	{QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
144 	 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
145 };
146 
147 static struct libipw_qos_parameters def_qos_parameters_CCK = {
148 	{QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
149 	 QOS_TX3_CW_MIN_CCK},
150 	{QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
151 	 QOS_TX3_CW_MAX_CCK},
152 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
153 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
154 	{QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
155 	 QOS_TX3_TXOP_LIMIT_CCK}
156 };
157 
158 static struct libipw_qos_parameters def_parameters_OFDM = {
159 	{DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
160 	 DEF_TX3_CW_MIN_OFDM},
161 	{DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
162 	 DEF_TX3_CW_MAX_OFDM},
163 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
164 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
165 	{DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
166 	 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
167 };
168 
169 static struct libipw_qos_parameters def_parameters_CCK = {
170 	{DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
171 	 DEF_TX3_CW_MIN_CCK},
172 	{DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
173 	 DEF_TX3_CW_MAX_CCK},
174 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
175 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
176 	{DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
177 	 DEF_TX3_TXOP_LIMIT_CCK}
178 };
179 
180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
181 
182 static int from_priority_to_tx_queue[] = {
183 	IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
184 	IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
185 };
186 
187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
188 
189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
190 				       *qos_param);
191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
192 				     *qos_param);
193 #endif				/* CONFIG_IPW2200_QOS */
194 
195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
196 static void ipw_remove_current_network(struct ipw_priv *priv);
197 static void ipw_rx(struct ipw_priv *priv);
198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
199 				struct clx2_tx_queue *txq, int qindex);
200 static int ipw_queue_reset(struct ipw_priv *priv);
201 
202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf,
203 			     int len, int sync);
204 
205 static void ipw_tx_queue_free(struct ipw_priv *);
206 
207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
209 static void ipw_rx_queue_replenish(void *);
210 static int ipw_up(struct ipw_priv *);
211 static void ipw_bg_up(struct work_struct *work);
212 static void ipw_down(struct ipw_priv *);
213 static void ipw_bg_down(struct work_struct *work);
214 static int ipw_config(struct ipw_priv *);
215 static int init_supported_rates(struct ipw_priv *priv,
216 				struct ipw_supported_rates *prates);
217 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
218 static void ipw_send_wep_keys(struct ipw_priv *, int);
219 
220 static int snprint_line(char *buf, size_t count,
221 			const u8 * data, u32 len, u32 ofs)
222 {
223 	int out, i, j, l;
224 	char c;
225 
226 	out = scnprintf(buf, count, "%08X", ofs);
227 
228 	for (l = 0, i = 0; i < 2; i++) {
229 		out += scnprintf(buf + out, count - out, " ");
230 		for (j = 0; j < 8 && l < len; j++, l++)
231 			out += scnprintf(buf + out, count - out, "%02X ",
232 					data[(i * 8 + j)]);
233 		for (; j < 8; j++)
234 			out += scnprintf(buf + out, count - out, "   ");
235 	}
236 
237 	out += scnprintf(buf + out, count - out, " ");
238 	for (l = 0, i = 0; i < 2; i++) {
239 		out += scnprintf(buf + out, count - out, " ");
240 		for (j = 0; j < 8 && l < len; j++, l++) {
241 			c = data[(i * 8 + j)];
242 			if (!isascii(c) || !isprint(c))
243 				c = '.';
244 
245 			out += scnprintf(buf + out, count - out, "%c", c);
246 		}
247 
248 		for (; j < 8; j++)
249 			out += scnprintf(buf + out, count - out, " ");
250 	}
251 
252 	return out;
253 }
254 
255 static void printk_buf(int level, const u8 * data, u32 len)
256 {
257 	char line[81];
258 	u32 ofs = 0;
259 	if (!(ipw_debug_level & level))
260 		return;
261 
262 	while (len) {
263 		snprint_line(line, sizeof(line), &data[ofs],
264 			     min(len, 16U), ofs);
265 		printk(KERN_DEBUG "%s\n", line);
266 		ofs += 16;
267 		len -= min(len, 16U);
268 	}
269 }
270 
271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
272 {
273 	size_t out = size;
274 	u32 ofs = 0;
275 	int total = 0;
276 
277 	while (size && len) {
278 		out = snprint_line(output, size, &data[ofs],
279 				   min_t(size_t, len, 16U), ofs);
280 
281 		ofs += 16;
282 		output += out;
283 		size -= out;
284 		len -= min_t(size_t, len, 16U);
285 		total += out;
286 	}
287 	return total;
288 }
289 
290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
293 
294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
297 
298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
301 {
302 	IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
303 		     __LINE__, (u32) (b), (u32) (c));
304 	_ipw_write_reg8(a, b, c);
305 }
306 
307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
310 {
311 	IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
312 		     __LINE__, (u32) (b), (u32) (c));
313 	_ipw_write_reg16(a, b, c);
314 }
315 
316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
319 {
320 	IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
321 		     __LINE__, (u32) (b), (u32) (c));
322 	_ipw_write_reg32(a, b, c);
323 }
324 
325 /* 8-bit direct write (low 4K) */
326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
327 		u8 val)
328 {
329 	writeb(val, ipw->hw_base + ofs);
330 }
331 
332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
333 #define ipw_write8(ipw, ofs, val) do { \
334 	IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
335 			__LINE__, (u32)(ofs), (u32)(val)); \
336 	_ipw_write8(ipw, ofs, val); \
337 } while (0)
338 
339 /* 16-bit direct write (low 4K) */
340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
341 		u16 val)
342 {
343 	writew(val, ipw->hw_base + ofs);
344 }
345 
346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write16(ipw, ofs, val) do { \
348 	IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
349 			__LINE__, (u32)(ofs), (u32)(val)); \
350 	_ipw_write16(ipw, ofs, val); \
351 } while (0)
352 
353 /* 32-bit direct write (low 4K) */
354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
355 		u32 val)
356 {
357 	writel(val, ipw->hw_base + ofs);
358 }
359 
360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write32(ipw, ofs, val) do { \
362 	IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
363 			__LINE__, (u32)(ofs), (u32)(val)); \
364 	_ipw_write32(ipw, ofs, val); \
365 } while (0)
366 
367 /* 8-bit direct read (low 4K) */
368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
369 {
370 	return readb(ipw->hw_base + ofs);
371 }
372 
373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
374 #define ipw_read8(ipw, ofs) ({ \
375 	IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
376 			(u32)(ofs)); \
377 	_ipw_read8(ipw, ofs); \
378 })
379 
380 /* 32-bit direct read (low 4K) */
381 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
382 {
383 	return readl(ipw->hw_base + ofs);
384 }
385 
386 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
387 #define ipw_read32(ipw, ofs) ({ \
388 	IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
389 			(u32)(ofs)); \
390 	_ipw_read32(ipw, ofs); \
391 })
392 
393 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
394 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
395 #define ipw_read_indirect(a, b, c, d) ({ \
396 	IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
397 			__LINE__, (u32)(b), (u32)(d)); \
398 	_ipw_read_indirect(a, b, c, d); \
399 })
400 
401 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
402 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
403 				int num);
404 #define ipw_write_indirect(a, b, c, d) do { \
405 	IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
406 			__LINE__, (u32)(b), (u32)(d)); \
407 	_ipw_write_indirect(a, b, c, d); \
408 } while (0)
409 
410 /* 32-bit indirect write (above 4K) */
411 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
412 {
413 	IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
414 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
415 	_ipw_write32(priv, IPW_INDIRECT_DATA, value);
416 }
417 
418 /* 8-bit indirect write (above 4K) */
419 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
420 {
421 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
422 	u32 dif_len = reg - aligned_addr;
423 
424 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
425 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
426 	_ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
427 }
428 
429 /* 16-bit indirect write (above 4K) */
430 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
431 {
432 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
433 	u32 dif_len = (reg - aligned_addr) & (~0x1ul);
434 
435 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
436 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
437 	_ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
438 }
439 
440 /* 8-bit indirect read (above 4K) */
441 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
442 {
443 	u32 word;
444 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
445 	IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
446 	word = _ipw_read32(priv, IPW_INDIRECT_DATA);
447 	return (word >> ((reg & 0x3) * 8)) & 0xff;
448 }
449 
450 /* 32-bit indirect read (above 4K) */
451 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
452 {
453 	u32 value;
454 
455 	IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
456 
457 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
458 	value = _ipw_read32(priv, IPW_INDIRECT_DATA);
459 	IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
460 	return value;
461 }
462 
463 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
464 /*    for area above 1st 4K of SRAM/reg space */
465 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
466 			       int num)
467 {
468 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
469 	u32 dif_len = addr - aligned_addr;
470 	u32 i;
471 
472 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
473 
474 	if (num <= 0) {
475 		return;
476 	}
477 
478 	/* Read the first dword (or portion) byte by byte */
479 	if (unlikely(dif_len)) {
480 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
481 		/* Start reading at aligned_addr + dif_len */
482 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
483 			*buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
484 		aligned_addr += 4;
485 	}
486 
487 	/* Read all of the middle dwords as dwords, with auto-increment */
488 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
489 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
490 		*(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
491 
492 	/* Read the last dword (or portion) byte by byte */
493 	if (unlikely(num)) {
494 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 		for (i = 0; num > 0; i++, num--)
496 			*buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
497 	}
498 }
499 
500 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
501 /*    for area above 1st 4K of SRAM/reg space */
502 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
503 				int num)
504 {
505 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
506 	u32 dif_len = addr - aligned_addr;
507 	u32 i;
508 
509 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
510 
511 	if (num <= 0) {
512 		return;
513 	}
514 
515 	/* Write the first dword (or portion) byte by byte */
516 	if (unlikely(dif_len)) {
517 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
518 		/* Start writing at aligned_addr + dif_len */
519 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
520 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
521 		aligned_addr += 4;
522 	}
523 
524 	/* Write all of the middle dwords as dwords, with auto-increment */
525 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
526 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
527 		_ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
528 
529 	/* Write the last dword (or portion) byte by byte */
530 	if (unlikely(num)) {
531 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
532 		for (i = 0; num > 0; i++, num--, buf++)
533 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
534 	}
535 }
536 
537 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
538 /*    for 1st 4K of SRAM/regs space */
539 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
540 			     int num)
541 {
542 	memcpy_toio((priv->hw_base + addr), buf, num);
543 }
544 
545 /* Set bit(s) in low 4K of SRAM/regs */
546 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
547 {
548 	ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
549 }
550 
551 /* Clear bit(s) in low 4K of SRAM/regs */
552 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
553 {
554 	ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
555 }
556 
557 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
558 {
559 	if (priv->status & STATUS_INT_ENABLED)
560 		return;
561 	priv->status |= STATUS_INT_ENABLED;
562 	ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
563 }
564 
565 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
566 {
567 	if (!(priv->status & STATUS_INT_ENABLED))
568 		return;
569 	priv->status &= ~STATUS_INT_ENABLED;
570 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
571 }
572 
573 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
574 {
575 	unsigned long flags;
576 
577 	spin_lock_irqsave(&priv->irq_lock, flags);
578 	__ipw_enable_interrupts(priv);
579 	spin_unlock_irqrestore(&priv->irq_lock, flags);
580 }
581 
582 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
583 {
584 	unsigned long flags;
585 
586 	spin_lock_irqsave(&priv->irq_lock, flags);
587 	__ipw_disable_interrupts(priv);
588 	spin_unlock_irqrestore(&priv->irq_lock, flags);
589 }
590 
591 static char *ipw_error_desc(u32 val)
592 {
593 	switch (val) {
594 	case IPW_FW_ERROR_OK:
595 		return "ERROR_OK";
596 	case IPW_FW_ERROR_FAIL:
597 		return "ERROR_FAIL";
598 	case IPW_FW_ERROR_MEMORY_UNDERFLOW:
599 		return "MEMORY_UNDERFLOW";
600 	case IPW_FW_ERROR_MEMORY_OVERFLOW:
601 		return "MEMORY_OVERFLOW";
602 	case IPW_FW_ERROR_BAD_PARAM:
603 		return "BAD_PARAM";
604 	case IPW_FW_ERROR_BAD_CHECKSUM:
605 		return "BAD_CHECKSUM";
606 	case IPW_FW_ERROR_NMI_INTERRUPT:
607 		return "NMI_INTERRUPT";
608 	case IPW_FW_ERROR_BAD_DATABASE:
609 		return "BAD_DATABASE";
610 	case IPW_FW_ERROR_ALLOC_FAIL:
611 		return "ALLOC_FAIL";
612 	case IPW_FW_ERROR_DMA_UNDERRUN:
613 		return "DMA_UNDERRUN";
614 	case IPW_FW_ERROR_DMA_STATUS:
615 		return "DMA_STATUS";
616 	case IPW_FW_ERROR_DINO_ERROR:
617 		return "DINO_ERROR";
618 	case IPW_FW_ERROR_EEPROM_ERROR:
619 		return "EEPROM_ERROR";
620 	case IPW_FW_ERROR_SYSASSERT:
621 		return "SYSASSERT";
622 	case IPW_FW_ERROR_FATAL_ERROR:
623 		return "FATAL_ERROR";
624 	default:
625 		return "UNKNOWN_ERROR";
626 	}
627 }
628 
629 static void ipw_dump_error_log(struct ipw_priv *priv,
630 			       struct ipw_fw_error *error)
631 {
632 	u32 i;
633 
634 	if (!error) {
635 		IPW_ERROR("Error allocating and capturing error log.  "
636 			  "Nothing to dump.\n");
637 		return;
638 	}
639 
640 	IPW_ERROR("Start IPW Error Log Dump:\n");
641 	IPW_ERROR("Status: 0x%08X, Config: %08X\n",
642 		  error->status, error->config);
643 
644 	for (i = 0; i < error->elem_len; i++)
645 		IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
646 			  ipw_error_desc(error->elem[i].desc),
647 			  error->elem[i].time,
648 			  error->elem[i].blink1,
649 			  error->elem[i].blink2,
650 			  error->elem[i].link1,
651 			  error->elem[i].link2, error->elem[i].data);
652 	for (i = 0; i < error->log_len; i++)
653 		IPW_ERROR("%i\t0x%08x\t%i\n",
654 			  error->log[i].time,
655 			  error->log[i].data, error->log[i].event);
656 }
657 
658 static inline int ipw_is_init(struct ipw_priv *priv)
659 {
660 	return (priv->status & STATUS_INIT) ? 1 : 0;
661 }
662 
663 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
664 {
665 	u32 addr, field_info, field_len, field_count, total_len;
666 
667 	IPW_DEBUG_ORD("ordinal = %i\n", ord);
668 
669 	if (!priv || !val || !len) {
670 		IPW_DEBUG_ORD("Invalid argument\n");
671 		return -EINVAL;
672 	}
673 
674 	/* verify device ordinal tables have been initialized */
675 	if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
676 		IPW_DEBUG_ORD("Access ordinals before initialization\n");
677 		return -EINVAL;
678 	}
679 
680 	switch (IPW_ORD_TABLE_ID_MASK & ord) {
681 	case IPW_ORD_TABLE_0_MASK:
682 		/*
683 		 * TABLE 0: Direct access to a table of 32 bit values
684 		 *
685 		 * This is a very simple table with the data directly
686 		 * read from the table
687 		 */
688 
689 		/* remove the table id from the ordinal */
690 		ord &= IPW_ORD_TABLE_VALUE_MASK;
691 
692 		/* boundary check */
693 		if (ord > priv->table0_len) {
694 			IPW_DEBUG_ORD("ordinal value (%i) longer then "
695 				      "max (%i)\n", ord, priv->table0_len);
696 			return -EINVAL;
697 		}
698 
699 		/* verify we have enough room to store the value */
700 		if (*len < sizeof(u32)) {
701 			IPW_DEBUG_ORD("ordinal buffer length too small, "
702 				      "need %zd\n", sizeof(u32));
703 			return -EINVAL;
704 		}
705 
706 		IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
707 			      ord, priv->table0_addr + (ord << 2));
708 
709 		*len = sizeof(u32);
710 		ord <<= 2;
711 		*((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
712 		break;
713 
714 	case IPW_ORD_TABLE_1_MASK:
715 		/*
716 		 * TABLE 1: Indirect access to a table of 32 bit values
717 		 *
718 		 * This is a fairly large table of u32 values each
719 		 * representing starting addr for the data (which is
720 		 * also a u32)
721 		 */
722 
723 		/* remove the table id from the ordinal */
724 		ord &= IPW_ORD_TABLE_VALUE_MASK;
725 
726 		/* boundary check */
727 		if (ord > priv->table1_len) {
728 			IPW_DEBUG_ORD("ordinal value too long\n");
729 			return -EINVAL;
730 		}
731 
732 		/* verify we have enough room to store the value */
733 		if (*len < sizeof(u32)) {
734 			IPW_DEBUG_ORD("ordinal buffer length too small, "
735 				      "need %zd\n", sizeof(u32));
736 			return -EINVAL;
737 		}
738 
739 		*((u32 *) val) =
740 		    ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
741 		*len = sizeof(u32);
742 		break;
743 
744 	case IPW_ORD_TABLE_2_MASK:
745 		/*
746 		 * TABLE 2: Indirect access to a table of variable sized values
747 		 *
748 		 * This table consist of six values, each containing
749 		 *     - dword containing the starting offset of the data
750 		 *     - dword containing the lengh in the first 16bits
751 		 *       and the count in the second 16bits
752 		 */
753 
754 		/* remove the table id from the ordinal */
755 		ord &= IPW_ORD_TABLE_VALUE_MASK;
756 
757 		/* boundary check */
758 		if (ord > priv->table2_len) {
759 			IPW_DEBUG_ORD("ordinal value too long\n");
760 			return -EINVAL;
761 		}
762 
763 		/* get the address of statistic */
764 		addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
765 
766 		/* get the second DW of statistics ;
767 		 * two 16-bit words - first is length, second is count */
768 		field_info =
769 		    ipw_read_reg32(priv,
770 				   priv->table2_addr + (ord << 3) +
771 				   sizeof(u32));
772 
773 		/* get each entry length */
774 		field_len = *((u16 *) & field_info);
775 
776 		/* get number of entries */
777 		field_count = *(((u16 *) & field_info) + 1);
778 
779 		/* abort if not enough memory */
780 		total_len = field_len * field_count;
781 		if (total_len > *len) {
782 			*len = total_len;
783 			return -EINVAL;
784 		}
785 
786 		*len = total_len;
787 		if (!total_len)
788 			return 0;
789 
790 		IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
791 			      "field_info = 0x%08x\n",
792 			      addr, total_len, field_info);
793 		ipw_read_indirect(priv, addr, val, total_len);
794 		break;
795 
796 	default:
797 		IPW_DEBUG_ORD("Invalid ordinal!\n");
798 		return -EINVAL;
799 
800 	}
801 
802 	return 0;
803 }
804 
805 static void ipw_init_ordinals(struct ipw_priv *priv)
806 {
807 	priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
808 	priv->table0_len = ipw_read32(priv, priv->table0_addr);
809 
810 	IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
811 		      priv->table0_addr, priv->table0_len);
812 
813 	priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
814 	priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
815 
816 	IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
817 		      priv->table1_addr, priv->table1_len);
818 
819 	priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
820 	priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
821 	priv->table2_len &= 0x0000ffff;	/* use first two bytes */
822 
823 	IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
824 		      priv->table2_addr, priv->table2_len);
825 
826 }
827 
828 static u32 ipw_register_toggle(u32 reg)
829 {
830 	reg &= ~IPW_START_STANDBY;
831 	if (reg & IPW_GATE_ODMA)
832 		reg &= ~IPW_GATE_ODMA;
833 	if (reg & IPW_GATE_IDMA)
834 		reg &= ~IPW_GATE_IDMA;
835 	if (reg & IPW_GATE_ADMA)
836 		reg &= ~IPW_GATE_ADMA;
837 	return reg;
838 }
839 
840 /*
841  * LED behavior:
842  * - On radio ON, turn on any LEDs that require to be on during start
843  * - On initialization, start unassociated blink
844  * - On association, disable unassociated blink
845  * - On disassociation, start unassociated blink
846  * - On radio OFF, turn off any LEDs started during radio on
847  *
848  */
849 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
850 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
851 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
852 
853 static void ipw_led_link_on(struct ipw_priv *priv)
854 {
855 	unsigned long flags;
856 	u32 led;
857 
858 	/* If configured to not use LEDs, or nic_type is 1,
859 	 * then we don't toggle a LINK led */
860 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
861 		return;
862 
863 	spin_lock_irqsave(&priv->lock, flags);
864 
865 	if (!(priv->status & STATUS_RF_KILL_MASK) &&
866 	    !(priv->status & STATUS_LED_LINK_ON)) {
867 		IPW_DEBUG_LED("Link LED On\n");
868 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
869 		led |= priv->led_association_on;
870 
871 		led = ipw_register_toggle(led);
872 
873 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
874 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
875 
876 		priv->status |= STATUS_LED_LINK_ON;
877 
878 		/* If we aren't associated, schedule turning the LED off */
879 		if (!(priv->status & STATUS_ASSOCIATED))
880 			schedule_delayed_work(&priv->led_link_off,
881 					      LD_TIME_LINK_ON);
882 	}
883 
884 	spin_unlock_irqrestore(&priv->lock, flags);
885 }
886 
887 static void ipw_bg_led_link_on(struct work_struct *work)
888 {
889 	struct ipw_priv *priv =
890 		container_of(work, struct ipw_priv, led_link_on.work);
891 	mutex_lock(&priv->mutex);
892 	ipw_led_link_on(priv);
893 	mutex_unlock(&priv->mutex);
894 }
895 
896 static void ipw_led_link_off(struct ipw_priv *priv)
897 {
898 	unsigned long flags;
899 	u32 led;
900 
901 	/* If configured not to use LEDs, or nic type is 1,
902 	 * then we don't goggle the LINK led. */
903 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
904 		return;
905 
906 	spin_lock_irqsave(&priv->lock, flags);
907 
908 	if (priv->status & STATUS_LED_LINK_ON) {
909 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
910 		led &= priv->led_association_off;
911 		led = ipw_register_toggle(led);
912 
913 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
914 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
915 
916 		IPW_DEBUG_LED("Link LED Off\n");
917 
918 		priv->status &= ~STATUS_LED_LINK_ON;
919 
920 		/* If we aren't associated and the radio is on, schedule
921 		 * turning the LED on (blink while unassociated) */
922 		if (!(priv->status & STATUS_RF_KILL_MASK) &&
923 		    !(priv->status & STATUS_ASSOCIATED))
924 			schedule_delayed_work(&priv->led_link_on,
925 					      LD_TIME_LINK_OFF);
926 
927 	}
928 
929 	spin_unlock_irqrestore(&priv->lock, flags);
930 }
931 
932 static void ipw_bg_led_link_off(struct work_struct *work)
933 {
934 	struct ipw_priv *priv =
935 		container_of(work, struct ipw_priv, led_link_off.work);
936 	mutex_lock(&priv->mutex);
937 	ipw_led_link_off(priv);
938 	mutex_unlock(&priv->mutex);
939 }
940 
941 static void __ipw_led_activity_on(struct ipw_priv *priv)
942 {
943 	u32 led;
944 
945 	if (priv->config & CFG_NO_LED)
946 		return;
947 
948 	if (priv->status & STATUS_RF_KILL_MASK)
949 		return;
950 
951 	if (!(priv->status & STATUS_LED_ACT_ON)) {
952 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
953 		led |= priv->led_activity_on;
954 
955 		led = ipw_register_toggle(led);
956 
957 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
958 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
959 
960 		IPW_DEBUG_LED("Activity LED On\n");
961 
962 		priv->status |= STATUS_LED_ACT_ON;
963 
964 		cancel_delayed_work(&priv->led_act_off);
965 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
966 	} else {
967 		/* Reschedule LED off for full time period */
968 		cancel_delayed_work(&priv->led_act_off);
969 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
970 	}
971 }
972 
973 #if 0
974 void ipw_led_activity_on(struct ipw_priv *priv)
975 {
976 	unsigned long flags;
977 	spin_lock_irqsave(&priv->lock, flags);
978 	__ipw_led_activity_on(priv);
979 	spin_unlock_irqrestore(&priv->lock, flags);
980 }
981 #endif  /*  0  */
982 
983 static void ipw_led_activity_off(struct ipw_priv *priv)
984 {
985 	unsigned long flags;
986 	u32 led;
987 
988 	if (priv->config & CFG_NO_LED)
989 		return;
990 
991 	spin_lock_irqsave(&priv->lock, flags);
992 
993 	if (priv->status & STATUS_LED_ACT_ON) {
994 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
995 		led &= priv->led_activity_off;
996 
997 		led = ipw_register_toggle(led);
998 
999 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1000 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
1001 
1002 		IPW_DEBUG_LED("Activity LED Off\n");
1003 
1004 		priv->status &= ~STATUS_LED_ACT_ON;
1005 	}
1006 
1007 	spin_unlock_irqrestore(&priv->lock, flags);
1008 }
1009 
1010 static void ipw_bg_led_activity_off(struct work_struct *work)
1011 {
1012 	struct ipw_priv *priv =
1013 		container_of(work, struct ipw_priv, led_act_off.work);
1014 	mutex_lock(&priv->mutex);
1015 	ipw_led_activity_off(priv);
1016 	mutex_unlock(&priv->mutex);
1017 }
1018 
1019 static void ipw_led_band_on(struct ipw_priv *priv)
1020 {
1021 	unsigned long flags;
1022 	u32 led;
1023 
1024 	/* Only nic type 1 supports mode LEDs */
1025 	if (priv->config & CFG_NO_LED ||
1026 	    priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1027 		return;
1028 
1029 	spin_lock_irqsave(&priv->lock, flags);
1030 
1031 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1032 	if (priv->assoc_network->mode == IEEE_A) {
1033 		led |= priv->led_ofdm_on;
1034 		led &= priv->led_association_off;
1035 		IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1036 	} else if (priv->assoc_network->mode == IEEE_G) {
1037 		led |= priv->led_ofdm_on;
1038 		led |= priv->led_association_on;
1039 		IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1040 	} else {
1041 		led &= priv->led_ofdm_off;
1042 		led |= priv->led_association_on;
1043 		IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1044 	}
1045 
1046 	led = ipw_register_toggle(led);
1047 
1048 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1049 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1050 
1051 	spin_unlock_irqrestore(&priv->lock, flags);
1052 }
1053 
1054 static void ipw_led_band_off(struct ipw_priv *priv)
1055 {
1056 	unsigned long flags;
1057 	u32 led;
1058 
1059 	/* Only nic type 1 supports mode LEDs */
1060 	if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1061 		return;
1062 
1063 	spin_lock_irqsave(&priv->lock, flags);
1064 
1065 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1066 	led &= priv->led_ofdm_off;
1067 	led &= priv->led_association_off;
1068 
1069 	led = ipw_register_toggle(led);
1070 
1071 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1072 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1073 
1074 	spin_unlock_irqrestore(&priv->lock, flags);
1075 }
1076 
1077 static void ipw_led_radio_on(struct ipw_priv *priv)
1078 {
1079 	ipw_led_link_on(priv);
1080 }
1081 
1082 static void ipw_led_radio_off(struct ipw_priv *priv)
1083 {
1084 	ipw_led_activity_off(priv);
1085 	ipw_led_link_off(priv);
1086 }
1087 
1088 static void ipw_led_link_up(struct ipw_priv *priv)
1089 {
1090 	/* Set the Link Led on for all nic types */
1091 	ipw_led_link_on(priv);
1092 }
1093 
1094 static void ipw_led_link_down(struct ipw_priv *priv)
1095 {
1096 	ipw_led_activity_off(priv);
1097 	ipw_led_link_off(priv);
1098 
1099 	if (priv->status & STATUS_RF_KILL_MASK)
1100 		ipw_led_radio_off(priv);
1101 }
1102 
1103 static void ipw_led_init(struct ipw_priv *priv)
1104 {
1105 	priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1106 
1107 	/* Set the default PINs for the link and activity leds */
1108 	priv->led_activity_on = IPW_ACTIVITY_LED;
1109 	priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1110 
1111 	priv->led_association_on = IPW_ASSOCIATED_LED;
1112 	priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1113 
1114 	/* Set the default PINs for the OFDM leds */
1115 	priv->led_ofdm_on = IPW_OFDM_LED;
1116 	priv->led_ofdm_off = ~(IPW_OFDM_LED);
1117 
1118 	switch (priv->nic_type) {
1119 	case EEPROM_NIC_TYPE_1:
1120 		/* In this NIC type, the LEDs are reversed.... */
1121 		priv->led_activity_on = IPW_ASSOCIATED_LED;
1122 		priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1123 		priv->led_association_on = IPW_ACTIVITY_LED;
1124 		priv->led_association_off = ~(IPW_ACTIVITY_LED);
1125 
1126 		if (!(priv->config & CFG_NO_LED))
1127 			ipw_led_band_on(priv);
1128 
1129 		/* And we don't blink link LEDs for this nic, so
1130 		 * just return here */
1131 		return;
1132 
1133 	case EEPROM_NIC_TYPE_3:
1134 	case EEPROM_NIC_TYPE_2:
1135 	case EEPROM_NIC_TYPE_4:
1136 	case EEPROM_NIC_TYPE_0:
1137 		break;
1138 
1139 	default:
1140 		IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1141 			       priv->nic_type);
1142 		priv->nic_type = EEPROM_NIC_TYPE_0;
1143 		break;
1144 	}
1145 
1146 	if (!(priv->config & CFG_NO_LED)) {
1147 		if (priv->status & STATUS_ASSOCIATED)
1148 			ipw_led_link_on(priv);
1149 		else
1150 			ipw_led_link_off(priv);
1151 	}
1152 }
1153 
1154 static void ipw_led_shutdown(struct ipw_priv *priv)
1155 {
1156 	ipw_led_activity_off(priv);
1157 	ipw_led_link_off(priv);
1158 	ipw_led_band_off(priv);
1159 	cancel_delayed_work(&priv->led_link_on);
1160 	cancel_delayed_work(&priv->led_link_off);
1161 	cancel_delayed_work(&priv->led_act_off);
1162 }
1163 
1164 /*
1165  * The following adds a new attribute to the sysfs representation
1166  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1167  * used for controlling the debug level.
1168  *
1169  * See the level definitions in ipw for details.
1170  */
1171 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1172 {
1173 	return sprintf(buf, "0x%08X\n", ipw_debug_level);
1174 }
1175 
1176 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1177 				 size_t count)
1178 {
1179 	unsigned long val;
1180 
1181 	int result = kstrtoul(buf, 0, &val);
1182 
1183 	if (result == -EINVAL)
1184 		printk(KERN_INFO DRV_NAME
1185 		       ": %s is not in hex or decimal form.\n", buf);
1186 	else if (result == -ERANGE)
1187 		printk(KERN_INFO DRV_NAME
1188 			 ": %s has overflowed.\n", buf);
1189 	else
1190 		ipw_debug_level = val;
1191 
1192 	return count;
1193 }
1194 static DRIVER_ATTR_RW(debug_level);
1195 
1196 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1197 {
1198 	/* length = 1st dword in log */
1199 	return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1200 }
1201 
1202 static void ipw_capture_event_log(struct ipw_priv *priv,
1203 				  u32 log_len, struct ipw_event *log)
1204 {
1205 	u32 base;
1206 
1207 	if (log_len) {
1208 		base = ipw_read32(priv, IPW_EVENT_LOG);
1209 		ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1210 				  (u8 *) log, sizeof(*log) * log_len);
1211 	}
1212 }
1213 
1214 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1215 {
1216 	struct ipw_fw_error *error;
1217 	u32 log_len = ipw_get_event_log_len(priv);
1218 	u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1219 	u32 elem_len = ipw_read_reg32(priv, base);
1220 
1221 	error = kmalloc(size_add(struct_size(error, elem, elem_len),
1222 				 array_size(sizeof(*error->log), log_len)),
1223 			GFP_ATOMIC);
1224 	if (!error) {
1225 		IPW_ERROR("Memory allocation for firmware error log "
1226 			  "failed.\n");
1227 		return NULL;
1228 	}
1229 	error->jiffies = jiffies;
1230 	error->status = priv->status;
1231 	error->config = priv->config;
1232 	error->elem_len = elem_len;
1233 	error->log_len = log_len;
1234 	error->log = (struct ipw_event *)(error->elem + elem_len);
1235 
1236 	ipw_capture_event_log(priv, log_len, error->log);
1237 
1238 	if (elem_len)
1239 		ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1240 				  sizeof(*error->elem) * elem_len);
1241 
1242 	return error;
1243 }
1244 
1245 static ssize_t event_log_show(struct device *d,
1246 			      struct device_attribute *attr, char *buf)
1247 {
1248 	struct ipw_priv *priv = dev_get_drvdata(d);
1249 	u32 log_len = ipw_get_event_log_len(priv);
1250 	u32 log_size;
1251 	struct ipw_event *log;
1252 	u32 len = 0, i;
1253 
1254 	/* not using min() because of its strict type checking */
1255 	log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1256 			sizeof(*log) * log_len : PAGE_SIZE;
1257 	log = kzalloc(log_size, GFP_KERNEL);
1258 	if (!log) {
1259 		IPW_ERROR("Unable to allocate memory for log\n");
1260 		return 0;
1261 	}
1262 	log_len = log_size / sizeof(*log);
1263 	ipw_capture_event_log(priv, log_len, log);
1264 
1265 	len += scnprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1266 	for (i = 0; i < log_len; i++)
1267 		len += scnprintf(buf + len, PAGE_SIZE - len,
1268 				"\n%08X%08X%08X",
1269 				log[i].time, log[i].event, log[i].data);
1270 	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1271 	kfree(log);
1272 	return len;
1273 }
1274 
1275 static DEVICE_ATTR_RO(event_log);
1276 
1277 static ssize_t error_show(struct device *d,
1278 			  struct device_attribute *attr, char *buf)
1279 {
1280 	struct ipw_priv *priv = dev_get_drvdata(d);
1281 	u32 len = 0, i;
1282 	if (!priv->error)
1283 		return 0;
1284 	len += scnprintf(buf + len, PAGE_SIZE - len,
1285 			"%08lX%08X%08X%08X",
1286 			priv->error->jiffies,
1287 			priv->error->status,
1288 			priv->error->config, priv->error->elem_len);
1289 	for (i = 0; i < priv->error->elem_len; i++)
1290 		len += scnprintf(buf + len, PAGE_SIZE - len,
1291 				"\n%08X%08X%08X%08X%08X%08X%08X",
1292 				priv->error->elem[i].time,
1293 				priv->error->elem[i].desc,
1294 				priv->error->elem[i].blink1,
1295 				priv->error->elem[i].blink2,
1296 				priv->error->elem[i].link1,
1297 				priv->error->elem[i].link2,
1298 				priv->error->elem[i].data);
1299 
1300 	len += scnprintf(buf + len, PAGE_SIZE - len,
1301 			"\n%08X", priv->error->log_len);
1302 	for (i = 0; i < priv->error->log_len; i++)
1303 		len += scnprintf(buf + len, PAGE_SIZE - len,
1304 				"\n%08X%08X%08X",
1305 				priv->error->log[i].time,
1306 				priv->error->log[i].event,
1307 				priv->error->log[i].data);
1308 	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1309 	return len;
1310 }
1311 
1312 static ssize_t error_store(struct device *d,
1313 			   struct device_attribute *attr,
1314 			   const char *buf, size_t count)
1315 {
1316 	struct ipw_priv *priv = dev_get_drvdata(d);
1317 
1318 	kfree(priv->error);
1319 	priv->error = NULL;
1320 	return count;
1321 }
1322 
1323 static DEVICE_ATTR_RW(error);
1324 
1325 static ssize_t cmd_log_show(struct device *d,
1326 			    struct device_attribute *attr, char *buf)
1327 {
1328 	struct ipw_priv *priv = dev_get_drvdata(d);
1329 	u32 len = 0, i;
1330 	if (!priv->cmdlog)
1331 		return 0;
1332 	for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1333 	     (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1334 	     i = (i + 1) % priv->cmdlog_len) {
1335 		len +=
1336 		    scnprintf(buf + len, PAGE_SIZE - len,
1337 			     "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1338 			     priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1339 			     priv->cmdlog[i].cmd.len);
1340 		len +=
1341 		    snprintk_buf(buf + len, PAGE_SIZE - len,
1342 				 (u8 *) priv->cmdlog[i].cmd.param,
1343 				 priv->cmdlog[i].cmd.len);
1344 		len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1345 	}
1346 	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1347 	return len;
1348 }
1349 
1350 static DEVICE_ATTR_RO(cmd_log);
1351 
1352 #ifdef CONFIG_IPW2200_PROMISCUOUS
1353 static void ipw_prom_free(struct ipw_priv *priv);
1354 static int ipw_prom_alloc(struct ipw_priv *priv);
1355 static ssize_t rtap_iface_store(struct device *d,
1356 			 struct device_attribute *attr,
1357 			 const char *buf, size_t count)
1358 {
1359 	struct ipw_priv *priv = dev_get_drvdata(d);
1360 	int rc = 0;
1361 
1362 	if (count < 1)
1363 		return -EINVAL;
1364 
1365 	switch (buf[0]) {
1366 	case '0':
1367 		if (!rtap_iface)
1368 			return count;
1369 
1370 		if (netif_running(priv->prom_net_dev)) {
1371 			IPW_WARNING("Interface is up.  Cannot unregister.\n");
1372 			return count;
1373 		}
1374 
1375 		ipw_prom_free(priv);
1376 		rtap_iface = 0;
1377 		break;
1378 
1379 	case '1':
1380 		if (rtap_iface)
1381 			return count;
1382 
1383 		rc = ipw_prom_alloc(priv);
1384 		if (!rc)
1385 			rtap_iface = 1;
1386 		break;
1387 
1388 	default:
1389 		return -EINVAL;
1390 	}
1391 
1392 	if (rc) {
1393 		IPW_ERROR("Failed to register promiscuous network "
1394 			  "device (error %d).\n", rc);
1395 	}
1396 
1397 	return count;
1398 }
1399 
1400 static ssize_t rtap_iface_show(struct device *d,
1401 			struct device_attribute *attr,
1402 			char *buf)
1403 {
1404 	struct ipw_priv *priv = dev_get_drvdata(d);
1405 	if (rtap_iface)
1406 		return sprintf(buf, "%s", priv->prom_net_dev->name);
1407 	else {
1408 		buf[0] = '-';
1409 		buf[1] = '1';
1410 		buf[2] = '\0';
1411 		return 3;
1412 	}
1413 }
1414 
1415 static DEVICE_ATTR_ADMIN_RW(rtap_iface);
1416 
1417 static ssize_t rtap_filter_store(struct device *d,
1418 			 struct device_attribute *attr,
1419 			 const char *buf, size_t count)
1420 {
1421 	struct ipw_priv *priv = dev_get_drvdata(d);
1422 
1423 	if (!priv->prom_priv) {
1424 		IPW_ERROR("Attempting to set filter without "
1425 			  "rtap_iface enabled.\n");
1426 		return -EPERM;
1427 	}
1428 
1429 	priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1430 
1431 	IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1432 		       BIT_ARG16(priv->prom_priv->filter));
1433 
1434 	return count;
1435 }
1436 
1437 static ssize_t rtap_filter_show(struct device *d,
1438 			struct device_attribute *attr,
1439 			char *buf)
1440 {
1441 	struct ipw_priv *priv = dev_get_drvdata(d);
1442 	return sprintf(buf, "0x%04X",
1443 		       priv->prom_priv ? priv->prom_priv->filter : 0);
1444 }
1445 
1446 static DEVICE_ATTR_ADMIN_RW(rtap_filter);
1447 #endif
1448 
1449 static ssize_t scan_age_show(struct device *d, struct device_attribute *attr,
1450 			     char *buf)
1451 {
1452 	struct ipw_priv *priv = dev_get_drvdata(d);
1453 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
1454 }
1455 
1456 static ssize_t scan_age_store(struct device *d, struct device_attribute *attr,
1457 			      const char *buf, size_t count)
1458 {
1459 	struct ipw_priv *priv = dev_get_drvdata(d);
1460 	struct net_device *dev = priv->net_dev;
1461 
1462 	IPW_DEBUG_INFO("enter\n");
1463 
1464 	unsigned long val;
1465 	int result = kstrtoul(buf, 0, &val);
1466 
1467 	if (result == -EINVAL || result == -ERANGE) {
1468 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469 	} else {
1470 		priv->ieee->scan_age = val;
1471 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1472 	}
1473 
1474 	IPW_DEBUG_INFO("exit\n");
1475 	return count;
1476 }
1477 
1478 static DEVICE_ATTR_RW(scan_age);
1479 
1480 static ssize_t led_show(struct device *d, struct device_attribute *attr,
1481 			char *buf)
1482 {
1483 	struct ipw_priv *priv = dev_get_drvdata(d);
1484 	return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1485 }
1486 
1487 static ssize_t led_store(struct device *d, struct device_attribute *attr,
1488 			 const char *buf, size_t count)
1489 {
1490 	struct ipw_priv *priv = dev_get_drvdata(d);
1491 
1492 	IPW_DEBUG_INFO("enter\n");
1493 
1494 	if (count == 0)
1495 		return 0;
1496 
1497 	if (*buf == 0) {
1498 		IPW_DEBUG_LED("Disabling LED control.\n");
1499 		priv->config |= CFG_NO_LED;
1500 		ipw_led_shutdown(priv);
1501 	} else {
1502 		IPW_DEBUG_LED("Enabling LED control.\n");
1503 		priv->config &= ~CFG_NO_LED;
1504 		ipw_led_init(priv);
1505 	}
1506 
1507 	IPW_DEBUG_INFO("exit\n");
1508 	return count;
1509 }
1510 
1511 static DEVICE_ATTR_RW(led);
1512 
1513 static ssize_t status_show(struct device *d,
1514 			   struct device_attribute *attr, char *buf)
1515 {
1516 	struct ipw_priv *p = dev_get_drvdata(d);
1517 	return sprintf(buf, "0x%08x\n", (int)p->status);
1518 }
1519 
1520 static DEVICE_ATTR_RO(status);
1521 
1522 static ssize_t cfg_show(struct device *d, struct device_attribute *attr,
1523 			char *buf)
1524 {
1525 	struct ipw_priv *p = dev_get_drvdata(d);
1526 	return sprintf(buf, "0x%08x\n", (int)p->config);
1527 }
1528 
1529 static DEVICE_ATTR_RO(cfg);
1530 
1531 static ssize_t nic_type_show(struct device *d,
1532 			     struct device_attribute *attr, char *buf)
1533 {
1534 	struct ipw_priv *priv = dev_get_drvdata(d);
1535 	return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1536 }
1537 
1538 static DEVICE_ATTR_RO(nic_type);
1539 
1540 static ssize_t ucode_version_show(struct device *d,
1541 				  struct device_attribute *attr, char *buf)
1542 {
1543 	u32 len = sizeof(u32), tmp = 0;
1544 	struct ipw_priv *p = dev_get_drvdata(d);
1545 
1546 	if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547 		return 0;
1548 
1549 	return sprintf(buf, "0x%08x\n", tmp);
1550 }
1551 
1552 static DEVICE_ATTR_RO(ucode_version);
1553 
1554 static ssize_t rtc_show(struct device *d, struct device_attribute *attr,
1555 			char *buf)
1556 {
1557 	u32 len = sizeof(u32), tmp = 0;
1558 	struct ipw_priv *p = dev_get_drvdata(d);
1559 
1560 	if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561 		return 0;
1562 
1563 	return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565 
1566 static DEVICE_ATTR_RO(rtc);
1567 
1568 /*
1569  * Add a device attribute to view/control the delay between eeprom
1570  * operations.
