xref: /linux/drivers/net/wireless/intel/ipw2x00/ipw2200.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 
4   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 
6   802.11 status code portion of this file from ethereal-0.10.6:
7     Copyright 2000, Axis Communications AB
8     Ethereal - Network traffic analyzer
9     By Gerald Combs <gerald@ethereal.com>
10     Copyright 1998 Gerald Combs
11 
12 
13   Contact Information:
14   Intel Linux Wireless <ilw@linux.intel.com>
15   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
16 
17 ******************************************************************************/
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <net/cfg80211-wext.h>
22 #include "ipw2200.h"
23 #include "ipw.h"
24 
25 
26 #ifndef KBUILD_EXTMOD
27 #define VK "k"
28 #else
29 #define VK
30 #endif
31 
32 #ifdef CONFIG_IPW2200_DEBUG
33 #define VD "d"
34 #else
35 #define VD
36 #endif
37 
38 #ifdef CONFIG_IPW2200_MONITOR
39 #define VM "m"
40 #else
41 #define VM
42 #endif
43 
44 #ifdef CONFIG_IPW2200_PROMISCUOUS
45 #define VP "p"
46 #else
47 #define VP
48 #endif
49 
50 #ifdef CONFIG_IPW2200_RADIOTAP
51 #define VR "r"
52 #else
53 #define VR
54 #endif
55 
56 #ifdef CONFIG_IPW2200_QOS
57 #define VQ "q"
58 #else
59 #define VQ
60 #endif
61 
62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
63 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2200/2915 Network Driver"
64 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
65 #define DRV_VERSION     IPW2200_VERSION
66 
67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
68 
69 MODULE_DESCRIPTION(DRV_DESCRIPTION);
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_COPYRIGHT);
72 MODULE_LICENSE("GPL");
73 MODULE_FIRMWARE("ipw2200-ibss.fw");
74 #ifdef CONFIG_IPW2200_MONITOR
75 MODULE_FIRMWARE("ipw2200-sniffer.fw");
76 #endif
77 MODULE_FIRMWARE("ipw2200-bss.fw");
78 
79 static int cmdlog = 0;
80 static int debug = 0;
81 static int default_channel = 0;
82 static int network_mode = 0;
83 
84 static u32 ipw_debug_level;
85 static int associate;
86 static int auto_create = 1;
87 static int led_support = 1;
88 static int disable = 0;
89 static int bt_coexist = 0;
90 static int hwcrypto = 0;
91 static int roaming = 1;
92 static const char ipw_modes[] = {
93 	'a', 'b', 'g', '?'
94 };
95 static int antenna = CFG_SYS_ANTENNA_BOTH;
96 
97 #ifdef CONFIG_IPW2200_PROMISCUOUS
98 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
99 #endif
100 
101 static struct ieee80211_rate ipw2200_rates[] = {
102 	{ .bitrate = 10 },
103 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
104 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
105 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
106 	{ .bitrate = 60 },
107 	{ .bitrate = 90 },
108 	{ .bitrate = 120 },
109 	{ .bitrate = 180 },
110 	{ .bitrate = 240 },
111 	{ .bitrate = 360 },
112 	{ .bitrate = 480 },
113 	{ .bitrate = 540 }
114 };
115 
116 #define ipw2200_a_rates		(ipw2200_rates + 4)
117 #define ipw2200_num_a_rates	8
118 #define ipw2200_bg_rates	(ipw2200_rates + 0)
119 #define ipw2200_num_bg_rates	12
120 
121 /* Ugly macro to convert literal channel numbers into their mhz equivalents
122  * There are certianly some conditions that will break this (like feeding it '30')
123  * but they shouldn't arise since nothing talks on channel 30. */
124 #define ieee80211chan2mhz(x) \
125 	(((x) <= 14) ? \
126 	(((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
127 	((x) + 1000) * 5)
128 
129 #ifdef CONFIG_IPW2200_QOS
130 static int qos_enable = 0;
131 static int qos_burst_enable = 0;
132 static int qos_no_ack_mask = 0;
133 static int burst_duration_CCK = 0;
134 static int burst_duration_OFDM = 0;
135 
136 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
137 	{QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
138 	 QOS_TX3_CW_MIN_OFDM},
139 	{QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
140 	 QOS_TX3_CW_MAX_OFDM},
141 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
142 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
143 	{QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
144 	 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
145 };
146 
147 static struct libipw_qos_parameters def_qos_parameters_CCK = {
148 	{QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
149 	 QOS_TX3_CW_MIN_CCK},
150 	{QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
151 	 QOS_TX3_CW_MAX_CCK},
152 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
153 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
154 	{QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
155 	 QOS_TX3_TXOP_LIMIT_CCK}
156 };
157 
158 static struct libipw_qos_parameters def_parameters_OFDM = {
159 	{DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
160 	 DEF_TX3_CW_MIN_OFDM},
161 	{DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
162 	 DEF_TX3_CW_MAX_OFDM},
163 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
164 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
165 	{DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
166 	 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
167 };
168 
169 static struct libipw_qos_parameters def_parameters_CCK = {
170 	{DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
171 	 DEF_TX3_CW_MIN_CCK},
172 	{DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
173 	 DEF_TX3_CW_MAX_CCK},
174 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
175 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
176 	{DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
177 	 DEF_TX3_TXOP_LIMIT_CCK}
178 };
179 
180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
181 
182 static int from_priority_to_tx_queue[] = {
183 	IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
184 	IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
185 };
186 
187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
188 
189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
190 				       *qos_param);
191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
192 				     *qos_param);
193 #endif				/* CONFIG_IPW2200_QOS */
194 
195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
196 static void ipw_remove_current_network(struct ipw_priv *priv);
197 static void ipw_rx(struct ipw_priv *priv);
198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
199 				struct clx2_tx_queue *txq, int qindex);
200 static int ipw_queue_reset(struct ipw_priv *priv);
201 
202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
203 			     int len, int sync);
204 
205 static void ipw_tx_queue_free(struct ipw_priv *);
206 
207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
209 static void ipw_rx_queue_replenish(void *);
210 static int ipw_up(struct ipw_priv *);
211 static void ipw_bg_up(struct work_struct *work);
212 static void ipw_down(struct ipw_priv *);
213 static void ipw_bg_down(struct work_struct *work);
214 static int ipw_config(struct ipw_priv *);
215 static int init_supported_rates(struct ipw_priv *priv,
216 				struct ipw_supported_rates *prates);
217 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
218 static void ipw_send_wep_keys(struct ipw_priv *, int);
219 
220 static int snprint_line(char *buf, size_t count,
221 			const u8 * data, u32 len, u32 ofs)
222 {
223 	int out, i, j, l;
224 	char c;
225 
226 	out = scnprintf(buf, count, "%08X", ofs);
227 
228 	for (l = 0, i = 0; i < 2; i++) {
229 		out += scnprintf(buf + out, count - out, " ");
230 		for (j = 0; j < 8 && l < len; j++, l++)
231 			out += scnprintf(buf + out, count - out, "%02X ",
232 					data[(i * 8 + j)]);
233 		for (; j < 8; j++)
234 			out += scnprintf(buf + out, count - out, "   ");
235 	}
236 
237 	out += scnprintf(buf + out, count - out, " ");
238 	for (l = 0, i = 0; i < 2; i++) {
239 		out += scnprintf(buf + out, count - out, " ");
240 		for (j = 0; j < 8 && l < len; j++, l++) {
241 			c = data[(i * 8 + j)];
242 			if (!isascii(c) || !isprint(c))
243 				c = '.';
244 
245 			out += scnprintf(buf + out, count - out, "%c", c);
246 		}
247 
248 		for (; j < 8; j++)
249 			out += scnprintf(buf + out, count - out, " ");
250 	}
251 
252 	return out;
253 }
254 
255 static void printk_buf(int level, const u8 * data, u32 len)
256 {
257 	char line[81];
258 	u32 ofs = 0;
259 	if (!(ipw_debug_level & level))
260 		return;
261 
262 	while (len) {
263 		snprint_line(line, sizeof(line), &data[ofs],
264 			     min(len, 16U), ofs);
265 		printk(KERN_DEBUG "%s\n", line);
266 		ofs += 16;
267 		len -= min(len, 16U);
268 	}
269 }
270 
271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
272 {
273 	size_t out = size;
274 	u32 ofs = 0;
275 	int total = 0;
276 
277 	while (size && len) {
278 		out = snprint_line(output, size, &data[ofs],
279 				   min_t(size_t, len, 16U), ofs);
280 
281 		ofs += 16;
282 		output += out;
283 		size -= out;
284 		len -= min_t(size_t, len, 16U);
285 		total += out;
286 	}
287 	return total;
288 }
289 
290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
293 
294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
297 
298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
301 {
302 	IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
303 		     __LINE__, (u32) (b), (u32) (c));
304 	_ipw_write_reg8(a, b, c);
305 }
306 
307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
310 {
311 	IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
312 		     __LINE__, (u32) (b), (u32) (c));
313 	_ipw_write_reg16(a, b, c);
314 }
315 
316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
319 {
320 	IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
321 		     __LINE__, (u32) (b), (u32) (c));
322 	_ipw_write_reg32(a, b, c);
323 }
324 
325 /* 8-bit direct write (low 4K) */
326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
327 		u8 val)
328 {
329 	writeb(val, ipw->hw_base + ofs);
330 }
331 
332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
333 #define ipw_write8(ipw, ofs, val) do { \
334 	IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
335 			__LINE__, (u32)(ofs), (u32)(val)); \
336 	_ipw_write8(ipw, ofs, val); \
337 } while (0)
338 
339 /* 16-bit direct write (low 4K) */
340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
341 		u16 val)
342 {
343 	writew(val, ipw->hw_base + ofs);
344 }
345 
346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write16(ipw, ofs, val) do { \
348 	IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
349 			__LINE__, (u32)(ofs), (u32)(val)); \
350 	_ipw_write16(ipw, ofs, val); \
351 } while (0)
352 
353 /* 32-bit direct write (low 4K) */
354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
355 		u32 val)
356 {
357 	writel(val, ipw->hw_base + ofs);
358 }
359 
360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write32(ipw, ofs, val) do { \
362 	IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
363 			__LINE__, (u32)(ofs), (u32)(val)); \
364 	_ipw_write32(ipw, ofs, val); \
365 } while (0)
366 
367 /* 8-bit direct read (low 4K) */
368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
369 {
370 	return readb(ipw->hw_base + ofs);
371 }
372 
373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
374 #define ipw_read8(ipw, ofs) ({ \
375 	IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
376 			(u32)(ofs)); \
377 	_ipw_read8(ipw, ofs); \
378 })
379 
380 /* 16-bit direct read (low 4K) */
381 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
382 {
383 	return readw(ipw->hw_base + ofs);
384 }
385 
386 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
387 #define ipw_read16(ipw, ofs) ({ \
388 	IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
389 			(u32)(ofs)); \
390 	_ipw_read16(ipw, ofs); \
391 })
392 
393 /* 32-bit direct read (low 4K) */
394 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
395 {
396 	return readl(ipw->hw_base + ofs);
397 }
398 
399 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
400 #define ipw_read32(ipw, ofs) ({ \
401 	IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
402 			(u32)(ofs)); \
403 	_ipw_read32(ipw, ofs); \
404 })
405 
406 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
407 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
408 #define ipw_read_indirect(a, b, c, d) ({ \
409 	IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
410 			__LINE__, (u32)(b), (u32)(d)); \
411 	_ipw_read_indirect(a, b, c, d); \
412 })
413 
414 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
415 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
416 				int num);
417 #define ipw_write_indirect(a, b, c, d) do { \
418 	IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
419 			__LINE__, (u32)(b), (u32)(d)); \
420 	_ipw_write_indirect(a, b, c, d); \
421 } while (0)
422 
423 /* 32-bit indirect write (above 4K) */
424 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
425 {
426 	IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
427 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
428 	_ipw_write32(priv, IPW_INDIRECT_DATA, value);
429 }
430 
431 /* 8-bit indirect write (above 4K) */
432 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
433 {
434 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
435 	u32 dif_len = reg - aligned_addr;
436 
437 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
438 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
439 	_ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
440 }
441 
442 /* 16-bit indirect write (above 4K) */
443 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
444 {
445 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
446 	u32 dif_len = (reg - aligned_addr) & (~0x1ul);
447 
448 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
449 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
450 	_ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
451 }
452 
453 /* 8-bit indirect read (above 4K) */
454 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
455 {
456 	u32 word;
457 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
458 	IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
459 	word = _ipw_read32(priv, IPW_INDIRECT_DATA);
460 	return (word >> ((reg & 0x3) * 8)) & 0xff;
461 }
462 
463 /* 32-bit indirect read (above 4K) */
464 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
465 {
466 	u32 value;
467 
468 	IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
469 
470 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
471 	value = _ipw_read32(priv, IPW_INDIRECT_DATA);
472 	IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
473 	return value;
474 }
475 
476 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
477 /*    for area above 1st 4K of SRAM/reg space */
478 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
479 			       int num)
480 {
481 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
482 	u32 dif_len = addr - aligned_addr;
483 	u32 i;
484 
485 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
486 
487 	if (num <= 0) {
488 		return;
489 	}
490 
491 	/* Read the first dword (or portion) byte by byte */
492 	if (unlikely(dif_len)) {
493 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
494 		/* Start reading at aligned_addr + dif_len */
495 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
496 			*buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
497 		aligned_addr += 4;
498 	}
499 
500 	/* Read all of the middle dwords as dwords, with auto-increment */
501 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
502 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
503 		*(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
504 
505 	/* Read the last dword (or portion) byte by byte */
506 	if (unlikely(num)) {
507 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508 		for (i = 0; num > 0; i++, num--)
509 			*buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
510 	}
511 }
512 
513 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
514 /*    for area above 1st 4K of SRAM/reg space */
515 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
516 				int num)
517 {
518 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
519 	u32 dif_len = addr - aligned_addr;
520 	u32 i;
521 
522 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
523 
524 	if (num <= 0) {
525 		return;
526 	}
527 
528 	/* Write the first dword (or portion) byte by byte */
529 	if (unlikely(dif_len)) {
530 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
531 		/* Start writing at aligned_addr + dif_len */
532 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
533 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
534 		aligned_addr += 4;
535 	}
536 
537 	/* Write all of the middle dwords as dwords, with auto-increment */
538 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
539 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
540 		_ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
541 
542 	/* Write the last dword (or portion) byte by byte */
543 	if (unlikely(num)) {
544 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545 		for (i = 0; num > 0; i++, num--, buf++)
546 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
547 	}
548 }
549 
550 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
551 /*    for 1st 4K of SRAM/regs space */
552 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
553 			     int num)
554 {
555 	memcpy_toio((priv->hw_base + addr), buf, num);
556 }
557 
558 /* Set bit(s) in low 4K of SRAM/regs */
559 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
560 {
561 	ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
562 }
563 
564 /* Clear bit(s) in low 4K of SRAM/regs */
565 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
566 {
567 	ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
568 }
569 
570 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
571 {
572 	if (priv->status & STATUS_INT_ENABLED)
573 		return;
574 	priv->status |= STATUS_INT_ENABLED;
575 	ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
576 }
577 
578 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
579 {
580 	if (!(priv->status & STATUS_INT_ENABLED))
581 		return;
582 	priv->status &= ~STATUS_INT_ENABLED;
583 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
584 }
585 
586 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
587 {
588 	unsigned long flags;
589 
590 	spin_lock_irqsave(&priv->irq_lock, flags);
591 	__ipw_enable_interrupts(priv);
592 	spin_unlock_irqrestore(&priv->irq_lock, flags);
593 }
594 
595 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
596 {
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(&priv->irq_lock, flags);
600 	__ipw_disable_interrupts(priv);
601 	spin_unlock_irqrestore(&priv->irq_lock, flags);
602 }
603 
604 static char *ipw_error_desc(u32 val)
605 {
606 	switch (val) {
607 	case IPW_FW_ERROR_OK:
608 		return "ERROR_OK";
609 	case IPW_FW_ERROR_FAIL:
610 		return "ERROR_FAIL";
611 	case IPW_FW_ERROR_MEMORY_UNDERFLOW:
612 		return "MEMORY_UNDERFLOW";
613 	case IPW_FW_ERROR_MEMORY_OVERFLOW:
614 		return "MEMORY_OVERFLOW";
615 	case IPW_FW_ERROR_BAD_PARAM:
616 		return "BAD_PARAM";
617 	case IPW_FW_ERROR_BAD_CHECKSUM:
618 		return "BAD_CHECKSUM";
619 	case IPW_FW_ERROR_NMI_INTERRUPT:
620 		return "NMI_INTERRUPT";
621 	case IPW_FW_ERROR_BAD_DATABASE:
622 		return "BAD_DATABASE";
623 	case IPW_FW_ERROR_ALLOC_FAIL:
624 		return "ALLOC_FAIL";
625 	case IPW_FW_ERROR_DMA_UNDERRUN:
626 		return "DMA_UNDERRUN";
627 	case IPW_FW_ERROR_DMA_STATUS:
628 		return "DMA_STATUS";
629 	case IPW_FW_ERROR_DINO_ERROR:
630 		return "DINO_ERROR";
631 	case IPW_FW_ERROR_EEPROM_ERROR:
632 		return "EEPROM_ERROR";
633 	case IPW_FW_ERROR_SYSASSERT:
634 		return "SYSASSERT";
635 	case IPW_FW_ERROR_FATAL_ERROR:
636 		return "FATAL_ERROR";
637 	default:
638 		return "UNKNOWN_ERROR";
639 	}
640 }
641 
642 static void ipw_dump_error_log(struct ipw_priv *priv,
643 			       struct ipw_fw_error *error)
644 {
645 	u32 i;
646 
647 	if (!error) {
648 		IPW_ERROR("Error allocating and capturing error log.  "
649 			  "Nothing to dump.\n");
650 		return;
651 	}
652 
653 	IPW_ERROR("Start IPW Error Log Dump:\n");
654 	IPW_ERROR("Status: 0x%08X, Config: %08X\n",
655 		  error->status, error->config);
656 
657 	for (i = 0; i < error->elem_len; i++)
658 		IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
659 			  ipw_error_desc(error->elem[i].desc),
660 			  error->elem[i].time,
661 			  error->elem[i].blink1,
662 			  error->elem[i].blink2,
663 			  error->elem[i].link1,
664 			  error->elem[i].link2, error->elem[i].data);
665 	for (i = 0; i < error->log_len; i++)
666 		IPW_ERROR("%i\t0x%08x\t%i\n",
667 			  error->log[i].time,
668 			  error->log[i].data, error->log[i].event);
669 }
670 
671 static inline int ipw_is_init(struct ipw_priv *priv)
672 {
673 	return (priv->status & STATUS_INIT) ? 1 : 0;
674 }
675 
676 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
677 {
678 	u32 addr, field_info, field_len, field_count, total_len;
679 
680 	IPW_DEBUG_ORD("ordinal = %i\n", ord);
681 
682 	if (!priv || !val || !len) {
683 		IPW_DEBUG_ORD("Invalid argument\n");
684 		return -EINVAL;
685 	}
686 
687 	/* verify device ordinal tables have been initialized */
688 	if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
689 		IPW_DEBUG_ORD("Access ordinals before initialization\n");
690 		return -EINVAL;
691 	}
692 
693 	switch (IPW_ORD_TABLE_ID_MASK & ord) {
694 	case IPW_ORD_TABLE_0_MASK:
695 		/*
696 		 * TABLE 0: Direct access to a table of 32 bit values
697 		 *
698 		 * This is a very simple table with the data directly
699 		 * read from the table
700 		 */
701 
702 		/* remove the table id from the ordinal */
703 		ord &= IPW_ORD_TABLE_VALUE_MASK;
704 
705 		/* boundary check */
706 		if (ord > priv->table0_len) {
707 			IPW_DEBUG_ORD("ordinal value (%i) longer then "
708 				      "max (%i)\n", ord, priv->table0_len);
709 			return -EINVAL;
710 		}
711 
712 		/* verify we have enough room to store the value */
713 		if (*len < sizeof(u32)) {
714 			IPW_DEBUG_ORD("ordinal buffer length too small, "
715 				      "need %zd\n", sizeof(u32));
716 			return -EINVAL;
717 		}
718 
719 		IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
720 			      ord, priv->table0_addr + (ord << 2));
721 
722 		*len = sizeof(u32);
723 		ord <<= 2;
724 		*((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
725 		break;
726 
727 	case IPW_ORD_TABLE_1_MASK:
728 		/*
729 		 * TABLE 1: Indirect access to a table of 32 bit values
730 		 *
731 		 * This is a fairly large table of u32 values each
732 		 * representing starting addr for the data (which is
733 		 * also a u32)
734 		 */
735 
736 		/* remove the table id from the ordinal */
737 		ord &= IPW_ORD_TABLE_VALUE_MASK;
738 
739 		/* boundary check */
740 		if (ord > priv->table1_len) {
741 			IPW_DEBUG_ORD("ordinal value too long\n");
742 			return -EINVAL;
743 		}
744 
745 		/* verify we have enough room to store the value */
746 		if (*len < sizeof(u32)) {
747 			IPW_DEBUG_ORD("ordinal buffer length too small, "
748 				      "need %zd\n", sizeof(u32));
749 			return -EINVAL;
750 		}
751 
752 		*((u32 *) val) =
753 		    ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
754 		*len = sizeof(u32);
755 		break;
756 
757 	case IPW_ORD_TABLE_2_MASK:
758 		/*
759 		 * TABLE 2: Indirect access to a table of variable sized values
760 		 *
761 		 * This table consist of six values, each containing
762 		 *     - dword containing the starting offset of the data
763 		 *     - dword containing the lengh in the first 16bits
764 		 *       and the count in the second 16bits
765 		 */
766 
767 		/* remove the table id from the ordinal */
768 		ord &= IPW_ORD_TABLE_VALUE_MASK;
769 
770 		/* boundary check */
771 		if (ord > priv->table2_len) {
772 			IPW_DEBUG_ORD("ordinal value too long\n");
773 			return -EINVAL;
774 		}
775 
776 		/* get the address of statistic */
777 		addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
778 
779 		/* get the second DW of statistics ;
780 		 * two 16-bit words - first is length, second is count */
781 		field_info =
782 		    ipw_read_reg32(priv,
783 				   priv->table2_addr + (ord << 3) +
784 				   sizeof(u32));
785 
786 		/* get each entry length */
787 		field_len = *((u16 *) & field_info);
788 
789 		/* get number of entries */
790 		field_count = *(((u16 *) & field_info) + 1);
791 
792 		/* abort if not enough memory */
793 		total_len = field_len * field_count;
794 		if (total_len > *len) {
795 			*len = total_len;
796 			return -EINVAL;
797 		}
798 
799 		*len = total_len;
800 		if (!total_len)
801 			return 0;
802 
803 		IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
804 			      "field_info = 0x%08x\n",
805 			      addr, total_len, field_info);
806 		ipw_read_indirect(priv, addr, val, total_len);
807 		break;
808 
809 	default:
810 		IPW_DEBUG_ORD("Invalid ordinal!\n");
811 		return -EINVAL;
812 
813 	}
814 
815 	return 0;
816 }
817 
818 static void ipw_init_ordinals(struct ipw_priv *priv)
819 {
820 	priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
821 	priv->table0_len = ipw_read32(priv, priv->table0_addr);
822 
823 	IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
824 		      priv->table0_addr, priv->table0_len);
825 
826 	priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
827 	priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
828 
829 	IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
830 		      priv->table1_addr, priv->table1_len);
831 
832 	priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
833 	priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
834 	priv->table2_len &= 0x0000ffff;	/* use first two bytes */
835 
836 	IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
837 		      priv->table2_addr, priv->table2_len);
838 
839 }
840 
841 static u32 ipw_register_toggle(u32 reg)
842 {
843 	reg &= ~IPW_START_STANDBY;
844 	if (reg & IPW_GATE_ODMA)
845 		reg &= ~IPW_GATE_ODMA;
846 	if (reg & IPW_GATE_IDMA)
847 		reg &= ~IPW_GATE_IDMA;
848 	if (reg & IPW_GATE_ADMA)
849 		reg &= ~IPW_GATE_ADMA;
850 	return reg;
851 }
852 
853 /*
854  * LED behavior:
855  * - On radio ON, turn on any LEDs that require to be on during start
856  * - On initialization, start unassociated blink
857  * - On association, disable unassociated blink
858  * - On disassociation, start unassociated blink
859  * - On radio OFF, turn off any LEDs started during radio on
860  *
861  */
862 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
863 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
864 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
865 
866 static void ipw_led_link_on(struct ipw_priv *priv)
867 {
868 	unsigned long flags;
869 	u32 led;
870 
871 	/* If configured to not use LEDs, or nic_type is 1,
872 	 * then we don't toggle a LINK led */
873 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
874 		return;
875 
876 	spin_lock_irqsave(&priv->lock, flags);
877 
878 	if (!(priv->status & STATUS_RF_KILL_MASK) &&
879 	    !(priv->status & STATUS_LED_LINK_ON)) {
880 		IPW_DEBUG_LED("Link LED On\n");
881 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
882 		led |= priv->led_association_on;
883 
884 		led = ipw_register_toggle(led);
885 
886 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
887 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
888 
889 		priv->status |= STATUS_LED_LINK_ON;
890 
891 		/* If we aren't associated, schedule turning the LED off */
892 		if (!(priv->status & STATUS_ASSOCIATED))
893 			schedule_delayed_work(&priv->led_link_off,
894 					      LD_TIME_LINK_ON);
895 	}
896 
897 	spin_unlock_irqrestore(&priv->lock, flags);
898 }
899 
900 static void ipw_bg_led_link_on(struct work_struct *work)
901 {
902 	struct ipw_priv *priv =
903 		container_of(work, struct ipw_priv, led_link_on.work);
904 	mutex_lock(&priv->mutex);
905 	ipw_led_link_on(priv);
906 	mutex_unlock(&priv->mutex);
907 }
908 
909 static void ipw_led_link_off(struct ipw_priv *priv)
910 {
911 	unsigned long flags;
912 	u32 led;
913 
914 	/* If configured not to use LEDs, or nic type is 1,
915 	 * then we don't goggle the LINK led. */
916 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
917 		return;
918 
919 	spin_lock_irqsave(&priv->lock, flags);
920 
921 	if (priv->status & STATUS_LED_LINK_ON) {
922 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
923 		led &= priv->led_association_off;
924 		led = ipw_register_toggle(led);
925 
926 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
927 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
928 
929 		IPW_DEBUG_LED("Link LED Off\n");
930 
931 		priv->status &= ~STATUS_LED_LINK_ON;
932 
933 		/* If we aren't associated and the radio is on, schedule
934 		 * turning the LED on (blink while unassociated) */
935 		if (!(priv->status & STATUS_RF_KILL_MASK) &&
936 		    !(priv->status & STATUS_ASSOCIATED))
937 			schedule_delayed_work(&priv->led_link_on,
938 					      LD_TIME_LINK_OFF);
939 
940 	}
941 
942 	spin_unlock_irqrestore(&priv->lock, flags);
943 }
944 
945 static void ipw_bg_led_link_off(struct work_struct *work)
946 {
947 	struct ipw_priv *priv =
948 		container_of(work, struct ipw_priv, led_link_off.work);
949 	mutex_lock(&priv->mutex);
950 	ipw_led_link_off(priv);
951 	mutex_unlock(&priv->mutex);
952 }
953 
954 static void __ipw_led_activity_on(struct ipw_priv *priv)
955 {
956 	u32 led;
957 
958 	if (priv->config & CFG_NO_LED)
959 		return;
960 
961 	if (priv->status & STATUS_RF_KILL_MASK)
962 		return;
963 
964 	if (!(priv->status & STATUS_LED_ACT_ON)) {
965 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
966 		led |= priv->led_activity_on;
967 
968 		led = ipw_register_toggle(led);
969 
970 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
971 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
972 
973 		IPW_DEBUG_LED("Activity LED On\n");
974 
975 		priv->status |= STATUS_LED_ACT_ON;
976 
977 		cancel_delayed_work(&priv->led_act_off);
978 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
979 	} else {
980 		/* Reschedule LED off for full time period */
981 		cancel_delayed_work(&priv->led_act_off);
982 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
983 	}
984 }
985 
986 #if 0
987 void ipw_led_activity_on(struct ipw_priv *priv)
988 {
989 	unsigned long flags;
990 	spin_lock_irqsave(&priv->lock, flags);
991 	__ipw_led_activity_on(priv);
992 	spin_unlock_irqrestore(&priv->lock, flags);
993 }
994 #endif  /*  0  */
995 
996 static void ipw_led_activity_off(struct ipw_priv *priv)
997 {
998 	unsigned long flags;
999 	u32 led;
1000 
1001 	if (priv->config & CFG_NO_LED)
1002 		return;
1003 
1004 	spin_lock_irqsave(&priv->lock, flags);
1005 
1006 	if (priv->status & STATUS_LED_ACT_ON) {
1007 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
1008 		led &= priv->led_activity_off;
1009 
1010 		led = ipw_register_toggle(led);
1011 
1012 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1013 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
1014 
1015 		IPW_DEBUG_LED("Activity LED Off\n");
1016 
1017 		priv->status &= ~STATUS_LED_ACT_ON;
1018 	}
1019 
1020 	spin_unlock_irqrestore(&priv->lock, flags);
1021 }
1022 
1023 static void ipw_bg_led_activity_off(struct work_struct *work)
1024 {
1025 	struct ipw_priv *priv =
1026 		container_of(work, struct ipw_priv, led_act_off.work);
1027 	mutex_lock(&priv->mutex);
1028 	ipw_led_activity_off(priv);
1029 	mutex_unlock(&priv->mutex);
1030 }
1031 
1032 static void ipw_led_band_on(struct ipw_priv *priv)
1033 {
1034 	unsigned long flags;
1035 	u32 led;
1036 
1037 	/* Only nic type 1 supports mode LEDs */
1038 	if (priv->config & CFG_NO_LED ||
1039 	    priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1040 		return;
1041 
1042 	spin_lock_irqsave(&priv->lock, flags);
1043 
1044 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045 	if (priv->assoc_network->mode == IEEE_A) {
1046 		led |= priv->led_ofdm_on;
1047 		led &= priv->led_association_off;
1048 		IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1049 	} else if (priv->assoc_network->mode == IEEE_G) {
1050 		led |= priv->led_ofdm_on;
1051 		led |= priv->led_association_on;
1052 		IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1053 	} else {
1054 		led &= priv->led_ofdm_off;
1055 		led |= priv->led_association_on;
1056 		IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1057 	}
1058 
1059 	led = ipw_register_toggle(led);
1060 
1061 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1062 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1063 
1064 	spin_unlock_irqrestore(&priv->lock, flags);
1065 }
1066 
1067 static void ipw_led_band_off(struct ipw_priv *priv)
1068 {
1069 	unsigned long flags;
1070 	u32 led;
1071 
1072 	/* Only nic type 1 supports mode LEDs */
1073 	if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1074 		return;
1075 
1076 	spin_lock_irqsave(&priv->lock, flags);
1077 
1078 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1079 	led &= priv->led_ofdm_off;
1080 	led &= priv->led_association_off;
1081 
1082 	led = ipw_register_toggle(led);
1083 
1084 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1085 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1086 
1087 	spin_unlock_irqrestore(&priv->lock, flags);
1088 }
1089 
1090 static void ipw_led_radio_on(struct ipw_priv *priv)
1091 {
1092 	ipw_led_link_on(priv);
1093 }
1094 
1095 static void ipw_led_radio_off(struct ipw_priv *priv)
1096 {
1097 	ipw_led_activity_off(priv);
1098 	ipw_led_link_off(priv);
1099 }
1100 
1101 static void ipw_led_link_up(struct ipw_priv *priv)
1102 {
1103 	/* Set the Link Led on for all nic types */
1104 	ipw_led_link_on(priv);
1105 }
1106 
1107 static void ipw_led_link_down(struct ipw_priv *priv)
1108 {
1109 	ipw_led_activity_off(priv);
1110 	ipw_led_link_off(priv);
1111 
1112 	if (priv->status & STATUS_RF_KILL_MASK)
1113 		ipw_led_radio_off(priv);
1114 }
1115 
1116 static void ipw_led_init(struct ipw_priv *priv)
1117 {
1118 	priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1119 
1120 	/* Set the default PINs for the link and activity leds */
1121 	priv->led_activity_on = IPW_ACTIVITY_LED;
1122 	priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1123 
1124 	priv->led_association_on = IPW_ASSOCIATED_LED;
1125 	priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1126 
1127 	/* Set the default PINs for the OFDM leds */
1128 	priv->led_ofdm_on = IPW_OFDM_LED;
1129 	priv->led_ofdm_off = ~(IPW_OFDM_LED);
1130 
1131 	switch (priv->nic_type) {
1132 	case EEPROM_NIC_TYPE_1:
1133 		/* In this NIC type, the LEDs are reversed.... */
1134 		priv->led_activity_on = IPW_ASSOCIATED_LED;
1135 		priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1136 		priv->led_association_on = IPW_ACTIVITY_LED;
1137 		priv->led_association_off = ~(IPW_ACTIVITY_LED);
1138 
1139 		if (!(priv->config & CFG_NO_LED))
1140 			ipw_led_band_on(priv);
1141 
1142 		/* And we don't blink link LEDs for this nic, so
1143 		 * just return here */
1144 		return;
1145 
1146 	case EEPROM_NIC_TYPE_3:
1147 	case EEPROM_NIC_TYPE_2:
1148 	case EEPROM_NIC_TYPE_4:
1149 	case EEPROM_NIC_TYPE_0:
1150 		break;
1151 
1152 	default:
1153 		IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1154 			       priv->nic_type);
1155 		priv->nic_type = EEPROM_NIC_TYPE_0;
1156 		break;
1157 	}
1158 
1159 	if (!(priv->config & CFG_NO_LED)) {
1160 		if (priv->status & STATUS_ASSOCIATED)
1161 			ipw_led_link_on(priv);
1162 		else
1163 			ipw_led_link_off(priv);
1164 	}
1165 }
1166 
1167 static void ipw_led_shutdown(struct ipw_priv *priv)
1168 {
1169 	ipw_led_activity_off(priv);
1170 	ipw_led_link_off(priv);
1171 	ipw_led_band_off(priv);
1172 	cancel_delayed_work(&priv->led_link_on);
1173 	cancel_delayed_work(&priv->led_link_off);
1174 	cancel_delayed_work(&priv->led_act_off);
1175 }
1176 
1177 /*
1178  * The following adds a new attribute to the sysfs representation
1179  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1180  * used for controlling the debug level.
1181  *
1182  * See the level definitions in ipw for details.
1183  */
1184 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1185 {
1186 	return sprintf(buf, "0x%08X\n", ipw_debug_level);
1187 }
1188 
1189 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1190 				 size_t count)
1191 {
1192 	char *p = (char *)buf;
1193 	u32 val;
1194 
1195 	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1196 		p++;
1197 		if (p[0] == 'x' || p[0] == 'X')
1198 			p++;
1199 		val = simple_strtoul(p, &p, 16);
1200 	} else
1201 		val = simple_strtoul(p, &p, 10);
1202 	if (p == buf)
1203 		printk(KERN_INFO DRV_NAME
1204 		       ": %s is not in hex or decimal form.\n", buf);
1205 	else
1206 		ipw_debug_level = val;
1207 
1208 	return strnlen(buf, count);
1209 }
1210 static DRIVER_ATTR_RW(debug_level);
1211 
1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1213 {
1214 	/* length = 1st dword in log */
1215 	return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1216 }
1217 
1218 static void ipw_capture_event_log(struct ipw_priv *priv,
1219 				  u32 log_len, struct ipw_event *log)
1220 {
1221 	u32 base;
1222 
1223 	if (log_len) {
1224 		base = ipw_read32(priv, IPW_EVENT_LOG);
1225 		ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1226 				  (u8 *) log, sizeof(*log) * log_len);
1227 	}
1228 }
1229 
1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1231 {
1232 	struct ipw_fw_error *error;
1233 	u32 log_len = ipw_get_event_log_len(priv);
1234 	u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1235 	u32 elem_len = ipw_read_reg32(priv, base);
1236 
1237 	error = kmalloc(sizeof(*error) +
1238 			sizeof(*error->elem) * elem_len +
1239 			sizeof(*error->log) * log_len, GFP_ATOMIC);
1240 	if (!error) {
1241 		IPW_ERROR("Memory allocation for firmware error log "
1242 			  "failed.\n");
1243 		return NULL;
1244 	}
1245 	error->jiffies = jiffies;
1246 	error->status = priv->status;
1247 	error->config = priv->config;
1248 	error->elem_len = elem_len;
1249 	error->log_len = log_len;
1250 	error->elem = (struct ipw_error_elem *)error->payload;
1251 	error->log = (struct ipw_event *)(error->elem + elem_len);
1252 
1253 	ipw_capture_event_log(priv, log_len, error->log);
1254 
1255 	if (elem_len)
1256 		ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1257 				  sizeof(*error->elem) * elem_len);
1258 
1259 	return error;
1260 }
1261 
1262 static ssize_t show_event_log(struct device *d,
1263 			      struct device_attribute *attr, char *buf)
1264 {
1265 	struct ipw_priv *priv = dev_get_drvdata(d);
1266 	u32 log_len = ipw_get_event_log_len(priv);
1267 	u32 log_size;
1268 	struct ipw_event *log;
1269 	u32 len = 0, i;
1270 
1271 	/* not using min() because of its strict type checking */
1272 	log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1273 			sizeof(*log) * log_len : PAGE_SIZE;
1274 	log = kzalloc(log_size, GFP_KERNEL);
1275 	if (!log) {
1276 		IPW_ERROR("Unable to allocate memory for log\n");
1277 		return 0;
1278 	}
1279 	log_len = log_size / sizeof(*log);
1280 	ipw_capture_event_log(priv, log_len, log);
1281 
1282 	len += scnprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1283 	for (i = 0; i < log_len; i++)
1284 		len += scnprintf(buf + len, PAGE_SIZE - len,
1285 				"\n%08X%08X%08X",
1286 				log[i].time, log[i].event, log[i].data);
1287 	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1288 	kfree(log);
1289 	return len;
1290 }
1291 
1292 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1293 
1294 static ssize_t show_error(struct device *d,
1295 			  struct device_attribute *attr, char *buf)
1296 {
1297 	struct ipw_priv *priv = dev_get_drvdata(d);
1298 	u32 len = 0, i;
1299 	if (!priv->error)
1300 		return 0;
1301 	len += scnprintf(buf + len, PAGE_SIZE - len,
1302 			"%08lX%08X%08X%08X",
1303 			priv->error->jiffies,
1304 			priv->error->status,
1305 			priv->error->config, priv->error->elem_len);
1306 	for (i = 0; i < priv->error->elem_len; i++)
1307 		len += scnprintf(buf + len, PAGE_SIZE - len,
1308 				"\n%08X%08X%08X%08X%08X%08X%08X",
1309 				priv->error->elem[i].time,
1310 				priv->error->elem[i].desc,
1311 				priv->error->elem[i].blink1,
1312 				priv->error->elem[i].blink2,
1313 				priv->error->elem[i].link1,
1314 				priv->error->elem[i].link2,
1315 				priv->error->elem[i].data);
1316 
1317 	len += scnprintf(buf + len, PAGE_SIZE - len,
1318 			"\n%08X", priv->error->log_len);
1319 	for (i = 0; i < priv->error->log_len; i++)
1320 		len += scnprintf(buf + len, PAGE_SIZE - len,
1321 				"\n%08X%08X%08X",
1322 				priv->error->log[i].time,
1323 				priv->error->log[i].event,
1324 				priv->error->log[i].data);
1325 	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1326 	return len;
1327 }
1328 
1329 static ssize_t clear_error(struct device *d,
1330 			   struct device_attribute *attr,
1331 			   const char *buf, size_t count)
1332 {
1333 	struct ipw_priv *priv = dev_get_drvdata(d);
1334 
1335 	kfree(priv->error);
1336 	priv->error = NULL;
1337 	return count;
1338 }
1339 
1340 static DEVICE_ATTR(error, 0644, show_error, clear_error);
1341 
1342 static ssize_t show_cmd_log(struct device *d,
1343 			    struct device_attribute *attr, char *buf)
1344 {
1345 	struct ipw_priv *priv = dev_get_drvdata(d);
1346 	u32 len = 0, i;
1347 	if (!priv->cmdlog)
1348 		return 0;
1349 	for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1350 	     (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1351 	     i = (i + 1) % priv->cmdlog_len) {
1352 		len +=
1353 		    scnprintf(buf + len, PAGE_SIZE - len,
1354 			     "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1355 			     priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1356 			     priv->cmdlog[i].cmd.len);
1357 		len +=
1358 		    snprintk_buf(buf + len, PAGE_SIZE - len,
1359 				 (u8 *) priv->cmdlog[i].cmd.param,
1360 				 priv->cmdlog[i].cmd.len);
1361 		len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1362 	}
1363 	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1364 	return len;
1365 }
1366 
1367 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1368 
1369 #ifdef CONFIG_IPW2200_PROMISCUOUS
1370 static void ipw_prom_free(struct ipw_priv *priv);
1371 static int ipw_prom_alloc(struct ipw_priv *priv);
1372 static ssize_t store_rtap_iface(struct device *d,
1373 			 struct device_attribute *attr,
1374 			 const char *buf, size_t count)
1375 {
1376 	struct ipw_priv *priv = dev_get_drvdata(d);
1377 	int rc = 0;
1378 
1379 	if (count < 1)
1380 		return -EINVAL;
1381 
1382 	switch (buf[0]) {
1383 	case '0':
1384 		if (!rtap_iface)
1385 			return count;
1386 
1387 		if (netif_running(priv->prom_net_dev)) {
1388 			IPW_WARNING("Interface is up.  Cannot unregister.\n");
1389 			return count;
1390 		}
1391 
1392 		ipw_prom_free(priv);
1393 		rtap_iface = 0;
1394 		break;
1395 
1396 	case '1':
1397 		if (rtap_iface)
1398 			return count;
1399 
1400 		rc = ipw_prom_alloc(priv);
1401 		if (!rc)
1402 			rtap_iface = 1;
1403 		break;
1404 
1405 	default:
1406 		return -EINVAL;
1407 	}
1408 
1409 	if (rc) {
1410 		IPW_ERROR("Failed to register promiscuous network "
1411 			  "device (error %d).\n", rc);
1412 	}
1413 
1414 	return count;
1415 }
1416 
1417 static ssize_t show_rtap_iface(struct device *d,
1418 			struct device_attribute *attr,
1419 			char *buf)
1420 {
1421 	struct ipw_priv *priv = dev_get_drvdata(d);
1422 	if (rtap_iface)
1423 		return sprintf(buf, "%s", priv->prom_net_dev->name);
1424 	else {
1425 		buf[0] = '-';
1426 		buf[1] = '1';
1427 		buf[2] = '\0';
1428 		return 3;
1429 	}
1430 }
1431 
1432 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1433 
1434 static ssize_t store_rtap_filter(struct device *d,
1435 			 struct device_attribute *attr,
1436 			 const char *buf, size_t count)
1437 {
1438 	struct ipw_priv *priv = dev_get_drvdata(d);
1439 
1440 	if (!priv->prom_priv) {
1441 		IPW_ERROR("Attempting to set filter without "
1442 			  "rtap_iface enabled.\n");
1443 		return -EPERM;
1444 	}
1445 
1446 	priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1447 
1448 	IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1449 		       BIT_ARG16(priv->prom_priv->filter));
1450 
1451 	return count;
1452 }
1453 
1454 static ssize_t show_rtap_filter(struct device *d,
1455 			struct device_attribute *attr,
1456 			char *buf)
1457 {
1458 	struct ipw_priv *priv = dev_get_drvdata(d);
1459 	return sprintf(buf, "0x%04X",
1460 		       priv->prom_priv ? priv->prom_priv->filter : 0);
1461 }
1462 
1463 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1464 #endif
1465 
1466 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1467 			     char *buf)
1468 {
1469 	struct ipw_priv *priv = dev_get_drvdata(d);
1470 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
1471 }
1472 
1473 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1474 			      const char *buf, size_t count)
1475 {
1476 	struct ipw_priv *priv = dev_get_drvdata(d);
1477 	struct net_device *dev = priv->net_dev;
1478 	char buffer[] = "00000000";
1479 	unsigned long len =
1480 	    (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1481 	unsigned long val;
1482 	char *p = buffer;
1483 
1484 	IPW_DEBUG_INFO("enter\n");
1485 
1486 	strncpy(buffer, buf, len);
1487 	buffer[len] = 0;
1488 
1489 	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1490 		p++;
1491 		if (p[0] == 'x' || p[0] == 'X')
1492 			p++;
1493 		val = simple_strtoul(p, &p, 16);
1494 	} else
1495 		val = simple_strtoul(p, &p, 10);
1496 	if (p == buffer) {
1497 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1498 	} else {
1499 		priv->ieee->scan_age = val;
1500 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1501 	}
1502 
1503 	IPW_DEBUG_INFO("exit\n");
1504 	return len;
1505 }
1506 
1507 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1508 
1509 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1510 			char *buf)
1511 {
1512 	struct ipw_priv *priv = dev_get_drvdata(d);
1513 	return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1514 }
1515 
1516 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1517 			 const char *buf, size_t count)
1518 {
1519 	struct ipw_priv *priv = dev_get_drvdata(d);
1520 
1521 	IPW_DEBUG_INFO("enter\n");
1522 
1523 	if (count == 0)
1524 		return 0;
1525 
1526 	if (*buf == 0) {
1527 		IPW_DEBUG_LED("Disabling LED control.\n");
1528 		priv->config |= CFG_NO_LED;
1529 		ipw_led_shutdown(priv);
1530 	} else {
1531 		IPW_DEBUG_LED("Enabling LED control.\n");
1532 		priv->config &= ~CFG_NO_LED;
1533 		ipw_led_init(priv);
1534 	}
1535 
1536 	IPW_DEBUG_INFO("exit\n");
1537 	return count;
1538 }
1539 
1540 static DEVICE_ATTR(led, 0644, show_led, store_led);
1541 
1542 static ssize_t show_status(struct device *d,
1543 			   struct device_attribute *attr, char *buf)
1544 {
1545 	struct ipw_priv *p = dev_get_drvdata(d);
1546 	return sprintf(buf, "0x%08x\n", (int)p->status);
1547 }
1548 
1549 static DEVICE_ATTR(status, 0444, show_status, NULL);
1550 
1551 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1552 			char *buf)
1553 {
1554 	struct ipw_priv *p = dev_get_drvdata(d);
1555 	return sprintf(buf, "0x%08x\n", (int)p->config);
1556 }
1557 
1558 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1559 
1560 static ssize_t show_nic_type(struct device *d,
1561 			     struct device_attribute *attr, char *buf)
1562 {
1563 	struct ipw_priv *priv = dev_get_drvdata(d);
1564 	return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1565 }
1566 
1567 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1568 
1569 static ssize_t show_ucode_version(struct device *d,
1570 				  struct device_attribute *attr, char *buf)
1571 {
1572 	u32 len = sizeof(u32), tmp = 0;
1573 	struct ipw_priv *p = dev_get_drvdata(d);
1574 
1575 	if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1576 		return 0;
1577 
1578 	return sprintf(buf, "0x%08x\n", tmp);
1579 }
1580 
1581 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1582 
1583 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1584 			char *buf)
1585 {
1586 	u32 len = sizeof(u32), tmp = 0;
1587 	struct ipw_priv *p = dev_get_drvdata(d);
1588 
1589 	if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1590 		return 0;
1591 
1592 	return sprintf(buf, "0x%08x\n", tmp);
1593 }
1594 
1595 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1596 
1597 /*
1598  * Add a device attribute to view/control the delay between eeprom
1599  * operations.