1571  */
1572 static ssize_t eeprom_delay_show(struct device *d,
1573 				 struct device_attribute *attr, char *buf)
1574 {
1575 	struct ipw_priv *p = dev_get_drvdata(d);
1576 	int n = p->eeprom_delay;
1577 	return sprintf(buf, "%i\n", n);
1578 }
1579 static ssize_t eeprom_delay_store(struct device *d,
1580 				  struct device_attribute *attr,
1581 				  const char *buf, size_t count)
1582 {
1583 	struct ipw_priv *p = dev_get_drvdata(d);
1584 	sscanf(buf, "%i", &p->eeprom_delay);
1585 	return strnlen(buf, count);
1586 }
1587 
1588 static DEVICE_ATTR_RW(eeprom_delay);
1589 
1590 static ssize_t command_event_reg_show(struct device *d,
1591 				      struct device_attribute *attr, char *buf)
1592 {
1593 	u32 reg = 0;
1594 	struct ipw_priv *p = dev_get_drvdata(d);
1595 
1596 	reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 	return sprintf(buf, "0x%08x\n", reg);
1598 }
1599 static ssize_t command_event_reg_store(struct device *d,
1600 				       struct device_attribute *attr,
1601 				       const char *buf, size_t count)
1602 {
1603 	u32 reg;
1604 	struct ipw_priv *p = dev_get_drvdata(d);
1605 
1606 	sscanf(buf, "%x", &reg);
1607 	ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 	return strnlen(buf, count);
1609 }
1610 
1611 static DEVICE_ATTR_RW(command_event_reg);
1612 
1613 static ssize_t mem_gpio_reg_show(struct device *d,
1614 				 struct device_attribute *attr, char *buf)
1615 {
1616 	u32 reg = 0;
1617 	struct ipw_priv *p = dev_get_drvdata(d);
1618 
1619 	reg = ipw_read_reg32(p, 0x301100);
1620 	return sprintf(buf, "0x%08x\n", reg);
1621 }
1622 static ssize_t mem_gpio_reg_store(struct device *d,
1623 				  struct device_attribute *attr,
1624 				  const char *buf, size_t count)
1625 {
1626 	u32 reg;
1627 	struct ipw_priv *p = dev_get_drvdata(d);
1628 
1629 	sscanf(buf, "%x", &reg);
1630 	ipw_write_reg32(p, 0x301100, reg);
1631 	return strnlen(buf, count);
1632 }
1633 
1634 static DEVICE_ATTR_RW(mem_gpio_reg);
1635 
1636 static ssize_t indirect_dword_show(struct device *d,
1637 				   struct device_attribute *attr, char *buf)
1638 {
1639 	u32 reg = 0;
1640 	struct ipw_priv *priv = dev_get_drvdata(d);
1641 
1642 	if (priv->status & STATUS_INDIRECT_DWORD)
1643 		reg = ipw_read_reg32(priv, priv->indirect_dword);
1644 	else
1645 		reg = 0;
1646 
1647 	return sprintf(buf, "0x%08x\n", reg);
1648 }
1649 static ssize_t indirect_dword_store(struct device *d,
1650 				    struct device_attribute *attr,
1651 				    const char *buf, size_t count)
1652 {
1653 	struct ipw_priv *priv = dev_get_drvdata(d);
1654 
1655 	sscanf(buf, "%x", &priv->indirect_dword);
1656 	priv->status |= STATUS_INDIRECT_DWORD;
1657 	return strnlen(buf, count);
1658 }
1659 
1660 static DEVICE_ATTR_RW(indirect_dword);
1661 
1662 static ssize_t indirect_byte_show(struct device *d,
1663 				  struct device_attribute *attr, char *buf)
1664 {
1665 	u8 reg = 0;
1666 	struct ipw_priv *priv = dev_get_drvdata(d);
1667 
1668 	if (priv->status & STATUS_INDIRECT_BYTE)
1669 		reg = ipw_read_reg8(priv, priv->indirect_byte);
1670 	else
1671 		reg = 0;
1672 
1673 	return sprintf(buf, "0x%02x\n", reg);
1674 }
1675 static ssize_t indirect_byte_store(struct device *d,
1676 				   struct device_attribute *attr,
1677 				   const char *buf, size_t count)
1678 {
1679 	struct ipw_priv *priv = dev_get_drvdata(d);
1680 
1681 	sscanf(buf, "%x", &priv->indirect_byte);
1682 	priv->status |= STATUS_INDIRECT_BYTE;
1683 	return strnlen(buf, count);
1684 }
1685 
1686 static DEVICE_ATTR_RW(indirect_byte);
1687 
1688 static ssize_t direct_dword_show(struct device *d,
1689 				 struct device_attribute *attr, char *buf)
1690 {
1691 	u32 reg = 0;
1692 	struct ipw_priv *priv = dev_get_drvdata(d);
1693 
1694 	if (priv->status & STATUS_DIRECT_DWORD)
1695 		reg = ipw_read32(priv, priv->direct_dword);
1696 	else
1697 		reg = 0;
1698 
1699 	return sprintf(buf, "0x%08x\n", reg);
1700 }
1701 static ssize_t direct_dword_store(struct device *d,
1702 				  struct device_attribute *attr,
1703 				  const char *buf, size_t count)
1704 {
1705 	struct ipw_priv *priv = dev_get_drvdata(d);
1706 
1707 	sscanf(buf, "%x", &priv->direct_dword);
1708 	priv->status |= STATUS_DIRECT_DWORD;
1709 	return strnlen(buf, count);
1710 }
1711 
1712 static DEVICE_ATTR_RW(direct_dword);
1713 
1714 static int rf_kill_active(struct ipw_priv *priv)
1715 {
1716 	if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1717 		priv->status |= STATUS_RF_KILL_HW;
1718 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1719 	} else {
1720 		priv->status &= ~STATUS_RF_KILL_HW;
1721 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1722 	}
1723 
1724 	return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1725 }
1726 
1727 static ssize_t rf_kill_show(struct device *d, struct device_attribute *attr,
1728 			    char *buf)
1729 {
1730 	/* 0 - RF kill not enabled
1731 	   1 - SW based RF kill active (sysfs)
1732 	   2 - HW based RF kill active
1733 	   3 - Both HW and SW baed RF kill active */
1734 	struct ipw_priv *priv = dev_get_drvdata(d);
1735 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1736 	    (rf_kill_active(priv) ? 0x2 : 0x0);
1737 	return sprintf(buf, "%i\n", val);
1738 }
1739 
1740 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1741 {
1742 	if ((disable_radio ? 1 : 0) ==
1743 	    ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1744 		return 0;
1745 
1746 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1747 			  disable_radio ? "OFF" : "ON");
1748 
1749 	if (disable_radio) {
1750 		priv->status |= STATUS_RF_KILL_SW;
1751 
1752 		cancel_delayed_work(&priv->request_scan);
1753 		cancel_delayed_work(&priv->request_direct_scan);
1754 		cancel_delayed_work(&priv->request_passive_scan);
1755 		cancel_delayed_work(&priv->scan_event);
1756 		schedule_work(&priv->down);
1757 	} else {
1758 		priv->status &= ~STATUS_RF_KILL_SW;
1759 		if (rf_kill_active(priv)) {
1760 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1761 					  "disabled by HW switch\n");
1762 			/* Make sure the RF_KILL check timer is running */
1763 			cancel_delayed_work(&priv->rf_kill);
1764 			schedule_delayed_work(&priv->rf_kill,
1765 					      round_jiffies_relative(2 * HZ));
1766 		} else
1767 			schedule_work(&priv->up);
1768 	}
1769 
1770 	return 1;
1771 }
1772 
1773 static ssize_t rf_kill_store(struct device *d, struct device_attribute *attr,
1774 			     const char *buf, size_t count)
1775 {
1776 	struct ipw_priv *priv = dev_get_drvdata(d);
1777 
1778 	ipw_radio_kill_sw(priv, buf[0] == '1');
1779 
1780 	return count;
1781 }
1782 
1783 static DEVICE_ATTR_RW(rf_kill);
1784 
1785 static ssize_t speed_scan_show(struct device *d, struct device_attribute *attr,
1786 			       char *buf)
1787 {
1788 	struct ipw_priv *priv = dev_get_drvdata(d);
1789 	int pos = 0, len = 0;
1790 	if (priv->config & CFG_SPEED_SCAN) {
1791 		while (priv->speed_scan[pos] != 0)
1792 			len += sprintf(&buf[len], "%d ",
1793 				       priv->speed_scan[pos++]);
1794 		return len + sprintf(&buf[len], "\n");
1795 	}
1796 
1797 	return sprintf(buf, "0\n");
1798 }
1799 
1800 static ssize_t speed_scan_store(struct device *d, struct device_attribute *attr,
1801 				const char *buf, size_t count)
1802 {
1803 	struct ipw_priv *priv = dev_get_drvdata(d);
1804 	int channel, pos = 0;
1805 	const char *p = buf;
1806 
1807 	/* list of space separated channels to scan, optionally ending with 0 */
1808 	while ((channel = simple_strtol(p, NULL, 0))) {
1809 		if (pos == MAX_SPEED_SCAN - 1) {
1810 			priv->speed_scan[pos] = 0;
1811 			break;
1812 		}
1813 
1814 		if (libipw_is_valid_channel(priv->ieee, channel))
1815 			priv->speed_scan[pos++] = channel;
1816 		else
1817 			IPW_WARNING("Skipping invalid channel request: %d\n",
1818 				    channel);
1819 		p = strchr(p, ' ');
1820 		if (!p)
1821 			break;
1822 		while (*p == ' ' || *p == '\t')
1823 			p++;
1824 	}
1825 
1826 	if (pos == 0)
1827 		priv->config &= ~CFG_SPEED_SCAN;
1828 	else {
1829 		priv->speed_scan_pos = 0;
1830 		priv->config |= CFG_SPEED_SCAN;
1831 	}
1832 
1833 	return count;
1834 }
1835 
1836 static DEVICE_ATTR_RW(speed_scan);
1837 
1838 static ssize_t net_stats_show(struct device *d, struct device_attribute *attr,
1839 			      char *buf)
1840 {
1841 	struct ipw_priv *priv = dev_get_drvdata(d);
1842 	return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1843 }
1844 
1845 static ssize_t net_stats_store(struct device *d, struct device_attribute *attr,
1846 			       const char *buf, size_t count)
1847 {
1848 	struct ipw_priv *priv = dev_get_drvdata(d);
1849 	if (buf[0] == '1')
1850 		priv->config |= CFG_NET_STATS;
1851 	else
1852 		priv->config &= ~CFG_NET_STATS;
1853 
1854 	return count;
1855 }
1856 
1857 static DEVICE_ATTR_RW(net_stats);
1858 
1859 static ssize_t channels_show(struct device *d,
1860 			     struct device_attribute *attr,
1861 			     char *buf)
1862 {
1863 	struct ipw_priv *priv = dev_get_drvdata(d);
1864 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1865 	int len = 0, i;
1866 
1867 	len = sprintf(&buf[len],
1868 		      "Displaying %d channels in 2.4Ghz band "
1869 		      "(802.11bg):\n", geo->bg_channels);
1870 
1871 	for (i = 0; i < geo->bg_channels; i++) {
1872 		len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1873 			       geo->bg[i].channel,
1874 			       geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1875 			       " (radar spectrum)" : "",
1876 			       ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1877 				(geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1878 			       ? "" : ", IBSS",
1879 			       geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1880 			       "passive only" : "active/passive",
1881 			       geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1882 			       "B" : "B/G");
1883 	}
1884 
1885 	len += sprintf(&buf[len],
1886 		       "Displaying %d channels in 5.2Ghz band "
1887 		       "(802.11a):\n", geo->a_channels);
1888 	for (i = 0; i < geo->a_channels; i++) {
1889 		len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1890 			       geo->a[i].channel,
1891 			       geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1892 			       " (radar spectrum)" : "",
1893 			       ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1894 				(geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1895 			       ? "" : ", IBSS",
1896 			       geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1897 			       "passive only" : "active/passive");
1898 	}
1899 
1900 	return len;
1901 }
1902 
1903 static DEVICE_ATTR_ADMIN_RO(channels);
1904 
1905 static void notify_wx_assoc_event(struct ipw_priv *priv)
1906 {
1907 	union iwreq_data wrqu;
1908 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1909 	if (priv->status & STATUS_ASSOCIATED)
1910 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1911 	else
1912 		eth_zero_addr(wrqu.ap_addr.sa_data);
1913 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1914 }
1915 
1916 static void ipw_irq_tasklet(struct tasklet_struct *t)
1917 {
1918 	struct ipw_priv *priv = from_tasklet(priv, t, irq_tasklet);
1919 	u32 inta, inta_mask, handled = 0;
1920 	unsigned long flags;
1921 
1922 	spin_lock_irqsave(&priv->irq_lock, flags);
1923 
1924 	inta = ipw_read32(priv, IPW_INTA_RW);
1925 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1926 
1927 	if (inta == 0xFFFFFFFF) {
1928 		/* Hardware disappeared */
1929 		IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1930 		/* Only handle the cached INTA values */
1931 		inta = 0;
1932 	}
1933 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
1934 
1935 	/* Add any cached INTA values that need to be handled */
1936 	inta |= priv->isr_inta;
1937 
1938 	spin_unlock_irqrestore(&priv->irq_lock, flags);
1939 
1940 	spin_lock_irqsave(&priv->lock, flags);
1941 
1942 	/* handle all the justifications for the interrupt */
1943 	if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1944 		ipw_rx(priv);
1945 		handled |= IPW_INTA_BIT_RX_TRANSFER;
1946 	}
1947 
1948 	if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1949 		IPW_DEBUG_HC("Command completed.\n");
1950 		ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1951 		priv->status &= ~STATUS_HCMD_ACTIVE;
1952 		wake_up_interruptible(&priv->wait_command_queue);
1953 		handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1954 	}
1955 
1956 	if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1957 		IPW_DEBUG_TX("TX_QUEUE_1\n");
1958 		ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1959 		handled |= IPW_INTA_BIT_TX_QUEUE_1;
1960 	}
1961 
1962 	if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1963 		IPW_DEBUG_TX("TX_QUEUE_2\n");
1964 		ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1965 		handled |= IPW_INTA_BIT_TX_QUEUE_2;
1966 	}
1967 
1968 	if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1969 		IPW_DEBUG_TX("TX_QUEUE_3\n");
1970 		ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1971 		handled |= IPW_INTA_BIT_TX_QUEUE_3;
1972 	}
1973 
1974 	if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1975 		IPW_DEBUG_TX("TX_QUEUE_4\n");
1976 		ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1977 		handled |= IPW_INTA_BIT_TX_QUEUE_4;
1978 	}
1979 
1980 	if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1981 		IPW_WARNING("STATUS_CHANGE\n");
1982 		handled |= IPW_INTA_BIT_STATUS_CHANGE;
1983 	}
1984 
1985 	if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1986 		IPW_WARNING("TX_PERIOD_EXPIRED\n");
1987 		handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1988 	}
1989 
1990 	if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1991 		IPW_WARNING("HOST_CMD_DONE\n");
1992 		handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1993 	}
1994 
1995 	if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1996 		IPW_WARNING("FW_INITIALIZATION_DONE\n");
1997 		handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1998 	}
1999 
2000 	if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2001 		IPW_WARNING("PHY_OFF_DONE\n");
2002 		handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2003 	}
2004 
2005 	if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2006 		IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2007 		priv->status |= STATUS_RF_KILL_HW;
2008 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2009 		wake_up_interruptible(&priv->wait_command_queue);
2010 		priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2011 		cancel_delayed_work(&priv->request_scan);
2012 		cancel_delayed_work(&priv->request_direct_scan);
2013 		cancel_delayed_work(&priv->request_passive_scan);
2014 		cancel_delayed_work(&priv->scan_event);
2015 		schedule_work(&priv->link_down);
2016 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2017 		handled |= IPW_INTA_BIT_RF_KILL_DONE;
2018 	}
2019 
2020 	if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2021 		IPW_WARNING("Firmware error detected.  Restarting.\n");
2022 		if (priv->error) {
2023 			IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2024 			if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2025 				struct ipw_fw_error *error =
2026 				    ipw_alloc_error_log(priv);
2027 				ipw_dump_error_log(priv, error);
2028 				kfree(error);
2029 			}
2030 		} else {
2031 			priv->error = ipw_alloc_error_log(priv);
2032 			if (priv->error)
2033 				IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2034 			else
2035 				IPW_DEBUG_FW("Error allocating sysfs 'error' "
2036 					     "log.\n");
2037 			if (ipw_debug_level & IPW_DL_FW_ERRORS)
2038 				ipw_dump_error_log(priv, priv->error);
2039 		}
2040 
2041 		/* XXX: If hardware encryption is for WPA/WPA2,
2042 		 * we have to notify the supplicant. */
2043 		if (priv->ieee->sec.encrypt) {
2044 			priv->status &= ~STATUS_ASSOCIATED;
2045 			notify_wx_assoc_event(priv);
2046 		}
2047 
2048 		/* Keep the restart process from trying to send host
2049 		 * commands by clearing the INIT status bit */
2050 		priv->status &= ~STATUS_INIT;
2051 
2052 		/* Cancel currently queued command. */
2053 		priv->status &= ~STATUS_HCMD_ACTIVE;
2054 		wake_up_interruptible(&priv->wait_command_queue);
2055 
2056 		schedule_work(&priv->adapter_restart);
2057 		handled |= IPW_INTA_BIT_FATAL_ERROR;
2058 	}
2059 
2060 	if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2061 		IPW_ERROR("Parity error\n");
2062 		handled |= IPW_INTA_BIT_PARITY_ERROR;
2063 	}
2064 
2065 	if (handled != inta) {
2066 		IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2067 	}
2068 
2069 	spin_unlock_irqrestore(&priv->lock, flags);
2070 
2071 	/* enable all interrupts */
2072 	ipw_enable_interrupts(priv);
2073 }
2074 
2075 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2076 static char *get_cmd_string(u8 cmd)
2077 {
2078 	switch (cmd) {
2079 		IPW_CMD(HOST_COMPLETE);
2080 		IPW_CMD(POWER_DOWN);
2081 		IPW_CMD(SYSTEM_CONFIG);
2082 		IPW_CMD(MULTICAST_ADDRESS);
2083 		IPW_CMD(SSID);
2084 		IPW_CMD(ADAPTER_ADDRESS);
2085 		IPW_CMD(PORT_TYPE);
2086 		IPW_CMD(RTS_THRESHOLD);
2087 		IPW_CMD(FRAG_THRESHOLD);
2088 		IPW_CMD(POWER_MODE);
2089 		IPW_CMD(WEP_KEY);
2090 		IPW_CMD(TGI_TX_KEY);
2091 		IPW_CMD(SCAN_REQUEST);
2092 		IPW_CMD(SCAN_REQUEST_EXT);
2093 		IPW_CMD(ASSOCIATE);
2094 		IPW_CMD(SUPPORTED_RATES);
2095 		IPW_CMD(SCAN_ABORT);
2096 		IPW_CMD(TX_FLUSH);
2097 		IPW_CMD(QOS_PARAMETERS);
2098 		IPW_CMD(DINO_CONFIG);
2099 		IPW_CMD(RSN_CAPABILITIES);
2100 		IPW_CMD(RX_KEY);
2101 		IPW_CMD(CARD_DISABLE);
2102 		IPW_CMD(SEED_NUMBER);
2103 		IPW_CMD(TX_POWER);
2104 		IPW_CMD(COUNTRY_INFO);
2105 		IPW_CMD(AIRONET_INFO);
2106 		IPW_CMD(AP_TX_POWER);
2107 		IPW_CMD(CCKM_INFO);
2108 		IPW_CMD(CCX_VER_INFO);
2109 		IPW_CMD(SET_CALIBRATION);
2110 		IPW_CMD(SENSITIVITY_CALIB);
2111 		IPW_CMD(RETRY_LIMIT);
2112 		IPW_CMD(IPW_PRE_POWER_DOWN);
2113 		IPW_CMD(VAP_BEACON_TEMPLATE);
2114 		IPW_CMD(VAP_DTIM_PERIOD);
2115 		IPW_CMD(EXT_SUPPORTED_RATES);
2116 		IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2117 		IPW_CMD(VAP_QUIET_INTERVALS);
2118 		IPW_CMD(VAP_CHANNEL_SWITCH);
2119 		IPW_CMD(VAP_MANDATORY_CHANNELS);
2120 		IPW_CMD(VAP_CELL_PWR_LIMIT);
2121 		IPW_CMD(VAP_CF_PARAM_SET);
2122 		IPW_CMD(VAP_SET_BEACONING_STATE);
2123 		IPW_CMD(MEASUREMENT);
2124 		IPW_CMD(POWER_CAPABILITY);
2125 		IPW_CMD(SUPPORTED_CHANNELS);
2126 		IPW_CMD(TPC_REPORT);
2127 		IPW_CMD(WME_INFO);
2128 		IPW_CMD(PRODUCTION_COMMAND);
2129 	default:
2130 		return "UNKNOWN";
2131 	}
2132 }
2133 
2134 #define HOST_COMPLETE_TIMEOUT HZ
2135 
2136 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2137 {
2138 	int rc = 0;
2139 	unsigned long flags;
2140 	unsigned long now, end;
2141 
2142 	spin_lock_irqsave(&priv->lock, flags);
2143 	if (priv->status & STATUS_HCMD_ACTIVE) {
2144 		IPW_ERROR("Failed to send %s: Already sending a command.\n",
2145 			  get_cmd_string(cmd->cmd));
2146 		spin_unlock_irqrestore(&priv->lock, flags);
2147 		return -EAGAIN;
2148 	}
2149 
2150 	priv->status |= STATUS_HCMD_ACTIVE;
2151 
2152 	if (priv->cmdlog) {
2153 		priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2154 		priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2155 		priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2156 		memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2157 		       cmd->len);
2158 		priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2159 	}
2160 
2161 	IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2162 		     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2163 		     priv->status);
2164 
2165 #ifndef DEBUG_CMD_WEP_KEY
2166 	if (cmd->cmd == IPW_CMD_WEP_KEY)
2167 		IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2168 	else
2169 #endif
2170 		printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2171 
2172 	rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2173 	if (rc) {
2174 		priv->status &= ~STATUS_HCMD_ACTIVE;
2175 		IPW_ERROR("Failed to send %s: Reason %d\n",
2176 			  get_cmd_string(cmd->cmd), rc);
2177 		spin_unlock_irqrestore(&priv->lock, flags);
2178 		goto exit;
2179 	}
2180 	spin_unlock_irqrestore(&priv->lock, flags);
2181 
2182 	now = jiffies;
2183 	end = now + HOST_COMPLETE_TIMEOUT;
2184 again:
2185 	rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2186 					      !(priv->
2187 						status & STATUS_HCMD_ACTIVE),
2188 					      end - now);
2189 	if (rc < 0) {
2190 		now = jiffies;
2191 		if (time_before(now, end))
2192 			goto again;
2193 		rc = 0;
2194 	}
2195 
2196 	if (rc == 0) {
2197 		spin_lock_irqsave(&priv->lock, flags);
2198 		if (priv->status & STATUS_HCMD_ACTIVE) {
2199 			IPW_ERROR("Failed to send %s: Command timed out.\n",
2200 				  get_cmd_string(cmd->cmd));
2201 			priv->status &= ~STATUS_HCMD_ACTIVE;
2202 			spin_unlock_irqrestore(&priv->lock, flags);
2203 			rc = -EIO;
2204 			goto exit;
2205 		}
2206 		spin_unlock_irqrestore(&priv->lock, flags);
2207 	} else
2208 		rc = 0;
2209 
2210 	if (priv->status & STATUS_RF_KILL_HW) {
2211 		IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2212 			  get_cmd_string(cmd->cmd));
2213 		rc = -EIO;
2214 		goto exit;
2215 	}
2216 
2217       exit:
2218 	if (priv->cmdlog) {
2219 		priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2220 		priv->cmdlog_pos %= priv->cmdlog_len;
2221 	}
2222 	return rc;
2223 }
2224 
2225 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2226 {
2227 	struct host_cmd cmd = {
2228 		.cmd = command,
2229 	};
2230 
2231 	return __ipw_send_cmd(priv, &cmd);
2232 }
2233 
2234 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2235 			    const void *data)
2236 {
2237 	struct host_cmd cmd = {
2238 		.cmd = command,
2239 		.len = len,
2240 		.param = data,
2241 	};
2242 
2243 	return __ipw_send_cmd(priv, &cmd);
2244 }
2245 
2246 static int ipw_send_host_complete(struct ipw_priv *priv)
2247 {
2248 	if (!priv) {
2249 		IPW_ERROR("Invalid args\n");
2250 		return -1;
2251 	}
2252 
2253 	return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2254 }
2255 
2256 static int ipw_send_system_config(struct ipw_priv *priv)
2257 {
2258 	return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2259 				sizeof(priv->sys_config),
2260 				&priv->sys_config);
2261 }
2262 
2263 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2264 {
2265 	if (!priv || !ssid) {
2266 		IPW_ERROR("Invalid args\n");
2267 		return -1;
2268 	}
2269 
2270 	return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2271 				ssid);
2272 }
2273 
2274 static int ipw_send_adapter_address(struct ipw_priv *priv, const u8 * mac)
2275 {
2276 	if (!priv || !mac) {
2277 		IPW_ERROR("Invalid args\n");
2278 		return -1;
2279 	}
2280 
2281 	IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2282 		       priv->net_dev->name, mac);
2283 
2284 	return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2285 }
2286 
2287 static void ipw_adapter_restart(void *adapter)
2288 {
2289 	struct ipw_priv *priv = adapter;
2290 
2291 	if (priv->status & STATUS_RF_KILL_MASK)
2292 		return;
2293 
2294 	ipw_down(priv);
2295 
2296 	if (priv->assoc_network &&
2297 	    (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2298 		ipw_remove_current_network(priv);
2299 
2300 	if (ipw_up(priv)) {
2301 		IPW_ERROR("Failed to up device\n");
2302 		return;
2303 	}
2304 }
2305 
2306 static void ipw_bg_adapter_restart(struct work_struct *work)
2307 {
2308 	struct ipw_priv *priv =
2309 		container_of(work, struct ipw_priv, adapter_restart);
2310 	mutex_lock(&priv->mutex);
2311 	ipw_adapter_restart(priv);
2312 	mutex_unlock(&priv->mutex);
2313 }
2314 
2315 static void ipw_abort_scan(struct ipw_priv *priv);
2316 
2317 #define IPW_SCAN_CHECK_WATCHDOG	(5 * HZ)
2318 
2319 static void ipw_scan_check(void *data)
2320 {
2321 	struct ipw_priv *priv = data;
2322 
2323 	if (priv->status & STATUS_SCAN_ABORTING) {
2324 		IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2325 			       "adapter after (%dms).\n",
2326 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2327 		schedule_work(&priv->adapter_restart);
2328 	} else if (priv->status & STATUS_SCANNING) {
2329 		IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2330 			       "after (%dms).\n",
2331 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2332 		ipw_abort_scan(priv);
2333 		schedule_delayed_work(&priv->scan_check, HZ);
2334 	}
2335 }
2336 
2337 static void ipw_bg_scan_check(struct work_struct *work)
2338 {
2339 	struct ipw_priv *priv =
2340 		container_of(work, struct ipw_priv, scan_check.work);
2341 	mutex_lock(&priv->mutex);
2342 	ipw_scan_check(priv);
2343 	mutex_unlock(&priv->mutex);
2344 }
2345 
2346 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2347 				     struct ipw_scan_request_ext *request)
2348 {
2349 	return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2350 				sizeof(*request), request);
2351 }
2352 
2353 static int ipw_send_scan_abort(struct ipw_priv *priv)
2354 {
2355 	if (!priv) {
2356 		IPW_ERROR("Invalid args\n");
2357 		return -1;
2358 	}
2359 
2360 	return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2361 }
2362 
2363 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2364 {
2365 	struct ipw_sensitivity_calib calib = {
2366 		.beacon_rssi_raw = cpu_to_le16(sens),
2367 	};
2368 
2369 	return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2370 				&calib);
2371 }
2372 
2373 static int ipw_send_associate(struct ipw_priv *priv,
2374 			      struct ipw_associate *associate)
2375 {
2376 	if (!priv || !associate) {
2377 		IPW_ERROR("Invalid args\n");
2378 		return -1;
2379 	}
2380 
2381 	return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2382 				associate);
2383 }
2384 
2385 static int ipw_send_supported_rates(struct ipw_priv *priv,
2386 				    struct ipw_supported_rates *rates)
2387 {
2388 	if (!priv || !rates) {
2389 		IPW_ERROR("Invalid args\n");
2390 		return -1;
2391 	}
2392 
2393 	return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2394 				rates);
2395 }
2396 
2397 static int ipw_set_random_seed(struct ipw_priv *priv)
2398 {
2399 	u32 val;
2400 
2401 	if (!priv) {
2402 		IPW_ERROR("Invalid args\n");
2403 		return -1;
2404 	}
2405 
2406 	get_random_bytes(&val, sizeof(val));
2407 
2408 	return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2409 }
2410 
2411 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2412 {
2413 	__le32 v = cpu_to_le32(phy_off);
2414 	if (!priv) {
2415 		IPW_ERROR("Invalid args\n");
2416 		return -1;
2417 	}
2418 
2419 	return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2420 }
2421 
2422 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2423 {
2424 	if (!priv || !power) {
2425 		IPW_ERROR("Invalid args\n");
2426 		return -1;
2427 	}
2428 
2429 	return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2430 }
2431 
2432 static int ipw_set_tx_power(struct ipw_priv *priv)
2433 {
2434 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2435 	struct ipw_tx_power tx_power;
2436 	s8 max_power;
2437 	int i;
2438 
2439 	memset(&tx_power, 0, sizeof(tx_power));
2440 
2441 	/* configure device for 'G' band */
2442 	tx_power.ieee_mode = IPW_G_MODE;
2443 	tx_power.num_channels = geo->bg_channels;
2444 	for (i = 0; i < geo->bg_channels; i++) {
2445 		max_power = geo->bg[i].max_power;
2446 		tx_power.channels_tx_power[i].channel_number =
2447 		    geo->bg[i].channel;
2448 		tx_power.channels_tx_power[i].tx_power = max_power ?
2449 		    min(max_power, priv->tx_power) : priv->tx_power;
2450 	}
2451 	if (ipw_send_tx_power(priv, &tx_power))
2452 		return -EIO;
2453 
2454 	/* configure device to also handle 'B' band */
2455 	tx_power.ieee_mode = IPW_B_MODE;
2456 	if (ipw_send_tx_power(priv, &tx_power))
2457 		return -EIO;
2458 
2459 	/* configure device to also handle 'A' band */
2460 	if (priv->ieee->abg_true) {
2461 		tx_power.ieee_mode = IPW_A_MODE;
2462 		tx_power.num_channels = geo->a_channels;
2463 		for (i = 0; i < tx_power.num_channels; i++) {
2464 			max_power = geo->a[i].max_power;
2465 			tx_power.channels_tx_power[i].channel_number =
2466 			    geo->a[i].channel;
2467 			tx_power.channels_tx_power[i].tx_power = max_power ?
2468 			    min(max_power, priv->tx_power) : priv->tx_power;
2469 		}
2470 		if (ipw_send_tx_power(priv, &tx_power))
2471 			return -EIO;
2472 	}
2473 	return 0;
2474 }
2475 
2476 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2477 {
2478 	struct ipw_rts_threshold rts_threshold = {
2479 		.rts_threshold = cpu_to_le16(rts),
2480 	};
2481 
2482 	if (!priv) {
2483 		IPW_ERROR("Invalid args\n");
2484 		return -1;
2485 	}
2486 
2487 	return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2488 				sizeof(rts_threshold), &rts_threshold);
2489 }
2490 
2491 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2492 {
2493 	struct ipw_frag_threshold frag_threshold = {
2494 		.frag_threshold = cpu_to_le16(frag),
2495 	};
2496 
2497 	if (!priv) {
2498 		IPW_ERROR("Invalid args\n");
2499 		return -1;
2500 	}
2501 
2502 	return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2503 				sizeof(frag_threshold), &frag_threshold);
2504 }
2505 
2506 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2507 {
2508 	__le32 param;
2509 
2510 	if (!priv) {
2511 		IPW_ERROR("Invalid args\n");
2512 		return -1;
2513 	}
2514 
2515 	/* If on battery, set to 3, if AC set to CAM, else user
2516 	 * level */
2517 	switch (mode) {
2518 	case IPW_POWER_BATTERY:
2519 		param = cpu_to_le32(IPW_POWER_INDEX_3);
2520 		break;
2521 	case IPW_POWER_AC:
2522 		param = cpu_to_le32(IPW_POWER_MODE_CAM);
2523 		break;
2524 	default:
2525 		param = cpu_to_le32(mode);
2526 		break;
2527 	}
2528 
2529 	return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2530 				&param);
2531 }
2532 
2533 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2534 {
2535 	struct ipw_retry_limit retry_limit = {
2536 		.short_retry_limit = slimit,
2537 		.long_retry_limit = llimit
2538 	};
2539 
2540 	if (!priv) {
2541 		IPW_ERROR("Invalid args\n");
2542 		return -1;
2543 	}
2544 
2545 	return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2546 				&retry_limit);
2547 }
2548 
2549 /*
2550  * The IPW device contains a Microwire compatible EEPROM that stores
2551  * various data like the MAC address.  Usually the firmware has exclusive
2552  * access to the eeprom, but during device initialization (before the
2553  * device driver has sent the HostComplete command to the firmware) the
2554  * device driver has read access to the EEPROM by way of indirect addressing
2555  * through a couple of memory mapped registers.
2556  *
2557  * The following is a simplified implementation for pulling data out of the
2558  * eeprom, along with some helper functions to find information in
2559  * the per device private data's copy of the eeprom.
2560  *
2561  * NOTE: To better understand how these functions work (i.e what is a chip
2562  *       select and why do have to keep driving the eeprom clock?), read
2563  *       just about any data sheet for a Microwire compatible EEPROM.
2564  */
2565 
2566 /* write a 32 bit value into the indirect accessor register */
2567 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2568 {
2569 	ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2570 
2571 	/* the eeprom requires some time to complete the operation */
2572 	udelay(p->eeprom_delay);
2573 }
2574 
2575 /* perform a chip select operation */
2576 static void eeprom_cs(struct ipw_priv *priv)
2577 {
2578 	eeprom_write_reg(priv, 0);
2579 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2580 	eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2581 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2582 }
2583 
2584 /* perform a chip select operation */
2585 static void eeprom_disable_cs(struct ipw_priv *priv)
2586 {
2587 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2588 	eeprom_write_reg(priv, 0);
2589 	eeprom_write_reg(priv, EEPROM_BIT_SK);
2590 }
2591 
2592 /* push a single bit down to the eeprom */
2593 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2594 {
2595 	int d = (bit ? EEPROM_BIT_DI : 0);
2596 	eeprom_write_reg(p, EEPROM_BIT_CS | d);
2597 	eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2598 }
2599 
2600 /* push an opcode followed by an address down to the eeprom */
2601 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2602 {
2603 	int i;
2604 
2605 	eeprom_cs(priv);
2606 	eeprom_write_bit(priv, 1);
2607 	eeprom_write_bit(priv, op & 2);
2608 	eeprom_write_bit(priv, op & 1);
2609 	for (i = 7; i >= 0; i--) {
2610 		eeprom_write_bit(priv, addr & (1 << i));
2611 	}
2612 }
2613 
2614 /* pull 16 bits off the eeprom, one bit at a time */
2615 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2616 {
2617 	int i;
2618 	u16 r = 0;
2619 
2620 	/* Send READ Opcode */
2621 	eeprom_op(priv, EEPROM_CMD_READ, addr);
2622 
2623 	/* Send dummy bit */
2624 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2625 
2626 	/* Read the byte off the eeprom one bit at a time */
2627 	for (i = 0; i < 16; i++) {
2628 		u32 data = 0;
2629 		eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2630 		eeprom_write_reg(priv, EEPROM_BIT_CS);
2631 		data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2632 		r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2633 	}
2634 
2635 	/* Send another dummy bit */
2636 	eeprom_write_reg(priv, 0);
2637 	eeprom_disable_cs(priv);
2638 
2639 	return r;
2640 }
2641 
2642 /* helper function for pulling the mac address out of the private */
2643 /* data's copy of the eeprom data                                 */
2644 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2645 {
2646 	memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2647 }
2648 
2649 static void ipw_read_eeprom(struct ipw_priv *priv)
2650 {
2651 	int i;
2652 	__le16 *eeprom = (__le16 *) priv->eeprom;
2653 
2654 	IPW_DEBUG_TRACE(">>\n");
2655 
2656 	/* read entire contents of eeprom into private buffer */
2657 	for (i = 0; i < 128; i++)
2658 		eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2659 
2660 	IPW_DEBUG_TRACE("<<\n");
2661 }
2662 
2663 /*
2664  * Either the device driver (i.e. the host) or the firmware can
2665  * load eeprom data into the designated region in SRAM.  If neither
2666  * happens then the FW will shutdown with a fatal error.
2667  *
2668  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2669  * bit needs region of shared SRAM needs to be non-zero.
2670  */
2671 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2672 {
2673 	int i;
2674 
2675 	IPW_DEBUG_TRACE(">>\n");
2676 
2677 	/*
2678 	   If the data looks correct, then copy it to our private
2679 	   copy.  Otherwise let the firmware know to perform the operation
2680 	   on its own.
2681 	 */
2682 	if (priv->eeprom[EEPROM_VERSION] != 0) {
2683 		IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2684 
2685 		/* write the eeprom data to sram */
2686 		for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2687 			ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2688 
2689 		/* Do not load eeprom data on fatal error or suspend */
2690 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2691 	} else {
2692 		IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2693 
2694 		/* Load eeprom data on fatal error or suspend */
2695 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2696 	}
2697 
2698 	IPW_DEBUG_TRACE("<<\n");
2699 }
2700 
2701 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2702 {
2703 	count >>= 2;
2704 	if (!count)
2705 		return;
2706 	_ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2707 	while (count--)
2708 		_ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2709 }
2710 
2711 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2712 {
2713 	ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2714 			CB_NUMBER_OF_ELEMENTS_SMALL *
2715 			sizeof(struct command_block));
2716 }
2717 
2718 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2719 {				/* start dma engine but no transfers yet */
2720 
2721 	IPW_DEBUG_FW(">> :\n");
2722 
2723 	/* Start the dma */
2724 	ipw_fw_dma_reset_command_blocks(priv);
2725 
2726 	/* Write CB base address */
2727 	ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2728 
2729 	IPW_DEBUG_FW("<< :\n");
2730 	return 0;
2731 }
2732 
2733 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2734 {
2735 	u32 control = 0;
2736 
2737 	IPW_DEBUG_FW(">> :\n");
2738 
2739 	/* set the Stop and Abort bit */
2740 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2741 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2742 	priv->sram_desc.last_cb_index = 0;
2743 
2744 	IPW_DEBUG_FW("<<\n");
2745 }
2746 
2747 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2748 					  struct command_block *cb)
2749 {
2750 	u32 address =
2751 	    IPW_SHARED_SRAM_DMA_CONTROL +
2752 	    (sizeof(struct command_block) * index);
2753 	IPW_DEBUG_FW(">> :\n");
2754 
2755 	ipw_write_indirect(priv, address, (u8 *) cb,
2756 			   (int)sizeof(struct command_block));
2757 
2758 	IPW_DEBUG_FW("<< :\n");
2759 	return 0;
2760 
2761 }
2762 
2763 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2764 {
2765 	u32 control = 0;
2766 	u32 index = 0;
2767 
2768 	IPW_DEBUG_FW(">> :\n");
2769 
2770 	for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2771 		ipw_fw_dma_write_command_block(priv, index,
2772 					       &priv->sram_desc.cb_list[index]);
2773 
2774 	/* Enable the DMA in the CSR register */
2775 	ipw_clear_bit(priv, IPW_RESET_REG,
2776 		      IPW_RESET_REG_MASTER_DISABLED |
2777 		      IPW_RESET_REG_STOP_MASTER);
2778 
2779 	/* Set the Start bit. */
2780 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2781 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2782 
2783 	IPW_DEBUG_FW("<< :\n");
2784 	return 0;
2785 }
2786 
2787 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2788 {
2789 	u32 address;
2790 	u32 register_value = 0;
2791 	u32 cb_fields_address = 0;
2792 
2793 	IPW_DEBUG_FW(">> :\n");
2794 	address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2795 	IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2796 
2797 	/* Read the DMA Controlor register */
2798 	register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2799 	IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2800 
2801 	/* Print the CB values */
2802 	cb_fields_address = address;
2803 	register_value = ipw_read_reg32(priv, cb_fields_address);
2804 	IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2805 
2806 	cb_fields_address += sizeof(u32);
2807 	register_value = ipw_read_reg32(priv, cb_fields_address);
2808 	IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2809 
2810 	cb_fields_address += sizeof(u32);
2811 	register_value = ipw_read_reg32(priv, cb_fields_address);
2812 	IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2813 			  register_value);
2814 
2815 	cb_fields_address += sizeof(u32);
2816 	register_value = ipw_read_reg32(priv, cb_fields_address);
2817 	IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2818 
2819 	IPW_DEBUG_FW(">> :\n");
2820 }
2821 
2822 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2823 {
2824 	u32 current_cb_address = 0;
2825 	u32 current_cb_index = 0;
2826 
2827 	IPW_DEBUG_FW("<< :\n");
2828 	current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2829 
2830 	current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2831 	    sizeof(struct command_block);
2832 
2833 	IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2834 			  current_cb_index, current_cb_address);
2835 
2836 	IPW_DEBUG_FW(">> :\n");
2837 	return current_cb_index;
2838 
2839 }
2840 
2841 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2842 					u32 src_address,
2843 					u32 dest_address,
2844 					u32 length,
2845 					int interrupt_enabled, int is_last)
2846 {
2847 
2848 	u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2849 	    CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2850 	    CB_DEST_SIZE_LONG;
2851 	struct command_block *cb;
2852 	u32 last_cb_element = 0;
2853 
2854 	IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2855 			  src_address, dest_address, length);
2856 
2857 	if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2858 		return -1;
2859 
2860 	last_cb_element = priv->sram_desc.last_cb_index;
2861 	cb = &priv->sram_desc.cb_list[last_cb_element];
2862 	priv->sram_desc.last_cb_index++;
2863 
2864 	/* Calculate the new CB control word */
2865 	if (interrupt_enabled)
2866 		control |= CB_INT_ENABLED;
2867 
2868 	if (is_last)
2869 		control |= CB_LAST_VALID;
2870 
2871 	control |= length;
2872 
2873 	/* Calculate the CB Element's checksum value */
2874 	cb->status = control ^ src_address ^ dest_address;
2875 
2876 	/* Copy the Source and Destination addresses */
2877 	cb->dest_addr = dest_address;
2878 	cb->source_addr = src_address;
2879 
2880 	/* Copy the Control Word last */
2881 	cb->control = control;
2882 
2883 	return 0;
2884 }
2885 
2886 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2887 				 int nr, u32 dest_address, u32 len)
2888 {
2889 	int ret, i;
2890 	u32 size;
2891 
2892 	IPW_DEBUG_FW(">>\n");
2893 	IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2894 			  nr, dest_address, len);
2895 
2896 	for (i = 0; i < nr; i++) {
2897 		size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2898 		ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2899 						   dest_address +
2900 						   i * CB_MAX_LENGTH, size,
2901 						   0, 0);
2902 		if (ret) {
2903 			IPW_DEBUG_FW_INFO(": Failed\n");
2904 			return -1;
2905 		} else
2906 			IPW_DEBUG_FW_INFO(": Added new cb\n");
2907 	}
2908 
2909 	IPW_DEBUG_FW("<<\n");
2910 	return 0;
2911 }
2912 
2913 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2914 {
2915 	u32 current_index = 0, previous_index;
2916 	u32 watchdog = 0;
2917 
2918 	IPW_DEBUG_FW(">> :\n");
2919 
2920 	current_index = ipw_fw_dma_command_block_index(priv);
2921 	IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2922 			  (int)priv->sram_desc.last_cb_index);
2923 
2924 	while (current_index < priv->sram_desc.last_cb_index) {
2925 		udelay(50);
2926 		previous_index = current_index;
2927 		current_index = ipw_fw_dma_command_block_index(priv);
2928 
2929 		if (previous_index < current_index) {
2930 			watchdog = 0;
2931 			continue;
2932 		}
2933 		if (++watchdog > 400) {
2934 			IPW_DEBUG_FW_INFO("Timeout\n");
2935 			ipw_fw_dma_dump_command_block(priv);
2936 			ipw_fw_dma_abort(priv);
2937 			return -1;
2938 		}
2939 	}
2940 
2941 	ipw_fw_dma_abort(priv);
2942 
2943 	/*Disable the DMA in the CSR register */
2944 	ipw_set_bit(priv, IPW_RESET_REG,
2945 		    IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2946 
2947 	IPW_DEBUG_FW("<< dmaWaitSync\n");
2948 	return 0;
2949 }
2950 
2951 static void ipw_remove_current_network(struct ipw_priv *priv)
2952 {
2953 	struct list_head *element, *safe;
2954 	struct libipw_network *network = NULL;
2955 	unsigned long flags;
2956 
2957 	spin_lock_irqsave(&priv->ieee->lock, flags);
2958 	list_for_each_safe(element, safe, &priv->ieee->network_list) {
2959 		network = list_entry(element, struct libipw_network, list);
2960 		if (ether_addr_equal(network->bssid, priv->bssid)) {
2961 			list_del(element);
2962 			list_add_tail(&network->list,
2963 				      &priv->ieee->network_free_list);
2964 		}
2965 	}
2966 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
2967 }
2968 
2969 /* timeout in msec, attempted in 10-msec quanta */
2970 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2971 			       int timeout)
2972 {
2973 	int i = 0;
2974 
2975 	do {
2976 		if ((ipw_read32(priv, addr) & mask) == mask)
2977 			return i;
2978 		mdelay(10);
2979 		i += 10;
2980 	} while (i < timeout);
2981 
2982 	return -ETIME;
2983 }
2984 
2985 /* These functions load the firmware and micro code for the operation of
2986  * the ipw hardware.  It assumes the buffer has all the bits for the
2987  * image and the caller is handling the memory allocation and clean up.
2988  */
2989 
2990 static int ipw_stop_master(struct ipw_priv *priv)
2991 {
2992 	int rc;
2993 
2994 	IPW_DEBUG_TRACE(">>\n");
2995 	/* stop master. typical delay - 0 */
2996 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2997 
2998 	/* timeout is in msec, polled in 10-msec quanta */
2999 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3000 			  IPW_RESET_REG_MASTER_DISABLED, 100);
3001 	if (rc < 0) {
3002 		IPW_ERROR("wait for stop master failed after 100ms\n");
3003 		return -1;
3004 	}
3005 
3006 	IPW_DEBUG_INFO("stop master %dms\n", rc);
3007 
3008 	return rc;
3009 }
3010 
3011 static void ipw_arc_release(struct ipw_priv *priv)
3012 {
3013 	IPW_DEBUG_TRACE(">>\n");
3014 	mdelay(5);
3015 
3016 	ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3017 
3018 	/* no one knows timing, for safety add some delay */
3019 	mdelay(5);
3020 }
3021 
3022 struct fw_chunk {
3023 	__le32 address;
3024 	__le32 length;
3025 };
3026 
3027 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3028 {
3029 	int rc = 0, i, addr;
3030 	u8 cr = 0;
3031 	__le16 *image;
3032 
3033 	image = (__le16 *) data;
3034 
3035 	IPW_DEBUG_TRACE(">>\n");
3036 
3037 	rc = ipw_stop_master(priv);
3038 
3039 	if (rc < 0)
3040 		return rc;
3041 
3042 	for (addr = IPW_SHARED_LOWER_BOUND;
3043 	     addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3044 		ipw_write32(priv, addr, 0);
3045 	}
3046 
3047 	/* no ucode (yet) */
3048 	memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3049 	/* destroy DMA queues */
3050 	/* reset sequence */
3051 
3052 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3053 	ipw_arc_release(priv);
3054 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3055 	mdelay(1);
3056 
3057 	/* reset PHY */
3058 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3059 	mdelay(1);
3060 
3061 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3062 	mdelay(1);
3063 
3064 	/* enable ucode store */
3065 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3066 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3067 	mdelay(1);
3068 
3069 	/* write ucode */
3070 	/*
3071 	 * @bug
3072 	 * Do NOT set indirect address register once and then
3073 	 * store data to indirect data register in the loop.
3074 	 * It seems very reasonable, but in this case DINO do not
3075 	 * accept ucode. It is essential to set address each time.
3076 	 */
3077 	/* load new ipw uCode */
3078 	for (i = 0; i < len / 2; i++)
3079 		ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3080 				le16_to_cpu(image[i]));
3081 
3082 	/* enable DINO */
3083 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3084 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3085 
3086 	/* this is where the igx / win driver deveates from the VAP driver. */
3087 
3088 	/* wait for alive response */
3089 	for (i = 0; i < 100; i++) {
3090 		/* poll for incoming data */
3091 		cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3092 		if (cr & DINO_RXFIFO_DATA)
3093 			break;
3094 		mdelay(1);
3095 	}
3096 
3097 	if (cr & DINO_RXFIFO_DATA) {
3098 		/* alive_command_responce size is NOT multiple of 4 */
3099 		__le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3100 
3101 		for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3102 			response_buffer[i] =
3103 			    cpu_to_le32(ipw_read_reg32(priv,
3104 						       IPW_BASEBAND_RX_FIFO_READ));
3105 		memcpy(&priv->dino_alive, response_buffer,
3106 		       sizeof(priv->dino_alive));
3107 		if (priv->dino_alive.alive_command == 1
3108 		    && priv->dino_alive.ucode_valid == 1) {
3109 			rc = 0;
3110 			IPW_DEBUG_INFO
3111 			    ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3112 			     "of %02d/%02d/%02d %02d:%02d\n",
3113 			     priv->dino_alive.software_revision,
3114 			     priv->dino_alive.software_revision,
3115 			     priv->dino_alive.device_identifier,
3116 			     priv->dino_alive.device_identifier,
3117 			     priv->dino_alive.time_stamp[0],
3118 			     priv->dino_alive.time_stamp[1],
3119 			     priv->dino_alive.time_stamp[2],
3120 			     priv->dino_alive.time_stamp[3],
3121 			     priv->dino_alive.time_stamp[4]);
3122 		} else {
3123 			IPW_DEBUG_INFO("Microcode is not alive\n");
3124 			rc = -EINVAL;
3125 		}
3126 	} else {
3127 		IPW_DEBUG_INFO("No alive response from DINO\n");
3128 		rc = -ETIME;
3129 	}
3130 
3131 	/* disable DINO, otherwise for some reason
3132 	   firmware have problem getting alive resp. */
3133 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3134 
3135 	return rc;
3136 }
3137 
3138 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3139 {
3140 	int ret = -1;
3141 	int offset = 0;
3142 	struct fw_chunk *chunk;
3143 	int total_nr = 0;
3144 	int i;
3145 	struct dma_pool *pool;
3146 	void **virts;
3147 	dma_addr_t *phys;
3148 
3149 	IPW_DEBUG_TRACE("<< :\n");
3150 
3151 	virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3152 			      GFP_KERNEL);
3153 	if (!virts)
3154 		return -ENOMEM;
3155 
3156 	phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3157 			     GFP_KERNEL);
3158 	if (!phys) {
3159 		kfree(virts);
3160 		return -ENOMEM;
3161 	}
3162 	pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3163 			       0);
3164 	if (!pool) {
3165 		IPW_ERROR("dma_pool_create failed\n");
3166 		kfree(phys);
3167 		kfree(virts);
3168 		return -ENOMEM;
3169 	}
3170 
3171 	/* Start the Dma */
3172 	ret = ipw_fw_dma_enable(priv);
3173 
3174 	/* the DMA is already ready this would be a bug. */
3175 	BUG_ON(priv->sram_desc.last_cb_index > 0);
3176 
3177 	do {
3178 		u32 chunk_len;
3179 		u8 *start;
3180 		int size;
3181 		int nr = 0;
3182 
3183 		chunk = (struct fw_chunk *)(data + offset);
3184 		offset += sizeof(struct fw_chunk);
3185 		chunk_len = le32_to_cpu(chunk->length);
3186 		start = data + offset;
3187 
3188 		nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3189 		for (i = 0; i < nr; i++) {
3190 			virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3191 							 &phys[total_nr]);
3192 			if (!virts[total_nr]) {
3193 				ret = -ENOMEM;
3194 				goto out;
3195 			}
3196 			size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3197 				     CB_MAX_LENGTH);
3198 			memcpy(virts[total_nr], start, size);
3199 			start += size;
3200 			total_nr++;
3201 			/* We don't support fw chunk larger than 64*8K */
3202 			BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3203 		}
3204 
3205 		/* build DMA packet and queue up for sending */
3206 		/* dma to chunk->address, the chunk->length bytes from data +
3207 		 * offeset*/
3208 		/* Dma loading */
3209 		ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3210 					    nr, le32_to_cpu(chunk->address),
3211 					    chunk_len);
3212 		if (ret) {
3213 			IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3214 			goto out;
3215 		}
3216 
3217 		offset += chunk_len;
3218 	} while (offset < len);
3219 
3220 	/* Run the DMA and wait for the answer */
3221 	ret = ipw_fw_dma_kick(priv);
3222 	if (ret) {
3223 		IPW_ERROR("dmaKick Failed\n");
3224 		goto out;
3225 	}
3226 
3227 	ret = ipw_fw_dma_wait(priv);
3228 	if (ret) {
3229 		IPW_ERROR("dmaWaitSync Failed\n");
3230 		goto out;
3231 	}
3232  out:
3233 	for (i = 0; i < total_nr; i++)
3234 		dma_pool_free(pool, virts[i], phys[i]);
3235 
3236 	dma_pool_destroy(pool);
3237 	kfree(phys);
3238 	kfree(virts);
3239 
3240 	return ret;
3241 }
3242 
3243 /* stop nic */
3244 static int ipw_stop_nic(struct ipw_priv *priv)
3245 {
3246 	int rc = 0;
3247 
3248 	/* stop */
3249 	ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3250 
3251 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3252 			  IPW_RESET_REG_MASTER_DISABLED, 500);
3253 	if (rc < 0) {
3254 		IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3255 		return rc;
3256 	}
3257 
3258 	ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3259 
3260 	return rc;
3261 }
3262 
3263 static void ipw_start_nic(struct ipw_priv *priv)
3264 {
3265 	IPW_DEBUG_TRACE(">>\n");
3266 
3267 	/* prvHwStartNic  release ARC */
3268 	ipw_clear_bit(priv, IPW_RESET_REG,
3269 		      IPW_RESET_REG_MASTER_DISABLED |
3270 		      IPW_RESET_REG_STOP_MASTER |
3271 		      CBD_RESET_REG_PRINCETON_RESET);
3272 
3273 	/* enable power management */
3274 	ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3275 		    IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3276 
3277 	IPW_DEBUG_TRACE("<<\n");
3278 }
3279 
3280 static int ipw_init_nic(struct ipw_priv *priv)
3281 {
3282 	int rc;
3283 
3284 	IPW_DEBUG_TRACE(">>\n");
3285 	/* reset */
3286 	/*prvHwInitNic */
3287 	/* set "initialization complete" bit to move adapter to D0 state */
3288 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3289 
3290 	/* low-level PLL activation */
3291 	ipw_write32(priv, IPW_READ_INT_REGISTER,
3292 		    IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3293 
3294 	/* wait for clock stabilization */
3295 	rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3296 			  IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3297 	if (rc < 0)
3298 		IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3299 
3300 	/* assert SW reset */
3301 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3302 
3303 	udelay(10);
3304 
3305 	/* set "initialization complete" bit to move adapter to D0 state */
3306 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3307 
3308 	IPW_DEBUG_TRACE(">>\n");
3309 	return 0;
3310 }
3311 
3312 /* Call this function from process context, it will sleep in request_firmware.
3313  * Probe is an ok place to call this from.
3314  */
3315 static int ipw_reset_nic(struct ipw_priv *priv)
3316 {
3317 	int rc = 0;
3318 	unsigned long flags;
3319 
3320 	IPW_DEBUG_TRACE(">>\n");
3321 
3322 	rc = ipw_init_nic(priv);
3323 
3324 	spin_lock_irqsave(&priv->lock, flags);
3325 	/* Clear the 'host command active' bit... */
3326 	priv->status &= ~STATUS_HCMD_ACTIVE;
3327 	wake_up_interruptible(&priv->wait_command_queue);
3328 	priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3329 	wake_up_interruptible(&priv->wait_state);
3330 	spin_unlock_irqrestore(&priv->lock, flags);
3331 
3332 	IPW_DEBUG_TRACE("<<\n");
3333 	return rc;
3334 }
3335 
3336 
3337 struct ipw_fw {
3338 	__le32 ver;
3339 	__le32 boot_size;
3340 	__le32 ucode_size;
3341 	__le32 fw_size;
3342 	u8 data[];
3343 };
3344 
3345 static int ipw_get_fw(struct ipw_priv *priv,
3346 		      const struct firmware **raw, const char *name)
3347 {
3348 	struct ipw_fw *fw;
3349 	int rc;
3350 
3351 	/* ask firmware_class module to get the boot firmware off disk */
3352 	rc = request_firmware(raw, name, &priv->pci_dev->dev);
3353 	if (rc < 0) {
3354 		IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3355 		return rc;
3356 	}
3357 
3358 	if ((*raw)->size < sizeof(*fw)) {
3359 		IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3360 		return -EINVAL;
3361 	}
3362 
3363 	fw = (void *)(*raw)->data;
3364 
3365 	if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3366 	    le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3367 		IPW_ERROR("%s is too small or corrupt (%zd)\n",
3368 			  name, (*raw)->size);
3369 		return -EINVAL;
3370 	}
3371 
3372 	IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3373 		       name,
3374 		       le32_to_cpu(fw->ver) >> 16,
3375 		       le32_to_cpu(fw->ver) & 0xff,
3376 		       (*raw)->size - sizeof(*fw));
3377 	return 0;
3378 }
3379 
3380 #define IPW_RX_BUF_SIZE (3000)
3381 
3382 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3383 				      struct ipw_rx_queue *rxq)
3384 {
3385 	unsigned long flags;
3386 	int i;
3387 
3388 	spin_lock_irqsave(&rxq->lock, flags);
3389 
3390 	INIT_LIST_HEAD(&rxq->rx_free);
3391 	INIT_LIST_HEAD(&rxq->rx_used);
3392 
3393 	/* Fill the rx_used queue with _all_ of the Rx buffers */
3394 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3395 		/* In the reset function, these buffers may have been allocated
3396 		 * to an SKB, so we need to unmap and free potential storage */
3397 		if (rxq->pool[i].skb != NULL) {
3398 			dma_unmap_single(&priv->pci_dev->dev,
3399 					 rxq->pool[i].dma_addr,
3400 					 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
3401 			dev_kfree_skb_irq(rxq->pool[i].skb);
3402 			rxq->pool[i].skb = NULL;
3403 		}
3404 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3405 	}
3406 
3407 	/* Set us so that we have processed and used all buffers, but have
3408 	 * not restocked the Rx queue with fresh buffers */
3409 	rxq->read = rxq->write = 0;
3410 	rxq->free_count = 0;
3411 	spin_unlock_irqrestore(&rxq->lock, flags);
3412 }
3413 
3414 #ifdef CONFIG_PM
3415 static int fw_loaded = 0;
3416 static const struct firmware *raw = NULL;
3417 
3418 static void free_firmware(void)
3419 {
3420 	if (fw_loaded) {
3421 		release_firmware(raw);
3422 		raw = NULL;
3423 		fw_loaded = 0;
3424 	}
3425 }
3426 #else
3427 #define free_firmware() do {} while (0)
3428 #endif
3429 
3430 static int ipw_load(struct ipw_priv *priv)
3431 {
3432 #ifndef CONFIG_PM
3433 	const struct firmware *raw = NULL;
3434 #endif
3435 	struct ipw_fw *fw;
3436 	u8 *boot_img, *ucode_img, *fw_img;
3437 	u8 *name = NULL;
3438 	int rc = 0, retries = 3;
3439 
3440 	switch (priv->ieee->iw_mode) {
3441 	case IW_MODE_ADHOC:
3442 		name = "ipw2200-ibss.fw";
3443 		break;
3444 #ifdef CONFIG_IPW2200_MONITOR
3445 	case IW_MODE_MONITOR:
3446 		name = "ipw2200-sniffer.fw";
3447 		break;
3448 #endif
3449 	case IW_MODE_INFRA:
3450 		name = "ipw2200-bss.fw";
3451 		break;
3452 	}
3453 
3454 	if (!name) {
3455 		rc = -EINVAL;
3456 		goto error;
3457 	}
3458 
3459 #ifdef CONFIG_PM
3460 	if (!fw_loaded) {
3461 #endif
3462 		rc = ipw_get_fw(priv, &raw, name);
3463 		if (rc < 0)
3464 			goto error;
3465 #ifdef CONFIG_PM
3466 	}
3467 #endif
3468 
3469 	fw = (void *)raw->data;
3470 	boot_img = &fw->data[0];
3471 	ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3472 	fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3473 			   le32_to_cpu(fw->ucode_size)];
3474 
3475 	if (!priv->rxq)
3476 		priv->rxq = ipw_rx_queue_alloc(priv);
3477 	else
3478 		ipw_rx_queue_reset(priv, priv->rxq);
3479 	if (!priv->rxq) {
3480 		IPW_ERROR("Unable to initialize Rx queue\n");
3481 		rc = -ENOMEM;
3482 		goto error;
3483 	}
3484 
3485       retry:
3486 	/* Ensure interrupts are disabled */
3487 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3488 	priv->status &= ~STATUS_INT_ENABLED;
3489 
3490 	/* ack pending interrupts */
3491 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3492 
3493 	ipw_stop_nic(priv);
3494 
3495 	rc = ipw_reset_nic(priv);
3496 	if (rc < 0) {
3497 		IPW_ERROR("Unable to reset NIC\n");
3498 		goto error;
3499 	}
3500 
3501 	ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3502 			IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3503 
3504 	/* DMA the initial boot firmware into the device */
3505 	rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3506 	if (rc < 0) {
3507 		IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3508 		goto error;
3509 	}
3510 
3511 	/* kick start the device */
3512 	ipw_start_nic(priv);
3513 
3514 	/* wait for the device to finish its initial startup sequence */
3515 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3516 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3517 	if (rc < 0) {
3518 		IPW_ERROR("device failed to boot initial fw image\n");
3519 		goto error;
3520 	}
3521 	IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3522 
3523 	/* ack fw init done interrupt */
3524 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3525 
3526 	/* DMA the ucode into the device */
3527 	rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3528 	if (rc < 0) {
3529 		IPW_ERROR("Unable to load ucode: %d\n", rc);
3530 		goto error;
3531 	}
3532 
3533 	/* stop nic */
3534 	ipw_stop_nic(priv);
3535 
3536 	/* DMA bss firmware into the device */
3537 	rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3538 	if (rc < 0) {
3539 		IPW_ERROR("Unable to load firmware: %d\n", rc);
3540 		goto error;
3541 	}
3542 #ifdef CONFIG_PM
3543 	fw_loaded = 1;
3544 #endif
3545 
3546 	ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3547 
3548 	rc = ipw_queue_reset(priv);
3549 	if (rc < 0) {
3550 		IPW_ERROR("Unable to initialize queues\n");
3551 		goto error;
3552 	}
3553 
3554 	/* Ensure interrupts are disabled */
3555 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3556 	/* ack pending interrupts */
3557 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3558 
3559 	/* kick start the device */
3560 	ipw_start_nic(priv);
3561 
3562 	if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3563 		if (retries > 0) {
3564 			IPW_WARNING("Parity error.  Retrying init.\n");
3565 			retries--;
3566 			goto retry;
3567 		}
3568 
3569 		IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3570 		rc = -EIO;
3571 		goto error;
3572 	}
3573 
3574 	/* wait for the device */
3575 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3576 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3577 	if (rc < 0) {
3578 		IPW_ERROR("device failed to start within 500ms\n");
3579 		goto error;
3580 	}
3581 	IPW_DEBUG_INFO("device response after %dms\n", rc);
3582 
3583 	/* ack fw init done interrupt */
3584 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3585 
3586 	/* read eeprom data */
3587 	priv->eeprom_delay = 1;
3588 	ipw_read_eeprom(priv);
3589 	/* initialize the eeprom region of sram */
3590 	ipw_eeprom_init_sram(priv);
3591 
3592 	/* enable interrupts */
3593 	ipw_enable_interrupts(priv);
3594 
3595 	/* Ensure our queue has valid packets */
3596 	ipw_rx_queue_replenish(priv);
3597 
3598 	ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3599 
3600 	/* ack pending interrupts */
3601 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3602 
3603 #ifndef CONFIG_PM
3604 	release_firmware(raw);
3605 #endif
3606 	return 0;
3607 
3608       error:
3609 	if (priv->rxq) {
3610 		ipw_rx_queue_free(priv, priv->rxq);
3611 		priv->rxq = NULL;
3612 	}
3613 	ipw_tx_queue_free(priv);
3614 	release_firmware(raw);
3615 #ifdef CONFIG_PM
3616 	fw_loaded = 0;
3617 	raw = NULL;
3618 #endif
3619 
3620 	return rc;
3621 }
3622 
3623 /*
3624  * DMA services
3625  *
3626  * Theory of operation
3627  *
3628  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3629  * 2 empty entries always kept in the buffer to protect from overflow.
3630  *
3631  * For Tx queue, there are low mark and high mark limits. If, after queuing
3632  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3633  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3634  * Tx queue resumed.
3635  *
3636  * The IPW operates with six queues, one receive queue in the device's
3637  * sram, one transmit queue for sending commands to the device firmware,
3638  * and four transmit queues for data.
3639  *
3640  * The four transmit queues allow for performing quality of service (qos)
3641  * transmissions as per the 802.11 protocol.  Currently Linux does not
3642  * provide a mechanism to the user for utilizing prioritized queues, so
3643  * we only utilize the first data transmit queue (queue1).
3644  */
3645 
3646 /*
3647  * Driver allocates buffers of this size for Rx
3648  */
3649 
3650 /*
3651  * ipw_rx_queue_space - Return number of free slots available in queue.
3652  */
3653 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3654 {
3655 	int s = q->read - q->write;
3656 	if (s <= 0)
3657 		s += RX_QUEUE_SIZE;
3658 	/* keep some buffer to not confuse full and empty queue */
3659 	s -= 2;
3660 	if (s < 0)
3661 		s = 0;
3662 	return s;
3663 }
3664 
3665 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3666 {
3667 	int s = q->last_used - q->first_empty;
3668 	if (s <= 0)
3669 		s += q->n_bd;
3670 	s -= 2;			/* keep some reserve to not confuse empty and full situations */
3671 	if (s < 0)
3672 		s = 0;
3673 	return s;
3674 }
3675 
3676 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3677 {
3678 	return (++index == n_bd) ? 0 : index;
3679 }
3680 
3681 /*
3682  * Initialize common DMA queue structure
3683  *
3684  * @param q                queue to init
3685  * @param count            Number of BD's to allocate. Should be power of 2
3686  * @param read_register    Address for 'read' register
3687  *                         (not offset within BAR, full address)
3688  * @param write_register   Address for 'write' register
3689  *                         (not offset within BAR, full address)
3690  * @param base_register    Address for 'base' register
3691  *                         (not offset within BAR, full address)
3692  * @param size             Address for 'size' register
3693  *                         (not offset within BAR, full address)
3694  */
3695 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3696 			   int count, u32 read, u32 write, u32 base, u32 size)
3697 {
3698 	q->n_bd = count;
3699 
3700 	q->low_mark = q->n_bd / 4;
3701 	if (q->low_mark < 4)
3702 		q->low_mark = 4;
3703 
3704 	q->high_mark = q->n_bd / 8;
3705 	if (q->high_mark < 2)
3706 		q->high_mark = 2;
3707 
3708 	q->first_empty = q->last_used = 0;
3709 	q->reg_r = read;
3710 	q->reg_w = write;
3711 
3712 	ipw_write32(priv, base, q->dma_addr);
3713 	ipw_write32(priv, size, count);
3714 	ipw_write32(priv, read, 0);
3715 	ipw_write32(priv, write, 0);
3716 
3717 	_ipw_read32(priv, 0x90);
3718 }
3719 
3720 static int ipw_queue_tx_init(struct ipw_priv *priv,
3721 			     struct clx2_tx_queue *q,
3722 			     int count, u32 read, u32 write, u32 base, u32 size)
3723 {
3724 	struct pci_dev *dev = priv->pci_dev;
3725 
3726 	q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3727 	if (!q->txb)
3728 		return -ENOMEM;
3729 
3730 	q->bd =
3731 	    dma_alloc_coherent(&dev->dev, sizeof(q->bd[0]) * count,
3732 			       &q->q.dma_addr, GFP_KERNEL);
3733 	if (!q->bd) {
3734 		IPW_ERROR("dma_alloc_coherent(%zd) failed\n",
3735 			  sizeof(q->bd[0]) * count);
3736 		kfree(q->txb);
3737 		q->txb = NULL;
3738 		return -ENOMEM;
3739 	}
3740 
3741 	ipw_queue_init(priv, &q->q, count, read, write, base, size);
3742 	return 0;
3743 }
3744 
3745 /*
3746  * Free one TFD, those at index [txq->q.last_used].
3747  * Do NOT advance any indexes
3748  *
3749  * @param dev
3750  * @param txq
3751  */
3752 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3753 				  struct clx2_tx_queue *txq)
3754 {
3755 	struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3756 	struct pci_dev *dev = priv->pci_dev;
3757 	int i;
3758 
3759 	/* classify bd */
3760 	if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3761 		/* nothing to cleanup after for host commands */
3762 		return;
3763 
3764 	/* sanity check */
3765 	if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3766 		IPW_ERROR("Too many chunks: %i\n",
3767 			  le32_to_cpu(bd->u.data.num_chunks));
3768 		/* @todo issue fatal error, it is quite serious situation */
3769 		return;
3770 	}
3771 
3772 	/* unmap chunks if any */
3773 	for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3774 		dma_unmap_single(&dev->dev,
3775 				 le32_to_cpu(bd->u.data.chunk_ptr[i]),
3776 				 le16_to_cpu(bd->u.data.chunk_len[i]),
3777 				 DMA_TO_DEVICE);
3778 		if (txq->txb[txq->q.last_used]) {
3779 			libipw_txb_free(txq->txb[txq->q.last_used]);
3780 			txq->txb[txq->q.last_used] = NULL;
3781 		}
3782 	}
3783 }
3784 
3785 /*
3786  * Deallocate DMA queue.
3787  *
3788  * Empty queue by removing and destroying all BD's.
3789  * Free all buffers.
3790  *
3791  * @param dev
3792  * @param q
3793  */
3794 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3795 {
3796 	struct clx2_queue *q = &txq->q;
3797 	struct pci_dev *dev = priv->pci_dev;
3798 
3799 	if (q->n_bd == 0)
3800 		return;
3801 
3802 	/* first, empty all BD's */
3803 	for (; q->first_empty != q->last_used;
3804 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3805 		ipw_queue_tx_free_tfd(priv, txq);
3806 	}
3807 
3808 	/* free buffers belonging to queue itself */
3809 	dma_free_coherent(&dev->dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3810 			  q->dma_addr);
3811 	kfree(txq->txb);
3812 
3813 	/* 0 fill whole structure */
3814 	memset(txq, 0, sizeof(*txq));
3815 }
3816 
3817 /*
3818  * Destroy all DMA queues and structures
3819  *
3820  * @param priv
3821  */
3822 static void ipw_tx_queue_free(struct ipw_priv *priv)
3823 {
3824 	/* Tx CMD queue */
3825 	ipw_queue_tx_free(priv, &priv->txq_cmd);
3826 
3827 	/* Tx queues */
3828 	ipw_queue_tx_free(priv, &priv->txq[0]);
3829 	ipw_queue_tx_free(priv, &priv->txq[1]);
3830 	ipw_queue_tx_free(priv, &priv->txq[2]);
3831 	ipw_queue_tx_free(priv, &priv->txq[3]);
3832 }
3833 
3834 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3835 {
3836 	/* First 3 bytes are manufacturer */
3837 	bssid[0] = priv->mac_addr[0];
3838 	bssid[1] = priv->mac_addr[1];
3839 	bssid[2] = priv->mac_addr[2];
3840 
3841 	/* Last bytes are random */
3842 	get_random_bytes(&bssid[3], ETH_ALEN - 3);
3843 
3844 	bssid[0] &= 0xfe;	/* clear multicast bit */
3845 	bssid[0] |= 0x02;	/* set local assignment bit (IEEE802) */
3846 }
3847 
3848 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3849 {
3850 	struct ipw_station_entry entry;
3851 	int i;
3852 
3853 	for (i = 0; i < priv->num_stations; i++) {
3854 		if (ether_addr_equal(priv->stations[i], bssid)) {
3855 			/* Another node is active in network */
3856 			priv->missed_adhoc_beacons = 0;
3857 			if (!(priv->config & CFG_STATIC_CHANNEL))
3858 				/* when other nodes drop out, we drop out */
3859 				priv->config &= ~CFG_ADHOC_PERSIST;
3860 
3861 			return i;
3862 		}
3863 	}
3864 
3865 	if (i == MAX_STATIONS)
3866 		return IPW_INVALID_STATION;
3867 
3868 	IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3869 
3870 	entry.reserved = 0;
3871 	entry.support_mode = 0;
3872 	memcpy(entry.mac_addr, bssid, ETH_ALEN);
3873 	memcpy(priv->stations[i], bssid, ETH_ALEN);
3874 	ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3875 			 &entry, sizeof(entry));
3876 	priv->num_stations++;
3877 
3878 	return i;
3879 }
3880 
3881 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3882 {
3883 	int i;
3884 
3885 	for (i = 0; i < priv->num_stations; i++)
3886 		if (ether_addr_equal(priv->stations[i], bssid))
3887 			return i;
3888 
3889 	return IPW_INVALID_STATION;
3890 }
3891 
3892 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3893 {
3894 	int err;
3895 
3896 	if (priv->status & STATUS_ASSOCIATING) {
3897 		IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3898 		schedule_work(&priv->disassociate);
3899 		return;
3900 	}
3901 
3902 	if (!(priv->status & STATUS_ASSOCIATED)) {
3903 		IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3904 		return;
3905 	}
3906 
3907 	IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3908 			"on channel %d.\n",
3909 			priv->assoc_request.bssid,
3910 			priv->assoc_request.channel);
3911 
3912 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3913 	priv->status |= STATUS_DISASSOCIATING;
3914 
3915 	if (quiet)
3916 		priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3917 	else
3918 		priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3919 
3920 	err = ipw_send_associate(priv, &priv->assoc_request);
3921 	if (err) {
3922 		IPW_DEBUG_HC("Attempt to send [dis]associate command "
3923 			     "failed.\n");
3924 		return;
3925 	}
3926 
3927 }
3928 
3929 static int ipw_disassociate(void *data)
3930 {
3931 	struct ipw_priv *priv = data;
3932 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3933 		return 0;
3934 	ipw_send_disassociate(data, 0);
3935 	netif_carrier_off(priv->net_dev);
3936 	return 1;
3937 }
3938 
3939 static void ipw_bg_disassociate(struct work_struct *work)
3940 {
3941 	struct ipw_priv *priv =
3942 		container_of(work, struct ipw_priv, disassociate);
3943 	mutex_lock(&priv->mutex);
3944 	ipw_disassociate(priv);
3945 	mutex_unlock(&priv->mutex);
3946 }
3947 
3948 static void ipw_system_config(struct work_struct *work)
3949 {
3950 	struct ipw_priv *priv =
3951 		container_of(work, struct ipw_priv, system_config);
3952 
3953 #ifdef CONFIG_IPW2200_PROMISCUOUS
3954 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3955 		priv->sys_config.accept_all_data_frames = 1;
3956 		priv->sys_config.accept_non_directed_frames = 1;
3957 		priv->sys_config.accept_all_mgmt_bcpr = 1;
3958 		priv->sys_config.accept_all_mgmt_frames = 1;
3959 	}
3960 #endif
3961 
3962 	ipw_send_system_config(priv);
3963 }
3964 
3965 struct ipw_status_code {
3966 	u16 status;
3967 	const char *reason;
3968 };
3969 
3970 static const struct ipw_status_code ipw_status_codes[] = {
3971 	{0x00, "Successful"},
3972 	{0x01, "Unspecified failure"},
3973 	{0x0A, "Cannot support all requested capabilities in the "
3974 	 "Capability information field"},
3975 	{0x0B, "Reassociation denied due to inability to confirm that "
3976 	 "association exists"},
3977 	{0x0C, "Association denied due to reason outside the scope of this "
3978 	 "standard"},
3979 	{0x0D,
3980 	 "Responding station does not support the specified authentication "
3981 	 "algorithm"},
3982 	{0x0E,
3983 	 "Received an Authentication frame with authentication sequence "
3984 	 "transaction sequence number out of expected sequence"},
3985 	{0x0F, "Authentication rejected because of challenge failure"},
3986 	{0x10, "Authentication rejected due to timeout waiting for next "
3987 	 "frame in sequence"},
3988 	{0x11, "Association denied because AP is unable to handle additional "
3989 	 "associated stations"},
3990 	{0x12,
3991 	 "Association denied due to requesting station not supporting all "
3992 	 "of the datarates in the BSSBasicServiceSet Parameter"},
3993 	{0x13,
3994 	 "Association denied due to requesting station not supporting "
3995 	 "short preamble operation"},
3996 	{0x14,
3997 	 "Association denied due to requesting station not supporting "
3998 	 "PBCC encoding"},
3999 	{0x15,
4000 	 "Association denied due to requesting station not supporting "
4001 	 "channel agility"},
4002 	{0x19,
4003 	 "Association denied due to requesting station not supporting "
4004 	 "short slot operation"},
4005 	{0x1A,
4006 	 "Association denied due to requesting station not supporting "
4007 	 "DSSS-OFDM operation"},
4008 	{0x28, "Invalid Information Element"},
4009 	{0x29, "Group Cipher is not valid"},
4010 	{0x2A, "Pairwise Cipher is not valid"},
4011 	{0x2B, "AKMP is not valid"},
4012 	{0x2C, "Unsupported RSN IE version"},
4013 	{0x2D, "Invalid RSN IE Capabilities"},
4014 	{0x2E, "Cipher suite is rejected per security policy"},
4015 };
4016 
4017 static const char *ipw_get_status_code(u16 status)
4018 {
4019 	int i;
4020 	for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4021 		if (ipw_status_codes[i].status == (status & 0xff))
4022 			return ipw_status_codes[i].reason;
4023 	return "Unknown status value.";
4024 }
4025 
4026 static inline void average_init(struct average *avg)
4027 {
4028 	memset(avg, 0, sizeof(*avg));
4029 }
4030 
4031 #define DEPTH_RSSI 8
4032 #define DEPTH_NOISE 16
4033 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4034 {
4035 	return ((depth-1)*prev_avg +  val)/depth;
4036 }
4037 
4038 static void average_add(struct average *avg, s16 val)
4039 {
4040 	avg->sum -= avg->entries[avg->pos];
4041 	avg->sum += val;
4042 	avg->entries[avg->pos++] = val;
4043 	if (unlikely(avg->pos == AVG_ENTRIES)) {
4044 		avg->init = 1;
4045 		avg->pos = 0;
4046 	}
4047 }
4048 
4049 static s16 average_value(struct average *avg)
4050 {
4051 	if (!unlikely(avg->init)) {
4052 		if (avg->pos)
4053 			return avg->sum / avg->pos;
4054 		return 0;
4055 	}
4056 
4057 	return avg->sum / AVG_ENTRIES;
4058 }
4059 
4060 static void ipw_reset_stats(struct ipw_priv *priv)
4061 {
4062 	u32 len = sizeof(u32);
4063 
4064 	priv->quality = 0;
4065 
4066 	average_init(&priv->average_missed_beacons);
4067 	priv->exp_avg_rssi = -60;
4068 	priv->exp_avg_noise = -85 + 0x100;
4069 
4070 	priv->last_rate = 0;
4071 	priv->last_missed_beacons = 0;
4072 	priv->last_rx_packets = 0;
4073 	priv->last_tx_packets = 0;
4074 	priv->last_tx_failures = 0;
4075 
4076 	/* Firmware managed, reset only when NIC is restarted, so we have to
4077 	 * normalize on the current value */
4078 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4079 			&priv->last_rx_err, &len);
4080 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4081 			&priv->last_tx_failures, &len);
4082 
4083 	/* Driver managed, reset with each association */
4084 	priv->missed_adhoc_beacons = 0;
4085 	priv->missed_beacons = 0;
4086 	priv->tx_packets = 0;
4087 	priv->rx_packets = 0;
4088 
4089 }
4090 
4091 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4092 {
4093 	u32 i = 0x80000000;
4094 	u32 mask = priv->rates_mask;
4095 	/* If currently associated in B mode, restrict the maximum
4096 	 * rate match to B rates */
4097 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4098 		mask &= LIBIPW_CCK_RATES_MASK;
4099 
4100 	/* TODO: Verify that the rate is supported by the current rates
4101 	 * list. */
4102 
4103 	while (i && !(mask & i))
4104 		i >>= 1;
4105 	switch (i) {
4106 	case LIBIPW_CCK_RATE_1MB_MASK:
4107 		return 1000000;
4108 	case LIBIPW_CCK_RATE_2MB_MASK:
4109 		return 2000000;
4110 	case LIBIPW_CCK_RATE_5MB_MASK:
4111 		return 5500000;
4112 	case LIBIPW_OFDM_RATE_6MB_MASK:
4113 		return 6000000;
4114 	case LIBIPW_OFDM_RATE_9MB_MASK:
4115 		return 9000000;
4116 	case LIBIPW_CCK_RATE_11MB_MASK:
4117 		return 11000000;
4118 	case LIBIPW_OFDM_RATE_12MB_MASK:
4119 		return 12000000;
4120 	case LIBIPW_OFDM_RATE_18MB_MASK:
4121 		return 18000000;
4122 	case LIBIPW_OFDM_RATE_24MB_MASK:
4123 		return 24000000;
4124 	case LIBIPW_OFDM_RATE_36MB_MASK:
4125 		return 36000000;
4126 	case LIBIPW_OFDM_RATE_48MB_MASK:
4127 		return 48000000;
4128 	case LIBIPW_OFDM_RATE_54MB_MASK:
4129 		return 54000000;
4130 	}
4131 
4132 	if (priv->ieee->mode == IEEE_B)
4133 		return 11000000;
4134 	else
4135 		return 54000000;
4136 }
4137 
4138 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4139 {
4140 	u32 rate, len = sizeof(rate);
4141 	int err;
4142 
4143 	if (!(priv->status & STATUS_ASSOCIATED))
4144 		return 0;
4145 
4146 	if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4147 		err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4148 				      &len);
4149 		if (err) {
4150 			IPW_DEBUG_INFO("failed querying ordinals.\n");
4151 			return 0;
4152 		}
4153 	} else
4154 		return ipw_get_max_rate(priv);
4155 
4156 	switch (rate) {
4157 	case IPW_TX_RATE_1MB:
4158 		return 1000000;
4159 	case IPW_TX_RATE_2MB:
4160 		return 2000000;
4161 	case IPW_TX_RATE_5MB:
4162 		return 5500000;
4163 	case IPW_TX_RATE_6MB:
4164 		return 6000000;
4165 	case IPW_TX_RATE_9MB:
4166 		return 9000000;
4167 	case IPW_TX_RATE_11MB:
4168 		return 11000000;
4169 	case IPW_TX_RATE_12MB:
4170 		return 12000000;
4171 	case IPW_TX_RATE_18MB:
4172 		return 18000000;
4173 	case IPW_TX_RATE_24MB:
4174 		return 24000000;
4175 	case IPW_TX_RATE_36MB:
4176 		return 36000000;
4177 	case IPW_TX_RATE_48MB:
4178 		return 48000000;
4179 	case IPW_TX_RATE_54MB:
4180 		return 54000000;
4181 	}
4182 
4183 	return 0;
4184 }
4185 
4186 #define IPW_STATS_INTERVAL (2 * HZ)
4187 static void ipw_gather_stats(struct ipw_priv *priv)
4188 {
4189 	u32 rx_err, rx_err_delta, rx_packets_delta;
4190 	u32 tx_failures, tx_failures_delta, tx_packets_delta;
4191 	u32 missed_beacons_percent, missed_beacons_delta;
4192 	u32 quality = 0;
4193 	u32 len = sizeof(u32);
4194 	s16 rssi;
4195 	u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4196 	    rate_quality;
4197 	u32 max_rate;
4198 
4199 	if (!(priv->status & STATUS_ASSOCIATED)) {
4200 		priv->quality = 0;
4201 		return;
4202 	}
4203 
4204 	/* Update the statistics */
4205 	ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4206 			&priv->missed_beacons, &len);
4207 	missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4208 	priv->last_missed_beacons = priv->missed_beacons;
4209 	if (priv->assoc_request.beacon_interval) {
4210 		missed_beacons_percent = missed_beacons_delta *
4211 		    (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4212 		    (IPW_STATS_INTERVAL * 10);
4213 	} else {
4214 		missed_beacons_percent = 0;
4215 	}
4216 	average_add(&priv->average_missed_beacons, missed_beacons_percent);
4217 
4218 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4219 	rx_err_delta = rx_err - priv->last_rx_err;
4220 	priv->last_rx_err = rx_err;
4221 
4222 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4223 	tx_failures_delta = tx_failures - priv->last_tx_failures;
4224 	priv->last_tx_failures = tx_failures;
4225 
4226 	rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4227 	priv->last_rx_packets = priv->rx_packets;
4228 
4229 	tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4230 	priv->last_tx_packets = priv->tx_packets;
4231 
4232 	/* Calculate quality based on the following:
4233 	 *
4234 	 * Missed beacon: 100% = 0, 0% = 70% missed
4235 	 * Rate: 60% = 1Mbs, 100% = Max
4236 	 * Rx and Tx errors represent a straight % of total Rx/Tx
4237 	 * RSSI: 100% = > -50,  0% = < -80
4238 	 * Rx errors: 100% = 0, 0% = 50% missed
4239 	 *
4240 	 * The lowest computed quality is used.
4241 	 *
4242 	 */
4243 #define BEACON_THRESHOLD 5
4244 	beacon_quality = 100 - missed_beacons_percent;
4245 	if (beacon_quality < BEACON_THRESHOLD)
4246 		beacon_quality = 0;
4247 	else
4248 		beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4249 		    (100 - BEACON_THRESHOLD);
4250 	IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4251 			beacon_quality, missed_beacons_percent);
4252 
4253 	priv->last_rate = ipw_get_current_rate(priv);
4254 	max_rate = ipw_get_max_rate(priv);
4255 	rate_quality = priv->last_rate * 40 / max_rate + 60;
4256 	IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4257 			rate_quality, priv->last_rate / 1000000);
4258 
4259 	if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4260 		rx_quality = 100 - (rx_err_delta * 100) /
4261 		    (rx_packets_delta + rx_err_delta);
4262 	else
4263 		rx_quality = 100;
4264 	IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4265 			rx_quality, rx_err_delta, rx_packets_delta);
4266 
4267 	if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4268 		tx_quality = 100 - (tx_failures_delta * 100) /
4269 		    (tx_packets_delta + tx_failures_delta);
4270 	else
4271 		tx_quality = 100;
4272 	IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4273 			tx_quality, tx_failures_delta, tx_packets_delta);
4274 
4275 	rssi = priv->exp_avg_rssi;
4276 	signal_quality =
4277 	    (100 *
4278 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4279 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4280 	     (priv->ieee->perfect_rssi - rssi) *
4281 	     (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4282 	      62 * (priv->ieee->perfect_rssi - rssi))) /
4283 	    ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4284 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4285 	if (signal_quality > 100)
4286 		signal_quality = 100;
4287 	else if (signal_quality < 1)
4288 		signal_quality = 0;
4289 
4290 	IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4291 			signal_quality, rssi);
4292 
4293 	quality = min(rx_quality, signal_quality);
4294 	quality = min(tx_quality, quality);
4295 	quality = min(rate_quality, quality);
4296 	quality = min(beacon_quality, quality);
4297 	if (quality == beacon_quality)
4298 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4299 				quality);
4300 	if (quality == rate_quality)
4301 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4302 				quality);
4303 	if (quality == tx_quality)
4304 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4305 				quality);
4306 	if (quality == rx_quality)
4307 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4308 				quality);
4309 	if (quality == signal_quality)
4310 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4311 				quality);
4312 
4313 	priv->quality = quality;
4314 
4315 	schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4316 }
4317 
4318 static void ipw_bg_gather_stats(struct work_struct *work)
4319 {
4320 	struct ipw_priv *priv =
4321 		container_of(work, struct ipw_priv, gather_stats.work);
4322 	mutex_lock(&priv->mutex);
4323 	ipw_gather_stats(priv);
4324 	mutex_unlock(&priv->mutex);
4325 }
4326 
4327 /* Missed beacon behavior:
4328  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4329  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4330  * Above disassociate threshold, give up and stop scanning.
4331  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4332 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4333 					    int missed_count)
4334 {
4335 	priv->notif_missed_beacons = missed_count;
4336 
4337 	if (missed_count > priv->disassociate_threshold &&
4338 	    priv->status & STATUS_ASSOCIATED) {
4339 		/* If associated and we've hit the missed
4340 		 * beacon threshold, disassociate, turn
4341 		 * off roaming, and abort any active scans */
4342 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4343 			  IPW_DL_STATE | IPW_DL_ASSOC,
4344 			  "Missed beacon: %d - disassociate\n", missed_count);
4345 		priv->status &= ~STATUS_ROAMING;
4346 		if (priv->status & STATUS_SCANNING) {
4347 			IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4348 				  IPW_DL_STATE,
4349 				  "Aborting scan with missed beacon.\n");
4350 			schedule_work(&priv->abort_scan);
4351 		}
4352 
4353 		schedule_work(&priv->disassociate);
4354 		return;
4355 	}
4356 
4357 	if (priv->status & STATUS_ROAMING) {
4358 		/* If we are currently roaming, then just
4359 		 * print a debug statement... */
4360 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4361 			  "Missed beacon: %d - roam in progress\n",
4362 			  missed_count);
4363 		return;
4364 	}
4365 
4366 	if (roaming &&
4367 	    (missed_count > priv->roaming_threshold &&
4368 	     missed_count <= priv->disassociate_threshold)) {
4369 		/* If we are not already roaming, set the ROAM
4370 		 * bit in the status and kick off a scan.
4371 		 * This can happen several times before we reach
4372 		 * disassociate_threshold. */
4373 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4374 			  "Missed beacon: %d - initiate "
4375 			  "roaming\n", missed_count);
4376 		if (!(priv->status & STATUS_ROAMING)) {
4377 			priv->status |= STATUS_ROAMING;
4378 			if (!(priv->status & STATUS_SCANNING))
4379 				schedule_delayed_work(&priv->request_scan, 0);
4380 		}
4381 		return;
4382 	}
4383 
4384 	if (priv->status & STATUS_SCANNING &&
4385 	    missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4386 		/* Stop scan to keep fw from getting
4387 		 * stuck (only if we aren't roaming --
4388 		 * otherwise we'll never scan more than 2 or 3
4389 		 * channels..) */
4390 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4391 			  "Aborting scan with missed beacon.\n");
4392 		schedule_work(&priv->abort_scan);
4393 	}
4394 
4395 	IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4396 }
4397 
4398 static void ipw_scan_event(struct work_struct *work)
4399 {
4400 	union iwreq_data wrqu;
4401 
4402 	struct ipw_priv *priv =
4403 		container_of(work, struct ipw_priv, scan_event.work);
4404 
4405 	wrqu.data.length = 0;
4406 	wrqu.data.flags = 0;
4407 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4408 }
4409 
4410 static void handle_scan_event(struct ipw_priv *priv)
4411 {
4412 	/* Only userspace-requested scan completion events go out immediately */
4413 	if (!priv->user_requested_scan) {
4414 		schedule_delayed_work(&priv->scan_event,
4415 				      round_jiffies_relative(msecs_to_jiffies(4000)));
4416 	} else {
4417 		priv->user_requested_scan = 0;
4418 		mod_delayed_work(system_wq, &priv->scan_event, 0);
4419 	}
4420 }
4421 
4422 /*
4423  * Handle host notification packet.
4424  * Called from interrupt routine
4425  */
4426 static void ipw_rx_notification(struct ipw_priv *priv,
4427 				       struct ipw_rx_notification *notif)
4428 {
4429 	u16 size = le16_to_cpu(notif->size);
4430 
4431 	IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4432 
4433 	switch (notif->subtype) {
4434 	case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4435 			struct notif_association *assoc = &notif->u.assoc;
4436 
4437 			switch (assoc->state) {
4438 			case CMAS_ASSOCIATED:{
4439 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4440 						  IPW_DL_ASSOC,
4441 						  "associated: '%*pE' %pM\n",
4442 						  priv->essid_len, priv->essid,
4443 						  priv->bssid);
4444 
4445 					switch (priv->ieee->iw_mode) {
4446 					case IW_MODE_INFRA:
4447 						memcpy(priv->ieee->bssid,
4448 						       priv->bssid, ETH_ALEN);
4449 						break;
4450 
4451 					case IW_MODE_ADHOC:
4452 						memcpy(priv->ieee->bssid,
4453 						       priv->bssid, ETH_ALEN);
4454 
4455 						/* clear out the station table */
4456 						priv->num_stations = 0;
4457 
4458 						IPW_DEBUG_ASSOC
4459 						    ("queueing adhoc check\n");
4460 						schedule_delayed_work(
4461 							&priv->adhoc_check,
4462 							le16_to_cpu(priv->
4463 							assoc_request.
4464 							beacon_interval));
4465 						break;
4466 					}
4467 
4468 					priv->status &= ~STATUS_ASSOCIATING;
4469 					priv->status |= STATUS_ASSOCIATED;
4470 					schedule_work(&priv->system_config);
4471 
4472 #ifdef CONFIG_IPW2200_QOS
4473 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4474 			 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4475 					if ((priv->status & STATUS_AUTH) &&
4476 					    (IPW_GET_PACKET_STYPE(&notif->u.raw)
4477 					     == IEEE80211_STYPE_ASSOC_RESP)) {
4478 						if ((sizeof
4479 						     (struct
4480 						      libipw_assoc_response)
4481 						     <= size)
4482 						    && (size <= 2314)) {
4483 							struct
4484 							libipw_rx_stats
4485 							    stats = {
4486 								.len = size - 1,
4487 							};
4488 
4489 							IPW_DEBUG_QOS
4490 							    ("QoS Associate "
4491 							     "size %d\n", size);
4492 							libipw_rx_mgt(priv->
4493 									 ieee,
4494 									 (struct
4495 									  libipw_hdr_4addr
4496 									  *)
4497 									 &notif->u.raw, &stats);
4498 						}
4499 					}
4500 #endif
4501 
4502 					schedule_work(&priv->link_up);
4503 
4504 					break;
4505 				}
4506 
4507 			case CMAS_AUTHENTICATED:{
4508 					if (priv->
4509 					    status & (STATUS_ASSOCIATED |
4510 						      STATUS_AUTH)) {
4511 						struct notif_authenticate *auth
4512 						    = &notif->u.auth;
4513 						IPW_DEBUG(IPW_DL_NOTIF |
4514 							  IPW_DL_STATE |
4515 							  IPW_DL_ASSOC,
4516 							  "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4517 							  priv->essid_len,
4518 							  priv->essid,
4519 							  priv->bssid,
4520 							  le16_to_cpu(auth->status),
4521 							  ipw_get_status_code
4522 							  (le16_to_cpu
4523 							   (auth->status)));
4524 
4525 						priv->status &=
4526 						    ~(STATUS_ASSOCIATING |
4527 						      STATUS_AUTH |
4528 						      STATUS_ASSOCIATED);
4529 
4530 						schedule_work(&priv->link_down);
4531 						break;
4532 					}
4533 
4534 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4535 						  IPW_DL_ASSOC,
4536 						  "authenticated: '%*pE' %pM\n",
4537 						  priv->essid_len, priv->essid,
4538 						  priv->bssid);
4539 					break;
4540 				}
4541 
4542 			case CMAS_INIT:{
4543 					if (priv->status & STATUS_AUTH) {
4544 						struct
4545 						    libipw_assoc_response
4546 						*resp;
4547 						resp =
4548 						    (struct
4549 						     libipw_assoc_response
4550 						     *)&notif->u.raw;
4551 						IPW_DEBUG(IPW_DL_NOTIF |
4552 							  IPW_DL_STATE |
4553 							  IPW_DL_ASSOC,
4554 							  "association failed (0x%04X): %s\n",
4555 							  le16_to_cpu(resp->status),
4556 							  ipw_get_status_code
4557 							  (le16_to_cpu
4558 							   (resp->status)));
4559 					}
4560 
4561 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4562 						  IPW_DL_ASSOC,
4563 						  "disassociated: '%*pE' %pM\n",
4564 						  priv->essid_len, priv->essid,
4565 						  priv->bssid);
4566 
4567 					priv->status &=
4568 					    ~(STATUS_DISASSOCIATING |
4569 					      STATUS_ASSOCIATING |
4570 					      STATUS_ASSOCIATED | STATUS_AUTH);
4571 					if (priv->assoc_network
4572 					    && (priv->assoc_network->
4573 						capability &
4574 						WLAN_CAPABILITY_IBSS))
4575 						ipw_remove_current_network
4576 						    (priv);
4577 
4578 					schedule_work(&priv->link_down);
4579 
4580 					break;
4581 				}
4582 
4583 			case CMAS_RX_ASSOC_RESP:
4584 				break;
4585 
4586 			default:
4587 				IPW_ERROR("assoc: unknown (%d)\n",
4588 					  assoc->state);
4589 				break;
4590 			}
4591 
4592 			break;
4593 		}
4594 
4595 	case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4596 			struct notif_authenticate *auth = &notif->u.auth;
4597 			switch (auth->state) {
4598 			case CMAS_AUTHENTICATED:
4599 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4600 					  "authenticated: '%*pE' %pM\n",
4601 					  priv->essid_len, priv->essid,
4602 					  priv->bssid);
4603 				priv->status |= STATUS_AUTH;
4604 				break;
4605 
4606 			case CMAS_INIT:
4607 				if (priv->status & STATUS_AUTH) {
4608 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4609 						  IPW_DL_ASSOC,
4610 						  "authentication failed (0x%04X): %s\n",
4611 						  le16_to_cpu(auth->status),
4612 						  ipw_get_status_code(le16_to_cpu
4613 								      (auth->
4614 								       status)));
4615 				}
4616 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4617 					  IPW_DL_ASSOC,
4618 					  "deauthenticated: '%*pE' %pM\n",
4619 					  priv->essid_len, priv->essid,
4620 					  priv->bssid);
4621 
4622 				priv->status &= ~(STATUS_ASSOCIATING |
4623 						  STATUS_AUTH |
4624 						  STATUS_ASSOCIATED);
4625 
4626 				schedule_work(&priv->link_down);
4627 				break;
4628 
4629 			case CMAS_TX_AUTH_SEQ_1:
4630 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631 					  IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4632 				break;
4633 			case CMAS_RX_AUTH_SEQ_2:
4634 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 					  IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4636 				break;
4637 			case CMAS_AUTH_SEQ_1_PASS:
4638 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639 					  IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4640 				break;
4641 			case CMAS_AUTH_SEQ_1_FAIL:
4642 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643 					  IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4644 				break;
4645 			case CMAS_TX_AUTH_SEQ_3:
4646 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647 					  IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4648 				break;
4649 			case CMAS_RX_AUTH_SEQ_4:
4650 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651 					  IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4652 				break;
4653 			case CMAS_AUTH_SEQ_2_PASS:
4654 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655 					  IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4656 				break;
4657 			case CMAS_AUTH_SEQ_2_FAIL:
4658 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4659 					  IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4660 				break;
4661 			case CMAS_TX_ASSOC:
4662 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663 					  IPW_DL_ASSOC, "TX_ASSOC\n");
4664 				break;
4665 			case CMAS_RX_ASSOC_RESP:
4666 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4667 					  IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4668 
4669 				break;
4670 			case CMAS_ASSOCIATED:
4671 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4672 					  IPW_DL_ASSOC, "ASSOCIATED\n");
4673 				break;
4674 			default:
4675 				IPW_DEBUG_NOTIF("auth: failure - %d\n",
4676 						auth->state);
4677 				break;
4678 			}
4679 			break;
4680 		}
4681 
4682 	case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4683 			struct notif_channel_result *x =
4684 			    &notif->u.channel_result;
4685 
4686 			if (size == sizeof(*x)) {
4687 				IPW_DEBUG_SCAN("Scan result for channel %d\n",
4688 					       x->channel_num);
4689 			} else {
4690 				IPW_DEBUG_SCAN("Scan result of wrong size %d "
4691 					       "(should be %zd)\n",
4692 					       size, sizeof(*x));
4693 			}
4694 			break;
4695 		}
4696 
4697 	case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4698 			struct notif_scan_complete *x = &notif->u.scan_complete;
4699 			if (size == sizeof(*x)) {
4700 				IPW_DEBUG_SCAN
4701 				    ("Scan completed: type %d, %d channels, "
4702 				     "%d status\n", x->scan_type,
4703 				     x->num_channels, x->status);
4704 			} else {
4705 				IPW_ERROR("Scan completed of wrong size %d "
4706 					  "(should be %zd)\n",
4707 					  size, sizeof(*x));
4708 			}
4709 
4710 			priv->status &=
4711 			    ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4712 
4713 			wake_up_interruptible(&priv->wait_state);
4714 			cancel_delayed_work(&priv->scan_check);
4715 
4716 			if (priv->status & STATUS_EXIT_PENDING)
4717 				break;
4718 
4719 			priv->ieee->scans++;
4720 
4721 #ifdef CONFIG_IPW2200_MONITOR
4722 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4723 				priv->status |= STATUS_SCAN_FORCED;
4724 				schedule_delayed_work(&priv->request_scan, 0);
4725 				break;
4726 			}
4727 			priv->status &= ~STATUS_SCAN_FORCED;
4728 #endif				/* CONFIG_IPW2200_MONITOR */
4729 
4730 			/* Do queued direct scans first */
4731 			if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4732 				schedule_delayed_work(&priv->request_direct_scan, 0);
4733 
4734 			if (!(priv->status & (STATUS_ASSOCIATED |
4735 					      STATUS_ASSOCIATING |
4736 					      STATUS_ROAMING |
4737 					      STATUS_DISASSOCIATING)))
4738 				schedule_work(&priv->associate);
4739 			else if (priv->status & STATUS_ROAMING) {
4740 				if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4741 					/* If a scan completed and we are in roam mode, then
4742 					 * the scan that completed was the one requested as a
4743 					 * result of entering roam... so, schedule the
4744 					 * roam work */
4745 					schedule_work(&priv->roam);
4746 				else
4747 					/* Don't schedule if we aborted the scan */
4748 					priv->status &= ~STATUS_ROAMING;
4749 			} else if (priv->status & STATUS_SCAN_PENDING)
4750 				schedule_delayed_work(&priv->request_scan, 0);
4751 			else if (priv->config & CFG_BACKGROUND_SCAN
4752 				 && priv->status & STATUS_ASSOCIATED)
4753 				schedule_delayed_work(&priv->request_scan,
4754 						      round_jiffies_relative(HZ));
4755 
4756 			/* Send an empty event to user space.