1600  */
1601 static ssize_t show_eeprom_delay(struct device *d,
1602 				 struct device_attribute *attr, char *buf)
1603 {
1604 	struct ipw_priv *p = dev_get_drvdata(d);
1605 	int n = p->eeprom_delay;
1606 	return sprintf(buf, "%i\n", n);
1607 }
1608 static ssize_t store_eeprom_delay(struct device *d,
1609 				  struct device_attribute *attr,
1610 				  const char *buf, size_t count)
1611 {
1612 	struct ipw_priv *p = dev_get_drvdata(d);
1613 	sscanf(buf, "%i", &p->eeprom_delay);
1614 	return strnlen(buf, count);
1615 }
1616 
1617 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1618 
1619 static ssize_t show_command_event_reg(struct device *d,
1620 				      struct device_attribute *attr, char *buf)
1621 {
1622 	u32 reg = 0;
1623 	struct ipw_priv *p = dev_get_drvdata(d);
1624 
1625 	reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1626 	return sprintf(buf, "0x%08x\n", reg);
1627 }
1628 static ssize_t store_command_event_reg(struct device *d,
1629 				       struct device_attribute *attr,
1630 				       const char *buf, size_t count)
1631 {
1632 	u32 reg;
1633 	struct ipw_priv *p = dev_get_drvdata(d);
1634 
1635 	sscanf(buf, "%x", &reg);
1636 	ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1637 	return strnlen(buf, count);
1638 }
1639 
1640 static DEVICE_ATTR(command_event_reg, 0644,
1641 		   show_command_event_reg, store_command_event_reg);
1642 
1643 static ssize_t show_mem_gpio_reg(struct device *d,
1644 				 struct device_attribute *attr, char *buf)
1645 {
1646 	u32 reg = 0;
1647 	struct ipw_priv *p = dev_get_drvdata(d);
1648 
1649 	reg = ipw_read_reg32(p, 0x301100);
1650 	return sprintf(buf, "0x%08x\n", reg);
1651 }
1652 static ssize_t store_mem_gpio_reg(struct device *d,
1653 				  struct device_attribute *attr,
1654 				  const char *buf, size_t count)
1655 {
1656 	u32 reg;
1657 	struct ipw_priv *p = dev_get_drvdata(d);
1658 
1659 	sscanf(buf, "%x", &reg);
1660 	ipw_write_reg32(p, 0x301100, reg);
1661 	return strnlen(buf, count);
1662 }
1663 
1664 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1665 
1666 static ssize_t show_indirect_dword(struct device *d,
1667 				   struct device_attribute *attr, char *buf)
1668 {
1669 	u32 reg = 0;
1670 	struct ipw_priv *priv = dev_get_drvdata(d);
1671 
1672 	if (priv->status & STATUS_INDIRECT_DWORD)
1673 		reg = ipw_read_reg32(priv, priv->indirect_dword);
1674 	else
1675 		reg = 0;
1676 
1677 	return sprintf(buf, "0x%08x\n", reg);
1678 }
1679 static ssize_t store_indirect_dword(struct device *d,
1680 				    struct device_attribute *attr,
1681 				    const char *buf, size_t count)
1682 {
1683 	struct ipw_priv *priv = dev_get_drvdata(d);
1684 
1685 	sscanf(buf, "%x", &priv->indirect_dword);
1686 	priv->status |= STATUS_INDIRECT_DWORD;
1687 	return strnlen(buf, count);
1688 }
1689 
1690 static DEVICE_ATTR(indirect_dword, 0644,
1691 		   show_indirect_dword, store_indirect_dword);
1692 
1693 static ssize_t show_indirect_byte(struct device *d,
1694 				  struct device_attribute *attr, char *buf)
1695 {
1696 	u8 reg = 0;
1697 	struct ipw_priv *priv = dev_get_drvdata(d);
1698 
1699 	if (priv->status & STATUS_INDIRECT_BYTE)
1700 		reg = ipw_read_reg8(priv, priv->indirect_byte);
1701 	else
1702 		reg = 0;
1703 
1704 	return sprintf(buf, "0x%02x\n", reg);
1705 }
1706 static ssize_t store_indirect_byte(struct device *d,
1707 				   struct device_attribute *attr,
1708 				   const char *buf, size_t count)
1709 {
1710 	struct ipw_priv *priv = dev_get_drvdata(d);
1711 
1712 	sscanf(buf, "%x", &priv->indirect_byte);
1713 	priv->status |= STATUS_INDIRECT_BYTE;
1714 	return strnlen(buf, count);
1715 }
1716 
1717 static DEVICE_ATTR(indirect_byte, 0644,
1718 		   show_indirect_byte, store_indirect_byte);
1719 
1720 static ssize_t show_direct_dword(struct device *d,
1721 				 struct device_attribute *attr, char *buf)
1722 {
1723 	u32 reg = 0;
1724 	struct ipw_priv *priv = dev_get_drvdata(d);
1725 
1726 	if (priv->status & STATUS_DIRECT_DWORD)
1727 		reg = ipw_read32(priv, priv->direct_dword);
1728 	else
1729 		reg = 0;
1730 
1731 	return sprintf(buf, "0x%08x\n", reg);
1732 }
1733 static ssize_t store_direct_dword(struct device *d,
1734 				  struct device_attribute *attr,
1735 				  const char *buf, size_t count)
1736 {
1737 	struct ipw_priv *priv = dev_get_drvdata(d);
1738 
1739 	sscanf(buf, "%x", &priv->direct_dword);
1740 	priv->status |= STATUS_DIRECT_DWORD;
1741 	return strnlen(buf, count);
1742 }
1743 
1744 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1745 
1746 static int rf_kill_active(struct ipw_priv *priv)
1747 {
1748 	if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1749 		priv->status |= STATUS_RF_KILL_HW;
1750 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1751 	} else {
1752 		priv->status &= ~STATUS_RF_KILL_HW;
1753 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1754 	}
1755 
1756 	return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1757 }
1758 
1759 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1760 			    char *buf)
1761 {
1762 	/* 0 - RF kill not enabled
1763 	   1 - SW based RF kill active (sysfs)
1764 	   2 - HW based RF kill active
1765 	   3 - Both HW and SW baed RF kill active */
1766 	struct ipw_priv *priv = dev_get_drvdata(d);
1767 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1768 	    (rf_kill_active(priv) ? 0x2 : 0x0);
1769 	return sprintf(buf, "%i\n", val);
1770 }
1771 
1772 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1773 {
1774 	if ((disable_radio ? 1 : 0) ==
1775 	    ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1776 		return 0;
1777 
1778 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1779 			  disable_radio ? "OFF" : "ON");
1780 
1781 	if (disable_radio) {
1782 		priv->status |= STATUS_RF_KILL_SW;
1783 
1784 		cancel_delayed_work(&priv->request_scan);
1785 		cancel_delayed_work(&priv->request_direct_scan);
1786 		cancel_delayed_work(&priv->request_passive_scan);
1787 		cancel_delayed_work(&priv->scan_event);
1788 		schedule_work(&priv->down);
1789 	} else {
1790 		priv->status &= ~STATUS_RF_KILL_SW;
1791 		if (rf_kill_active(priv)) {
1792 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1793 					  "disabled by HW switch\n");
1794 			/* Make sure the RF_KILL check timer is running */
1795 			cancel_delayed_work(&priv->rf_kill);
1796 			schedule_delayed_work(&priv->rf_kill,
1797 					      round_jiffies_relative(2 * HZ));
1798 		} else
1799 			schedule_work(&priv->up);
1800 	}
1801 
1802 	return 1;
1803 }
1804 
1805 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1806 			     const char *buf, size_t count)
1807 {
1808 	struct ipw_priv *priv = dev_get_drvdata(d);
1809 
1810 	ipw_radio_kill_sw(priv, buf[0] == '1');
1811 
1812 	return count;
1813 }
1814 
1815 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1816 
1817 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1818 			       char *buf)
1819 {
1820 	struct ipw_priv *priv = dev_get_drvdata(d);
1821 	int pos = 0, len = 0;
1822 	if (priv->config & CFG_SPEED_SCAN) {
1823 		while (priv->speed_scan[pos] != 0)
1824 			len += sprintf(&buf[len], "%d ",
1825 				       priv->speed_scan[pos++]);
1826 		return len + sprintf(&buf[len], "\n");
1827 	}
1828 
1829 	return sprintf(buf, "0\n");
1830 }
1831 
1832 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1833 				const char *buf, size_t count)
1834 {
1835 	struct ipw_priv *priv = dev_get_drvdata(d);
1836 	int channel, pos = 0;
1837 	const char *p = buf;
1838 
1839 	/* list of space separated channels to scan, optionally ending with 0 */
1840 	while ((channel = simple_strtol(p, NULL, 0))) {
1841 		if (pos == MAX_SPEED_SCAN - 1) {
1842 			priv->speed_scan[pos] = 0;
1843 			break;
1844 		}
1845 
1846 		if (libipw_is_valid_channel(priv->ieee, channel))
1847 			priv->speed_scan[pos++] = channel;
1848 		else
1849 			IPW_WARNING("Skipping invalid channel request: %d\n",
1850 				    channel);
1851 		p = strchr(p, ' ');
1852 		if (!p)
1853 			break;
1854 		while (*p == ' ' || *p == '\t')
1855 			p++;
1856 	}
1857 
1858 	if (pos == 0)
1859 		priv->config &= ~CFG_SPEED_SCAN;
1860 	else {
1861 		priv->speed_scan_pos = 0;
1862 		priv->config |= CFG_SPEED_SCAN;
1863 	}
1864 
1865 	return count;
1866 }
1867 
1868 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1869 
1870 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1871 			      char *buf)
1872 {
1873 	struct ipw_priv *priv = dev_get_drvdata(d);
1874 	return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1875 }
1876 
1877 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1878 			       const char *buf, size_t count)
1879 {
1880 	struct ipw_priv *priv = dev_get_drvdata(d);
1881 	if (buf[0] == '1')
1882 		priv->config |= CFG_NET_STATS;
1883 	else
1884 		priv->config &= ~CFG_NET_STATS;
1885 
1886 	return count;
1887 }
1888 
1889 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1890 
1891 static ssize_t show_channels(struct device *d,
1892 			     struct device_attribute *attr,
1893 			     char *buf)
1894 {
1895 	struct ipw_priv *priv = dev_get_drvdata(d);
1896 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1897 	int len = 0, i;
1898 
1899 	len = sprintf(&buf[len],
1900 		      "Displaying %d channels in 2.4Ghz band "
1901 		      "(802.11bg):\n", geo->bg_channels);
1902 
1903 	for (i = 0; i < geo->bg_channels; i++) {
1904 		len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1905 			       geo->bg[i].channel,
1906 			       geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1907 			       " (radar spectrum)" : "",
1908 			       ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1909 				(geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1910 			       ? "" : ", IBSS",
1911 			       geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1912 			       "passive only" : "active/passive",
1913 			       geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1914 			       "B" : "B/G");
1915 	}
1916 
1917 	len += sprintf(&buf[len],
1918 		       "Displaying %d channels in 5.2Ghz band "
1919 		       "(802.11a):\n", geo->a_channels);
1920 	for (i = 0; i < geo->a_channels; i++) {
1921 		len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1922 			       geo->a[i].channel,
1923 			       geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924 			       " (radar spectrum)" : "",
1925 			       ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1926 				(geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1927 			       ? "" : ", IBSS",
1928 			       geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929 			       "passive only" : "active/passive");
1930 	}
1931 
1932 	return len;
1933 }
1934 
1935 static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1936 
1937 static void notify_wx_assoc_event(struct ipw_priv *priv)
1938 {
1939 	union iwreq_data wrqu;
1940 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1941 	if (priv->status & STATUS_ASSOCIATED)
1942 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1943 	else
1944 		eth_zero_addr(wrqu.ap_addr.sa_data);
1945 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1946 }
1947 
1948 static void ipw_irq_tasklet(unsigned long data)
1949 {
1950 	struct ipw_priv *priv = (struct ipw_priv *)data;
1951 	u32 inta, inta_mask, handled = 0;
1952 	unsigned long flags;
1953 	int rc = 0;
1954 
1955 	spin_lock_irqsave(&priv->irq_lock, flags);
1956 
1957 	inta = ipw_read32(priv, IPW_INTA_RW);
1958 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1959 
1960 	if (inta == 0xFFFFFFFF) {
1961 		/* Hardware disappeared */
1962 		IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1963 		/* Only handle the cached INTA values */
1964 		inta = 0;
1965 	}
1966 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
1967 
1968 	/* Add any cached INTA values that need to be handled */
1969 	inta |= priv->isr_inta;
1970 
1971 	spin_unlock_irqrestore(&priv->irq_lock, flags);
1972 
1973 	spin_lock_irqsave(&priv->lock, flags);
1974 
1975 	/* handle all the justifications for the interrupt */
1976 	if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1977 		ipw_rx(priv);
1978 		handled |= IPW_INTA_BIT_RX_TRANSFER;
1979 	}
1980 
1981 	if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1982 		IPW_DEBUG_HC("Command completed.\n");
1983 		rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1984 		priv->status &= ~STATUS_HCMD_ACTIVE;
1985 		wake_up_interruptible(&priv->wait_command_queue);
1986 		handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1987 	}
1988 
1989 	if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1990 		IPW_DEBUG_TX("TX_QUEUE_1\n");
1991 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1992 		handled |= IPW_INTA_BIT_TX_QUEUE_1;
1993 	}
1994 
1995 	if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1996 		IPW_DEBUG_TX("TX_QUEUE_2\n");
1997 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1998 		handled |= IPW_INTA_BIT_TX_QUEUE_2;
1999 	}
2000 
2001 	if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2002 		IPW_DEBUG_TX("TX_QUEUE_3\n");
2003 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2004 		handled |= IPW_INTA_BIT_TX_QUEUE_3;
2005 	}
2006 
2007 	if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2008 		IPW_DEBUG_TX("TX_QUEUE_4\n");
2009 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2010 		handled |= IPW_INTA_BIT_TX_QUEUE_4;
2011 	}
2012 
2013 	if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2014 		IPW_WARNING("STATUS_CHANGE\n");
2015 		handled |= IPW_INTA_BIT_STATUS_CHANGE;
2016 	}
2017 
2018 	if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2019 		IPW_WARNING("TX_PERIOD_EXPIRED\n");
2020 		handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2021 	}
2022 
2023 	if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2024 		IPW_WARNING("HOST_CMD_DONE\n");
2025 		handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2026 	}
2027 
2028 	if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2029 		IPW_WARNING("FW_INITIALIZATION_DONE\n");
2030 		handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2031 	}
2032 
2033 	if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2034 		IPW_WARNING("PHY_OFF_DONE\n");
2035 		handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2036 	}
2037 
2038 	if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2039 		IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2040 		priv->status |= STATUS_RF_KILL_HW;
2041 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2042 		wake_up_interruptible(&priv->wait_command_queue);
2043 		priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2044 		cancel_delayed_work(&priv->request_scan);
2045 		cancel_delayed_work(&priv->request_direct_scan);
2046 		cancel_delayed_work(&priv->request_passive_scan);
2047 		cancel_delayed_work(&priv->scan_event);
2048 		schedule_work(&priv->link_down);
2049 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2050 		handled |= IPW_INTA_BIT_RF_KILL_DONE;
2051 	}
2052 
2053 	if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2054 		IPW_WARNING("Firmware error detected.  Restarting.\n");
2055 		if (priv->error) {
2056 			IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2057 			if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2058 				struct ipw_fw_error *error =
2059 				    ipw_alloc_error_log(priv);
2060 				ipw_dump_error_log(priv, error);
2061 				kfree(error);
2062 			}
2063 		} else {
2064 			priv->error = ipw_alloc_error_log(priv);
2065 			if (priv->error)
2066 				IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2067 			else
2068 				IPW_DEBUG_FW("Error allocating sysfs 'error' "
2069 					     "log.\n");
2070 			if (ipw_debug_level & IPW_DL_FW_ERRORS)
2071 				ipw_dump_error_log(priv, priv->error);
2072 		}
2073 
2074 		/* XXX: If hardware encryption is for WPA/WPA2,
2075 		 * we have to notify the supplicant. */
2076 		if (priv->ieee->sec.encrypt) {
2077 			priv->status &= ~STATUS_ASSOCIATED;
2078 			notify_wx_assoc_event(priv);
2079 		}
2080 
2081 		/* Keep the restart process from trying to send host
2082 		 * commands by clearing the INIT status bit */
2083 		priv->status &= ~STATUS_INIT;
2084 
2085 		/* Cancel currently queued command. */
2086 		priv->status &= ~STATUS_HCMD_ACTIVE;
2087 		wake_up_interruptible(&priv->wait_command_queue);
2088 
2089 		schedule_work(&priv->adapter_restart);
2090 		handled |= IPW_INTA_BIT_FATAL_ERROR;
2091 	}
2092 
2093 	if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2094 		IPW_ERROR("Parity error\n");
2095 		handled |= IPW_INTA_BIT_PARITY_ERROR;
2096 	}
2097 
2098 	if (handled != inta) {
2099 		IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2100 	}
2101 
2102 	spin_unlock_irqrestore(&priv->lock, flags);
2103 
2104 	/* enable all interrupts */
2105 	ipw_enable_interrupts(priv);
2106 }
2107 
2108 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2109 static char *get_cmd_string(u8 cmd)
2110 {
2111 	switch (cmd) {
2112 		IPW_CMD(HOST_COMPLETE);
2113 		IPW_CMD(POWER_DOWN);
2114 		IPW_CMD(SYSTEM_CONFIG);
2115 		IPW_CMD(MULTICAST_ADDRESS);
2116 		IPW_CMD(SSID);
2117 		IPW_CMD(ADAPTER_ADDRESS);
2118 		IPW_CMD(PORT_TYPE);
2119 		IPW_CMD(RTS_THRESHOLD);
2120 		IPW_CMD(FRAG_THRESHOLD);
2121 		IPW_CMD(POWER_MODE);
2122 		IPW_CMD(WEP_KEY);
2123 		IPW_CMD(TGI_TX_KEY);
2124 		IPW_CMD(SCAN_REQUEST);
2125 		IPW_CMD(SCAN_REQUEST_EXT);
2126 		IPW_CMD(ASSOCIATE);
2127 		IPW_CMD(SUPPORTED_RATES);
2128 		IPW_CMD(SCAN_ABORT);
2129 		IPW_CMD(TX_FLUSH);
2130 		IPW_CMD(QOS_PARAMETERS);
2131 		IPW_CMD(DINO_CONFIG);
2132 		IPW_CMD(RSN_CAPABILITIES);
2133 		IPW_CMD(RX_KEY);
2134 		IPW_CMD(CARD_DISABLE);
2135 		IPW_CMD(SEED_NUMBER);
2136 		IPW_CMD(TX_POWER);
2137 		IPW_CMD(COUNTRY_INFO);
2138 		IPW_CMD(AIRONET_INFO);
2139 		IPW_CMD(AP_TX_POWER);
2140 		IPW_CMD(CCKM_INFO);
2141 		IPW_CMD(CCX_VER_INFO);
2142 		IPW_CMD(SET_CALIBRATION);
2143 		IPW_CMD(SENSITIVITY_CALIB);
2144 		IPW_CMD(RETRY_LIMIT);
2145 		IPW_CMD(IPW_PRE_POWER_DOWN);
2146 		IPW_CMD(VAP_BEACON_TEMPLATE);
2147 		IPW_CMD(VAP_DTIM_PERIOD);
2148 		IPW_CMD(EXT_SUPPORTED_RATES);
2149 		IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2150 		IPW_CMD(VAP_QUIET_INTERVALS);
2151 		IPW_CMD(VAP_CHANNEL_SWITCH);
2152 		IPW_CMD(VAP_MANDATORY_CHANNELS);
2153 		IPW_CMD(VAP_CELL_PWR_LIMIT);
2154 		IPW_CMD(VAP_CF_PARAM_SET);
2155 		IPW_CMD(VAP_SET_BEACONING_STATE);
2156 		IPW_CMD(MEASUREMENT);
2157 		IPW_CMD(POWER_CAPABILITY);
2158 		IPW_CMD(SUPPORTED_CHANNELS);
2159 		IPW_CMD(TPC_REPORT);
2160 		IPW_CMD(WME_INFO);
2161 		IPW_CMD(PRODUCTION_COMMAND);
2162 	default:
2163 		return "UNKNOWN";
2164 	}
2165 }
2166 
2167 #define HOST_COMPLETE_TIMEOUT HZ
2168 
2169 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2170 {
2171 	int rc = 0;
2172 	unsigned long flags;
2173 	unsigned long now, end;
2174 
2175 	spin_lock_irqsave(&priv->lock, flags);
2176 	if (priv->status & STATUS_HCMD_ACTIVE) {
2177 		IPW_ERROR("Failed to send %s: Already sending a command.\n",
2178 			  get_cmd_string(cmd->cmd));
2179 		spin_unlock_irqrestore(&priv->lock, flags);
2180 		return -EAGAIN;
2181 	}
2182 
2183 	priv->status |= STATUS_HCMD_ACTIVE;
2184 
2185 	if (priv->cmdlog) {
2186 		priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2187 		priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2188 		priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2189 		memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2190 		       cmd->len);
2191 		priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2192 	}
2193 
2194 	IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2195 		     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2196 		     priv->status);
2197 
2198 #ifndef DEBUG_CMD_WEP_KEY
2199 	if (cmd->cmd == IPW_CMD_WEP_KEY)
2200 		IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2201 	else
2202 #endif
2203 		printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2204 
2205 	rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2206 	if (rc) {
2207 		priv->status &= ~STATUS_HCMD_ACTIVE;
2208 		IPW_ERROR("Failed to send %s: Reason %d\n",
2209 			  get_cmd_string(cmd->cmd), rc);
2210 		spin_unlock_irqrestore(&priv->lock, flags);
2211 		goto exit;
2212 	}
2213 	spin_unlock_irqrestore(&priv->lock, flags);
2214 
2215 	now = jiffies;
2216 	end = now + HOST_COMPLETE_TIMEOUT;
2217 again:
2218 	rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2219 					      !(priv->
2220 						status & STATUS_HCMD_ACTIVE),
2221 					      end - now);
2222 	if (rc < 0) {
2223 		now = jiffies;
2224 		if (time_before(now, end))
2225 			goto again;
2226 		rc = 0;
2227 	}
2228 
2229 	if (rc == 0) {
2230 		spin_lock_irqsave(&priv->lock, flags);
2231 		if (priv->status & STATUS_HCMD_ACTIVE) {
2232 			IPW_ERROR("Failed to send %s: Command timed out.\n",
2233 				  get_cmd_string(cmd->cmd));
2234 			priv->status &= ~STATUS_HCMD_ACTIVE;
2235 			spin_unlock_irqrestore(&priv->lock, flags);
2236 			rc = -EIO;
2237 			goto exit;
2238 		}
2239 		spin_unlock_irqrestore(&priv->lock, flags);
2240 	} else
2241 		rc = 0;
2242 
2243 	if (priv->status & STATUS_RF_KILL_HW) {
2244 		IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2245 			  get_cmd_string(cmd->cmd));
2246 		rc = -EIO;
2247 		goto exit;
2248 	}
2249 
2250       exit:
2251 	if (priv->cmdlog) {
2252 		priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2253 		priv->cmdlog_pos %= priv->cmdlog_len;
2254 	}
2255 	return rc;
2256 }
2257 
2258 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2259 {
2260 	struct host_cmd cmd = {
2261 		.cmd = command,
2262 	};
2263 
2264 	return __ipw_send_cmd(priv, &cmd);
2265 }
2266 
2267 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2268 			    void *data)
2269 {
2270 	struct host_cmd cmd = {
2271 		.cmd = command,
2272 		.len = len,
2273 		.param = data,
2274 	};
2275 
2276 	return __ipw_send_cmd(priv, &cmd);
2277 }
2278 
2279 static int ipw_send_host_complete(struct ipw_priv *priv)
2280 {
2281 	if (!priv) {
2282 		IPW_ERROR("Invalid args\n");
2283 		return -1;
2284 	}
2285 
2286 	return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2287 }
2288 
2289 static int ipw_send_system_config(struct ipw_priv *priv)
2290 {
2291 	return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2292 				sizeof(priv->sys_config),
2293 				&priv->sys_config);
2294 }
2295 
2296 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2297 {
2298 	if (!priv || !ssid) {
2299 		IPW_ERROR("Invalid args\n");
2300 		return -1;
2301 	}
2302 
2303 	return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2304 				ssid);
2305 }
2306 
2307 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2308 {
2309 	if (!priv || !mac) {
2310 		IPW_ERROR("Invalid args\n");
2311 		return -1;
2312 	}
2313 
2314 	IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2315 		       priv->net_dev->name, mac);
2316 
2317 	return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2318 }
2319 
2320 static void ipw_adapter_restart(void *adapter)
2321 {
2322 	struct ipw_priv *priv = adapter;
2323 
2324 	if (priv->status & STATUS_RF_KILL_MASK)
2325 		return;
2326 
2327 	ipw_down(priv);
2328 
2329 	if (priv->assoc_network &&
2330 	    (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2331 		ipw_remove_current_network(priv);
2332 
2333 	if (ipw_up(priv)) {
2334 		IPW_ERROR("Failed to up device\n");
2335 		return;
2336 	}
2337 }
2338 
2339 static void ipw_bg_adapter_restart(struct work_struct *work)
2340 {
2341 	struct ipw_priv *priv =
2342 		container_of(work, struct ipw_priv, adapter_restart);
2343 	mutex_lock(&priv->mutex);
2344 	ipw_adapter_restart(priv);
2345 	mutex_unlock(&priv->mutex);
2346 }
2347 
2348 static void ipw_abort_scan(struct ipw_priv *priv);
2349 
2350 #define IPW_SCAN_CHECK_WATCHDOG	(5 * HZ)
2351 
2352 static void ipw_scan_check(void *data)
2353 {
2354 	struct ipw_priv *priv = data;
2355 
2356 	if (priv->status & STATUS_SCAN_ABORTING) {
2357 		IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2358 			       "adapter after (%dms).\n",
2359 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2360 		schedule_work(&priv->adapter_restart);
2361 	} else if (priv->status & STATUS_SCANNING) {
2362 		IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2363 			       "after (%dms).\n",
2364 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2365 		ipw_abort_scan(priv);
2366 		schedule_delayed_work(&priv->scan_check, HZ);
2367 	}
2368 }
2369 
2370 static void ipw_bg_scan_check(struct work_struct *work)
2371 {
2372 	struct ipw_priv *priv =
2373 		container_of(work, struct ipw_priv, scan_check.work);
2374 	mutex_lock(&priv->mutex);
2375 	ipw_scan_check(priv);
2376 	mutex_unlock(&priv->mutex);
2377 }
2378 
2379 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2380 				     struct ipw_scan_request_ext *request)
2381 {
2382 	return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2383 				sizeof(*request), request);
2384 }
2385 
2386 static int ipw_send_scan_abort(struct ipw_priv *priv)
2387 {
2388 	if (!priv) {
2389 		IPW_ERROR("Invalid args\n");
2390 		return -1;
2391 	}
2392 
2393 	return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2394 }
2395 
2396 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2397 {
2398 	struct ipw_sensitivity_calib calib = {
2399 		.beacon_rssi_raw = cpu_to_le16(sens),
2400 	};
2401 
2402 	return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2403 				&calib);
2404 }
2405 
2406 static int ipw_send_associate(struct ipw_priv *priv,
2407 			      struct ipw_associate *associate)
2408 {
2409 	if (!priv || !associate) {
2410 		IPW_ERROR("Invalid args\n");
2411 		return -1;
2412 	}
2413 
2414 	return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2415 				associate);
2416 }
2417 
2418 static int ipw_send_supported_rates(struct ipw_priv *priv,
2419 				    struct ipw_supported_rates *rates)
2420 {
2421 	if (!priv || !rates) {
2422 		IPW_ERROR("Invalid args\n");
2423 		return -1;
2424 	}
2425 
2426 	return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2427 				rates);
2428 }
2429 
2430 static int ipw_set_random_seed(struct ipw_priv *priv)
2431 {
2432 	u32 val;
2433 
2434 	if (!priv) {
2435 		IPW_ERROR("Invalid args\n");
2436 		return -1;
2437 	}
2438 
2439 	get_random_bytes(&val, sizeof(val));
2440 
2441 	return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2442 }
2443 
2444 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2445 {
2446 	__le32 v = cpu_to_le32(phy_off);
2447 	if (!priv) {
2448 		IPW_ERROR("Invalid args\n");
2449 		return -1;
2450 	}
2451 
2452 	return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2453 }
2454 
2455 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2456 {
2457 	if (!priv || !power) {
2458 		IPW_ERROR("Invalid args\n");
2459 		return -1;
2460 	}
2461 
2462 	return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2463 }
2464 
2465 static int ipw_set_tx_power(struct ipw_priv *priv)
2466 {
2467 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2468 	struct ipw_tx_power tx_power;
2469 	s8 max_power;
2470 	int i;
2471 
2472 	memset(&tx_power, 0, sizeof(tx_power));
2473 
2474 	/* configure device for 'G' band */
2475 	tx_power.ieee_mode = IPW_G_MODE;
2476 	tx_power.num_channels = geo->bg_channels;
2477 	for (i = 0; i < geo->bg_channels; i++) {
2478 		max_power = geo->bg[i].max_power;
2479 		tx_power.channels_tx_power[i].channel_number =
2480 		    geo->bg[i].channel;
2481 		tx_power.channels_tx_power[i].tx_power = max_power ?
2482 		    min(max_power, priv->tx_power) : priv->tx_power;
2483 	}
2484 	if (ipw_send_tx_power(priv, &tx_power))
2485 		return -EIO;
2486 
2487 	/* configure device to also handle 'B' band */
2488 	tx_power.ieee_mode = IPW_B_MODE;
2489 	if (ipw_send_tx_power(priv, &tx_power))
2490 		return -EIO;
2491 
2492 	/* configure device to also handle 'A' band */
2493 	if (priv->ieee->abg_true) {
2494 		tx_power.ieee_mode = IPW_A_MODE;
2495 		tx_power.num_channels = geo->a_channels;
2496 		for (i = 0; i < tx_power.num_channels; i++) {
2497 			max_power = geo->a[i].max_power;
2498 			tx_power.channels_tx_power[i].channel_number =
2499 			    geo->a[i].channel;
2500 			tx_power.channels_tx_power[i].tx_power = max_power ?
2501 			    min(max_power, priv->tx_power) : priv->tx_power;
2502 		}
2503 		if (ipw_send_tx_power(priv, &tx_power))
2504 			return -EIO;
2505 	}
2506 	return 0;
2507 }
2508 
2509 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2510 {
2511 	struct ipw_rts_threshold rts_threshold = {
2512 		.rts_threshold = cpu_to_le16(rts),
2513 	};
2514 
2515 	if (!priv) {
2516 		IPW_ERROR("Invalid args\n");
2517 		return -1;
2518 	}
2519 
2520 	return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2521 				sizeof(rts_threshold), &rts_threshold);
2522 }
2523 
2524 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2525 {
2526 	struct ipw_frag_threshold frag_threshold = {
2527 		.frag_threshold = cpu_to_le16(frag),
2528 	};
2529 
2530 	if (!priv) {
2531 		IPW_ERROR("Invalid args\n");
2532 		return -1;
2533 	}
2534 
2535 	return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2536 				sizeof(frag_threshold), &frag_threshold);
2537 }
2538 
2539 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2540 {
2541 	__le32 param;
2542 
2543 	if (!priv) {
2544 		IPW_ERROR("Invalid args\n");
2545 		return -1;
2546 	}
2547 
2548 	/* If on battery, set to 3, if AC set to CAM, else user
2549 	 * level */
2550 	switch (mode) {
2551 	case IPW_POWER_BATTERY:
2552 		param = cpu_to_le32(IPW_POWER_INDEX_3);
2553 		break;
2554 	case IPW_POWER_AC:
2555 		param = cpu_to_le32(IPW_POWER_MODE_CAM);
2556 		break;
2557 	default:
2558 		param = cpu_to_le32(mode);
2559 		break;
2560 	}
2561 
2562 	return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2563 				&param);
2564 }
2565 
2566 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2567 {
2568 	struct ipw_retry_limit retry_limit = {
2569 		.short_retry_limit = slimit,
2570 		.long_retry_limit = llimit
2571 	};
2572 
2573 	if (!priv) {
2574 		IPW_ERROR("Invalid args\n");
2575 		return -1;
2576 	}
2577 
2578 	return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2579 				&retry_limit);
2580 }
2581 
2582 /*
2583  * The IPW device contains a Microwire compatible EEPROM that stores
2584  * various data like the MAC address.  Usually the firmware has exclusive
2585  * access to the eeprom, but during device initialization (before the
2586  * device driver has sent the HostComplete command to the firmware) the
2587  * device driver has read access to the EEPROM by way of indirect addressing
2588  * through a couple of memory mapped registers.
2589  *
2590  * The following is a simplified implementation for pulling data out of the
2591  * the eeprom, along with some helper functions to find information in
2592  * the per device private data's copy of the eeprom.
2593  *
2594  * NOTE: To better understand how these functions work (i.e what is a chip
2595  *       select and why do have to keep driving the eeprom clock?), read
2596  *       just about any data sheet for a Microwire compatible EEPROM.
2597  */
2598 
2599 /* write a 32 bit value into the indirect accessor register */
2600 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2601 {
2602 	ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2603 
2604 	/* the eeprom requires some time to complete the operation */
2605 	udelay(p->eeprom_delay);
2606 }
2607 
2608 /* perform a chip select operation */
2609 static void eeprom_cs(struct ipw_priv *priv)
2610 {
2611 	eeprom_write_reg(priv, 0);
2612 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2613 	eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2614 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2615 }
2616 
2617 /* perform a chip select operation */
2618 static void eeprom_disable_cs(struct ipw_priv *priv)
2619 {
2620 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2621 	eeprom_write_reg(priv, 0);
2622 	eeprom_write_reg(priv, EEPROM_BIT_SK);
2623 }
2624 
2625 /* push a single bit down to the eeprom */
2626 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2627 {
2628 	int d = (bit ? EEPROM_BIT_DI : 0);
2629 	eeprom_write_reg(p, EEPROM_BIT_CS | d);
2630 	eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2631 }
2632 
2633 /* push an opcode followed by an address down to the eeprom */
2634 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2635 {
2636 	int i;
2637 
2638 	eeprom_cs(priv);
2639 	eeprom_write_bit(priv, 1);
2640 	eeprom_write_bit(priv, op & 2);
2641 	eeprom_write_bit(priv, op & 1);
2642 	for (i = 7; i >= 0; i--) {
2643 		eeprom_write_bit(priv, addr & (1 << i));
2644 	}
2645 }
2646 
2647 /* pull 16 bits off the eeprom, one bit at a time */
2648 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2649 {
2650 	int i;
2651 	u16 r = 0;
2652 
2653 	/* Send READ Opcode */
2654 	eeprom_op(priv, EEPROM_CMD_READ, addr);
2655 
2656 	/* Send dummy bit */
2657 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2658 
2659 	/* Read the byte off the eeprom one bit at a time */
2660 	for (i = 0; i < 16; i++) {
2661 		u32 data = 0;
2662 		eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2663 		eeprom_write_reg(priv, EEPROM_BIT_CS);
2664 		data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2665 		r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2666 	}
2667 
2668 	/* Send another dummy bit */
2669 	eeprom_write_reg(priv, 0);
2670 	eeprom_disable_cs(priv);
2671 
2672 	return r;
2673 }
2674 
2675 /* helper function for pulling the mac address out of the private */
2676 /* data's copy of the eeprom data                                 */
2677 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2678 {
2679 	memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2680 }
2681 
2682 static void ipw_read_eeprom(struct ipw_priv *priv)
2683 {
2684 	int i;
2685 	__le16 *eeprom = (__le16 *) priv->eeprom;
2686 
2687 	IPW_DEBUG_TRACE(">>\n");
2688 
2689 	/* read entire contents of eeprom into private buffer */
2690 	for (i = 0; i < 128; i++)
2691 		eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2692 
2693 	IPW_DEBUG_TRACE("<<\n");
2694 }
2695 
2696 /*
2697  * Either the device driver (i.e. the host) or the firmware can
2698  * load eeprom data into the designated region in SRAM.  If neither
2699  * happens then the FW will shutdown with a fatal error.
2700  *
2701  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2702  * bit needs region of shared SRAM needs to be non-zero.
2703  */
2704 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2705 {
2706 	int i;
2707 
2708 	IPW_DEBUG_TRACE(">>\n");
2709 
2710 	/*
2711 	   If the data looks correct, then copy it to our private
2712 	   copy.  Otherwise let the firmware know to perform the operation
2713 	   on its own.