4757 			 * We don't send the received data on the event because
4758 			 * it would require us to do complex transcoding, and
4759 			 * we want to minimise the work done in the irq handler
4760 			 * Use a request to extract the data.
4761 			 * Also, we generate this even for any scan, regardless
4762 			 * on how the scan was initiated. User space can just
4763 			 * sync on periodic scan to get fresh data...
4764 			 * Jean II */
4765 			if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4766 				handle_scan_event(priv);
4767 			break;
4768 		}
4769 
4770 	case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4771 			struct notif_frag_length *x = &notif->u.frag_len;
4772 
4773 			if (size == sizeof(*x))
4774 				IPW_ERROR("Frag length: %d\n",
4775 					  le16_to_cpu(x->frag_length));
4776 			else
4777 				IPW_ERROR("Frag length of wrong size %d "
4778 					  "(should be %zd)\n",
4779 					  size, sizeof(*x));
4780 			break;
4781 		}
4782 
4783 	case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4784 			struct notif_link_deterioration *x =
4785 			    &notif->u.link_deterioration;
4786 
4787 			if (size == sizeof(*x)) {
4788 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4789 					"link deterioration: type %d, cnt %d\n",
4790 					x->silence_notification_type,
4791 					x->silence_count);
4792 				memcpy(&priv->last_link_deterioration, x,
4793 				       sizeof(*x));
4794 			} else {
4795 				IPW_ERROR("Link Deterioration of wrong size %d "
4796 					  "(should be %zd)\n",
4797 					  size, sizeof(*x));
4798 			}
4799 			break;
4800 		}
4801 
4802 	case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4803 			IPW_ERROR("Dino config\n");
4804 			if (priv->hcmd
4805 			    && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4806 				IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4807 
4808 			break;
4809 		}
4810 
4811 	case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4812 			struct notif_beacon_state *x = &notif->u.beacon_state;
4813 			if (size != sizeof(*x)) {
4814 				IPW_ERROR
4815 				    ("Beacon state of wrong size %d (should "
4816 				     "be %zd)\n", size, sizeof(*x));
4817 				break;
4818 			}
4819 
4820 			if (le32_to_cpu(x->state) ==
4821 			    HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4822 				ipw_handle_missed_beacon(priv,
4823 							 le32_to_cpu(x->
4824 								     number));
4825 
4826 			break;
4827 		}
4828 
4829 	case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4830 			struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4831 			if (size == sizeof(*x)) {
4832 				IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4833 					  "0x%02x station %d\n",
4834 					  x->key_state, x->security_type,
4835 					  x->station_index);
4836 				break;
4837 			}
4838 
4839 			IPW_ERROR
4840 			    ("TGi Tx Key of wrong size %d (should be %zd)\n",
4841 			     size, sizeof(*x));
4842 			break;
4843 		}
4844 
4845 	case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4846 			struct notif_calibration *x = &notif->u.calibration;
4847 
4848 			if (size == sizeof(*x)) {
4849 				memcpy(&priv->calib, x, sizeof(*x));
4850 				IPW_DEBUG_INFO("TODO: Calibration\n");
4851 				break;
4852 			}
4853 
4854 			IPW_ERROR
4855 			    ("Calibration of wrong size %d (should be %zd)\n",
4856 			     size, sizeof(*x));
4857 			break;
4858 		}
4859 
4860 	case HOST_NOTIFICATION_NOISE_STATS:{
4861 			if (size == sizeof(u32)) {
4862 				priv->exp_avg_noise =
4863 				    exponential_average(priv->exp_avg_noise,
4864 				    (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4865 				    DEPTH_NOISE);
4866 				break;
4867 			}
4868 
4869 			IPW_ERROR
4870 			    ("Noise stat is wrong size %d (should be %zd)\n",
4871 			     size, sizeof(u32));
4872 			break;
4873 		}
4874 
4875 	default:
4876 		IPW_DEBUG_NOTIF("Unknown notification: "
4877 				"subtype=%d,flags=0x%2x,size=%d\n",
4878 				notif->subtype, notif->flags, size);
4879 	}
4880 }
4881 
4882 /*
4883  * Destroys all DMA structures and initialise them again
4884  *
4885  * @param priv
4886  * @return error code
4887  */
4888 static int ipw_queue_reset(struct ipw_priv *priv)
4889 {
4890 	int rc = 0;
4891 	/* @todo customize queue sizes */
4892 	int nTx = 64, nTxCmd = 8;
4893 	ipw_tx_queue_free(priv);
4894 	/* Tx CMD queue */
4895 	rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4896 			       IPW_TX_CMD_QUEUE_READ_INDEX,
4897 			       IPW_TX_CMD_QUEUE_WRITE_INDEX,
4898 			       IPW_TX_CMD_QUEUE_BD_BASE,
4899 			       IPW_TX_CMD_QUEUE_BD_SIZE);
4900 	if (rc) {
4901 		IPW_ERROR("Tx Cmd queue init failed\n");
4902 		goto error;
4903 	}
4904 	/* Tx queue(s) */
4905 	rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4906 			       IPW_TX_QUEUE_0_READ_INDEX,
4907 			       IPW_TX_QUEUE_0_WRITE_INDEX,
4908 			       IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4909 	if (rc) {
4910 		IPW_ERROR("Tx 0 queue init failed\n");
4911 		goto error;
4912 	}
4913 	rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4914 			       IPW_TX_QUEUE_1_READ_INDEX,
4915 			       IPW_TX_QUEUE_1_WRITE_INDEX,
4916 			       IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4917 	if (rc) {
4918 		IPW_ERROR("Tx 1 queue init failed\n");
4919 		goto error;
4920 	}
4921 	rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4922 			       IPW_TX_QUEUE_2_READ_INDEX,
4923 			       IPW_TX_QUEUE_2_WRITE_INDEX,
4924 			       IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4925 	if (rc) {
4926 		IPW_ERROR("Tx 2 queue init failed\n");
4927 		goto error;
4928 	}
4929 	rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4930 			       IPW_TX_QUEUE_3_READ_INDEX,
4931 			       IPW_TX_QUEUE_3_WRITE_INDEX,
4932 			       IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4933 	if (rc) {
4934 		IPW_ERROR("Tx 3 queue init failed\n");
4935 		goto error;
4936 	}
4937 	/* statistics */
4938 	priv->rx_bufs_min = 0;
4939 	priv->rx_pend_max = 0;
4940 	return rc;
4941 
4942       error:
4943 	ipw_tx_queue_free(priv);
4944 	return rc;
4945 }
4946 
4947 /*
4948  * Reclaim Tx queue entries no more used by NIC.
4949  *
4950  * When FW advances 'R' index, all entries between old and
4951  * new 'R' index need to be reclaimed. As result, some free space
4952  * forms. If there is enough free space (> low mark), wake Tx queue.
4953  *
4954  * @note Need to protect against garbage in 'R' index
4955  * @param priv
4956  * @param txq
4957  * @param qindex
4958  * @return Number of used entries remains in the queue
4959  */
4960 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4961 				struct clx2_tx_queue *txq, int qindex)
4962 {
4963 	u32 hw_tail;
4964 	int used;
4965 	struct clx2_queue *q = &txq->q;
4966 
4967 	hw_tail = ipw_read32(priv, q->reg_r);
4968 	if (hw_tail >= q->n_bd) {
4969 		IPW_ERROR
4970 		    ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4971 		     hw_tail, q->n_bd);
4972 		goto done;
4973 	}
4974 	for (; q->last_used != hw_tail;
4975 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4976 		ipw_queue_tx_free_tfd(priv, txq);
4977 		priv->tx_packets++;
4978 	}
4979       done:
4980 	if ((ipw_tx_queue_space(q) > q->low_mark) &&
4981 	    (qindex >= 0))
4982 		netif_wake_queue(priv->net_dev);
4983 	used = q->first_empty - q->last_used;
4984 	if (used < 0)
4985 		used += q->n_bd;
4986 
4987 	return used;
4988 }
4989 
4990 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf,
4991 			     int len, int sync)
4992 {
4993 	struct clx2_tx_queue *txq = &priv->txq_cmd;
4994 	struct clx2_queue *q = &txq->q;
4995 	struct tfd_frame *tfd;
4996 
4997 	if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
4998 		IPW_ERROR("No space for Tx\n");
4999 		return -EBUSY;
5000 	}
5001 
5002 	tfd = &txq->bd[q->first_empty];
5003 	txq->txb[q->first_empty] = NULL;
5004 
5005 	memset(tfd, 0, sizeof(*tfd));
5006 	tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5007 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5008 	priv->hcmd_seq++;
5009 	tfd->u.cmd.index = hcmd;
5010 	tfd->u.cmd.length = len;
5011 	memcpy(tfd->u.cmd.payload, buf, len);
5012 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5013 	ipw_write32(priv, q->reg_w, q->first_empty);
5014 	_ipw_read32(priv, 0x90);
5015 
5016 	return 0;
5017 }
5018 
5019 /*
5020  * Rx theory of operation
5021  *
5022  * The host allocates 32 DMA target addresses and passes the host address
5023  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5024  * 0 to 31
5025  *
5026  * Rx Queue Indexes
5027  * The host/firmware share two index registers for managing the Rx buffers.
5028  *
5029  * The READ index maps to the first position that the firmware may be writing
5030  * to -- the driver can read up to (but not including) this position and get
5031  * good data.
5032  * The READ index is managed by the firmware once the card is enabled.
5033  *
5034  * The WRITE index maps to the last position the driver has read from -- the
5035  * position preceding WRITE is the last slot the firmware can place a packet.
5036  *
5037  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5038  * WRITE = READ.
5039  *
5040  * During initialization the host sets up the READ queue position to the first
5041  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5042  *
5043  * When the firmware places a packet in a buffer it will advance the READ index
5044  * and fire the RX interrupt.  The driver can then query the READ index and
5045  * process as many packets as possible, moving the WRITE index forward as it
5046  * resets the Rx queue buffers with new memory.
5047  *
5048  * The management in the driver is as follows:
5049  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5050  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5051  *   to replensish the ipw->rxq->rx_free.
5052  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5053  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5054  *   'processed' and 'read' driver indexes as well)
5055  * + A received packet is processed and handed to the kernel network stack,
5056  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5057  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5058  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5059  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5060  *   were enough free buffers and RX_STALLED is set it is cleared.
5061  *
5062  *
5063  * Driver sequence:
5064  *
5065  * ipw_rx_queue_alloc()       Allocates rx_free
5066  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5067  *                            ipw_rx_queue_restock
5068  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5069  *                            queue, updates firmware pointers, and updates
5070  *                            the WRITE index.  If insufficient rx_free buffers
5071  *                            are available, schedules ipw_rx_queue_replenish
5072  *
5073  * -- enable interrupts --
5074  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5075  *                            READ INDEX, detaching the SKB from the pool.
5076  *                            Moves the packet buffer from queue to rx_used.
5077  *                            Calls ipw_rx_queue_restock to refill any empty
5078  *                            slots.
5079  * ...
5080  *
5081  */
5082 
5083 /*
5084  * If there are slots in the RX queue that  need to be restocked,
5085  * and we have free pre-allocated buffers, fill the ranks as much
5086  * as we can pulling from rx_free.
5087  *
5088  * This moves the 'write' index forward to catch up with 'processed', and
5089  * also updates the memory address in the firmware to reference the new
5090  * target buffer.
5091  */
5092 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5093 {
5094 	struct ipw_rx_queue *rxq = priv->rxq;
5095 	struct list_head *element;
5096 	struct ipw_rx_mem_buffer *rxb;
5097 	unsigned long flags;
5098 	int write;
5099 
5100 	spin_lock_irqsave(&rxq->lock, flags);
5101 	write = rxq->write;
5102 	while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5103 		element = rxq->rx_free.next;
5104 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5105 		list_del(element);
5106 
5107 		ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5108 			    rxb->dma_addr);
5109 		rxq->queue[rxq->write] = rxb;
5110 		rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5111 		rxq->free_count--;
5112 	}
5113 	spin_unlock_irqrestore(&rxq->lock, flags);
5114 
5115 	/* If the pre-allocated buffer pool is dropping low, schedule to
5116 	 * refill it */
5117 	if (rxq->free_count <= RX_LOW_WATERMARK)
5118 		schedule_work(&priv->rx_replenish);
5119 
5120 	/* If we've added more space for the firmware to place data, tell it */
5121 	if (write != rxq->write)
5122 		ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5123 }
5124 
5125 /*
5126  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5127  * Also restock the Rx queue via ipw_rx_queue_restock.
5128  *
5129  * This is called as a scheduled work item (except for during initialization)
5130  */
5131 static void ipw_rx_queue_replenish(void *data)
5132 {
5133 	struct ipw_priv *priv = data;
5134 	struct ipw_rx_queue *rxq = priv->rxq;
5135 	struct list_head *element;
5136 	struct ipw_rx_mem_buffer *rxb;
5137 	unsigned long flags;
5138 
5139 	spin_lock_irqsave(&rxq->lock, flags);
5140 	while (!list_empty(&rxq->rx_used)) {
5141 		element = rxq->rx_used.next;
5142 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5143 		rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5144 		if (!rxb->skb) {
5145 			printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5146 			       priv->net_dev->name);
5147 			/* We don't reschedule replenish work here -- we will
5148 			 * call the restock method and if it still needs
5149 			 * more buffers it will schedule replenish */
5150 			break;
5151 		}
5152 		list_del(element);
5153 
5154 		rxb->dma_addr =
5155 		    dma_map_single(&priv->pci_dev->dev, rxb->skb->data,
5156 				   IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5157 
5158 		list_add_tail(&rxb->list, &rxq->rx_free);
5159 		rxq->free_count++;
5160 	}
5161 	spin_unlock_irqrestore(&rxq->lock, flags);
5162 
5163 	ipw_rx_queue_restock(priv);
5164 }
5165 
5166 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5167 {
5168 	struct ipw_priv *priv =
5169 		container_of(work, struct ipw_priv, rx_replenish);
5170 	mutex_lock(&priv->mutex);
5171 	ipw_rx_queue_replenish(priv);
5172 	mutex_unlock(&priv->mutex);
5173 }
5174 
5175 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5176  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5177  * This free routine walks the list of POOL entries and if SKB is set to
5178  * non NULL it is unmapped and freed
5179  */
5180 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5181 {
5182 	int i;
5183 
5184 	if (!rxq)
5185 		return;
5186 
5187 	for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5188 		if (rxq->pool[i].skb != NULL) {
5189 			dma_unmap_single(&priv->pci_dev->dev,
5190 					 rxq->pool[i].dma_addr,
5191 					 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5192 			dev_kfree_skb(rxq->pool[i].skb);
5193 		}
5194 	}
5195 
5196 	kfree(rxq);
5197 }
5198 
5199 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5200 {
5201 	struct ipw_rx_queue *rxq;
5202 	int i;
5203 
5204 	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5205 	if (unlikely(!rxq)) {
5206 		IPW_ERROR("memory allocation failed\n");
5207 		return NULL;
5208 	}
5209 	spin_lock_init(&rxq->lock);
5210 	INIT_LIST_HEAD(&rxq->rx_free);
5211 	INIT_LIST_HEAD(&rxq->rx_used);
5212 
5213 	/* Fill the rx_used queue with _all_ of the Rx buffers */
5214 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5215 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5216 
5217 	/* Set us so that we have processed and used all buffers, but have
5218 	 * not restocked the Rx queue with fresh buffers */
5219 	rxq->read = rxq->write = 0;
5220 	rxq->free_count = 0;
5221 
5222 	return rxq;
5223 }
5224 
5225 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5226 {
5227 	rate &= ~LIBIPW_BASIC_RATE_MASK;
5228 	if (ieee_mode == IEEE_A) {
5229 		switch (rate) {
5230 		case LIBIPW_OFDM_RATE_6MB:
5231 			return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5232 			    1 : 0;
5233 		case LIBIPW_OFDM_RATE_9MB:
5234 			return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5235 			    1 : 0;
5236 		case LIBIPW_OFDM_RATE_12MB:
5237 			return priv->
5238 			    rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5239 		case LIBIPW_OFDM_RATE_18MB:
5240 			return priv->
5241 			    rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5242 		case LIBIPW_OFDM_RATE_24MB:
5243 			return priv->
5244 			    rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5245 		case LIBIPW_OFDM_RATE_36MB:
5246 			return priv->
5247 			    rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5248 		case LIBIPW_OFDM_RATE_48MB:
5249 			return priv->
5250 			    rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5251 		case LIBIPW_OFDM_RATE_54MB:
5252 			return priv->
5253 			    rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5254 		default:
5255 			return 0;
5256 		}
5257 	}
5258 
5259 	/* B and G mixed */
5260 	switch (rate) {
5261 	case LIBIPW_CCK_RATE_1MB:
5262 		return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5263 	case LIBIPW_CCK_RATE_2MB:
5264 		return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5265 	case LIBIPW_CCK_RATE_5MB:
5266 		return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5267 	case LIBIPW_CCK_RATE_11MB:
5268 		return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5269 	}
5270 
5271 	/* If we are limited to B modulations, bail at this point */
5272 	if (ieee_mode == IEEE_B)
5273 		return 0;
5274 
5275 	/* G */
5276 	switch (rate) {
5277 	case LIBIPW_OFDM_RATE_6MB:
5278 		return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5279 	case LIBIPW_OFDM_RATE_9MB:
5280 		return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5281 	case LIBIPW_OFDM_RATE_12MB:
5282 		return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5283 	case LIBIPW_OFDM_RATE_18MB:
5284 		return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5285 	case LIBIPW_OFDM_RATE_24MB:
5286 		return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5287 	case LIBIPW_OFDM_RATE_36MB:
5288 		return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5289 	case LIBIPW_OFDM_RATE_48MB:
5290 		return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5291 	case LIBIPW_OFDM_RATE_54MB:
5292 		return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5293 	}
5294 
5295 	return 0;
5296 }
5297 
5298 static int ipw_compatible_rates(struct ipw_priv *priv,
5299 				const struct libipw_network *network,
5300 				struct ipw_supported_rates *rates)
5301 {
5302 	int num_rates, i;
5303 
5304 	memset(rates, 0, sizeof(*rates));
5305 	num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5306 	rates->num_rates = 0;
5307 	for (i = 0; i < num_rates; i++) {
5308 		if (!ipw_is_rate_in_mask(priv, network->mode,
5309 					 network->rates[i])) {
5310 
5311 			if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5312 				IPW_DEBUG_SCAN("Adding masked mandatory "
5313 					       "rate %02X\n",
5314 					       network->rates[i]);
5315 				rates->supported_rates[rates->num_rates++] =
5316 				    network->rates[i];
5317 				continue;
5318 			}
5319 
5320 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5321 				       network->rates[i], priv->rates_mask);
5322 			continue;
5323 		}
5324 
5325 		rates->supported_rates[rates->num_rates++] = network->rates[i];
5326 	}
5327 
5328 	num_rates = min(network->rates_ex_len,
5329 			(u8) (IPW_MAX_RATES - num_rates));
5330 	for (i = 0; i < num_rates; i++) {
5331 		if (!ipw_is_rate_in_mask(priv, network->mode,
5332 					 network->rates_ex[i])) {
5333 			if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5334 				IPW_DEBUG_SCAN("Adding masked mandatory "
5335 					       "rate %02X\n",
5336 					       network->rates_ex[i]);
5337 				rates->supported_rates[rates->num_rates++] =
5338 				    network->rates[i];
5339 				continue;
5340 			}
5341 
5342 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5343 				       network->rates_ex[i], priv->rates_mask);
5344 			continue;
5345 		}
5346 
5347 		rates->supported_rates[rates->num_rates++] =
5348 		    network->rates_ex[i];
5349 	}
5350 
5351 	return 1;
5352 }
5353 
5354 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5355 				  const struct ipw_supported_rates *src)
5356 {
5357 	u8 i;
5358 	for (i = 0; i < src->num_rates; i++)
5359 		dest->supported_rates[i] = src->supported_rates[i];
5360 	dest->num_rates = src->num_rates;
5361 }
5362 
5363 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5364  * mask should ever be used -- right now all callers to add the scan rates are
5365  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5366 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5367 				   u8 modulation, u32 rate_mask)
5368 {
5369 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5370 	    LIBIPW_BASIC_RATE_MASK : 0;
5371 
5372 	if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5373 		rates->supported_rates[rates->num_rates++] =
5374 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5375 
5376 	if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5377 		rates->supported_rates[rates->num_rates++] =
5378 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5379 
5380 	if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5381 		rates->supported_rates[rates->num_rates++] = basic_mask |
5382 		    LIBIPW_CCK_RATE_5MB;
5383 
5384 	if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5385 		rates->supported_rates[rates->num_rates++] = basic_mask |
5386 		    LIBIPW_CCK_RATE_11MB;
5387 }
5388 
5389 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5390 				    u8 modulation, u32 rate_mask)
5391 {
5392 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5393 	    LIBIPW_BASIC_RATE_MASK : 0;
5394 
5395 	if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5396 		rates->supported_rates[rates->num_rates++] = basic_mask |
5397 		    LIBIPW_OFDM_RATE_6MB;
5398 
5399 	if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5400 		rates->supported_rates[rates->num_rates++] =
5401 		    LIBIPW_OFDM_RATE_9MB;
5402 
5403 	if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5404 		rates->supported_rates[rates->num_rates++] = basic_mask |
5405 		    LIBIPW_OFDM_RATE_12MB;
5406 
5407 	if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5408 		rates->supported_rates[rates->num_rates++] =
5409 		    LIBIPW_OFDM_RATE_18MB;
5410 
5411 	if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5412 		rates->supported_rates[rates->num_rates++] = basic_mask |
5413 		    LIBIPW_OFDM_RATE_24MB;
5414 
5415 	if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5416 		rates->supported_rates[rates->num_rates++] =
5417 		    LIBIPW_OFDM_RATE_36MB;
5418 
5419 	if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5420 		rates->supported_rates[rates->num_rates++] =
5421 		    LIBIPW_OFDM_RATE_48MB;
5422 
5423 	if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5424 		rates->supported_rates[rates->num_rates++] =
5425 		    LIBIPW_OFDM_RATE_54MB;
5426 }
5427 
5428 struct ipw_network_match {
5429 	struct libipw_network *network;
5430 	struct ipw_supported_rates rates;
5431 };
5432 
5433 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5434 				  struct ipw_network_match *match,
5435 				  struct libipw_network *network,
5436 				  int roaming)
5437 {
5438 	struct ipw_supported_rates rates;
5439 
5440 	/* Verify that this network's capability is compatible with the
5441 	 * current mode (AdHoc or Infrastructure) */
5442 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5443 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5444 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5445 				network->ssid_len, network->ssid,
5446 				network->bssid);
5447 		return 0;
5448 	}
5449 
5450 	if (unlikely(roaming)) {
5451 		/* If we are roaming, then ensure check if this is a valid
5452 		 * network to try and roam to */
5453 		if ((network->ssid_len != match->network->ssid_len) ||
5454 		    memcmp(network->ssid, match->network->ssid,
5455 			   network->ssid_len)) {
5456 			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5457 					network->ssid_len, network->ssid,
5458 					network->bssid);
5459 			return 0;
5460 		}
5461 	} else {
5462 		/* If an ESSID has been configured then compare the broadcast
5463 		 * ESSID to ours */
5464 		if ((priv->config & CFG_STATIC_ESSID) &&
5465 		    ((network->ssid_len != priv->essid_len) ||
5466 		     memcmp(network->ssid, priv->essid,
5467 			    min(network->ssid_len, priv->essid_len)))) {
5468 			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5469 					network->ssid_len, network->ssid,
5470 					network->bssid, priv->essid_len,
5471 					priv->essid);
5472 			return 0;
5473 		}
5474 	}
5475 
5476 	/* If the old network rate is better than this one, don't bother
5477 	 * testing everything else. */
5478 
5479 	if (network->time_stamp[0] < match->network->time_stamp[0]) {
5480 		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5481 				match->network->ssid_len, match->network->ssid);
5482 		return 0;
5483 	} else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5484 		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5485 				match->network->ssid_len, match->network->ssid);
5486 		return 0;
5487 	}
5488 
5489 	/* Now go through and see if the requested network is valid... */
5490 	if (priv->ieee->scan_age != 0 &&
5491 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5492 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5493 				network->ssid_len, network->ssid,
5494 				network->bssid,
5495 				jiffies_to_msecs(jiffies -
5496 						 network->last_scanned));
5497 		return 0;
5498 	}
5499 
5500 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5501 	    (network->channel != priv->channel)) {
5502 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5503 				network->ssid_len, network->ssid,
5504 				network->bssid,
5505 				network->channel, priv->channel);
5506 		return 0;
5507 	}
5508 
5509 	/* Verify privacy compatibility */
5510 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5511 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5512 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5513 				network->ssid_len, network->ssid,
5514 				network->bssid,
5515 				priv->
5516 				capability & CAP_PRIVACY_ON ? "on" : "off",
5517 				network->
5518 				capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5519 				"off");
5520 		return 0;
5521 	}
5522 
5523 	if (ether_addr_equal(network->bssid, priv->bssid)) {
5524 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5525 				network->ssid_len, network->ssid,
5526 				network->bssid, priv->bssid);
5527 		return 0;
5528 	}
5529 
5530 	/* Filter out any incompatible freq / mode combinations */
5531 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5532 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5533 				network->ssid_len, network->ssid,
5534 				network->bssid);
5535 		return 0;
5536 	}
5537 
5538 	/* Ensure that the rates supported by the driver are compatible with
5539 	 * this AP, including verification of basic rates (mandatory) */
5540 	if (!ipw_compatible_rates(priv, network, &rates)) {
5541 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5542 				network->ssid_len, network->ssid,
5543 				network->bssid);
5544 		return 0;
5545 	}
5546 
5547 	if (rates.num_rates == 0) {
5548 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5549 				network->ssid_len, network->ssid,
5550 				network->bssid);
5551 		return 0;
5552 	}
5553 
5554 	/* TODO: Perform any further minimal comparititive tests.  We do not
5555 	 * want to put too much policy logic here; intelligent scan selection
5556 	 * should occur within a generic IEEE 802.11 user space tool.  */
5557 
5558 	/* Set up 'new' AP to this network */
5559 	ipw_copy_rates(&match->rates, &rates);
5560 	match->network = network;
5561 	IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5562 			network->ssid_len, network->ssid, network->bssid);
5563 
5564 	return 1;
5565 }
5566 
5567 static void ipw_merge_adhoc_network(struct work_struct *work)
5568 {
5569 	struct ipw_priv *priv =
5570 		container_of(work, struct ipw_priv, merge_networks);
5571 	struct libipw_network *network = NULL;
5572 	struct ipw_network_match match = {
5573 		.network = priv->assoc_network
5574 	};
5575 
5576 	if ((priv->status & STATUS_ASSOCIATED) &&
5577 	    (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5578 		/* First pass through ROAM process -- look for a better
5579 		 * network */
5580 		unsigned long flags;
5581 
5582 		spin_lock_irqsave(&priv->ieee->lock, flags);
5583 		list_for_each_entry(network, &priv->ieee->network_list, list) {
5584 			if (network != priv->assoc_network)
5585 				ipw_find_adhoc_network(priv, &match, network,
5586 						       1);
5587 		}
5588 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
5589 
5590 		if (match.network == priv->assoc_network) {
5591 			IPW_DEBUG_MERGE("No better ADHOC in this network to "
5592 					"merge to.\n");
5593 			return;
5594 		}
5595 
5596 		mutex_lock(&priv->mutex);
5597 		if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5598 			IPW_DEBUG_MERGE("remove network %*pE\n",
5599 					priv->essid_len, priv->essid);
5600 			ipw_remove_current_network(priv);
5601 		}
5602 
5603 		ipw_disassociate(priv);
5604 		priv->assoc_network = match.network;
5605 		mutex_unlock(&priv->mutex);
5606 		return;
5607 	}
5608 }
5609 
5610 static int ipw_best_network(struct ipw_priv *priv,
5611 			    struct ipw_network_match *match,
5612 			    struct libipw_network *network, int roaming)
5613 {
5614 	struct ipw_supported_rates rates;
5615 
5616 	/* Verify that this network's capability is compatible with the
5617 	 * current mode (AdHoc or Infrastructure) */
5618 	if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5619 	     !(network->capability & WLAN_CAPABILITY_ESS)) ||
5620 	    (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5621 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5622 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5623 				network->ssid_len, network->ssid,
5624 				network->bssid);
5625 		return 0;
5626 	}
5627 
5628 	if (unlikely(roaming)) {
5629 		/* If we are roaming, then ensure check if this is a valid
5630 		 * network to try and roam to */
5631 		if ((network->ssid_len != match->network->ssid_len) ||
5632 		    memcmp(network->ssid, match->network->ssid,
5633 			   network->ssid_len)) {
5634 			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5635 					network->ssid_len, network->ssid,
5636 					network->bssid);
5637 			return 0;
5638 		}
5639 	} else {
5640 		/* If an ESSID has been configured then compare the broadcast
5641 		 * ESSID to ours */
5642 		if ((priv->config & CFG_STATIC_ESSID) &&
5643 		    ((network->ssid_len != priv->essid_len) ||
5644 		     memcmp(network->ssid, priv->essid,
5645 			    min(network->ssid_len, priv->essid_len)))) {
5646 			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5647 					network->ssid_len, network->ssid,
5648 					network->bssid, priv->essid_len,
5649 					priv->essid);
5650 			return 0;
5651 		}
5652 	}
5653 
5654 	/* If the old network rate is better than this one, don't bother
5655 	 * testing everything else. */
5656 	if (match->network && match->network->stats.rssi > network->stats.rssi) {
5657 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5658 				network->ssid_len, network->ssid,
5659 				network->bssid, match->network->ssid_len,
5660 				match->network->ssid, match->network->bssid);
5661 		return 0;
5662 	}
5663 
5664 	/* If this network has already had an association attempt within the
5665 	 * last 3 seconds, do not try and associate again... */
5666 	if (network->last_associate &&
5667 	    time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5668 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5669 				network->ssid_len, network->ssid,
5670 				network->bssid,
5671 				jiffies_to_msecs(jiffies -
5672 						 network->last_associate));
5673 		return 0;
5674 	}
5675 
5676 	/* Now go through and see if the requested network is valid... */
5677 	if (priv->ieee->scan_age != 0 &&
5678 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5679 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5680 				network->ssid_len, network->ssid,
5681 				network->bssid,
5682 				jiffies_to_msecs(jiffies -
5683 						 network->last_scanned));
5684 		return 0;
5685 	}
5686 
5687 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5688 	    (network->channel != priv->channel)) {
5689 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5690 				network->ssid_len, network->ssid,
5691 				network->bssid,
5692 				network->channel, priv->channel);
5693 		return 0;
5694 	}
5695 
5696 	/* Verify privacy compatibility */
5697 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5698 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5699 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5700 				network->ssid_len, network->ssid,
5701 				network->bssid,
5702 				priv->capability & CAP_PRIVACY_ON ? "on" :
5703 				"off",
5704 				network->capability &
5705 				WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5706 		return 0;
5707 	}
5708 
5709 	if ((priv->config & CFG_STATIC_BSSID) &&
5710 	    !ether_addr_equal(network->bssid, priv->bssid)) {
5711 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5712 				network->ssid_len, network->ssid,
5713 				network->bssid, priv->bssid);
5714 		return 0;
5715 	}
5716 
5717 	/* Filter out any incompatible freq / mode combinations */
5718 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5719 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5720 				network->ssid_len, network->ssid,
5721 				network->bssid);
5722 		return 0;
5723 	}
5724 
5725 	/* Filter out invalid channel in current GEO */
5726 	if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5727 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5728 				network->ssid_len, network->ssid,
5729 				network->bssid);
5730 		return 0;
5731 	}
5732 
5733 	/* Ensure that the rates supported by the driver are compatible with
5734 	 * this AP, including verification of basic rates (mandatory) */
5735 	if (!ipw_compatible_rates(priv, network, &rates)) {
5736 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5737 				network->ssid_len, network->ssid,
5738 				network->bssid);
5739 		return 0;
5740 	}
5741 
5742 	if (rates.num_rates == 0) {
5743 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5744 				network->ssid_len, network->ssid,
5745 				network->bssid);
5746 		return 0;
5747 	}
5748 
5749 	/* TODO: Perform any further minimal comparititive tests.  We do not
5750 	 * want to put too much policy logic here; intelligent scan selection
5751 	 * should occur within a generic IEEE 802.11 user space tool.  */
5752 
5753 	/* Set up 'new' AP to this network */
5754 	ipw_copy_rates(&match->rates, &rates);
5755 	match->network = network;
5756 
5757 	IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5758 			network->ssid_len, network->ssid, network->bssid);
5759 
5760 	return 1;
5761 }
5762 
5763 static void ipw_adhoc_create(struct ipw_priv *priv,
5764 			     struct libipw_network *network)
5765 {
5766 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5767 	int i;
5768 
5769 	/*
5770 	 * For the purposes of scanning, we can set our wireless mode
5771 	 * to trigger scans across combinations of bands, but when it
5772 	 * comes to creating a new ad-hoc network, we have tell the FW
5773 	 * exactly which band to use.
5774 	 *
5775 	 * We also have the possibility of an invalid channel for the
5776 	 * chossen band.  Attempting to create a new ad-hoc network
5777 	 * with an invalid channel for wireless mode will trigger a
5778 	 * FW fatal error.
5779 	 *
5780 	 */
5781 	switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5782 	case LIBIPW_52GHZ_BAND:
5783 		network->mode = IEEE_A;
5784 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5785 		BUG_ON(i == -1);
5786 		if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5787 			IPW_WARNING("Overriding invalid channel\n");
5788 			priv->channel = geo->a[0].channel;
5789 		}
5790 		break;
5791 
5792 	case LIBIPW_24GHZ_BAND:
5793 		if (priv->ieee->mode & IEEE_G)
5794 			network->mode = IEEE_G;
5795 		else
5796 			network->mode = IEEE_B;
5797 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5798 		BUG_ON(i == -1);
5799 		if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5800 			IPW_WARNING("Overriding invalid channel\n");
5801 			priv->channel = geo->bg[0].channel;
5802 		}
5803 		break;
5804 
5805 	default:
5806 		IPW_WARNING("Overriding invalid channel\n");
5807 		if (priv->ieee->mode & IEEE_A) {
5808 			network->mode = IEEE_A;
5809 			priv->channel = geo->a[0].channel;
5810 		} else if (priv->ieee->mode & IEEE_G) {
5811 			network->mode = IEEE_G;
5812 			priv->channel = geo->bg[0].channel;
5813 		} else {
5814 			network->mode = IEEE_B;
5815 			priv->channel = geo->bg[0].channel;
5816 		}
5817 		break;
5818 	}
5819 
5820 	network->channel = priv->channel;
5821 	priv->config |= CFG_ADHOC_PERSIST;
5822 	ipw_create_bssid(priv, network->bssid);
5823 	network->ssid_len = priv->essid_len;
5824 	memcpy(network->ssid, priv->essid, priv->essid_len);
5825 	memset(&network->stats, 0, sizeof(network->stats));
5826 	network->capability = WLAN_CAPABILITY_IBSS;
5827 	if (!(priv->config & CFG_PREAMBLE_LONG))
5828 		network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5829 	if (priv->capability & CAP_PRIVACY_ON)
5830 		network->capability |= WLAN_CAPABILITY_PRIVACY;
5831 	network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5832 	memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5833 	network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5834 	memcpy(network->rates_ex,
5835 	       &priv->rates.supported_rates[network->rates_len],
5836 	       network->rates_ex_len);
5837 	network->last_scanned = 0;
5838 	network->flags = 0;
5839 	network->last_associate = 0;
5840 	network->time_stamp[0] = 0;
5841 	network->time_stamp[1] = 0;
5842 	network->beacon_interval = 100;	/* Default */
5843 	network->listen_interval = 10;	/* Default */
5844 	network->atim_window = 0;	/* Default */
5845 	network->wpa_ie_len = 0;
5846 	network->rsn_ie_len = 0;
5847 }
5848 
5849 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5850 {
5851 	struct ipw_tgi_tx_key key;
5852 
5853 	if (!(priv->ieee->sec.flags & (1 << index)))
5854 		return;
5855 
5856 	key.key_id = index;
5857 	memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5858 	key.security_type = type;
5859 	key.station_index = 0;	/* always 0 for BSS */
5860 	key.flags = 0;
5861 	/* 0 for new key; previous value of counter (after fatal error) */
5862 	key.tx_counter[0] = cpu_to_le32(0);
5863 	key.tx_counter[1] = cpu_to_le32(0);
5864 
5865 	ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5866 }
5867 
5868 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5869 {
5870 	struct ipw_wep_key key;
5871 	int i;
5872 
5873 	key.cmd_id = DINO_CMD_WEP_KEY;
5874 	key.seq_num = 0;
5875 
5876 	/* Note: AES keys cannot be set for multiple times.
5877 	 * Only set it at the first time. */
5878 	for (i = 0; i < 4; i++) {
5879 		key.key_index = i | type;
5880 		if (!(priv->ieee->sec.flags & (1 << i))) {
5881 			key.key_size = 0;
5882 			continue;
5883 		}
5884 
5885 		key.key_size = priv->ieee->sec.key_sizes[i];
5886 		memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5887 
5888 		ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5889 	}
5890 }
5891 
5892 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5893 {
5894 	if (priv->ieee->host_encrypt)
5895 		return;
5896 
5897 	switch (level) {
5898 	case SEC_LEVEL_3:
5899 		priv->sys_config.disable_unicast_decryption = 0;
5900 		priv->ieee->host_decrypt = 0;
5901 		break;
5902 	case SEC_LEVEL_2:
5903 		priv->sys_config.disable_unicast_decryption = 1;
5904 		priv->ieee->host_decrypt = 1;
5905 		break;
5906 	case SEC_LEVEL_1:
5907 		priv->sys_config.disable_unicast_decryption = 0;
5908 		priv->ieee->host_decrypt = 0;
5909 		break;
5910 	case SEC_LEVEL_0:
5911 		priv->sys_config.disable_unicast_decryption = 1;
5912 		break;
5913 	default:
5914 		break;
5915 	}
5916 }
5917 
5918 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5919 {
5920 	if (priv->ieee->host_encrypt)
5921 		return;
5922 
5923 	switch (level) {
5924 	case SEC_LEVEL_3:
5925 		priv->sys_config.disable_multicast_decryption = 0;
5926 		break;
5927 	case SEC_LEVEL_2:
5928 		priv->sys_config.disable_multicast_decryption = 1;
5929 		break;
5930 	case SEC_LEVEL_1:
5931 		priv->sys_config.disable_multicast_decryption = 0;
5932 		break;
5933 	case SEC_LEVEL_0:
5934 		priv->sys_config.disable_multicast_decryption = 1;
5935 		break;
5936 	default:
5937 		break;
5938 	}
5939 }
5940 
5941 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5942 {
5943 	switch (priv->ieee->sec.level) {
5944 	case SEC_LEVEL_3:
5945 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5946 			ipw_send_tgi_tx_key(priv,
5947 					    DCT_FLAG_EXT_SECURITY_CCM,
5948 					    priv->ieee->sec.active_key);
5949 
5950 		if (!priv->ieee->host_mc_decrypt)
5951 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5952 		break;
5953 	case SEC_LEVEL_2:
5954 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5955 			ipw_send_tgi_tx_key(priv,
5956 					    DCT_FLAG_EXT_SECURITY_TKIP,
5957 					    priv->ieee->sec.active_key);
5958 		break;
5959 	case SEC_LEVEL_1:
5960 		ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5961 		ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5962 		ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5963 		break;
5964 	case SEC_LEVEL_0:
5965 	default:
5966 		break;
5967 	}
5968 }
5969 
5970 static void ipw_adhoc_check(void *data)
5971 {
5972 	struct ipw_priv *priv = data;
5973 
5974 	if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5975 	    !(priv->config & CFG_ADHOC_PERSIST)) {
5976 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5977 			  IPW_DL_STATE | IPW_DL_ASSOC,
5978 			  "Missed beacon: %d - disassociate\n",
5979 			  priv->missed_adhoc_beacons);
5980 		ipw_remove_current_network(priv);
5981 		ipw_disassociate(priv);
5982 		return;
5983 	}
5984 
5985 	schedule_delayed_work(&priv->adhoc_check,
5986 			      le16_to_cpu(priv->assoc_request.beacon_interval));
5987 }
5988 
5989 static void ipw_bg_adhoc_check(struct work_struct *work)
5990 {
5991 	struct ipw_priv *priv =
5992 		container_of(work, struct ipw_priv, adhoc_check.work);
5993 	mutex_lock(&priv->mutex);
5994 	ipw_adhoc_check(priv);
5995 	mutex_unlock(&priv->mutex);
5996 }
5997 
5998 static void ipw_debug_config(struct ipw_priv *priv)
5999 {
6000 	IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6001 		       "[CFG 0x%08X]\n", priv->config);
6002 	if (priv->config & CFG_STATIC_CHANNEL)
6003 		IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6004 	else
6005 		IPW_DEBUG_INFO("Channel unlocked.\n");
6006 	if (priv->config & CFG_STATIC_ESSID)
6007 		IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6008 			       priv->essid_len, priv->essid);
6009 	else
6010 		IPW_DEBUG_INFO("ESSID unlocked.\n");
6011 	if (priv->config & CFG_STATIC_BSSID)
6012 		IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6013 	else
6014 		IPW_DEBUG_INFO("BSSID unlocked.\n");
6015 	if (priv->capability & CAP_PRIVACY_ON)
6016 		IPW_DEBUG_INFO("PRIVACY on\n");
6017 	else
6018 		IPW_DEBUG_INFO("PRIVACY off\n");
6019 	IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6020 }
6021 
6022 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6023 {
6024 	/* TODO: Verify that this works... */
6025 	struct ipw_fixed_rate fr;
6026 	u32 reg;
6027 	u16 mask = 0;
6028 	u16 new_tx_rates = priv->rates_mask;
6029 
6030 	/* Identify 'current FW band' and match it with the fixed
6031 	 * Tx rates */
6032 
6033 	switch (priv->ieee->freq_band) {
6034 	case LIBIPW_52GHZ_BAND:	/* A only */
6035 		/* IEEE_A */
6036 		if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6037 			/* Invalid fixed rate mask */
6038 			IPW_DEBUG_WX
6039 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6040 			new_tx_rates = 0;
6041 			break;
6042 		}
6043 
6044 		new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6045 		break;
6046 
6047 	default:		/* 2.4Ghz or Mixed */
6048 		/* IEEE_B */
6049 		if (mode == IEEE_B) {
6050 			if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6051 				/* Invalid fixed rate mask */
6052 				IPW_DEBUG_WX
6053 				    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6054 				new_tx_rates = 0;
6055 			}
6056 			break;
6057 		}
6058 
6059 		/* IEEE_G */
6060 		if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6061 				    LIBIPW_OFDM_RATES_MASK)) {
6062 			/* Invalid fixed rate mask */
6063 			IPW_DEBUG_WX
6064 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6065 			new_tx_rates = 0;
6066 			break;
6067 		}
6068 
6069 		if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6070 			mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6071 			new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6072 		}
6073 
6074 		if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6075 			mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6076 			new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6077 		}
6078 
6079 		if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6080 			mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6081 			new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6082 		}
6083 
6084 		new_tx_rates |= mask;
6085 		break;
6086 	}
6087 
6088 	fr.tx_rates = cpu_to_le16(new_tx_rates);
6089 
6090 	reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6091 	ipw_write_reg32(priv, reg, *(u32 *) & fr);
6092 }
6093 
6094 static void ipw_abort_scan(struct ipw_priv *priv)
6095 {
6096 	int err;
6097 
6098 	if (priv->status & STATUS_SCAN_ABORTING) {
6099 		IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6100 		return;
6101 	}
6102 	priv->status |= STATUS_SCAN_ABORTING;
6103 
6104 	err = ipw_send_scan_abort(priv);
6105 	if (err)
6106 		IPW_DEBUG_HC("Request to abort scan failed.\n");
6107 }
6108 
6109 static void ipw_add_scan_channels(struct ipw_priv *priv,
6110 				  struct ipw_scan_request_ext *scan,
6111 				  int scan_type)
6112 {
6113 	int channel_index = 0;
6114 	const struct libipw_geo *geo;
6115 	int i;
6116 
6117 	geo = libipw_get_geo(priv->ieee);
6118 
6119 	if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6120 		int start = channel_index;
6121 		for (i = 0; i < geo->a_channels; i++) {
6122 			if ((priv->status & STATUS_ASSOCIATED) &&
6123 			    geo->a[i].channel == priv->channel)
6124 				continue;
6125 			channel_index++;
6126 			scan->channels_list[channel_index] = geo->a[i].channel;
6127 			ipw_set_scan_type(scan, channel_index,
6128 					  geo->a[i].
6129 					  flags & LIBIPW_CH_PASSIVE_ONLY ?
6130 					  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6131 					  scan_type);
6132 		}
6133 
6134 		if (start != channel_index) {
6135 			scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6136 			    (channel_index - start);
6137 			channel_index++;
6138 		}
6139 	}
6140 
6141 	if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6142 		int start = channel_index;
6143 		if (priv->config & CFG_SPEED_SCAN) {
6144 			int index;
6145 			u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6146 				/* nop out the list */
6147 				[0] = 0
6148 			};
6149 
6150 			u8 channel;
6151 			while (channel_index < IPW_SCAN_CHANNELS - 1) {
6152 				channel =
6153 				    priv->speed_scan[priv->speed_scan_pos];
6154 				if (channel == 0) {
6155 					priv->speed_scan_pos = 0;
6156 					channel = priv->speed_scan[0];
6157 				}
6158 				if ((priv->status & STATUS_ASSOCIATED) &&
6159 				    channel == priv->channel) {
6160 					priv->speed_scan_pos++;
6161 					continue;
6162 				}
6163 
6164 				/* If this channel has already been
6165 				 * added in scan, break from loop
6166 				 * and this will be the first channel
6167 				 * in the next scan.
6168 				 */
6169 				if (channels[channel - 1] != 0)
6170 					break;
6171 
6172 				channels[channel - 1] = 1;
6173 				priv->speed_scan_pos++;
6174 				channel_index++;
6175 				scan->channels_list[channel_index] = channel;
6176 				index =
6177 				    libipw_channel_to_index(priv->ieee, channel);
6178 				ipw_set_scan_type(scan, channel_index,
6179 						  geo->bg[index].
6180 						  flags &
6181 						  LIBIPW_CH_PASSIVE_ONLY ?
6182 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6183 						  : scan_type);
6184 			}
6185 		} else {
6186 			for (i = 0; i < geo->bg_channels; i++) {
6187 				if ((priv->status & STATUS_ASSOCIATED) &&
6188 				    geo->bg[i].channel == priv->channel)
6189 					continue;
6190 				channel_index++;
6191 				scan->channels_list[channel_index] =
6192 				    geo->bg[i].channel;
6193 				ipw_set_scan_type(scan, channel_index,
6194 						  geo->bg[i].
6195 						  flags &
6196 						  LIBIPW_CH_PASSIVE_ONLY ?
6197 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6198 						  : scan_type);
6199 			}
6200 		}
6201 
6202 		if (start != channel_index) {
6203 			scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6204 			    (channel_index - start);
6205 		}
6206 	}
6207 }
6208 
6209 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6210 {
6211 	/* staying on passive channels longer than the DTIM interval during a
6212 	 * scan, while associated, causes the firmware to cancel the scan
6213 	 * without notification. Hence, don't stay on passive channels longer
6214 	 * than the beacon interval.
6215 	 */
6216 	if (priv->status & STATUS_ASSOCIATED
6217 	    && priv->assoc_network->beacon_interval > 10)
6218 		return priv->assoc_network->beacon_interval - 10;
6219 	else
6220 		return 120;
6221 }
6222 
6223 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6224 {
6225 	struct ipw_scan_request_ext scan;
6226 	int err = 0, scan_type;
6227 
6228 	if (!(priv->status & STATUS_INIT) ||
6229 	    (priv->status & STATUS_EXIT_PENDING))
6230 		return 0;
6231 
6232 	mutex_lock(&priv->mutex);
6233 
6234 	if (direct && (priv->direct_scan_ssid_len == 0)) {
6235 		IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6236 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6237 		goto done;
6238 	}
6239 
6240 	if (priv->status & STATUS_SCANNING) {
6241 		IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6242 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6243 					STATUS_SCAN_PENDING;
6244 		goto done;
6245 	}
6246 
6247 	if (!(priv->status & STATUS_SCAN_FORCED) &&
6248 	    priv->status & STATUS_SCAN_ABORTING) {
6249 		IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6250 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6251 					STATUS_SCAN_PENDING;
6252 		goto done;
6253 	}
6254 
6255 	if (priv->status & STATUS_RF_KILL_MASK) {
6256 		IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6257 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6258 					STATUS_SCAN_PENDING;
6259 		goto done;
6260 	}
6261 
6262 	memset(&scan, 0, sizeof(scan));
6263 	scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6264 
6265 	if (type == IW_SCAN_TYPE_PASSIVE) {
6266 		IPW_DEBUG_WX("use passive scanning\n");
6267 		scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6268 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6269 			cpu_to_le16(ipw_passive_dwell_time(priv));
6270 		ipw_add_scan_channels(priv, &scan, scan_type);
6271 		goto send_request;
6272 	}
6273 
6274 	/* Use active scan by default. */
6275 	if (priv->config & CFG_SPEED_SCAN)
6276 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6277 			cpu_to_le16(30);
6278 	else
6279 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6280 			cpu_to_le16(20);
6281 
6282 	scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6283 		cpu_to_le16(20);
6284 
6285 	scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6286 		cpu_to_le16(ipw_passive_dwell_time(priv));
6287 	scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6288 
6289 #ifdef CONFIG_IPW2200_MONITOR
6290 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6291 		u8 channel;
6292 		u8 band = 0;
6293 
6294 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6295 		case LIBIPW_52GHZ_BAND:
6296 			band = (u8) (IPW_A_MODE << 6) | 1;
6297 			channel = priv->channel;
6298 			break;
6299 
6300 		case LIBIPW_24GHZ_BAND:
6301 			band = (u8) (IPW_B_MODE << 6) | 1;
6302 			channel = priv->channel;
6303 			break;
6304 
6305 		default:
6306 			band = (u8) (IPW_B_MODE << 6) | 1;
6307 			channel = 9;
6308 			break;
6309 		}
6310 
6311 		scan.channels_list[0] = band;
6312 		scan.channels_list[1] = channel;
6313 		ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6314 
6315 		/* NOTE:  The card will sit on this channel for this time
6316 		 * period.  Scan aborts are timing sensitive and frequently
6317 		 * result in firmware restarts.  As such, it is best to
6318 		 * set a small dwell_time here and just keep re-issuing
6319 		 * scans.  Otherwise fast channel hopping will not actually
6320 		 * hop channels.
6321 		 *
6322 		 * TODO: Move SPEED SCAN support to all modes and bands */
6323 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6324 			cpu_to_le16(2000);
6325 	} else {
6326 #endif				/* CONFIG_IPW2200_MONITOR */
6327 		/* Honor direct scans first, otherwise if we are roaming make
6328 		 * this a direct scan for the current network.  Finally,
6329 		 * ensure that every other scan is a fast channel hop scan */
6330 		if (direct) {
6331 			err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6332 			                    priv->direct_scan_ssid_len);
6333 			if (err) {
6334 				IPW_DEBUG_HC("Attempt to send SSID command  "
6335 					     "failed\n");
6336 				goto done;
6337 			}
6338 
6339 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6340 		} else if ((priv->status & STATUS_ROAMING)
6341 			   || (!(priv->status & STATUS_ASSOCIATED)
6342 			       && (priv->config & CFG_STATIC_ESSID)
6343 			       && (le32_to_cpu(scan.full_scan_index) % 2))) {
6344 			err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6345 			if (err) {
6346 				IPW_DEBUG_HC("Attempt to send SSID command "
6347 					     "failed.\n");
6348 				goto done;
6349 			}
6350 
6351 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6352 		} else
6353 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6354 
6355 		ipw_add_scan_channels(priv, &scan, scan_type);
6356 #ifdef CONFIG_IPW2200_MONITOR
6357 	}
6358 #endif
6359 
6360 send_request:
6361 	err = ipw_send_scan_request_ext(priv, &scan);
6362 	if (err) {
6363 		IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6364 		goto done;
6365 	}
6366 
6367 	priv->status |= STATUS_SCANNING;
6368 	if (direct) {
6369 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6370 		priv->direct_scan_ssid_len = 0;
6371 	} else
6372 		priv->status &= ~STATUS_SCAN_PENDING;
6373 
6374 	schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6375 done:
6376 	mutex_unlock(&priv->mutex);
6377 	return err;
6378 }
6379 
6380 static void ipw_request_passive_scan(struct work_struct *work)
6381 {
6382 	struct ipw_priv *priv =
6383 		container_of(work, struct ipw_priv, request_passive_scan.work);
6384 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6385 }
6386 
6387 static void ipw_request_scan(struct work_struct *work)
6388 {
6389 	struct ipw_priv *priv =
6390 		container_of(work, struct ipw_priv, request_scan.work);
6391 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6392 }
6393 
6394 static void ipw_request_direct_scan(struct work_struct *work)
6395 {
6396 	struct ipw_priv *priv =
6397 		container_of(work, struct ipw_priv, request_direct_scan.work);
6398 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6399 }
6400 
6401 static void ipw_bg_abort_scan(struct work_struct *work)
6402 {
6403 	struct ipw_priv *priv =
6404 		container_of(work, struct ipw_priv, abort_scan);
6405 	mutex_lock(&priv->mutex);
6406 	ipw_abort_scan(priv);
6407 	mutex_unlock(&priv->mutex);
6408 }
6409 
6410 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6411 {
6412 	/* This is called when wpa_supplicant loads and closes the driver
6413 	 * interface. */
6414 	priv->ieee->wpa_enabled = value;
6415 	return 0;
6416 }
6417 
6418 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6419 {
6420 	struct libipw_device *ieee = priv->ieee;
6421 	struct libipw_security sec = {
6422 		.flags = SEC_AUTH_MODE,
6423 	};
6424 	int ret = 0;
6425 
6426 	if (value & IW_AUTH_ALG_SHARED_KEY) {
6427 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6428 		ieee->open_wep = 0;
6429 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6430 		sec.auth_mode = WLAN_AUTH_OPEN;
6431 		ieee->open_wep = 1;
6432 	} else if (value & IW_AUTH_ALG_LEAP) {
6433 		sec.auth_mode = WLAN_AUTH_LEAP;
6434 		ieee->open_wep = 1;
6435 	} else
6436 		return -EINVAL;
6437 
6438 	if (ieee->set_security)
6439 		ieee->set_security(ieee->dev, &sec);
6440 	else
6441 		ret = -EOPNOTSUPP;
6442 
6443 	return ret;
6444 }
6445 
6446 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6447 				int wpa_ie_len)
6448 {
6449 	/* make sure WPA is enabled */
6450 	ipw_wpa_enable(priv, 1);
6451 }
6452 
6453 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6454 			    char *capabilities, int length)
6455 {
6456 	IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6457 
6458 	return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6459 				capabilities);
6460 }
6461 
6462 /*
6463  * WE-18 support
6464  */
6465 
6466 /* SIOCSIWGENIE */
6467 static int ipw_wx_set_genie(struct net_device *dev,
6468 			    struct iw_request_info *info,
6469 			    union iwreq_data *wrqu, char *extra)
6470 {
6471 	struct ipw_priv *priv = libipw_priv(dev);
6472 	struct libipw_device *ieee = priv->ieee;
6473 	u8 *buf;
6474 	int err = 0;
6475 
6476 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
6477 	    (wrqu->data.length && extra == NULL))
6478 		return -EINVAL;
6479 
6480 	if (wrqu->data.length) {
6481 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6482 		if (buf == NULL) {
6483 			err = -ENOMEM;
6484 			goto out;
6485 		}
6486 
6487 		kfree(ieee->wpa_ie);
6488 		ieee->wpa_ie = buf;
6489 		ieee->wpa_ie_len = wrqu->data.length;
6490 	} else {
6491 		kfree(ieee->wpa_ie);
6492 		ieee->wpa_ie = NULL;
6493 		ieee->wpa_ie_len = 0;
6494 	}
6495 
6496 	ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6497       out:
6498 	return err;
6499 }
6500 
6501 /* SIOCGIWGENIE */
6502 static int ipw_wx_get_genie(struct net_device *dev,
6503 			    struct iw_request_info *info,
6504 			    union iwreq_data *wrqu, char *extra)
6505 {
6506 	struct ipw_priv *priv = libipw_priv(dev);
6507 	struct libipw_device *ieee = priv->ieee;
6508 	int err = 0;
6509 
6510 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6511 		wrqu->data.length = 0;
6512 		goto out;
6513 	}
6514 
6515 	if (wrqu->data.length < ieee->wpa_ie_len) {
6516 		err = -E2BIG;
6517 		goto out;
6518 	}
6519 
6520 	wrqu->data.length = ieee->wpa_ie_len;
6521 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6522 
6523       out:
6524 	return err;
6525 }
6526 
6527 static int wext_cipher2level(int cipher)
6528 {
6529 	switch (cipher) {
6530 	case IW_AUTH_CIPHER_NONE:
6531 		return SEC_LEVEL_0;
6532 	case IW_AUTH_CIPHER_WEP40:
6533 	case IW_AUTH_CIPHER_WEP104:
6534 		return SEC_LEVEL_1;
6535 	case IW_AUTH_CIPHER_TKIP:
6536 		return SEC_LEVEL_2;
6537 	case IW_AUTH_CIPHER_CCMP:
6538 		return SEC_LEVEL_3;
6539 	default:
6540 		return -1;
6541 	}
6542 }
6543 
6544 /* SIOCSIWAUTH */
6545 static int ipw_wx_set_auth(struct net_device *dev,
6546 			   struct iw_request_info *info,
6547 			   union iwreq_data *wrqu, char *extra)
6548 {
6549 	struct ipw_priv *priv = libipw_priv(dev);
6550 	struct libipw_device *ieee = priv->ieee;
6551 	struct iw_param *param = &wrqu->param;
6552 	struct lib80211_crypt_data *crypt;
6553 	unsigned long flags;
6554 	int ret = 0;
6555 
6556 	switch (param->flags & IW_AUTH_INDEX) {
6557 	case IW_AUTH_WPA_VERSION:
6558 		break;
6559 	case IW_AUTH_CIPHER_PAIRWISE:
6560 		ipw_set_hw_decrypt_unicast(priv,
6561 					   wext_cipher2level(param->value));
6562 		break;
6563 	case IW_AUTH_CIPHER_GROUP:
6564 		ipw_set_hw_decrypt_multicast(priv,
6565 					     wext_cipher2level(param->value));
6566 		break;
6567 	case IW_AUTH_KEY_MGMT:
6568 		/*
6569 		 * ipw2200 does not use these parameters
6570 		 */
6571 		break;
6572 
6573 	case IW_AUTH_TKIP_COUNTERMEASURES:
6574 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6575 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6576 			break;
6577 
6578 		flags = crypt->ops->get_flags(crypt->priv);
6579 
6580 		if (param->value)
6581 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6582 		else
6583 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6584 
6585 		crypt->ops->set_flags(flags, crypt->priv);
6586 
6587 		break;
6588 
6589 	case IW_AUTH_DROP_UNENCRYPTED:{
6590 			/* HACK:
6591 			 *
6592 			 * wpa_supplicant calls set_wpa_enabled when the driver
6593 			 * is loaded and unloaded, regardless of if WPA is being
6594 			 * used.  No other calls are made which can be used to
6595 			 * determine if encryption will be used or not prior to
6596 			 * association being expected.  If encryption is not being
6597 			 * used, drop_unencrypted is set to false, else true -- we
6598 			 * can use this to determine if the CAP_PRIVACY_ON bit should
6599 			 * be set.
6600 			 */
6601 			struct libipw_security sec = {
6602 				.flags = SEC_ENABLED,
6603 				.enabled = param->value,
6604 			};
6605 			priv->ieee->drop_unencrypted = param->value;
6606 			/* We only change SEC_LEVEL for open mode. Others
6607 			 * are set by ipw_wpa_set_encryption.
6608 			 */
6609 			if (!param->value) {
6610 				sec.flags |= SEC_LEVEL;
6611 				sec.level = SEC_LEVEL_0;
6612 			} else {
6613 				sec.flags |= SEC_LEVEL;
6614 				sec.level = SEC_LEVEL_1;
6615 			}
6616 			if (priv->ieee->set_security)
6617 				priv->ieee->set_security(priv->ieee->dev, &sec);
6618 			break;
6619 		}
6620 
6621 	case IW_AUTH_80211_AUTH_ALG:
6622 		ret = ipw_wpa_set_auth_algs(priv, param->value);
6623 		break;
6624 
6625 	case IW_AUTH_WPA_ENABLED:
6626 		ret = ipw_wpa_enable(priv, param->value);
6627 		ipw_disassociate(priv);
6628 		break;
6629 
6630 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6631 		ieee->ieee802_1x = param->value;
6632 		break;
6633 
6634 	case IW_AUTH_PRIVACY_INVOKED:
6635 		ieee->privacy_invoked = param->value;
6636 		break;
6637 
6638 	default:
6639 		return -EOPNOTSUPP;
6640 	}
6641 	return ret;
6642 }
6643 
6644 /* SIOCGIWAUTH */
6645 static int ipw_wx_get_auth(struct net_device *dev,
6646 			   struct iw_request_info *info,
6647 			   union iwreq_data *wrqu, char *extra)
6648 {
6649 	struct ipw_priv *priv = libipw_priv(dev);
6650 	struct libipw_device *ieee = priv->ieee;
6651 	struct lib80211_crypt_data *crypt;
6652 	struct iw_param *param = &wrqu->param;
6653 
6654 	switch (param->flags & IW_AUTH_INDEX) {
6655 	case IW_AUTH_WPA_VERSION:
6656 	case IW_AUTH_CIPHER_PAIRWISE:
6657 	case IW_AUTH_CIPHER_GROUP:
6658 	case IW_AUTH_KEY_MGMT:
6659 		/*
6660 		 * wpa_supplicant will control these internally
6661 		 */
6662 		return -EOPNOTSUPP;
6663 
6664 	case IW_AUTH_TKIP_COUNTERMEASURES:
6665 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6666 		if (!crypt || !crypt->ops->get_flags)
6667 			break;
6668 
6669 		param->value = (crypt->ops->get_flags(crypt->priv) &
6670 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6671 
6672 		break;
6673 
6674 	case IW_AUTH_DROP_UNENCRYPTED:
6675 		param->value = ieee->drop_unencrypted;
6676 		break;
6677 
6678 	case IW_AUTH_80211_AUTH_ALG:
6679 		param->value = ieee->sec.auth_mode;
6680 		break;
6681 
6682 	case IW_AUTH_WPA_ENABLED:
6683 		param->value = ieee->wpa_enabled;
6684 		break;
6685 
6686 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6687 		param->value = ieee->ieee802_1x;
6688 		break;
6689 
6690 	case IW_AUTH_ROAMING_CONTROL:
6691 	case IW_AUTH_PRIVACY_INVOKED:
6692 		param->value = ieee->privacy_invoked;
6693 		break;
6694 
6695 	default:
6696 		return -EOPNOTSUPP;
6697 	}
6698 	return 0;
6699 }
6700 
6701 /* SIOCSIWENCODEEXT */
6702 static int ipw_wx_set_encodeext(struct net_device *dev,
6703 				struct iw_request_info *info,
6704 				union iwreq_data *wrqu, char *extra)
6705 {
6706 	struct ipw_priv *priv = libipw_priv(dev);
6707 	struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6708 
6709 	if (hwcrypto) {
6710 		if (ext->alg == IW_ENCODE_ALG_TKIP) {
6711 			/* IPW HW can't build TKIP MIC,
6712 			   host decryption still needed */
6713 			if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6714 				priv->ieee->host_mc_decrypt = 1;
6715 			else {
6716 				priv->ieee->host_encrypt = 0;
6717 				priv->ieee->host_encrypt_msdu = 1;
6718 				priv->ieee->host_decrypt = 1;
6719 			}
6720 		} else {
6721 			priv->ieee->host_encrypt = 0;
6722 			priv->ieee->host_encrypt_msdu = 0;
6723 			priv->ieee->host_decrypt = 0;
6724 			priv->ieee->host_mc_decrypt = 0;
6725 		}
6726 	}
6727 
6728 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6729 }
6730 
6731 /* SIOCGIWENCODEEXT */
6732 static int ipw_wx_get_encodeext(struct net_device *dev,
6733 				struct iw_request_info *info,
6734 				union iwreq_data *wrqu, char *extra)
6735 {
6736 	struct ipw_priv *priv = libipw_priv(dev);
6737 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6738 }
6739 
6740 /* SIOCSIWMLME */
6741 static int ipw_wx_set_mlme(struct net_device *dev,
6742 			   struct iw_request_info *info,
6743 			   union iwreq_data *wrqu, char *extra)
6744 {
6745 	struct ipw_priv *priv = libipw_priv(dev);
6746 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
6747 
6748 	switch (mlme->cmd) {
6749 	case IW_MLME_DEAUTH:
6750 		/* silently ignore */
6751 		break;
6752 
6753 	case IW_MLME_DISASSOC:
6754 		ipw_disassociate(priv);
6755 		break;
6756 
6757 	default:
6758 		return -EOPNOTSUPP;
6759 	}
6760 	return 0;
6761 }
6762 
6763 #ifdef CONFIG_IPW2200_QOS
6764 
6765 /* QoS */
6766 /*
6767 * get the modulation type of the current network or
6768 * the card current mode
6769 */
6770 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6771 {
6772 	u8 mode = 0;
6773 
6774 	if (priv->status & STATUS_ASSOCIATED) {
6775 		unsigned long flags;
6776 
6777 		spin_lock_irqsave(&priv->ieee->lock, flags);
6778 		mode = priv->assoc_network->mode;
6779 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6780 	} else {
6781 		mode = priv->ieee->mode;
6782 	}
6783 	IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6784 	return mode;
6785 }
6786 
6787 /*
6788 * Handle management frame beacon and probe response
6789 */
6790 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6791 					 int active_network,
6792 					 struct libipw_network *network)
6793 {
6794 	u32 size = sizeof(struct libipw_qos_parameters);
6795 
6796 	if (network->capability & WLAN_CAPABILITY_IBSS)
6797 		network->qos_data.active = network->qos_data.supported;
6798 
6799 	if (network->flags & NETWORK_HAS_QOS_MASK) {
6800 		if (active_network &&
6801 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6802 			network->qos_data.active = network->qos_data.supported;
6803 
6804 		if ((network->qos_data.active == 1) && (active_network == 1) &&
6805 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6806 		    (network->qos_data.old_param_count !=
6807 		     network->qos_data.param_count)) {
6808 			network->qos_data.old_param_count =
6809 			    network->qos_data.param_count;
6810 			schedule_work(&priv->qos_activate);
6811 			IPW_DEBUG_QOS("QoS parameters change call "
6812 				      "qos_activate\n");
6813 		}
6814 	} else {
6815 		if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6816 			memcpy(&network->qos_data.parameters,
6817 			       &def_parameters_CCK, size);
6818 		else
6819 			memcpy(&network->qos_data.parameters,
6820 			       &def_parameters_OFDM, size);
6821 
6822 		if ((network->qos_data.active == 1) && (active_network == 1)) {
6823 			IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6824 			schedule_work(&priv->qos_activate);
6825 		}
6826 
6827 		network->qos_data.active = 0;
6828 		network->qos_data.supported = 0;
6829 	}
6830 	if ((priv->status & STATUS_ASSOCIATED) &&
6831 	    (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6832 		if (!ether_addr_equal(network->bssid, priv->bssid))
6833 			if (network->capability & WLAN_CAPABILITY_IBSS)
6834 				if ((network->ssid_len ==
6835 				     priv->assoc_network->ssid_len) &&
6836 				    !memcmp(network->ssid,
6837 					    priv->assoc_network->ssid,
6838 					    network->ssid_len)) {
6839 					schedule_work(&priv->merge_networks);
6840 				}
6841 	}
6842 
6843 	return 0;
6844 }
6845 
6846 /*
6847 * This function set up the firmware to support QoS. It sends
6848 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6849 */
6850 static int ipw_qos_activate(struct ipw_priv *priv,
6851 			    struct libipw_qos_data *qos_network_data)
6852 {
6853 	int err;
6854 	struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6855 	struct libipw_qos_parameters *active_one = NULL;
6856 	u32 size = sizeof(struct libipw_qos_parameters);
6857 	u32 burst_duration;
6858 	int i;
6859 	u8 type;
6860 
6861 	type = ipw_qos_current_mode(priv);
6862 
6863 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6864 	memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6865 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6866 	memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6867 
6868 	if (qos_network_data == NULL) {
6869 		if (type == IEEE_B) {
6870 			IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6871 			active_one = &def_parameters_CCK;
6872 		} else
6873 			active_one = &def_parameters_OFDM;
6874 
6875 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6876 		burst_duration = ipw_qos_get_burst_duration(priv);
6877 		for (i = 0; i < QOS_QUEUE_NUM; i++)
6878 			qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6879 			    cpu_to_le16(burst_duration);
6880 	} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6881 		if (type == IEEE_B) {
6882 			IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6883 				      type);
6884 			if (priv->qos_data.qos_enable == 0)
6885 				active_one = &def_parameters_CCK;
6886 			else
6887 				active_one = priv->qos_data.def_qos_parm_CCK;
6888 		} else {
6889 			if (priv->qos_data.qos_enable == 0)
6890 				active_one = &def_parameters_OFDM;
6891 			else
6892 				active_one = priv->qos_data.def_qos_parm_OFDM;
6893 		}
6894 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6895 	} else {
6896 		unsigned long flags;
6897 		int active;
6898 
6899 		spin_lock_irqsave(&priv->ieee->lock, flags);
6900 		active_one = &(qos_network_data->parameters);
6901 		qos_network_data->old_param_count =
6902 		    qos_network_data->param_count;
6903 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6904 		active = qos_network_data->supported;
6905 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6906 
6907 		if (active == 0) {
6908 			burst_duration = ipw_qos_get_burst_duration(priv);
6909 			for (i = 0; i < QOS_QUEUE_NUM; i++)
6910 				qos_parameters[QOS_PARAM_SET_ACTIVE].
6911 				    tx_op_limit[i] = cpu_to_le16(burst_duration);
6912 		}
6913 	}
6914 
6915 	IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6916 	err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6917 	if (err)
6918 		IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6919 
6920 	return err;
6921 }
6922 
6923 /*
6924 * send IPW_CMD_WME_INFO to the firmware
6925 */
6926 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6927 {
6928 	int ret = 0;
6929 	struct libipw_qos_information_element qos_info;
6930 
6931 	if (priv == NULL)
6932 		return -1;
6933 
6934 	qos_info.elementID = QOS_ELEMENT_ID;
6935 	qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6936 
6937 	qos_info.version = QOS_VERSION_1;
6938 	qos_info.ac_info = 0;
6939 
6940 	memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6941 	qos_info.qui_type = QOS_OUI_TYPE;
6942 	qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6943 
6944 	ret = ipw_send_qos_info_command(priv, &qos_info);
6945 	if (ret != 0) {
6946 		IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6947 	}
6948 	return ret;
6949 }
6950 
6951 /*
6952 * Set the QoS parameter with the association request structure
6953 */
6954 static int ipw_qos_association(struct ipw_priv *priv,
6955 			       struct libipw_network *network)
6956 {
6957 	int err = 0;
6958 	struct libipw_qos_data *qos_data = NULL;
6959 	struct libipw_qos_data ibss_data = {
6960 		.supported = 1,
6961 		.active = 1,
6962 	};
6963 
6964 	switch (priv->ieee->iw_mode) {
6965 	case IW_MODE_ADHOC:
6966 		BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6967 
6968 		qos_data = &ibss_data;
6969 		break;
6970 
6971 	case IW_MODE_INFRA:
6972 		qos_data = &network->qos_data;
6973 		break;
6974 
6975 	default:
6976 		BUG();
6977 		break;
6978 	}
6979 
6980 	err = ipw_qos_activate(priv, qos_data);
6981 	if (err) {
6982 		priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6983 		return err;
6984 	}
6985 
6986 	if (priv->qos_data.qos_enable && qos_data->supported) {
6987 		IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6988 		priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6989 		return ipw_qos_set_info_element(priv);
6990 	}
6991 
6992 	return 0;
6993 }
6994 
6995 /*
6996 * handling the beaconing responses. if we get different QoS setting
6997 * off the network from the associated setting, adjust the QoS
6998 * setting
6999 */
7000 static void ipw_qos_association_resp(struct ipw_priv *priv,
7001 				    struct libipw_network *network)
7002 {
7003 	unsigned long flags;
7004 	u32 size = sizeof(struct libipw_qos_parameters);
7005 	int set_qos_param = 0;
7006 
7007 	if ((priv == NULL) || (network == NULL) ||
7008 	    (priv->assoc_network == NULL))
7009 		return;
7010 
7011 	if (!(priv->status & STATUS_ASSOCIATED))
7012 		return;
7013 
7014 	if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7015 		return;
7016 
7017 	spin_lock_irqsave(&priv->ieee->lock, flags);
7018 	if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7019 		memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7020 		       sizeof(struct libipw_qos_data));
7021 		priv->assoc_network->qos_data.active = 1;
7022 		if ((network->qos_data.old_param_count !=
7023 		     network->qos_data.param_count)) {
7024 			set_qos_param = 1;
7025 			network->qos_data.old_param_count =
7026 			    network->qos_data.param_count;
7027 		}
7028 
7029 	} else {
7030 		if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7031 			memcpy(&priv->assoc_network->qos_data.parameters,
7032 			       &def_parameters_CCK, size);
7033 		else
7034 			memcpy(&priv->assoc_network->qos_data.parameters,
7035 			       &def_parameters_OFDM, size);
7036 		priv->assoc_network->qos_data.active = 0;
7037 		priv->assoc_network->qos_data.supported = 0;
7038 		set_qos_param = 1;
7039 	}
7040 
7041 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7042 
7043 	if (set_qos_param == 1)
7044 		schedule_work(&priv->qos_activate);
7045 }
7046 
7047 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7048 {
7049 	u32 ret = 0;
7050 
7051 	if (!priv)
7052 		return 0;
7053 
7054 	if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7055 		ret = priv->qos_data.burst_duration_CCK;
7056 	else
7057 		ret = priv->qos_data.burst_duration_OFDM;
7058 
7059 	return ret;
7060 }
7061 
7062 /*
7063 * Initialize the setting of QoS global
7064 */
7065 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7066 			 int burst_enable, u32 burst_duration_CCK,
7067 			 u32 burst_duration_OFDM)
7068 {
7069 	priv->qos_data.qos_enable = enable;
7070 
7071 	if (priv->qos_data.qos_enable) {
7072 		priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7073 		priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7074 		IPW_DEBUG_QOS("QoS is enabled\n");
7075 	} else {
7076 		priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7077 		priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7078 		IPW_DEBUG_QOS("QoS is not enabled\n");
7079 	}
7080 
7081 	priv->qos_data.burst_enable = burst_enable;
7082 
7083 	if (burst_enable) {
7084 		priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7085 		priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7086 	} else {
7087 		priv->qos_data.burst_duration_CCK = 0;
7088 		priv->qos_data.burst_duration_OFDM = 0;
7089 	}
7090 }
7091 
7092 /*
7093 * map the packet priority to the right TX Queue
7094 */
7095 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7096 {
7097 	if (priority > 7 || !priv->qos_data.qos_enable)
7098 		priority = 0;
7099 
7100 	return from_priority_to_tx_queue[priority] - 1;
7101 }
7102 
7103 static int ipw_is_qos_active(struct net_device *dev,
7104 			     struct sk_buff *skb)
7105 {
7106 	struct ipw_priv *priv = libipw_priv(dev);
7107 	struct libipw_qos_data *qos_data = NULL;
7108 	int active, supported;
7109 	u8 *daddr = skb->data + ETH_ALEN;
7110 	int unicast = !is_multicast_ether_addr(daddr);
7111 
7112 	if (!(priv->status & STATUS_ASSOCIATED))
7113 		return 0;
7114 
7115 	qos_data = &priv->assoc_network->qos_data;
7116 
7117 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7118 		if (unicast == 0)
7119 			qos_data->active = 0;
7120 		else
7121 			qos_data->active = qos_data->supported;
7122 	}
7123 	active = qos_data->active;
7124 	supported = qos_data->supported;
7125 	IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7126 		      "unicast %d\n",
7127 		      priv->qos_data.qos_enable, active, supported, unicast);
7128 	if (active && priv->qos_data.qos_enable)
7129 		return 1;
7130 
7131 	return 0;
7132 
7133 }
7134 /*
7135 * add QoS parameter to the TX command
7136 */
7137 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7138 					u16 priority,
7139 					struct tfd_data *tfd)
7140 {
7141 	int tx_queue_id = 0;
7142 
7143 
7144 	tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7145 	tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7146 
7147 	if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7148 		tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7149 		tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7150 	}
7151 	return 0;
7152 }
7153 
7154 /*
7155 * background support to run QoS activate functionality
7156 */
7157 static void ipw_bg_qos_activate(struct work_struct *work)
7158 {
7159 	struct ipw_priv *priv =
7160 		container_of(work, struct ipw_priv, qos_activate);
7161 
7162 	mutex_lock(&priv->mutex);
7163 
7164 	if (priv->status & STATUS_ASSOCIATED)
7165 		ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7166 
7167 	mutex_unlock(&priv->mutex);
7168 }
7169 
7170 static int ipw_handle_probe_response(struct net_device *dev,
7171 				     struct libipw_probe_response *resp,
7172 				     struct libipw_network *network)
7173 {
7174 	struct ipw_priv *priv = libipw_priv(dev);
7175 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7176 			      (network == priv->assoc_network));
7177 
7178 	ipw_qos_handle_probe_response(priv, active_network, network);
7179 
7180 	return 0;
7181 }
7182 
7183 static int ipw_handle_beacon(struct net_device *dev,
7184 			     struct libipw_beacon *resp,
7185 			     struct libipw_network *network)
7186 {
7187 	struct ipw_priv *priv = libipw_priv(dev);
7188 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7189 			      (network == priv->assoc_network));
7190 
7191 	ipw_qos_handle_probe_response(priv, active_network, network);
7192 
7193 	return 0;
7194 }
7195 
7196 static int ipw_handle_assoc_response(struct net_device *dev,
7197 				     struct libipw_assoc_response *resp,
7198 				     struct libipw_network *network)
7199 {
7200 	struct ipw_priv *priv = libipw_priv(dev);
7201 	ipw_qos_association_resp(priv, network);
7202 	return 0;
7203 }
7204 
7205 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7206 				       *qos_param)
7207 {
7208 	return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7209 				sizeof(*qos_param) * 3, qos_param);
7210 }
7211 
7212 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7213 				     *qos_param)
7214 {
7215 	return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7216 				qos_param);
7217 }
7218 
7219 #endif				/* CONFIG_IPW2200_QOS */
7220 
7221 static int ipw_associate_network(struct ipw_priv *priv,
7222 				 struct libipw_network *network,
7223 				 struct ipw_supported_rates *rates, int roaming)
7224 {
7225 	int err;
7226 
7227 	if (priv->config & CFG_FIXED_RATE)
7228 		ipw_set_fixed_rate(priv, network->mode);
7229 
7230 	if (!(priv->config & CFG_STATIC_ESSID)) {
7231 		priv->essid_len = min(network->ssid_len,
7232 				      (u8) IW_ESSID_MAX_SIZE);
7233 		memcpy(priv->essid, network->ssid, priv->essid_len);
7234 	}
7235 
7236 	network->last_associate = jiffies;
7237 
7238 	memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7239 	priv->assoc_request.channel = network->channel;
7240 	priv->assoc_request.auth_key = 0;
7241 
7242 	if ((priv->capability & CAP_PRIVACY_ON) &&
7243 	    (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7244 		priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7245 		priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7246 
7247 		if (priv->ieee->sec.level == SEC_LEVEL_1)
7248 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7249 
7250 	} else if ((priv->capability & CAP_PRIVACY_ON) &&
7251 		   (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7252 		priv->assoc_request.auth_type = AUTH_LEAP;
7253 	else
7254 		priv->assoc_request.auth_type = AUTH_OPEN;
7255 
7256 	if (priv->ieee->wpa_ie_len) {
7257 		priv->assoc_request.policy_support = cpu_to_le16(0x02);	/* RSN active */
7258 		ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7259 				 priv->ieee->wpa_ie_len);
7260 	}
7261 
7262 	/*
7263 	 * It is valid for our ieee device to support multiple modes, but
7264 	 * when it comes to associating to a given network we have to choose
7265 	 * just one mode.
7266 	 */
7267 	if (network->mode & priv->ieee->mode & IEEE_A)
7268 		priv->assoc_request.ieee_mode = IPW_A_MODE;
7269 	else if (network->mode & priv->ieee->mode & IEEE_G)
7270 		priv->assoc_request.ieee_mode = IPW_G_MODE;
7271 	else if (network->mode & priv->ieee->mode & IEEE_B)
7272 		priv->assoc_request.ieee_mode = IPW_B_MODE;
7273 
7274 	priv->assoc_request.capability = cpu_to_le16(network->capability);
7275 	if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7276 	    && !(priv->config & CFG_PREAMBLE_LONG)) {
7277 		priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7278 	} else {
7279 		priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7280 
7281 		/* Clear the short preamble if we won't be supporting it */
7282 		priv->assoc_request.capability &=
7283 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7284 	}
7285 
7286 	/* Clear capability bits that aren't used in Ad Hoc */
7287 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7288 		priv->assoc_request.capability &=
7289 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7290 
7291 	IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7292 			roaming ? "Rea" : "A",
7293 			priv->essid_len, priv->essid,
7294 			network->channel,
7295 			ipw_modes[priv->assoc_request.ieee_mode],
7296 			rates->num_rates,
7297 			(priv->assoc_request.preamble_length ==
7298 			 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7299 			network->capability &
7300 			WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7301 			priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7302 			priv->capability & CAP_PRIVACY_ON ?
7303 			(priv->capability & CAP_SHARED_KEY ? "(shared)" :
7304 			 "(open)") : "",
7305 			priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7306 			priv->capability & CAP_PRIVACY_ON ?
7307 			'1' + priv->ieee->sec.active_key : '.',
7308 			priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7309 
7310 	priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7311 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7312 	    (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7313 		priv->assoc_request.assoc_type = HC_IBSS_START;
7314 		priv->assoc_request.assoc_tsf_msw = 0;
7315 		priv->assoc_request.assoc_tsf_lsw = 0;
7316 	} else {
7317 		if (unlikely(roaming))
7318 			priv->assoc_request.assoc_type = HC_REASSOCIATE;
7319 		else
7320 			priv->assoc_request.assoc_type = HC_ASSOCIATE;
7321 		priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7322 		priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7323 	}
7324 
7325 	memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7326 
7327 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7328 		eth_broadcast_addr(priv->assoc_request.dest);
7329 		priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7330 	} else {
7331 		memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7332 		priv->assoc_request.atim_window = 0;
7333 	}
7334 
7335 	priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7336 
7337 	err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7338 	if (err) {
7339 		IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7340 		return err;
7341 	}
7342 
7343 	rates->ieee_mode = priv->assoc_request.ieee_mode;
7344 	rates->purpose = IPW_RATE_CONNECT;
7345 	ipw_send_supported_rates(priv, rates);
7346 
7347 	if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7348 		priv->sys_config.dot11g_auto_detection = 1;
7349 	else
7350 		priv->sys_config.dot11g_auto_detection = 0;
7351 
7352 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7353 		priv->sys_config.answer_broadcast_ssid_probe = 1;
7354 	else
7355 		priv->sys_config.answer_broadcast_ssid_probe = 0;
7356 
7357 	err = ipw_send_system_config(priv);
7358 	if (err) {
7359 		IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7360 		return err;
7361 	}
7362 
7363 	IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7364 	err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7365 	if (err) {
7366 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7367 		return err;
7368 	}
7369 
7370 	/*
7371 	 * If preemption is enabled, it is possible for the association
7372 	 * to complete before we return from ipw_send_associate.  Therefore
7373 	 * we have to be sure and update our priviate data first.
7374 	 */
7375 	priv->channel = network->channel;
7376 	memcpy(priv->bssid, network->bssid, ETH_ALEN);
7377 	priv->status |= STATUS_ASSOCIATING;
7378 	priv->status &= ~STATUS_SECURITY_UPDATED;
7379 
7380 	priv->assoc_network = network;
7381 
7382 #ifdef CONFIG_IPW2200_QOS
7383 	ipw_qos_association(priv, network);
7384 #endif
7385 
7386 	err = ipw_send_associate(priv, &priv->assoc_request);
7387 	if (err) {
7388 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7389 		return err;
7390 	}
7391 
7392 	IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7393 		  priv->essid_len, priv->essid, priv->bssid);
7394 
7395 	return 0;
7396 }
7397 
7398 static void ipw_roam(void *data)
7399 {
7400 	struct ipw_priv *priv = data;
7401 	struct libipw_network *network = NULL;
7402 	struct ipw_network_match match = {
7403 		.network = priv->assoc_network
7404 	};
7405 
7406 	/* The roaming process is as follows:
7407 	 *
7408 	 * 1.  Missed beacon threshold triggers the roaming process by
7409 	 *     setting the status ROAM bit and requesting a scan.
7410 	 * 2.  When the scan completes, it schedules the ROAM work
7411 	 * 3.  The ROAM work looks at all of the known networks for one that
7412 	 *     is a better network than the currently associated.  If none
7413 	 *     found, the ROAM process is over (ROAM bit cleared)
7414 	 * 4.  If a better network is found, a disassociation request is
7415 	 *     sent.
7416 	 * 5.  When the disassociation completes, the roam work is again
7417 	 *     scheduled.  The second time through, the driver is no longer
7418 	 *     associated, and the newly selected network is sent an
7419 	 *     association request.
7420 	 * 6.  At this point ,the roaming process is complete and the ROAM
7421 	 *     status bit is cleared.
7422 	 */
7423 
7424 	/* If we are no longer associated, and the roaming bit is no longer
7425 	 * set, then we are not actively roaming, so just return */
7426 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7427 		return;
7428 
7429 	if (priv->status & STATUS_ASSOCIATED) {
7430 		/* First pass through ROAM process -- look for a better
7431 		 * network */
7432 		unsigned long flags;
7433 		u8 rssi = priv->assoc_network->stats.rssi;
7434 		priv->assoc_network->stats.rssi = -128;
7435 		spin_lock_irqsave(&priv->ieee->lock, flags);
7436 		list_for_each_entry(network, &priv->ieee->network_list, list) {
7437 			if (network != priv->assoc_network)
7438 				ipw_best_network(priv, &match, network, 1);
7439 		}
7440 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
7441 		priv->assoc_network->stats.rssi = rssi;
7442 
7443 		if (match.network == priv->assoc_network) {
7444 			IPW_DEBUG_ASSOC("No better APs in this network to "
7445 					"roam to.\n");
7446 			priv->status &= ~STATUS_ROAMING;
7447 			ipw_debug_config(priv);
7448 			return;
7449 		}
7450 
7451 		ipw_send_disassociate(priv, 1);
7452 		priv->assoc_network = match.network;
7453 
7454 		return;
7455 	}
7456 
7457 	/* Second pass through ROAM process -- request association */
7458 	ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7459 	ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7460 	priv->status &= ~STATUS_ROAMING;
7461 }
7462 
7463 static void ipw_bg_roam(struct work_struct *work)
7464 {
7465 	struct ipw_priv *priv =
7466 		container_of(work, struct ipw_priv, roam);
7467 	mutex_lock(&priv->mutex);
7468 	ipw_roam(priv);
7469 	mutex_unlock(&priv->mutex);
7470 }
7471 
7472 static int ipw_associate(void *data)
7473 {
7474 	struct ipw_priv *priv = data;
7475 
7476 	struct libipw_network *network = NULL;
7477 	struct ipw_network_match match = {
7478 		.network = NULL
7479 	};
7480 	struct ipw_supported_rates *rates;
7481 	struct list_head *element;
7482 	unsigned long flags;
7483 
7484 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7485 		IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7486 		return 0;
7487 	}
7488 
7489 	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7490 		IPW_DEBUG_ASSOC("Not attempting association (already in "
7491 				"progress)\n");
7492 		return 0;
7493 	}
7494 
7495 	if (priv->status & STATUS_DISASSOCIATING) {
7496 		IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7497 		schedule_work(&priv->associate);
7498 		return 0;
7499 	}
7500 
7501 	if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7502 		IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7503 				"initialized)\n");
7504 		return 0;
7505 	}
7506 
7507 	if (!(priv->config & CFG_ASSOCIATE) &&
7508 	    !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7509 		IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7510 		return 0;
7511 	}
7512 
7513 	/* Protect our use of the network_list */
7514 	spin_lock_irqsave(&priv->ieee->lock, flags);
7515 	list_for_each_entry(network, &priv->ieee->network_list, list)
7516 	    ipw_best_network(priv, &match, network, 0);
7517 
7518 	network = match.network;
7519 	rates = &match.rates;
7520 
7521 	if (network == NULL &&
7522 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
7523 	    priv->config & CFG_ADHOC_CREATE &&
7524 	    priv->config & CFG_STATIC_ESSID &&
7525 	    priv->config & CFG_STATIC_CHANNEL) {
7526 		/* Use oldest network if the free list is empty */
7527 		if (list_empty(&priv->ieee->network_free_list)) {
7528 			struct libipw_network *oldest = NULL;
7529 			struct libipw_network *target;
7530 
7531 			list_for_each_entry(target, &priv->ieee->network_list, list) {
7532 				if ((oldest == NULL) ||
7533 				    (target->last_scanned < oldest->last_scanned))
7534 					oldest = target;
7535 			}
7536 
7537 			/* If there are no more slots, expire the oldest */
7538 			list_del(&oldest->list);
7539 			target = oldest;
7540 			IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7541 					target->ssid_len, target->ssid,
7542 					target->bssid);
7543 			list_add_tail(&target->list,
7544 				      &priv->ieee->network_free_list);
7545 		}
7546 
7547 		element = priv->ieee->network_free_list.next;
7548 		network = list_entry(element, struct libipw_network, list);
7549 		ipw_adhoc_create(priv, network);
7550 		rates = &priv->rates;
7551 		list_del(element);
7552 		list_add_tail(&network->list, &priv->ieee->network_list);
7553 	}
7554 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7555 
7556 	/* If we reached the end of the list, then we don't have any valid
7557 	 * matching APs */
7558 	if (!network) {
7559 		ipw_debug_config(priv);
7560 
7561 		if (!(priv->status & STATUS_SCANNING)) {
7562 			if (!(priv->config & CFG_SPEED_SCAN))
7563 				schedule_delayed_work(&priv->request_scan,
7564 						      SCAN_INTERVAL);
7565 			else
7566 				schedule_delayed_work(&priv->request_scan, 0);
7567 		}
7568 
7569 		return 0;
7570 	}
7571 
7572 	ipw_associate_network(priv, network, rates, 0);
7573 
7574 	return 1;
7575 }
7576 
7577 static void ipw_bg_associate(struct work_struct *work)
7578 {
7579 	struct ipw_priv *priv =
7580 		container_of(work, struct ipw_priv, associate);
7581 	mutex_lock(&priv->mutex);
7582 	ipw_associate(priv);
7583 	mutex_unlock(&priv->mutex);
7584 }
7585 
7586 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7587 				      struct sk_buff *skb)
7588 {
7589 	struct ieee80211_hdr *hdr;
7590 	u16 fc;
7591 
7592 	hdr = (struct ieee80211_hdr *)skb->data;
7593 	fc = le16_to_cpu(hdr->frame_control);
7594 	if (!(fc & IEEE80211_FCTL_PROTECTED))
7595 		return;
7596 
7597 	fc &= ~IEEE80211_FCTL_PROTECTED;
7598 	hdr->frame_control = cpu_to_le16(fc);
7599 	switch (priv->ieee->sec.level) {
7600 	case SEC_LEVEL_3:
7601 		/* Remove CCMP HDR */
7602 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7603 			skb->data + LIBIPW_3ADDR_LEN + 8,
7604 			skb->len - LIBIPW_3ADDR_LEN - 8);
7605 		skb_trim(skb, skb->len - 16);	/* CCMP_HDR_LEN + CCMP_MIC_LEN */
7606 		break;
7607 	case SEC_LEVEL_2:
7608 		break;
7609 	case SEC_LEVEL_1:
7610 		/* Remove IV */
7611 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7612 			skb->data + LIBIPW_3ADDR_LEN + 4,
7613 			skb->len - LIBIPW_3ADDR_LEN - 4);
7614 		skb_trim(skb, skb->len - 8);	/* IV + ICV */
7615 		break;
7616 	case SEC_LEVEL_0:
7617 		break;
7618 	default:
7619 		printk(KERN_ERR "Unknown security level %d\n",
7620 		       priv->ieee->sec.level);
7621 		break;
7622 	}
7623 }
7624 
7625 static void ipw_handle_data_packet(struct ipw_priv *priv,
7626 				   struct ipw_rx_mem_buffer *rxb,
7627 				   struct libipw_rx_stats *stats)
7628 {
7629 	struct net_device *dev = priv->net_dev;
7630 	struct libipw_hdr_4addr *hdr;
7631 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7632 
7633 	/* We received data from the HW, so stop the watchdog */
7634 	netif_trans_update(dev);
7635 
7636 	/* We only process data packets if the
7637 	 * interface is open */
7638 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7639 		     skb_tailroom(rxb->skb))) {
7640 		dev->stats.rx_errors++;
7641 		priv->wstats.discard.misc++;
7642 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7643 		return;
7644 	} else if (unlikely(!netif_running(priv->net_dev))) {
7645 		dev->stats.rx_dropped++;
7646 		priv->wstats.discard.misc++;
7647 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7648 		return;
7649 	}
7650 
7651 	/* Advance skb->data to the start of the actual payload */
7652 	skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7653 
7654 	/* Set the size of the skb to the size of the frame */
7655 	skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7656 
7657 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7658 
7659 	/* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7660 	hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7661 	if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7662 	    (is_multicast_ether_addr(hdr->addr1) ?