2714 	 */
2715 	if (priv->eeprom[EEPROM_VERSION] != 0) {
2716 		IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2717 
2718 		/* write the eeprom data to sram */
2719 		for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2720 			ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2721 
2722 		/* Do not load eeprom data on fatal error or suspend */
2723 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2724 	} else {
2725 		IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2726 
2727 		/* Load eeprom data on fatal error or suspend */
2728 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2729 	}
2730 
2731 	IPW_DEBUG_TRACE("<<\n");
2732 }
2733 
2734 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2735 {
2736 	count >>= 2;
2737 	if (!count)
2738 		return;
2739 	_ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2740 	while (count--)
2741 		_ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2742 }
2743 
2744 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2745 {
2746 	ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2747 			CB_NUMBER_OF_ELEMENTS_SMALL *
2748 			sizeof(struct command_block));
2749 }
2750 
2751 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2752 {				/* start dma engine but no transfers yet */
2753 
2754 	IPW_DEBUG_FW(">> :\n");
2755 
2756 	/* Start the dma */
2757 	ipw_fw_dma_reset_command_blocks(priv);
2758 
2759 	/* Write CB base address */
2760 	ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2761 
2762 	IPW_DEBUG_FW("<< :\n");
2763 	return 0;
2764 }
2765 
2766 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2767 {
2768 	u32 control = 0;
2769 
2770 	IPW_DEBUG_FW(">> :\n");
2771 
2772 	/* set the Stop and Abort bit */
2773 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2774 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2775 	priv->sram_desc.last_cb_index = 0;
2776 
2777 	IPW_DEBUG_FW("<<\n");
2778 }
2779 
2780 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2781 					  struct command_block *cb)
2782 {
2783 	u32 address =
2784 	    IPW_SHARED_SRAM_DMA_CONTROL +
2785 	    (sizeof(struct command_block) * index);
2786 	IPW_DEBUG_FW(">> :\n");
2787 
2788 	ipw_write_indirect(priv, address, (u8 *) cb,
2789 			   (int)sizeof(struct command_block));
2790 
2791 	IPW_DEBUG_FW("<< :\n");
2792 	return 0;
2793 
2794 }
2795 
2796 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2797 {
2798 	u32 control = 0;
2799 	u32 index = 0;
2800 
2801 	IPW_DEBUG_FW(">> :\n");
2802 
2803 	for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2804 		ipw_fw_dma_write_command_block(priv, index,
2805 					       &priv->sram_desc.cb_list[index]);
2806 
2807 	/* Enable the DMA in the CSR register */
2808 	ipw_clear_bit(priv, IPW_RESET_REG,
2809 		      IPW_RESET_REG_MASTER_DISABLED |
2810 		      IPW_RESET_REG_STOP_MASTER);
2811 
2812 	/* Set the Start bit. */
2813 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2814 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2815 
2816 	IPW_DEBUG_FW("<< :\n");
2817 	return 0;
2818 }
2819 
2820 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2821 {
2822 	u32 address;
2823 	u32 register_value = 0;
2824 	u32 cb_fields_address = 0;
2825 
2826 	IPW_DEBUG_FW(">> :\n");
2827 	address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2828 	IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2829 
2830 	/* Read the DMA Controlor register */
2831 	register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2832 	IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2833 
2834 	/* Print the CB values */
2835 	cb_fields_address = address;
2836 	register_value = ipw_read_reg32(priv, cb_fields_address);
2837 	IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2838 
2839 	cb_fields_address += sizeof(u32);
2840 	register_value = ipw_read_reg32(priv, cb_fields_address);
2841 	IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2842 
2843 	cb_fields_address += sizeof(u32);
2844 	register_value = ipw_read_reg32(priv, cb_fields_address);
2845 	IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2846 			  register_value);
2847 
2848 	cb_fields_address += sizeof(u32);
2849 	register_value = ipw_read_reg32(priv, cb_fields_address);
2850 	IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2851 
2852 	IPW_DEBUG_FW(">> :\n");
2853 }
2854 
2855 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2856 {
2857 	u32 current_cb_address = 0;
2858 	u32 current_cb_index = 0;
2859 
2860 	IPW_DEBUG_FW("<< :\n");
2861 	current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2862 
2863 	current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2864 	    sizeof(struct command_block);
2865 
2866 	IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2867 			  current_cb_index, current_cb_address);
2868 
2869 	IPW_DEBUG_FW(">> :\n");
2870 	return current_cb_index;
2871 
2872 }
2873 
2874 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2875 					u32 src_address,
2876 					u32 dest_address,
2877 					u32 length,
2878 					int interrupt_enabled, int is_last)
2879 {
2880 
2881 	u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2882 	    CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2883 	    CB_DEST_SIZE_LONG;
2884 	struct command_block *cb;
2885 	u32 last_cb_element = 0;
2886 
2887 	IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2888 			  src_address, dest_address, length);
2889 
2890 	if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2891 		return -1;
2892 
2893 	last_cb_element = priv->sram_desc.last_cb_index;
2894 	cb = &priv->sram_desc.cb_list[last_cb_element];
2895 	priv->sram_desc.last_cb_index++;
2896 
2897 	/* Calculate the new CB control word */
2898 	if (interrupt_enabled)
2899 		control |= CB_INT_ENABLED;
2900 
2901 	if (is_last)
2902 		control |= CB_LAST_VALID;
2903 
2904 	control |= length;
2905 
2906 	/* Calculate the CB Element's checksum value */
2907 	cb->status = control ^ src_address ^ dest_address;
2908 
2909 	/* Copy the Source and Destination addresses */
2910 	cb->dest_addr = dest_address;
2911 	cb->source_addr = src_address;
2912 
2913 	/* Copy the Control Word last */
2914 	cb->control = control;
2915 
2916 	return 0;
2917 }
2918 
2919 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2920 				 int nr, u32 dest_address, u32 len)
2921 {
2922 	int ret, i;
2923 	u32 size;
2924 
2925 	IPW_DEBUG_FW(">>\n");
2926 	IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2927 			  nr, dest_address, len);
2928 
2929 	for (i = 0; i < nr; i++) {
2930 		size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2931 		ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2932 						   dest_address +
2933 						   i * CB_MAX_LENGTH, size,
2934 						   0, 0);
2935 		if (ret) {
2936 			IPW_DEBUG_FW_INFO(": Failed\n");
2937 			return -1;
2938 		} else
2939 			IPW_DEBUG_FW_INFO(": Added new cb\n");
2940 	}
2941 
2942 	IPW_DEBUG_FW("<<\n");
2943 	return 0;
2944 }
2945 
2946 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2947 {
2948 	u32 current_index = 0, previous_index;
2949 	u32 watchdog = 0;
2950 
2951 	IPW_DEBUG_FW(">> :\n");
2952 
2953 	current_index = ipw_fw_dma_command_block_index(priv);
2954 	IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2955 			  (int)priv->sram_desc.last_cb_index);
2956 
2957 	while (current_index < priv->sram_desc.last_cb_index) {
2958 		udelay(50);
2959 		previous_index = current_index;
2960 		current_index = ipw_fw_dma_command_block_index(priv);
2961 
2962 		if (previous_index < current_index) {
2963 			watchdog = 0;
2964 			continue;
2965 		}
2966 		if (++watchdog > 400) {
2967 			IPW_DEBUG_FW_INFO("Timeout\n");
2968 			ipw_fw_dma_dump_command_block(priv);
2969 			ipw_fw_dma_abort(priv);
2970 			return -1;
2971 		}
2972 	}
2973 
2974 	ipw_fw_dma_abort(priv);
2975 
2976 	/*Disable the DMA in the CSR register */
2977 	ipw_set_bit(priv, IPW_RESET_REG,
2978 		    IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2979 
2980 	IPW_DEBUG_FW("<< dmaWaitSync\n");
2981 	return 0;
2982 }
2983 
2984 static void ipw_remove_current_network(struct ipw_priv *priv)
2985 {
2986 	struct list_head *element, *safe;
2987 	struct libipw_network *network = NULL;
2988 	unsigned long flags;
2989 
2990 	spin_lock_irqsave(&priv->ieee->lock, flags);
2991 	list_for_each_safe(element, safe, &priv->ieee->network_list) {
2992 		network = list_entry(element, struct libipw_network, list);
2993 		if (ether_addr_equal(network->bssid, priv->bssid)) {
2994 			list_del(element);
2995 			list_add_tail(&network->list,
2996 				      &priv->ieee->network_free_list);
2997 		}
2998 	}
2999 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
3000 }
3001 
3002 /**
3003  * Check that card is still alive.
3004  * Reads debug register from domain0.
3005  * If card is present, pre-defined value should
3006  * be found there.
3007  *
3008  * @param priv
3009  * @return 1 if card is present, 0 otherwise
3010  */
3011 static inline int ipw_alive(struct ipw_priv *priv)
3012 {
3013 	return ipw_read32(priv, 0x90) == 0xd55555d5;
3014 }
3015 
3016 /* timeout in msec, attempted in 10-msec quanta */
3017 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3018 			       int timeout)
3019 {
3020 	int i = 0;
3021 
3022 	do {
3023 		if ((ipw_read32(priv, addr) & mask) == mask)
3024 			return i;
3025 		mdelay(10);
3026 		i += 10;
3027 	} while (i < timeout);
3028 
3029 	return -ETIME;
3030 }
3031 
3032 /* These functions load the firmware and micro code for the operation of
3033  * the ipw hardware.  It assumes the buffer has all the bits for the
3034  * image and the caller is handling the memory allocation and clean up.
3035  */
3036 
3037 static int ipw_stop_master(struct ipw_priv *priv)
3038 {
3039 	int rc;
3040 
3041 	IPW_DEBUG_TRACE(">>\n");
3042 	/* stop master. typical delay - 0 */
3043 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3044 
3045 	/* timeout is in msec, polled in 10-msec quanta */
3046 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3047 			  IPW_RESET_REG_MASTER_DISABLED, 100);
3048 	if (rc < 0) {
3049 		IPW_ERROR("wait for stop master failed after 100ms\n");
3050 		return -1;
3051 	}
3052 
3053 	IPW_DEBUG_INFO("stop master %dms\n", rc);
3054 
3055 	return rc;
3056 }
3057 
3058 static void ipw_arc_release(struct ipw_priv *priv)
3059 {
3060 	IPW_DEBUG_TRACE(">>\n");
3061 	mdelay(5);
3062 
3063 	ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3064 
3065 	/* no one knows timing, for safety add some delay */
3066 	mdelay(5);
3067 }
3068 
3069 struct fw_chunk {
3070 	__le32 address;
3071 	__le32 length;
3072 };
3073 
3074 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3075 {
3076 	int rc = 0, i, addr;
3077 	u8 cr = 0;
3078 	__le16 *image;
3079 
3080 	image = (__le16 *) data;
3081 
3082 	IPW_DEBUG_TRACE(">>\n");
3083 
3084 	rc = ipw_stop_master(priv);
3085 
3086 	if (rc < 0)
3087 		return rc;
3088 
3089 	for (addr = IPW_SHARED_LOWER_BOUND;
3090 	     addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3091 		ipw_write32(priv, addr, 0);
3092 	}
3093 
3094 	/* no ucode (yet) */
3095 	memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3096 	/* destroy DMA queues */
3097 	/* reset sequence */
3098 
3099 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3100 	ipw_arc_release(priv);
3101 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3102 	mdelay(1);
3103 
3104 	/* reset PHY */
3105 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3106 	mdelay(1);
3107 
3108 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3109 	mdelay(1);
3110 
3111 	/* enable ucode store */
3112 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3113 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3114 	mdelay(1);
3115 
3116 	/* write ucode */
3117 	/**
3118 	 * @bug
3119 	 * Do NOT set indirect address register once and then
3120 	 * store data to indirect data register in the loop.
3121 	 * It seems very reasonable, but in this case DINO do not
3122 	 * accept ucode. It is essential to set address each time.
3123 	 */
3124 	/* load new ipw uCode */
3125 	for (i = 0; i < len / 2; i++)
3126 		ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3127 				le16_to_cpu(image[i]));
3128 
3129 	/* enable DINO */
3130 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3131 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3132 
3133 	/* this is where the igx / win driver deveates from the VAP driver. */
3134 
3135 	/* wait for alive response */
3136 	for (i = 0; i < 100; i++) {
3137 		/* poll for incoming data */
3138 		cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3139 		if (cr & DINO_RXFIFO_DATA)
3140 			break;
3141 		mdelay(1);
3142 	}
3143 
3144 	if (cr & DINO_RXFIFO_DATA) {
3145 		/* alive_command_responce size is NOT multiple of 4 */
3146 		__le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3147 
3148 		for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3149 			response_buffer[i] =
3150 			    cpu_to_le32(ipw_read_reg32(priv,
3151 						       IPW_BASEBAND_RX_FIFO_READ));
3152 		memcpy(&priv->dino_alive, response_buffer,
3153 		       sizeof(priv->dino_alive));
3154 		if (priv->dino_alive.alive_command == 1
3155 		    && priv->dino_alive.ucode_valid == 1) {
3156 			rc = 0;
3157 			IPW_DEBUG_INFO
3158 			    ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3159 			     "of %02d/%02d/%02d %02d:%02d\n",
3160 			     priv->dino_alive.software_revision,
3161 			     priv->dino_alive.software_revision,
3162 			     priv->dino_alive.device_identifier,
3163 			     priv->dino_alive.device_identifier,
3164 			     priv->dino_alive.time_stamp[0],
3165 			     priv->dino_alive.time_stamp[1],
3166 			     priv->dino_alive.time_stamp[2],
3167 			     priv->dino_alive.time_stamp[3],
3168 			     priv->dino_alive.time_stamp[4]);
3169 		} else {
3170 			IPW_DEBUG_INFO("Microcode is not alive\n");
3171 			rc = -EINVAL;
3172 		}
3173 	} else {
3174 		IPW_DEBUG_INFO("No alive response from DINO\n");
3175 		rc = -ETIME;
3176 	}
3177 
3178 	/* disable DINO, otherwise for some reason
3179 	   firmware have problem getting alive resp. */
3180 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3181 
3182 	return rc;
3183 }
3184 
3185 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3186 {
3187 	int ret = -1;
3188 	int offset = 0;
3189 	struct fw_chunk *chunk;
3190 	int total_nr = 0;
3191 	int i;
3192 	struct dma_pool *pool;
3193 	void **virts;
3194 	dma_addr_t *phys;
3195 
3196 	IPW_DEBUG_TRACE("<< :\n");
3197 
3198 	virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3199 			      GFP_KERNEL);
3200 	if (!virts)
3201 		return -ENOMEM;
3202 
3203 	phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3204 			     GFP_KERNEL);
3205 	if (!phys) {
3206 		kfree(virts);
3207 		return -ENOMEM;
3208 	}
3209 	pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3210 			       0);
3211 	if (!pool) {
3212 		IPW_ERROR("dma_pool_create failed\n");
3213 		kfree(phys);
3214 		kfree(virts);
3215 		return -ENOMEM;
3216 	}
3217 
3218 	/* Start the Dma */
3219 	ret = ipw_fw_dma_enable(priv);
3220 
3221 	/* the DMA is already ready this would be a bug. */
3222 	BUG_ON(priv->sram_desc.last_cb_index > 0);
3223 
3224 	do {
3225 		u32 chunk_len;
3226 		u8 *start;
3227 		int size;
3228 		int nr = 0;
3229 
3230 		chunk = (struct fw_chunk *)(data + offset);
3231 		offset += sizeof(struct fw_chunk);
3232 		chunk_len = le32_to_cpu(chunk->length);
3233 		start = data + offset;
3234 
3235 		nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3236 		for (i = 0; i < nr; i++) {
3237 			virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3238 							 &phys[total_nr]);
3239 			if (!virts[total_nr]) {
3240 				ret = -ENOMEM;
3241 				goto out;
3242 			}
3243 			size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3244 				     CB_MAX_LENGTH);
3245 			memcpy(virts[total_nr], start, size);
3246 			start += size;
3247 			total_nr++;
3248 			/* We don't support fw chunk larger than 64*8K */
3249 			BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3250 		}
3251 
3252 		/* build DMA packet and queue up for sending */
3253 		/* dma to chunk->address, the chunk->length bytes from data +
3254 		 * offeset*/
3255 		/* Dma loading */
3256 		ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3257 					    nr, le32_to_cpu(chunk->address),
3258 					    chunk_len);
3259 		if (ret) {
3260 			IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3261 			goto out;
3262 		}
3263 
3264 		offset += chunk_len;
3265 	} while (offset < len);
3266 
3267 	/* Run the DMA and wait for the answer */
3268 	ret = ipw_fw_dma_kick(priv);
3269 	if (ret) {
3270 		IPW_ERROR("dmaKick Failed\n");
3271 		goto out;
3272 	}
3273 
3274 	ret = ipw_fw_dma_wait(priv);
3275 	if (ret) {
3276 		IPW_ERROR("dmaWaitSync Failed\n");
3277 		goto out;
3278 	}
3279  out:
3280 	for (i = 0; i < total_nr; i++)
3281 		dma_pool_free(pool, virts[i], phys[i]);
3282 
3283 	dma_pool_destroy(pool);
3284 	kfree(phys);
3285 	kfree(virts);
3286 
3287 	return ret;
3288 }
3289 
3290 /* stop nic */
3291 static int ipw_stop_nic(struct ipw_priv *priv)
3292 {
3293 	int rc = 0;
3294 
3295 	/* stop */
3296 	ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3297 
3298 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3299 			  IPW_RESET_REG_MASTER_DISABLED, 500);
3300 	if (rc < 0) {
3301 		IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3302 		return rc;
3303 	}
3304 
3305 	ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3306 
3307 	return rc;
3308 }
3309 
3310 static void ipw_start_nic(struct ipw_priv *priv)
3311 {
3312 	IPW_DEBUG_TRACE(">>\n");
3313 
3314 	/* prvHwStartNic  release ARC */
3315 	ipw_clear_bit(priv, IPW_RESET_REG,
3316 		      IPW_RESET_REG_MASTER_DISABLED |
3317 		      IPW_RESET_REG_STOP_MASTER |
3318 		      CBD_RESET_REG_PRINCETON_RESET);
3319 
3320 	/* enable power management */
3321 	ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3322 		    IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3323 
3324 	IPW_DEBUG_TRACE("<<\n");
3325 }
3326 
3327 static int ipw_init_nic(struct ipw_priv *priv)
3328 {
3329 	int rc;
3330 
3331 	IPW_DEBUG_TRACE(">>\n");
3332 	/* reset */
3333 	/*prvHwInitNic */
3334 	/* set "initialization complete" bit to move adapter to D0 state */
3335 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3336 
3337 	/* low-level PLL activation */
3338 	ipw_write32(priv, IPW_READ_INT_REGISTER,
3339 		    IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3340 
3341 	/* wait for clock stabilization */
3342 	rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3343 			  IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3344 	if (rc < 0)
3345 		IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3346 
3347 	/* assert SW reset */
3348 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3349 
3350 	udelay(10);
3351 
3352 	/* set "initialization complete" bit to move adapter to D0 state */
3353 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3354 
3355 	IPW_DEBUG_TRACE(">>\n");
3356 	return 0;
3357 }
3358 
3359 /* Call this function from process context, it will sleep in request_firmware.
3360  * Probe is an ok place to call this from.
3361  */
3362 static int ipw_reset_nic(struct ipw_priv *priv)
3363 {
3364 	int rc = 0;
3365 	unsigned long flags;
3366 
3367 	IPW_DEBUG_TRACE(">>\n");
3368 
3369 	rc = ipw_init_nic(priv);
3370 
3371 	spin_lock_irqsave(&priv->lock, flags);
3372 	/* Clear the 'host command active' bit... */
3373 	priv->status &= ~STATUS_HCMD_ACTIVE;
3374 	wake_up_interruptible(&priv->wait_command_queue);
3375 	priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3376 	wake_up_interruptible(&priv->wait_state);
3377 	spin_unlock_irqrestore(&priv->lock, flags);
3378 
3379 	IPW_DEBUG_TRACE("<<\n");
3380 	return rc;
3381 }
3382 
3383 
3384 struct ipw_fw {
3385 	__le32 ver;
3386 	__le32 boot_size;
3387 	__le32 ucode_size;
3388 	__le32 fw_size;
3389 	u8 data[];
3390 };
3391 
3392 static int ipw_get_fw(struct ipw_priv *priv,
3393 		      const struct firmware **raw, const char *name)
3394 {
3395 	struct ipw_fw *fw;
3396 	int rc;
3397 
3398 	/* ask firmware_class module to get the boot firmware off disk */
3399 	rc = request_firmware(raw, name, &priv->pci_dev->dev);
3400 	if (rc < 0) {
3401 		IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3402 		return rc;
3403 	}
3404 
3405 	if ((*raw)->size < sizeof(*fw)) {
3406 		IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3407 		return -EINVAL;
3408 	}
3409 
3410 	fw = (void *)(*raw)->data;
3411 
3412 	if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3413 	    le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3414 		IPW_ERROR("%s is too small or corrupt (%zd)\n",
3415 			  name, (*raw)->size);
3416 		return -EINVAL;
3417 	}
3418 
3419 	IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3420 		       name,
3421 		       le32_to_cpu(fw->ver) >> 16,
3422 		       le32_to_cpu(fw->ver) & 0xff,
3423 		       (*raw)->size - sizeof(*fw));
3424 	return 0;
3425 }
3426 
3427 #define IPW_RX_BUF_SIZE (3000)
3428 
3429 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3430 				      struct ipw_rx_queue *rxq)
3431 {
3432 	unsigned long flags;
3433 	int i;
3434 
3435 	spin_lock_irqsave(&rxq->lock, flags);
3436 
3437 	INIT_LIST_HEAD(&rxq->rx_free);
3438 	INIT_LIST_HEAD(&rxq->rx_used);
3439 
3440 	/* Fill the rx_used queue with _all_ of the Rx buffers */
3441 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3442 		/* In the reset function, these buffers may have been allocated
3443 		 * to an SKB, so we need to unmap and free potential storage */
3444 		if (rxq->pool[i].skb != NULL) {
3445 			dma_unmap_single(&priv->pci_dev->dev,
3446 					 rxq->pool[i].dma_addr,
3447 					 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
3448 			dev_kfree_skb(rxq->pool[i].skb);
3449 			rxq->pool[i].skb = NULL;
3450 		}
3451 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3452 	}
3453 
3454 	/* Set us so that we have processed and used all buffers, but have
3455 	 * not restocked the Rx queue with fresh buffers */
3456 	rxq->read = rxq->write = 0;
3457 	rxq->free_count = 0;
3458 	spin_unlock_irqrestore(&rxq->lock, flags);
3459 }
3460 
3461 #ifdef CONFIG_PM
3462 static int fw_loaded = 0;
3463 static const struct firmware *raw = NULL;
3464 
3465 static void free_firmware(void)
3466 {
3467 	if (fw_loaded) {
3468 		release_firmware(raw);
3469 		raw = NULL;
3470 		fw_loaded = 0;
3471 	}
3472 }
3473 #else
3474 #define free_firmware() do {} while (0)
3475 #endif
3476 
3477 static int ipw_load(struct ipw_priv *priv)
3478 {
3479 #ifndef CONFIG_PM
3480 	const struct firmware *raw = NULL;
3481 #endif
3482 	struct ipw_fw *fw;
3483 	u8 *boot_img, *ucode_img, *fw_img;
3484 	u8 *name = NULL;
3485 	int rc = 0, retries = 3;
3486 
3487 	switch (priv->ieee->iw_mode) {
3488 	case IW_MODE_ADHOC:
3489 		name = "ipw2200-ibss.fw";
3490 		break;
3491 #ifdef CONFIG_IPW2200_MONITOR
3492 	case IW_MODE_MONITOR:
3493 		name = "ipw2200-sniffer.fw";
3494 		break;
3495 #endif
3496 	case IW_MODE_INFRA:
3497 		name = "ipw2200-bss.fw";
3498 		break;
3499 	}
3500 
3501 	if (!name) {
3502 		rc = -EINVAL;
3503 		goto error;
3504 	}
3505 
3506 #ifdef CONFIG_PM
3507 	if (!fw_loaded) {
3508 #endif
3509 		rc = ipw_get_fw(priv, &raw, name);
3510 		if (rc < 0)
3511 			goto error;
3512 #ifdef CONFIG_PM
3513 	}
3514 #endif
3515 
3516 	fw = (void *)raw->data;
3517 	boot_img = &fw->data[0];
3518 	ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3519 	fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3520 			   le32_to_cpu(fw->ucode_size)];
3521 
3522 	if (!priv->rxq)
3523 		priv->rxq = ipw_rx_queue_alloc(priv);
3524 	else
3525 		ipw_rx_queue_reset(priv, priv->rxq);
3526 	if (!priv->rxq) {
3527 		IPW_ERROR("Unable to initialize Rx queue\n");
3528 		rc = -ENOMEM;
3529 		goto error;
3530 	}
3531 
3532       retry:
3533 	/* Ensure interrupts are disabled */
3534 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3535 	priv->status &= ~STATUS_INT_ENABLED;
3536 
3537 	/* ack pending interrupts */
3538 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3539 
3540 	ipw_stop_nic(priv);
3541 
3542 	rc = ipw_reset_nic(priv);
3543 	if (rc < 0) {
3544 		IPW_ERROR("Unable to reset NIC\n");
3545 		goto error;
3546 	}
3547 
3548 	ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3549 			IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3550 
3551 	/* DMA the initial boot firmware into the device */
3552 	rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3553 	if (rc < 0) {
3554 		IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3555 		goto error;
3556 	}
3557 
3558 	/* kick start the device */
3559 	ipw_start_nic(priv);
3560 
3561 	/* wait for the device to finish its initial startup sequence */
3562 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3563 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3564 	if (rc < 0) {
3565 		IPW_ERROR("device failed to boot initial fw image\n");
3566 		goto error;
3567 	}
3568 	IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3569 
3570 	/* ack fw init done interrupt */
3571 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3572 
3573 	/* DMA the ucode into the device */
3574 	rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3575 	if (rc < 0) {
3576 		IPW_ERROR("Unable to load ucode: %d\n", rc);
3577 		goto error;
3578 	}
3579 
3580 	/* stop nic */
3581 	ipw_stop_nic(priv);
3582 
3583 	/* DMA bss firmware into the device */
3584 	rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3585 	if (rc < 0) {
3586 		IPW_ERROR("Unable to load firmware: %d\n", rc);
3587 		goto error;
3588 	}
3589 #ifdef CONFIG_PM
3590 	fw_loaded = 1;
3591 #endif
3592 
3593 	ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3594 
3595 	rc = ipw_queue_reset(priv);
3596 	if (rc < 0) {
3597 		IPW_ERROR("Unable to initialize queues\n");
3598 		goto error;
3599 	}
3600 
3601 	/* Ensure interrupts are disabled */
3602 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3603 	/* ack pending interrupts */
3604 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3605 
3606 	/* kick start the device */
3607 	ipw_start_nic(priv);
3608 
3609 	if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3610 		if (retries > 0) {
3611 			IPW_WARNING("Parity error.  Retrying init.\n");
3612 			retries--;
3613 			goto retry;
3614 		}
3615 
3616 		IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3617 		rc = -EIO;
3618 		goto error;
3619 	}
3620 
3621 	/* wait for the device */
3622 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3623 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3624 	if (rc < 0) {
3625 		IPW_ERROR("device failed to start within 500ms\n");
3626 		goto error;
3627 	}
3628 	IPW_DEBUG_INFO("device response after %dms\n", rc);
3629 
3630 	/* ack fw init done interrupt */
3631 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3632 
3633 	/* read eeprom data */
3634 	priv->eeprom_delay = 1;
3635 	ipw_read_eeprom(priv);
3636 	/* initialize the eeprom region of sram */
3637 	ipw_eeprom_init_sram(priv);
3638 
3639 	/* enable interrupts */
3640 	ipw_enable_interrupts(priv);
3641 
3642 	/* Ensure our queue has valid packets */
3643 	ipw_rx_queue_replenish(priv);
3644 
3645 	ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3646 
3647 	/* ack pending interrupts */
3648 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3649 
3650 #ifndef CONFIG_PM
3651 	release_firmware(raw);
3652 #endif
3653 	return 0;
3654 
3655       error:
3656 	if (priv->rxq) {
3657 		ipw_rx_queue_free(priv, priv->rxq);
3658 		priv->rxq = NULL;
3659 	}
3660 	ipw_tx_queue_free(priv);
3661 	release_firmware(raw);
3662 #ifdef CONFIG_PM
3663 	fw_loaded = 0;
3664 	raw = NULL;
3665 #endif
3666 
3667 	return rc;
3668 }
3669 
3670 /**
3671  * DMA services
3672  *
3673  * Theory of operation
3674  *
3675  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3676  * 2 empty entries always kept in the buffer to protect from overflow.
3677  *
3678  * For Tx queue, there are low mark and high mark limits. If, after queuing
3679  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3680  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3681  * Tx queue resumed.
3682  *
3683  * The IPW operates with six queues, one receive queue in the device's
3684  * sram, one transmit queue for sending commands to the device firmware,
3685  * and four transmit queues for data.
3686  *
3687  * The four transmit queues allow for performing quality of service (qos)
3688  * transmissions as per the 802.11 protocol.  Currently Linux does not
3689  * provide a mechanism to the user for utilizing prioritized queues, so
3690  * we only utilize the first data transmit queue (queue1).
3691  */
3692 
3693 /**
3694  * Driver allocates buffers of this size for Rx
3695  */
3696 
3697 /**
3698  * ipw_rx_queue_space - Return number of free slots available in queue.
3699  */
3700 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3701 {
3702 	int s = q->read - q->write;
3703 	if (s <= 0)
3704 		s += RX_QUEUE_SIZE;
3705 	/* keep some buffer to not confuse full and empty queue */
3706 	s -= 2;
3707 	if (s < 0)
3708 		s = 0;
3709 	return s;
3710 }
3711 
3712 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3713 {
3714 	int s = q->last_used - q->first_empty;
3715 	if (s <= 0)
3716 		s += q->n_bd;
3717 	s -= 2;			/* keep some reserve to not confuse empty and full situations */
3718 	if (s < 0)
3719 		s = 0;
3720 	return s;
3721 }
3722 
3723 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3724 {
3725 	return (++index == n_bd) ? 0 : index;
3726 }
3727 
3728 /**
3729  * Initialize common DMA queue structure
3730  *
3731  * @param q                queue to init
3732  * @param count            Number of BD's to allocate. Should be power of 2
3733  * @param read_register    Address for 'read' register
3734  *                         (not offset within BAR, full address)
3735  * @param write_register   Address for 'write' register
3736  *                         (not offset within BAR, full address)
3737  * @param base_register    Address for 'base' register
3738  *                         (not offset within BAR, full address)
3739  * @param size             Address for 'size' register
3740  *                         (not offset within BAR, full address)
3741  */
3742 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3743 			   int count, u32 read, u32 write, u32 base, u32 size)
3744 {
3745 	q->n_bd = count;
3746 
3747 	q->low_mark = q->n_bd / 4;
3748 	if (q->low_mark < 4)
3749 		q->low_mark = 4;
3750 
3751 	q->high_mark = q->n_bd / 8;
3752 	if (q->high_mark < 2)
3753 		q->high_mark = 2;
3754 
3755 	q->first_empty = q->last_used = 0;
3756 	q->reg_r = read;
3757 	q->reg_w = write;
3758 
3759 	ipw_write32(priv, base, q->dma_addr);
3760 	ipw_write32(priv, size, count);
3761 	ipw_write32(priv, read, 0);
3762 	ipw_write32(priv, write, 0);
3763 
3764 	_ipw_read32(priv, 0x90);
3765 }
3766 
3767 static int ipw_queue_tx_init(struct ipw_priv *priv,
3768 			     struct clx2_tx_queue *q,
3769 			     int count, u32 read, u32 write, u32 base, u32 size)
3770 {
3771 	struct pci_dev *dev = priv->pci_dev;
3772 
3773 	q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3774 	if (!q->txb)
3775 		return -ENOMEM;
3776 
3777 	q->bd =
3778 	    dma_alloc_coherent(&dev->dev, sizeof(q->bd[0]) * count,
3779 			       &q->q.dma_addr, GFP_KERNEL);
3780 	if (!q->bd) {
3781 		IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3782 			  sizeof(q->bd[0]) * count);
3783 		kfree(q->txb);
3784 		q->txb = NULL;
3785 		return -ENOMEM;
3786 	}
3787 
3788 	ipw_queue_init(priv, &q->q, count, read, write, base, size);
3789 	return 0;
3790 }
3791 
3792 /**
3793  * Free one TFD, those at index [txq->q.last_used].
3794  * Do NOT advance any indexes
3795  *
3796  * @param dev
3797  * @param txq
3798  */
3799 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3800 				  struct clx2_tx_queue *txq)
3801 {
3802 	struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3803 	struct pci_dev *dev = priv->pci_dev;
3804 	int i;
3805 
3806 	/* classify bd */
3807 	if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3808 		/* nothing to cleanup after for host commands */
3809 		return;
3810 
3811 	/* sanity check */
3812 	if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3813 		IPW_ERROR("Too many chunks: %i\n",
3814 			  le32_to_cpu(bd->u.data.num_chunks));
3815 		/** @todo issue fatal error, it is quite serious situation */
3816 		return;
3817 	}
3818 
3819 	/* unmap chunks if any */
3820 	for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3821 		dma_unmap_single(&dev->dev,
3822 				 le32_to_cpu(bd->u.data.chunk_ptr[i]),
3823 				 le16_to_cpu(bd->u.data.chunk_len[i]),
3824 				 DMA_TO_DEVICE);
3825 		if (txq->txb[txq->q.last_used]) {
3826 			libipw_txb_free(txq->txb[txq->q.last_used]);
3827 			txq->txb[txq->q.last_used] = NULL;
3828 		}
3829 	}
3830 }
3831 
3832 /**
3833  * Deallocate DMA queue.
3834  *
3835  * Empty queue by removing and destroying all BD's.
3836  * Free all buffers.
3837  *
3838  * @param dev
3839  * @param q
3840  */
3841 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3842 {
3843 	struct clx2_queue *q = &txq->q;
3844 	struct pci_dev *dev = priv->pci_dev;
3845 
3846 	if (q->n_bd == 0)
3847 		return;
3848 
3849 	/* first, empty all BD's */
3850 	for (; q->first_empty != q->last_used;
3851 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3852 		ipw_queue_tx_free_tfd(priv, txq);
3853 	}
3854 
3855 	/* free buffers belonging to queue itself */
3856 	dma_free_coherent(&dev->dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3857 			  q->dma_addr);
3858 	kfree(txq->txb);
3859 
3860 	/* 0 fill whole structure */
3861 	memset(txq, 0, sizeof(*txq));
3862 }
3863 
3864 /**
3865  * Destroy all DMA queues and structures
3866  *
3867  * @param priv
3868  */
3869 static void ipw_tx_queue_free(struct ipw_priv *priv)
3870 {
3871 	/* Tx CMD queue */
3872 	ipw_queue_tx_free(priv, &priv->txq_cmd);
3873 
3874 	/* Tx queues */
3875 	ipw_queue_tx_free(priv, &priv->txq[0]);
3876 	ipw_queue_tx_free(priv, &priv->txq[1]);
3877 	ipw_queue_tx_free(priv, &priv->txq[2]);
3878 	ipw_queue_tx_free(priv, &priv->txq[3]);
3879 }
3880 
3881 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3882 {
3883 	/* First 3 bytes are manufacturer */
3884 	bssid[0] = priv->mac_addr[0];
3885 	bssid[1] = priv->mac_addr[1];
3886 	bssid[2] = priv->mac_addr[2];
3887 
3888 	/* Last bytes are random */
3889 	get_random_bytes(&bssid[3], ETH_ALEN - 3);
3890 
3891 	bssid[0] &= 0xfe;	/* clear multicast bit */
3892 	bssid[0] |= 0x02;	/* set local assignment bit (IEEE802) */
3893 }
3894 
3895 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3896 {
3897 	struct ipw_station_entry entry;
3898 	int i;
3899 
3900 	for (i = 0; i < priv->num_stations; i++) {
3901 		if (ether_addr_equal(priv->stations[i], bssid)) {
3902 			/* Another node is active in network */
3903 			priv->missed_adhoc_beacons = 0;
3904 			if (!(priv->config & CFG_STATIC_CHANNEL))
3905 				/* when other nodes drop out, we drop out */
3906 				priv->config &= ~CFG_ADHOC_PERSIST;
3907 
3908 			return i;
3909 		}
3910 	}
3911 
3912 	if (i == MAX_STATIONS)
3913 		return IPW_INVALID_STATION;
3914 
3915 	IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3916 
3917 	entry.reserved = 0;
3918 	entry.support_mode = 0;
3919 	memcpy(entry.mac_addr, bssid, ETH_ALEN);
3920 	memcpy(priv->stations[i], bssid, ETH_ALEN);
3921 	ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3922 			 &entry, sizeof(entry));
3923 	priv->num_stations++;
3924 
3925 	return i;
3926 }
3927 
3928 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3929 {
3930 	int i;
3931 
3932 	for (i = 0; i < priv->num_stations; i++)
3933 		if (ether_addr_equal(priv->stations[i], bssid))
3934 			return i;
3935 
3936 	return IPW_INVALID_STATION;
3937 }
3938 
3939 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3940 {
3941 	int err;
3942 
3943 	if (priv->status & STATUS_ASSOCIATING) {
3944 		IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3945 		schedule_work(&priv->disassociate);
3946 		return;
3947 	}
3948 
3949 	if (!(priv->status & STATUS_ASSOCIATED)) {
3950 		IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3951 		return;
3952 	}
3953 
3954 	IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3955 			"on channel %d.\n",
3956 			priv->assoc_request.bssid,
3957 			priv->assoc_request.channel);
3958 
3959 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3960 	priv->status |= STATUS_DISASSOCIATING;
3961 
3962 	if (quiet)
3963 		priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3964 	else
3965 		priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3966 
3967 	err = ipw_send_associate(priv, &priv->assoc_request);
3968 	if (err) {
3969 		IPW_DEBUG_HC("Attempt to send [dis]associate command "
3970 			     "failed.\n");
3971 		return;
3972 	}
3973 
3974 }
3975 
3976 static int ipw_disassociate(void *data)
3977 {
3978 	struct ipw_priv *priv = data;
3979 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3980 		return 0;
3981 	ipw_send_disassociate(data, 0);
3982 	netif_carrier_off(priv->net_dev);
3983 	return 1;
3984 }
3985 
3986 static void ipw_bg_disassociate(struct work_struct *work)
3987 {
3988 	struct ipw_priv *priv =
3989 		container_of(work, struct ipw_priv, disassociate);
3990 	mutex_lock(&priv->mutex);
3991 	ipw_disassociate(priv);
3992 	mutex_unlock(&priv->mutex);
3993 }
3994 
3995 static void ipw_system_config(struct work_struct *work)
3996 {
3997 	struct ipw_priv *priv =
3998 		container_of(work, struct ipw_priv, system_config);
3999 
4000 #ifdef CONFIG_IPW2200_PROMISCUOUS
4001 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4002 		priv->sys_config.accept_all_data_frames = 1;
4003 		priv->sys_config.accept_non_directed_frames = 1;
4004 		priv->sys_config.accept_all_mgmt_bcpr = 1;
4005 		priv->sys_config.accept_all_mgmt_frames = 1;
4006 	}
4007 #endif
4008 
4009 	ipw_send_system_config(priv);
4010 }
4011 
4012 struct ipw_status_code {
4013 	u16 status;
4014 	const char *reason;
4015 };
4016 
4017 static const struct ipw_status_code ipw_status_codes[] = {
4018 	{0x00, "Successful"},
4019 	{0x01, "Unspecified failure"},
4020 	{0x0A, "Cannot support all requested capabilities in the "
4021 	 "Capability information field"},
4022 	{0x0B, "Reassociation denied due to inability to confirm that "
4023 	 "association exists"},
4024 	{0x0C, "Association denied due to reason outside the scope of this "
4025 	 "standard"},
4026 	{0x0D,
4027 	 "Responding station does not support the specified authentication "
4028 	 "algorithm"},
4029 	{0x0E,
4030 	 "Received an Authentication frame with authentication sequence "
4031 	 "transaction sequence number out of expected sequence"},
4032 	{0x0F, "Authentication rejected because of challenge failure"},
4033 	{0x10, "Authentication rejected due to timeout waiting for next "
4034 	 "frame in sequence"},
4035 	{0x11, "Association denied because AP is unable to handle additional "
4036 	 "associated stations"},
4037 	{0x12,
4038 	 "Association denied due to requesting station not supporting all "
4039 	 "of the datarates in the BSSBasicServiceSet Parameter"},
4040 	{0x13,
4041 	 "Association denied due to requesting station not supporting "
4042 	 "short preamble operation"},
4043 	{0x14,
4044 	 "Association denied due to requesting station not supporting "
4045 	 "PBCC encoding"},
4046 	{0x15,
4047 	 "Association denied due to requesting station not supporting "
4048 	 "channel agility"},
4049 	{0x19,
4050 	 "Association denied due to requesting station not supporting "
4051 	 "short slot operation"},
4052 	{0x1A,
4053 	 "Association denied due to requesting station not supporting "
4054 	 "DSSS-OFDM operation"},
4055 	{0x28, "Invalid Information Element"},
4056 	{0x29, "Group Cipher is not valid"},
4057 	{0x2A, "Pairwise Cipher is not valid"},
4058 	{0x2B, "AKMP is not valid"},
4059 	{0x2C, "Unsupported RSN IE version"},
4060 	{0x2D, "Invalid RSN IE Capabilities"},
4061 	{0x2E, "Cipher suite is rejected per security policy"},
4062 };
4063 
4064 static const char *ipw_get_status_code(u16 status)
4065 {
4066 	int i;
4067 	for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4068 		if (ipw_status_codes[i].status == (status & 0xff))
4069 			return ipw_status_codes[i].reason;
4070 	return "Unknown status value.";
4071 }
4072 
4073 static inline void average_init(struct average *avg)
4074 {
4075 	memset(avg, 0, sizeof(*avg));
4076 }
4077 
4078 #define DEPTH_RSSI 8
4079 #define DEPTH_NOISE 16
4080 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4081 {
4082 	return ((depth-1)*prev_avg +  val)/depth;
4083 }
4084 
4085 static void average_add(struct average *avg, s16 val)
4086 {
4087 	avg->sum -= avg->entries[avg->pos];
4088 	avg->sum += val;
4089 	avg->entries[avg->pos++] = val;
4090 	if (unlikely(avg->pos == AVG_ENTRIES)) {
4091 		avg->init = 1;
4092 		avg->pos = 0;
4093 	}
4094 }
4095 
4096 static s16 average_value(struct average *avg)
4097 {
4098 	if (!unlikely(avg->init)) {
4099 		if (avg->pos)
4100 			return avg->sum / avg->pos;
4101 		return 0;
4102 	}
4103 
4104 	return avg->sum / AVG_ENTRIES;
4105 }
4106 
4107 static void ipw_reset_stats(struct ipw_priv *priv)
4108 {
4109 	u32 len = sizeof(u32);
4110 
4111 	priv->quality = 0;
4112 
4113 	average_init(&priv->average_missed_beacons);
4114 	priv->exp_avg_rssi = -60;
4115 	priv->exp_avg_noise = -85 + 0x100;
4116 
4117 	priv->last_rate = 0;
4118 	priv->last_missed_beacons = 0;
4119 	priv->last_rx_packets = 0;
4120 	priv->last_tx_packets = 0;
4121 	priv->last_tx_failures = 0;
4122 
4123 	/* Firmware managed, reset only when NIC is restarted, so we have to
4124 	 * normalize on the current value */
4125 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4126 			&priv->last_rx_err, &len);
4127 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4128 			&priv->last_tx_failures, &len);
4129 
4130 	/* Driver managed, reset with each association */
4131 	priv->missed_adhoc_beacons = 0;
4132 	priv->missed_beacons = 0;
4133 	priv->tx_packets = 0;
4134 	priv->rx_packets = 0;
4135 
4136 }
4137 
4138 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4139 {
4140 	u32 i = 0x80000000;
4141 	u32 mask = priv->rates_mask;
4142 	/* If currently associated in B mode, restrict the maximum
4143 	 * rate match to B rates */
4144 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4145 		mask &= LIBIPW_CCK_RATES_MASK;
4146 
4147 	/* TODO: Verify that the rate is supported by the current rates
4148 	 * list. */
4149 
4150 	while (i && !(mask & i))
4151 		i >>= 1;
4152 	switch (i) {
4153 	case LIBIPW_CCK_RATE_1MB_MASK:
4154 		return 1000000;
4155 	case LIBIPW_CCK_RATE_2MB_MASK:
4156 		return 2000000;
4157 	case LIBIPW_CCK_RATE_5MB_MASK:
4158 		return 5500000;
4159 	case LIBIPW_OFDM_RATE_6MB_MASK:
4160 		return 6000000;
4161 	case LIBIPW_OFDM_RATE_9MB_MASK:
4162 		return 9000000;
4163 	case LIBIPW_CCK_RATE_11MB_MASK:
4164 		return 11000000;
4165 	case LIBIPW_OFDM_RATE_12MB_MASK:
4166 		return 12000000;
4167 	case LIBIPW_OFDM_RATE_18MB_MASK:
4168 		return 18000000;
4169 	case LIBIPW_OFDM_RATE_24MB_MASK:
4170 		return 24000000;
4171 	case LIBIPW_OFDM_RATE_36MB_MASK:
4172 		return 36000000;
4173 	case LIBIPW_OFDM_RATE_48MB_MASK:
4174 		return 48000000;
4175 	case LIBIPW_OFDM_RATE_54MB_MASK:
4176 		return 54000000;
4177 	}
4178 
4179 	if (priv->ieee->mode == IEEE_B)
4180 		return 11000000;
4181 	else
4182 		return 54000000;
4183 }
4184 
4185 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4186 {
4187 	u32 rate, len = sizeof(rate);
4188 	int err;
4189 
4190 	if (!(priv->status & STATUS_ASSOCIATED))
4191 		return 0;
4192 
4193 	if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4194 		err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4195 				      &len);
4196 		if (err) {
4197 			IPW_DEBUG_INFO("failed querying ordinals.\n");
4198 			return 0;
4199 		}
4200 	} else
4201 		return ipw_get_max_rate(priv);
4202 
4203 	switch (rate) {
4204 	case IPW_TX_RATE_1MB:
4205 		return 1000000;
4206 	case IPW_TX_RATE_2MB:
4207 		return 2000000;
4208 	case IPW_TX_RATE_5MB:
4209 		return 5500000;
4210 	case IPW_TX_RATE_6MB:
4211 		return 6000000;
4212 	case IPW_TX_RATE_9MB:
4213 		return 9000000;
4214 	case IPW_TX_RATE_11MB:
4215 		return 11000000;
4216 	case IPW_TX_RATE_12MB:
4217 		return 12000000;
4218 	case IPW_TX_RATE_18MB:
4219 		return 18000000;
4220 	case IPW_TX_RATE_24MB:
4221 		return 24000000;
4222 	case IPW_TX_RATE_36MB:
4223 		return 36000000;
4224 	case IPW_TX_RATE_48MB:
4225 		return 48000000;
4226 	case IPW_TX_RATE_54MB:
4227 		return 54000000;
4228 	}
4229 
4230 	return 0;
4231 }
4232 
4233 #define IPW_STATS_INTERVAL (2 * HZ)
4234 static void ipw_gather_stats(struct ipw_priv *priv)
4235 {
4236 	u32 rx_err, rx_err_delta, rx_packets_delta;
4237 	u32 tx_failures, tx_failures_delta, tx_packets_delta;
4238 	u32 missed_beacons_percent, missed_beacons_delta;
4239 	u32 quality = 0;
4240 	u32 len = sizeof(u32);
4241 	s16 rssi;
4242 	u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4243 	    rate_quality;
4244 	u32 max_rate;
4245 
4246 	if (!(priv->status & STATUS_ASSOCIATED)) {
4247 		priv->quality = 0;
4248 		return;
4249 	}
4250 
4251 	/* Update the statistics */
4252 	ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4253 			&priv->missed_beacons, &len);
4254 	missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4255 	priv->last_missed_beacons = priv->missed_beacons;
4256 	if (priv->assoc_request.beacon_interval) {
4257 		missed_beacons_percent = missed_beacons_delta *
4258 		    (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4259 		    (IPW_STATS_INTERVAL * 10);
4260 	} else {
4261 		missed_beacons_percent = 0;
4262 	}
4263 	average_add(&priv->average_missed_beacons, missed_beacons_percent);
4264 
4265 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4266 	rx_err_delta = rx_err - priv->last_rx_err;
4267 	priv->last_rx_err = rx_err;
4268 
4269 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4270 	tx_failures_delta = tx_failures - priv->last_tx_failures;
4271 	priv->last_tx_failures = tx_failures;
4272 
4273 	rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4274 	priv->last_rx_packets = priv->rx_packets;
4275 
4276 	tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4277 	priv->last_tx_packets = priv->tx_packets;
4278 
4279 	/* Calculate quality based on the following:
4280 	 *
4281 	 * Missed beacon: 100% = 0, 0% = 70% missed
4282 	 * Rate: 60% = 1Mbs, 100% = Max
4283 	 * Rx and Tx errors represent a straight % of total Rx/Tx
4284 	 * RSSI: 100% = > -50,  0% = < -80
4285 	 * Rx errors: 100% = 0, 0% = 50% missed
4286 	 *
4287 	 * The lowest computed quality is used.