7663 	     !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7664 		ipw_rebuild_decrypted_skb(priv, rxb->skb);
7665 
7666 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7667 		dev->stats.rx_errors++;
7668 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7669 		rxb->skb = NULL;
7670 		__ipw_led_activity_on(priv);
7671 	}
7672 }
7673 
7674 #ifdef CONFIG_IPW2200_RADIOTAP
7675 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7676 					   struct ipw_rx_mem_buffer *rxb,
7677 					   struct libipw_rx_stats *stats)
7678 {
7679 	struct net_device *dev = priv->net_dev;
7680 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7681 	struct ipw_rx_frame *frame = &pkt->u.frame;
7682 
7683 	/* initial pull of some data */
7684 	u16 received_channel = frame->received_channel;
7685 	u8 antennaAndPhy = frame->antennaAndPhy;
7686 	s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;	/* call it signed anyhow */
7687 	u16 pktrate = frame->rate;
7688 
7689 	/* Magic struct that slots into the radiotap header -- no reason
7690 	 * to build this manually element by element, we can write it much
7691 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
7692 	struct ipw_rt_hdr *ipw_rt;
7693 
7694 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7695 
7696 	/* We received data from the HW, so stop the watchdog */
7697 	netif_trans_update(dev);
7698 
7699 	/* We only process data packets if the
7700 	 * interface is open */
7701 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7702 		     skb_tailroom(rxb->skb))) {
7703 		dev->stats.rx_errors++;
7704 		priv->wstats.discard.misc++;
7705 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7706 		return;
7707 	} else if (unlikely(!netif_running(priv->net_dev))) {
7708 		dev->stats.rx_dropped++;
7709 		priv->wstats.discard.misc++;
7710 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7711 		return;
7712 	}
7713 
7714 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7715 	 * that now */
7716 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7717 		/* FIXME: Should alloc bigger skb instead */
7718 		dev->stats.rx_dropped++;
7719 		priv->wstats.discard.misc++;
7720 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7721 		return;
7722 	}
7723 
7724 	/* copy the frame itself */
7725 	memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7726 		rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7727 
7728 	ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7729 
7730 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7731 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7732 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr));	/* total header+data */
7733 
7734 	/* Big bitfield of all the fields we provide in radiotap */
7735 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7736 	     (1 << IEEE80211_RADIOTAP_TSFT) |
7737 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7738 	     (1 << IEEE80211_RADIOTAP_RATE) |
7739 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7740 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7741 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7742 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7743 
7744 	/* Zero the flags, we'll add to them as we go */
7745 	ipw_rt->rt_flags = 0;
7746 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7747 			       frame->parent_tsf[2] << 16 |
7748 			       frame->parent_tsf[1] << 8  |
7749 			       frame->parent_tsf[0]);
7750 
7751 	/* Convert signal to DBM */
7752 	ipw_rt->rt_dbmsignal = antsignal;
7753 	ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7754 
7755 	/* Convert the channel data and set the flags */
7756 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7757 	if (received_channel > 14) {	/* 802.11a */
7758 		ipw_rt->rt_chbitmask =
7759 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7760 	} else if (antennaAndPhy & 32) {	/* 802.11b */
7761 		ipw_rt->rt_chbitmask =
7762 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7763 	} else {		/* 802.11g */
7764 		ipw_rt->rt_chbitmask =
7765 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7766 	}
7767 
7768 	/* set the rate in multiples of 500k/s */
7769 	switch (pktrate) {
7770 	case IPW_TX_RATE_1MB:
7771 		ipw_rt->rt_rate = 2;
7772 		break;
7773 	case IPW_TX_RATE_2MB:
7774 		ipw_rt->rt_rate = 4;
7775 		break;
7776 	case IPW_TX_RATE_5MB:
7777 		ipw_rt->rt_rate = 10;
7778 		break;
7779 	case IPW_TX_RATE_6MB:
7780 		ipw_rt->rt_rate = 12;
7781 		break;
7782 	case IPW_TX_RATE_9MB:
7783 		ipw_rt->rt_rate = 18;
7784 		break;
7785 	case IPW_TX_RATE_11MB:
7786 		ipw_rt->rt_rate = 22;
7787 		break;
7788 	case IPW_TX_RATE_12MB:
7789 		ipw_rt->rt_rate = 24;
7790 		break;
7791 	case IPW_TX_RATE_18MB:
7792 		ipw_rt->rt_rate = 36;
7793 		break;
7794 	case IPW_TX_RATE_24MB:
7795 		ipw_rt->rt_rate = 48;
7796 		break;
7797 	case IPW_TX_RATE_36MB:
7798 		ipw_rt->rt_rate = 72;
7799 		break;
7800 	case IPW_TX_RATE_48MB:
7801 		ipw_rt->rt_rate = 96;
7802 		break;
7803 	case IPW_TX_RATE_54MB:
7804 		ipw_rt->rt_rate = 108;
7805 		break;
7806 	default:
7807 		ipw_rt->rt_rate = 0;
7808 		break;
7809 	}
7810 
7811 	/* antenna number */
7812 	ipw_rt->rt_antenna = (antennaAndPhy & 3);	/* Is this right? */
7813 
7814 	/* set the preamble flag if we have it */
7815 	if ((antennaAndPhy & 64))
7816 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7817 
7818 	/* Set the size of the skb to the size of the frame */
7819 	skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7820 
7821 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7822 
7823 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7824 		dev->stats.rx_errors++;
7825 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7826 		rxb->skb = NULL;
7827 		/* no LED during capture */
7828 	}
7829 }
7830 #endif
7831 
7832 #ifdef CONFIG_IPW2200_PROMISCUOUS
7833 #define libipw_is_probe_response(fc) \
7834    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7835     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7836 
7837 #define libipw_is_management(fc) \
7838    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7839 
7840 #define libipw_is_control(fc) \
7841    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7842 
7843 #define libipw_is_data(fc) \
7844    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7845 
7846 #define libipw_is_assoc_request(fc) \
7847    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7848 
7849 #define libipw_is_reassoc_request(fc) \
7850    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7851 
7852 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7853 				      struct ipw_rx_mem_buffer *rxb,
7854 				      struct libipw_rx_stats *stats)
7855 {
7856 	struct net_device *dev = priv->prom_net_dev;
7857 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7858 	struct ipw_rx_frame *frame = &pkt->u.frame;
7859 	struct ipw_rt_hdr *ipw_rt;
7860 
7861 	/* First cache any information we need before we overwrite
7862 	 * the information provided in the skb from the hardware */
7863 	struct ieee80211_hdr *hdr;
7864 	u16 channel = frame->received_channel;
7865 	u8 phy_flags = frame->antennaAndPhy;
7866 	s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7867 	s8 noise = (s8) le16_to_cpu(frame->noise);
7868 	u8 rate = frame->rate;
7869 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7870 	struct sk_buff *skb;
7871 	int hdr_only = 0;
7872 	u16 filter = priv->prom_priv->filter;
7873 
7874 	/* If the filter is set to not include Rx frames then return */
7875 	if (filter & IPW_PROM_NO_RX)
7876 		return;
7877 
7878 	/* We received data from the HW, so stop the watchdog */
7879 	netif_trans_update(dev);
7880 
7881 	if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7882 		dev->stats.rx_errors++;
7883 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7884 		return;
7885 	}
7886 
7887 	/* We only process data packets if the interface is open */
7888 	if (unlikely(!netif_running(dev))) {
7889 		dev->stats.rx_dropped++;
7890 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7891 		return;
7892 	}
7893 
7894 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7895 	 * that now */
7896 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7897 		/* FIXME: Should alloc bigger skb instead */
7898 		dev->stats.rx_dropped++;
7899 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7900 		return;
7901 	}
7902 
7903 	hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7904 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7905 		if (filter & IPW_PROM_NO_MGMT)
7906 			return;
7907 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7908 			hdr_only = 1;
7909 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7910 		if (filter & IPW_PROM_NO_CTL)
7911 			return;
7912 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
7913 			hdr_only = 1;
7914 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7915 		if (filter & IPW_PROM_NO_DATA)
7916 			return;
7917 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
7918 			hdr_only = 1;
7919 	}
7920 
7921 	/* Copy the SKB since this is for the promiscuous side */
7922 	skb = skb_copy(rxb->skb, GFP_ATOMIC);
7923 	if (skb == NULL) {
7924 		IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7925 		return;
7926 	}
7927 
7928 	/* copy the frame data to write after where the radiotap header goes */
7929 	ipw_rt = (void *)skb->data;
7930 
7931 	if (hdr_only)
7932 		len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7933 
7934 	memcpy(ipw_rt->payload, hdr, len);
7935 
7936 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7937 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7938 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));	/* total header+data */
7939 
7940 	/* Set the size of the skb to the size of the frame */
7941 	skb_put(skb, sizeof(*ipw_rt) + len);
7942 
7943 	/* Big bitfield of all the fields we provide in radiotap */
7944 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7945 	     (1 << IEEE80211_RADIOTAP_TSFT) |
7946 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7947 	     (1 << IEEE80211_RADIOTAP_RATE) |
7948 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7949 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7950 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7951 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7952 
7953 	/* Zero the flags, we'll add to them as we go */
7954 	ipw_rt->rt_flags = 0;
7955 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7956 			       frame->parent_tsf[2] << 16 |
7957 			       frame->parent_tsf[1] << 8  |
7958 			       frame->parent_tsf[0]);
7959 
7960 	/* Convert to DBM */
7961 	ipw_rt->rt_dbmsignal = signal;
7962 	ipw_rt->rt_dbmnoise = noise;
7963 
7964 	/* Convert the channel data and set the flags */
7965 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7966 	if (channel > 14) {	/* 802.11a */
7967 		ipw_rt->rt_chbitmask =
7968 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7969 	} else if (phy_flags & (1 << 5)) {	/* 802.11b */
7970 		ipw_rt->rt_chbitmask =
7971 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7972 	} else {		/* 802.11g */
7973 		ipw_rt->rt_chbitmask =
7974 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7975 	}
7976 
7977 	/* set the rate in multiples of 500k/s */
7978 	switch (rate) {
7979 	case IPW_TX_RATE_1MB:
7980 		ipw_rt->rt_rate = 2;
7981 		break;
7982 	case IPW_TX_RATE_2MB:
7983 		ipw_rt->rt_rate = 4;
7984 		break;
7985 	case IPW_TX_RATE_5MB:
7986 		ipw_rt->rt_rate = 10;
7987 		break;
7988 	case IPW_TX_RATE_6MB:
7989 		ipw_rt->rt_rate = 12;
7990 		break;
7991 	case IPW_TX_RATE_9MB:
7992 		ipw_rt->rt_rate = 18;
7993 		break;
7994 	case IPW_TX_RATE_11MB:
7995 		ipw_rt->rt_rate = 22;
7996 		break;
7997 	case IPW_TX_RATE_12MB:
7998 		ipw_rt->rt_rate = 24;
7999 		break;
8000 	case IPW_TX_RATE_18MB:
8001 		ipw_rt->rt_rate = 36;
8002 		break;
8003 	case IPW_TX_RATE_24MB:
8004 		ipw_rt->rt_rate = 48;
8005 		break;
8006 	case IPW_TX_RATE_36MB:
8007 		ipw_rt->rt_rate = 72;
8008 		break;
8009 	case IPW_TX_RATE_48MB:
8010 		ipw_rt->rt_rate = 96;
8011 		break;
8012 	case IPW_TX_RATE_54MB:
8013 		ipw_rt->rt_rate = 108;
8014 		break;
8015 	default:
8016 		ipw_rt->rt_rate = 0;
8017 		break;
8018 	}
8019 
8020 	/* antenna number */
8021 	ipw_rt->rt_antenna = (phy_flags & 3);
8022 
8023 	/* set the preamble flag if we have it */
8024 	if (phy_flags & (1 << 6))
8025 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8026 
8027 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8028 
8029 	if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8030 		dev->stats.rx_errors++;
8031 		dev_kfree_skb_any(skb);
8032 	}
8033 }
8034 #endif
8035 
8036 static int is_network_packet(struct ipw_priv *priv,
8037 				    struct libipw_hdr_4addr *header)
8038 {
8039 	/* Filter incoming packets to determine if they are targeted toward
8040 	 * this network, discarding packets coming from ourselves */
8041 	switch (priv->ieee->iw_mode) {
8042 	case IW_MODE_ADHOC:	/* Header: Dest. | Source    | BSSID */
8043 		/* packets from our adapter are dropped (echo) */
8044 		if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8045 			return 0;
8046 
8047 		/* {broad,multi}cast packets to our BSSID go through */
8048 		if (is_multicast_ether_addr(header->addr1))
8049 			return ether_addr_equal(header->addr3, priv->bssid);
8050 
8051 		/* packets to our adapter go through */
8052 		return ether_addr_equal(header->addr1,
8053 					priv->net_dev->dev_addr);
8054 
8055 	case IW_MODE_INFRA:	/* Header: Dest. | BSSID | Source */
8056 		/* packets from our adapter are dropped (echo) */
8057 		if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8058 			return 0;
8059 
8060 		/* {broad,multi}cast packets to our BSS go through */
8061 		if (is_multicast_ether_addr(header->addr1))
8062 			return ether_addr_equal(header->addr2, priv->bssid);
8063 
8064 		/* packets to our adapter go through */
8065 		return ether_addr_equal(header->addr1,
8066 					priv->net_dev->dev_addr);
8067 	}
8068 
8069 	return 1;
8070 }
8071 
8072 #define IPW_PACKET_RETRY_TIME HZ
8073 
8074 static  int is_duplicate_packet(struct ipw_priv *priv,
8075 				      struct libipw_hdr_4addr *header)
8076 {
8077 	u16 sc = le16_to_cpu(header->seq_ctl);
8078 	u16 seq = WLAN_GET_SEQ_SEQ(sc);
8079 	u16 frag = WLAN_GET_SEQ_FRAG(sc);
8080 	u16 *last_seq, *last_frag;
8081 	unsigned long *last_time;
8082 
8083 	switch (priv->ieee->iw_mode) {
8084 	case IW_MODE_ADHOC:
8085 		{
8086 			struct list_head *p;
8087 			struct ipw_ibss_seq *entry = NULL;
8088 			u8 *mac = header->addr2;
8089 			int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8090 
8091 			list_for_each(p, &priv->ibss_mac_hash[index]) {
8092 				entry =
8093 				    list_entry(p, struct ipw_ibss_seq, list);
8094 				if (ether_addr_equal(entry->mac, mac))
8095 					break;
8096 			}
8097 			if (p == &priv->ibss_mac_hash[index]) {
8098 				entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8099 				if (!entry) {
8100 					IPW_ERROR
8101 					    ("Cannot malloc new mac entry\n");
8102 					return 0;
8103 				}
8104 				memcpy(entry->mac, mac, ETH_ALEN);
8105 				entry->seq_num = seq;
8106 				entry->frag_num = frag;
8107 				entry->packet_time = jiffies;
8108 				list_add(&entry->list,
8109 					 &priv->ibss_mac_hash[index]);
8110 				return 0;
8111 			}
8112 			last_seq = &entry->seq_num;
8113 			last_frag = &entry->frag_num;
8114 			last_time = &entry->packet_time;
8115 			break;
8116 		}
8117 	case IW_MODE_INFRA:
8118 		last_seq = &priv->last_seq_num;
8119 		last_frag = &priv->last_frag_num;
8120 		last_time = &priv->last_packet_time;
8121 		break;
8122 	default:
8123 		return 0;
8124 	}
8125 	if ((*last_seq == seq) &&
8126 	    time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8127 		if (*last_frag == frag)
8128 			goto drop;
8129 		if (*last_frag + 1 != frag)
8130 			/* out-of-order fragment */
8131 			goto drop;
8132 	} else
8133 		*last_seq = seq;
8134 
8135 	*last_frag = frag;
8136 	*last_time = jiffies;
8137 	return 0;
8138 
8139       drop:
8140 	/* Comment this line now since we observed the card receives
8141 	 * duplicate packets but the FCTL_RETRY bit is not set in the
8142 	 * IBSS mode with fragmentation enabled.
8143 	 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8144 	return 1;
8145 }
8146 
8147 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8148 				   struct ipw_rx_mem_buffer *rxb,
8149 				   struct libipw_rx_stats *stats)
8150 {
8151 	struct sk_buff *skb = rxb->skb;
8152 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8153 	struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8154 	    (skb->data + IPW_RX_FRAME_SIZE);
8155 
8156 	libipw_rx_mgt(priv->ieee, header, stats);
8157 
8158 	if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8159 	    ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8160 	      IEEE80211_STYPE_PROBE_RESP) ||
8161 	     (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8162 	      IEEE80211_STYPE_BEACON))) {
8163 		if (ether_addr_equal(header->addr3, priv->bssid))
8164 			ipw_add_station(priv, header->addr2);
8165 	}
8166 
8167 	if (priv->config & CFG_NET_STATS) {
8168 		IPW_DEBUG_HC("sending stat packet\n");
8169 
8170 		/* Set the size of the skb to the size of the full
8171 		 * ipw header and 802.11 frame */
8172 		skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8173 			IPW_RX_FRAME_SIZE);
8174 
8175 		/* Advance past the ipw packet header to the 802.11 frame */
8176 		skb_pull(skb, IPW_RX_FRAME_SIZE);
8177 
8178 		/* Push the libipw_rx_stats before the 802.11 frame */
8179 		memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8180 
8181 		skb->dev = priv->ieee->dev;
8182 
8183 		/* Point raw at the libipw_stats */
8184 		skb_reset_mac_header(skb);
8185 
8186 		skb->pkt_type = PACKET_OTHERHOST;
8187 		skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8188 		memset(skb->cb, 0, sizeof(rxb->skb->cb));
8189 		netif_rx(skb);
8190 		rxb->skb = NULL;
8191 	}
8192 }
8193 
8194 /*
8195  * Main entry function for receiving a packet with 80211 headers.  This
8196  * should be called when ever the FW has notified us that there is a new
8197  * skb in the receive queue.
8198  */
8199 static void ipw_rx(struct ipw_priv *priv)
8200 {
8201 	struct ipw_rx_mem_buffer *rxb;
8202 	struct ipw_rx_packet *pkt;
8203 	struct libipw_hdr_4addr *header;
8204 	u32 r, i;
8205 	u8 network_packet;
8206 	u8 fill_rx = 0;
8207 
8208 	r = ipw_read32(priv, IPW_RX_READ_INDEX);
8209 	ipw_read32(priv, IPW_RX_WRITE_INDEX);
8210 	i = priv->rxq->read;
8211 
8212 	if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8213 		fill_rx = 1;
8214 
8215 	while (i != r) {
8216 		rxb = priv->rxq->queue[i];
8217 		if (unlikely(rxb == NULL)) {
8218 			printk(KERN_CRIT "Queue not allocated!\n");
8219 			break;
8220 		}
8221 		priv->rxq->queue[i] = NULL;
8222 
8223 		dma_sync_single_for_cpu(&priv->pci_dev->dev, rxb->dma_addr,
8224 					IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8225 
8226 		pkt = (struct ipw_rx_packet *)rxb->skb->data;
8227 		IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8228 			     pkt->header.message_type,
8229 			     pkt->header.rx_seq_num, pkt->header.control_bits);
8230 
8231 		switch (pkt->header.message_type) {
8232 		case RX_FRAME_TYPE:	/* 802.11 frame */  {
8233 				struct libipw_rx_stats stats = {
8234 					.rssi = pkt->u.frame.rssi_dbm -
8235 					    IPW_RSSI_TO_DBM,
8236 					.signal =
8237 					    pkt->u.frame.rssi_dbm -
8238 					    IPW_RSSI_TO_DBM + 0x100,
8239 					.noise =
8240 					    le16_to_cpu(pkt->u.frame.noise),
8241 					.rate = pkt->u.frame.rate,
8242 					.mac_time = jiffies,
8243 					.received_channel =
8244 					    pkt->u.frame.received_channel,
8245 					.freq =
8246 					    (pkt->u.frame.
8247 					     control & (1 << 0)) ?
8248 					    LIBIPW_24GHZ_BAND :
8249 					    LIBIPW_52GHZ_BAND,
8250 					.len = le16_to_cpu(pkt->u.frame.length),
8251 				};
8252 
8253 				if (stats.rssi != 0)
8254 					stats.mask |= LIBIPW_STATMASK_RSSI;
8255 				if (stats.signal != 0)
8256 					stats.mask |= LIBIPW_STATMASK_SIGNAL;
8257 				if (stats.noise != 0)
8258 					stats.mask |= LIBIPW_STATMASK_NOISE;
8259 				if (stats.rate != 0)
8260 					stats.mask |= LIBIPW_STATMASK_RATE;
8261 
8262 				priv->rx_packets++;
8263 
8264 #ifdef CONFIG_IPW2200_PROMISCUOUS
8265 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8266 		ipw_handle_promiscuous_rx(priv, rxb, &stats);
8267 #endif
8268 
8269 #ifdef CONFIG_IPW2200_MONITOR
8270 				if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8271 #ifdef CONFIG_IPW2200_RADIOTAP
8272 
8273                 ipw_handle_data_packet_monitor(priv,
8274 					       rxb,
8275 					       &stats);
8276 #else
8277 		ipw_handle_data_packet(priv, rxb,
8278 				       &stats);
8279 #endif
8280 					break;
8281 				}
8282 #endif
8283 
8284 				header =
8285 				    (struct libipw_hdr_4addr *)(rxb->skb->
8286 								   data +
8287 								   IPW_RX_FRAME_SIZE);
8288 				/* TODO: Check Ad-Hoc dest/source and make sure
8289 				 * that we are actually parsing these packets
8290 				 * correctly -- we should probably use the
8291 				 * frame control of the packet and disregard
8292 				 * the current iw_mode */
8293 
8294 				network_packet =
8295 				    is_network_packet(priv, header);
8296 				if (network_packet && priv->assoc_network) {
8297 					priv->assoc_network->stats.rssi =
8298 					    stats.rssi;
8299 					priv->exp_avg_rssi =
8300 					    exponential_average(priv->exp_avg_rssi,
8301 					    stats.rssi, DEPTH_RSSI);
8302 				}
8303 
8304 				IPW_DEBUG_RX("Frame: len=%u\n",
8305 					     le16_to_cpu(pkt->u.frame.length));
8306 
8307 				if (le16_to_cpu(pkt->u.frame.length) <
8308 				    libipw_get_hdrlen(le16_to_cpu(
8309 						    header->frame_ctl))) {
8310 					IPW_DEBUG_DROP
8311 					    ("Received packet is too small. "
8312 					     "Dropping.\n");
8313 					priv->net_dev->stats.rx_errors++;
8314 					priv->wstats.discard.misc++;
8315 					break;
8316 				}
8317 
8318 				switch (WLAN_FC_GET_TYPE
8319 					(le16_to_cpu(header->frame_ctl))) {
8320 
8321 				case IEEE80211_FTYPE_MGMT:
8322 					ipw_handle_mgmt_packet(priv, rxb,
8323 							       &stats);
8324 					break;
8325 
8326 				case IEEE80211_FTYPE_CTL:
8327 					break;
8328 
8329 				case IEEE80211_FTYPE_DATA:
8330 					if (unlikely(!network_packet ||
8331 						     is_duplicate_packet(priv,
8332 									 header)))
8333 					{
8334 						IPW_DEBUG_DROP("Dropping: "
8335 							       "%pM, "
8336 							       "%pM, "
8337 							       "%pM\n",
8338 							       header->addr1,
8339 							       header->addr2,
8340 							       header->addr3);
8341 						break;
8342 					}
8343 
8344 					ipw_handle_data_packet(priv, rxb,
8345 							       &stats);
8346 
8347 					break;
8348 				}
8349 				break;
8350 			}
8351 
8352 		case RX_HOST_NOTIFICATION_TYPE:{
8353 				IPW_DEBUG_RX
8354 				    ("Notification: subtype=%02X flags=%02X size=%d\n",
8355 				     pkt->u.notification.subtype,
8356 				     pkt->u.notification.flags,
8357 				     le16_to_cpu(pkt->u.notification.size));
8358 				ipw_rx_notification(priv, &pkt->u.notification);
8359 				break;
8360 			}
8361 
8362 		default:
8363 			IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8364 				     pkt->header.message_type);
8365 			break;
8366 		}
8367 
8368 		/* For now we just don't re-use anything.  We can tweak this
8369 		 * later to try and re-use notification packets and SKBs that
8370 		 * fail to Rx correctly */
8371 		if (rxb->skb != NULL) {
8372 			dev_kfree_skb_any(rxb->skb);
8373 			rxb->skb = NULL;
8374 		}
8375 
8376 		dma_unmap_single(&priv->pci_dev->dev, rxb->dma_addr,
8377 				 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8378 		list_add_tail(&rxb->list, &priv->rxq->rx_used);
8379 
8380 		i = (i + 1) % RX_QUEUE_SIZE;
8381 
8382 		/* If there are a lot of unsued frames, restock the Rx queue
8383 		 * so the ucode won't assert */
8384 		if (fill_rx) {
8385 			priv->rxq->read = i;
8386 			ipw_rx_queue_replenish(priv);
8387 		}
8388 	}
8389 
8390 	/* Backtrack one entry */
8391 	priv->rxq->read = i;
8392 	ipw_rx_queue_restock(priv);
8393 }
8394 
8395 #define DEFAULT_RTS_THRESHOLD     2304U
8396 #define MIN_RTS_THRESHOLD         1U
8397 #define MAX_RTS_THRESHOLD         2304U
8398 #define DEFAULT_BEACON_INTERVAL   100U
8399 #define	DEFAULT_SHORT_RETRY_LIMIT 7U
8400 #define	DEFAULT_LONG_RETRY_LIMIT  4U
8401 
8402 /*
8403  * ipw_sw_reset
8404  * @option: options to control different reset behaviour
8405  * 	    0 = reset everything except the 'disable' module_param
8406  * 	    1 = reset everything and print out driver info (for probe only)
8407  * 	    2 = reset everything
8408  */
8409 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8410 {
8411 	int band, modulation;
8412 	int old_mode = priv->ieee->iw_mode;
8413 
8414 	/* Initialize module parameter values here */
8415 	priv->config = 0;
8416 
8417 	/* We default to disabling the LED code as right now it causes
8418 	 * too many systems to lock up... */
8419 	if (!led_support)
8420 		priv->config |= CFG_NO_LED;
8421 
8422 	if (associate)
8423 		priv->config |= CFG_ASSOCIATE;
8424 	else
8425 		IPW_DEBUG_INFO("Auto associate disabled.\n");
8426 
8427 	if (auto_create)
8428 		priv->config |= CFG_ADHOC_CREATE;
8429 	else
8430 		IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8431 
8432 	priv->config &= ~CFG_STATIC_ESSID;
8433 	priv->essid_len = 0;
8434 	memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8435 
8436 	if (disable && option) {
8437 		priv->status |= STATUS_RF_KILL_SW;
8438 		IPW_DEBUG_INFO("Radio disabled.\n");
8439 	}
8440 
8441 	if (default_channel != 0) {
8442 		priv->config |= CFG_STATIC_CHANNEL;
8443 		priv->channel = default_channel;
8444 		IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8445 		/* TODO: Validate that provided channel is in range */
8446 	}
8447 #ifdef CONFIG_IPW2200_QOS
8448 	ipw_qos_init(priv, qos_enable, qos_burst_enable,
8449 		     burst_duration_CCK, burst_duration_OFDM);
8450 #endif				/* CONFIG_IPW2200_QOS */
8451 
8452 	switch (network_mode) {
8453 	case 1:
8454 		priv->ieee->iw_mode = IW_MODE_ADHOC;
8455 		priv->net_dev->type = ARPHRD_ETHER;
8456 
8457 		break;
8458 #ifdef CONFIG_IPW2200_MONITOR
8459 	case 2:
8460 		priv->ieee->iw_mode = IW_MODE_MONITOR;
8461 #ifdef CONFIG_IPW2200_RADIOTAP
8462 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8463 #else
8464 		priv->net_dev->type = ARPHRD_IEEE80211;
8465 #endif
8466 		break;
8467 #endif
8468 	default:
8469 	case 0:
8470 		priv->net_dev->type = ARPHRD_ETHER;
8471 		priv->ieee->iw_mode = IW_MODE_INFRA;
8472 		break;
8473 	}
8474 
8475 	if (hwcrypto) {
8476 		priv->ieee->host_encrypt = 0;
8477 		priv->ieee->host_encrypt_msdu = 0;
8478 		priv->ieee->host_decrypt = 0;
8479 		priv->ieee->host_mc_decrypt = 0;
8480 	}
8481 	IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8482 
8483 	/* IPW2200/2915 is abled to do hardware fragmentation. */
8484 	priv->ieee->host_open_frag = 0;
8485 
8486 	if ((priv->pci_dev->device == 0x4223) ||
8487 	    (priv->pci_dev->device == 0x4224)) {
8488 		if (option == 1)
8489 			printk(KERN_INFO DRV_NAME
8490 			       ": Detected Intel PRO/Wireless 2915ABG Network "
8491 			       "Connection\n");
8492 		priv->ieee->abg_true = 1;
8493 		band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8494 		modulation = LIBIPW_OFDM_MODULATION |
8495 		    LIBIPW_CCK_MODULATION;
8496 		priv->adapter = IPW_2915ABG;
8497 		priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8498 	} else {
8499 		if (option == 1)
8500 			printk(KERN_INFO DRV_NAME
8501 			       ": Detected Intel PRO/Wireless 2200BG Network "
8502 			       "Connection\n");
8503 
8504 		priv->ieee->abg_true = 0;
8505 		band = LIBIPW_24GHZ_BAND;
8506 		modulation = LIBIPW_OFDM_MODULATION |
8507 		    LIBIPW_CCK_MODULATION;
8508 		priv->adapter = IPW_2200BG;
8509 		priv->ieee->mode = IEEE_G | IEEE_B;
8510 	}
8511 
8512 	priv->ieee->freq_band = band;
8513 	priv->ieee->modulation = modulation;
8514 
8515 	priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8516 
8517 	priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8518 	priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8519 
8520 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8521 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8522 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8523 
8524 	/* If power management is turned on, default to AC mode */
8525 	priv->power_mode = IPW_POWER_AC;
8526 	priv->tx_power = IPW_TX_POWER_DEFAULT;
8527 
8528 	return old_mode == priv->ieee->iw_mode;
8529 }
8530 
8531 /*
8532  * This file defines the Wireless Extension handlers.  It does not
8533  * define any methods of hardware manipulation and relies on the
8534  * functions defined in ipw_main to provide the HW interaction.
8535  *
8536  * The exception to this is the use of the ipw_get_ordinal()
8537  * function used to poll the hardware vs. making unnecessary calls.
8538  *
8539  */
8540 
8541 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8542 {
8543 	if (channel == 0) {
8544 		IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8545 		priv->config &= ~CFG_STATIC_CHANNEL;
8546 		IPW_DEBUG_ASSOC("Attempting to associate with new "
8547 				"parameters.\n");
8548 		ipw_associate(priv);
8549 		return 0;
8550 	}
8551 
8552 	priv->config |= CFG_STATIC_CHANNEL;
8553 
8554 	if (priv->channel == channel) {
8555 		IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8556 			       channel);
8557 		return 0;
8558 	}
8559 
8560 	IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8561 	priv->channel = channel;
8562 
8563 #ifdef CONFIG_IPW2200_MONITOR
8564 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8565 		int i;
8566 		if (priv->status & STATUS_SCANNING) {
8567 			IPW_DEBUG_SCAN("Scan abort triggered due to "
8568 				       "channel change.\n");
8569 			ipw_abort_scan(priv);
8570 		}
8571 
8572 		for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8573 			udelay(10);
8574 
8575 		if (priv->status & STATUS_SCANNING)
8576 			IPW_DEBUG_SCAN("Still scanning...\n");
8577 		else
8578 			IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8579 				       1000 - i);
8580 
8581 		return 0;
8582 	}
8583 #endif				/* CONFIG_IPW2200_MONITOR */
8584 
8585 	/* Network configuration changed -- force [re]association */
8586 	IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8587 	if (!ipw_disassociate(priv))
8588 		ipw_associate(priv);
8589 
8590 	return 0;
8591 }
8592 
8593 static int ipw_wx_set_freq(struct net_device *dev,
8594 			   struct iw_request_info *info,
8595 			   union iwreq_data *wrqu, char *extra)
8596 {
8597 	struct ipw_priv *priv = libipw_priv(dev);
8598 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8599 	struct iw_freq *fwrq = &wrqu->freq;
8600 	int ret = 0, i;
8601 	u8 channel, flags;
8602 	int band;
8603 
8604 	if (fwrq->m == 0) {
8605 		IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8606 		mutex_lock(&priv->mutex);
8607 		ret = ipw_set_channel(priv, 0);
8608 		mutex_unlock(&priv->mutex);
8609 		return ret;
8610 	}
8611 	/* if setting by freq convert to channel */
8612 	if (fwrq->e == 1) {
8613 		channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8614 		if (channel == 0)
8615 			return -EINVAL;
8616 	} else
8617 		channel = fwrq->m;
8618 
8619 	if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8620 		return -EINVAL;
8621 
8622 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8623 		i = libipw_channel_to_index(priv->ieee, channel);
8624 		if (i == -1)
8625 			return -EINVAL;
8626 
8627 		flags = (band == LIBIPW_24GHZ_BAND) ?
8628 		    geo->bg[i].flags : geo->a[i].flags;
8629 		if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8630 			IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8631 			return -EINVAL;
8632 		}
8633 	}
8634 
8635 	IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8636 	mutex_lock(&priv->mutex);
8637 	ret = ipw_set_channel(priv, channel);
8638 	mutex_unlock(&priv->mutex);
8639 	return ret;
8640 }
8641 
8642 static int ipw_wx_get_freq(struct net_device *dev,
8643 			   struct iw_request_info *info,
8644 			   union iwreq_data *wrqu, char *extra)
8645 {
8646 	struct ipw_priv *priv = libipw_priv(dev);
8647 
8648 	wrqu->freq.e = 0;
8649 
8650 	/* If we are associated, trying to associate, or have a statically
8651 	 * configured CHANNEL then return that; otherwise return ANY */
8652 	mutex_lock(&priv->mutex);
8653 	if (priv->config & CFG_STATIC_CHANNEL ||
8654 	    priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8655 		int i;
8656 
8657 		i = libipw_channel_to_index(priv->ieee, priv->channel);
8658 		BUG_ON(i == -1);
8659 		wrqu->freq.e = 1;
8660 
8661 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8662 		case LIBIPW_52GHZ_BAND:
8663 			wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8664 			break;
8665 
8666 		case LIBIPW_24GHZ_BAND:
8667 			wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8668 			break;
8669 
8670 		default:
8671 			BUG();
8672 		}
8673 	} else
8674 		wrqu->freq.m = 0;
8675 
8676 	mutex_unlock(&priv->mutex);
8677 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8678 	return 0;
8679 }
8680 
8681 static int ipw_wx_set_mode(struct net_device *dev,
8682 			   struct iw_request_info *info,
8683 			   union iwreq_data *wrqu, char *extra)
8684 {
8685 	struct ipw_priv *priv = libipw_priv(dev);
8686 	int err = 0;
8687 
8688 	IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8689 
8690 	switch (wrqu->mode) {
8691 #ifdef CONFIG_IPW2200_MONITOR
8692 	case IW_MODE_MONITOR:
8693 #endif
8694 	case IW_MODE_ADHOC:
8695 	case IW_MODE_INFRA:
8696 		break;
8697 	case IW_MODE_AUTO:
8698 		wrqu->mode = IW_MODE_INFRA;
8699 		break;
8700 	default:
8701 		return -EINVAL;
8702 	}
8703 	if (wrqu->mode == priv->ieee->iw_mode)
8704 		return 0;
8705 
8706 	mutex_lock(&priv->mutex);
8707 
8708 	ipw_sw_reset(priv, 0);
8709 
8710 #ifdef CONFIG_IPW2200_MONITOR
8711 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8712 		priv->net_dev->type = ARPHRD_ETHER;
8713 
8714 	if (wrqu->mode == IW_MODE_MONITOR)
8715 #ifdef CONFIG_IPW2200_RADIOTAP
8716 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8717 #else
8718 		priv->net_dev->type = ARPHRD_IEEE80211;
8719 #endif
8720 #endif				/* CONFIG_IPW2200_MONITOR */
8721 
8722 	/* Free the existing firmware and reset the fw_loaded
8723 	 * flag so ipw_load() will bring in the new firmware */
8724 	free_firmware();
8725 
8726 	priv->ieee->iw_mode = wrqu->mode;
8727 
8728 	schedule_work(&priv->adapter_restart);
8729 	mutex_unlock(&priv->mutex);
8730 	return err;
8731 }
8732 
8733 static int ipw_wx_get_mode(struct net_device *dev,
8734 			   struct iw_request_info *info,
8735 			   union iwreq_data *wrqu, char *extra)
8736 {
8737 	struct ipw_priv *priv = libipw_priv(dev);
8738 	mutex_lock(&priv->mutex);
8739 	wrqu->mode = priv->ieee->iw_mode;
8740 	IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8741 	mutex_unlock(&priv->mutex);
8742 	return 0;
8743 }
8744 
8745 /* Values are in microsecond */
8746 static const s32 timeout_duration[] = {
8747 	350000,
8748 	250000,
8749 	75000,
8750 	37000,
8751 	25000,
8752 };
8753 
8754 static const s32 period_duration[] = {
8755 	400000,
8756 	700000,
8757 	1000000,
8758 	1000000,
8759 	1000000
8760 };
8761 
8762 static int ipw_wx_get_range(struct net_device *dev,
8763 			    struct iw_request_info *info,
8764 			    union iwreq_data *wrqu, char *extra)
8765 {
8766 	struct ipw_priv *priv = libipw_priv(dev);
8767 	struct iw_range *range = (struct iw_range *)extra;
8768 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8769 	int i = 0, j;
8770 
8771 	wrqu->data.length = sizeof(*range);
8772 	memset(range, 0, sizeof(*range));
8773 
8774 	/* 54Mbs == ~27 Mb/s real (802.11g) */
8775 	range->throughput = 27 * 1000 * 1000;
8776 
8777 	range->max_qual.qual = 100;
8778 	/* TODO: Find real max RSSI and stick here */
8779 	range->max_qual.level = 0;
8780 	range->max_qual.noise = 0;
8781 	range->max_qual.updated = 7;	/* Updated all three */
8782 
8783 	range->avg_qual.qual = 70;
8784 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8785 	range->avg_qual.level = 0;	/* FIXME to real average level */
8786 	range->avg_qual.noise = 0;
8787 	range->avg_qual.updated = 7;	/* Updated all three */
8788 	mutex_lock(&priv->mutex);
8789 	range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8790 
8791 	for (i = 0; i < range->num_bitrates; i++)
8792 		range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8793 		    500000;
8794 
8795 	range->max_rts = DEFAULT_RTS_THRESHOLD;
8796 	range->min_frag = MIN_FRAG_THRESHOLD;
8797 	range->max_frag = MAX_FRAG_THRESHOLD;
8798 
8799 	range->encoding_size[0] = 5;
8800 	range->encoding_size[1] = 13;
8801 	range->num_encoding_sizes = 2;
8802 	range->max_encoding_tokens = WEP_KEYS;
8803 
8804 	/* Set the Wireless Extension versions */
8805 	range->we_version_compiled = WIRELESS_EXT;
8806 	range->we_version_source = 18;
8807 
8808 	i = 0;
8809 	if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8810 		for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8811 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8812 			    (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8813 				continue;
8814 
8815 			range->freq[i].i = geo->bg[j].channel;
8816 			range->freq[i].m = geo->bg[j].freq * 100000;
8817 			range->freq[i].e = 1;
8818 			i++;
8819 		}
8820 	}
8821 
8822 	if (priv->ieee->mode & IEEE_A) {
8823 		for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8824 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8825 			    (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8826 				continue;
8827 
8828 			range->freq[i].i = geo->a[j].channel;
8829 			range->freq[i].m = geo->a[j].freq * 100000;
8830 			range->freq[i].e = 1;
8831 			i++;
8832 		}
8833 	}
8834 
8835 	range->num_channels = i;
8836 	range->num_frequency = i;
8837 
8838 	mutex_unlock(&priv->mutex);
8839 
8840 	/* Event capability (kernel + driver) */
8841 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8842 				IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8843 				IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8844 				IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8845 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
8846 
8847 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8848 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8849 
8850 	range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8851 
8852 	IPW_DEBUG_WX("GET Range\n");
8853 	return 0;
8854 }
8855 
8856 static int ipw_wx_set_wap(struct net_device *dev,
8857 			  struct iw_request_info *info,
8858 			  union iwreq_data *wrqu, char *extra)
8859 {
8860 	struct ipw_priv *priv = libipw_priv(dev);
8861 
8862 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8863 		return -EINVAL;
8864 	mutex_lock(&priv->mutex);
8865 	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8866 	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8867 		/* we disable mandatory BSSID association */
8868 		IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8869 		priv->config &= ~CFG_STATIC_BSSID;
8870 		IPW_DEBUG_ASSOC("Attempting to associate with new "
8871 				"parameters.\n");
8872 		ipw_associate(priv);
8873 		mutex_unlock(&priv->mutex);
8874 		return 0;
8875 	}
8876 
8877 	priv->config |= CFG_STATIC_BSSID;
8878 	if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8879 		IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8880 		mutex_unlock(&priv->mutex);
8881 		return 0;
8882 	}
8883 
8884 	IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8885 		     wrqu->ap_addr.sa_data);
8886 
8887 	memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8888 
8889 	/* Network configuration changed -- force [re]association */
8890 	IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8891 	if (!ipw_disassociate(priv))
8892 		ipw_associate(priv);
8893 
8894 	mutex_unlock(&priv->mutex);
8895 	return 0;
8896 }
8897 
8898 static int ipw_wx_get_wap(struct net_device *dev,
8899 			  struct iw_request_info *info,
8900 			  union iwreq_data *wrqu, char *extra)
8901 {
8902 	struct ipw_priv *priv = libipw_priv(dev);
8903 
8904 	/* If we are associated, trying to associate, or have a statically
8905 	 * configured BSSID then return that; otherwise return ANY */
8906 	mutex_lock(&priv->mutex);
8907 	if (priv->config & CFG_STATIC_BSSID ||
8908 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8909 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8910 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8911 	} else
8912 		eth_zero_addr(wrqu->ap_addr.sa_data);
8913 
8914 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8915 		     wrqu->ap_addr.sa_data);
8916 	mutex_unlock(&priv->mutex);
8917 	return 0;
8918 }
8919 
8920 static int ipw_wx_set_essid(struct net_device *dev,
8921 			    struct iw_request_info *info,
8922 			    union iwreq_data *wrqu, char *extra)
8923 {
8924 	struct ipw_priv *priv = libipw_priv(dev);
8925         int length;
8926 
8927         mutex_lock(&priv->mutex);
8928 
8929         if (!wrqu->essid.flags)
8930         {
8931                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8932                 ipw_disassociate(priv);
8933                 priv->config &= ~CFG_STATIC_ESSID;
8934                 ipw_associate(priv);
8935                 mutex_unlock(&priv->mutex);
8936                 return 0;
8937         }
8938 
8939 	length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8940 
8941 	priv->config |= CFG_STATIC_ESSID;
8942 
8943 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8944 	    && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8945 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8946 		mutex_unlock(&priv->mutex);
8947 		return 0;
8948 	}
8949 
8950 	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
8951 
8952 	priv->essid_len = length;
8953 	memcpy(priv->essid, extra, priv->essid_len);
8954 
8955 	/* Network configuration changed -- force [re]association */
8956 	IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8957 	if (!ipw_disassociate(priv))
8958 		ipw_associate(priv);
8959 
8960 	mutex_unlock(&priv->mutex);
8961 	return 0;
8962 }
8963 
8964 static int ipw_wx_get_essid(struct net_device *dev,
8965 			    struct iw_request_info *info,
8966 			    union iwreq_data *wrqu, char *extra)
8967 {
8968 	struct ipw_priv *priv = libipw_priv(dev);
8969 
8970 	/* If we are associated, trying to associate, or have a statically
8971 	 * configured ESSID then return that; otherwise return ANY */
8972 	mutex_lock(&priv->mutex);
8973 	if (priv->config & CFG_STATIC_ESSID ||
8974 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8975 		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
8976 			     priv->essid_len, priv->essid);
8977 		memcpy(extra, priv->essid, priv->essid_len);
8978 		wrqu->essid.length = priv->essid_len;
8979 		wrqu->essid.flags = 1;	/* active */
8980 	} else {
8981 		IPW_DEBUG_WX("Getting essid: ANY\n");
8982 		wrqu->essid.length = 0;
8983 		wrqu->essid.flags = 0;	/* active */
8984 	}
8985 	mutex_unlock(&priv->mutex);
8986 	return 0;
8987 }
8988 
8989 static int ipw_wx_set_nick(struct net_device *dev,
8990 			   struct iw_request_info *info,
8991 			   union iwreq_data *wrqu, char *extra)
8992 {
8993 	struct ipw_priv *priv = libipw_priv(dev);
8994 
8995 	IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8996 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8997 		return -E2BIG;
8998 	mutex_lock(&priv->mutex);
8999 	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9000 	memset(priv->nick, 0, sizeof(priv->nick));
9001 	memcpy(priv->nick, extra, wrqu->data.length);
9002 	IPW_DEBUG_TRACE("<<\n");
9003 	mutex_unlock(&priv->mutex);
9004 	return 0;
9005 
9006 }
9007 
9008 static int ipw_wx_get_nick(struct net_device *dev,
9009 			   struct iw_request_info *info,
9010 			   union iwreq_data *wrqu, char *extra)
9011 {
9012 	struct ipw_priv *priv = libipw_priv(dev);
9013 	IPW_DEBUG_WX("Getting nick\n");
9014 	mutex_lock(&priv->mutex);
9015 	wrqu->data.length = strlen(priv->nick);
9016 	memcpy(extra, priv->nick, wrqu->data.length);
9017 	wrqu->data.flags = 1;	/* active */
9018 	mutex_unlock(&priv->mutex);
9019 	return 0;
9020 }
9021 
9022 static int ipw_wx_set_sens(struct net_device *dev,
9023 			    struct iw_request_info *info,
9024 			    union iwreq_data *wrqu, char *extra)
9025 {
9026 	struct ipw_priv *priv = libipw_priv(dev);
9027 	int err = 0;
9028 
9029 	IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9030 	IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9031 	mutex_lock(&priv->mutex);
9032 
9033 	if (wrqu->sens.fixed == 0)
9034 	{
9035 		priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9036 		priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9037 		goto out;
9038 	}
9039 	if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9040 	    (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9041 		err = -EINVAL;
9042 		goto out;
9043 	}
9044 
9045 	priv->roaming_threshold = wrqu->sens.value;
9046 	priv->disassociate_threshold = 3*wrqu->sens.value;
9047       out:
9048 	mutex_unlock(&priv->mutex);
9049 	return err;
9050 }
9051 
9052 static int ipw_wx_get_sens(struct net_device *dev,
9053 			    struct iw_request_info *info,
9054 			    union iwreq_data *wrqu, char *extra)
9055 {
9056 	struct ipw_priv *priv = libipw_priv(dev);
9057 	mutex_lock(&priv->mutex);
9058 	wrqu->sens.fixed = 1;
9059 	wrqu->sens.value = priv->roaming_threshold;
9060 	mutex_unlock(&priv->mutex);
9061 
9062 	IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9063 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9064 
9065 	return 0;
9066 }
9067 
9068 static int ipw_wx_set_rate(struct net_device *dev,
9069 			   struct iw_request_info *info,
9070 			   union iwreq_data *wrqu, char *extra)
9071 {
9072 	/* TODO: We should use semaphores or locks for access to priv */
9073 	struct ipw_priv *priv = libipw_priv(dev);
9074 	u32 target_rate = wrqu->bitrate.value;
9075 	u32 fixed, mask;
9076 
9077 	/* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9078 	/* value = X, fixed = 1 means only rate X */
9079 	/* value = X, fixed = 0 means all rates lower equal X */
9080 
9081 	if (target_rate == -1) {
9082 		fixed = 0;
9083 		mask = LIBIPW_DEFAULT_RATES_MASK;
9084 		/* Now we should reassociate */
9085 		goto apply;
9086 	}
9087 
9088 	mask = 0;
9089 	fixed = wrqu->bitrate.fixed;
9090 
9091 	if (target_rate == 1000000 || !fixed)
9092 		mask |= LIBIPW_CCK_RATE_1MB_MASK;
9093 	if (target_rate == 1000000)
9094 		goto apply;
9095 
9096 	if (target_rate == 2000000 || !fixed)
9097 		mask |= LIBIPW_CCK_RATE_2MB_MASK;
9098 	if (target_rate == 2000000)
9099 		goto apply;
9100 
9101 	if (target_rate == 5500000 || !fixed)
9102 		mask |= LIBIPW_CCK_RATE_5MB_MASK;
9103 	if (target_rate == 5500000)
9104 		goto apply;
9105 
9106 	if (target_rate == 6000000 || !fixed)
9107 		mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9108 	if (target_rate == 6000000)
9109 		goto apply;
9110 
9111 	if (target_rate == 9000000 || !fixed)
9112 		mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9113 	if (target_rate == 9000000)
9114 		goto apply;
9115 
9116 	if (target_rate == 11000000 || !fixed)
9117 		mask |= LIBIPW_CCK_RATE_11MB_MASK;
9118 	if (target_rate == 11000000)
9119 		goto apply;
9120 
9121 	if (target_rate == 12000000 || !fixed)
9122 		mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9123 	if (target_rate == 12000000)
9124 		goto apply;
9125 
9126 	if (target_rate == 18000000 || !fixed)
9127 		mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9128 	if (target_rate == 18000000)
9129 		goto apply;
9130 
9131 	if (target_rate == 24000000 || !fixed)
9132 		mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9133 	if (target_rate == 24000000)
9134 		goto apply;
9135 
9136 	if (target_rate == 36000000 || !fixed)
9137 		mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9138 	if (target_rate == 36000000)
9139 		goto apply;
9140 
9141 	if (target_rate == 48000000 || !fixed)
9142 		mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9143 	if (target_rate == 48000000)
9144 		goto apply;
9145 
9146 	if (target_rate == 54000000 || !fixed)
9147 		mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9148 	if (target_rate == 54000000)
9149 		goto apply;
9150 
9151 	IPW_DEBUG_WX("invalid rate specified, returning error\n");
9152 	return -EINVAL;
9153 
9154       apply:
9155 	IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9156 		     mask, fixed ? "fixed" : "sub-rates");
9157 	mutex_lock(&priv->mutex);
9158 	if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9159 		priv->config &= ~CFG_FIXED_RATE;
9160 		ipw_set_fixed_rate(priv, priv->ieee->mode);
9161 	} else
9162 		priv->config |= CFG_FIXED_RATE;
9163 
9164 	if (priv->rates_mask == mask) {
9165 		IPW_DEBUG_WX("Mask set to current mask.\n");
9166 		mutex_unlock(&priv->mutex);
9167 		return 0;
9168 	}
9169 
9170 	priv->rates_mask = mask;
9171 
9172 	/* Network configuration changed -- force [re]association */
9173 	IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9174 	if (!ipw_disassociate(priv))
9175 		ipw_associate(priv);
9176 
9177 	mutex_unlock(&priv->mutex);
9178 	return 0;
9179 }
9180 
9181 static int ipw_wx_get_rate(struct net_device *dev,
9182 			   struct iw_request_info *info,
9183 			   union iwreq_data *wrqu, char *extra)
9184 {
9185 	struct ipw_priv *priv = libipw_priv(dev);
9186 	mutex_lock(&priv->mutex);
9187 	wrqu->bitrate.value = priv->last_rate;
9188 	wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9189 	mutex_unlock(&priv->mutex);
9190 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9191 	return 0;
9192 }
9193 
9194 static int ipw_wx_set_rts(struct net_device *dev,
9195 			  struct iw_request_info *info,
9196 			  union iwreq_data *wrqu, char *extra)
9197 {
9198 	struct ipw_priv *priv = libipw_priv(dev);
9199 	mutex_lock(&priv->mutex);
9200 	if (wrqu->rts.disabled || !wrqu->rts.fixed)
9201 		priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9202 	else {
9203 		if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9204 		    wrqu->rts.value > MAX_RTS_THRESHOLD) {
9205 			mutex_unlock(&priv->mutex);
9206 			return -EINVAL;
9207 		}
9208 		priv->rts_threshold = wrqu->rts.value;
9209 	}
9210 
9211 	ipw_send_rts_threshold(priv, priv->rts_threshold);
9212 	mutex_unlock(&priv->mutex);
9213 	IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9214 	return 0;
9215 }
9216 
9217 static int ipw_wx_get_rts(struct net_device *dev,
9218 			  struct iw_request_info *info,
9219 			  union iwreq_data *wrqu, char *extra)
9220 {
9221 	struct ipw_priv *priv = libipw_priv(dev);
9222 	mutex_lock(&priv->mutex);
9223 	wrqu->rts.value = priv->rts_threshold;
9224 	wrqu->rts.fixed = 0;	/* no auto select */
9225 	wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9226 	mutex_unlock(&priv->mutex);
9227 	IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9228 	return 0;
9229 }
9230 
9231 static int ipw_wx_set_txpow(struct net_device *dev,
9232 			    struct iw_request_info *info,
9233 			    union iwreq_data *wrqu, char *extra)
9234 {