4288 	 *
4289 	 */
4290 #define BEACON_THRESHOLD 5
4291 	beacon_quality = 100 - missed_beacons_percent;
4292 	if (beacon_quality < BEACON_THRESHOLD)
4293 		beacon_quality = 0;
4294 	else
4295 		beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4296 		    (100 - BEACON_THRESHOLD);
4297 	IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4298 			beacon_quality, missed_beacons_percent);
4299 
4300 	priv->last_rate = ipw_get_current_rate(priv);
4301 	max_rate = ipw_get_max_rate(priv);
4302 	rate_quality = priv->last_rate * 40 / max_rate + 60;
4303 	IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4304 			rate_quality, priv->last_rate / 1000000);
4305 
4306 	if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4307 		rx_quality = 100 - (rx_err_delta * 100) /
4308 		    (rx_packets_delta + rx_err_delta);
4309 	else
4310 		rx_quality = 100;
4311 	IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4312 			rx_quality, rx_err_delta, rx_packets_delta);
4313 
4314 	if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4315 		tx_quality = 100 - (tx_failures_delta * 100) /
4316 		    (tx_packets_delta + tx_failures_delta);
4317 	else
4318 		tx_quality = 100;
4319 	IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4320 			tx_quality, tx_failures_delta, tx_packets_delta);
4321 
4322 	rssi = priv->exp_avg_rssi;
4323 	signal_quality =
4324 	    (100 *
4325 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4326 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4327 	     (priv->ieee->perfect_rssi - rssi) *
4328 	     (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4329 	      62 * (priv->ieee->perfect_rssi - rssi))) /
4330 	    ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4331 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4332 	if (signal_quality > 100)
4333 		signal_quality = 100;
4334 	else if (signal_quality < 1)
4335 		signal_quality = 0;
4336 
4337 	IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4338 			signal_quality, rssi);
4339 
4340 	quality = min(rx_quality, signal_quality);
4341 	quality = min(tx_quality, quality);
4342 	quality = min(rate_quality, quality);
4343 	quality = min(beacon_quality, quality);
4344 	if (quality == beacon_quality)
4345 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4346 				quality);
4347 	if (quality == rate_quality)
4348 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4349 				quality);
4350 	if (quality == tx_quality)
4351 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4352 				quality);
4353 	if (quality == rx_quality)
4354 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4355 				quality);
4356 	if (quality == signal_quality)
4357 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4358 				quality);
4359 
4360 	priv->quality = quality;
4361 
4362 	schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4363 }
4364 
4365 static void ipw_bg_gather_stats(struct work_struct *work)
4366 {
4367 	struct ipw_priv *priv =
4368 		container_of(work, struct ipw_priv, gather_stats.work);
4369 	mutex_lock(&priv->mutex);
4370 	ipw_gather_stats(priv);
4371 	mutex_unlock(&priv->mutex);
4372 }
4373 
4374 /* Missed beacon behavior:
4375  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4376  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4377  * Above disassociate threshold, give up and stop scanning.
4378  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4379 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4380 					    int missed_count)
4381 {
4382 	priv->notif_missed_beacons = missed_count;
4383 
4384 	if (missed_count > priv->disassociate_threshold &&
4385 	    priv->status & STATUS_ASSOCIATED) {
4386 		/* If associated and we've hit the missed
4387 		 * beacon threshold, disassociate, turn
4388 		 * off roaming, and abort any active scans */
4389 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4390 			  IPW_DL_STATE | IPW_DL_ASSOC,
4391 			  "Missed beacon: %d - disassociate\n", missed_count);
4392 		priv->status &= ~STATUS_ROAMING;
4393 		if (priv->status & STATUS_SCANNING) {
4394 			IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4395 				  IPW_DL_STATE,
4396 				  "Aborting scan with missed beacon.\n");
4397 			schedule_work(&priv->abort_scan);
4398 		}
4399 
4400 		schedule_work(&priv->disassociate);
4401 		return;
4402 	}
4403 
4404 	if (priv->status & STATUS_ROAMING) {
4405 		/* If we are currently roaming, then just
4406 		 * print a debug statement... */
4407 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4408 			  "Missed beacon: %d - roam in progress\n",
4409 			  missed_count);
4410 		return;
4411 	}
4412 
4413 	if (roaming &&
4414 	    (missed_count > priv->roaming_threshold &&
4415 	     missed_count <= priv->disassociate_threshold)) {
4416 		/* If we are not already roaming, set the ROAM
4417 		 * bit in the status and kick off a scan.
4418 		 * This can happen several times before we reach
4419 		 * disassociate_threshold. */
4420 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4421 			  "Missed beacon: %d - initiate "
4422 			  "roaming\n", missed_count);
4423 		if (!(priv->status & STATUS_ROAMING)) {
4424 			priv->status |= STATUS_ROAMING;
4425 			if (!(priv->status & STATUS_SCANNING))
4426 				schedule_delayed_work(&priv->request_scan, 0);
4427 		}
4428 		return;
4429 	}
4430 
4431 	if (priv->status & STATUS_SCANNING &&
4432 	    missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4433 		/* Stop scan to keep fw from getting
4434 		 * stuck (only if we aren't roaming --
4435 		 * otherwise we'll never scan more than 2 or 3
4436 		 * channels..) */
4437 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4438 			  "Aborting scan with missed beacon.\n");
4439 		schedule_work(&priv->abort_scan);
4440 	}
4441 
4442 	IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4443 }
4444 
4445 static void ipw_scan_event(struct work_struct *work)
4446 {
4447 	union iwreq_data wrqu;
4448 
4449 	struct ipw_priv *priv =
4450 		container_of(work, struct ipw_priv, scan_event.work);
4451 
4452 	wrqu.data.length = 0;
4453 	wrqu.data.flags = 0;
4454 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4455 }
4456 
4457 static void handle_scan_event(struct ipw_priv *priv)
4458 {
4459 	/* Only userspace-requested scan completion events go out immediately */
4460 	if (!priv->user_requested_scan) {
4461 		schedule_delayed_work(&priv->scan_event,
4462 				      round_jiffies_relative(msecs_to_jiffies(4000)));
4463 	} else {
4464 		priv->user_requested_scan = 0;
4465 		mod_delayed_work(system_wq, &priv->scan_event, 0);
4466 	}
4467 }
4468 
4469 /**
4470  * Handle host notification packet.
4471  * Called from interrupt routine
4472  */
4473 static void ipw_rx_notification(struct ipw_priv *priv,
4474 				       struct ipw_rx_notification *notif)
4475 {
4476 	u16 size = le16_to_cpu(notif->size);
4477 
4478 	IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4479 
4480 	switch (notif->subtype) {
4481 	case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4482 			struct notif_association *assoc = &notif->u.assoc;
4483 
4484 			switch (assoc->state) {
4485 			case CMAS_ASSOCIATED:{
4486 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4487 						  IPW_DL_ASSOC,
4488 						  "associated: '%*pE' %pM\n",
4489 						  priv->essid_len, priv->essid,
4490 						  priv->bssid);
4491 
4492 					switch (priv->ieee->iw_mode) {
4493 					case IW_MODE_INFRA:
4494 						memcpy(priv->ieee->bssid,
4495 						       priv->bssid, ETH_ALEN);
4496 						break;
4497 
4498 					case IW_MODE_ADHOC:
4499 						memcpy(priv->ieee->bssid,
4500 						       priv->bssid, ETH_ALEN);
4501 
4502 						/* clear out the station table */
4503 						priv->num_stations = 0;
4504 
4505 						IPW_DEBUG_ASSOC
4506 						    ("queueing adhoc check\n");
4507 						schedule_delayed_work(
4508 							&priv->adhoc_check,
4509 							le16_to_cpu(priv->
4510 							assoc_request.
4511 							beacon_interval));
4512 						break;
4513 					}
4514 
4515 					priv->status &= ~STATUS_ASSOCIATING;
4516 					priv->status |= STATUS_ASSOCIATED;
4517 					schedule_work(&priv->system_config);
4518 
4519 #ifdef CONFIG_IPW2200_QOS
4520 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4521 			 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4522 					if ((priv->status & STATUS_AUTH) &&
4523 					    (IPW_GET_PACKET_STYPE(&notif->u.raw)
4524 					     == IEEE80211_STYPE_ASSOC_RESP)) {
4525 						if ((sizeof
4526 						     (struct
4527 						      libipw_assoc_response)
4528 						     <= size)
4529 						    && (size <= 2314)) {
4530 							struct
4531 							libipw_rx_stats
4532 							    stats = {
4533 								.len = size - 1,
4534 							};
4535 
4536 							IPW_DEBUG_QOS
4537 							    ("QoS Associate "
4538 							     "size %d\n", size);
4539 							libipw_rx_mgt(priv->
4540 									 ieee,
4541 									 (struct
4542 									  libipw_hdr_4addr
4543 									  *)
4544 									 &notif->u.raw, &stats);
4545 						}
4546 					}
4547 #endif
4548 
4549 					schedule_work(&priv->link_up);
4550 
4551 					break;
4552 				}
4553 
4554 			case CMAS_AUTHENTICATED:{
4555 					if (priv->
4556 					    status & (STATUS_ASSOCIATED |
4557 						      STATUS_AUTH)) {
4558 						struct notif_authenticate *auth
4559 						    = &notif->u.auth;
4560 						IPW_DEBUG(IPW_DL_NOTIF |
4561 							  IPW_DL_STATE |
4562 							  IPW_DL_ASSOC,
4563 							  "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4564 							  priv->essid_len,
4565 							  priv->essid,
4566 							  priv->bssid,
4567 							  le16_to_cpu(auth->status),
4568 							  ipw_get_status_code
4569 							  (le16_to_cpu
4570 							   (auth->status)));
4571 
4572 						priv->status &=
4573 						    ~(STATUS_ASSOCIATING |
4574 						      STATUS_AUTH |
4575 						      STATUS_ASSOCIATED);
4576 
4577 						schedule_work(&priv->link_down);
4578 						break;
4579 					}
4580 
4581 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4582 						  IPW_DL_ASSOC,
4583 						  "authenticated: '%*pE' %pM\n",
4584 						  priv->essid_len, priv->essid,
4585 						  priv->bssid);
4586 					break;
4587 				}
4588 
4589 			case CMAS_INIT:{
4590 					if (priv->status & STATUS_AUTH) {
4591 						struct
4592 						    libipw_assoc_response
4593 						*resp;
4594 						resp =
4595 						    (struct
4596 						     libipw_assoc_response
4597 						     *)&notif->u.raw;
4598 						IPW_DEBUG(IPW_DL_NOTIF |
4599 							  IPW_DL_STATE |
4600 							  IPW_DL_ASSOC,
4601 							  "association failed (0x%04X): %s\n",
4602 							  le16_to_cpu(resp->status),
4603 							  ipw_get_status_code
4604 							  (le16_to_cpu
4605 							   (resp->status)));
4606 					}
4607 
4608 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4609 						  IPW_DL_ASSOC,
4610 						  "disassociated: '%*pE' %pM\n",
4611 						  priv->essid_len, priv->essid,
4612 						  priv->bssid);
4613 
4614 					priv->status &=
4615 					    ~(STATUS_DISASSOCIATING |
4616 					      STATUS_ASSOCIATING |
4617 					      STATUS_ASSOCIATED | STATUS_AUTH);
4618 					if (priv->assoc_network
4619 					    && (priv->assoc_network->
4620 						capability &
4621 						WLAN_CAPABILITY_IBSS))
4622 						ipw_remove_current_network
4623 						    (priv);
4624 
4625 					schedule_work(&priv->link_down);
4626 
4627 					break;
4628 				}
4629 
4630 			case CMAS_RX_ASSOC_RESP:
4631 				break;
4632 
4633 			default:
4634 				IPW_ERROR("assoc: unknown (%d)\n",
4635 					  assoc->state);
4636 				break;
4637 			}
4638 
4639 			break;
4640 		}
4641 
4642 	case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4643 			struct notif_authenticate *auth = &notif->u.auth;
4644 			switch (auth->state) {
4645 			case CMAS_AUTHENTICATED:
4646 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4647 					  "authenticated: '%*pE' %pM\n",
4648 					  priv->essid_len, priv->essid,
4649 					  priv->bssid);
4650 				priv->status |= STATUS_AUTH;
4651 				break;
4652 
4653 			case CMAS_INIT:
4654 				if (priv->status & STATUS_AUTH) {
4655 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4656 						  IPW_DL_ASSOC,
4657 						  "authentication failed (0x%04X): %s\n",
4658 						  le16_to_cpu(auth->status),
4659 						  ipw_get_status_code(le16_to_cpu
4660 								      (auth->
4661 								       status)));
4662 				}
4663 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4664 					  IPW_DL_ASSOC,
4665 					  "deauthenticated: '%*pE' %pM\n",
4666 					  priv->essid_len, priv->essid,
4667 					  priv->bssid);
4668 
4669 				priv->status &= ~(STATUS_ASSOCIATING |
4670 						  STATUS_AUTH |
4671 						  STATUS_ASSOCIATED);
4672 
4673 				schedule_work(&priv->link_down);
4674 				break;
4675 
4676 			case CMAS_TX_AUTH_SEQ_1:
4677 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4678 					  IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4679 				break;
4680 			case CMAS_RX_AUTH_SEQ_2:
4681 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4682 					  IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4683 				break;
4684 			case CMAS_AUTH_SEQ_1_PASS:
4685 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4686 					  IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4687 				break;
4688 			case CMAS_AUTH_SEQ_1_FAIL:
4689 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4690 					  IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4691 				break;
4692 			case CMAS_TX_AUTH_SEQ_3:
4693 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4694 					  IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4695 				break;
4696 			case CMAS_RX_AUTH_SEQ_4:
4697 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4698 					  IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4699 				break;
4700 			case CMAS_AUTH_SEQ_2_PASS:
4701 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4702 					  IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4703 				break;
4704 			case CMAS_AUTH_SEQ_2_FAIL:
4705 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4706 					  IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4707 				break;
4708 			case CMAS_TX_ASSOC:
4709 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4710 					  IPW_DL_ASSOC, "TX_ASSOC\n");
4711 				break;
4712 			case CMAS_RX_ASSOC_RESP:
4713 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4714 					  IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4715 
4716 				break;
4717 			case CMAS_ASSOCIATED:
4718 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4719 					  IPW_DL_ASSOC, "ASSOCIATED\n");
4720 				break;
4721 			default:
4722 				IPW_DEBUG_NOTIF("auth: failure - %d\n",
4723 						auth->state);
4724 				break;
4725 			}
4726 			break;
4727 		}
4728 
4729 	case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4730 			struct notif_channel_result *x =
4731 			    &notif->u.channel_result;
4732 
4733 			if (size == sizeof(*x)) {
4734 				IPW_DEBUG_SCAN("Scan result for channel %d\n",
4735 					       x->channel_num);
4736 			} else {
4737 				IPW_DEBUG_SCAN("Scan result of wrong size %d "
4738 					       "(should be %zd)\n",
4739 					       size, sizeof(*x));
4740 			}
4741 			break;
4742 		}
4743 
4744 	case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4745 			struct notif_scan_complete *x = &notif->u.scan_complete;
4746 			if (size == sizeof(*x)) {
4747 				IPW_DEBUG_SCAN
4748 				    ("Scan completed: type %d, %d channels, "
4749 				     "%d status\n", x->scan_type,
4750 				     x->num_channels, x->status);
4751 			} else {
4752 				IPW_ERROR("Scan completed of wrong size %d "
4753 					  "(should be %zd)\n",
4754 					  size, sizeof(*x));
4755 			}
4756 
4757 			priv->status &=
4758 			    ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4759 
4760 			wake_up_interruptible(&priv->wait_state);
4761 			cancel_delayed_work(&priv->scan_check);
4762 
4763 			if (priv->status & STATUS_EXIT_PENDING)
4764 				break;
4765 
4766 			priv->ieee->scans++;
4767 
4768 #ifdef CONFIG_IPW2200_MONITOR
4769 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4770 				priv->status |= STATUS_SCAN_FORCED;
4771 				schedule_delayed_work(&priv->request_scan, 0);
4772 				break;
4773 			}
4774 			priv->status &= ~STATUS_SCAN_FORCED;
4775 #endif				/* CONFIG_IPW2200_MONITOR */
4776 
4777 			/* Do queued direct scans first */
4778 			if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4779 				schedule_delayed_work(&priv->request_direct_scan, 0);
4780 
4781 			if (!(priv->status & (STATUS_ASSOCIATED |
4782 					      STATUS_ASSOCIATING |
4783 					      STATUS_ROAMING |
4784 					      STATUS_DISASSOCIATING)))
4785 				schedule_work(&priv->associate);
4786 			else if (priv->status & STATUS_ROAMING) {
4787 				if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4788 					/* If a scan completed and we are in roam mode, then
4789 					 * the scan that completed was the one requested as a
4790 					 * result of entering roam... so, schedule the
4791 					 * roam work */
4792 					schedule_work(&priv->roam);
4793 				else
4794 					/* Don't schedule if we aborted the scan */
4795 					priv->status &= ~STATUS_ROAMING;
4796 			} else if (priv->status & STATUS_SCAN_PENDING)
4797 				schedule_delayed_work(&priv->request_scan, 0);
4798 			else if (priv->config & CFG_BACKGROUND_SCAN
4799 				 && priv->status & STATUS_ASSOCIATED)
4800 				schedule_delayed_work(&priv->request_scan,
4801 						      round_jiffies_relative(HZ));
4802 
4803 			/* Send an empty event to user space.
4804 			 * We don't send the received data on the event because
4805 			 * it would require us to do complex transcoding, and
4806 			 * we want to minimise the work done in the irq handler
4807 			 * Use a request to extract the data.
4808 			 * Also, we generate this even for any scan, regardless
4809 			 * on how the scan was initiated. User space can just
4810 			 * sync on periodic scan to get fresh data...
4811 			 * Jean II */
4812 			if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4813 				handle_scan_event(priv);
4814 			break;
4815 		}
4816 
4817 	case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4818 			struct notif_frag_length *x = &notif->u.frag_len;
4819 
4820 			if (size == sizeof(*x))
4821 				IPW_ERROR("Frag length: %d\n",
4822 					  le16_to_cpu(x->frag_length));
4823 			else
4824 				IPW_ERROR("Frag length of wrong size %d "
4825 					  "(should be %zd)\n",
4826 					  size, sizeof(*x));
4827 			break;
4828 		}
4829 
4830 	case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4831 			struct notif_link_deterioration *x =
4832 			    &notif->u.link_deterioration;
4833 
4834 			if (size == sizeof(*x)) {
4835 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4836 					"link deterioration: type %d, cnt %d\n",
4837 					x->silence_notification_type,
4838 					x->silence_count);
4839 				memcpy(&priv->last_link_deterioration, x,
4840 				       sizeof(*x));
4841 			} else {
4842 				IPW_ERROR("Link Deterioration of wrong size %d "
4843 					  "(should be %zd)\n",
4844 					  size, sizeof(*x));
4845 			}
4846 			break;
4847 		}
4848 
4849 	case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4850 			IPW_ERROR("Dino config\n");
4851 			if (priv->hcmd
4852 			    && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4853 				IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4854 
4855 			break;
4856 		}
4857 
4858 	case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4859 			struct notif_beacon_state *x = &notif->u.beacon_state;
4860 			if (size != sizeof(*x)) {
4861 				IPW_ERROR
4862 				    ("Beacon state of wrong size %d (should "
4863 				     "be %zd)\n", size, sizeof(*x));
4864 				break;
4865 			}
4866 
4867 			if (le32_to_cpu(x->state) ==
4868 			    HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4869 				ipw_handle_missed_beacon(priv,
4870 							 le32_to_cpu(x->
4871 								     number));
4872 
4873 			break;
4874 		}
4875 
4876 	case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4877 			struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4878 			if (size == sizeof(*x)) {
4879 				IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4880 					  "0x%02x station %d\n",
4881 					  x->key_state, x->security_type,
4882 					  x->station_index);
4883 				break;
4884 			}
4885 
4886 			IPW_ERROR
4887 			    ("TGi Tx Key of wrong size %d (should be %zd)\n",
4888 			     size, sizeof(*x));
4889 			break;
4890 		}
4891 
4892 	case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4893 			struct notif_calibration *x = &notif->u.calibration;
4894 
4895 			if (size == sizeof(*x)) {
4896 				memcpy(&priv->calib, x, sizeof(*x));
4897 				IPW_DEBUG_INFO("TODO: Calibration\n");
4898 				break;
4899 			}
4900 
4901 			IPW_ERROR
4902 			    ("Calibration of wrong size %d (should be %zd)\n",
4903 			     size, sizeof(*x));
4904 			break;
4905 		}
4906 
4907 	case HOST_NOTIFICATION_NOISE_STATS:{
4908 			if (size == sizeof(u32)) {
4909 				priv->exp_avg_noise =
4910 				    exponential_average(priv->exp_avg_noise,
4911 				    (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4912 				    DEPTH_NOISE);
4913 				break;
4914 			}
4915 
4916 			IPW_ERROR
4917 			    ("Noise stat is wrong size %d (should be %zd)\n",
4918 			     size, sizeof(u32));
4919 			break;
4920 		}
4921 
4922 	default:
4923 		IPW_DEBUG_NOTIF("Unknown notification: "
4924 				"subtype=%d,flags=0x%2x,size=%d\n",
4925 				notif->subtype, notif->flags, size);
4926 	}
4927 }
4928 
4929 /**
4930  * Destroys all DMA structures and initialise them again
4931  *
4932  * @param priv
4933  * @return error code
4934  */
4935 static int ipw_queue_reset(struct ipw_priv *priv)
4936 {
4937 	int rc = 0;
4938 	/** @todo customize queue sizes */
4939 	int nTx = 64, nTxCmd = 8;
4940 	ipw_tx_queue_free(priv);
4941 	/* Tx CMD queue */
4942 	rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4943 			       IPW_TX_CMD_QUEUE_READ_INDEX,
4944 			       IPW_TX_CMD_QUEUE_WRITE_INDEX,
4945 			       IPW_TX_CMD_QUEUE_BD_BASE,
4946 			       IPW_TX_CMD_QUEUE_BD_SIZE);
4947 	if (rc) {
4948 		IPW_ERROR("Tx Cmd queue init failed\n");
4949 		goto error;
4950 	}
4951 	/* Tx queue(s) */
4952 	rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4953 			       IPW_TX_QUEUE_0_READ_INDEX,
4954 			       IPW_TX_QUEUE_0_WRITE_INDEX,
4955 			       IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4956 	if (rc) {
4957 		IPW_ERROR("Tx 0 queue init failed\n");
4958 		goto error;
4959 	}
4960 	rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4961 			       IPW_TX_QUEUE_1_READ_INDEX,
4962 			       IPW_TX_QUEUE_1_WRITE_INDEX,
4963 			       IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4964 	if (rc) {
4965 		IPW_ERROR("Tx 1 queue init failed\n");
4966 		goto error;
4967 	}
4968 	rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4969 			       IPW_TX_QUEUE_2_READ_INDEX,
4970 			       IPW_TX_QUEUE_2_WRITE_INDEX,
4971 			       IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4972 	if (rc) {
4973 		IPW_ERROR("Tx 2 queue init failed\n");
4974 		goto error;
4975 	}
4976 	rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4977 			       IPW_TX_QUEUE_3_READ_INDEX,
4978 			       IPW_TX_QUEUE_3_WRITE_INDEX,
4979 			       IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4980 	if (rc) {
4981 		IPW_ERROR("Tx 3 queue init failed\n");
4982 		goto error;
4983 	}
4984 	/* statistics */
4985 	priv->rx_bufs_min = 0;
4986 	priv->rx_pend_max = 0;
4987 	return rc;
4988 
4989       error:
4990 	ipw_tx_queue_free(priv);
4991 	return rc;
4992 }
4993 
4994 /**
4995  * Reclaim Tx queue entries no more used by NIC.
4996  *
4997  * When FW advances 'R' index, all entries between old and
4998  * new 'R' index need to be reclaimed. As result, some free space
4999  * forms. If there is enough free space (> low mark), wake Tx queue.
5000  *
5001  * @note Need to protect against garbage in 'R' index
5002  * @param priv
5003  * @param txq
5004  * @param qindex
5005  * @return Number of used entries remains in the queue
5006  */
5007 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5008 				struct clx2_tx_queue *txq, int qindex)
5009 {
5010 	u32 hw_tail;
5011 	int used;
5012 	struct clx2_queue *q = &txq->q;
5013 
5014 	hw_tail = ipw_read32(priv, q->reg_r);
5015 	if (hw_tail >= q->n_bd) {
5016 		IPW_ERROR
5017 		    ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5018 		     hw_tail, q->n_bd);
5019 		goto done;
5020 	}
5021 	for (; q->last_used != hw_tail;
5022 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5023 		ipw_queue_tx_free_tfd(priv, txq);
5024 		priv->tx_packets++;
5025 	}
5026       done:
5027 	if ((ipw_tx_queue_space(q) > q->low_mark) &&
5028 	    (qindex >= 0))
5029 		netif_wake_queue(priv->net_dev);
5030 	used = q->first_empty - q->last_used;
5031 	if (used < 0)
5032 		used += q->n_bd;
5033 
5034 	return used;
5035 }
5036 
5037 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5038 			     int len, int sync)
5039 {
5040 	struct clx2_tx_queue *txq = &priv->txq_cmd;
5041 	struct clx2_queue *q = &txq->q;
5042 	struct tfd_frame *tfd;
5043 
5044 	if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5045 		IPW_ERROR("No space for Tx\n");
5046 		return -EBUSY;
5047 	}
5048 
5049 	tfd = &txq->bd[q->first_empty];
5050 	txq->txb[q->first_empty] = NULL;
5051 
5052 	memset(tfd, 0, sizeof(*tfd));
5053 	tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5054 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5055 	priv->hcmd_seq++;
5056 	tfd->u.cmd.index = hcmd;
5057 	tfd->u.cmd.length = len;
5058 	memcpy(tfd->u.cmd.payload, buf, len);
5059 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5060 	ipw_write32(priv, q->reg_w, q->first_empty);
5061 	_ipw_read32(priv, 0x90);
5062 
5063 	return 0;
5064 }
5065 
5066 /*
5067  * Rx theory of operation
5068  *
5069  * The host allocates 32 DMA target addresses and passes the host address
5070  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5071  * 0 to 31
5072  *
5073  * Rx Queue Indexes
5074  * The host/firmware share two index registers for managing the Rx buffers.
5075  *
5076  * The READ index maps to the first position that the firmware may be writing
5077  * to -- the driver can read up to (but not including) this position and get
5078  * good data.
5079  * The READ index is managed by the firmware once the card is enabled.
5080  *
5081  * The WRITE index maps to the last position the driver has read from -- the
5082  * position preceding WRITE is the last slot the firmware can place a packet.
5083  *
5084  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5085  * WRITE = READ.
5086  *
5087  * During initialization the host sets up the READ queue position to the first
5088  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5089  *
5090  * When the firmware places a packet in a buffer it will advance the READ index
5091  * and fire the RX interrupt.  The driver can then query the READ index and
5092  * process as many packets as possible, moving the WRITE index forward as it
5093  * resets the Rx queue buffers with new memory.
5094  *
5095  * The management in the driver is as follows:
5096  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5097  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5098  *   to replensish the ipw->rxq->rx_free.
5099  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5100  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5101  *   'processed' and 'read' driver indexes as well)
5102  * + A received packet is processed and handed to the kernel network stack,
5103  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5104  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5105  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5106  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5107  *   were enough free buffers and RX_STALLED is set it is cleared.
5108  *
5109  *
5110  * Driver sequence:
5111  *
5112  * ipw_rx_queue_alloc()       Allocates rx_free
5113  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5114  *                            ipw_rx_queue_restock
5115  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5116  *                            queue, updates firmware pointers, and updates
5117  *                            the WRITE index.  If insufficient rx_free buffers
5118  *                            are available, schedules ipw_rx_queue_replenish
5119  *
5120  * -- enable interrupts --
5121  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5122  *                            READ INDEX, detaching the SKB from the pool.
5123  *                            Moves the packet buffer from queue to rx_used.
5124  *                            Calls ipw_rx_queue_restock to refill any empty
5125  *                            slots.
5126  * ...
5127  *
5128  */
5129 
5130 /*
5131  * If there are slots in the RX queue that  need to be restocked,
5132  * and we have free pre-allocated buffers, fill the ranks as much
5133  * as we can pulling from rx_free.
5134  *
5135  * This moves the 'write' index forward to catch up with 'processed', and
5136  * also updates the memory address in the firmware to reference the new
5137  * target buffer.
5138  */
5139 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5140 {
5141 	struct ipw_rx_queue *rxq = priv->rxq;
5142 	struct list_head *element;
5143 	struct ipw_rx_mem_buffer *rxb;
5144 	unsigned long flags;
5145 	int write;
5146 
5147 	spin_lock_irqsave(&rxq->lock, flags);
5148 	write = rxq->write;
5149 	while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5150 		element = rxq->rx_free.next;
5151 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5152 		list_del(element);
5153 
5154 		ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5155 			    rxb->dma_addr);
5156 		rxq->queue[rxq->write] = rxb;
5157 		rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5158 		rxq->free_count--;
5159 	}
5160 	spin_unlock_irqrestore(&rxq->lock, flags);
5161 
5162 	/* If the pre-allocated buffer pool is dropping low, schedule to
5163 	 * refill it */
5164 	if (rxq->free_count <= RX_LOW_WATERMARK)
5165 		schedule_work(&priv->rx_replenish);
5166 
5167 	/* If we've added more space for the firmware to place data, tell it */
5168 	if (write != rxq->write)
5169 		ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5170 }
5171 
5172 /*
5173  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5174  * Also restock the Rx queue via ipw_rx_queue_restock.
5175  *
5176  * This is called as a scheduled work item (except for during initialization)
5177  */
5178 static void ipw_rx_queue_replenish(void *data)
5179 {
5180 	struct ipw_priv *priv = data;
5181 	struct ipw_rx_queue *rxq = priv->rxq;
5182 	struct list_head *element;
5183 	struct ipw_rx_mem_buffer *rxb;
5184 	unsigned long flags;
5185 
5186 	spin_lock_irqsave(&rxq->lock, flags);
5187 	while (!list_empty(&rxq->rx_used)) {
5188 		element = rxq->rx_used.next;
5189 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5190 		rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5191 		if (!rxb->skb) {
5192 			printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5193 			       priv->net_dev->name);
5194 			/* We don't reschedule replenish work here -- we will
5195 			 * call the restock method and if it still needs
5196 			 * more buffers it will schedule replenish */
5197 			break;
5198 		}
5199 		list_del(element);
5200 
5201 		rxb->dma_addr =
5202 		    dma_map_single(&priv->pci_dev->dev, rxb->skb->data,
5203 				   IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5204 
5205 		list_add_tail(&rxb->list, &rxq->rx_free);
5206 		rxq->free_count++;
5207 	}
5208 	spin_unlock_irqrestore(&rxq->lock, flags);
5209 
5210 	ipw_rx_queue_restock(priv);
5211 }
5212 
5213 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5214 {
5215 	struct ipw_priv *priv =
5216 		container_of(work, struct ipw_priv, rx_replenish);
5217 	mutex_lock(&priv->mutex);
5218 	ipw_rx_queue_replenish(priv);
5219 	mutex_unlock(&priv->mutex);
5220 }
5221 
5222 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5223  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5224  * This free routine walks the list of POOL entries and if SKB is set to
5225  * non NULL it is unmapped and freed
5226  */
5227 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5228 {
5229 	int i;
5230 
5231 	if (!rxq)
5232 		return;
5233 
5234 	for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5235 		if (rxq->pool[i].skb != NULL) {
5236 			dma_unmap_single(&priv->pci_dev->dev,
5237 					 rxq->pool[i].dma_addr,
5238 					 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5239 			dev_kfree_skb(rxq->pool[i].skb);
5240 		}
5241 	}
5242 
5243 	kfree(rxq);
5244 }
5245 
5246 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5247 {
5248 	struct ipw_rx_queue *rxq;
5249 	int i;
5250 
5251 	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5252 	if (unlikely(!rxq)) {
5253 		IPW_ERROR("memory allocation failed\n");
5254 		return NULL;
5255 	}
5256 	spin_lock_init(&rxq->lock);
5257 	INIT_LIST_HEAD(&rxq->rx_free);
5258 	INIT_LIST_HEAD(&rxq->rx_used);
5259 
5260 	/* Fill the rx_used queue with _all_ of the Rx buffers */
5261 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5262 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5263 
5264 	/* Set us so that we have processed and used all buffers, but have
5265 	 * not restocked the Rx queue with fresh buffers */
5266 	rxq->read = rxq->write = 0;
5267 	rxq->free_count = 0;
5268 
5269 	return rxq;
5270 }
5271 
5272 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5273 {
5274 	rate &= ~LIBIPW_BASIC_RATE_MASK;
5275 	if (ieee_mode == IEEE_A) {
5276 		switch (rate) {
5277 		case LIBIPW_OFDM_RATE_6MB:
5278 			return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5279 			    1 : 0;
5280 		case LIBIPW_OFDM_RATE_9MB:
5281 			return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5282 			    1 : 0;
5283 		case LIBIPW_OFDM_RATE_12MB:
5284 			return priv->
5285 			    rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5286 		case LIBIPW_OFDM_RATE_18MB:
5287 			return priv->
5288 			    rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5289 		case LIBIPW_OFDM_RATE_24MB:
5290 			return priv->
5291 			    rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5292 		case LIBIPW_OFDM_RATE_36MB:
5293 			return priv->
5294 			    rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5295 		case LIBIPW_OFDM_RATE_48MB:
5296 			return priv->
5297 			    rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5298 		case LIBIPW_OFDM_RATE_54MB:
5299 			return priv->
5300 			    rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5301 		default:
5302 			return 0;
5303 		}
5304 	}
5305 
5306 	/* B and G mixed */
5307 	switch (rate) {
5308 	case LIBIPW_CCK_RATE_1MB:
5309 		return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5310 	case LIBIPW_CCK_RATE_2MB:
5311 		return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5312 	case LIBIPW_CCK_RATE_5MB:
5313 		return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5314 	case LIBIPW_CCK_RATE_11MB:
5315 		return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5316 	}
5317 
5318 	/* If we are limited to B modulations, bail at this point */
5319 	if (ieee_mode == IEEE_B)
5320 		return 0;
5321 
5322 	/* G */
5323 	switch (rate) {
5324 	case LIBIPW_OFDM_RATE_6MB:
5325 		return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5326 	case LIBIPW_OFDM_RATE_9MB:
5327 		return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5328 	case LIBIPW_OFDM_RATE_12MB:
5329 		return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5330 	case LIBIPW_OFDM_RATE_18MB:
5331 		return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5332 	case LIBIPW_OFDM_RATE_24MB:
5333 		return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5334 	case LIBIPW_OFDM_RATE_36MB:
5335 		return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5336 	case LIBIPW_OFDM_RATE_48MB:
5337 		return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5338 	case LIBIPW_OFDM_RATE_54MB:
5339 		return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5340 	}
5341 
5342 	return 0;
5343 }
5344 
5345 static int ipw_compatible_rates(struct ipw_priv *priv,
5346 				const struct libipw_network *network,
5347 				struct ipw_supported_rates *rates)
5348 {
5349 	int num_rates, i;
5350 
5351 	memset(rates, 0, sizeof(*rates));
5352 	num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5353 	rates->num_rates = 0;
5354 	for (i = 0; i < num_rates; i++) {
5355 		if (!ipw_is_rate_in_mask(priv, network->mode,
5356 					 network->rates[i])) {
5357 
5358 			if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5359 				IPW_DEBUG_SCAN("Adding masked mandatory "
5360 					       "rate %02X\n",
5361 					       network->rates[i]);
5362 				rates->supported_rates[rates->num_rates++] =
5363 				    network->rates[i];
5364 				continue;
5365 			}
5366 
5367 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5368 				       network->rates[i], priv->rates_mask);
5369 			continue;
5370 		}
5371 
5372 		rates->supported_rates[rates->num_rates++] = network->rates[i];
5373 	}
5374 
5375 	num_rates = min(network->rates_ex_len,
5376 			(u8) (IPW_MAX_RATES - num_rates));
5377 	for (i = 0; i < num_rates; i++) {
5378 		if (!ipw_is_rate_in_mask(priv, network->mode,
5379 					 network->rates_ex[i])) {
5380 			if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5381 				IPW_DEBUG_SCAN("Adding masked mandatory "
5382 					       "rate %02X\n",
5383 					       network->rates_ex[i]);
5384 				rates->supported_rates[rates->num_rates++] =
5385 				    network->rates[i];
5386 				continue;
5387 			}
5388 
5389 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5390 				       network->rates_ex[i], priv->rates_mask);
5391 			continue;
5392 		}
5393 
5394 		rates->supported_rates[rates->num_rates++] =
5395 		    network->rates_ex[i];
5396 	}
5397 
5398 	return 1;
5399 }
5400 
5401 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5402 				  const struct ipw_supported_rates *src)
5403 {
5404 	u8 i;
5405 	for (i = 0; i < src->num_rates; i++)
5406 		dest->supported_rates[i] = src->supported_rates[i];
5407 	dest->num_rates = src->num_rates;
5408 }
5409 
5410 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5411  * mask should ever be used -- right now all callers to add the scan rates are
5412  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5413 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5414 				   u8 modulation, u32 rate_mask)
5415 {
5416 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5417 	    LIBIPW_BASIC_RATE_MASK : 0;
5418 
5419 	if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5420 		rates->supported_rates[rates->num_rates++] =
5421 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5422 
5423 	if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5424 		rates->supported_rates[rates->num_rates++] =
5425 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5426 
5427 	if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5428 		rates->supported_rates[rates->num_rates++] = basic_mask |
5429 		    LIBIPW_CCK_RATE_5MB;
5430 
5431 	if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5432 		rates->supported_rates[rates->num_rates++] = basic_mask |
5433 		    LIBIPW_CCK_RATE_11MB;
5434 }
5435 
5436 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5437 				    u8 modulation, u32 rate_mask)
5438 {
5439 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5440 	    LIBIPW_BASIC_RATE_MASK : 0;
5441 
5442 	if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5443 		rates->supported_rates[rates->num_rates++] = basic_mask |
5444 		    LIBIPW_OFDM_RATE_6MB;
5445 
5446 	if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5447 		rates->supported_rates[rates->num_rates++] =
5448 		    LIBIPW_OFDM_RATE_9MB;
5449 
5450 	if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5451 		rates->supported_rates[rates->num_rates++] = basic_mask |
5452 		    LIBIPW_OFDM_RATE_12MB;
5453 
5454 	if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5455 		rates->supported_rates[rates->num_rates++] =
5456 		    LIBIPW_OFDM_RATE_18MB;
5457 
5458 	if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5459 		rates->supported_rates[rates->num_rates++] = basic_mask |
5460 		    LIBIPW_OFDM_RATE_24MB;
5461 
5462 	if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5463 		rates->supported_rates[rates->num_rates++] =
5464 		    LIBIPW_OFDM_RATE_36MB;
5465 
5466 	if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5467 		rates->supported_rates[rates->num_rates++] =
5468 		    LIBIPW_OFDM_RATE_48MB;
5469 
5470 	if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5471 		rates->supported_rates[rates->num_rates++] =
5472 		    LIBIPW_OFDM_RATE_54MB;
5473 }
5474 
5475 struct ipw_network_match {
5476 	struct libipw_network *network;
5477 	struct ipw_supported_rates rates;
5478 };
5479 
5480 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5481 				  struct ipw_network_match *match,
5482 				  struct libipw_network *network,
5483 				  int roaming)
5484 {
5485 	struct ipw_supported_rates rates;
5486 
5487 	/* Verify that this network's capability is compatible with the
5488 	 * current mode (AdHoc or Infrastructure) */
5489 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5490 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5491 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5492 				network->ssid_len, network->ssid,
5493 				network->bssid);
5494 		return 0;
5495 	}
5496 
5497 	if (unlikely(roaming)) {
5498 		/* If we are roaming, then ensure check if this is a valid
5499 		 * network to try and roam to */
5500 		if ((network->ssid_len != match->network->ssid_len) ||
5501 		    memcmp(network->ssid, match->network->ssid,
5502 			   network->ssid_len)) {
5503 			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5504 					network->ssid_len, network->ssid,
5505 					network->bssid);
5506 			return 0;
5507 		}
5508 	} else {
5509 		/* If an ESSID has been configured then compare the broadcast
5510 		 * ESSID to ours */
5511 		if ((priv->config & CFG_STATIC_ESSID) &&
5512 		    ((network->ssid_len != priv->essid_len) ||
5513 		     memcmp(network->ssid, priv->essid,
5514 			    min(network->ssid_len, priv->essid_len)))) {
5515 			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5516 					network->ssid_len, network->ssid,
5517 					network->bssid, priv->essid_len,
5518 					priv->essid);
5519 			return 0;
5520 		}
5521 	}
5522 
5523 	/* If the old network rate is better than this one, don't bother
5524 	 * testing everything else. */
5525 
5526 	if (network->time_stamp[0] < match->network->time_stamp[0]) {
5527 		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5528 				match->network->ssid_len, match->network->ssid);
5529 		return 0;
5530 	} else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5531 		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5532 				match->network->ssid_len, match->network->ssid);
5533 		return 0;
5534 	}
5535 
5536 	/* Now go through and see if the requested network is valid... */
5537 	if (priv->ieee->scan_age != 0 &&
5538 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5539 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5540 				network->ssid_len, network->ssid,
5541 				network->bssid,
5542 				jiffies_to_msecs(jiffies -
5543 						 network->last_scanned));
5544 		return 0;
5545 	}
5546 
5547 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5548 	    (network->channel != priv->channel)) {
5549 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5550 				network->ssid_len, network->ssid,
5551 				network->bssid,
5552 				network->channel, priv->channel);
5553 		return 0;
5554 	}
5555 
5556 	/* Verify privacy compatibility */
5557 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5558 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5559 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5560 				network->ssid_len, network->ssid,
5561 				network->bssid,
5562 				priv->
5563 				capability & CAP_PRIVACY_ON ? "on" : "off",
5564 				network->
5565 				capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5566 				"off");
5567 		return 0;
5568 	}
5569 
5570 	if (ether_addr_equal(network->bssid, priv->bssid)) {
5571 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5572 				network->ssid_len, network->ssid,
5573 				network->bssid, priv->bssid);
5574 		return 0;
5575 	}
5576 
5577 	/* Filter out any incompatible freq / mode combinations */
5578 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5579 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5580 				network->ssid_len, network->ssid,
5581 				network->bssid);
5582 		return 0;
5583 	}
5584 
5585 	/* Ensure that the rates supported by the driver are compatible with
5586 	 * this AP, including verification of basic rates (mandatory) */
5587 	if (!ipw_compatible_rates(priv, network, &rates)) {
5588 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5589 				network->ssid_len, network->ssid,
5590 				network->bssid);
5591 		return 0;
5592 	}
5593 
5594 	if (rates.num_rates == 0) {
5595 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5596 				network->ssid_len, network->ssid,
5597 				network->bssid);
5598 		return 0;
5599 	}
5600 
5601 	/* TODO: Perform any further minimal comparititive tests.  We do not
5602 	 * want to put too much policy logic here; intelligent scan selection
5603 	 * should occur within a generic IEEE 802.11 user space tool.  */
5604 
5605 	/* Set up 'new' AP to this network */
5606 	ipw_copy_rates(&match->rates, &rates);
5607 	match->network = network;
5608 	IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5609 			network->ssid_len, network->ssid, network->bssid);
5610 
5611 	return 1;
5612 }
5613 
5614 static void ipw_merge_adhoc_network(struct work_struct *work)
5615 {
5616 	struct ipw_priv *priv =
5617 		container_of(work, struct ipw_priv, merge_networks);
5618 	struct libipw_network *network = NULL;
5619 	struct ipw_network_match match = {
5620 		.network = priv->assoc_network
5621 	};
5622 
5623 	if ((priv->status & STATUS_ASSOCIATED) &&
5624 	    (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5625 		/* First pass through ROAM process -- look for a better
5626 		 * network */
5627 		unsigned long flags;
5628 
5629 		spin_lock_irqsave(&priv->ieee->lock, flags);
5630 		list_for_each_entry(network, &priv->ieee->network_list, list) {
5631 			if (network != priv->assoc_network)
5632 				ipw_find_adhoc_network(priv, &match, network,
5633 						       1);
5634 		}
5635 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
5636 
5637 		if (match.network == priv->assoc_network) {
5638 			IPW_DEBUG_MERGE("No better ADHOC in this network to "
5639 					"merge to.\n");
5640 			return;
5641 		}
5642 
5643 		mutex_lock(&priv->mutex);
5644 		if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5645 			IPW_DEBUG_MERGE("remove network %*pE\n",
5646 					priv->essid_len, priv->essid);
5647 			ipw_remove_current_network(priv);
5648 		}
5649 
5650 		ipw_disassociate(priv);
5651 		priv->assoc_network = match.network;
5652 		mutex_unlock(&priv->mutex);
5653 		return;
5654 	}
5655 }
5656 
5657 static int ipw_best_network(struct ipw_priv *priv,
5658 			    struct ipw_network_match *match,
5659 			    struct libipw_network *network, int roaming)
5660 {
5661 	struct ipw_supported_rates rates;
5662 
5663 	/* Verify that this network's capability is compatible with the
5664 	 * current mode (AdHoc or Infrastructure) */
5665 	if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5666 	     !(network->capability & WLAN_CAPABILITY_ESS)) ||
5667 	    (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5668 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5669 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5670 				network->ssid_len, network->ssid,
5671 				network->bssid);
5672 		return 0;
5673 	}
5674 
5675 	if (unlikely(roaming)) {
5676 		/* If we are roaming, then ensure check if this is a valid
5677 		 * network to try and roam to */
5678 		if ((network->ssid_len != match->network->ssid_len) ||
5679 		    memcmp(network->ssid, match->network->ssid,
5680 			   network->ssid_len)) {
5681 			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5682 					network->ssid_len, network->ssid,
5683 					network->bssid);
5684 			return 0;
5685 		}
5686 	} else {
5687 		/* If an ESSID has been configured then compare the broadcast
5688 		 * ESSID to ours */
5689 		if ((priv->config & CFG_STATIC_ESSID) &&
5690 		    ((network->ssid_len != priv->essid_len) ||
5691 		     memcmp(network->ssid, priv->essid,
5692 			    min(network->ssid_len, priv->essid_len)))) {
5693 			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5694 					network->ssid_len, network->ssid,
5695 					network->bssid, priv->essid_len,
5696 					priv->essid);
5697 			return 0;
5698 		}
5699 	}
5700 
5701 	/* If the old network rate is better than this one, don't bother
5702 	 * testing everything else. */
5703 	if (match->network && match->network->stats.rssi > network->stats.rssi) {
5704 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5705 				network->ssid_len, network->ssid,
5706 				network->bssid, match->network->ssid_len,
5707 				match->network->ssid, match->network->bssid);
5708 		return 0;
5709 	}
5710 
5711 	/* If this network has already had an association attempt within the
5712 	 * last 3 seconds, do not try and associate again... */
5713 	if (network->last_associate &&
5714 	    time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5715 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5716 				network->ssid_len, network->ssid,
5717 				network->bssid,
5718 				jiffies_to_msecs(jiffies -
5719 						 network->last_associate));
5720 		return 0;
5721 	}
5722 
5723 	/* Now go through and see if the requested network is valid... */
5724 	if (priv->ieee->scan_age != 0 &&
5725 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5726 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5727 				network->ssid_len, network->ssid,
5728 				network->bssid,
5729 				jiffies_to_msecs(jiffies -
5730 						 network->last_scanned));
5731 		return 0;
5732 	}
5733 
5734 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5735 	    (network->channel != priv->channel)) {
5736 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5737 				network->ssid_len, network->ssid,
5738 				network->bssid,
5739 				network->channel, priv->channel);
5740 		return 0;
5741 	}
5742 
5743 	/* Verify privacy compatibility */
5744 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5745 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5746 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5747 				network->ssid_len, network->ssid,
5748 				network->bssid,
5749 				priv->capability & CAP_PRIVACY_ON ? "on" :
5750 				"off",
5751 				network->capability &
5752 				WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5753 		return 0;
5754 	}
5755 
5756 	if ((priv->config & CFG_STATIC_BSSID) &&
5757 	    !ether_addr_equal(network->bssid, priv->bssid)) {
5758 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5759 				network->ssid_len, network->ssid,
5760 				network->bssid, priv->bssid);
5761 		return 0;
5762 	}
5763 
5764 	/* Filter out any incompatible freq / mode combinations */
5765 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5766 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5767 				network->ssid_len, network->ssid,
5768 				network->bssid);
5769 		return 0;
5770 	}
5771 
5772 	/* Filter out invalid channel in current GEO */
5773 	if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5774 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5775 				network->ssid_len, network->ssid,
5776 				network->bssid);
5777 		return 0;
5778 	}
5779 
5780 	/* Ensure that the rates supported by the driver are compatible with
5781 	 * this AP, including verification of basic rates (mandatory) */
5782 	if (!ipw_compatible_rates(priv, network, &rates)) {
5783 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5784 				network->ssid_len, network->ssid,
5785 				network->bssid);
5786 		return 0;
5787 	}
5788 
5789 	if (rates.num_rates == 0) {
5790 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5791 				network->ssid_len, network->ssid,
5792 				network->bssid);
5793 		return 0;
5794 	}
5795 
5796 	/* TODO: Perform any further minimal comparititive tests.  We do not
5797 	 * want to put too much policy logic here; intelligent scan selection
5798 	 * should occur within a generic IEEE 802.11 user space tool.  */
5799 
5800 	/* Set up 'new' AP to this network */
5801 	ipw_copy_rates(&match->rates, &rates);
5802 	match->network = network;
5803 
5804 	IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5805 			network->ssid_len, network->ssid, network->bssid);
5806 
5807 	return 1;
5808 }
5809 
5810 static void ipw_adhoc_create(struct ipw_priv *priv,
5811 			     struct libipw_network *network)
5812 {
5813 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5814 	int i;
5815 
5816 	/*
5817 	 * For the purposes of scanning, we can set our wireless mode
5818 	 * to trigger scans across combinations of bands, but when it
5819 	 * comes to creating a new ad-hoc network, we have tell the FW
5820 	 * exactly which band to use.