9235 	struct ipw_priv *priv = libipw_priv(dev);
9236 	int err = 0;
9237 
9238 	mutex_lock(&priv->mutex);
9239 	if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9240 		err = -EINPROGRESS;
9241 		goto out;
9242 	}
9243 
9244 	if (!wrqu->power.fixed)
9245 		wrqu->power.value = IPW_TX_POWER_DEFAULT;
9246 
9247 	if (wrqu->power.flags != IW_TXPOW_DBM) {
9248 		err = -EINVAL;
9249 		goto out;
9250 	}
9251 
9252 	if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9253 	    (wrqu->power.value < IPW_TX_POWER_MIN)) {
9254 		err = -EINVAL;
9255 		goto out;
9256 	}
9257 
9258 	priv->tx_power = wrqu->power.value;
9259 	err = ipw_set_tx_power(priv);
9260       out:
9261 	mutex_unlock(&priv->mutex);
9262 	return err;
9263 }
9264 
9265 static int ipw_wx_get_txpow(struct net_device *dev,
9266 			    struct iw_request_info *info,
9267 			    union iwreq_data *wrqu, char *extra)
9268 {
9269 	struct ipw_priv *priv = libipw_priv(dev);
9270 	mutex_lock(&priv->mutex);
9271 	wrqu->power.value = priv->tx_power;
9272 	wrqu->power.fixed = 1;
9273 	wrqu->power.flags = IW_TXPOW_DBM;
9274 	wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9275 	mutex_unlock(&priv->mutex);
9276 
9277 	IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9278 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9279 
9280 	return 0;
9281 }
9282 
9283 static int ipw_wx_set_frag(struct net_device *dev,
9284 			   struct iw_request_info *info,
9285 			   union iwreq_data *wrqu, char *extra)
9286 {
9287 	struct ipw_priv *priv = libipw_priv(dev);
9288 	mutex_lock(&priv->mutex);
9289 	if (wrqu->frag.disabled || !wrqu->frag.fixed)
9290 		priv->ieee->fts = DEFAULT_FTS;
9291 	else {
9292 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9293 		    wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9294 			mutex_unlock(&priv->mutex);
9295 			return -EINVAL;
9296 		}
9297 
9298 		priv->ieee->fts = wrqu->frag.value & ~0x1;
9299 	}
9300 
9301 	ipw_send_frag_threshold(priv, wrqu->frag.value);
9302 	mutex_unlock(&priv->mutex);
9303 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9304 	return 0;
9305 }
9306 
9307 static int ipw_wx_get_frag(struct net_device *dev,
9308 			   struct iw_request_info *info,
9309 			   union iwreq_data *wrqu, char *extra)
9310 {
9311 	struct ipw_priv *priv = libipw_priv(dev);
9312 	mutex_lock(&priv->mutex);
9313 	wrqu->frag.value = priv->ieee->fts;
9314 	wrqu->frag.fixed = 0;	/* no auto select */
9315 	wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9316 	mutex_unlock(&priv->mutex);
9317 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9318 
9319 	return 0;
9320 }
9321 
9322 static int ipw_wx_set_retry(struct net_device *dev,
9323 			    struct iw_request_info *info,
9324 			    union iwreq_data *wrqu, char *extra)
9325 {
9326 	struct ipw_priv *priv = libipw_priv(dev);
9327 
9328 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9329 		return -EINVAL;
9330 
9331 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9332 		return 0;
9333 
9334 	if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9335 		return -EINVAL;
9336 
9337 	mutex_lock(&priv->mutex);
9338 	if (wrqu->retry.flags & IW_RETRY_SHORT)
9339 		priv->short_retry_limit = (u8) wrqu->retry.value;
9340 	else if (wrqu->retry.flags & IW_RETRY_LONG)
9341 		priv->long_retry_limit = (u8) wrqu->retry.value;
9342 	else {
9343 		priv->short_retry_limit = (u8) wrqu->retry.value;
9344 		priv->long_retry_limit = (u8) wrqu->retry.value;
9345 	}
9346 
9347 	ipw_send_retry_limit(priv, priv->short_retry_limit,
9348 			     priv->long_retry_limit);
9349 	mutex_unlock(&priv->mutex);
9350 	IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9351 		     priv->short_retry_limit, priv->long_retry_limit);
9352 	return 0;
9353 }
9354 
9355 static int ipw_wx_get_retry(struct net_device *dev,
9356 			    struct iw_request_info *info,
9357 			    union iwreq_data *wrqu, char *extra)
9358 {
9359 	struct ipw_priv *priv = libipw_priv(dev);
9360 
9361 	mutex_lock(&priv->mutex);
9362 	wrqu->retry.disabled = 0;
9363 
9364 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9365 		mutex_unlock(&priv->mutex);
9366 		return -EINVAL;
9367 	}
9368 
9369 	if (wrqu->retry.flags & IW_RETRY_LONG) {
9370 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9371 		wrqu->retry.value = priv->long_retry_limit;
9372 	} else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9373 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9374 		wrqu->retry.value = priv->short_retry_limit;
9375 	} else {
9376 		wrqu->retry.flags = IW_RETRY_LIMIT;
9377 		wrqu->retry.value = priv->short_retry_limit;
9378 	}
9379 	mutex_unlock(&priv->mutex);
9380 
9381 	IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9382 
9383 	return 0;
9384 }
9385 
9386 static int ipw_wx_set_scan(struct net_device *dev,
9387 			   struct iw_request_info *info,
9388 			   union iwreq_data *wrqu, char *extra)
9389 {
9390 	struct ipw_priv *priv = libipw_priv(dev);
9391 	struct iw_scan_req *req = (struct iw_scan_req *)extra;
9392 	struct delayed_work *work = NULL;
9393 
9394 	mutex_lock(&priv->mutex);
9395 
9396 	priv->user_requested_scan = 1;
9397 
9398 	if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9399 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9400 			int len = min((int)req->essid_len,
9401 			              (int)sizeof(priv->direct_scan_ssid));
9402 			memcpy(priv->direct_scan_ssid, req->essid, len);
9403 			priv->direct_scan_ssid_len = len;
9404 			work = &priv->request_direct_scan;
9405 		} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9406 			work = &priv->request_passive_scan;
9407 		}
9408 	} else {
9409 		/* Normal active broadcast scan */
9410 		work = &priv->request_scan;
9411 	}
9412 
9413 	mutex_unlock(&priv->mutex);
9414 
9415 	IPW_DEBUG_WX("Start scan\n");
9416 
9417 	schedule_delayed_work(work, 0);
9418 
9419 	return 0;
9420 }
9421 
9422 static int ipw_wx_get_scan(struct net_device *dev,
9423 			   struct iw_request_info *info,
9424 			   union iwreq_data *wrqu, char *extra)
9425 {
9426 	struct ipw_priv *priv = libipw_priv(dev);
9427 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9428 }
9429 
9430 static int ipw_wx_set_encode(struct net_device *dev,
9431 			     struct iw_request_info *info,
9432 			     union iwreq_data *wrqu, char *key)
9433 {
9434 	struct ipw_priv *priv = libipw_priv(dev);
9435 	int ret;
9436 	u32 cap = priv->capability;
9437 
9438 	mutex_lock(&priv->mutex);
9439 	ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9440 
9441 	/* In IBSS mode, we need to notify the firmware to update
9442 	 * the beacon info after we changed the capability. */
9443 	if (cap != priv->capability &&
9444 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
9445 	    priv->status & STATUS_ASSOCIATED)
9446 		ipw_disassociate(priv);
9447 
9448 	mutex_unlock(&priv->mutex);
9449 	return ret;
9450 }
9451 
9452 static int ipw_wx_get_encode(struct net_device *dev,
9453 			     struct iw_request_info *info,
9454 			     union iwreq_data *wrqu, char *key)
9455 {
9456 	struct ipw_priv *priv = libipw_priv(dev);
9457 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9458 }
9459 
9460 static int ipw_wx_set_power(struct net_device *dev,
9461 			    struct iw_request_info *info,
9462 			    union iwreq_data *wrqu, char *extra)
9463 {
9464 	struct ipw_priv *priv = libipw_priv(dev);
9465 	int err;
9466 	mutex_lock(&priv->mutex);
9467 	if (wrqu->power.disabled) {
9468 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9469 		err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9470 		if (err) {
9471 			IPW_DEBUG_WX("failed setting power mode.\n");
9472 			mutex_unlock(&priv->mutex);
9473 			return err;
9474 		}
9475 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9476 		mutex_unlock(&priv->mutex);
9477 		return 0;
9478 	}
9479 
9480 	switch (wrqu->power.flags & IW_POWER_MODE) {
9481 	case IW_POWER_ON:	/* If not specified */
9482 	case IW_POWER_MODE:	/* If set all mask */
9483 	case IW_POWER_ALL_R:	/* If explicitly state all */
9484 		break;
9485 	default:		/* Otherwise we don't support it */
9486 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9487 			     wrqu->power.flags);
9488 		mutex_unlock(&priv->mutex);
9489 		return -EOPNOTSUPP;
9490 	}
9491 
9492 	/* If the user hasn't specified a power management mode yet, default
9493 	 * to BATTERY */
9494 	if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9495 		priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9496 	else
9497 		priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9498 
9499 	err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9500 	if (err) {
9501 		IPW_DEBUG_WX("failed setting power mode.\n");
9502 		mutex_unlock(&priv->mutex);
9503 		return err;
9504 	}
9505 
9506 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9507 	mutex_unlock(&priv->mutex);
9508 	return 0;
9509 }
9510 
9511 static int ipw_wx_get_power(struct net_device *dev,
9512 			    struct iw_request_info *info,
9513 			    union iwreq_data *wrqu, char *extra)
9514 {
9515 	struct ipw_priv *priv = libipw_priv(dev);
9516 	mutex_lock(&priv->mutex);
9517 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9518 		wrqu->power.disabled = 1;
9519 	else
9520 		wrqu->power.disabled = 0;
9521 
9522 	mutex_unlock(&priv->mutex);
9523 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9524 
9525 	return 0;
9526 }
9527 
9528 static int ipw_wx_set_powermode(struct net_device *dev,
9529 				struct iw_request_info *info,
9530 				union iwreq_data *wrqu, char *extra)
9531 {
9532 	struct ipw_priv *priv = libipw_priv(dev);
9533 	int mode = *(int *)extra;
9534 	int err;
9535 
9536 	mutex_lock(&priv->mutex);
9537 	if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9538 		mode = IPW_POWER_AC;
9539 
9540 	if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9541 		err = ipw_send_power_mode(priv, mode);
9542 		if (err) {
9543 			IPW_DEBUG_WX("failed setting power mode.\n");
9544 			mutex_unlock(&priv->mutex);
9545 			return err;
9546 		}
9547 		priv->power_mode = IPW_POWER_ENABLED | mode;
9548 	}
9549 	mutex_unlock(&priv->mutex);
9550 	return 0;
9551 }
9552 
9553 #define MAX_WX_STRING 80
9554 static int ipw_wx_get_powermode(struct net_device *dev,
9555 				struct iw_request_info *info,
9556 				union iwreq_data *wrqu, char *extra)
9557 {
9558 	struct ipw_priv *priv = libipw_priv(dev);
9559 	int level = IPW_POWER_LEVEL(priv->power_mode);
9560 	char *p = extra;
9561 
9562 	p += scnprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9563 
9564 	switch (level) {
9565 	case IPW_POWER_AC:
9566 		p += scnprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9567 		break;
9568 	case IPW_POWER_BATTERY:
9569 		p += scnprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9570 		break;
9571 	default:
9572 		p += scnprintf(p, MAX_WX_STRING - (p - extra),
9573 			      "(Timeout %dms, Period %dms)",
9574 			      timeout_duration[level - 1] / 1000,
9575 			      period_duration[level - 1] / 1000);
9576 	}
9577 
9578 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9579 		p += scnprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9580 
9581 	wrqu->data.length = p - extra + 1;
9582 
9583 	return 0;
9584 }
9585 
9586 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9587 				    struct iw_request_info *info,
9588 				    union iwreq_data *wrqu, char *extra)
9589 {
9590 	struct ipw_priv *priv = libipw_priv(dev);
9591 	int mode = *(int *)extra;
9592 	u8 band = 0, modulation = 0;
9593 
9594 	if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9595 		IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9596 		return -EINVAL;
9597 	}
9598 	mutex_lock(&priv->mutex);
9599 	if (priv->adapter == IPW_2915ABG) {
9600 		priv->ieee->abg_true = 1;
9601 		if (mode & IEEE_A) {
9602 			band |= LIBIPW_52GHZ_BAND;
9603 			modulation |= LIBIPW_OFDM_MODULATION;
9604 		} else
9605 			priv->ieee->abg_true = 0;
9606 	} else {
9607 		if (mode & IEEE_A) {
9608 			IPW_WARNING("Attempt to set 2200BG into "
9609 				    "802.11a mode\n");
9610 			mutex_unlock(&priv->mutex);
9611 			return -EINVAL;
9612 		}
9613 
9614 		priv->ieee->abg_true = 0;
9615 	}
9616 
9617 	if (mode & IEEE_B) {
9618 		band |= LIBIPW_24GHZ_BAND;
9619 		modulation |= LIBIPW_CCK_MODULATION;
9620 	} else
9621 		priv->ieee->abg_true = 0;
9622 
9623 	if (mode & IEEE_G) {
9624 		band |= LIBIPW_24GHZ_BAND;
9625 		modulation |= LIBIPW_OFDM_MODULATION;
9626 	} else
9627 		priv->ieee->abg_true = 0;
9628 
9629 	priv->ieee->mode = mode;
9630 	priv->ieee->freq_band = band;
9631 	priv->ieee->modulation = modulation;
9632 	init_supported_rates(priv, &priv->rates);
9633 
9634 	/* Network configuration changed -- force [re]association */
9635 	IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9636 	if (!ipw_disassociate(priv)) {
9637 		ipw_send_supported_rates(priv, &priv->rates);
9638 		ipw_associate(priv);
9639 	}
9640 
9641 	/* Update the band LEDs */
9642 	ipw_led_band_on(priv);
9643 
9644 	IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9645 		     mode & IEEE_A ? 'a' : '.',
9646 		     mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9647 	mutex_unlock(&priv->mutex);
9648 	return 0;
9649 }
9650 
9651 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9652 				    struct iw_request_info *info,
9653 				    union iwreq_data *wrqu, char *extra)
9654 {
9655 	struct ipw_priv *priv = libipw_priv(dev);
9656 	mutex_lock(&priv->mutex);
9657 	switch (priv->ieee->mode) {
9658 	case IEEE_A:
9659 		strscpy_pad(extra, "802.11a (1)", MAX_WX_STRING);
9660 		break;
9661 	case IEEE_B:
9662 		strscpy_pad(extra, "802.11b (2)", MAX_WX_STRING);
9663 		break;
9664 	case IEEE_A | IEEE_B:
9665 		strscpy_pad(extra, "802.11ab (3)", MAX_WX_STRING);
9666 		break;
9667 	case IEEE_G:
9668 		strscpy_pad(extra, "802.11g (4)", MAX_WX_STRING);
9669 		break;
9670 	case IEEE_A | IEEE_G:
9671 		strscpy_pad(extra, "802.11ag (5)", MAX_WX_STRING);
9672 		break;
9673 	case IEEE_B | IEEE_G:
9674 		strscpy_pad(extra, "802.11bg (6)", MAX_WX_STRING);
9675 		break;
9676 	case IEEE_A | IEEE_B | IEEE_G:
9677 		strscpy_pad(extra, "802.11abg (7)", MAX_WX_STRING);
9678 		break;
9679 	default:
9680 		strscpy_pad(extra, "unknown", MAX_WX_STRING);
9681 		break;
9682 	}
9683 
9684 	IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9685 
9686 	wrqu->data.length = strlen(extra) + 1;
9687 	mutex_unlock(&priv->mutex);
9688 
9689 	return 0;
9690 }
9691 
9692 static int ipw_wx_set_preamble(struct net_device *dev,
9693 			       struct iw_request_info *info,
9694 			       union iwreq_data *wrqu, char *extra)
9695 {
9696 	struct ipw_priv *priv = libipw_priv(dev);
9697 	int mode = *(int *)extra;
9698 	mutex_lock(&priv->mutex);
9699 	/* Switching from SHORT -> LONG requires a disassociation */
9700 	if (mode == 1) {
9701 		if (!(priv->config & CFG_PREAMBLE_LONG)) {
9702 			priv->config |= CFG_PREAMBLE_LONG;
9703 
9704 			/* Network configuration changed -- force [re]association */
9705 			IPW_DEBUG_ASSOC
9706 			    ("[re]association triggered due to preamble change.\n");
9707 			if (!ipw_disassociate(priv))
9708 				ipw_associate(priv);
9709 		}
9710 		goto done;
9711 	}
9712 
9713 	if (mode == 0) {
9714 		priv->config &= ~CFG_PREAMBLE_LONG;
9715 		goto done;
9716 	}
9717 	mutex_unlock(&priv->mutex);
9718 	return -EINVAL;
9719 
9720       done:
9721 	mutex_unlock(&priv->mutex);
9722 	return 0;
9723 }
9724 
9725 static int ipw_wx_get_preamble(struct net_device *dev,
9726 			       struct iw_request_info *info,
9727 			       union iwreq_data *wrqu, char *extra)
9728 {
9729 	struct ipw_priv *priv = libipw_priv(dev);
9730 	mutex_lock(&priv->mutex);
9731 	if (priv->config & CFG_PREAMBLE_LONG)
9732 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9733 	else
9734 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9735 	mutex_unlock(&priv->mutex);
9736 	return 0;
9737 }
9738 
9739 #ifdef CONFIG_IPW2200_MONITOR
9740 static int ipw_wx_set_monitor(struct net_device *dev,
9741 			      struct iw_request_info *info,
9742 			      union iwreq_data *wrqu, char *extra)
9743 {
9744 	struct ipw_priv *priv = libipw_priv(dev);
9745 	int *parms = (int *)extra;
9746 	int enable = (parms[0] > 0);
9747 	mutex_lock(&priv->mutex);
9748 	IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9749 	if (enable) {
9750 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9751 #ifdef CONFIG_IPW2200_RADIOTAP
9752 			priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9753 #else
9754 			priv->net_dev->type = ARPHRD_IEEE80211;
9755 #endif
9756 			schedule_work(&priv->adapter_restart);
9757 		}
9758 
9759 		ipw_set_channel(priv, parms[1]);
9760 	} else {
9761 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9762 			mutex_unlock(&priv->mutex);
9763 			return 0;
9764 		}
9765 		priv->net_dev->type = ARPHRD_ETHER;
9766 		schedule_work(&priv->adapter_restart);
9767 	}
9768 	mutex_unlock(&priv->mutex);
9769 	return 0;
9770 }
9771 
9772 #endif				/* CONFIG_IPW2200_MONITOR */
9773 
9774 static int ipw_wx_reset(struct net_device *dev,
9775 			struct iw_request_info *info,
9776 			union iwreq_data *wrqu, char *extra)
9777 {
9778 	struct ipw_priv *priv = libipw_priv(dev);
9779 	IPW_DEBUG_WX("RESET\n");
9780 	schedule_work(&priv->adapter_restart);
9781 	return 0;
9782 }
9783 
9784 static int ipw_wx_sw_reset(struct net_device *dev,
9785 			   struct iw_request_info *info,
9786 			   union iwreq_data *wrqu, char *extra)
9787 {
9788 	struct ipw_priv *priv = libipw_priv(dev);
9789 	union iwreq_data wrqu_sec = {
9790 		.encoding = {
9791 			     .flags = IW_ENCODE_DISABLED,
9792 			     },
9793 	};
9794 	int ret;
9795 
9796 	IPW_DEBUG_WX("SW_RESET\n");
9797 
9798 	mutex_lock(&priv->mutex);
9799 
9800 	ret = ipw_sw_reset(priv, 2);
9801 	if (!ret) {
9802 		free_firmware();
9803 		ipw_adapter_restart(priv);
9804 	}
9805 
9806 	/* The SW reset bit might have been toggled on by the 'disable'
9807 	 * module parameter, so take appropriate action */
9808 	ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9809 
9810 	mutex_unlock(&priv->mutex);
9811 	libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9812 	mutex_lock(&priv->mutex);
9813 
9814 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
9815 		/* Configuration likely changed -- force [re]association */
9816 		IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9817 				"reset.\n");
9818 		if (!ipw_disassociate(priv))
9819 			ipw_associate(priv);
9820 	}
9821 
9822 	mutex_unlock(&priv->mutex);
9823 
9824 	return 0;
9825 }
9826 
9827 /* Rebase the WE IOCTLs to zero for the handler array */
9828 static iw_handler ipw_wx_handlers[] = {
9829 	IW_HANDLER(SIOCGIWNAME, cfg80211_wext_giwname),
9830 	IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9831 	IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9832 	IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9833 	IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9834 	IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9835 	IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9836 	IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9837 	IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9838 	IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9839 	IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9840 	IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9841 	IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9842 	IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9843 	IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9844 	IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9845 	IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9846 	IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9847 	IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9848 	IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9849 	IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9850 	IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9851 	IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9852 	IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9853 	IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9854 	IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9855 	IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9856 	IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9857 	IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9858 	IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9859 	IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9860 	IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9861 	IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9862 	IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9863 	IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9864 	IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9865 	IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9866 	IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9867 	IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9868 	IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9869 	IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9870 };
9871 
9872 enum {
9873 	IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9874 	IPW_PRIV_GET_POWER,
9875 	IPW_PRIV_SET_MODE,
9876 	IPW_PRIV_GET_MODE,
9877 	IPW_PRIV_SET_PREAMBLE,
9878 	IPW_PRIV_GET_PREAMBLE,
9879 	IPW_PRIV_RESET,
9880 	IPW_PRIV_SW_RESET,
9881 #ifdef CONFIG_IPW2200_MONITOR
9882 	IPW_PRIV_SET_MONITOR,
9883 #endif
9884 };
9885 
9886 static struct iw_priv_args ipw_priv_args[] = {
9887 	{
9888 	 .cmd = IPW_PRIV_SET_POWER,
9889 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9890 	 .name = "set_power"},
9891 	{
9892 	 .cmd = IPW_PRIV_GET_POWER,
9893 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9894 	 .name = "get_power"},
9895 	{
9896 	 .cmd = IPW_PRIV_SET_MODE,
9897 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9898 	 .name = "set_mode"},
9899 	{
9900 	 .cmd = IPW_PRIV_GET_MODE,
9901 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9902 	 .name = "get_mode"},
9903 	{
9904 	 .cmd = IPW_PRIV_SET_PREAMBLE,
9905 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9906 	 .name = "set_preamble"},
9907 	{
9908 	 .cmd = IPW_PRIV_GET_PREAMBLE,
9909 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9910 	 .name = "get_preamble"},
9911 	{
9912 	 IPW_PRIV_RESET,
9913 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9914 	{
9915 	 IPW_PRIV_SW_RESET,
9916 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9917 #ifdef CONFIG_IPW2200_MONITOR
9918 	{
9919 	 IPW_PRIV_SET_MONITOR,
9920 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9921 #endif				/* CONFIG_IPW2200_MONITOR */
9922 };
9923 
9924 static iw_handler ipw_priv_handler[] = {
9925 	ipw_wx_set_powermode,
9926 	ipw_wx_get_powermode,
9927 	ipw_wx_set_wireless_mode,
9928 	ipw_wx_get_wireless_mode,
9929 	ipw_wx_set_preamble,
9930 	ipw_wx_get_preamble,
9931 	ipw_wx_reset,
9932 	ipw_wx_sw_reset,
9933 #ifdef CONFIG_IPW2200_MONITOR
9934 	ipw_wx_set_monitor,
9935 #endif
9936 };
9937 
9938 static const struct iw_handler_def ipw_wx_handler_def = {
9939 	.standard = ipw_wx_handlers,
9940 	.num_standard = ARRAY_SIZE(ipw_wx_handlers),
9941 	.num_private = ARRAY_SIZE(ipw_priv_handler),
9942 	.num_private_args = ARRAY_SIZE(ipw_priv_args),
9943 	.private = ipw_priv_handler,
9944 	.private_args = ipw_priv_args,
9945 	.get_wireless_stats = ipw_get_wireless_stats,
9946 };
9947 
9948 /*
9949  * Get wireless statistics.
9950  * Called by /proc/net/wireless
9951  * Also called by SIOCGIWSTATS
9952  */
9953 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9954 {
9955 	struct ipw_priv *priv = libipw_priv(dev);
9956 	struct iw_statistics *wstats;
9957 
9958 	wstats = &priv->wstats;
9959 
9960 	/* if hw is disabled, then ipw_get_ordinal() can't be called.
9961 	 * netdev->get_wireless_stats seems to be called before fw is
9962 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9963 	 * and associated; if not associcated, the values are all meaningless
9964 	 * anyway, so set them all to NULL and INVALID */
9965 	if (!(priv->status & STATUS_ASSOCIATED)) {
9966 		wstats->miss.beacon = 0;
9967 		wstats->discard.retries = 0;
9968 		wstats->qual.qual = 0;
9969 		wstats->qual.level = 0;
9970 		wstats->qual.noise = 0;
9971 		wstats->qual.updated = 7;
9972 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9973 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9974 		return wstats;
9975 	}
9976 
9977 	wstats->qual.qual = priv->quality;
9978 	wstats->qual.level = priv->exp_avg_rssi;
9979 	wstats->qual.noise = priv->exp_avg_noise;
9980 	wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9981 	    IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9982 
9983 	wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9984 	wstats->discard.retries = priv->last_tx_failures;
9985 	wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9986 
9987 /*	if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9988 	goto fail_get_ordinal;
9989 	wstats->discard.retries += tx_retry; */
9990 
9991 	return wstats;
9992 }
9993 
9994 /* net device stuff */
9995 
9996 static  void init_sys_config(struct ipw_sys_config *sys_config)
9997 {
9998 	memset(sys_config, 0, sizeof(struct ipw_sys_config));
9999 	sys_config->bt_coexistence = 0;
10000 	sys_config->answer_broadcast_ssid_probe = 0;
10001 	sys_config->accept_all_data_frames = 0;
10002 	sys_config->accept_non_directed_frames = 1;
10003 	sys_config->exclude_unicast_unencrypted = 0;
10004 	sys_config->disable_unicast_decryption = 1;
10005 	sys_config->exclude_multicast_unencrypted = 0;
10006 	sys_config->disable_multicast_decryption = 1;
10007 	if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10008 		antenna = CFG_SYS_ANTENNA_BOTH;
10009 	sys_config->antenna_diversity = antenna;
10010 	sys_config->pass_crc_to_host = 0;	/* TODO: See if 1 gives us FCS */
10011 	sys_config->dot11g_auto_detection = 0;
10012 	sys_config->enable_cts_to_self = 0;
10013 	sys_config->bt_coexist_collision_thr = 0;
10014 	sys_config->pass_noise_stats_to_host = 1;	/* 1 -- fix for 256 */
10015 	sys_config->silence_threshold = 0x1e;
10016 }
10017 
10018 static int ipw_net_open(struct net_device *dev)
10019 {
10020 	IPW_DEBUG_INFO("dev->open\n");
10021 	netif_start_queue(dev);
10022 	return 0;
10023 }
10024 
10025 static int ipw_net_stop(struct net_device *dev)
10026 {
10027 	IPW_DEBUG_INFO("dev->close\n");
10028 	netif_stop_queue(dev);
10029 	return 0;
10030 }
10031 
10032 /*
10033 todo:
10034 
10035 modify to send one tfd per fragment instead of using chunking.  otherwise
10036 we need to heavily modify the libipw_skb_to_txb.
10037 */
10038 
10039 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10040 			     int pri)
10041 {
10042 	struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10043 	    txb->fragments[0]->data;
10044 	int i = 0;
10045 	struct tfd_frame *tfd;
10046 #ifdef CONFIG_IPW2200_QOS
10047 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10048 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10049 #else
10050 	struct clx2_tx_queue *txq = &priv->txq[0];
10051 #endif
10052 	struct clx2_queue *q = &txq->q;
10053 	u8 id, hdr_len, unicast;
10054 	int fc;
10055 
10056 	if (!(priv->status & STATUS_ASSOCIATED))
10057 		goto drop;
10058 
10059 	hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10060 	switch (priv->ieee->iw_mode) {
10061 	case IW_MODE_ADHOC:
10062 		unicast = !is_multicast_ether_addr(hdr->addr1);
10063 		id = ipw_find_station(priv, hdr->addr1);
10064 		if (id == IPW_INVALID_STATION) {
10065 			id = ipw_add_station(priv, hdr->addr1);
10066 			if (id == IPW_INVALID_STATION) {
10067 				IPW_WARNING("Attempt to send data to "
10068 					    "invalid cell: %pM\n",
10069 					    hdr->addr1);
10070 				goto drop;
10071 			}
10072 		}
10073 		break;
10074 
10075 	case IW_MODE_INFRA:
10076 	default:
10077 		unicast = !is_multicast_ether_addr(hdr->addr3);
10078 		id = 0;
10079 		break;
10080 	}
10081 
10082 	tfd = &txq->bd[q->first_empty];
10083 	txq->txb[q->first_empty] = txb;
10084 	memset(tfd, 0, sizeof(*tfd));
10085 	tfd->u.data.station_number = id;
10086 
10087 	tfd->control_flags.message_type = TX_FRAME_TYPE;
10088 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10089 
10090 	tfd->u.data.cmd_id = DINO_CMD_TX;
10091 	tfd->u.data.len = cpu_to_le16(txb->payload_size);
10092 
10093 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10094 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10095 	else
10096 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10097 
10098 	if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10099 		tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10100 
10101 	fc = le16_to_cpu(hdr->frame_ctl);
10102 	hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10103 
10104 	memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10105 
10106 	if (likely(unicast))
10107 		tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10108 
10109 	if (txb->encrypted && !priv->ieee->host_encrypt) {
10110 		switch (priv->ieee->sec.level) {
10111 		case SEC_LEVEL_3:
10112 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10113 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10114 			/* XXX: ACK flag must be set for CCMP even if it
10115 			 * is a multicast/broadcast packet, because CCMP
10116 			 * group communication encrypted by GTK is
10117 			 * actually done by the AP. */
10118 			if (!unicast)
10119 				tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10120 
10121 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10122 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10123 			tfd->u.data.key_index = 0;
10124 			tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10125 			break;
10126 		case SEC_LEVEL_2:
10127 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10128 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10129 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10130 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10131 			tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10132 			break;
10133 		case SEC_LEVEL_1:
10134 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10135 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10136 			tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10137 			if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10138 			    40)
10139 				tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10140 			else
10141 				tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10142 			break;
10143 		case SEC_LEVEL_0:
10144 			break;
10145 		default:
10146 			printk(KERN_ERR "Unknown security level %d\n",
10147 			       priv->ieee->sec.level);
10148 			break;
10149 		}
10150 	} else
10151 		/* No hardware encryption */
10152 		tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10153 
10154 #ifdef CONFIG_IPW2200_QOS
10155 	if (fc & IEEE80211_STYPE_QOS_DATA)
10156 		ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10157 #endif				/* CONFIG_IPW2200_QOS */
10158 
10159 	/* payload */
10160 	tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10161 						 txb->nr_frags));
10162 	IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10163 		       txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10164 	for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10165 		IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10166 			       i, le32_to_cpu(tfd->u.data.num_chunks),
10167 			       txb->fragments[i]->len - hdr_len);
10168 		IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10169 			     i, tfd->u.data.num_chunks,
10170 			     txb->fragments[i]->len - hdr_len);
10171 		printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10172 			   txb->fragments[i]->len - hdr_len);
10173 
10174 		tfd->u.data.chunk_ptr[i] =
10175 		    cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10176 					       txb->fragments[i]->data + hdr_len,
10177 					       txb->fragments[i]->len - hdr_len,
10178 					       DMA_TO_DEVICE));
10179 		tfd->u.data.chunk_len[i] =
10180 		    cpu_to_le16(txb->fragments[i]->len - hdr_len);
10181 	}
10182 
10183 	if (i != txb->nr_frags) {
10184 		struct sk_buff *skb;
10185 		u16 remaining_bytes = 0;
10186 		int j;
10187 
10188 		for (j = i; j < txb->nr_frags; j++)
10189 			remaining_bytes += txb->fragments[j]->len - hdr_len;
10190 
10191 		printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10192 		       remaining_bytes);
10193 		skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10194 		if (skb != NULL) {
10195 			tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10196 			for (j = i; j < txb->nr_frags; j++) {
10197 				int size = txb->fragments[j]->len - hdr_len;
10198 
10199 				printk(KERN_INFO "Adding frag %d %d...\n",
10200 				       j, size);
10201 				skb_put_data(skb,
10202 					     txb->fragments[j]->data + hdr_len,
10203 					     size);
10204 			}
10205 			dev_kfree_skb_any(txb->fragments[i]);
10206 			txb->fragments[i] = skb;
10207 			tfd->u.data.chunk_ptr[i] =
10208 			    cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10209 						       skb->data,
10210 						       remaining_bytes,
10211 						       DMA_TO_DEVICE));
10212 
10213 			le32_add_cpu(&tfd->u.data.num_chunks, 1);
10214 		}
10215 	}
10216 
10217 	/* kick DMA */
10218 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10219 	ipw_write32(priv, q->reg_w, q->first_empty);
10220 
10221 	if (ipw_tx_queue_space(q) < q->high_mark)
10222 		netif_stop_queue(priv->net_dev);
10223 
10224 	return NETDEV_TX_OK;
10225 
10226       drop:
10227 	IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10228 	libipw_txb_free(txb);
10229 	return NETDEV_TX_OK;
10230 }
10231 
10232 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10233 {
10234 	struct ipw_priv *priv = libipw_priv(dev);
10235 #ifdef CONFIG_IPW2200_QOS
10236 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10237 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10238 #else
10239 	struct clx2_tx_queue *txq = &priv->txq[0];
10240 #endif				/* CONFIG_IPW2200_QOS */
10241 
10242 	if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10243 		return 1;
10244 
10245 	return 0;
10246 }
10247 
10248 #ifdef CONFIG_IPW2200_PROMISCUOUS
10249 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10250 				      struct libipw_txb *txb)
10251 {
10252 	struct libipw_rx_stats dummystats;
10253 	struct ieee80211_hdr *hdr;
10254 	u8 n;
10255 	u16 filter = priv->prom_priv->filter;
10256 	int hdr_only = 0;
10257 
10258 	if (filter & IPW_PROM_NO_TX)
10259 		return;
10260 
10261 	memset(&dummystats, 0, sizeof(dummystats));
10262 
10263 	/* Filtering of fragment chains is done against the first fragment */
10264 	hdr = (void *)txb->fragments[0]->data;
10265 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10266 		if (filter & IPW_PROM_NO_MGMT)
10267 			return;
10268 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10269 			hdr_only = 1;
10270 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10271 		if (filter & IPW_PROM_NO_CTL)
10272 			return;
10273 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
10274 			hdr_only = 1;
10275 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10276 		if (filter & IPW_PROM_NO_DATA)
10277 			return;
10278 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
10279 			hdr_only = 1;
10280 	}
10281 
10282 	for(n=0; n<txb->nr_frags; ++n) {
10283 		struct sk_buff *src = txb->fragments[n];
10284 		struct sk_buff *dst;
10285 		struct ieee80211_radiotap_header *rt_hdr;
10286 		int len;
10287 
10288 		if (hdr_only) {
10289 			hdr = (void *)src->data;
10290 			len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10291 		} else
10292 			len = src->len;
10293 
10294 		dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10295 		if (!dst)
10296 			continue;
10297 
10298 		rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10299 
10300 		rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10301 		rt_hdr->it_pad = 0;
10302 		rt_hdr->it_present = 0; /* after all, it's just an idea */
10303 		rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10304 
10305 		*(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10306 			ieee80211chan2mhz(priv->channel));
10307 		if (priv->channel > 14) 	/* 802.11a */
10308 			*(__le16*)skb_put(dst, sizeof(u16)) =
10309 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10310 					     IEEE80211_CHAN_5GHZ);
10311 		else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10312 			*(__le16*)skb_put(dst, sizeof(u16)) =
10313 				cpu_to_le16(IEEE80211_CHAN_CCK |
10314 					     IEEE80211_CHAN_2GHZ);
10315 		else 		/* 802.11g */
10316 			*(__le16*)skb_put(dst, sizeof(u16)) =
10317 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10318 				 IEEE80211_CHAN_2GHZ);
10319 
10320 		rt_hdr->it_len = cpu_to_le16(dst->len);
10321 
10322 		skb_copy_from_linear_data(src, skb_put(dst, len), len);
10323 
10324 		if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10325 			dev_kfree_skb_any(dst);
10326 	}
10327 }
10328 #endif
10329 
10330 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10331 					   struct net_device *dev, int pri)
10332 {
10333 	struct ipw_priv *priv = libipw_priv(dev);
10334 	unsigned long flags;
10335 	netdev_tx_t ret;
10336 
10337 	IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10338 	spin_lock_irqsave(&priv->lock, flags);
10339 
10340 #ifdef CONFIG_IPW2200_PROMISCUOUS
10341 	if (rtap_iface && netif_running(priv->prom_net_dev))
10342 		ipw_handle_promiscuous_tx(priv, txb);
10343 #endif
10344 
10345 	ret = ipw_tx_skb(priv, txb, pri);
10346 	if (ret == NETDEV_TX_OK)
10347 		__ipw_led_activity_on(priv);
10348 	spin_unlock_irqrestore(&priv->lock, flags);
10349 
10350 	return ret;
10351 }
10352 
10353 static void ipw_net_set_multicast_list(struct net_device *dev)
10354 {
10355 
10356 }
10357 
10358 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10359 {
10360 	struct ipw_priv *priv = libipw_priv(dev);
10361 	struct sockaddr *addr = p;
10362 
10363 	if (!is_valid_ether_addr(addr->sa_data))
10364 		return -EADDRNOTAVAIL;
10365 	mutex_lock(&priv->mutex);
10366 	priv->config |= CFG_CUSTOM_MAC;
10367 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10368 	printk(KERN_INFO "%s: Setting MAC to %pM\n",
10369 	       priv->net_dev->name, priv->mac_addr);
10370 	schedule_work(&priv->adapter_restart);
10371 	mutex_unlock(&priv->mutex);
10372 	return 0;
10373 }
10374 
10375 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10376 				    struct ethtool_drvinfo *info)
10377 {
10378 	struct ipw_priv *p = libipw_priv(dev);
10379 	char vers[64];
10380 	u32 len;
10381 
10382 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
10383 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
10384 
10385 	len = sizeof(vers);
10386 	ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10387 
10388 	strscpy(info->fw_version, vers, sizeof(info->fw_version));
10389 	strscpy(info->bus_info, pci_name(p->pci_dev),
10390 		sizeof(info->bus_info));
10391 }
10392 
10393 static u32 ipw_ethtool_get_link(struct net_device *dev)
10394 {
10395 	struct ipw_priv *priv = libipw_priv(dev);
10396 	return (priv->status & STATUS_ASSOCIATED) != 0;
10397 }
10398 
10399 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10400 {
10401 	return IPW_EEPROM_IMAGE_SIZE;
10402 }
10403 
10404 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10405 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10406 {
10407 	struct ipw_priv *p = libipw_priv(dev);
10408 
10409 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10410 		return -EINVAL;
10411 	mutex_lock(&p->mutex);
10412 	memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10413 	mutex_unlock(&p->mutex);
10414 	return 0;
10415 }
10416 
10417 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10418 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10419 {
10420 	struct ipw_priv *p = libipw_priv(dev);
10421 	int i;
10422 
10423 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10424 		return -EINVAL;
10425 	mutex_lock(&p->mutex);
10426 	memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10427 	for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10428 		ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10429 	mutex_unlock(&p->mutex);
10430 	return 0;
10431 }
10432 
10433 static const struct ethtool_ops ipw_ethtool_ops = {
10434 	.get_link = ipw_ethtool_get_link,
10435 	.get_drvinfo = ipw_ethtool_get_drvinfo,
10436 	.get_eeprom_len = ipw_ethtool_get_eeprom_len,
10437 	.get_eeprom = ipw_ethtool_get_eeprom,
10438 	.set_eeprom = ipw_ethtool_set_eeprom,
10439 };
10440 
10441 static irqreturn_t ipw_isr(int irq, void *data)
10442 {
10443 	struct ipw_priv *priv = data;
10444 	u32 inta, inta_mask;
10445 
10446 	if (!priv)
10447 		return IRQ_NONE;
10448 
10449 	spin_lock(&priv->irq_lock);
10450 
10451 	if (!(priv->status & STATUS_INT_ENABLED)) {
10452 		/* IRQ is disabled */
10453 		goto none;
10454 	}
10455 
10456 	inta = ipw_read32(priv, IPW_INTA_RW);
10457 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10458 
10459 	if (inta == 0xFFFFFFFF) {
10460 		/* Hardware disappeared */
10461 		IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10462 		goto none;
10463 	}
10464 
10465 	if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10466 		/* Shared interrupt */
10467 		goto none;
10468 	}
10469 
10470 	/* tell the device to stop sending interrupts */
10471 	__ipw_disable_interrupts(priv);
10472 
10473 	/* ack current interrupts */
10474 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
10475 	ipw_write32(priv, IPW_INTA_RW, inta);
10476 
10477 	/* Cache INTA value for our tasklet */
10478 	priv->isr_inta = inta;
10479 
10480 	tasklet_schedule(&priv->irq_tasklet);
10481 
10482 	spin_unlock(&priv->irq_lock);
10483 
10484 	return IRQ_HANDLED;
10485       none:
10486 	spin_unlock(&priv->irq_lock);
10487 	return IRQ_NONE;
10488 }
10489 
10490 static void ipw_rf_kill(void *adapter)
10491 {
10492 	struct ipw_priv *priv = adapter;
10493 	unsigned long flags;
10494 
10495 	spin_lock_irqsave(&priv->lock, flags);
10496 
10497 	if (rf_kill_active(priv)) {
10498 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10499 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10500 		goto exit_unlock;
10501 	}
10502 
10503 	/* RF Kill is now disabled, so bring the device back up */
10504 
10505 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
10506 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10507 				  "device\n");
10508 
10509 		/* we can not do an adapter restart while inside an irq lock */
10510 		schedule_work(&priv->adapter_restart);
10511 	} else
10512 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10513 				  "enabled\n");
10514 
10515       exit_unlock:
10516 	spin_unlock_irqrestore(&priv->lock, flags);
10517 }
10518 
10519 static void ipw_bg_rf_kill(struct work_struct *work)
10520 {
10521 	struct ipw_priv *priv =
10522 		container_of(work, struct ipw_priv, rf_kill.work);
10523 	mutex_lock(&priv->mutex);
10524 	ipw_rf_kill(priv);
10525 	mutex_unlock(&priv->mutex);
10526 }
10527 
10528 static void ipw_link_up(struct ipw_priv *priv)
10529 {
10530 	priv->last_seq_num = -1;
10531 	priv->last_frag_num = -1;
10532 	priv->last_packet_time = 0;
10533 
10534 	netif_carrier_on(priv->net_dev);
10535 
10536 	cancel_delayed_work(&priv->request_scan);
10537 	cancel_delayed_work(&priv->request_direct_scan);
10538 	cancel_delayed_work(&priv->request_passive_scan);
10539 	cancel_delayed_work(&priv->scan_event);
10540 	ipw_reset_stats(priv);
10541 	/* Ensure the rate is updated immediately */
10542 	priv->last_rate = ipw_get_current_rate(priv);
10543 	ipw_gather_stats(priv);
10544 	ipw_led_link_up(priv);
10545 	notify_wx_assoc_event(priv);
10546 
10547 	if (priv->config & CFG_BACKGROUND_SCAN)
10548 		schedule_delayed_work(&priv->request_scan, HZ);
10549 }
10550 
10551 static void ipw_bg_link_up(struct work_struct *work)
10552 {
10553 	struct ipw_priv *priv =
10554 		container_of(work, struct ipw_priv, link_up);
10555 	mutex_lock(&priv->mutex);
10556 	ipw_link_up(priv);
10557 	mutex_unlock(&priv->mutex);
10558 }
10559 
10560 static void ipw_link_down(struct ipw_priv *priv)
10561 {
10562 	ipw_led_link_down(priv);
10563 	netif_carrier_off(priv->net_dev);
10564 	notify_wx_assoc_event(priv);
10565 
10566 	/* Cancel any queued work ... */
10567 	cancel_delayed_work(&priv->request_scan);
10568 	cancel_delayed_work(&priv->request_direct_scan);
10569 	cancel_delayed_work(&priv->request_passive_scan);
10570 	cancel_delayed_work(&priv->adhoc_check);
10571 	cancel_delayed_work(&priv->gather_stats);
10572 
10573 	ipw_reset_stats(priv);
10574 
10575 	if (!(priv->status & STATUS_EXIT_PENDING)) {
10576 		/* Queue up another scan... */
10577 		schedule_delayed_work(&priv->request_scan, 0);
10578 	} else
10579 		cancel_delayed_work(&priv->scan_event);
10580 }
10581 
10582 static void ipw_bg_link_down(struct work_struct *work)
10583 {
10584 	struct ipw_priv *priv =
10585 		container_of(work, struct ipw_priv, link_down);
10586 	mutex_lock(&priv->mutex);
10587 	ipw_link_down(priv);
10588 	mutex_unlock(&priv->mutex);
10589 }
10590 
10591 static void ipw_setup_deferred_work(struct ipw_priv *priv)
10592 {
10593 	init_waitqueue_head(&priv->wait_command_queue);
10594 	init_waitqueue_head(&priv->wait_state);
10595 
10596 	INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10597 	INIT_WORK(&priv->associate, ipw_bg_associate);
10598 	INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10599 	INIT_WORK(&priv->system_config, ipw_system_config);
10600 	INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10601 	INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10602 	INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10603 	INIT_WORK(&priv->up, ipw_bg_up);
10604 	INIT_WORK(&priv->down, ipw_bg_down);
10605 	INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10606 	INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10607 	INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10608 	INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10609 	INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10610 	INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10611 	INIT_WORK(&priv->roam, ipw_bg_roam);
10612 	INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10613 	INIT_WORK(&priv->link_up, ipw_bg_link_up);
10614 	INIT_WORK(&priv->link_down, ipw_bg_link_down);
10615 	INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10616 	INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10617 	INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10618 	INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10619 
10620 #ifdef CONFIG_IPW2200_QOS
10621 	INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10622 #endif				/* CONFIG_IPW2200_QOS */
10623 
10624 	tasklet_setup(&priv->irq_tasklet, ipw_irq_tasklet);
10625 }
10626 
10627 static void shim__set_security(struct net_device *dev,
10628 			       struct libipw_security *sec)
10629 {
10630 	struct ipw_priv *priv = libipw_priv(dev);
10631 	int i;
10632 	for (i = 0; i < 4; i++) {
10633 		if (sec->flags & (1 << i)) {
10634 			priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10635 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10636 			if (sec->key_sizes[i] == 0)
10637 				priv->ieee->sec.flags &= ~(1 << i);
10638 			else {
10639 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10640 				       sec->key_sizes[i]);
10641 				priv->ieee->sec.flags |= (1 << i);
10642 			}
10643 			priv->status |= STATUS_SECURITY_UPDATED;
10644 		} else if (sec->level != SEC_LEVEL_1)
10645 			priv->ieee->sec.flags &= ~(1 << i);
10646 	}
10647 
10648 	if (sec->flags & SEC_ACTIVE_KEY) {
10649 		priv->ieee->sec.active_key = sec->active_key;
10650 		priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10651 		priv->status |= STATUS_SECURITY_UPDATED;
10652 	} else
10653 		priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10654 
10655 	if ((sec->flags & SEC_AUTH_MODE) &&
10656 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10657 		priv->ieee->sec.auth_mode = sec->auth_mode;
10658 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
10659 		if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10660 			priv->capability |= CAP_SHARED_KEY;
10661 		else
10662 			priv->capability &= ~CAP_SHARED_KEY;
10663 		priv->status |= STATUS_SECURITY_UPDATED;
10664 	}
10665 
10666 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10667 		priv->ieee->sec.flags |= SEC_ENABLED;
10668 		priv->ieee->sec.enabled = sec->enabled;
10669 		priv->status |= STATUS_SECURITY_UPDATED;
10670 		if (sec->enabled)
10671 			priv->capability |= CAP_PRIVACY_ON;
10672 		else
10673 			priv->capability &= ~CAP_PRIVACY_ON;
10674 	}
10675 
10676 	if (sec->flags & SEC_ENCRYPT)
10677 		priv->ieee->sec.encrypt = sec->encrypt;
10678 
10679 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10680 		priv->ieee->sec.level = sec->level;
10681 		priv->ieee->sec.flags |= SEC_LEVEL;
10682 		priv->status |= STATUS_SECURITY_UPDATED;
10683 	}
10684 
10685 	if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10686 		ipw_set_hwcrypto_keys(priv);
10687 
10688 	/* To match current functionality of ipw2100 (which works well w/
10689 	 * various supplicants, we don't force a disassociate if the
10690 	 * privacy capability changes ... */
10691 #if 0
10692 	if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10693 	    (((priv->assoc_request.capability &
10694 	       cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10695 	     (!(priv->assoc_request.capability &
10696 		cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10697 		IPW_DEBUG_ASSOC("Disassociating due to capability "
10698 				"change.\n");
10699 		ipw_disassociate(priv);
10700 	}
10701 #endif
10702 }
10703 
10704 static int init_supported_rates(struct ipw_priv *priv,
10705 				struct ipw_supported_rates *rates)
10706 {
10707 	/* TODO: Mask out rates based on priv->rates_mask */
10708 
10709 	memset(rates, 0, sizeof(*rates));
10710 	/* configure supported rates */
10711 	switch (priv->ieee->freq_band) {
10712 	case LIBIPW_52GHZ_BAND:
10713 		rates->ieee_mode = IPW_A_MODE;
10714 		rates->purpose = IPW_RATE_CAPABILITIES;
10715 		ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10716 					LIBIPW_OFDM_DEFAULT_RATES_MASK);
10717 		break;
10718 
10719 	default:		/* Mixed or 2.4Ghz */
10720 		rates->ieee_mode = IPW_G_MODE;
10721 		rates->purpose = IPW_RATE_CAPABILITIES;
10722 		ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10723 				       LIBIPW_CCK_DEFAULT_RATES_MASK);
10724 		if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10725 			ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10726 						LIBIPW_OFDM_DEFAULT_RATES_MASK);
10727 		}
10728 		break;
10729 	}
10730 
10731 	return 0;
10732 }
10733 
10734 static int ipw_config(struct ipw_priv *priv)
10735 {
10736 	/* This is only called from ipw_up, which resets/reloads the firmware
10737 	   so, we don't need to first disable the card before we configure
10738 	   it */
10739 	if (ipw_set_tx_power(priv))
10740 		goto error;
10741 
10742 	/* initialize adapter address */
10743 	if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10744 		goto error;
10745 
10746 	/* set basic system config settings */
10747 	init_sys_config(&priv->sys_config);
10748 
10749 	/* Support Bluetooth if we have BT h/w on board, and user wants to.