5821 	 *
5822 	 * We also have the possibility of an invalid channel for the
5823 	 * chossen band.  Attempting to create a new ad-hoc network
5824 	 * with an invalid channel for wireless mode will trigger a
5825 	 * FW fatal error.
5826 	 *
5827 	 */
5828 	switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5829 	case LIBIPW_52GHZ_BAND:
5830 		network->mode = IEEE_A;
5831 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5832 		BUG_ON(i == -1);
5833 		if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5834 			IPW_WARNING("Overriding invalid channel\n");
5835 			priv->channel = geo->a[0].channel;
5836 		}
5837 		break;
5838 
5839 	case LIBIPW_24GHZ_BAND:
5840 		if (priv->ieee->mode & IEEE_G)
5841 			network->mode = IEEE_G;
5842 		else
5843 			network->mode = IEEE_B;
5844 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5845 		BUG_ON(i == -1);
5846 		if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5847 			IPW_WARNING("Overriding invalid channel\n");
5848 			priv->channel = geo->bg[0].channel;
5849 		}
5850 		break;
5851 
5852 	default:
5853 		IPW_WARNING("Overriding invalid channel\n");
5854 		if (priv->ieee->mode & IEEE_A) {
5855 			network->mode = IEEE_A;
5856 			priv->channel = geo->a[0].channel;
5857 		} else if (priv->ieee->mode & IEEE_G) {
5858 			network->mode = IEEE_G;
5859 			priv->channel = geo->bg[0].channel;
5860 		} else {
5861 			network->mode = IEEE_B;
5862 			priv->channel = geo->bg[0].channel;
5863 		}
5864 		break;
5865 	}
5866 
5867 	network->channel = priv->channel;
5868 	priv->config |= CFG_ADHOC_PERSIST;
5869 	ipw_create_bssid(priv, network->bssid);
5870 	network->ssid_len = priv->essid_len;
5871 	memcpy(network->ssid, priv->essid, priv->essid_len);
5872 	memset(&network->stats, 0, sizeof(network->stats));
5873 	network->capability = WLAN_CAPABILITY_IBSS;
5874 	if (!(priv->config & CFG_PREAMBLE_LONG))
5875 		network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5876 	if (priv->capability & CAP_PRIVACY_ON)
5877 		network->capability |= WLAN_CAPABILITY_PRIVACY;
5878 	network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5879 	memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5880 	network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5881 	memcpy(network->rates_ex,
5882 	       &priv->rates.supported_rates[network->rates_len],
5883 	       network->rates_ex_len);
5884 	network->last_scanned = 0;
5885 	network->flags = 0;
5886 	network->last_associate = 0;
5887 	network->time_stamp[0] = 0;
5888 	network->time_stamp[1] = 0;
5889 	network->beacon_interval = 100;	/* Default */
5890 	network->listen_interval = 10;	/* Default */
5891 	network->atim_window = 0;	/* Default */
5892 	network->wpa_ie_len = 0;
5893 	network->rsn_ie_len = 0;
5894 }
5895 
5896 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5897 {
5898 	struct ipw_tgi_tx_key key;
5899 
5900 	if (!(priv->ieee->sec.flags & (1 << index)))
5901 		return;
5902 
5903 	key.key_id = index;
5904 	memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5905 	key.security_type = type;
5906 	key.station_index = 0;	/* always 0 for BSS */
5907 	key.flags = 0;
5908 	/* 0 for new key; previous value of counter (after fatal error) */
5909 	key.tx_counter[0] = cpu_to_le32(0);
5910 	key.tx_counter[1] = cpu_to_le32(0);
5911 
5912 	ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5913 }
5914 
5915 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5916 {
5917 	struct ipw_wep_key key;
5918 	int i;
5919 
5920 	key.cmd_id = DINO_CMD_WEP_KEY;
5921 	key.seq_num = 0;
5922 
5923 	/* Note: AES keys cannot be set for multiple times.
5924 	 * Only set it at the first time. */
5925 	for (i = 0; i < 4; i++) {
5926 		key.key_index = i | type;
5927 		if (!(priv->ieee->sec.flags & (1 << i))) {
5928 			key.key_size = 0;
5929 			continue;
5930 		}
5931 
5932 		key.key_size = priv->ieee->sec.key_sizes[i];
5933 		memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5934 
5935 		ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5936 	}
5937 }
5938 
5939 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5940 {
5941 	if (priv->ieee->host_encrypt)
5942 		return;
5943 
5944 	switch (level) {
5945 	case SEC_LEVEL_3:
5946 		priv->sys_config.disable_unicast_decryption = 0;
5947 		priv->ieee->host_decrypt = 0;
5948 		break;
5949 	case SEC_LEVEL_2:
5950 		priv->sys_config.disable_unicast_decryption = 1;
5951 		priv->ieee->host_decrypt = 1;
5952 		break;
5953 	case SEC_LEVEL_1:
5954 		priv->sys_config.disable_unicast_decryption = 0;
5955 		priv->ieee->host_decrypt = 0;
5956 		break;
5957 	case SEC_LEVEL_0:
5958 		priv->sys_config.disable_unicast_decryption = 1;
5959 		break;
5960 	default:
5961 		break;
5962 	}
5963 }
5964 
5965 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5966 {
5967 	if (priv->ieee->host_encrypt)
5968 		return;
5969 
5970 	switch (level) {
5971 	case SEC_LEVEL_3:
5972 		priv->sys_config.disable_multicast_decryption = 0;
5973 		break;
5974 	case SEC_LEVEL_2:
5975 		priv->sys_config.disable_multicast_decryption = 1;
5976 		break;
5977 	case SEC_LEVEL_1:
5978 		priv->sys_config.disable_multicast_decryption = 0;
5979 		break;
5980 	case SEC_LEVEL_0:
5981 		priv->sys_config.disable_multicast_decryption = 1;
5982 		break;
5983 	default:
5984 		break;
5985 	}
5986 }
5987 
5988 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5989 {
5990 	switch (priv->ieee->sec.level) {
5991 	case SEC_LEVEL_3:
5992 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5993 			ipw_send_tgi_tx_key(priv,
5994 					    DCT_FLAG_EXT_SECURITY_CCM,
5995 					    priv->ieee->sec.active_key);
5996 
5997 		if (!priv->ieee->host_mc_decrypt)
5998 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5999 		break;
6000 	case SEC_LEVEL_2:
6001 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6002 			ipw_send_tgi_tx_key(priv,
6003 					    DCT_FLAG_EXT_SECURITY_TKIP,
6004 					    priv->ieee->sec.active_key);
6005 		break;
6006 	case SEC_LEVEL_1:
6007 		ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6008 		ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6009 		ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6010 		break;
6011 	case SEC_LEVEL_0:
6012 	default:
6013 		break;
6014 	}
6015 }
6016 
6017 static void ipw_adhoc_check(void *data)
6018 {
6019 	struct ipw_priv *priv = data;
6020 
6021 	if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6022 	    !(priv->config & CFG_ADHOC_PERSIST)) {
6023 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6024 			  IPW_DL_STATE | IPW_DL_ASSOC,
6025 			  "Missed beacon: %d - disassociate\n",
6026 			  priv->missed_adhoc_beacons);
6027 		ipw_remove_current_network(priv);
6028 		ipw_disassociate(priv);
6029 		return;
6030 	}
6031 
6032 	schedule_delayed_work(&priv->adhoc_check,
6033 			      le16_to_cpu(priv->assoc_request.beacon_interval));
6034 }
6035 
6036 static void ipw_bg_adhoc_check(struct work_struct *work)
6037 {
6038 	struct ipw_priv *priv =
6039 		container_of(work, struct ipw_priv, adhoc_check.work);
6040 	mutex_lock(&priv->mutex);
6041 	ipw_adhoc_check(priv);
6042 	mutex_unlock(&priv->mutex);
6043 }
6044 
6045 static void ipw_debug_config(struct ipw_priv *priv)
6046 {
6047 	IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6048 		       "[CFG 0x%08X]\n", priv->config);
6049 	if (priv->config & CFG_STATIC_CHANNEL)
6050 		IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6051 	else
6052 		IPW_DEBUG_INFO("Channel unlocked.\n");
6053 	if (priv->config & CFG_STATIC_ESSID)
6054 		IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6055 			       priv->essid_len, priv->essid);
6056 	else
6057 		IPW_DEBUG_INFO("ESSID unlocked.\n");
6058 	if (priv->config & CFG_STATIC_BSSID)
6059 		IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6060 	else
6061 		IPW_DEBUG_INFO("BSSID unlocked.\n");
6062 	if (priv->capability & CAP_PRIVACY_ON)
6063 		IPW_DEBUG_INFO("PRIVACY on\n");
6064 	else
6065 		IPW_DEBUG_INFO("PRIVACY off\n");
6066 	IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6067 }
6068 
6069 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6070 {
6071 	/* TODO: Verify that this works... */
6072 	struct ipw_fixed_rate fr;
6073 	u32 reg;
6074 	u16 mask = 0;
6075 	u16 new_tx_rates = priv->rates_mask;
6076 
6077 	/* Identify 'current FW band' and match it with the fixed
6078 	 * Tx rates */
6079 
6080 	switch (priv->ieee->freq_band) {
6081 	case LIBIPW_52GHZ_BAND:	/* A only */
6082 		/* IEEE_A */
6083 		if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6084 			/* Invalid fixed rate mask */
6085 			IPW_DEBUG_WX
6086 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6087 			new_tx_rates = 0;
6088 			break;
6089 		}
6090 
6091 		new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6092 		break;
6093 
6094 	default:		/* 2.4Ghz or Mixed */
6095 		/* IEEE_B */
6096 		if (mode == IEEE_B) {
6097 			if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6098 				/* Invalid fixed rate mask */
6099 				IPW_DEBUG_WX
6100 				    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6101 				new_tx_rates = 0;
6102 			}
6103 			break;
6104 		}
6105 
6106 		/* IEEE_G */
6107 		if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6108 				    LIBIPW_OFDM_RATES_MASK)) {
6109 			/* Invalid fixed rate mask */
6110 			IPW_DEBUG_WX
6111 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6112 			new_tx_rates = 0;
6113 			break;
6114 		}
6115 
6116 		if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6117 			mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6118 			new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6119 		}
6120 
6121 		if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6122 			mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6123 			new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6124 		}
6125 
6126 		if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6127 			mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6128 			new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6129 		}
6130 
6131 		new_tx_rates |= mask;
6132 		break;
6133 	}
6134 
6135 	fr.tx_rates = cpu_to_le16(new_tx_rates);
6136 
6137 	reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6138 	ipw_write_reg32(priv, reg, *(u32 *) & fr);
6139 }
6140 
6141 static void ipw_abort_scan(struct ipw_priv *priv)
6142 {
6143 	int err;
6144 
6145 	if (priv->status & STATUS_SCAN_ABORTING) {
6146 		IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6147 		return;
6148 	}
6149 	priv->status |= STATUS_SCAN_ABORTING;
6150 
6151 	err = ipw_send_scan_abort(priv);
6152 	if (err)
6153 		IPW_DEBUG_HC("Request to abort scan failed.\n");
6154 }
6155 
6156 static void ipw_add_scan_channels(struct ipw_priv *priv,
6157 				  struct ipw_scan_request_ext *scan,
6158 				  int scan_type)
6159 {
6160 	int channel_index = 0;
6161 	const struct libipw_geo *geo;
6162 	int i;
6163 
6164 	geo = libipw_get_geo(priv->ieee);
6165 
6166 	if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6167 		int start = channel_index;
6168 		for (i = 0; i < geo->a_channels; i++) {
6169 			if ((priv->status & STATUS_ASSOCIATED) &&
6170 			    geo->a[i].channel == priv->channel)
6171 				continue;
6172 			channel_index++;
6173 			scan->channels_list[channel_index] = geo->a[i].channel;
6174 			ipw_set_scan_type(scan, channel_index,
6175 					  geo->a[i].
6176 					  flags & LIBIPW_CH_PASSIVE_ONLY ?
6177 					  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6178 					  scan_type);
6179 		}
6180 
6181 		if (start != channel_index) {
6182 			scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6183 			    (channel_index - start);
6184 			channel_index++;
6185 		}
6186 	}
6187 
6188 	if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6189 		int start = channel_index;
6190 		if (priv->config & CFG_SPEED_SCAN) {
6191 			int index;
6192 			u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6193 				/* nop out the list */
6194 				[0] = 0
6195 			};
6196 
6197 			u8 channel;
6198 			while (channel_index < IPW_SCAN_CHANNELS - 1) {
6199 				channel =
6200 				    priv->speed_scan[priv->speed_scan_pos];
6201 				if (channel == 0) {
6202 					priv->speed_scan_pos = 0;
6203 					channel = priv->speed_scan[0];
6204 				}
6205 				if ((priv->status & STATUS_ASSOCIATED) &&
6206 				    channel == priv->channel) {
6207 					priv->speed_scan_pos++;
6208 					continue;
6209 				}
6210 
6211 				/* If this channel has already been
6212 				 * added in scan, break from loop
6213 				 * and this will be the first channel
6214 				 * in the next scan.
6215 				 */
6216 				if (channels[channel - 1] != 0)
6217 					break;
6218 
6219 				channels[channel - 1] = 1;
6220 				priv->speed_scan_pos++;
6221 				channel_index++;
6222 				scan->channels_list[channel_index] = channel;
6223 				index =
6224 				    libipw_channel_to_index(priv->ieee, channel);
6225 				ipw_set_scan_type(scan, channel_index,
6226 						  geo->bg[index].
6227 						  flags &
6228 						  LIBIPW_CH_PASSIVE_ONLY ?
6229 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6230 						  : scan_type);
6231 			}
6232 		} else {
6233 			for (i = 0; i < geo->bg_channels; i++) {
6234 				if ((priv->status & STATUS_ASSOCIATED) &&
6235 				    geo->bg[i].channel == priv->channel)
6236 					continue;
6237 				channel_index++;
6238 				scan->channels_list[channel_index] =
6239 				    geo->bg[i].channel;
6240 				ipw_set_scan_type(scan, channel_index,
6241 						  geo->bg[i].
6242 						  flags &
6243 						  LIBIPW_CH_PASSIVE_ONLY ?
6244 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6245 						  : scan_type);
6246 			}
6247 		}
6248 
6249 		if (start != channel_index) {
6250 			scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6251 			    (channel_index - start);
6252 		}
6253 	}
6254 }
6255 
6256 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6257 {
6258 	/* staying on passive channels longer than the DTIM interval during a
6259 	 * scan, while associated, causes the firmware to cancel the scan
6260 	 * without notification. Hence, don't stay on passive channels longer
6261 	 * than the beacon interval.
6262 	 */
6263 	if (priv->status & STATUS_ASSOCIATED
6264 	    && priv->assoc_network->beacon_interval > 10)
6265 		return priv->assoc_network->beacon_interval - 10;
6266 	else
6267 		return 120;
6268 }
6269 
6270 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6271 {
6272 	struct ipw_scan_request_ext scan;
6273 	int err = 0, scan_type;
6274 
6275 	if (!(priv->status & STATUS_INIT) ||
6276 	    (priv->status & STATUS_EXIT_PENDING))
6277 		return 0;
6278 
6279 	mutex_lock(&priv->mutex);
6280 
6281 	if (direct && (priv->direct_scan_ssid_len == 0)) {
6282 		IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6283 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6284 		goto done;
6285 	}
6286 
6287 	if (priv->status & STATUS_SCANNING) {
6288 		IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6289 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6290 					STATUS_SCAN_PENDING;
6291 		goto done;
6292 	}
6293 
6294 	if (!(priv->status & STATUS_SCAN_FORCED) &&
6295 	    priv->status & STATUS_SCAN_ABORTING) {
6296 		IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6297 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6298 					STATUS_SCAN_PENDING;
6299 		goto done;
6300 	}
6301 
6302 	if (priv->status & STATUS_RF_KILL_MASK) {
6303 		IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6304 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6305 					STATUS_SCAN_PENDING;
6306 		goto done;
6307 	}
6308 
6309 	memset(&scan, 0, sizeof(scan));
6310 	scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6311 
6312 	if (type == IW_SCAN_TYPE_PASSIVE) {
6313 		IPW_DEBUG_WX("use passive scanning\n");
6314 		scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6315 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6316 			cpu_to_le16(ipw_passive_dwell_time(priv));
6317 		ipw_add_scan_channels(priv, &scan, scan_type);
6318 		goto send_request;
6319 	}
6320 
6321 	/* Use active scan by default. */
6322 	if (priv->config & CFG_SPEED_SCAN)
6323 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6324 			cpu_to_le16(30);
6325 	else
6326 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6327 			cpu_to_le16(20);
6328 
6329 	scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6330 		cpu_to_le16(20);
6331 
6332 	scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6333 		cpu_to_le16(ipw_passive_dwell_time(priv));
6334 	scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6335 
6336 #ifdef CONFIG_IPW2200_MONITOR
6337 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6338 		u8 channel;
6339 		u8 band = 0;
6340 
6341 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6342 		case LIBIPW_52GHZ_BAND:
6343 			band = (u8) (IPW_A_MODE << 6) | 1;
6344 			channel = priv->channel;
6345 			break;
6346 
6347 		case LIBIPW_24GHZ_BAND:
6348 			band = (u8) (IPW_B_MODE << 6) | 1;
6349 			channel = priv->channel;
6350 			break;
6351 
6352 		default:
6353 			band = (u8) (IPW_B_MODE << 6) | 1;
6354 			channel = 9;
6355 			break;
6356 		}
6357 
6358 		scan.channels_list[0] = band;
6359 		scan.channels_list[1] = channel;
6360 		ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6361 
6362 		/* NOTE:  The card will sit on this channel for this time
6363 		 * period.  Scan aborts are timing sensitive and frequently
6364 		 * result in firmware restarts.  As such, it is best to
6365 		 * set a small dwell_time here and just keep re-issuing
6366 		 * scans.  Otherwise fast channel hopping will not actually
6367 		 * hop channels.
6368 		 *
6369 		 * TODO: Move SPEED SCAN support to all modes and bands */
6370 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6371 			cpu_to_le16(2000);
6372 	} else {
6373 #endif				/* CONFIG_IPW2200_MONITOR */
6374 		/* Honor direct scans first, otherwise if we are roaming make
6375 		 * this a direct scan for the current network.  Finally,
6376 		 * ensure that every other scan is a fast channel hop scan */
6377 		if (direct) {
6378 			err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6379 			                    priv->direct_scan_ssid_len);
6380 			if (err) {
6381 				IPW_DEBUG_HC("Attempt to send SSID command  "
6382 					     "failed\n");
6383 				goto done;
6384 			}
6385 
6386 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6387 		} else if ((priv->status & STATUS_ROAMING)
6388 			   || (!(priv->status & STATUS_ASSOCIATED)
6389 			       && (priv->config & CFG_STATIC_ESSID)
6390 			       && (le32_to_cpu(scan.full_scan_index) % 2))) {
6391 			err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6392 			if (err) {
6393 				IPW_DEBUG_HC("Attempt to send SSID command "
6394 					     "failed.\n");
6395 				goto done;
6396 			}
6397 
6398 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6399 		} else
6400 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6401 
6402 		ipw_add_scan_channels(priv, &scan, scan_type);
6403 #ifdef CONFIG_IPW2200_MONITOR
6404 	}
6405 #endif
6406 
6407 send_request:
6408 	err = ipw_send_scan_request_ext(priv, &scan);
6409 	if (err) {
6410 		IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6411 		goto done;
6412 	}
6413 
6414 	priv->status |= STATUS_SCANNING;
6415 	if (direct) {
6416 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6417 		priv->direct_scan_ssid_len = 0;
6418 	} else
6419 		priv->status &= ~STATUS_SCAN_PENDING;
6420 
6421 	schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6422 done:
6423 	mutex_unlock(&priv->mutex);
6424 	return err;
6425 }
6426 
6427 static void ipw_request_passive_scan(struct work_struct *work)
6428 {
6429 	struct ipw_priv *priv =
6430 		container_of(work, struct ipw_priv, request_passive_scan.work);
6431 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6432 }
6433 
6434 static void ipw_request_scan(struct work_struct *work)
6435 {
6436 	struct ipw_priv *priv =
6437 		container_of(work, struct ipw_priv, request_scan.work);
6438 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6439 }
6440 
6441 static void ipw_request_direct_scan(struct work_struct *work)
6442 {
6443 	struct ipw_priv *priv =
6444 		container_of(work, struct ipw_priv, request_direct_scan.work);
6445 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6446 }
6447 
6448 static void ipw_bg_abort_scan(struct work_struct *work)
6449 {
6450 	struct ipw_priv *priv =
6451 		container_of(work, struct ipw_priv, abort_scan);
6452 	mutex_lock(&priv->mutex);
6453 	ipw_abort_scan(priv);
6454 	mutex_unlock(&priv->mutex);
6455 }
6456 
6457 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6458 {
6459 	/* This is called when wpa_supplicant loads and closes the driver
6460 	 * interface. */
6461 	priv->ieee->wpa_enabled = value;
6462 	return 0;
6463 }
6464 
6465 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6466 {
6467 	struct libipw_device *ieee = priv->ieee;
6468 	struct libipw_security sec = {
6469 		.flags = SEC_AUTH_MODE,
6470 	};
6471 	int ret = 0;
6472 
6473 	if (value & IW_AUTH_ALG_SHARED_KEY) {
6474 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6475 		ieee->open_wep = 0;
6476 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6477 		sec.auth_mode = WLAN_AUTH_OPEN;
6478 		ieee->open_wep = 1;
6479 	} else if (value & IW_AUTH_ALG_LEAP) {
6480 		sec.auth_mode = WLAN_AUTH_LEAP;
6481 		ieee->open_wep = 1;
6482 	} else
6483 		return -EINVAL;
6484 
6485 	if (ieee->set_security)
6486 		ieee->set_security(ieee->dev, &sec);
6487 	else
6488 		ret = -EOPNOTSUPP;
6489 
6490 	return ret;
6491 }
6492 
6493 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6494 				int wpa_ie_len)
6495 {
6496 	/* make sure WPA is enabled */
6497 	ipw_wpa_enable(priv, 1);
6498 }
6499 
6500 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6501 			    char *capabilities, int length)
6502 {
6503 	IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6504 
6505 	return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6506 				capabilities);
6507 }
6508 
6509 /*
6510  * WE-18 support
6511  */
6512 
6513 /* SIOCSIWGENIE */
6514 static int ipw_wx_set_genie(struct net_device *dev,
6515 			    struct iw_request_info *info,
6516 			    union iwreq_data *wrqu, char *extra)
6517 {
6518 	struct ipw_priv *priv = libipw_priv(dev);
6519 	struct libipw_device *ieee = priv->ieee;
6520 	u8 *buf;
6521 	int err = 0;
6522 
6523 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
6524 	    (wrqu->data.length && extra == NULL))
6525 		return -EINVAL;
6526 
6527 	if (wrqu->data.length) {
6528 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6529 		if (buf == NULL) {
6530 			err = -ENOMEM;
6531 			goto out;
6532 		}
6533 
6534 		kfree(ieee->wpa_ie);
6535 		ieee->wpa_ie = buf;
6536 		ieee->wpa_ie_len = wrqu->data.length;
6537 	} else {
6538 		kfree(ieee->wpa_ie);
6539 		ieee->wpa_ie = NULL;
6540 		ieee->wpa_ie_len = 0;
6541 	}
6542 
6543 	ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6544       out:
6545 	return err;
6546 }
6547 
6548 /* SIOCGIWGENIE */
6549 static int ipw_wx_get_genie(struct net_device *dev,
6550 			    struct iw_request_info *info,
6551 			    union iwreq_data *wrqu, char *extra)
6552 {
6553 	struct ipw_priv *priv = libipw_priv(dev);
6554 	struct libipw_device *ieee = priv->ieee;
6555 	int err = 0;
6556 
6557 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6558 		wrqu->data.length = 0;
6559 		goto out;
6560 	}
6561 
6562 	if (wrqu->data.length < ieee->wpa_ie_len) {
6563 		err = -E2BIG;
6564 		goto out;
6565 	}
6566 
6567 	wrqu->data.length = ieee->wpa_ie_len;
6568 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6569 
6570       out:
6571 	return err;
6572 }
6573 
6574 static int wext_cipher2level(int cipher)
6575 {
6576 	switch (cipher) {
6577 	case IW_AUTH_CIPHER_NONE:
6578 		return SEC_LEVEL_0;
6579 	case IW_AUTH_CIPHER_WEP40:
6580 	case IW_AUTH_CIPHER_WEP104:
6581 		return SEC_LEVEL_1;
6582 	case IW_AUTH_CIPHER_TKIP:
6583 		return SEC_LEVEL_2;
6584 	case IW_AUTH_CIPHER_CCMP:
6585 		return SEC_LEVEL_3;
6586 	default:
6587 		return -1;
6588 	}
6589 }
6590 
6591 /* SIOCSIWAUTH */
6592 static int ipw_wx_set_auth(struct net_device *dev,
6593 			   struct iw_request_info *info,
6594 			   union iwreq_data *wrqu, char *extra)
6595 {
6596 	struct ipw_priv *priv = libipw_priv(dev);
6597 	struct libipw_device *ieee = priv->ieee;
6598 	struct iw_param *param = &wrqu->param;
6599 	struct lib80211_crypt_data *crypt;
6600 	unsigned long flags;
6601 	int ret = 0;
6602 
6603 	switch (param->flags & IW_AUTH_INDEX) {
6604 	case IW_AUTH_WPA_VERSION:
6605 		break;
6606 	case IW_AUTH_CIPHER_PAIRWISE:
6607 		ipw_set_hw_decrypt_unicast(priv,
6608 					   wext_cipher2level(param->value));
6609 		break;
6610 	case IW_AUTH_CIPHER_GROUP:
6611 		ipw_set_hw_decrypt_multicast(priv,
6612 					     wext_cipher2level(param->value));
6613 		break;
6614 	case IW_AUTH_KEY_MGMT:
6615 		/*
6616 		 * ipw2200 does not use these parameters
6617 		 */
6618 		break;
6619 
6620 	case IW_AUTH_TKIP_COUNTERMEASURES:
6621 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6622 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6623 			break;
6624 
6625 		flags = crypt->ops->get_flags(crypt->priv);
6626 
6627 		if (param->value)
6628 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6629 		else
6630 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6631 
6632 		crypt->ops->set_flags(flags, crypt->priv);
6633 
6634 		break;
6635 
6636 	case IW_AUTH_DROP_UNENCRYPTED:{
6637 			/* HACK:
6638 			 *
6639 			 * wpa_supplicant calls set_wpa_enabled when the driver
6640 			 * is loaded and unloaded, regardless of if WPA is being
6641 			 * used.  No other calls are made which can be used to
6642 			 * determine if encryption will be used or not prior to
6643 			 * association being expected.  If encryption is not being
6644 			 * used, drop_unencrypted is set to false, else true -- we
6645 			 * can use this to determine if the CAP_PRIVACY_ON bit should
6646 			 * be set.
6647 			 */
6648 			struct libipw_security sec = {
6649 				.flags = SEC_ENABLED,
6650 				.enabled = param->value,
6651 			};
6652 			priv->ieee->drop_unencrypted = param->value;
6653 			/* We only change SEC_LEVEL for open mode. Others
6654 			 * are set by ipw_wpa_set_encryption.
6655 			 */
6656 			if (!param->value) {
6657 				sec.flags |= SEC_LEVEL;
6658 				sec.level = SEC_LEVEL_0;
6659 			} else {
6660 				sec.flags |= SEC_LEVEL;
6661 				sec.level = SEC_LEVEL_1;
6662 			}
6663 			if (priv->ieee->set_security)
6664 				priv->ieee->set_security(priv->ieee->dev, &sec);
6665 			break;
6666 		}
6667 
6668 	case IW_AUTH_80211_AUTH_ALG:
6669 		ret = ipw_wpa_set_auth_algs(priv, param->value);
6670 		break;
6671 
6672 	case IW_AUTH_WPA_ENABLED:
6673 		ret = ipw_wpa_enable(priv, param->value);
6674 		ipw_disassociate(priv);
6675 		break;
6676 
6677 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6678 		ieee->ieee802_1x = param->value;
6679 		break;
6680 
6681 	case IW_AUTH_PRIVACY_INVOKED:
6682 		ieee->privacy_invoked = param->value;
6683 		break;
6684 
6685 	default:
6686 		return -EOPNOTSUPP;
6687 	}
6688 	return ret;
6689 }
6690 
6691 /* SIOCGIWAUTH */
6692 static int ipw_wx_get_auth(struct net_device *dev,
6693 			   struct iw_request_info *info,
6694 			   union iwreq_data *wrqu, char *extra)
6695 {
6696 	struct ipw_priv *priv = libipw_priv(dev);
6697 	struct libipw_device *ieee = priv->ieee;
6698 	struct lib80211_crypt_data *crypt;
6699 	struct iw_param *param = &wrqu->param;
6700 
6701 	switch (param->flags & IW_AUTH_INDEX) {
6702 	case IW_AUTH_WPA_VERSION:
6703 	case IW_AUTH_CIPHER_PAIRWISE:
6704 	case IW_AUTH_CIPHER_GROUP:
6705 	case IW_AUTH_KEY_MGMT:
6706 		/*
6707 		 * wpa_supplicant will control these internally
6708 		 */
6709 		return -EOPNOTSUPP;
6710 
6711 	case IW_AUTH_TKIP_COUNTERMEASURES:
6712 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6713 		if (!crypt || !crypt->ops->get_flags)
6714 			break;
6715 
6716 		param->value = (crypt->ops->get_flags(crypt->priv) &
6717 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6718 
6719 		break;
6720 
6721 	case IW_AUTH_DROP_UNENCRYPTED:
6722 		param->value = ieee->drop_unencrypted;
6723 		break;
6724 
6725 	case IW_AUTH_80211_AUTH_ALG:
6726 		param->value = ieee->sec.auth_mode;
6727 		break;
6728 
6729 	case IW_AUTH_WPA_ENABLED:
6730 		param->value = ieee->wpa_enabled;
6731 		break;
6732 
6733 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6734 		param->value = ieee->ieee802_1x;
6735 		break;
6736 
6737 	case IW_AUTH_ROAMING_CONTROL:
6738 	case IW_AUTH_PRIVACY_INVOKED:
6739 		param->value = ieee->privacy_invoked;
6740 		break;
6741 
6742 	default:
6743 		return -EOPNOTSUPP;
6744 	}
6745 	return 0;
6746 }
6747 
6748 /* SIOCSIWENCODEEXT */
6749 static int ipw_wx_set_encodeext(struct net_device *dev,
6750 				struct iw_request_info *info,
6751 				union iwreq_data *wrqu, char *extra)
6752 {
6753 	struct ipw_priv *priv = libipw_priv(dev);
6754 	struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6755 
6756 	if (hwcrypto) {
6757 		if (ext->alg == IW_ENCODE_ALG_TKIP) {
6758 			/* IPW HW can't build TKIP MIC,
6759 			   host decryption still needed */
6760 			if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6761 				priv->ieee->host_mc_decrypt = 1;
6762 			else {
6763 				priv->ieee->host_encrypt = 0;
6764 				priv->ieee->host_encrypt_msdu = 1;
6765 				priv->ieee->host_decrypt = 1;
6766 			}
6767 		} else {
6768 			priv->ieee->host_encrypt = 0;
6769 			priv->ieee->host_encrypt_msdu = 0;
6770 			priv->ieee->host_decrypt = 0;
6771 			priv->ieee->host_mc_decrypt = 0;
6772 		}
6773 	}
6774 
6775 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6776 }
6777 
6778 /* SIOCGIWENCODEEXT */
6779 static int ipw_wx_get_encodeext(struct net_device *dev,
6780 				struct iw_request_info *info,
6781 				union iwreq_data *wrqu, char *extra)
6782 {
6783 	struct ipw_priv *priv = libipw_priv(dev);
6784 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6785 }
6786 
6787 /* SIOCSIWMLME */
6788 static int ipw_wx_set_mlme(struct net_device *dev,
6789 			   struct iw_request_info *info,
6790 			   union iwreq_data *wrqu, char *extra)
6791 {
6792 	struct ipw_priv *priv = libipw_priv(dev);
6793 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
6794 
6795 	switch (mlme->cmd) {
6796 	case IW_MLME_DEAUTH:
6797 		/* silently ignore */
6798 		break;
6799 
6800 	case IW_MLME_DISASSOC:
6801 		ipw_disassociate(priv);
6802 		break;
6803 
6804 	default:
6805 		return -EOPNOTSUPP;
6806 	}
6807 	return 0;
6808 }
6809 
6810 #ifdef CONFIG_IPW2200_QOS
6811 
6812 /* QoS */
6813 /*
6814 * get the modulation type of the current network or
6815 * the card current mode
6816 */
6817 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6818 {
6819 	u8 mode = 0;
6820 
6821 	if (priv->status & STATUS_ASSOCIATED) {
6822 		unsigned long flags;
6823 
6824 		spin_lock_irqsave(&priv->ieee->lock, flags);
6825 		mode = priv->assoc_network->mode;
6826 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6827 	} else {
6828 		mode = priv->ieee->mode;
6829 	}
6830 	IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6831 	return mode;
6832 }
6833 
6834 /*
6835 * Handle management frame beacon and probe response
6836 */
6837 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6838 					 int active_network,
6839 					 struct libipw_network *network)
6840 {
6841 	u32 size = sizeof(struct libipw_qos_parameters);
6842 
6843 	if (network->capability & WLAN_CAPABILITY_IBSS)
6844 		network->qos_data.active = network->qos_data.supported;
6845 
6846 	if (network->flags & NETWORK_HAS_QOS_MASK) {
6847 		if (active_network &&
6848 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6849 			network->qos_data.active = network->qos_data.supported;
6850 
6851 		if ((network->qos_data.active == 1) && (active_network == 1) &&
6852 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6853 		    (network->qos_data.old_param_count !=
6854 		     network->qos_data.param_count)) {
6855 			network->qos_data.old_param_count =
6856 			    network->qos_data.param_count;
6857 			schedule_work(&priv->qos_activate);
6858 			IPW_DEBUG_QOS("QoS parameters change call "
6859 				      "qos_activate\n");
6860 		}
6861 	} else {
6862 		if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6863 			memcpy(&network->qos_data.parameters,
6864 			       &def_parameters_CCK, size);
6865 		else
6866 			memcpy(&network->qos_data.parameters,
6867 			       &def_parameters_OFDM, size);
6868 
6869 		if ((network->qos_data.active == 1) && (active_network == 1)) {
6870 			IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6871 			schedule_work(&priv->qos_activate);
6872 		}
6873 
6874 		network->qos_data.active = 0;
6875 		network->qos_data.supported = 0;
6876 	}
6877 	if ((priv->status & STATUS_ASSOCIATED) &&
6878 	    (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6879 		if (!ether_addr_equal(network->bssid, priv->bssid))
6880 			if (network->capability & WLAN_CAPABILITY_IBSS)
6881 				if ((network->ssid_len ==
6882 				     priv->assoc_network->ssid_len) &&
6883 				    !memcmp(network->ssid,
6884 					    priv->assoc_network->ssid,
6885 					    network->ssid_len)) {
6886 					schedule_work(&priv->merge_networks);
6887 				}
6888 	}
6889 
6890 	return 0;
6891 }
6892 
6893 /*
6894 * This function set up the firmware to support QoS. It sends
6895 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6896 */
6897 static int ipw_qos_activate(struct ipw_priv *priv,
6898 			    struct libipw_qos_data *qos_network_data)
6899 {
6900 	int err;
6901 	struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6902 	struct libipw_qos_parameters *active_one = NULL;
6903 	u32 size = sizeof(struct libipw_qos_parameters);
6904 	u32 burst_duration;
6905 	int i;
6906 	u8 type;
6907 
6908 	type = ipw_qos_current_mode(priv);
6909 
6910 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6911 	memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6912 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6913 	memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6914 
6915 	if (qos_network_data == NULL) {
6916 		if (type == IEEE_B) {
6917 			IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6918 			active_one = &def_parameters_CCK;
6919 		} else
6920 			active_one = &def_parameters_OFDM;
6921 
6922 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6923 		burst_duration = ipw_qos_get_burst_duration(priv);
6924 		for (i = 0; i < QOS_QUEUE_NUM; i++)
6925 			qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6926 			    cpu_to_le16(burst_duration);
6927 	} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6928 		if (type == IEEE_B) {
6929 			IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6930 				      type);
6931 			if (priv->qos_data.qos_enable == 0)
6932 				active_one = &def_parameters_CCK;
6933 			else
6934 				active_one = priv->qos_data.def_qos_parm_CCK;
6935 		} else {
6936 			if (priv->qos_data.qos_enable == 0)
6937 				active_one = &def_parameters_OFDM;
6938 			else
6939 				active_one = priv->qos_data.def_qos_parm_OFDM;
6940 		}
6941 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6942 	} else {
6943 		unsigned long flags;
6944 		int active;
6945 
6946 		spin_lock_irqsave(&priv->ieee->lock, flags);
6947 		active_one = &(qos_network_data->parameters);
6948 		qos_network_data->old_param_count =
6949 		    qos_network_data->param_count;
6950 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6951 		active = qos_network_data->supported;
6952 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6953 
6954 		if (active == 0) {
6955 			burst_duration = ipw_qos_get_burst_duration(priv);
6956 			for (i = 0; i < QOS_QUEUE_NUM; i++)
6957 				qos_parameters[QOS_PARAM_SET_ACTIVE].