10750 	 * Does not support BT priority yet (don't abort or defer our Tx) */
10751 	if (bt_coexist) {
10752 		unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10753 
10754 		if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10755 			priv->sys_config.bt_coexistence
10756 			    |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10757 		if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10758 			priv->sys_config.bt_coexistence
10759 			    |= CFG_BT_COEXISTENCE_OOB;
10760 	}
10761 
10762 #ifdef CONFIG_IPW2200_PROMISCUOUS
10763 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10764 		priv->sys_config.accept_all_data_frames = 1;
10765 		priv->sys_config.accept_non_directed_frames = 1;
10766 		priv->sys_config.accept_all_mgmt_bcpr = 1;
10767 		priv->sys_config.accept_all_mgmt_frames = 1;
10768 	}
10769 #endif
10770 
10771 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10772 		priv->sys_config.answer_broadcast_ssid_probe = 1;
10773 	else
10774 		priv->sys_config.answer_broadcast_ssid_probe = 0;
10775 
10776 	if (ipw_send_system_config(priv))
10777 		goto error;
10778 
10779 	init_supported_rates(priv, &priv->rates);
10780 	if (ipw_send_supported_rates(priv, &priv->rates))
10781 		goto error;
10782 
10783 	/* Set request-to-send threshold */
10784 	if (priv->rts_threshold) {
10785 		if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10786 			goto error;
10787 	}
10788 #ifdef CONFIG_IPW2200_QOS
10789 	IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10790 	ipw_qos_activate(priv, NULL);
10791 #endif				/* CONFIG_IPW2200_QOS */
10792 
10793 	if (ipw_set_random_seed(priv))
10794 		goto error;
10795 
10796 	/* final state transition to the RUN state */
10797 	if (ipw_send_host_complete(priv))
10798 		goto error;
10799 
10800 	priv->status |= STATUS_INIT;
10801 
10802 	ipw_led_init(priv);
10803 	ipw_led_radio_on(priv);
10804 	priv->notif_missed_beacons = 0;
10805 
10806 	/* Set hardware WEP key if it is configured. */
10807 	if ((priv->capability & CAP_PRIVACY_ON) &&
10808 	    (priv->ieee->sec.level == SEC_LEVEL_1) &&
10809 	    !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10810 		ipw_set_hwcrypto_keys(priv);
10811 
10812 	return 0;
10813 
10814       error:
10815 	return -EIO;
10816 }
10817 
10818 /*
10819  * NOTE:
10820  *
10821  * These tables have been tested in conjunction with the
10822  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10823  *
10824  * Altering this values, using it on other hardware, or in geographies
10825  * not intended for resale of the above mentioned Intel adapters has
10826  * not been tested.
10827  *
10828  * Remember to update the table in README.ipw2200 when changing this
10829  * table.
10830  *
10831  */
10832 static const struct libipw_geo ipw_geos[] = {
10833 	{			/* Restricted */
10834 	 "---",
10835 	 .bg_channels = 11,
10836 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10837 		{2427, 4}, {2432, 5}, {2437, 6},
10838 		{2442, 7}, {2447, 8}, {2452, 9},
10839 		{2457, 10}, {2462, 11}},
10840 	 },
10841 
10842 	{			/* Custom US/Canada */
10843 	 "ZZF",
10844 	 .bg_channels = 11,
10845 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10846 		{2427, 4}, {2432, 5}, {2437, 6},
10847 		{2442, 7}, {2447, 8}, {2452, 9},
10848 		{2457, 10}, {2462, 11}},
10849 	 .a_channels = 8,
10850 	 .a = {{5180, 36},
10851 	       {5200, 40},
10852 	       {5220, 44},
10853 	       {5240, 48},
10854 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10855 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10856 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10857 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10858 	 },
10859 
10860 	{			/* Rest of World */
10861 	 "ZZD",
10862 	 .bg_channels = 13,
10863 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10864 		{2427, 4}, {2432, 5}, {2437, 6},
10865 		{2442, 7}, {2447, 8}, {2452, 9},
10866 		{2457, 10}, {2462, 11}, {2467, 12},
10867 		{2472, 13}},
10868 	 },
10869 
10870 	{			/* Custom USA & Europe & High */
10871 	 "ZZA",
10872 	 .bg_channels = 11,
10873 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10874 		{2427, 4}, {2432, 5}, {2437, 6},
10875 		{2442, 7}, {2447, 8}, {2452, 9},
10876 		{2457, 10}, {2462, 11}},
10877 	 .a_channels = 13,
10878 	 .a = {{5180, 36},
10879 	       {5200, 40},
10880 	       {5220, 44},
10881 	       {5240, 48},
10882 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10883 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10884 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10885 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10886 	       {5745, 149},
10887 	       {5765, 153},
10888 	       {5785, 157},
10889 	       {5805, 161},
10890 	       {5825, 165}},
10891 	 },
10892 
10893 	{			/* Custom NA & Europe */
10894 	 "ZZB",
10895 	 .bg_channels = 11,
10896 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10897 		{2427, 4}, {2432, 5}, {2437, 6},
10898 		{2442, 7}, {2447, 8}, {2452, 9},
10899 		{2457, 10}, {2462, 11}},
10900 	 .a_channels = 13,
10901 	 .a = {{5180, 36},
10902 	       {5200, 40},
10903 	       {5220, 44},
10904 	       {5240, 48},
10905 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10906 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10907 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10908 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10909 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10910 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10911 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10912 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10913 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10914 	 },
10915 
10916 	{			/* Custom Japan */
10917 	 "ZZC",
10918 	 .bg_channels = 11,
10919 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10920 		{2427, 4}, {2432, 5}, {2437, 6},
10921 		{2442, 7}, {2447, 8}, {2452, 9},
10922 		{2457, 10}, {2462, 11}},
10923 	 .a_channels = 4,
10924 	 .a = {{5170, 34}, {5190, 38},
10925 	       {5210, 42}, {5230, 46}},
10926 	 },
10927 
10928 	{			/* Custom */
10929 	 "ZZM",
10930 	 .bg_channels = 11,
10931 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10932 		{2427, 4}, {2432, 5}, {2437, 6},
10933 		{2442, 7}, {2447, 8}, {2452, 9},
10934 		{2457, 10}, {2462, 11}},
10935 	 },
10936 
10937 	{			/* Europe */
10938 	 "ZZE",
10939 	 .bg_channels = 13,
10940 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10941 		{2427, 4}, {2432, 5}, {2437, 6},
10942 		{2442, 7}, {2447, 8}, {2452, 9},
10943 		{2457, 10}, {2462, 11}, {2467, 12},
10944 		{2472, 13}},
10945 	 .a_channels = 19,
10946 	 .a = {{5180, 36},
10947 	       {5200, 40},
10948 	       {5220, 44},
10949 	       {5240, 48},
10950 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10951 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10952 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10953 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10954 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
10955 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
10956 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
10957 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
10958 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
10959 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
10960 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
10961 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
10962 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
10963 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
10964 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
10965 	 },
10966 
10967 	{			/* Custom Japan */
10968 	 "ZZJ",
10969 	 .bg_channels = 14,
10970 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10971 		{2427, 4}, {2432, 5}, {2437, 6},
10972 		{2442, 7}, {2447, 8}, {2452, 9},
10973 		{2457, 10}, {2462, 11}, {2467, 12},
10974 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
10975 	 .a_channels = 4,
10976 	 .a = {{5170, 34}, {5190, 38},
10977 	       {5210, 42}, {5230, 46}},
10978 	 },
10979 
10980 	{			/* Rest of World */
10981 	 "ZZR",
10982 	 .bg_channels = 14,
10983 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10984 		{2427, 4}, {2432, 5}, {2437, 6},
10985 		{2442, 7}, {2447, 8}, {2452, 9},
10986 		{2457, 10}, {2462, 11}, {2467, 12},
10987 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
10988 			     LIBIPW_CH_PASSIVE_ONLY}},
10989 	 },
10990 
10991 	{			/* High Band */
10992 	 "ZZH",
10993 	 .bg_channels = 13,
10994 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10995 		{2427, 4}, {2432, 5}, {2437, 6},
10996 		{2442, 7}, {2447, 8}, {2452, 9},
10997 		{2457, 10}, {2462, 11},
10998 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
10999 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11000 	 .a_channels = 4,
11001 	 .a = {{5745, 149}, {5765, 153},
11002 	       {5785, 157}, {5805, 161}},
11003 	 },
11004 
11005 	{			/* Custom Europe */
11006 	 "ZZG",
11007 	 .bg_channels = 13,
11008 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11009 		{2427, 4}, {2432, 5}, {2437, 6},
11010 		{2442, 7}, {2447, 8}, {2452, 9},
11011 		{2457, 10}, {2462, 11},
11012 		{2467, 12}, {2472, 13}},
11013 	 .a_channels = 4,
11014 	 .a = {{5180, 36}, {5200, 40},
11015 	       {5220, 44}, {5240, 48}},
11016 	 },
11017 
11018 	{			/* Europe */
11019 	 "ZZK",
11020 	 .bg_channels = 13,
11021 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11022 		{2427, 4}, {2432, 5}, {2437, 6},
11023 		{2442, 7}, {2447, 8}, {2452, 9},
11024 		{2457, 10}, {2462, 11},
11025 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11026 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11027 	 .a_channels = 24,
11028 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11029 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11030 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11031 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11032 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11033 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11034 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11035 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11036 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11037 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11038 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11039 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11040 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11041 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11042 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11043 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11044 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11045 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11046 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11047 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11048 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11049 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11050 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11051 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11052 	 },
11053 
11054 	{			/* Europe */
11055 	 "ZZL",
11056 	 .bg_channels = 11,
11057 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11058 		{2427, 4}, {2432, 5}, {2437, 6},
11059 		{2442, 7}, {2447, 8}, {2452, 9},
11060 		{2457, 10}, {2462, 11}},
11061 	 .a_channels = 13,
11062 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11063 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11064 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11065 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11066 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11067 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11068 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11069 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11070 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11071 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11072 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11073 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11074 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11075 	 }
11076 };
11077 
11078 static void ipw_set_geo(struct ipw_priv *priv)
11079 {
11080 	int j;
11081 
11082 	for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11083 		if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11084 			    ipw_geos[j].name, 3))
11085 			break;
11086 	}
11087 
11088 	if (j == ARRAY_SIZE(ipw_geos)) {
11089 		IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11090 			    priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11091 			    priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11092 			    priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11093 		j = 0;
11094 	}
11095 
11096 	libipw_set_geo(priv->ieee, &ipw_geos[j]);
11097 }
11098 
11099 #define MAX_HW_RESTARTS 5
11100 static int ipw_up(struct ipw_priv *priv)
11101 {
11102 	int rc, i;
11103 
11104 	/* Age scan list entries found before suspend */
11105 	if (priv->suspend_time) {
11106 		libipw_networks_age(priv->ieee, priv->suspend_time);
11107 		priv->suspend_time = 0;
11108 	}
11109 
11110 	if (priv->status & STATUS_EXIT_PENDING)
11111 		return -EIO;
11112 
11113 	if (cmdlog && !priv->cmdlog) {
11114 		priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11115 				       GFP_KERNEL);
11116 		if (priv->cmdlog == NULL) {
11117 			IPW_ERROR("Error allocating %d command log entries.\n",
11118 				  cmdlog);
11119 			return -ENOMEM;
11120 		} else {
11121 			priv->cmdlog_len = cmdlog;
11122 		}
11123 	}
11124 
11125 	for (i = 0; i < MAX_HW_RESTARTS; i++) {
11126 		/* Load the microcode, firmware, and eeprom.
11127 		 * Also start the clocks. */
11128 		rc = ipw_load(priv);
11129 		if (rc) {
11130 			IPW_ERROR("Unable to load firmware: %d\n", rc);
11131 			return rc;
11132 		}
11133 
11134 		ipw_init_ordinals(priv);
11135 		if (!(priv->config & CFG_CUSTOM_MAC))
11136 			eeprom_parse_mac(priv, priv->mac_addr);
11137 		eth_hw_addr_set(priv->net_dev, priv->mac_addr);
11138 
11139 		ipw_set_geo(priv);
11140 
11141 		if (priv->status & STATUS_RF_KILL_SW) {
11142 			IPW_WARNING("Radio disabled by module parameter.\n");
11143 			return 0;
11144 		} else if (rf_kill_active(priv)) {
11145 			IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11146 				    "Kill switch must be turned off for "
11147 				    "wireless networking to work.\n");
11148 			schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11149 			return 0;
11150 		}
11151 
11152 		rc = ipw_config(priv);
11153 		if (!rc) {
11154 			IPW_DEBUG_INFO("Configured device on count %i\n", i);
11155 
11156 			/* If configure to try and auto-associate, kick
11157 			 * off a scan. */
11158 			schedule_delayed_work(&priv->request_scan, 0);
11159 
11160 			return 0;
11161 		}
11162 
11163 		IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11164 		IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11165 			       i, MAX_HW_RESTARTS);
11166 
11167 		/* We had an error bringing up the hardware, so take it
11168 		 * all the way back down so we can try again */
11169 		ipw_down(priv);
11170 	}
11171 
11172 	/* tried to restart and config the device for as long as our
11173 	 * patience could withstand */
11174 	IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11175 
11176 	return -EIO;
11177 }
11178 
11179 static void ipw_bg_up(struct work_struct *work)
11180 {
11181 	struct ipw_priv *priv =
11182 		container_of(work, struct ipw_priv, up);
11183 	mutex_lock(&priv->mutex);
11184 	ipw_up(priv);
11185 	mutex_unlock(&priv->mutex);
11186 }
11187 
11188 static void ipw_deinit(struct ipw_priv *priv)
11189 {
11190 	int i;
11191 
11192 	if (priv->status & STATUS_SCANNING) {
11193 		IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11194 		ipw_abort_scan(priv);
11195 	}
11196 
11197 	if (priv->status & STATUS_ASSOCIATED) {
11198 		IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11199 		ipw_disassociate(priv);
11200 	}
11201 
11202 	ipw_led_shutdown(priv);
11203 
11204 	/* Wait up to 1s for status to change to not scanning and not
11205 	 * associated (disassociation can take a while for a ful 802.11
11206 	 * exchange */
11207 	for (i = 1000; i && (priv->status &
11208 			     (STATUS_DISASSOCIATING |
11209 			      STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11210 		udelay(10);
11211 
11212 	if (priv->status & (STATUS_DISASSOCIATING |
11213 			    STATUS_ASSOCIATED | STATUS_SCANNING))
11214 		IPW_DEBUG_INFO("Still associated or scanning...\n");
11215 	else
11216 		IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11217 
11218 	/* Attempt to disable the card */
11219 	ipw_send_card_disable(priv, 0);
11220 
11221 	priv->status &= ~STATUS_INIT;
11222 }
11223 
11224 static void ipw_down(struct ipw_priv *priv)
11225 {
11226 	int exit_pending = priv->status & STATUS_EXIT_PENDING;
11227 
11228 	priv->status |= STATUS_EXIT_PENDING;
11229 
11230 	if (ipw_is_init(priv))
11231 		ipw_deinit(priv);
11232 
11233 	/* Wipe out the EXIT_PENDING status bit if we are not actually
11234 	 * exiting the module */
11235 	if (!exit_pending)
11236 		priv->status &= ~STATUS_EXIT_PENDING;
11237 
11238 	/* tell the device to stop sending interrupts */
11239 	ipw_disable_interrupts(priv);
11240 
11241 	/* Clear all bits but the RF Kill */
11242 	priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11243 	netif_carrier_off(priv->net_dev);
11244 
11245 	ipw_stop_nic(priv);
11246 
11247 	ipw_led_radio_off(priv);
11248 }
11249 
11250 static void ipw_bg_down(struct work_struct *work)
11251 {
11252 	struct ipw_priv *priv =
11253 		container_of(work, struct ipw_priv, down);
11254 	mutex_lock(&priv->mutex);
11255 	ipw_down(priv);
11256 	mutex_unlock(&priv->mutex);
11257 }
11258 
11259 static int ipw_wdev_init(struct net_device *dev)
11260 {
11261 	int i, rc = 0;
11262 	struct ipw_priv *priv = libipw_priv(dev);
11263 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11264 	struct wireless_dev *wdev = &priv->ieee->wdev;
11265 
11266 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11267 
11268 	/* fill-out priv->ieee->bg_band */
11269 	if (geo->bg_channels) {
11270 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11271 
11272 		bg_band->band = NL80211_BAND_2GHZ;
11273 		bg_band->n_channels = geo->bg_channels;
11274 		bg_band->channels = kcalloc(geo->bg_channels,
11275 					    sizeof(struct ieee80211_channel),
11276 					    GFP_KERNEL);
11277 		if (!bg_band->channels) {
11278 			rc = -ENOMEM;
11279 			goto out;
11280 		}
11281 		/* translate geo->bg to bg_band.channels */
11282 		for (i = 0; i < geo->bg_channels; i++) {
11283 			bg_band->channels[i].band = NL80211_BAND_2GHZ;
11284 			bg_band->channels[i].center_freq = geo->bg[i].freq;
11285 			bg_band->channels[i].hw_value = geo->bg[i].channel;
11286 			bg_band->channels[i].max_power = geo->bg[i].max_power;
11287 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11288 				bg_band->channels[i].flags |=
11289 					IEEE80211_CHAN_NO_IR;
11290 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11291 				bg_band->channels[i].flags |=
11292 					IEEE80211_CHAN_NO_IR;
11293 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11294 				bg_band->channels[i].flags |=
11295 					IEEE80211_CHAN_RADAR;
11296 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11297 			   LIBIPW_CH_UNIFORM_SPREADING, or
11298 			   LIBIPW_CH_B_ONLY... */
11299 		}
11300 		/* point at bitrate info */
11301 		bg_band->bitrates = ipw2200_bg_rates;
11302 		bg_band->n_bitrates = ipw2200_num_bg_rates;
11303 
11304 		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11305 	}
11306 
11307 	/* fill-out priv->ieee->a_band */
11308 	if (geo->a_channels) {
11309 		struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11310 
11311 		a_band->band = NL80211_BAND_5GHZ;
11312 		a_band->n_channels = geo->a_channels;
11313 		a_band->channels = kcalloc(geo->a_channels,
11314 					   sizeof(struct ieee80211_channel),
11315 					   GFP_KERNEL);
11316 		if (!a_band->channels) {
11317 			rc = -ENOMEM;
11318 			goto out;
11319 		}
11320 		/* translate geo->a to a_band.channels */
11321 		for (i = 0; i < geo->a_channels; i++) {
11322 			a_band->channels[i].band = NL80211_BAND_5GHZ;
11323 			a_band->channels[i].center_freq = geo->a[i].freq;
11324 			a_band->channels[i].hw_value = geo->a[i].channel;
11325 			a_band->channels[i].max_power = geo->a[i].max_power;
11326 			if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11327 				a_band->channels[i].flags |=
11328 					IEEE80211_CHAN_NO_IR;
11329 			if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11330 				a_band->channels[i].flags |=
11331 					IEEE80211_CHAN_NO_IR;
11332 			if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11333 				a_band->channels[i].flags |=
11334 					IEEE80211_CHAN_RADAR;
11335 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11336 			   LIBIPW_CH_UNIFORM_SPREADING, or
11337 			   LIBIPW_CH_B_ONLY... */
11338 		}
11339 		/* point at bitrate info */
11340 		a_band->bitrates = ipw2200_a_rates;
11341 		a_band->n_bitrates = ipw2200_num_a_rates;
11342 
11343 		wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11344 	}
11345 
11346 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
11347 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11348 
11349 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11350 
11351 	/* With that information in place, we can now register the wiphy... */
11352 	rc = wiphy_register(wdev->wiphy);
11353 	if (rc)
11354 		goto out;
11355 
11356 	return 0;
11357 out:
11358 	kfree(priv->ieee->a_band.channels);
11359 	kfree(priv->ieee->bg_band.channels);
11360 	return rc;
11361 }
11362 
11363 /* PCI driver stuff */
11364 static const struct pci_device_id card_ids[] = {
11365 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11366 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11367 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11368 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11369 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11370 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11371 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11372 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11373 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11374 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11375 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11376 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11377 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11378 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11379 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11380 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11381 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11382 	{PCI_VDEVICE(INTEL, 0x104f), 0},
11383 	{PCI_VDEVICE(INTEL, 0x4220), 0},	/* BG */
11384 	{PCI_VDEVICE(INTEL, 0x4221), 0},	/* BG */
11385 	{PCI_VDEVICE(INTEL, 0x4223), 0},	/* ABG */
11386 	{PCI_VDEVICE(INTEL, 0x4224), 0},	/* ABG */
11387 
11388 	/* required last entry */
11389 	{0,}
11390 };
11391 
11392 MODULE_DEVICE_TABLE(pci, card_ids);
11393 
11394 static struct attribute *ipw_sysfs_entries[] = {
11395 	&dev_attr_rf_kill.attr,
11396 	&dev_attr_direct_dword.attr,
11397 	&dev_attr_indirect_byte.attr,
11398 	&dev_attr_indirect_dword.attr,
11399 	&dev_attr_mem_gpio_reg.attr,
11400 	&dev_attr_command_event_reg.attr,
11401 	&dev_attr_nic_type.attr,
11402 	&dev_attr_status.attr,
11403 	&dev_attr_cfg.attr,
11404 	&dev_attr_error.attr,
11405 	&dev_attr_event_log.attr,
11406 	&dev_attr_cmd_log.attr,
11407 	&dev_attr_eeprom_delay.attr,
11408 	&dev_attr_ucode_version.attr,
11409 	&dev_attr_rtc.attr,
11410 	&dev_attr_scan_age.attr,
11411 	&dev_attr_led.attr,
11412 	&dev_attr_speed_scan.attr,
11413 	&dev_attr_net_stats.attr,
11414 	&dev_attr_channels.attr,
11415 #ifdef CONFIG_IPW2200_PROMISCUOUS
11416 	&dev_attr_rtap_iface.attr,
11417 	&dev_attr_rtap_filter.attr,
11418 #endif
11419 	NULL
11420 };
11421 
11422 static const struct attribute_group ipw_attribute_group = {
11423 	.name = NULL,		/* put in device directory */
11424 	.attrs = ipw_sysfs_entries,
11425 };
11426 
11427 #ifdef CONFIG_IPW2200_PROMISCUOUS
11428 static int ipw_prom_open(struct net_device *dev)
11429 {
11430 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11431 	struct ipw_priv *priv = prom_priv->priv;
11432 
11433 	IPW_DEBUG_INFO("prom dev->open\n");
11434 	netif_carrier_off(dev);
11435 
11436 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11437 		priv->sys_config.accept_all_data_frames = 1;
11438 		priv->sys_config.accept_non_directed_frames = 1;
11439 		priv->sys_config.accept_all_mgmt_bcpr = 1;
11440 		priv->sys_config.accept_all_mgmt_frames = 1;
11441 
11442 		ipw_send_system_config(priv);
11443 	}
11444 
11445 	return 0;
11446 }
11447 
11448 static int ipw_prom_stop(struct net_device *dev)
11449 {
11450 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11451 	struct ipw_priv *priv = prom_priv->priv;
11452 
11453 	IPW_DEBUG_INFO("prom dev->stop\n");
11454 
11455 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11456 		priv->sys_config.accept_all_data_frames = 0;
11457 		priv->sys_config.accept_non_directed_frames = 0;
11458 		priv->sys_config.accept_all_mgmt_bcpr = 0;
11459 		priv->sys_config.accept_all_mgmt_frames = 0;
11460 
11461 		ipw_send_system_config(priv);
11462 	}
11463 
11464 	return 0;
11465 }
11466 
11467 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11468 					    struct net_device *dev)
11469 {
11470 	IPW_DEBUG_INFO("prom dev->xmit\n");
11471 	dev_kfree_skb(skb);
11472 	return NETDEV_TX_OK;
11473 }
11474 
11475 static const struct net_device_ops ipw_prom_netdev_ops = {
11476 	.ndo_open 		= ipw_prom_open,
11477 	.ndo_stop		= ipw_prom_stop,
11478 	.ndo_start_xmit		= ipw_prom_hard_start_xmit,
11479 	.ndo_set_mac_address 	= eth_mac_addr,
11480 	.ndo_validate_addr	= eth_validate_addr,
11481 };
11482 
11483 static int ipw_prom_alloc(struct ipw_priv *priv)
11484 {
11485 	int rc = 0;
11486 
11487 	if (priv->prom_net_dev)
11488 		return -EPERM;
11489 
11490 	priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11491 	if (priv->prom_net_dev == NULL)
11492 		return -ENOMEM;
11493 
11494 	priv->prom_priv = libipw_priv(priv->prom_net_dev);
11495 	priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11496 	priv->prom_priv->priv = priv;
11497 
11498 	strcpy(priv->prom_net_dev->name, "rtap%d");
11499 	eth_hw_addr_set(priv->prom_net_dev, priv->mac_addr);
11500 
11501 	priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11502 	priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11503 
11504 	priv->prom_net_dev->min_mtu = 68;
11505 	priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11506 
11507 	priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11508 	SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11509 
11510 	rc = register_netdev(priv->prom_net_dev);
11511 	if (rc) {
11512 		free_libipw(priv->prom_net_dev, 1);
11513 		priv->prom_net_dev = NULL;
11514 		return rc;
11515 	}
11516 
11517 	return 0;
11518 }
11519 
11520 static void ipw_prom_free(struct ipw_priv *priv)
11521 {
11522 	if (!priv->prom_net_dev)
11523 		return;
11524 
11525 	unregister_netdev(priv->prom_net_dev);
11526 	free_libipw(priv->prom_net_dev, 1);
11527 
11528 	priv->prom_net_dev = NULL;
11529 }
11530 
11531 #endif
11532 
11533 static const struct net_device_ops ipw_netdev_ops = {
11534 	.ndo_open		= ipw_net_open,
11535 	.ndo_stop		= ipw_net_stop,
11536 	.ndo_set_rx_mode	= ipw_net_set_multicast_list,
11537 	.ndo_set_mac_address	= ipw_net_set_mac_address,
11538 	.ndo_start_xmit		= libipw_xmit,
11539 	.ndo_validate_addr	= eth_validate_addr,
11540 };
11541 
11542 static int ipw_pci_probe(struct pci_dev *pdev,
11543 				   const struct pci_device_id *ent)
11544 {
11545 	int err = 0;
11546 	struct net_device *net_dev;
11547 	void __iomem *base;
11548 	u32 length, val;
11549 	struct ipw_priv *priv;
11550 	int i;
11551 
11552 	net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11553 	if (net_dev == NULL) {
11554 		err = -ENOMEM;
11555 		goto out;
11556 	}
11557 
11558 	priv = libipw_priv(net_dev);
11559 	priv->ieee = netdev_priv(net_dev);
11560 
11561 	priv->net_dev = net_dev;
11562 	priv->pci_dev = pdev;
11563 	ipw_debug_level = debug;
11564 	spin_lock_init(&priv->irq_lock);
11565 	spin_lock_init(&priv->lock);
11566 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11567 		INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11568 
11569 	mutex_init(&priv->mutex);
11570 	if (pci_enable_device(pdev)) {
11571 		err = -ENODEV;
11572 		goto out_free_libipw;
11573 	}
11574 
11575 	pci_set_master(pdev);
11576 
11577 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
11578 	if (!err)
11579 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
11580 	if (err) {
11581 		printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11582 		goto out_pci_disable_device;
11583 	}
11584 
11585 	pci_set_drvdata(pdev, priv);
11586 
11587 	err = pci_request_regions(pdev, DRV_NAME);
11588 	if (err)
11589 		goto out_pci_disable_device;
11590 
11591 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
11592 	 * PCI Tx retries from interfering with C3 CPU state */
11593 	pci_read_config_dword(pdev, 0x40, &val);
11594 	if ((val & 0x0000ff00) != 0)
11595 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11596 
11597 	length = pci_resource_len(pdev, 0);
11598 	priv->hw_len = length;
11599 
11600 	base = pci_ioremap_bar(pdev, 0);
11601 	if (!base) {
11602 		err = -ENODEV;
11603 		goto out_pci_release_regions;
11604 	}
11605 
11606 	priv->hw_base = base;
11607 	IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11608 	IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11609 
11610 	ipw_setup_deferred_work(priv);
11611 
11612 	ipw_sw_reset(priv, 1);
11613 
11614 	err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11615 	if (err) {
11616 		IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11617 		goto out_iounmap;
11618 	}
11619 
11620 	SET_NETDEV_DEV(net_dev, &pdev->dev);
11621 
11622 	mutex_lock(&priv->mutex);
11623 
11624 	priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11625 	priv->ieee->set_security = shim__set_security;
11626 	priv->ieee->is_queue_full = ipw_net_is_queue_full;
11627 
11628 #ifdef CONFIG_IPW2200_QOS
11629 	priv->ieee->is_qos_active = ipw_is_qos_active;
11630 	priv->ieee->handle_probe_response = ipw_handle_beacon;
11631 	priv->ieee->handle_beacon = ipw_handle_probe_response;
11632 	priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11633 #endif				/* CONFIG_IPW2200_QOS */
11634 
11635 	priv->ieee->perfect_rssi = -20;
11636 	priv->ieee->worst_rssi = -85;
11637 
11638 	net_dev->netdev_ops = &ipw_netdev_ops;
11639 	priv->wireless_data.spy_data = &priv->ieee->spy_data;
11640 	net_dev->wireless_data = &priv->wireless_data;
11641 	net_dev->wireless_handlers = &ipw_wx_handler_def;
11642 	net_dev->ethtool_ops = &ipw_ethtool_ops;
11643 
11644 	net_dev->min_mtu = 68;
11645 	net_dev->max_mtu = LIBIPW_DATA_LEN;
11646 
11647 	err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11648 	if (err) {
11649 		IPW_ERROR("failed to create sysfs device attributes\n");
11650 		mutex_unlock(&priv->mutex);
11651 		goto out_release_irq;
11652 	}
11653 
11654 	if (ipw_up(priv)) {
11655 		mutex_unlock(&priv->mutex);
11656 		err = -EIO;
11657 		goto out_remove_sysfs;
11658 	}
11659 
11660 	mutex_unlock(&priv->mutex);
11661 
11662 	err = ipw_wdev_init(net_dev);
11663 	if (err) {
11664 		IPW_ERROR("failed to register wireless device\n");
11665 		goto out_remove_sysfs;
11666 	}
11667 
11668 	err = register_netdev(net_dev);
11669 	if (err) {
11670 		IPW_ERROR("failed to register network device\n");
11671 		goto out_unregister_wiphy;
11672 	}
11673 
11674 #ifdef CONFIG_IPW2200_PROMISCUOUS
11675 	if (rtap_iface) {
11676 	        err = ipw_prom_alloc(priv);
11677 		if (err) {
11678 			IPW_ERROR("Failed to register promiscuous network "
11679 				  "device (error %d).\n", err);
11680 			unregister_netdev(priv->net_dev);
11681 			goto out_unregister_wiphy;
11682 		}
11683 	}
11684 #endif
11685 
11686 	printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11687 	       "channels, %d 802.11a channels)\n",
11688 	       priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11689 	       priv->ieee->geo.a_channels);
11690 
11691 	return 0;
11692 
11693       out_unregister_wiphy:
11694 	wiphy_unregister(priv->ieee->wdev.wiphy);
11695 	kfree(priv->ieee->a_band.channels);
11696 	kfree(priv->ieee->bg_band.channels);
11697       out_remove_sysfs:
11698 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11699       out_release_irq:
11700 	free_irq(pdev->irq, priv);
11701       out_iounmap:
11702 	iounmap(priv->hw_base);
11703       out_pci_release_regions:
11704 	pci_release_regions(pdev);
11705       out_pci_disable_device:
11706 	pci_disable_device(pdev);
11707       out_free_libipw:
11708 	free_libipw(priv->net_dev, 0);
11709       out:
11710 	return err;
11711 }
11712 
11713 static void ipw_pci_remove(struct pci_dev *pdev)
11714 {
11715 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11716 	struct list_head *p, *q;
11717 	int i;
11718 
11719 	if (!priv)
11720 		return;
11721 
11722 	mutex_lock(&priv->mutex);
11723 
11724 	priv->status |= STATUS_EXIT_PENDING;
11725 	ipw_down(priv);
11726 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11727 
11728 	mutex_unlock(&priv->mutex);
11729 
11730 	unregister_netdev(priv->net_dev);
11731 
11732 	if (priv->rxq) {
11733 		ipw_rx_queue_free(priv, priv->rxq);
11734 		priv->rxq = NULL;
11735 	}
11736 	ipw_tx_queue_free(priv);
11737 
11738 	if (priv->cmdlog) {
11739 		kfree(priv->cmdlog);
11740 		priv->cmdlog = NULL;
11741 	}
11742 
11743 	/* make sure all works are inactive */
11744 	cancel_delayed_work_sync(&priv->adhoc_check);
11745 	cancel_work_sync(&priv->associate);
11746 	cancel_work_sync(&priv->disassociate);
11747 	cancel_work_sync(&priv->system_config);
11748 	cancel_work_sync(&priv->rx_replenish);
11749 	cancel_work_sync(&priv->adapter_restart);
11750 	cancel_delayed_work_sync(&priv->rf_kill);
11751 	cancel_work_sync(&priv->up);
11752 	cancel_work_sync(&priv->down);
11753 	cancel_delayed_work_sync(&priv->request_scan);
11754 	cancel_delayed_work_sync(&priv->request_direct_scan);
11755 	cancel_delayed_work_sync(&priv->request_passive_scan);
11756 	cancel_delayed_work_sync(&priv->scan_event);
11757 	cancel_delayed_work_sync(&priv->gather_stats);
11758 	cancel_work_sync(&priv->abort_scan);
11759 	cancel_work_sync(&priv->roam);
11760 	cancel_delayed_work_sync(&priv->scan_check);
11761 	cancel_work_sync(&priv->link_up);
11762 	cancel_work_sync(&priv->link_down);
11763 	cancel_delayed_work_sync(&priv->led_link_on);
11764 	cancel_delayed_work_sync(&priv->led_link_off);
11765 	cancel_delayed_work_sync(&priv->led_act_off);
11766 	cancel_work_sync(&priv->merge_networks);
11767 
11768 	/* Free MAC hash list for ADHOC */
11769 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11770 		list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11771 			list_del(p);
11772 			kfree(list_entry(p, struct ipw_ibss_seq, list));
11773 		}
11774 	}
11775 
11776 	kfree(priv->error);
11777 	priv->error = NULL;
11778 
11779 #ifdef CONFIG_IPW2200_PROMISCUOUS
11780 	ipw_prom_free(priv);
11781 #endif
11782 
11783 	free_irq(pdev->irq, priv);
11784 	iounmap(priv->hw_base);
11785 	pci_release_regions(pdev);
11786 	pci_disable_device(pdev);
11787 	/* wiphy_unregister needs to be here, before free_libipw */
11788 	wiphy_unregister(priv->ieee->wdev.wiphy);
11789 	kfree(priv->ieee->a_band.channels);
11790 	kfree(priv->ieee->bg_band.channels);
11791 	free_libipw(priv->net_dev, 0);
11792 	free_firmware();
11793 }
11794 
11795 static int __maybe_unused ipw_pci_suspend(struct device *dev_d)
11796 {
11797 	struct ipw_priv *priv = dev_get_drvdata(dev_d);
11798 	struct net_device *dev = priv->net_dev;
11799 
11800 	printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11801 
11802 	/* Take down the device; powers it off, etc. */
11803 	ipw_down(priv);
11804 
11805 	/* Remove the PRESENT state of the device */
11806 	netif_device_detach(dev);
11807 
11808 	priv->suspend_at = ktime_get_boottime_seconds();
11809 
11810 	return 0;
11811 }
11812 
11813 static int __maybe_unused ipw_pci_resume(struct device *dev_d)
11814 {
11815 	struct pci_dev *pdev = to_pci_dev(dev_d);
11816 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11817 	struct net_device *dev = priv->net_dev;
11818 	u32 val;
11819 
11820 	printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11821 
11822 	/*
11823 	 * Suspend/Resume resets the PCI configuration space, so we have to
11824 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11825 	 * from interfering with C3 CPU state. pci_restore_state won't help
11826 	 * here since it only restores the first 64 bytes pci config header.
11827 	 */
11828 	pci_read_config_dword(pdev, 0x40, &val);
11829 	if ((val & 0x0000ff00) != 0)
11830 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11831 
11832 	/* Set the device back into the PRESENT state; this will also wake
11833 	 * the queue of needed */
11834 	netif_device_attach(dev);
11835 
11836 	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11837 
11838 	/* Bring the device back up */
11839 	schedule_work(&priv->up);
11840 
11841 	return 0;
11842 }
11843 
11844 static void ipw_pci_shutdown(struct pci_dev *pdev)
11845 {
11846 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11847 
11848 	/* Take down the device; powers it off, etc. */
11849 	ipw_down(priv);
11850 
11851 	pci_disable_device(pdev);
11852 }
11853 
11854 static SIMPLE_DEV_PM_OPS(ipw_pci_pm_ops, ipw_pci_suspend, ipw_pci_resume);
11855 
11856 /* driver initialization stuff */
11857 static struct pci_driver ipw_driver = {
11858 	.name = DRV_NAME,
11859 	.id_table = card_ids,
11860 	.probe = ipw_pci_probe,
11861 	.remove = ipw_pci_remove,
11862 	.driver.pm = &ipw_pci_pm_ops,
11863 	.shutdown = ipw_pci_shutdown,
11864 };
11865 
11866 static int __init ipw_init(void)
11867 {
11868 	int ret;
11869 
11870 	printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11871 	printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11872 
11873 	ret = pci_register_driver(&ipw_driver);
11874 	if (ret) {
11875 		IPW_ERROR("Unable to initialize PCI module\n");
11876 		return ret;
11877 	}
11878 
11879 	ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11880 	if (ret) {
11881 		IPW_ERROR("Unable to create driver sysfs file\n");
11882 		pci_unregister_driver(&ipw_driver);
11883 		return ret;
11884 	}
11885 
11886 	return ret;
11887 }
11888 
11889 static void __exit ipw_exit(void)
11890 {
11891 	driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11892 	pci_unregister_driver(&ipw_driver);
11893 }
11894 
11895 module_param(disable, int, 0444);
11896 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11897 
11898 module_param(associate, int, 0444);
11899 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11900 
11901 module_param(auto_create, int, 0444);
11902 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11903 
11904 module_param_named(led, led_support, int, 0444);
11905 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11906 
11907 module_param(debug, int, 0444);
11908 MODULE_PARM_DESC(debug, "debug output mask");
11909 
11910 module_param_named(channel, default_channel, int, 0444);
11911 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11912 
11913 #ifdef CONFIG_IPW2200_PROMISCUOUS
11914 module_param(rtap_iface, int, 0444);
11915 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11916 #endif
11917 
11918 #ifdef CONFIG_IPW2200_QOS
11919 module_param(qos_enable, int, 0444);
11920 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11921 
11922 module_param(qos_burst_enable, int, 0444);
11923 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11924 
11925 module_param(qos_no_ack_mask, int, 0444);
11926 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11927 
11928 module_param(burst_duration_CCK, int, 0444);
11929 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11930 
11931 module_param(burst_duration_OFDM, int, 0444);
11932 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11933 #endif				/* CONFIG_IPW2200_QOS */
11934 
11935 #ifdef CONFIG_IPW2200_MONITOR
11936 module_param_named(mode, network_mode, int, 0444);
11937 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11938 #else
11939 module_param_named(mode, network_mode, int, 0444);
11940 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11941 #endif
11942 
11943 module_param(bt_coexist, int, 0444);
11944 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11945 
11946 module_param(hwcrypto, int, 0444);
11947 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11948 
11949 module_param(cmdlog, int, 0444);
11950 MODULE_PARM_DESC(cmdlog,
11951 		 "allocate a ring buffer for logging firmware commands");
11952 
11953 module_param(roaming, int, 0444);
11954 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11955 
11956 module_param(antenna, int, 0444);
11957 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11958 
11959 module_exit(ipw_exit);
11960 module_init(ipw_init);
11961