6958 				    tx_op_limit[i] = cpu_to_le16(burst_duration);
6959 		}
6960 	}
6961 
6962 	IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6963 	err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6964 	if (err)
6965 		IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6966 
6967 	return err;
6968 }
6969 
6970 /*
6971 * send IPW_CMD_WME_INFO to the firmware
6972 */
6973 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6974 {
6975 	int ret = 0;
6976 	struct libipw_qos_information_element qos_info;
6977 
6978 	if (priv == NULL)
6979 		return -1;
6980 
6981 	qos_info.elementID = QOS_ELEMENT_ID;
6982 	qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6983 
6984 	qos_info.version = QOS_VERSION_1;
6985 	qos_info.ac_info = 0;
6986 
6987 	memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6988 	qos_info.qui_type = QOS_OUI_TYPE;
6989 	qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6990 
6991 	ret = ipw_send_qos_info_command(priv, &qos_info);
6992 	if (ret != 0) {
6993 		IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6994 	}
6995 	return ret;
6996 }
6997 
6998 /*
6999 * Set the QoS parameter with the association request structure
7000 */
7001 static int ipw_qos_association(struct ipw_priv *priv,
7002 			       struct libipw_network *network)
7003 {
7004 	int err = 0;
7005 	struct libipw_qos_data *qos_data = NULL;
7006 	struct libipw_qos_data ibss_data = {
7007 		.supported = 1,
7008 		.active = 1,
7009 	};
7010 
7011 	switch (priv->ieee->iw_mode) {
7012 	case IW_MODE_ADHOC:
7013 		BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7014 
7015 		qos_data = &ibss_data;
7016 		break;
7017 
7018 	case IW_MODE_INFRA:
7019 		qos_data = &network->qos_data;
7020 		break;
7021 
7022 	default:
7023 		BUG();
7024 		break;
7025 	}
7026 
7027 	err = ipw_qos_activate(priv, qos_data);
7028 	if (err) {
7029 		priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7030 		return err;
7031 	}
7032 
7033 	if (priv->qos_data.qos_enable && qos_data->supported) {
7034 		IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7035 		priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7036 		return ipw_qos_set_info_element(priv);
7037 	}
7038 
7039 	return 0;
7040 }
7041 
7042 /*
7043 * handling the beaconing responses. if we get different QoS setting
7044 * off the network from the associated setting, adjust the QoS
7045 * setting
7046 */
7047 static void ipw_qos_association_resp(struct ipw_priv *priv,
7048 				    struct libipw_network *network)
7049 {
7050 	unsigned long flags;
7051 	u32 size = sizeof(struct libipw_qos_parameters);
7052 	int set_qos_param = 0;
7053 
7054 	if ((priv == NULL) || (network == NULL) ||
7055 	    (priv->assoc_network == NULL))
7056 		return;
7057 
7058 	if (!(priv->status & STATUS_ASSOCIATED))
7059 		return;
7060 
7061 	if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7062 		return;
7063 
7064 	spin_lock_irqsave(&priv->ieee->lock, flags);
7065 	if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7066 		memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7067 		       sizeof(struct libipw_qos_data));
7068 		priv->assoc_network->qos_data.active = 1;
7069 		if ((network->qos_data.old_param_count !=
7070 		     network->qos_data.param_count)) {
7071 			set_qos_param = 1;
7072 			network->qos_data.old_param_count =
7073 			    network->qos_data.param_count;
7074 		}
7075 
7076 	} else {
7077 		if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7078 			memcpy(&priv->assoc_network->qos_data.parameters,
7079 			       &def_parameters_CCK, size);
7080 		else
7081 			memcpy(&priv->assoc_network->qos_data.parameters,
7082 			       &def_parameters_OFDM, size);
7083 		priv->assoc_network->qos_data.active = 0;
7084 		priv->assoc_network->qos_data.supported = 0;
7085 		set_qos_param = 1;
7086 	}
7087 
7088 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7089 
7090 	if (set_qos_param == 1)
7091 		schedule_work(&priv->qos_activate);
7092 }
7093 
7094 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7095 {
7096 	u32 ret = 0;
7097 
7098 	if (!priv)
7099 		return 0;
7100 
7101 	if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7102 		ret = priv->qos_data.burst_duration_CCK;
7103 	else
7104 		ret = priv->qos_data.burst_duration_OFDM;
7105 
7106 	return ret;
7107 }
7108 
7109 /*
7110 * Initialize the setting of QoS global
7111 */
7112 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7113 			 int burst_enable, u32 burst_duration_CCK,
7114 			 u32 burst_duration_OFDM)
7115 {
7116 	priv->qos_data.qos_enable = enable;
7117 
7118 	if (priv->qos_data.qos_enable) {
7119 		priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7120 		priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7121 		IPW_DEBUG_QOS("QoS is enabled\n");
7122 	} else {
7123 		priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7124 		priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7125 		IPW_DEBUG_QOS("QoS is not enabled\n");
7126 	}
7127 
7128 	priv->qos_data.burst_enable = burst_enable;
7129 
7130 	if (burst_enable) {
7131 		priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7132 		priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7133 	} else {
7134 		priv->qos_data.burst_duration_CCK = 0;
7135 		priv->qos_data.burst_duration_OFDM = 0;
7136 	}
7137 }
7138 
7139 /*
7140 * map the packet priority to the right TX Queue
7141 */
7142 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7143 {
7144 	if (priority > 7 || !priv->qos_data.qos_enable)
7145 		priority = 0;
7146 
7147 	return from_priority_to_tx_queue[priority] - 1;
7148 }
7149 
7150 static int ipw_is_qos_active(struct net_device *dev,
7151 			     struct sk_buff *skb)
7152 {
7153 	struct ipw_priv *priv = libipw_priv(dev);
7154 	struct libipw_qos_data *qos_data = NULL;
7155 	int active, supported;
7156 	u8 *daddr = skb->data + ETH_ALEN;
7157 	int unicast = !is_multicast_ether_addr(daddr);
7158 
7159 	if (!(priv->status & STATUS_ASSOCIATED))
7160 		return 0;
7161 
7162 	qos_data = &priv->assoc_network->qos_data;
7163 
7164 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7165 		if (unicast == 0)
7166 			qos_data->active = 0;
7167 		else
7168 			qos_data->active = qos_data->supported;
7169 	}
7170 	active = qos_data->active;
7171 	supported = qos_data->supported;
7172 	IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7173 		      "unicast %d\n",
7174 		      priv->qos_data.qos_enable, active, supported, unicast);
7175 	if (active && priv->qos_data.qos_enable)
7176 		return 1;
7177 
7178 	return 0;
7179 
7180 }
7181 /*
7182 * add QoS parameter to the TX command
7183 */
7184 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7185 					u16 priority,
7186 					struct tfd_data *tfd)
7187 {
7188 	int tx_queue_id = 0;
7189 
7190 
7191 	tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7192 	tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7193 
7194 	if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7195 		tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7196 		tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7197 	}
7198 	return 0;
7199 }
7200 
7201 /*
7202 * background support to run QoS activate functionality
7203 */
7204 static void ipw_bg_qos_activate(struct work_struct *work)
7205 {
7206 	struct ipw_priv *priv =
7207 		container_of(work, struct ipw_priv, qos_activate);
7208 
7209 	mutex_lock(&priv->mutex);
7210 
7211 	if (priv->status & STATUS_ASSOCIATED)
7212 		ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7213 
7214 	mutex_unlock(&priv->mutex);
7215 }
7216 
7217 static int ipw_handle_probe_response(struct net_device *dev,
7218 				     struct libipw_probe_response *resp,
7219 				     struct libipw_network *network)
7220 {
7221 	struct ipw_priv *priv = libipw_priv(dev);
7222 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7223 			      (network == priv->assoc_network));
7224 
7225 	ipw_qos_handle_probe_response(priv, active_network, network);
7226 
7227 	return 0;
7228 }
7229 
7230 static int ipw_handle_beacon(struct net_device *dev,
7231 			     struct libipw_beacon *resp,
7232 			     struct libipw_network *network)
7233 {
7234 	struct ipw_priv *priv = libipw_priv(dev);
7235 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7236 			      (network == priv->assoc_network));
7237 
7238 	ipw_qos_handle_probe_response(priv, active_network, network);
7239 
7240 	return 0;
7241 }
7242 
7243 static int ipw_handle_assoc_response(struct net_device *dev,
7244 				     struct libipw_assoc_response *resp,
7245 				     struct libipw_network *network)
7246 {
7247 	struct ipw_priv *priv = libipw_priv(dev);
7248 	ipw_qos_association_resp(priv, network);
7249 	return 0;
7250 }
7251 
7252 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7253 				       *qos_param)
7254 {
7255 	return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7256 				sizeof(*qos_param) * 3, qos_param);
7257 }
7258 
7259 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7260 				     *qos_param)
7261 {
7262 	return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7263 				qos_param);
7264 }
7265 
7266 #endif				/* CONFIG_IPW2200_QOS */
7267 
7268 static int ipw_associate_network(struct ipw_priv *priv,
7269 				 struct libipw_network *network,
7270 				 struct ipw_supported_rates *rates, int roaming)
7271 {
7272 	int err;
7273 
7274 	if (priv->config & CFG_FIXED_RATE)
7275 		ipw_set_fixed_rate(priv, network->mode);
7276 
7277 	if (!(priv->config & CFG_STATIC_ESSID)) {
7278 		priv->essid_len = min(network->ssid_len,
7279 				      (u8) IW_ESSID_MAX_SIZE);
7280 		memcpy(priv->essid, network->ssid, priv->essid_len);
7281 	}
7282 
7283 	network->last_associate = jiffies;
7284 
7285 	memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7286 	priv->assoc_request.channel = network->channel;
7287 	priv->assoc_request.auth_key = 0;
7288 
7289 	if ((priv->capability & CAP_PRIVACY_ON) &&
7290 	    (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7291 		priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7292 		priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7293 
7294 		if (priv->ieee->sec.level == SEC_LEVEL_1)
7295 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7296 
7297 	} else if ((priv->capability & CAP_PRIVACY_ON) &&
7298 		   (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7299 		priv->assoc_request.auth_type = AUTH_LEAP;
7300 	else
7301 		priv->assoc_request.auth_type = AUTH_OPEN;
7302 
7303 	if (priv->ieee->wpa_ie_len) {
7304 		priv->assoc_request.policy_support = cpu_to_le16(0x02);	/* RSN active */
7305 		ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7306 				 priv->ieee->wpa_ie_len);
7307 	}
7308 
7309 	/*
7310 	 * It is valid for our ieee device to support multiple modes, but
7311 	 * when it comes to associating to a given network we have to choose
7312 	 * just one mode.
7313 	 */
7314 	if (network->mode & priv->ieee->mode & IEEE_A)
7315 		priv->assoc_request.ieee_mode = IPW_A_MODE;
7316 	else if (network->mode & priv->ieee->mode & IEEE_G)
7317 		priv->assoc_request.ieee_mode = IPW_G_MODE;
7318 	else if (network->mode & priv->ieee->mode & IEEE_B)
7319 		priv->assoc_request.ieee_mode = IPW_B_MODE;
7320 
7321 	priv->assoc_request.capability = cpu_to_le16(network->capability);
7322 	if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7323 	    && !(priv->config & CFG_PREAMBLE_LONG)) {
7324 		priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7325 	} else {
7326 		priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7327 
7328 		/* Clear the short preamble if we won't be supporting it */
7329 		priv->assoc_request.capability &=
7330 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7331 	}
7332 
7333 	/* Clear capability bits that aren't used in Ad Hoc */
7334 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7335 		priv->assoc_request.capability &=
7336 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7337 
7338 	IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7339 			roaming ? "Rea" : "A",
7340 			priv->essid_len, priv->essid,
7341 			network->channel,
7342 			ipw_modes[priv->assoc_request.ieee_mode],
7343 			rates->num_rates,
7344 			(priv->assoc_request.preamble_length ==
7345 			 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7346 			network->capability &
7347 			WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7348 			priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7349 			priv->capability & CAP_PRIVACY_ON ?
7350 			(priv->capability & CAP_SHARED_KEY ? "(shared)" :
7351 			 "(open)") : "",
7352 			priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7353 			priv->capability & CAP_PRIVACY_ON ?
7354 			'1' + priv->ieee->sec.active_key : '.',
7355 			priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7356 
7357 	priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7358 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7359 	    (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7360 		priv->assoc_request.assoc_type = HC_IBSS_START;
7361 		priv->assoc_request.assoc_tsf_msw = 0;
7362 		priv->assoc_request.assoc_tsf_lsw = 0;
7363 	} else {
7364 		if (unlikely(roaming))
7365 			priv->assoc_request.assoc_type = HC_REASSOCIATE;
7366 		else
7367 			priv->assoc_request.assoc_type = HC_ASSOCIATE;
7368 		priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7369 		priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7370 	}
7371 
7372 	memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7373 
7374 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7375 		eth_broadcast_addr(priv->assoc_request.dest);
7376 		priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7377 	} else {
7378 		memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7379 		priv->assoc_request.atim_window = 0;
7380 	}
7381 
7382 	priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7383 
7384 	err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7385 	if (err) {
7386 		IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7387 		return err;
7388 	}
7389 
7390 	rates->ieee_mode = priv->assoc_request.ieee_mode;
7391 	rates->purpose = IPW_RATE_CONNECT;
7392 	ipw_send_supported_rates(priv, rates);
7393 
7394 	if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7395 		priv->sys_config.dot11g_auto_detection = 1;
7396 	else
7397 		priv->sys_config.dot11g_auto_detection = 0;
7398 
7399 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7400 		priv->sys_config.answer_broadcast_ssid_probe = 1;
7401 	else
7402 		priv->sys_config.answer_broadcast_ssid_probe = 0;
7403 
7404 	err = ipw_send_system_config(priv);
7405 	if (err) {
7406 		IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7407 		return err;
7408 	}
7409 
7410 	IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7411 	err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7412 	if (err) {
7413 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7414 		return err;
7415 	}
7416 
7417 	/*
7418 	 * If preemption is enabled, it is possible for the association
7419 	 * to complete before we return from ipw_send_associate.  Therefore
7420 	 * we have to be sure and update our priviate data first.
7421 	 */
7422 	priv->channel = network->channel;
7423 	memcpy(priv->bssid, network->bssid, ETH_ALEN);
7424 	priv->status |= STATUS_ASSOCIATING;
7425 	priv->status &= ~STATUS_SECURITY_UPDATED;
7426 
7427 	priv->assoc_network = network;
7428 
7429 #ifdef CONFIG_IPW2200_QOS
7430 	ipw_qos_association(priv, network);
7431 #endif
7432 
7433 	err = ipw_send_associate(priv, &priv->assoc_request);
7434 	if (err) {
7435 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7436 		return err;
7437 	}
7438 
7439 	IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7440 		  priv->essid_len, priv->essid, priv->bssid);
7441 
7442 	return 0;
7443 }
7444 
7445 static void ipw_roam(void *data)
7446 {
7447 	struct ipw_priv *priv = data;
7448 	struct libipw_network *network = NULL;
7449 	struct ipw_network_match match = {
7450 		.network = priv->assoc_network
7451 	};
7452 
7453 	/* The roaming process is as follows:
7454 	 *
7455 	 * 1.  Missed beacon threshold triggers the roaming process by
7456 	 *     setting the status ROAM bit and requesting a scan.
7457 	 * 2.  When the scan completes, it schedules the ROAM work
7458 	 * 3.  The ROAM work looks at all of the known networks for one that
7459 	 *     is a better network than the currently associated.  If none
7460 	 *     found, the ROAM process is over (ROAM bit cleared)
7461 	 * 4.  If a better network is found, a disassociation request is
7462 	 *     sent.
7463 	 * 5.  When the disassociation completes, the roam work is again
7464 	 *     scheduled.  The second time through, the driver is no longer
7465 	 *     associated, and the newly selected network is sent an
7466 	 *     association request.
7467 	 * 6.  At this point ,the roaming process is complete and the ROAM
7468 	 *     status bit is cleared.
7469 	 */
7470 
7471 	/* If we are no longer associated, and the roaming bit is no longer
7472 	 * set, then we are not actively roaming, so just return */
7473 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7474 		return;
7475 
7476 	if (priv->status & STATUS_ASSOCIATED) {
7477 		/* First pass through ROAM process -- look for a better
7478 		 * network */
7479 		unsigned long flags;
7480 		u8 rssi = priv->assoc_network->stats.rssi;
7481 		priv->assoc_network->stats.rssi = -128;
7482 		spin_lock_irqsave(&priv->ieee->lock, flags);
7483 		list_for_each_entry(network, &priv->ieee->network_list, list) {
7484 			if (network != priv->assoc_network)
7485 				ipw_best_network(priv, &match, network, 1);
7486 		}
7487 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
7488 		priv->assoc_network->stats.rssi = rssi;
7489 
7490 		if (match.network == priv->assoc_network) {
7491 			IPW_DEBUG_ASSOC("No better APs in this network to "
7492 					"roam to.\n");
7493 			priv->status &= ~STATUS_ROAMING;
7494 			ipw_debug_config(priv);
7495 			return;
7496 		}
7497 
7498 		ipw_send_disassociate(priv, 1);
7499 		priv->assoc_network = match.network;
7500 
7501 		return;
7502 	}
7503 
7504 	/* Second pass through ROAM process -- request association */
7505 	ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7506 	ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7507 	priv->status &= ~STATUS_ROAMING;
7508 }
7509 
7510 static void ipw_bg_roam(struct work_struct *work)
7511 {
7512 	struct ipw_priv *priv =
7513 		container_of(work, struct ipw_priv, roam);
7514 	mutex_lock(&priv->mutex);
7515 	ipw_roam(priv);
7516 	mutex_unlock(&priv->mutex);
7517 }
7518 
7519 static int ipw_associate(void *data)
7520 {
7521 	struct ipw_priv *priv = data;
7522 
7523 	struct libipw_network *network = NULL;
7524 	struct ipw_network_match match = {
7525 		.network = NULL
7526 	};
7527 	struct ipw_supported_rates *rates;
7528 	struct list_head *element;
7529 	unsigned long flags;
7530 
7531 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7532 		IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7533 		return 0;
7534 	}
7535 
7536 	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7537 		IPW_DEBUG_ASSOC("Not attempting association (already in "
7538 				"progress)\n");
7539 		return 0;
7540 	}
7541 
7542 	if (priv->status & STATUS_DISASSOCIATING) {
7543 		IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7544 		schedule_work(&priv->associate);
7545 		return 0;
7546 	}
7547 
7548 	if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7549 		IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7550 				"initialized)\n");
7551 		return 0;
7552 	}
7553 
7554 	if (!(priv->config & CFG_ASSOCIATE) &&
7555 	    !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7556 		IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7557 		return 0;
7558 	}
7559 
7560 	/* Protect our use of the network_list */
7561 	spin_lock_irqsave(&priv->ieee->lock, flags);
7562 	list_for_each_entry(network, &priv->ieee->network_list, list)
7563 	    ipw_best_network(priv, &match, network, 0);
7564 
7565 	network = match.network;
7566 	rates = &match.rates;
7567 
7568 	if (network == NULL &&
7569 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
7570 	    priv->config & CFG_ADHOC_CREATE &&
7571 	    priv->config & CFG_STATIC_ESSID &&
7572 	    priv->config & CFG_STATIC_CHANNEL) {
7573 		/* Use oldest network if the free list is empty */
7574 		if (list_empty(&priv->ieee->network_free_list)) {
7575 			struct libipw_network *oldest = NULL;
7576 			struct libipw_network *target;
7577 
7578 			list_for_each_entry(target, &priv->ieee->network_list, list) {
7579 				if ((oldest == NULL) ||
7580 				    (target->last_scanned < oldest->last_scanned))
7581 					oldest = target;
7582 			}
7583 
7584 			/* If there are no more slots, expire the oldest */
7585 			list_del(&oldest->list);
7586 			target = oldest;
7587 			IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7588 					target->ssid_len, target->ssid,
7589 					target->bssid);
7590 			list_add_tail(&target->list,
7591 				      &priv->ieee->network_free_list);
7592 		}
7593 
7594 		element = priv->ieee->network_free_list.next;
7595 		network = list_entry(element, struct libipw_network, list);
7596 		ipw_adhoc_create(priv, network);
7597 		rates = &priv->rates;
7598 		list_del(element);
7599 		list_add_tail(&network->list, &priv->ieee->network_list);
7600 	}
7601 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7602 
7603 	/* If we reached the end of the list, then we don't have any valid
7604 	 * matching APs */
7605 	if (!network) {
7606 		ipw_debug_config(priv);
7607 
7608 		if (!(priv->status & STATUS_SCANNING)) {
7609 			if (!(priv->config & CFG_SPEED_SCAN))
7610 				schedule_delayed_work(&priv->request_scan,
7611 						      SCAN_INTERVAL);
7612 			else
7613 				schedule_delayed_work(&priv->request_scan, 0);
7614 		}
7615 
7616 		return 0;
7617 	}
7618 
7619 	ipw_associate_network(priv, network, rates, 0);
7620 
7621 	return 1;
7622 }
7623 
7624 static void ipw_bg_associate(struct work_struct *work)
7625 {
7626 	struct ipw_priv *priv =
7627 		container_of(work, struct ipw_priv, associate);
7628 	mutex_lock(&priv->mutex);
7629 	ipw_associate(priv);
7630 	mutex_unlock(&priv->mutex);
7631 }
7632 
7633 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7634 				      struct sk_buff *skb)
7635 {
7636 	struct ieee80211_hdr *hdr;
7637 	u16 fc;
7638 
7639 	hdr = (struct ieee80211_hdr *)skb->data;
7640 	fc = le16_to_cpu(hdr->frame_control);
7641 	if (!(fc & IEEE80211_FCTL_PROTECTED))
7642 		return;
7643 
7644 	fc &= ~IEEE80211_FCTL_PROTECTED;
7645 	hdr->frame_control = cpu_to_le16(fc);
7646 	switch (priv->ieee->sec.level) {
7647 	case SEC_LEVEL_3:
7648 		/* Remove CCMP HDR */
7649 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7650 			skb->data + LIBIPW_3ADDR_LEN + 8,
7651 			skb->len - LIBIPW_3ADDR_LEN - 8);
7652 		skb_trim(skb, skb->len - 16);	/* CCMP_HDR_LEN + CCMP_MIC_LEN */
7653 		break;
7654 	case SEC_LEVEL_2:
7655 		break;
7656 	case SEC_LEVEL_1:
7657 		/* Remove IV */
7658 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7659 			skb->data + LIBIPW_3ADDR_LEN + 4,
7660 			skb->len - LIBIPW_3ADDR_LEN - 4);
7661 		skb_trim(skb, skb->len - 8);	/* IV + ICV */
7662 		break;
7663 	case SEC_LEVEL_0:
7664 		break;
7665 	default:
7666 		printk(KERN_ERR "Unknown security level %d\n",
7667 		       priv->ieee->sec.level);
7668 		break;
7669 	}
7670 }
7671 
7672 static void ipw_handle_data_packet(struct ipw_priv *priv,
7673 				   struct ipw_rx_mem_buffer *rxb,
7674 				   struct libipw_rx_stats *stats)
7675 {
7676 	struct net_device *dev = priv->net_dev;
7677 	struct libipw_hdr_4addr *hdr;
7678 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7679 
7680 	/* We received data from the HW, so stop the watchdog */
7681 	netif_trans_update(dev);
7682 
7683 	/* We only process data packets if the
7684 	 * interface is open */
7685 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7686 		     skb_tailroom(rxb->skb))) {
7687 		dev->stats.rx_errors++;
7688 		priv->wstats.discard.misc++;
7689 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7690 		return;
7691 	} else if (unlikely(!netif_running(priv->net_dev))) {
7692 		dev->stats.rx_dropped++;
7693 		priv->wstats.discard.misc++;
7694 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7695 		return;
7696 	}
7697 
7698 	/* Advance skb->data to the start of the actual payload */
7699 	skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7700 
7701 	/* Set the size of the skb to the size of the frame */
7702 	skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7703 
7704 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7705 
7706 	/* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7707 	hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7708 	if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7709 	    (is_multicast_ether_addr(hdr->addr1) ?
7710 	     !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7711 		ipw_rebuild_decrypted_skb(priv, rxb->skb);
7712 
7713 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7714 		dev->stats.rx_errors++;
7715 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7716 		rxb->skb = NULL;
7717 		__ipw_led_activity_on(priv);
7718 	}
7719 }
7720 
7721 #ifdef CONFIG_IPW2200_RADIOTAP
7722 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7723 					   struct ipw_rx_mem_buffer *rxb,
7724 					   struct libipw_rx_stats *stats)
7725 {
7726 	struct net_device *dev = priv->net_dev;
7727 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7728 	struct ipw_rx_frame *frame = &pkt->u.frame;
7729 
7730 	/* initial pull of some data */
7731 	u16 received_channel = frame->received_channel;
7732 	u8 antennaAndPhy = frame->antennaAndPhy;
7733 	s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;	/* call it signed anyhow */
7734 	u16 pktrate = frame->rate;
7735 
7736 	/* Magic struct that slots into the radiotap header -- no reason
7737 	 * to build this manually element by element, we can write it much
7738 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
7739 	struct ipw_rt_hdr *ipw_rt;
7740 
7741 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7742 
7743 	/* We received data from the HW, so stop the watchdog */
7744 	netif_trans_update(dev);
7745 
7746 	/* We only process data packets if the
7747 	 * interface is open */
7748 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7749 		     skb_tailroom(rxb->skb))) {
7750 		dev->stats.rx_errors++;
7751 		priv->wstats.discard.misc++;
7752 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7753 		return;
7754 	} else if (unlikely(!netif_running(priv->net_dev))) {
7755 		dev->stats.rx_dropped++;
7756 		priv->wstats.discard.misc++;
7757 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7758 		return;
7759 	}
7760 
7761 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7762 	 * that now */
7763 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7764 		/* FIXME: Should alloc bigger skb instead */
7765 		dev->stats.rx_dropped++;
7766 		priv->wstats.discard.misc++;
7767 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7768 		return;
7769 	}
7770 
7771 	/* copy the frame itself */
7772 	memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7773 		rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7774 
7775 	ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7776 
7777 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7778 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7779 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr));	/* total header+data */
7780 
7781 	/* Big bitfield of all the fields we provide in radiotap */
7782 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7783 	     (1 << IEEE80211_RADIOTAP_TSFT) |
7784 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7785 	     (1 << IEEE80211_RADIOTAP_RATE) |
7786 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7787 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7788 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7789 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7790 
7791 	/* Zero the flags, we'll add to them as we go */
7792 	ipw_rt->rt_flags = 0;
7793 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7794 			       frame->parent_tsf[2] << 16 |
7795 			       frame->parent_tsf[1] << 8  |
7796 			       frame->parent_tsf[0]);
7797 
7798 	/* Convert signal to DBM */
7799 	ipw_rt->rt_dbmsignal = antsignal;
7800 	ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7801 
7802 	/* Convert the channel data and set the flags */
7803 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7804 	if (received_channel > 14) {	/* 802.11a */
7805 		ipw_rt->rt_chbitmask =
7806 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7807 	} else if (antennaAndPhy & 32) {	/* 802.11b */
7808 		ipw_rt->rt_chbitmask =
7809 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7810 	} else {		/* 802.11g */
7811 		ipw_rt->rt_chbitmask =
7812 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7813 	}
7814 
7815 	/* set the rate in multiples of 500k/s */
7816 	switch (pktrate) {
7817 	case IPW_TX_RATE_1MB:
7818 		ipw_rt->rt_rate = 2;
7819 		break;
7820 	case IPW_TX_RATE_2MB:
7821 		ipw_rt->rt_rate = 4;
7822 		break;
7823 	case IPW_TX_RATE_5MB:
7824 		ipw_rt->rt_rate = 10;
7825 		break;
7826 	case IPW_TX_RATE_6MB:
7827 		ipw_rt->rt_rate = 12;
7828 		break;
7829 	case IPW_TX_RATE_9MB:
7830 		ipw_rt->rt_rate = 18;
7831 		break;
7832 	case IPW_TX_RATE_11MB:
7833 		ipw_rt->rt_rate = 22;
7834 		break;
7835 	case IPW_TX_RATE_12MB:
7836 		ipw_rt->rt_rate = 24;
7837 		break;
7838 	case IPW_TX_RATE_18MB:
7839 		ipw_rt->rt_rate = 36;
7840 		break;
7841 	case IPW_TX_RATE_24MB:
7842 		ipw_rt->rt_rate = 48;
7843 		break;
7844 	case IPW_TX_RATE_36MB:
7845 		ipw_rt->rt_rate = 72;
7846 		break;
7847 	case IPW_TX_RATE_48MB:
7848 		ipw_rt->rt_rate = 96;
7849 		break;
7850 	case IPW_TX_RATE_54MB:
7851 		ipw_rt->rt_rate = 108;
7852 		break;
7853 	default:
7854 		ipw_rt->rt_rate = 0;
7855 		break;
7856 	}
7857 
7858 	/* antenna number */
7859 	ipw_rt->rt_antenna = (antennaAndPhy & 3);	/* Is this right? */
7860 
7861 	/* set the preamble flag if we have it */
7862 	if ((antennaAndPhy & 64))
7863 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7864 
7865 	/* Set the size of the skb to the size of the frame */
7866 	skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7867 
7868 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7869 
7870 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7871 		dev->stats.rx_errors++;
7872 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7873 		rxb->skb = NULL;
7874 		/* no LED during capture */
7875 	}
7876 }
7877 #endif
7878 
7879 #ifdef CONFIG_IPW2200_PROMISCUOUS
7880 #define libipw_is_probe_response(fc) \
7881    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7882     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7883 
7884 #define libipw_is_management(fc) \
7885    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7886 
7887 #define libipw_is_control(fc) \
7888    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7889 
7890 #define libipw_is_data(fc) \
7891    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7892 
7893 #define libipw_is_assoc_request(fc) \
7894    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7895 
7896 #define libipw_is_reassoc_request(fc) \
7897    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7898 
7899 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7900 				      struct ipw_rx_mem_buffer *rxb,
7901 				      struct libipw_rx_stats *stats)
7902 {
7903 	struct net_device *dev = priv->prom_net_dev;
7904 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7905 	struct ipw_rx_frame *frame = &pkt->u.frame;
7906 	struct ipw_rt_hdr *ipw_rt;
7907 
7908 	/* First cache any information we need before we overwrite
7909 	 * the information provided in the skb from the hardware */
7910 	struct ieee80211_hdr *hdr;
7911 	u16 channel = frame->received_channel;
7912 	u8 phy_flags = frame->antennaAndPhy;
7913 	s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7914 	s8 noise = (s8) le16_to_cpu(frame->noise);
7915 	u8 rate = frame->rate;
7916 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7917 	struct sk_buff *skb;
7918 	int hdr_only = 0;
7919 	u16 filter = priv->prom_priv->filter;
7920 
7921 	/* If the filter is set to not include Rx frames then return */
7922 	if (filter & IPW_PROM_NO_RX)
7923 		return;
7924 
7925 	/* We received data from the HW, so stop the watchdog */
7926 	netif_trans_update(dev);
7927 
7928 	if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7929 		dev->stats.rx_errors++;
7930 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7931 		return;
7932 	}
7933 
7934 	/* We only process data packets if the interface is open */
7935 	if (unlikely(!netif_running(dev))) {
7936 		dev->stats.rx_dropped++;
7937 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7938 		return;
7939 	}
7940 
7941 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7942 	 * that now */
7943 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7944 		/* FIXME: Should alloc bigger skb instead */
7945 		dev->stats.rx_dropped++;
7946 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7947 		return;
7948 	}
7949 
7950 	hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7951 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7952 		if (filter & IPW_PROM_NO_MGMT)
7953 			return;
7954 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7955 			hdr_only = 1;
7956 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7957 		if (filter & IPW_PROM_NO_CTL)
7958 			return;
7959 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
7960 			hdr_only = 1;
7961 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7962 		if (filter & IPW_PROM_NO_DATA)
7963 			return;
7964 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
7965 			hdr_only = 1;
7966 	}
7967 
7968 	/* Copy the SKB since this is for the promiscuous side */
7969 	skb = skb_copy(rxb->skb, GFP_ATOMIC);
7970 	if (skb == NULL) {
7971 		IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7972 		return;
7973 	}
7974 
7975 	/* copy the frame data to write after where the radiotap header goes */
7976 	ipw_rt = (void *)skb->data;
7977 
7978 	if (hdr_only)
7979 		len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7980 
7981 	memcpy(ipw_rt->payload, hdr, len);
7982 
7983 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7984 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7985 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));	/* total header+data */
7986 
7987 	/* Set the size of the skb to the size of the frame */
7988 	skb_put(skb, sizeof(*ipw_rt) + len);
7989 
7990 	/* Big bitfield of all the fields we provide in radiotap */
7991 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7992 	     (1 << IEEE80211_RADIOTAP_TSFT) |
7993 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7994 	     (1 << IEEE80211_RADIOTAP_RATE) |
7995 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7996 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7997 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7998 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7999 
8000 	/* Zero the flags, we'll add to them as we go */
8001 	ipw_rt->rt_flags = 0;
8002 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8003 			       frame->parent_tsf[2] << 16 |
8004 			       frame->parent_tsf[1] << 8  |
8005 			       frame->parent_tsf[0]);
8006 
8007 	/* Convert to DBM */
8008 	ipw_rt->rt_dbmsignal = signal;
8009 	ipw_rt->rt_dbmnoise = noise;
8010 
8011 	/* Convert the channel data and set the flags */
8012 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8013 	if (channel > 14) {	/* 802.11a */
8014 		ipw_rt->rt_chbitmask =
8015 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8016 	} else if (phy_flags & (1 << 5)) {	/* 802.11b */
8017 		ipw_rt->rt_chbitmask =
8018 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8019 	} else {		/* 802.11g */
8020 		ipw_rt->rt_chbitmask =
8021 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8022 	}
8023 
8024 	/* set the rate in multiples of 500k/s */
8025 	switch (rate) {
8026 	case IPW_TX_RATE_1MB:
8027 		ipw_rt->rt_rate = 2;
8028 		break;
8029 	case IPW_TX_RATE_2MB:
8030 		ipw_rt->rt_rate = 4;
8031 		break;
8032 	case IPW_TX_RATE_5MB:
8033 		ipw_rt->rt_rate = 10;
8034 		break;
8035 	case IPW_TX_RATE_6MB:
8036 		ipw_rt->rt_rate = 12;
8037 		break;
8038 	case IPW_TX_RATE_9MB:
8039 		ipw_rt->rt_rate = 18;
8040 		break;
8041 	case IPW_TX_RATE_11MB:
8042 		ipw_rt->rt_rate = 22;
8043 		break;
8044 	case IPW_TX_RATE_12MB:
8045 		ipw_rt->rt_rate = 24;
8046 		break;
8047 	case IPW_TX_RATE_18MB:
8048 		ipw_rt->rt_rate = 36;
8049 		break;
8050 	case IPW_TX_RATE_24MB:
8051 		ipw_rt->rt_rate = 48;
8052 		break;
8053 	case IPW_TX_RATE_36MB:
8054 		ipw_rt->rt_rate = 72;
8055 		break;
8056 	case IPW_TX_RATE_48MB:
8057 		ipw_rt->rt_rate = 96;
8058 		break;
8059 	case IPW_TX_RATE_54MB:
8060 		ipw_rt->rt_rate = 108;
8061 		break;
8062 	default:
8063 		ipw_rt->rt_rate = 0;
8064 		break;
8065 	}
8066 
8067 	/* antenna number */
8068 	ipw_rt->rt_antenna = (phy_flags & 3);
8069 
8070 	/* set the preamble flag if we have it */
8071 	if (phy_flags & (1 << 6))
8072 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8073 
8074 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8075 
8076 	if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8077 		dev->stats.rx_errors++;
8078 		dev_kfree_skb_any(skb);
8079 	}
8080 }
8081 #endif
8082 
8083 static int is_network_packet(struct ipw_priv *priv,
8084 				    struct libipw_hdr_4addr *header)
8085 {
8086 	/* Filter incoming packets to determine if they are targeted toward
8087 	 * this network, discarding packets coming from ourselves */
8088 	switch (priv->ieee->iw_mode) {
8089 	case IW_MODE_ADHOC:	/* Header: Dest. | Source    | BSSID */
8090 		/* packets from our adapter are dropped (echo) */
8091 		if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8092 			return 0;
8093 
8094 		/* {broad,multi}cast packets to our BSSID go through */
8095 		if (is_multicast_ether_addr(header->addr1))
8096 			return ether_addr_equal(header->addr3, priv->bssid);
8097 
8098 		/* packets to our adapter go through */
8099 		return ether_addr_equal(header->addr1,
8100 					priv->net_dev->dev_addr);
8101 
8102 	case IW_MODE_INFRA:	/* Header: Dest. | BSSID | Source */
8103 		/* packets from our adapter are dropped (echo) */
8104 		if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8105 			return 0;
8106 
8107 		/* {broad,multi}cast packets to our BSS go through */
8108 		if (is_multicast_ether_addr(header->addr1))
8109 			return ether_addr_equal(header->addr2, priv->bssid);
8110 
8111 		/* packets to our adapter go through */
8112 		return ether_addr_equal(header->addr1,
8113 					priv->net_dev->dev_addr);
8114 	}
8115 
8116 	return 1;
8117 }
8118 
8119 #define IPW_PACKET_RETRY_TIME HZ
8120 
8121 static  int is_duplicate_packet(struct ipw_priv *priv,
8122 				      struct libipw_hdr_4addr *header)
8123 {
8124 	u16 sc = le16_to_cpu(header->seq_ctl);
8125 	u16 seq = WLAN_GET_SEQ_SEQ(sc);
8126 	u16 frag = WLAN_GET_SEQ_FRAG(sc);
8127 	u16 *last_seq, *last_frag;
8128 	unsigned long *last_time;
8129 
8130 	switch (priv->ieee->iw_mode) {
8131 	case IW_MODE_ADHOC:
8132 		{
8133 			struct list_head *p;
8134 			struct ipw_ibss_seq *entry = NULL;
8135 			u8 *mac = header->addr2;
8136 			int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8137 
8138 			list_for_each(p, &priv->ibss_mac_hash[index]) {
8139 				entry =
8140 				    list_entry(p, struct ipw_ibss_seq, list);
8141 				if (ether_addr_equal(entry->mac, mac))
8142 					break;
8143 			}
8144 			if (p == &priv->ibss_mac_hash[index]) {
8145 				entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8146 				if (!entry) {
8147 					IPW_ERROR
8148 					    ("Cannot malloc new mac entry\n");
8149 					return 0;
8150 				}
8151 				memcpy(entry->mac, mac, ETH_ALEN);
8152 				entry->seq_num = seq;
8153 				entry->frag_num = frag;
8154 				entry->packet_time = jiffies;
8155 				list_add(&entry->list,
8156 					 &priv->ibss_mac_hash[index]);
8157 				return 0;
8158 			}
8159 			last_seq = &entry->seq_num;
8160 			last_frag = &entry->frag_num;
8161 			last_time = &entry->packet_time;
8162 			break;
8163 		}
8164 	case IW_MODE_INFRA:
8165 		last_seq = &priv->last_seq_num;
8166 		last_frag = &priv->last_frag_num;
8167 		last_time = &priv->last_packet_time;
8168 		break;
8169 	default:
8170 		return 0;
8171 	}
8172 	if ((*last_seq == seq) &&
8173 	    time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8174 		if (*last_frag == frag)
8175 			goto drop;
8176 		if (*last_frag + 1 != frag)
8177 			/* out-of-order fragment */
8178 			goto drop;
8179 	} else
8180 		*last_seq = seq;
8181 
8182 	*last_frag = frag;
8183 	*last_time = jiffies;
8184 	return 0;
8185 
8186       drop:
8187 	/* Comment this line now since we observed the card receives
8188 	 * duplicate packets but the FCTL_RETRY bit is not set in the
8189 	 * IBSS mode with fragmentation enabled.
8190 	 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8191 	return 1;
8192 }
8193 
8194 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8195 				   struct ipw_rx_mem_buffer *rxb,
8196 				   struct libipw_rx_stats *stats)
8197 {
8198 	struct sk_buff *skb = rxb->skb;
8199 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8200 	struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8201 	    (skb->data + IPW_RX_FRAME_SIZE);
8202 
8203 	libipw_rx_mgt(priv->ieee, header, stats);
8204 
8205 	if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8206 	    ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8207 	      IEEE80211_STYPE_PROBE_RESP) ||
8208 	     (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8209 	      IEEE80211_STYPE_BEACON))) {
8210 		if (ether_addr_equal(header->addr3, priv->bssid))
8211 			ipw_add_station(priv, header->addr2);
8212 	}
8213 
8214 	if (priv->config & CFG_NET_STATS) {
8215 		IPW_DEBUG_HC("sending stat packet\n");
8216 
8217 		/* Set the size of the skb to the size of the full
8218 		 * ipw header and 802.11 frame */
8219 		skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8220 			IPW_RX_FRAME_SIZE);
8221 
8222 		/* Advance past the ipw packet header to the 802.11 frame */
8223 		skb_pull(skb, IPW_RX_FRAME_SIZE);
8224 
8225 		/* Push the libipw_rx_stats before the 802.11 frame */
8226 		memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8227 
8228 		skb->dev = priv->ieee->dev;
8229 
8230 		/* Point raw at the libipw_stats */
8231 		skb_reset_mac_header(skb);
8232 
8233 		skb->pkt_type = PACKET_OTHERHOST;
8234 		skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8235 		memset(skb->cb, 0, sizeof(rxb->skb->cb));
8236 		netif_rx(skb);
8237 		rxb->skb = NULL;
8238 	}
8239 }
8240 
8241 /*
8242  * Main entry function for receiving a packet with 80211 headers.  This
8243  * should be called when ever the FW has notified us that there is a new
8244  * skb in the receive queue.
8245  */
8246 static void ipw_rx(struct ipw_priv *priv)
8247 {
8248 	struct ipw_rx_mem_buffer *rxb;
8249 	struct ipw_rx_packet *pkt;
8250 	struct libipw_hdr_4addr *header;
8251 	u32 r, w, i;
8252 	u8 network_packet;
8253 	u8 fill_rx = 0;
8254 
8255 	r = ipw_read32(priv, IPW_RX_READ_INDEX);
8256 	w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8257 	i = priv->rxq->read;
8258 
8259 	if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8260 		fill_rx = 1;
8261 
8262 	while (i != r) {
8263 		rxb = priv->rxq->queue[i];
8264 		if (unlikely(rxb == NULL)) {
8265 			printk(KERN_CRIT "Queue not allocated!\n");
8266 			break;
8267 		}
8268 		priv->rxq->queue[i] = NULL;
8269 
8270 		dma_sync_single_for_cpu(&priv->pci_dev->dev, rxb->dma_addr,
8271 					IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8272 
8273 		pkt = (struct ipw_rx_packet *)rxb->skb->data;
8274 		IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8275 			     pkt->header.message_type,
8276 			     pkt->header.rx_seq_num, pkt->header.control_bits);
8277 
8278 		switch (pkt->header.message_type) {
8279 		case RX_FRAME_TYPE:	/* 802.11 frame */  {
8280 				struct libipw_rx_stats stats = {
8281 					.rssi = pkt->u.frame.rssi_dbm -
8282 					    IPW_RSSI_TO_DBM,
8283 					.signal =
8284 					    pkt->u.frame.rssi_dbm -
8285 					    IPW_RSSI_TO_DBM + 0x100,
8286 					.noise =
8287 					    le16_to_cpu(pkt->u.frame.noise),
8288 					.rate = pkt->u.frame.rate,
8289 					.mac_time = jiffies,
8290 					.received_channel =
8291 					    pkt->u.frame.received_channel,
8292 					.freq =
8293 					    (pkt->u.frame.
8294 					     control & (1 << 0)) ?
8295 					    LIBIPW_24GHZ_BAND :
8296 					    LIBIPW_52GHZ_BAND,
8297 					.len = le16_to_cpu(pkt->u.frame.length),
8298 				};
8299 
8300 				if (stats.rssi != 0)
8301 					stats.mask |= LIBIPW_STATMASK_RSSI;
8302 				if (stats.signal != 0)
8303 					stats.mask |= LIBIPW_STATMASK_SIGNAL;
8304 				if (stats.noise != 0)
8305 					stats.mask |= LIBIPW_STATMASK_NOISE;
8306 				if (stats.rate != 0)
8307 					stats.mask |= LIBIPW_STATMASK_RATE;
8308 
8309 				priv->rx_packets++;
8310 
8311 #ifdef CONFIG_IPW2200_PROMISCUOUS
8312 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8313 		ipw_handle_promiscuous_rx(priv, rxb, &stats);
8314 #endif
8315 
8316 #ifdef CONFIG_IPW2200_MONITOR
8317 				if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8318 #ifdef CONFIG_IPW2200_RADIOTAP
8319 
8320                 ipw_handle_data_packet_monitor(priv,
8321 					       rxb,
8322 					       &stats);
8323 #else
8324 		ipw_handle_data_packet(priv, rxb,
8325 				       &stats);
8326 #endif
8327 					break;
8328 				}
8329 #endif
8330 
8331 				header =
8332 				    (struct libipw_hdr_4addr *)(rxb->skb->
8333 								   data +
8334 								   IPW_RX_FRAME_SIZE);
8335 				/* TODO: Check Ad-Hoc dest/source and make sure
8336 				 * that we are actually parsing these packets
8337 				 * correctly -- we should probably use the
8338 				 * frame control of the packet and disregard
8339 				 * the current iw_mode */
8340 
8341 				network_packet =
8342 				    is_network_packet(priv, header);
8343 				if (network_packet && priv->assoc_network) {
8344 					priv->assoc_network->stats.rssi =
8345 					    stats.rssi;
8346 					priv->exp_avg_rssi =
8347 					    exponential_average(priv->exp_avg_rssi,
8348 					    stats.rssi, DEPTH_RSSI);
8349 				}
8350 
8351 				IPW_DEBUG_RX("Frame: len=%u\n",
8352 					     le16_to_cpu(pkt->u.frame.length));
8353 
8354 				if (le16_to_cpu(pkt->u.frame.length) <
8355 				    libipw_get_hdrlen(le16_to_cpu(
8356 						    header->frame_ctl))) {
8357 					IPW_DEBUG_DROP
8358 					    ("Received packet is too small. "
8359 					     "Dropping.\n");
8360 					priv->net_dev->stats.rx_errors++;
8361 					priv->wstats.discard.misc++;
8362 					break;
8363 				}
8364 
8365 				switch (WLAN_FC_GET_TYPE
8366 					(le16_to_cpu(header->frame_ctl))) {
8367 
8368 				case IEEE80211_FTYPE_MGMT:
8369 					ipw_handle_mgmt_packet(priv, rxb,
8370 							       &stats);
8371 					break;
8372 
8373 				case IEEE80211_FTYPE_CTL:
8374 					break;
8375 
8376 				case IEEE80211_FTYPE_DATA:
8377 					if (unlikely(!network_packet ||
8378 						     is_duplicate_packet(priv,
8379 									 header)))
8380 					{
8381 						IPW_DEBUG_DROP("Dropping: "
8382 							       "%pM, "
8383 							       "%pM, "
8384 							       "%pM\n",
8385 							       header->addr1,
8386 							       header->addr2,
8387 							       header->addr3);
8388 						break;
8389 					}
8390 
8391 					ipw_handle_data_packet(priv, rxb,
8392 							       &stats);
8393 
8394 					break;
8395 				}
8396 				break;
8397 			}
8398 
8399 		case RX_HOST_NOTIFICATION_TYPE:{
8400 				IPW_DEBUG_RX
8401 				    ("Notification: subtype=%02X flags=%02X size=%d\n",
8402 				     pkt->u.notification.subtype,
8403 				     pkt->u.notification.flags,
8404 				     le16_to_cpu(pkt->u.notification.size));
8405 				ipw_rx_notification(priv, &pkt->u.notification);
8406 				break;
8407 			}
8408 
8409 		default:
8410 			IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8411 				     pkt->header.message_type);
8412 			break;
8413 		}
8414 
8415 		/* For now we just don't re-use anything.  We can tweak this
8416 		 * later to try and re-use notification packets and SKBs that
8417 		 * fail to Rx correctly */
8418 		if (rxb->skb != NULL) {
8419 			dev_kfree_skb_any(rxb->skb);
8420 			rxb->skb = NULL;
8421 		}
8422 
8423 		dma_unmap_single(&priv->pci_dev->dev, rxb->dma_addr,
8424 				 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8425 		list_add_tail(&rxb->list, &priv->rxq->rx_used);
8426 
8427 		i = (i + 1) % RX_QUEUE_SIZE;
8428 
8429 		/* If there are a lot of unsued frames, restock the Rx queue
8430 		 * so the ucode won't assert */
8431 		if (fill_rx) {
8432 			priv->rxq->read = i;
8433 			ipw_rx_queue_replenish(priv);
8434 		}
8435 	}
8436 
8437 	/* Backtrack one entry */
8438 	priv->rxq->read = i;
8439 	ipw_rx_queue_restock(priv);
8440 }
8441 
8442 #define DEFAULT_RTS_THRESHOLD     2304U
8443 #define MIN_RTS_THRESHOLD         1U
8444 #define MAX_RTS_THRESHOLD         2304U
8445 #define DEFAULT_BEACON_INTERVAL   100U
8446 #define	DEFAULT_SHORT_RETRY_LIMIT 7U
8447 #define	DEFAULT_LONG_RETRY_LIMIT  4U
8448 
8449 /**
8450  * ipw_sw_reset
8451  * @option: options to control different reset behaviour
8452  * 	    0 = reset everything except the 'disable' module_param
8453  * 	    1 = reset everything and print out driver info (for probe only)
8454  * 	    2 = reset everything
8455  */
8456 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8457 {
8458 	int band, modulation;
8459 	int old_mode = priv->ieee->iw_mode;
8460 
8461 	/* Initialize module parameter values here */
8462 	priv->config = 0;
8463 
8464 	/* We default to disabling the LED code as right now it causes
8465 	 * too many systems to lock up... */
8466 	if (!led_support)
8467 		priv->config |= CFG_NO_LED;
8468 
8469 	if (associate)
8470 		priv->config |= CFG_ASSOCIATE;
8471 	else
8472 		IPW_DEBUG_INFO("Auto associate disabled.\n");
8473 
8474 	if (auto_create)
8475 		priv->config |= CFG_ADHOC_CREATE;
8476 	else
8477 		IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8478 
8479 	priv->config &= ~CFG_STATIC_ESSID;
8480 	priv->essid_len = 0;
8481 	memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8482 
8483 	if (disable && option) {
8484 		priv->status |= STATUS_RF_KILL_SW;
8485 		IPW_DEBUG_INFO("Radio disabled.\n");
8486 	}
8487 
8488 	if (default_channel != 0) {
8489 		priv->config |= CFG_STATIC_CHANNEL;
8490 		priv->channel = default_channel;
8491 		IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8492 		/* TODO: Validate that provided channel is in range */
8493 	}
8494 #ifdef CONFIG_IPW2200_QOS
8495 	ipw_qos_init(priv, qos_enable, qos_burst_enable,
8496 		     burst_duration_CCK, burst_duration_OFDM);
8497 #endif				/* CONFIG_IPW2200_QOS */
8498 
8499 	switch (network_mode) {
8500 	case 1:
8501 		priv->ieee->iw_mode = IW_MODE_ADHOC;
8502 		priv->net_dev->type = ARPHRD_ETHER;
8503 
8504 		break;
8505 #ifdef CONFIG_IPW2200_MONITOR
8506 	case 2:
8507 		priv->ieee->iw_mode = IW_MODE_MONITOR;
8508 #ifdef CONFIG_IPW2200_RADIOTAP
8509 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8510 #else
8511 		priv->net_dev->type = ARPHRD_IEEE80211;
8512 #endif
8513 		break;
8514 #endif
8515 	default:
8516 	case 0:
8517 		priv->net_dev->type = ARPHRD_ETHER;
8518 		priv->ieee->iw_mode = IW_MODE_INFRA;
8519 		break;
8520 	}
8521 
8522 	if (hwcrypto) {
8523 		priv->ieee->host_encrypt = 0;
8524 		priv->ieee->host_encrypt_msdu = 0;
8525 		priv->ieee->host_decrypt = 0;
8526 		priv->ieee->host_mc_decrypt = 0;
8527 	}
8528 	IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8529 
8530 	/* IPW2200/2915 is abled to do hardware fragmentation. */
8531 	priv->ieee->host_open_frag = 0;
8532 
8533 	if ((priv->pci_dev->device == 0x4223) ||
8534 	    (priv->pci_dev->device == 0x4224)) {
8535 		if (option == 1)
8536 			printk(KERN_INFO DRV_NAME
8537 			       ": Detected Intel PRO/Wireless 2915ABG Network "
8538 			       "Connection\n");
8539 		priv->ieee->abg_true = 1;
8540 		band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8541 		modulation = LIBIPW_OFDM_MODULATION |
8542 		    LIBIPW_CCK_MODULATION;
8543 		priv->adapter = IPW_2915ABG;
8544 		priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8545 	} else {
8546 		if (option == 1)
8547 			printk(KERN_INFO DRV_NAME
8548 			       ": Detected Intel PRO/Wireless 2200BG Network "
8549 			       "Connection\n");
8550 
8551 		priv->ieee->abg_true = 0;
8552 		band = LIBIPW_24GHZ_BAND;
8553 		modulation = LIBIPW_OFDM_MODULATION |
8554 		    LIBIPW_CCK_MODULATION;
8555 		priv->adapter = IPW_2200BG;
8556 		priv->ieee->mode = IEEE_G | IEEE_B;
8557 	}
8558 
8559 	priv->ieee->freq_band = band;
8560 	priv->ieee->modulation = modulation;
8561 
8562 	priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8563 
8564 	priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8565 	priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8566 
8567 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8568 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8569 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8570 
8571 	/* If power management is turned on, default to AC mode */
8572 	priv->power_mode = IPW_POWER_AC;
8573 	priv->tx_power = IPW_TX_POWER_DEFAULT;
8574 
8575 	return old_mode == priv->ieee->iw_mode;
8576 }
8577 
8578 /*
8579  * This file defines the Wireless Extension handlers.  It does not
8580  * define any methods of hardware manipulation and relies on the
8581  * functions defined in ipw_main to provide the HW interaction.
8582  *
8583  * The exception to this is the use of the ipw_get_ordinal()
8584  * function used to poll the hardware vs. making unnecessary calls.
8585  *
8586  */
8587 
8588 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8589 {
8590 	if (channel == 0) {
8591 		IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8592 		priv->config &= ~CFG_STATIC_CHANNEL;
8593 		IPW_DEBUG_ASSOC("Attempting to associate with new "
8594 				"parameters.\n");
8595 		ipw_associate(priv);
8596 		return 0;
8597 	}
8598 
8599 	priv->config |= CFG_STATIC_CHANNEL;
8600 
8601 	if (priv->channel == channel) {
8602 		IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8603 			       channel);
8604 		return 0;
8605 	}
8606 
8607 	IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8608 	priv->channel = channel;
8609 
8610 #ifdef CONFIG_IPW2200_MONITOR
8611 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8612 		int i;
8613 		if (priv->status & STATUS_SCANNING) {
8614 			IPW_DEBUG_SCAN("Scan abort triggered due to "
8615 				       "channel change.\n");
8616 			ipw_abort_scan(priv);
8617 		}
8618 
8619 		for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8620 			udelay(10);
8621 
8622 		if (priv->status & STATUS_SCANNING)
8623 			IPW_DEBUG_SCAN("Still scanning...\n");
8624 		else
8625 			IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8626 				       1000 - i);
8627 
8628 		return 0;
8629 	}
8630 #endif				/* CONFIG_IPW2200_MONITOR */
8631 
8632 	/* Network configuration changed -- force [re]association */
8633 	IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8634 	if (!ipw_disassociate(priv))
8635 		ipw_associate(priv);
8636 
8637 	return 0;
8638 }
8639 
8640 static int ipw_wx_set_freq(struct net_device *dev,
8641 			   struct iw_request_info *info,
8642 			   union iwreq_data *wrqu, char *extra)
8643 {
8644 	struct ipw_priv *priv = libipw_priv(dev);
8645 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8646 	struct iw_freq *fwrq = &wrqu->freq;
8647 	int ret = 0, i;
8648 	u8 channel, flags;
8649 	int band;
8650 
8651 	if (fwrq->m == 0) {
8652 		IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8653 		mutex_lock(&priv->mutex);
8654 		ret = ipw_set_channel(priv, 0);
8655 		mutex_unlock(&priv->mutex);
8656 		return ret;
8657 	}
8658 	/* if setting by freq convert to channel */
8659 	if (fwrq->e == 1) {
8660 		channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8661 		if (channel == 0)
8662 			return -EINVAL;
8663 	} else
8664 		channel = fwrq->m;
8665 
8666 	if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8667 		return -EINVAL;
8668 
8669 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8670 		i = libipw_channel_to_index(priv->ieee, channel);
8671 		if (i == -1)
8672 			return -EINVAL;
8673 
8674 		flags = (band == LIBIPW_24GHZ_BAND) ?
8675 		    geo->bg[i].flags : geo->a[i].flags;
8676 		if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8677 			IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8678 			return -EINVAL;
8679 		}
8680 	}
8681 
8682 	IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8683 	mutex_lock(&priv->mutex);
8684 	ret = ipw_set_channel(priv, channel);
8685 	mutex_unlock(&priv->mutex);
8686 	return ret;
8687 }
8688 
8689 static int ipw_wx_get_freq(struct net_device *dev,
8690 			   struct iw_request_info *info,
8691 			   union iwreq_data *wrqu, char *extra)
8692 {
8693 	struct ipw_priv *priv = libipw_priv(dev);
8694 
8695 	wrqu->freq.e = 0;
8696 
8697 	/* If we are associated, trying to associate, or have a statically
8698 	 * configured CHANNEL then return that; otherwise return ANY */
8699 	mutex_lock(&priv->mutex);
8700 	if (priv->config & CFG_STATIC_CHANNEL ||
8701 	    priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8702 		int i;
8703 
8704 		i = libipw_channel_to_index(priv->ieee, priv->channel);
8705 		BUG_ON(i == -1);
8706 		wrqu->freq.e = 1;
8707 
8708 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8709 		case LIBIPW_52GHZ_BAND:
8710 			wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8711 			break;
8712 
8713 		case LIBIPW_24GHZ_BAND:
8714 			wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8715 			break;
8716 
8717 		default:
8718 			BUG();
8719 		}
8720 	} else
8721 		wrqu->freq.m = 0;
8722 
8723 	mutex_unlock(&priv->mutex);
8724 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8725 	return 0;
8726 }
8727 
8728 static int ipw_wx_set_mode(struct net_device *dev,
8729 			   struct iw_request_info *info,
8730 			   union iwreq_data *wrqu, char *extra)
8731 {
8732 	struct ipw_priv *priv = libipw_priv(dev);
8733 	int err = 0;
8734 
8735 	IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8736 
8737 	switch (wrqu->mode) {
8738 #ifdef CONFIG_IPW2200_MONITOR
8739 	case IW_MODE_MONITOR:
8740 #endif
8741 	case IW_MODE_ADHOC:
8742 	case IW_MODE_INFRA:
8743 		break;
8744 	case IW_MODE_AUTO:
8745 		wrqu->mode = IW_MODE_INFRA;
8746 		break;
8747 	default:
8748 		return -EINVAL;
8749 	}
8750 	if (wrqu->mode == priv->ieee->iw_mode)
8751 		return 0;
8752 
8753 	mutex_lock(&priv->mutex);
8754 
8755 	ipw_sw_reset(priv, 0);
8756 
8757 #ifdef CONFIG_IPW2200_MONITOR
8758 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8759 		priv->net_dev->type = ARPHRD_ETHER;
8760 
8761 	if (wrqu->mode == IW_MODE_MONITOR)
8762 #ifdef CONFIG_IPW2200_RADIOTAP
8763 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8764 #else
8765 		priv->net_dev->type = ARPHRD_IEEE80211;
8766 #endif
8767 #endif				/* CONFIG_IPW2200_MONITOR */
8768 
8769 	/* Free the existing firmware and reset the fw_loaded
8770 	 * flag so ipw_load() will bring in the new firmware */
8771 	free_firmware();
8772 
8773 	priv->ieee->iw_mode = wrqu->mode;
8774 
8775 	schedule_work(&priv->adapter_restart);
8776 	mutex_unlock(&priv->mutex);
8777 	return err;
8778 }
8779 
8780 static int ipw_wx_get_mode(struct net_device *dev,
8781 			   struct iw_request_info *info,
8782 			   union iwreq_data *wrqu, char *extra)
8783 {
8784 	struct ipw_priv *priv = libipw_priv(dev);
8785 	mutex_lock(&priv->mutex);
8786 	wrqu->mode = priv->ieee->iw_mode;
8787 	IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8788 	mutex_unlock(&priv->mutex);
8789 	return 0;
8790 }
8791 
8792 /* Values are in microsecond */
8793 static const s32 timeout_duration[] = {
8794 	350000,
8795 	250000,
8796 	75000,
8797 	37000,
8798 	25000,
8799 };
8800 
8801 static const s32 period_duration[] = {
8802 	400000,
8803 	700000,
8804 	1000000,
8805 	1000000,
8806 	1000000
8807 };
8808 
8809 static int ipw_wx_get_range(struct net_device *dev,
8810 			    struct iw_request_info *info,
8811 			    union iwreq_data *wrqu, char *extra)
8812 {
8813 	struct ipw_priv *priv = libipw_priv(dev);
8814 	struct iw_range *range = (struct iw_range *)extra;
8815 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8816 	int i = 0, j;
8817 
8818 	wrqu->data.length = sizeof(*range);
8819 	memset(range, 0, sizeof(*range));
8820 
8821 	/* 54Mbs == ~27 Mb/s real (802.11g) */
8822 	range->throughput = 27 * 1000 * 1000;
8823 
8824 	range->max_qual.qual = 100;
8825 	/* TODO: Find real max RSSI and stick here */
8826 	range->max_qual.level = 0;
8827 	range->max_qual.noise = 0;
8828 	range->max_qual.updated = 7;	/* Updated all three */
8829 
8830 	range->avg_qual.qual = 70;
8831 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8832 	range->avg_qual.level = 0;	/* FIXME to real average level */
8833 	range->avg_qual.noise = 0;
8834 	range->avg_qual.updated = 7;	/* Updated all three */
8835 	mutex_lock(&priv->mutex);
8836 	range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8837 
8838 	for (i = 0; i < range->num_bitrates; i++)
8839 		range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8840 		    500000;
8841 
8842 	range->max_rts = DEFAULT_RTS_THRESHOLD;
8843 	range->min_frag = MIN_FRAG_THRESHOLD;
8844 	range->max_frag = MAX_FRAG_THRESHOLD;
8845 
8846 	range->encoding_size[0] = 5;
8847 	range->encoding_size[1] = 13;
8848 	range->num_encoding_sizes = 2;
8849 	range->max_encoding_tokens = WEP_KEYS;
8850 
8851 	/* Set the Wireless Extension versions */
8852 	range->we_version_compiled = WIRELESS_EXT;
8853 	range->we_version_source = 18;
8854 
8855 	i = 0;
8856 	if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8857 		for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8858 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8859 			    (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8860 				continue;
8861 
8862 			range->freq[i].i = geo->bg[j].channel;
8863 			range->freq[i].m = geo->bg[j].freq * 100000;
8864 			range->freq[i].e = 1;
8865 			i++;
8866 		}
8867 	}
8868 
8869 	if (priv->ieee->mode & IEEE_A) {
8870 		for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8871 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8872 			    (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8873 				continue;
8874 
8875 			range->freq[i].i = geo->a[j].channel;
8876 			range->freq[i].m = geo->a[j].freq * 100000;
8877 			range->freq[i].e = 1;
8878 			i++;
8879 		}
8880 	}
8881 
8882 	range->num_channels = i;
8883 	range->num_frequency = i;
8884 
8885 	mutex_unlock(&priv->mutex);
8886 
8887 	/* Event capability (kernel + driver) */
8888 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8889 				IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8890 				IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8891 				IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8892 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
8893 
8894 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8895 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8896 
8897 	range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8898 
8899 	IPW_DEBUG_WX("GET Range\n");
8900 	return 0;
8901 }
8902 
8903 static int ipw_wx_set_wap(struct net_device *dev,
8904 			  struct iw_request_info *info,
8905 			  union iwreq_data *wrqu, char *extra)
8906 {
8907 	struct ipw_priv *priv = libipw_priv(dev);
8908 
8909 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8910 		return -EINVAL;
8911 	mutex_lock(&priv->mutex);
8912 	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8913 	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8914 		/* we disable mandatory BSSID association */
8915 		IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8916 		priv->config &= ~CFG_STATIC_BSSID;
8917 		IPW_DEBUG_ASSOC("Attempting to associate with new "
8918 				"parameters.\n");
8919 		ipw_associate(priv);
8920 		mutex_unlock(&priv->mutex);
8921 		return 0;
8922 	}
8923 
8924 	priv->config |= CFG_STATIC_BSSID;
8925 	if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8926 		IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8927 		mutex_unlock(&priv->mutex);
8928 		return 0;
8929 	}
8930 
8931 	IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8932 		     wrqu->ap_addr.sa_data);
8933 
8934 	memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8935 
8936 	/* Network configuration changed -- force [re]association */
8937 	IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8938 	if (!ipw_disassociate(priv))
8939 		ipw_associate(priv);
8940 
8941 	mutex_unlock(&priv->mutex);
8942 	return 0;
8943 }
8944 
8945 static int ipw_wx_get_wap(struct net_device *dev,
8946 			  struct iw_request_info *info,
8947 			  union iwreq_data *wrqu, char *extra)
8948 {
8949 	struct ipw_priv *priv = libipw_priv(dev);
8950 
8951 	/* If we are associated, trying to associate, or have a statically
8952 	 * configured BSSID then return that; otherwise return ANY */
8953 	mutex_lock(&priv->mutex);
8954 	if (priv->config & CFG_STATIC_BSSID ||
8955 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8956 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8957 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8958 	} else
8959 		eth_zero_addr(wrqu->ap_addr.sa_data);
8960 
8961 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8962 		     wrqu->ap_addr.sa_data);
8963 	mutex_unlock(&priv->mutex);
8964 	return 0;
8965 }
8966 
8967 static int ipw_wx_set_essid(struct net_device *dev,
8968 			    struct iw_request_info *info,
8969 			    union iwreq_data *wrqu, char *extra)
8970 {
8971 	struct ipw_priv *priv = libipw_priv(dev);
8972         int length;
8973 
8974         mutex_lock(&priv->mutex);
8975 
8976         if (!wrqu->essid.flags)
8977         {
8978                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8979                 ipw_disassociate(priv);
8980                 priv->config &= ~CFG_STATIC_ESSID;
8981                 ipw_associate(priv);
8982                 mutex_unlock(&priv->mutex);
8983                 return 0;
8984         }
8985 
8986 	length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8987 
8988 	priv->config |= CFG_STATIC_ESSID;
8989 
8990 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8991 	    && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8992 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8993 		mutex_unlock(&priv->mutex);
8994 		return 0;
8995 	}
8996 
8997 	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
8998 
8999 	priv->essid_len = length;
9000 	memcpy(priv->essid, extra, priv->essid_len);
9001 
9002 	/* Network configuration changed -- force [re]association */
9003 	IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9004 	if (!ipw_disassociate(priv))
9005 		ipw_associate(priv);
9006 
9007 	mutex_unlock(&priv->mutex);
9008 	return 0;
9009 }
9010 
9011 static int ipw_wx_get_essid(struct net_device *dev,
9012 			    struct iw_request_info *info,
9013 			    union iwreq_data *wrqu, char *extra)
9014 {
9015 	struct ipw_priv *priv = libipw_priv(dev);
9016 
9017 	/* If we are associated, trying to associate, or have a statically
9018 	 * configured ESSID then return that; otherwise return ANY */
9019 	mutex_lock(&priv->mutex);
9020 	if (priv->config & CFG_STATIC_ESSID ||
9021 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9022 		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9023 			     priv->essid_len, priv->essid);
9024 		memcpy(extra, priv->essid, priv->essid_len);
9025 		wrqu->essid.length = priv->essid_len;
9026 		wrqu->essid.flags = 1;	/* active */
9027 	} else {
9028 		IPW_DEBUG_WX("Getting essid: ANY\n");
9029 		wrqu->essid.length = 0;
9030 		wrqu->essid.flags = 0;	/* active */
9031 	}
9032 	mutex_unlock(&priv->mutex);
9033 	return 0;
9034 }
9035 
9036 static int ipw_wx_set_nick(struct net_device *dev,
9037 			   struct iw_request_info *info,
9038 			   union iwreq_data *wrqu, char *extra)
9039 {
9040 	struct ipw_priv *priv = libipw_priv(dev);
9041 
9042 	IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9043 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9044 		return -E2BIG;
9045 	mutex_lock(&priv->mutex);
9046 	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9047 	memset(priv->nick, 0, sizeof(priv->nick));
9048 	memcpy(priv->nick, extra, wrqu->data.length);
9049 	IPW_DEBUG_TRACE("<<\n");
9050 	mutex_unlock(&priv->mutex);
9051 	return 0;
9052 
9053 }
9054 
9055 static int ipw_wx_get_nick(struct net_device *dev,
9056 			   struct iw_request_info *info,
9057 			   union iwreq_data *wrqu, char *extra)
9058 {
9059 	struct ipw_priv *priv = libipw_priv(dev);
9060 	IPW_DEBUG_WX("Getting nick\n");
9061 	mutex_lock(&priv->mutex);
9062 	wrqu->data.length = strlen(priv->nick);
9063 	memcpy(extra, priv->nick, wrqu->data.length);
9064 	wrqu->data.flags = 1;	/* active */
9065 	mutex_unlock(&priv->mutex);
9066 	return 0;
9067 }
9068 
9069 static int ipw_wx_set_sens(struct net_device *dev,
9070 			    struct iw_request_info *info,
9071 			    union iwreq_data *wrqu, char *extra)
9072 {
9073 	struct ipw_priv *priv = libipw_priv(dev);
9074 	int err = 0;
9075 
9076 	IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9077 	IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9078 	mutex_lock(&priv->mutex);
9079 
9080 	if (wrqu->sens.fixed == 0)
9081 	{
9082 		priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9083 		priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9084 		goto out;
9085 	}
9086 	if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9087 	    (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9088 		err = -EINVAL;
9089 		goto out;
9090 	}
9091 
9092 	priv->roaming_threshold = wrqu->sens.value;
9093 	priv->disassociate_threshold = 3*wrqu->sens.value;
9094       out:
9095 	mutex_unlock(&priv->mutex);
9096 	return err;
9097 }
9098 
9099 static int ipw_wx_get_sens(struct net_device *dev,
9100 			    struct iw_request_info *info,
9101 			    union iwreq_data *wrqu, char *extra)
9102 {
9103 	struct ipw_priv *priv = libipw_priv(dev);
9104 	mutex_lock(&priv->mutex);
9105 	wrqu->sens.fixed = 1;
9106 	wrqu->sens.value = priv->roaming_threshold;
9107 	mutex_unlock(&priv->mutex);
9108 
9109 	IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9110 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9111 
9112 	return 0;
9113 }
9114 
9115 static int ipw_wx_set_rate(struct net_device *dev,
9116 			   struct iw_request_info *info,
9117 			   union iwreq_data *wrqu, char *extra)
9118 {
9119 	/* TODO: We should use semaphores or locks for access to priv */
9120 	struct ipw_priv *priv = libipw_priv(dev);
9121 	u32 target_rate = wrqu->bitrate.value;
9122 	u32 fixed, mask;
9123 
9124 	/* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9125 	/* value = X, fixed = 1 means only rate X */
9126 	/* value = X, fixed = 0 means all rates lower equal X */
9127 
9128 	if (target_rate == -1) {
9129 		fixed = 0;
9130 		mask = LIBIPW_DEFAULT_RATES_MASK;
9131 		/* Now we should reassociate */
9132 		goto apply;
9133 	}
9134 
9135 	mask = 0;
9136 	fixed = wrqu->bitrate.fixed;
9137 
9138 	if (target_rate == 1000000 || !fixed)
9139 		mask |= LIBIPW_CCK_RATE_1MB_MASK;
9140 	if (target_rate == 1000000)
9141 		goto apply;
9142 
9143 	if (target_rate == 2000000 || !fixed)
9144 		mask |= LIBIPW_CCK_RATE_2MB_MASK;
9145 	if (target_rate == 2000000)
9146 		goto apply;
9147 
9148 	if (target_rate == 5500000 || !fixed)
9149 		mask |= LIBIPW_CCK_RATE_5MB_MASK;
9150 	if (target_rate == 5500000)
9151 		goto apply;
9152 
9153 	if (target_rate == 6000000 || !fixed)
9154 		mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9155 	if (target_rate == 6000000)
9156 		goto apply;
9157 
9158 	if (target_rate == 9000000 || !fixed)
9159 		mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9160 	if (target_rate == 9000000)
9161 		goto apply;
9162 
9163 	if (target_rate == 11000000 || !fixed)
9164 		mask |= LIBIPW_CCK_RATE_11MB_MASK;
9165 	if (target_rate == 11000000)
9166 		goto apply;
9167 
9168 	if (target_rate == 12000000 || !fixed)
9169 		mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9170 	if (target_rate == 12000000)
9171 		goto apply;
9172 
9173 	if (target_rate == 18000000 || !fixed)
9174 		mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9175 	if (target_rate == 18000000)
9176 		goto apply;
9177 
9178 	if (target_rate == 24000000 || !fixed)
9179 		mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9180 	if (target_rate == 24000000)
9181 		goto apply;
9182 
9183 	if (target_rate == 36000000 || !fixed)
9184 		mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9185 	if (target_rate == 36000000)
9186 		goto apply;
9187 
9188 	if (target_rate == 48000000 || !fixed)
9189 		mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9190 	if (target_rate == 48000000)
9191 		goto apply;
9192 
9193 	if (target_rate == 54000000 || !fixed)
9194 		mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9195 	if (target_rate == 54000000)
9196 		goto apply;
9197 
9198 	IPW_DEBUG_WX("invalid rate specified, returning error\n");
9199 	return -EINVAL;
9200 
9201       apply:
9202 	IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9203 		     mask, fixed ? "fixed" : "sub-rates");
9204 	mutex_lock(&priv->mutex);
9205 	if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9206 		priv->config &= ~CFG_FIXED_RATE;
9207 		ipw_set_fixed_rate(priv, priv->ieee->mode);
9208 	} else
9209 		priv->config |= CFG_FIXED_RATE;
9210 
9211 	if (priv->rates_mask == mask) {
9212 		IPW_DEBUG_WX("Mask set to current mask.\n");
9213 		mutex_unlock(&priv->mutex);
9214 		return 0;
9215 	}
9216 
9217 	priv->rates_mask = mask;
9218 
9219 	/* Network configuration changed -- force [re]association */
9220 	IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9221 	if (!ipw_disassociate(priv))
9222 		ipw_associate(priv);
9223 
9224 	mutex_unlock(&priv->mutex);
9225 	return 0;
9226 }
9227 
9228 static int ipw_wx_get_rate(struct net_device *dev,
9229 			   struct iw_request_info *info,
9230 			   union iwreq_data *wrqu, char *extra)
9231 {
9232 	struct ipw_priv *priv = libipw_priv(dev);
9233 	mutex_lock(&priv->mutex);
9234 	wrqu->bitrate.value = priv->last_rate;
9235 	wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9236 	mutex_unlock(&priv->mutex);
9237 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9238 	return 0;
9239 }
9240 
9241 static int ipw_wx_set_rts(struct net_device *dev,
9242 			  struct iw_request_info *info,
9243 			  union iwreq_data *wrqu, char *extra)
9244 {
9245 	struct ipw_priv *priv = libipw_priv(dev);
9246 	mutex_lock(&priv->mutex);
9247 	if (wrqu->rts.disabled || !wrqu->rts.fixed)
9248 		priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9249 	else {
9250 		if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9251 		    wrqu->rts.value > MAX_RTS_THRESHOLD) {
9252 			mutex_unlock(&priv->mutex);
9253 			return -EINVAL;
9254 		}
9255 		priv->rts_threshold = wrqu->rts.value;
9256 	}
9257 
9258 	ipw_send_rts_threshold(priv, priv->rts_threshold);
9259 	mutex_unlock(&priv->mutex);
9260 	IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9261 	return 0;
9262 }
9263 
9264 static int ipw_wx_get_rts(struct net_device *dev,
9265 			  struct iw_request_info *info,
9266 			  union iwreq_data *wrqu, char *extra)
9267 {
9268 	struct ipw_priv *priv = libipw_priv(dev);
9269 	mutex_lock(&priv->mutex);
9270 	wrqu->rts.value = priv->rts_threshold;
9271 	wrqu->rts.fixed = 0;	/* no auto select */
9272 	wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9273 	mutex_unlock(&priv->mutex);
9274 	IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9275 	return 0;
9276 }
9277 
9278 static int ipw_wx_set_txpow(struct net_device *dev,
9279 			    struct iw_request_info *info,
9280 			    union iwreq_data *wrqu, char *extra)
9281 {
9282 	struct ipw_priv *priv = libipw_priv(dev);
9283 	int err = 0;
9284 
9285 	mutex_lock(&priv->mutex);
9286 	if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9287 		err = -EINPROGRESS;
9288 		goto out;
9289 	}
9290 
9291 	if (!wrqu->power.fixed)
9292 		wrqu->power.value = IPW_TX_POWER_DEFAULT;
9293 
9294 	if (wrqu->power.flags != IW_TXPOW_DBM) {
9295 		err = -EINVAL;
9296 		goto out;
9297 	}
9298 
9299 	if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9300 	    (wrqu->power.value < IPW_TX_POWER_MIN)) {
9301 		err = -EINVAL;
9302 		goto out;
9303 	}
9304 
9305 	priv->tx_power = wrqu->power.value;
9306 	err = ipw_set_tx_power(priv);
9307       out:
9308 	mutex_unlock(&priv->mutex);
9309 	return err;
9310 }
9311 
9312 static int ipw_wx_get_txpow(struct net_device *dev,
9313 			    struct iw_request_info *info,
9314 			    union iwreq_data *wrqu, char *extra)
9315 {
9316 	struct ipw_priv *priv = libipw_priv(dev);
9317 	mutex_lock(&priv->mutex);
9318 	wrqu->power.value = priv->tx_power;
9319 	wrqu->power.fixed = 1;
9320 	wrqu->power.flags = IW_TXPOW_DBM;
9321 	wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9322 	mutex_unlock(&priv->mutex);
9323 
9324 	IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9325 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9326 
9327 	return 0;
9328 }
9329 
9330 static int ipw_wx_set_frag(struct net_device *dev,
9331 			   struct iw_request_info *info,
9332 			   union iwreq_data *wrqu, char *extra)
9333 {
9334 	struct ipw_priv *priv = libipw_priv(dev);
9335 	mutex_lock(&priv->mutex);
9336 	if (wrqu->frag.disabled || !wrqu->frag.fixed)
9337 		priv->ieee->fts = DEFAULT_FTS;
9338 	else {
9339 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9340 		    wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9341 			mutex_unlock(&priv->mutex);
9342 			return -EINVAL;
9343 		}
9344 
9345 		priv->ieee->fts = wrqu->frag.value & ~0x1;
9346 	}
9347 
9348 	ipw_send_frag_threshold(priv, wrqu->frag.value);
9349 	mutex_unlock(&priv->mutex);
9350 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9351 	return 0;
9352 }
9353 
9354 static int ipw_wx_get_frag(struct net_device *dev,
9355 			   struct iw_request_info *info,
9356 			   union iwreq_data *wrqu, char *extra)
9357 {
9358 	struct ipw_priv *priv = libipw_priv(dev);
9359 	mutex_lock(&priv->mutex);
9360 	wrqu->frag.value = priv->ieee->fts;
9361 	wrqu->frag.fixed = 0;	/* no auto select */
9362 	wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9363 	mutex_unlock(&priv->mutex);
9364 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9365 
9366 	return 0;
9367 }
9368 
9369 static int ipw_wx_set_retry(struct net_device *dev,
9370 			    struct iw_request_info *info,
9371 			    union iwreq_data *wrqu, char *extra)
9372 {
9373 	struct ipw_priv *priv = libipw_priv(dev);
9374 
9375 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9376 		return -EINVAL;
9377 
9378 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9379 		return 0;
9380 
9381 	if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9382 		return -EINVAL;
9383 
9384 	mutex_lock(&priv->mutex);
9385 	if (wrqu->retry.flags & IW_RETRY_SHORT)
9386 		priv->short_retry_limit = (u8) wrqu->retry.value;
9387 	else if (wrqu->retry.flags & IW_RETRY_LONG)
9388 		priv->long_retry_limit = (u8) wrqu->retry.value;
9389 	else {
9390 		priv->short_retry_limit = (u8) wrqu->retry.value;
9391 		priv->long_retry_limit = (u8) wrqu->retry.value;
9392 	}
9393 
9394 	ipw_send_retry_limit(priv, priv->short_retry_limit,
9395 			     priv->long_retry_limit);
9396 	mutex_unlock(&priv->mutex);
9397 	IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9398 		     priv->short_retry_limit, priv->long_retry_limit);
9399 	return 0;
9400 }
9401 
9402 static int ipw_wx_get_retry(struct net_device *dev,
9403 			    struct iw_request_info *info,
9404 			    union iwreq_data *wrqu, char *extra)
9405 {
9406 	struct ipw_priv *priv = libipw_priv(dev);
9407 
9408 	mutex_lock(&priv->mutex);
9409 	wrqu->retry.disabled = 0;
9410 
9411 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9412 		mutex_unlock(&priv->mutex);
9413 		return -EINVAL;
9414 	}
9415 
9416 	if (wrqu->retry.flags & IW_RETRY_LONG) {
9417 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9418 		wrqu->retry.value = priv->long_retry_limit;
9419 	} else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9420 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9421 		wrqu->retry.value = priv->short_retry_limit;
9422 	} else {
9423 		wrqu->retry.flags = IW_RETRY_LIMIT;
9424 		wrqu->retry.value = priv->short_retry_limit;
9425 	}
9426 	mutex_unlock(&priv->mutex);
9427 
9428 	IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9429 
9430 	return 0;
9431 }
9432 
9433 static int ipw_wx_set_scan(struct net_device *dev,
9434 			   struct iw_request_info *info,
9435 			   union iwreq_data *wrqu, char *extra)
9436 {
9437 	struct ipw_priv *priv = libipw_priv(dev);
9438 	struct iw_scan_req *req = (struct iw_scan_req *)extra;
9439 	struct delayed_work *work = NULL;
9440 
9441 	mutex_lock(&priv->mutex);
9442 
9443 	priv->user_requested_scan = 1;
9444 
9445 	if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9446 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9447 			int len = min((int)req->essid_len,
9448 			              (int)sizeof(priv->direct_scan_ssid));
9449 			memcpy(priv->direct_scan_ssid, req->essid, len);
9450 			priv->direct_scan_ssid_len = len;
9451 			work = &priv->request_direct_scan;
9452 		} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9453 			work = &priv->request_passive_scan;
9454 		}
9455 	} else {
9456 		/* Normal active broadcast scan */
9457 		work = &priv->request_scan;
9458 	}
9459 
9460 	mutex_unlock(&priv->mutex);
9461 
9462 	IPW_DEBUG_WX("Start scan\n");
9463 
9464 	schedule_delayed_work(work, 0);
9465 
9466 	return 0;
9467 }
9468 
9469 static int ipw_wx_get_scan(struct net_device *dev,
9470 			   struct iw_request_info *info,
9471 			   union iwreq_data *wrqu, char *extra)
9472 {
9473 	struct ipw_priv *priv = libipw_priv(dev);
9474 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9475 }
9476 
9477 static int ipw_wx_set_encode(struct net_device *dev,
9478 			     struct iw_request_info *info,
9479 			     union iwreq_data *wrqu, char *key)
9480 {
9481 	struct ipw_priv *priv = libipw_priv(dev);
9482 	int ret;
9483 	u32 cap = priv->capability;
9484 
9485 	mutex_lock(&priv->mutex);
9486 	ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9487 
9488 	/* In IBSS mode, we need to notify the firmware to update
9489 	 * the beacon info after we changed the capability. */
9490 	if (cap != priv->capability &&
9491 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
9492 	    priv->status & STATUS_ASSOCIATED)
9493 		ipw_disassociate(priv);
9494 
9495 	mutex_unlock(&priv->mutex);
9496 	return ret;
9497 }
9498 
9499 static int ipw_wx_get_encode(struct net_device *dev,
9500 			     struct iw_request_info *info,
9501 			     union iwreq_data *wrqu, char *key)
9502 {
9503 	struct ipw_priv *priv = libipw_priv(dev);
9504 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9505 }
9506 
9507 static int ipw_wx_set_power(struct net_device *dev,
9508 			    struct iw_request_info *info,
9509 			    union iwreq_data *wrqu, char *extra)
9510 {
9511 	struct ipw_priv *priv = libipw_priv(dev);
9512 	int err;
9513 	mutex_lock(&priv->mutex);
9514 	if (wrqu->power.disabled) {
9515 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9516 		err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9517 		if (err) {
9518 			IPW_DEBUG_WX("failed setting power mode.\n");
9519 			mutex_unlock(&priv->mutex);
9520 			return err;
9521 		}
9522 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9523 		mutex_unlock(&priv->mutex);
9524 		return 0;
9525 	}
9526 
9527 	switch (wrqu->power.flags & IW_POWER_MODE) {
9528 	case IW_POWER_ON:	/* If not specified */
9529 	case IW_POWER_MODE:	/* If set all mask */
9530 	case IW_POWER_ALL_R:	/* If explicitly state all */
9531 		break;
9532 	default:		/* Otherwise we don't support it */
9533 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9534 			     wrqu->power.flags);
9535 		mutex_unlock(&priv->mutex);
9536 		return -EOPNOTSUPP;
9537 	}
9538 
9539 	/* If the user hasn't specified a power management mode yet, default
9540 	 * to BATTERY */
9541 	if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9542 		priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9543 	else
9544 		priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9545 
9546 	err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9547 	if (err) {
9548 		IPW_DEBUG_WX("failed setting power mode.\n");
9549 		mutex_unlock(&priv->mutex);
9550 		return err;
9551 	}
9552 
9553 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9554 	mutex_unlock(&priv->mutex);
9555 	return 0;
9556 }
9557 
9558 static int ipw_wx_get_power(struct net_device *dev,
9559 			    struct iw_request_info *info,
9560 			    union iwreq_data *wrqu, char *extra)
9561 {
9562 	struct ipw_priv *priv = libipw_priv(dev);
9563 	mutex_lock(&priv->mutex);
9564 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9565 		wrqu->power.disabled = 1;
9566 	else
9567 		wrqu->power.disabled = 0;
9568 
9569 	mutex_unlock(&priv->mutex);
9570 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9571 
9572 	return 0;
9573 }
9574 
9575 static int ipw_wx_set_powermode(struct net_device *dev,
9576 				struct iw_request_info *info,
9577 				union iwreq_data *wrqu, char *extra)
9578 {
9579 	struct ipw_priv *priv = libipw_priv(dev);
9580 	int mode = *(int *)extra;
9581 	int err;
9582 
9583 	mutex_lock(&priv->mutex);
9584 	if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9585 		mode = IPW_POWER_AC;
9586 
9587 	if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9588 		err = ipw_send_power_mode(priv, mode);
9589 		if (err) {
9590 			IPW_DEBUG_WX("failed setting power mode.\n");
9591 			mutex_unlock(&priv->mutex);
9592 			return err;
9593 		}
9594 		priv->power_mode = IPW_POWER_ENABLED | mode;
9595 	}
9596 	mutex_unlock(&priv->mutex);
9597 	return 0;
9598 }
9599 
9600 #define MAX_WX_STRING 80
9601 static int ipw_wx_get_powermode(struct net_device *dev,
9602 				struct iw_request_info *info,
9603 				union iwreq_data *wrqu, char *extra)
9604 {
9605 	struct ipw_priv *priv = libipw_priv(dev);
9606 	int level = IPW_POWER_LEVEL(priv->power_mode);
9607 	char *p = extra;
9608 
9609 	p += scnprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9610 
9611 	switch (level) {
9612 	case IPW_POWER_AC:
9613 		p += scnprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9614 		break;
9615 	case IPW_POWER_BATTERY:
9616 		p += scnprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9617 		break;
9618 	default:
9619 		p += scnprintf(p, MAX_WX_STRING - (p - extra),
9620 			      "(Timeout %dms, Period %dms)",
9621 			      timeout_duration[level - 1] / 1000,
9622 			      period_duration[level - 1] / 1000);
9623 	}
9624 
9625 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9626 		p += scnprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9627 
9628 	wrqu->data.length = p - extra + 1;
9629 
9630 	return 0;
9631 }
9632 
9633 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9634 				    struct iw_request_info *info,
9635 				    union iwreq_data *wrqu, char *extra)
9636 {
9637 	struct ipw_priv *priv = libipw_priv(dev);
9638 	int mode = *(int *)extra;
9639 	u8 band = 0, modulation = 0;
9640 
9641 	if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9642 		IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9643 		return -EINVAL;
9644 	}
9645 	mutex_lock(&priv->mutex);
9646 	if (priv->adapter == IPW_2915ABG) {
9647 		priv->ieee->abg_true = 1;
9648 		if (mode & IEEE_A) {
9649 			band |= LIBIPW_52GHZ_BAND;
9650 			modulation |= LIBIPW_OFDM_MODULATION;
9651 		} else
9652 			priv->ieee->abg_true = 0;
9653 	} else {
9654 		if (mode & IEEE_A) {
9655 			IPW_WARNING("Attempt to set 2200BG into "
9656 				    "802.11a mode\n");
9657 			mutex_unlock(&priv->mutex);
9658 			return -EINVAL;
9659 		}
9660 
9661 		priv->ieee->abg_true = 0;
9662 	}
9663 
9664 	if (mode & IEEE_B) {
9665 		band |= LIBIPW_24GHZ_BAND;
9666 		modulation |= LIBIPW_CCK_MODULATION;
9667 	} else
9668 		priv->ieee->abg_true = 0;
9669 
9670 	if (mode & IEEE_G) {
9671 		band |= LIBIPW_24GHZ_BAND;
9672 		modulation |= LIBIPW_OFDM_MODULATION;
9673 	} else
9674 		priv->ieee->abg_true = 0;
9675 
9676 	priv->ieee->mode = mode;
9677 	priv->ieee->freq_band = band;
9678 	priv->ieee->modulation = modulation;
9679 	init_supported_rates(priv, &priv->rates);
9680 
9681 	/* Network configuration changed -- force [re]association */
9682 	IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9683 	if (!ipw_disassociate(priv)) {
9684 		ipw_send_supported_rates(priv, &priv->rates);
9685 		ipw_associate(priv);
9686 	}
9687 
9688 	/* Update the band LEDs */
9689 	ipw_led_band_on(priv);
9690 
9691 	IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9692 		     mode & IEEE_A ? 'a' : '.',
9693 		     mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9694 	mutex_unlock(&priv->mutex);
9695 	return 0;
9696 }
9697 
9698 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9699 				    struct iw_request_info *info,
9700 				    union iwreq_data *wrqu, char *extra)
9701 {
9702 	struct ipw_priv *priv = libipw_priv(dev);
9703 	mutex_lock(&priv->mutex);
9704 	switch (priv->ieee->mode) {
9705 	case IEEE_A:
9706 		strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9707 		break;
9708 	case IEEE_B:
9709 		strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9710 		break;
9711 	case IEEE_A | IEEE_B:
9712 		strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9713 		break;
9714 	case IEEE_G:
9715 		strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9716 		break;
9717 	case IEEE_A | IEEE_G:
9718 		strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9719 		break;
9720 	case IEEE_B | IEEE_G:
9721 		strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9722 		break;
9723 	case IEEE_A | IEEE_B | IEEE_G:
9724 		strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9725 		break;
9726 	default:
9727 		strncpy(extra, "unknown", MAX_WX_STRING);
9728 		break;
9729 	}
9730 	extra[MAX_WX_STRING - 1] = '\0';
9731 
9732 	IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9733 
9734 	wrqu->data.length = strlen(extra) + 1;
9735 	mutex_unlock(&priv->mutex);
9736 
9737 	return 0;
9738 }
9739 
9740 static int ipw_wx_set_preamble(struct net_device *dev,
9741 			       struct iw_request_info *info,
9742 			       union iwreq_data *wrqu, char *extra)
9743 {
9744 	struct ipw_priv *priv = libipw_priv(dev);
9745 	int mode = *(int *)extra;
9746 	mutex_lock(&priv->mutex);
9747 	/* Switching from SHORT -> LONG requires a disassociation */
9748 	if (mode == 1) {
9749 		if (!(priv->config & CFG_PREAMBLE_LONG)) {
9750 			priv->config |= CFG_PREAMBLE_LONG;
9751 
9752 			/* Network configuration changed -- force [re]association */
9753 			IPW_DEBUG_ASSOC
9754 			    ("[re]association triggered due to preamble change.\n");
9755 			if (!ipw_disassociate(priv))
9756 				ipw_associate(priv);
9757 		}
9758 		goto done;
9759 	}
9760 
9761 	if (mode == 0) {
9762 		priv->config &= ~CFG_PREAMBLE_LONG;
9763 		goto done;
9764 	}
9765 	mutex_unlock(&priv->mutex);
9766 	return -EINVAL;
9767 
9768       done:
9769 	mutex_unlock(&priv->mutex);
9770 	return 0;
9771 }
9772 
9773 static int ipw_wx_get_preamble(struct net_device *dev,
9774 			       struct iw_request_info *info,
9775 			       union iwreq_data *wrqu, char *extra)
9776 {
9777 	struct ipw_priv *priv = libipw_priv(dev);
9778 	mutex_lock(&priv->mutex);
9779 	if (priv->config & CFG_PREAMBLE_LONG)
9780 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9781 	else
9782 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9783 	mutex_unlock(&priv->mutex);
9784 	return 0;
9785 }
9786 
9787 #ifdef CONFIG_IPW2200_MONITOR
9788 static int ipw_wx_set_monitor(struct net_device *dev,
9789 			      struct iw_request_info *info,
9790 			      union iwreq_data *wrqu, char *extra)
9791 {
9792 	struct ipw_priv *priv = libipw_priv(dev);
9793 	int *parms = (int *)extra;
9794 	int enable = (parms[0] > 0);
9795 	mutex_lock(&priv->mutex);
9796 	IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9797 	if (enable) {
9798 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9799 #ifdef CONFIG_IPW2200_RADIOTAP
9800 			priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9801 #else
9802 			priv->net_dev->type = ARPHRD_IEEE80211;
9803 #endif
9804 			schedule_work(&priv->adapter_restart);
9805 		}
9806 
9807 		ipw_set_channel(priv, parms[1]);
9808 	} else {
9809 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9810 			mutex_unlock(&priv->mutex);
9811 			return 0;
9812 		}
9813 		priv->net_dev->type = ARPHRD_ETHER;
9814 		schedule_work(&priv->adapter_restart);
9815 	}
9816 	mutex_unlock(&priv->mutex);
9817 	return 0;
9818 }
9819 
9820 #endif				/* CONFIG_IPW2200_MONITOR */
9821 
9822 static int ipw_wx_reset(struct net_device *dev,
9823 			struct iw_request_info *info,
9824 			union iwreq_data *wrqu, char *extra)
9825 {
9826 	struct ipw_priv *priv = libipw_priv(dev);
9827 	IPW_DEBUG_WX("RESET\n");
9828 	schedule_work(&priv->adapter_restart);
9829 	return 0;
9830 }
9831 
9832 static int ipw_wx_sw_reset(struct net_device *dev,
9833 			   struct iw_request_info *info,
9834 			   union iwreq_data *wrqu, char *extra)
9835 {
9836 	struct ipw_priv *priv = libipw_priv(dev);
9837 	union iwreq_data wrqu_sec = {
9838 		.encoding = {
9839 			     .flags = IW_ENCODE_DISABLED,
9840 			     },
9841 	};
9842 	int ret;
9843 
9844 	IPW_DEBUG_WX("SW_RESET\n");
9845 
9846 	mutex_lock(&priv->mutex);
9847 
9848 	ret = ipw_sw_reset(priv, 2);
9849 	if (!ret) {
9850 		free_firmware();
9851 		ipw_adapter_restart(priv);
9852 	}
9853 
9854 	/* The SW reset bit might have been toggled on by the 'disable'
9855 	 * module parameter, so take appropriate action */
9856 	ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9857 
9858 	mutex_unlock(&priv->mutex);
9859 	libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9860 	mutex_lock(&priv->mutex);
9861 
9862 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
9863 		/* Configuration likely changed -- force [re]association */
9864 		IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9865 				"reset.\n");
9866 		if (!ipw_disassociate(priv))
9867 			ipw_associate(priv);
9868 	}
9869 
9870 	mutex_unlock(&priv->mutex);
9871 
9872 	return 0;
9873 }
9874 
9875 /* Rebase the WE IOCTLs to zero for the handler array */
9876 static iw_handler ipw_wx_handlers[] = {
9877 	IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9878 	IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9879 	IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9880 	IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9881 	IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9882 	IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9883 	IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9884 	IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9885 	IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9886 	IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9887 	IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9888 	IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9889 	IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9890 	IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9891 	IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9892 	IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9893 	IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9894 	IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9895 	IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9896 	IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9897 	IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9898 	IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9899 	IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9900 	IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9901 	IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9902 	IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9903 	IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9904 	IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9905 	IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9906 	IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9907 	IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9908 	IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9909 	IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9910 	IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9911 	IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9912 	IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9913 	IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9914 	IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9915 	IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9916 	IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9917 	IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9918 };
9919 
9920 enum {
9921 	IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9922 	IPW_PRIV_GET_POWER,
9923 	IPW_PRIV_SET_MODE,
9924 	IPW_PRIV_GET_MODE,
9925 	IPW_PRIV_SET_PREAMBLE,
9926 	IPW_PRIV_GET_PREAMBLE,
9927 	IPW_PRIV_RESET,
9928 	IPW_PRIV_SW_RESET,
9929 #ifdef CONFIG_IPW2200_MONITOR
9930 	IPW_PRIV_SET_MONITOR,
9931 #endif
9932 };
9933 
9934 static struct iw_priv_args ipw_priv_args[] = {
9935 	{
9936 	 .cmd = IPW_PRIV_SET_POWER,
9937 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9938 	 .name = "set_power"},
9939 	{
9940 	 .cmd = IPW_PRIV_GET_POWER,
9941 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9942 	 .name = "get_power"},
9943 	{
9944 	 .cmd = IPW_PRIV_SET_MODE,
9945 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9946 	 .name = "set_mode"},
9947 	{
9948 	 .cmd = IPW_PRIV_GET_MODE,
9949 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9950 	 .name = "get_mode"},
9951 	{
9952 	 .cmd = IPW_PRIV_SET_PREAMBLE,
9953 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9954 	 .name = "set_preamble"},
9955 	{
9956 	 .cmd = IPW_PRIV_GET_PREAMBLE,
9957 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9958 	 .name = "get_preamble"},
9959 	{
9960 	 IPW_PRIV_RESET,
9961 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9962 	{
9963 	 IPW_PRIV_SW_RESET,
9964 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9965 #ifdef CONFIG_IPW2200_MONITOR
9966 	{
9967 	 IPW_PRIV_SET_MONITOR,
9968 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9969 #endif				/* CONFIG_IPW2200_MONITOR */
9970 };
9971 
9972 static iw_handler ipw_priv_handler[] = {
9973 	ipw_wx_set_powermode,
9974 	ipw_wx_get_powermode,
9975 	ipw_wx_set_wireless_mode,
9976 	ipw_wx_get_wireless_mode,
9977 	ipw_wx_set_preamble,
9978 	ipw_wx_get_preamble,
9979 	ipw_wx_reset,
9980 	ipw_wx_sw_reset,
9981 #ifdef CONFIG_IPW2200_MONITOR
9982 	ipw_wx_set_monitor,
9983 #endif
9984 };
9985 
9986 static const struct iw_handler_def ipw_wx_handler_def = {
9987 	.standard = ipw_wx_handlers,
9988 	.num_standard = ARRAY_SIZE(ipw_wx_handlers),
9989 	.num_private = ARRAY_SIZE(ipw_priv_handler),
9990 	.num_private_args = ARRAY_SIZE(ipw_priv_args),
9991 	.private = ipw_priv_handler,
9992 	.private_args = ipw_priv_args,
9993 	.get_wireless_stats = ipw_get_wireless_stats,
9994 };
9995 
9996 /*
9997  * Get wireless statistics.
9998  * Called by /proc/net/wireless
9999  * Also called by SIOCGIWSTATS
10000  */
10001 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10002 {
10003 	struct ipw_priv *priv = libipw_priv(dev);
10004 	struct iw_statistics *wstats;
10005 
10006 	wstats = &priv->wstats;
10007 
10008 	/* if hw is disabled, then ipw_get_ordinal() can't be called.
10009 	 * netdev->get_wireless_stats seems to be called before fw is
10010 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10011 	 * and associated; if not associcated, the values are all meaningless
10012 	 * anyway, so set them all to NULL and INVALID */
10013 	if (!(priv->status & STATUS_ASSOCIATED)) {
10014 		wstats->miss.beacon = 0;
10015 		wstats->discard.retries = 0;
10016 		wstats->qual.qual = 0;
10017 		wstats->qual.level = 0;
10018 		wstats->qual.noise = 0;
10019 		wstats->qual.updated = 7;
10020 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10021 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10022 		return wstats;
10023 	}
10024 
10025 	wstats->qual.qual = priv->quality;
10026 	wstats->qual.level = priv->exp_avg_rssi;
10027 	wstats->qual.noise = priv->exp_avg_noise;
10028 	wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10029 	    IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10030 
10031 	wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10032 	wstats->discard.retries = priv->last_tx_failures;
10033 	wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10034 
10035 /*	if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10036 	goto fail_get_ordinal;
10037 	wstats->discard.retries += tx_retry; */
10038 
10039 	return wstats;
10040 }
10041 
10042 /* net device stuff */
10043 
10044 static  void init_sys_config(struct ipw_sys_config *sys_config)
10045 {
10046 	memset(sys_config, 0, sizeof(struct ipw_sys_config));
10047 	sys_config->bt_coexistence = 0;
10048 	sys_config->answer_broadcast_ssid_probe = 0;
10049 	sys_config->accept_all_data_frames = 0;
10050 	sys_config->accept_non_directed_frames = 1;
10051 	sys_config->exclude_unicast_unencrypted = 0;
10052 	sys_config->disable_unicast_decryption = 1;
10053 	sys_config->exclude_multicast_unencrypted = 0;
10054 	sys_config->disable_multicast_decryption = 1;
10055 	if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10056 		antenna = CFG_SYS_ANTENNA_BOTH;
10057 	sys_config->antenna_diversity = antenna;
10058 	sys_config->pass_crc_to_host = 0;	/* TODO: See if 1 gives us FCS */
10059 	sys_config->dot11g_auto_detection = 0;
10060 	sys_config->enable_cts_to_self = 0;
10061 	sys_config->bt_coexist_collision_thr = 0;
10062 	sys_config->pass_noise_stats_to_host = 1;	/* 1 -- fix for 256 */
10063 	sys_config->silence_threshold = 0x1e;
10064 }
10065 
10066 static int ipw_net_open(struct net_device *dev)
10067 {
10068 	IPW_DEBUG_INFO("dev->open\n");
10069 	netif_start_queue(dev);
10070 	return 0;
10071 }
10072 
10073 static int ipw_net_stop(struct net_device *dev)
10074 {
10075 	IPW_DEBUG_INFO("dev->close\n");
10076 	netif_stop_queue(dev);
10077 	return 0;
10078 }
10079 
10080 /*
10081 todo:
10082 
10083 modify to send one tfd per fragment instead of using chunking.  otherwise
10084 we need to heavily modify the libipw_skb_to_txb.
10085 */
10086 
10087 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10088 			     int pri)
10089 {
10090 	struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10091 	    txb->fragments[0]->data;
10092 	int i = 0;
10093 	struct tfd_frame *tfd;
10094 #ifdef CONFIG_IPW2200_QOS
10095 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10096 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10097 #else
10098 	struct clx2_tx_queue *txq = &priv->txq[0];
10099 #endif
10100 	struct clx2_queue *q = &txq->q;
10101 	u8 id, hdr_len, unicast;
10102 	int fc;
10103 
10104 	if (!(priv->status & STATUS_ASSOCIATED))
10105 		goto drop;
10106 
10107 	hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10108 	switch (priv->ieee->iw_mode) {
10109 	case IW_MODE_ADHOC:
10110 		unicast = !is_multicast_ether_addr(hdr->addr1);
10111 		id = ipw_find_station(priv, hdr->addr1);
10112 		if (id == IPW_INVALID_STATION) {
10113 			id = ipw_add_station(priv, hdr->addr1);
10114 			if (id == IPW_INVALID_STATION) {
10115 				IPW_WARNING("Attempt to send data to "
10116 					    "invalid cell: %pM\n",
10117 					    hdr->addr1);
10118 				goto drop;
10119 			}
10120 		}
10121 		break;
10122 
10123 	case IW_MODE_INFRA:
10124 	default:
10125 		unicast = !is_multicast_ether_addr(hdr->addr3);
10126 		id = 0;
10127 		break;
10128 	}
10129 
10130 	tfd = &txq->bd[q->first_empty];
10131 	txq->txb[q->first_empty] = txb;
10132 	memset(tfd, 0, sizeof(*tfd));
10133 	tfd->u.data.station_number = id;
10134 
10135 	tfd->control_flags.message_type = TX_FRAME_TYPE;
10136 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10137 
10138 	tfd->u.data.cmd_id = DINO_CMD_TX;
10139 	tfd->u.data.len = cpu_to_le16(txb->payload_size);
10140 
10141 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10142 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10143 	else
10144 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10145 
10146 	if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10147 		tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10148 
10149 	fc = le16_to_cpu(hdr->frame_ctl);
10150 	hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10151 
10152 	memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10153 
10154 	if (likely(unicast))
10155 		tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10156 
10157 	if (txb->encrypted && !priv->ieee->host_encrypt) {
10158 		switch (priv->ieee->sec.level) {
10159 		case SEC_LEVEL_3:
10160 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10161 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10162 			/* XXX: ACK flag must be set for CCMP even if it
10163 			 * is a multicast/broadcast packet, because CCMP
10164 			 * group communication encrypted by GTK is
10165 			 * actually done by the AP. */
10166 			if (!unicast)
10167 				tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10168 
10169 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10170 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10171 			tfd->u.data.key_index = 0;
10172 			tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10173 			break;
10174 		case SEC_LEVEL_2:
10175 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10176 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10177 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10178 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10179 			tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10180 			break;
10181 		case SEC_LEVEL_1:
10182 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10183 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10184 			tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10185 			if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10186 			    40)
10187 				tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10188 			else
10189 				tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10190 			break;
10191 		case SEC_LEVEL_0:
10192 			break;
10193 		default:
10194 			printk(KERN_ERR "Unknown security level %d\n",
10195 			       priv->ieee->sec.level);
10196 			break;
10197 		}
10198 	} else
10199 		/* No hardware encryption */
10200 		tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10201 
10202 #ifdef CONFIG_IPW2200_QOS
10203 	if (fc & IEEE80211_STYPE_QOS_DATA)
10204 		ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10205 #endif				/* CONFIG_IPW2200_QOS */
10206 
10207 	/* payload */
10208 	tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10209 						 txb->nr_frags));
10210 	IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10211 		       txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10212 	for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10213 		IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10214 			       i, le32_to_cpu(tfd->u.data.num_chunks),
10215 			       txb->fragments[i]->len - hdr_len);
10216 		IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10217 			     i, tfd->u.data.num_chunks,
10218 			     txb->fragments[i]->len - hdr_len);
10219 		printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10220 			   txb->fragments[i]->len - hdr_len);
10221 
10222 		tfd->u.data.chunk_ptr[i] =
10223 		    cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10224 					       txb->fragments[i]->data + hdr_len,
10225 					       txb->fragments[i]->len - hdr_len,
10226 					       DMA_TO_DEVICE));
10227 		tfd->u.data.chunk_len[i] =
10228 		    cpu_to_le16(txb->fragments[i]->len - hdr_len);
10229 	}
10230 
10231 	if (i != txb->nr_frags) {
10232 		struct sk_buff *skb;
10233 		u16 remaining_bytes = 0;
10234 		int j;
10235 
10236 		for (j = i; j < txb->nr_frags; j++)
10237 			remaining_bytes += txb->fragments[j]->len - hdr_len;
10238 
10239 		printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10240 		       remaining_bytes);
10241 		skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10242 		if (skb != NULL) {
10243 			tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10244 			for (j = i; j < txb->nr_frags; j++) {
10245 				int size = txb->fragments[j]->len - hdr_len;
10246 
10247 				printk(KERN_INFO "Adding frag %d %d...\n",
10248 				       j, size);
10249 				skb_put_data(skb,
10250 					     txb->fragments[j]->data + hdr_len,
10251 					     size);
10252 			}
10253 			dev_kfree_skb_any(txb->fragments[i]);
10254 			txb->fragments[i] = skb;
10255 			tfd->u.data.chunk_ptr[i] =
10256 			    cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10257 						       skb->data,
10258 						       remaining_bytes,
10259 						       DMA_TO_DEVICE));
10260 
10261 			le32_add_cpu(&tfd->u.data.num_chunks, 1);
10262 		}
10263 	}
10264 
10265 	/* kick DMA */
10266 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10267 	ipw_write32(priv, q->reg_w, q->first_empty);
10268 
10269 	if (ipw_tx_queue_space(q) < q->high_mark)
10270 		netif_stop_queue(priv->net_dev);
10271 
10272 	return NETDEV_TX_OK;
10273 
10274       drop:
10275 	IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10276 	libipw_txb_free(txb);
10277 	return NETDEV_TX_OK;
10278 }
10279 
10280 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10281 {
10282 	struct ipw_priv *priv = libipw_priv(dev);
10283 #ifdef CONFIG_IPW2200_QOS
10284 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10285 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10286 #else
10287 	struct clx2_tx_queue *txq = &priv->txq[0];
10288 #endif				/* CONFIG_IPW2200_QOS */
10289 
10290 	if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10291 		return 1;
10292 
10293 	return 0;
10294 }
10295 
10296 #ifdef CONFIG_IPW2200_PROMISCUOUS
10297 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10298 				      struct libipw_txb *txb)
10299 {
10300 	struct libipw_rx_stats dummystats;
10301 	struct ieee80211_hdr *hdr;
10302 	u8 n;
10303 	u16 filter = priv->prom_priv->filter;
10304 	int hdr_only = 0;
10305 
10306 	if (filter & IPW_PROM_NO_TX)
10307 		return;
10308 
10309 	memset(&dummystats, 0, sizeof(dummystats));
10310 
10311 	/* Filtering of fragment chains is done against the first fragment */
10312 	hdr = (void *)txb->fragments[0]->data;
10313 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10314 		if (filter & IPW_PROM_NO_MGMT)
10315 			return;
10316 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10317 			hdr_only = 1;
10318 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10319 		if (filter & IPW_PROM_NO_CTL)
10320 			return;
10321 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
10322 			hdr_only = 1;
10323 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10324 		if (filter & IPW_PROM_NO_DATA)
10325 			return;
10326 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
10327 			hdr_only = 1;
10328 	}
10329 
10330 	for(n=0; n<txb->nr_frags; ++n) {
10331 		struct sk_buff *src = txb->fragments[n];
10332 		struct sk_buff *dst;
10333 		struct ieee80211_radiotap_header *rt_hdr;
10334 		int len;
10335 
10336 		if (hdr_only) {
10337 			hdr = (void *)src->data;
10338 			len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10339 		} else
10340 			len = src->len;
10341 
10342 		dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10343 		if (!dst)
10344 			continue;
10345 
10346 		rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10347 
10348 		rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10349 		rt_hdr->it_pad = 0;
10350 		rt_hdr->it_present = 0; /* after all, it's just an idea */
10351 		rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10352 
10353 		*(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10354 			ieee80211chan2mhz(priv->channel));
10355 		if (priv->channel > 14) 	/* 802.11a */
10356 			*(__le16*)skb_put(dst, sizeof(u16)) =
10357 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10358 					     IEEE80211_CHAN_5GHZ);
10359 		else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10360 			*(__le16*)skb_put(dst, sizeof(u16)) =
10361 				cpu_to_le16(IEEE80211_CHAN_CCK |
10362 					     IEEE80211_CHAN_2GHZ);
10363 		else 		/* 802.11g */
10364 			*(__le16*)skb_put(dst, sizeof(u16)) =
10365 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10366 				 IEEE80211_CHAN_2GHZ);
10367 
10368 		rt_hdr->it_len = cpu_to_le16(dst->len);
10369 
10370 		skb_copy_from_linear_data(src, skb_put(dst, len), len);
10371 
10372 		if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10373 			dev_kfree_skb_any(dst);
10374 	}
10375 }
10376 #endif
10377 
10378 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10379 					   struct net_device *dev, int pri)
10380 {
10381 	struct ipw_priv *priv = libipw_priv(dev);
10382 	unsigned long flags;
10383 	netdev_tx_t ret;
10384 
10385 	IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10386 	spin_lock_irqsave(&priv->lock, flags);
10387 
10388 #ifdef CONFIG_IPW2200_PROMISCUOUS
10389 	if (rtap_iface && netif_running(priv->prom_net_dev))
10390 		ipw_handle_promiscuous_tx(priv, txb);
10391 #endif
10392 
10393 	ret = ipw_tx_skb(priv, txb, pri);
10394 	if (ret == NETDEV_TX_OK)
10395 		__ipw_led_activity_on(priv);
10396 	spin_unlock_irqrestore(&priv->lock, flags);
10397 
10398 	return ret;
10399 }
10400 
10401 static void ipw_net_set_multicast_list(struct net_device *dev)
10402 {
10403 
10404 }
10405 
10406 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10407 {
10408 	struct ipw_priv *priv = libipw_priv(dev);
10409 	struct sockaddr *addr = p;
10410 
10411 	if (!is_valid_ether_addr(addr->sa_data))
10412 		return -EADDRNOTAVAIL;
10413 	mutex_lock(&priv->mutex);
10414 	priv->config |= CFG_CUSTOM_MAC;
10415 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10416 	printk(KERN_INFO "%s: Setting MAC to %pM\n",
10417 	       priv->net_dev->name, priv->mac_addr);
10418 	schedule_work(&priv->adapter_restart);
10419 	mutex_unlock(&priv->mutex);
10420 	return 0;
10421 }
10422 
10423 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10424 				    struct ethtool_drvinfo *info)
10425 {
10426 	struct ipw_priv *p = libipw_priv(dev);
10427 	char vers[64];
10428 	char date[32];
10429 	u32 len;
10430 
10431 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10432 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10433 
10434 	len = sizeof(vers);
10435 	ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10436 	len = sizeof(date);
10437 	ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10438 
10439 	snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10440 		 vers, date);
10441 	strlcpy(info->bus_info, pci_name(p->pci_dev),
10442 		sizeof(info->bus_info));
10443 }
10444 
10445 static u32 ipw_ethtool_get_link(struct net_device *dev)
10446 {
10447 	struct ipw_priv *priv = libipw_priv(dev);
10448 	return (priv->status & STATUS_ASSOCIATED) != 0;
10449 }
10450 
10451 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10452 {
10453 	return IPW_EEPROM_IMAGE_SIZE;
10454 }
10455 
10456 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10457 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10458 {
10459 	struct ipw_priv *p = libipw_priv(dev);
10460 
10461 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10462 		return -EINVAL;
10463 	mutex_lock(&p->mutex);
10464 	memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10465 	mutex_unlock(&p->mutex);
10466 	return 0;
10467 }
10468 
10469 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10470 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10471 {
10472 	struct ipw_priv *p = libipw_priv(dev);
10473 	int i;
10474 
10475 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10476 		return -EINVAL;
10477 	mutex_lock(&p->mutex);
10478 	memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10479 	for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10480 		ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10481 	mutex_unlock(&p->mutex);
10482 	return 0;
10483 }
10484 
10485 static const struct ethtool_ops ipw_ethtool_ops = {
10486 	.get_link = ipw_ethtool_get_link,
10487 	.get_drvinfo = ipw_ethtool_get_drvinfo,
10488 	.get_eeprom_len = ipw_ethtool_get_eeprom_len,
10489 	.get_eeprom = ipw_ethtool_get_eeprom,
10490 	.set_eeprom = ipw_ethtool_set_eeprom,
10491 };
10492 
10493 static irqreturn_t ipw_isr(int irq, void *data)
10494 {
10495 	struct ipw_priv *priv = data;
10496 	u32 inta, inta_mask;
10497 
10498 	if (!priv)
10499 		return IRQ_NONE;
10500 
10501 	spin_lock(&priv->irq_lock);
10502 
10503 	if (!(priv->status & STATUS_INT_ENABLED)) {
10504 		/* IRQ is disabled */
10505 		goto none;
10506 	}
10507 
10508 	inta = ipw_read32(priv, IPW_INTA_RW);
10509 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10510 
10511 	if (inta == 0xFFFFFFFF) {
10512 		/* Hardware disappeared */
10513 		IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10514 		goto none;
10515 	}
10516 
10517 	if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10518 		/* Shared interrupt */
10519 		goto none;
10520 	}
10521 
10522 	/* tell the device to stop sending interrupts */
10523 	__ipw_disable_interrupts(priv);
10524 
10525 	/* ack current interrupts */
10526 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
10527 	ipw_write32(priv, IPW_INTA_RW, inta);
10528 
10529 	/* Cache INTA value for our tasklet */
10530 	priv->isr_inta = inta;
10531 
10532 	tasklet_schedule(&priv->irq_tasklet);
10533 
10534 	spin_unlock(&priv->irq_lock);
10535 
10536 	return IRQ_HANDLED;
10537       none:
10538 	spin_unlock(&priv->irq_lock);
10539 	return IRQ_NONE;
10540 }
10541 
10542 static void ipw_rf_kill(void *adapter)
10543 {
10544 	struct ipw_priv *priv = adapter;
10545 	unsigned long flags;
10546 
10547 	spin_lock_irqsave(&priv->lock, flags);
10548 
10549 	if (rf_kill_active(priv)) {
10550 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10551 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10552 		goto exit_unlock;
10553 	}
10554 
10555 	/* RF Kill is now disabled, so bring the device back up */
10556 
10557 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
10558 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10559 				  "device\n");
10560 
10561 		/* we can not do an adapter restart while inside an irq lock */
10562 		schedule_work(&priv->adapter_restart);
10563 	} else
10564 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10565 				  "enabled\n");
10566 
10567       exit_unlock:
10568 	spin_unlock_irqrestore(&priv->lock, flags);
10569 }
10570 
10571 static void ipw_bg_rf_kill(struct work_struct *work)
10572 {
10573 	struct ipw_priv *priv =
10574 		container_of(work, struct ipw_priv, rf_kill.work);
10575 	mutex_lock(&priv->mutex);
10576 	ipw_rf_kill(priv);
10577 	mutex_unlock(&priv->mutex);
10578 }
10579 
10580 static void ipw_link_up(struct ipw_priv *priv)
10581 {
10582 	priv->last_seq_num = -1;
10583 	priv->last_frag_num = -1;
10584 	priv->last_packet_time = 0;
10585 
10586 	netif_carrier_on(priv->net_dev);
10587 
10588 	cancel_delayed_work(&priv->request_scan);
10589 	cancel_delayed_work(&priv->request_direct_scan);
10590 	cancel_delayed_work(&priv->request_passive_scan);
10591 	cancel_delayed_work(&priv->scan_event);
10592 	ipw_reset_stats(priv);
10593 	/* Ensure the rate is updated immediately */
10594 	priv->last_rate = ipw_get_current_rate(priv);
10595 	ipw_gather_stats(priv);
10596 	ipw_led_link_up(priv);
10597 	notify_wx_assoc_event(priv);
10598 
10599 	if (priv->config & CFG_BACKGROUND_SCAN)
10600 		schedule_delayed_work(&priv->request_scan, HZ);
10601 }
10602 
10603 static void ipw_bg_link_up(struct work_struct *work)
10604 {
10605 	struct ipw_priv *priv =
10606 		container_of(work, struct ipw_priv, link_up);
10607 	mutex_lock(&priv->mutex);
10608 	ipw_link_up(priv);
10609 	mutex_unlock(&priv->mutex);
10610 }
10611 
10612 static void ipw_link_down(struct ipw_priv *priv)
10613 {
10614 	ipw_led_link_down(priv);
10615 	netif_carrier_off(priv->net_dev);
10616 	notify_wx_assoc_event(priv);
10617 
10618 	/* Cancel any queued work ... */
10619 	cancel_delayed_work(&priv->request_scan);
10620 	cancel_delayed_work(&priv->request_direct_scan);
10621 	cancel_delayed_work(&priv->request_passive_scan);
10622 	cancel_delayed_work(&priv->adhoc_check);
10623 	cancel_delayed_work(&priv->gather_stats);
10624 
10625 	ipw_reset_stats(priv);
10626 
10627 	if (!(priv->status & STATUS_EXIT_PENDING)) {
10628 		/* Queue up another scan... */
10629 		schedule_delayed_work(&priv->request_scan, 0);
10630 	} else
10631 		cancel_delayed_work(&priv->scan_event);
10632 }
10633 
10634 static void ipw_bg_link_down(struct work_struct *work)
10635 {
10636 	struct ipw_priv *priv =
10637 		container_of(work, struct ipw_priv, link_down);
10638 	mutex_lock(&priv->mutex);
10639 	ipw_link_down(priv);
10640 	mutex_unlock(&priv->mutex);
10641 }
10642 
10643 static void ipw_setup_deferred_work(struct ipw_priv *priv)
10644 {
10645 	init_waitqueue_head(&priv->wait_command_queue);
10646 	init_waitqueue_head(&priv->wait_state);
10647 
10648 	INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10649 	INIT_WORK(&priv->associate, ipw_bg_associate);
10650 	INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10651 	INIT_WORK(&priv->system_config, ipw_system_config);
10652 	INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10653 	INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10654 	INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10655 	INIT_WORK(&priv->up, ipw_bg_up);
10656 	INIT_WORK(&priv->down, ipw_bg_down);
10657 	INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10658 	INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10659 	INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10660 	INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10661 	INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10662 	INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10663 	INIT_WORK(&priv->roam, ipw_bg_roam);
10664 	INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10665 	INIT_WORK(&priv->link_up, ipw_bg_link_up);
10666 	INIT_WORK(&priv->link_down, ipw_bg_link_down);
10667 	INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10668 	INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10669 	INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10670 	INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10671 
10672 #ifdef CONFIG_IPW2200_QOS
10673 	INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10674 #endif				/* CONFIG_IPW2200_QOS */
10675 
10676 	tasklet_init(&priv->irq_tasklet,
10677 		     ipw_irq_tasklet, (unsigned long)priv);
10678 }
10679 
10680 static void shim__set_security(struct net_device *dev,
10681 			       struct libipw_security *sec)
10682 {
10683 	struct ipw_priv *priv = libipw_priv(dev);
10684 	int i;
10685 	for (i = 0; i < 4; i++) {
10686 		if (sec->flags & (1 << i)) {
10687 			priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10688 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10689 			if (sec->key_sizes[i] == 0)
10690 				priv->ieee->sec.flags &= ~(1 << i);
10691 			else {
10692 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10693 				       sec->key_sizes[i]);
10694 				priv->ieee->sec.flags |= (1 << i);
10695 			}
10696 			priv->status |= STATUS_SECURITY_UPDATED;
10697 		} else if (sec->level != SEC_LEVEL_1)
10698 			priv->ieee->sec.flags &= ~(1 << i);
10699 	}
10700 
10701 	if (sec->flags & SEC_ACTIVE_KEY) {
10702 		priv->ieee->sec.active_key = sec->active_key;
10703 		priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10704 		priv->status |= STATUS_SECURITY_UPDATED;
10705 	} else
10706 		priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10707 
10708 	if ((sec->flags & SEC_AUTH_MODE) &&
10709 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10710 		priv->ieee->sec.auth_mode = sec->auth_mode;
10711 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
10712 		if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10713 			priv->capability |= CAP_SHARED_KEY;
10714 		else
10715 			priv->capability &= ~CAP_SHARED_KEY;
10716 		priv->status |= STATUS_SECURITY_UPDATED;
10717 	}
10718 
10719 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10720 		priv->ieee->sec.flags |= SEC_ENABLED;
10721 		priv->ieee->sec.enabled = sec->enabled;
10722 		priv->status |= STATUS_SECURITY_UPDATED;
10723 		if (sec->enabled)
10724 			priv->capability |= CAP_PRIVACY_ON;
10725 		else
10726 			priv->capability &= ~CAP_PRIVACY_ON;
10727 	}
10728 
10729 	if (sec->flags & SEC_ENCRYPT)
10730 		priv->ieee->sec.encrypt = sec->encrypt;
10731 
10732 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10733 		priv->ieee->sec.level = sec->level;
10734 		priv->ieee->sec.flags |= SEC_LEVEL;
10735 		priv->status |= STATUS_SECURITY_UPDATED;
10736 	}
10737 
10738 	if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10739 		ipw_set_hwcrypto_keys(priv);
10740 
10741 	/* To match current functionality of ipw2100 (which works well w/
10742 	 * various supplicants, we don't force a disassociate if the
10743 	 * privacy capability changes ... */
10744 #if 0
10745 	if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10746 	    (((priv->assoc_request.capability &
10747 	       cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10748 	     (!(priv->assoc_request.capability &
10749 		cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10750 		IPW_DEBUG_ASSOC("Disassociating due to capability "
10751 				"change.\n");
10752 		ipw_disassociate(priv);
10753 	}
10754 #endif
10755 }
10756 
10757 static int init_supported_rates(struct ipw_priv *priv,
10758 				struct ipw_supported_rates *rates)
10759 {
10760 	/* TODO: Mask out rates based on priv->rates_mask */
10761 
10762 	memset(rates, 0, sizeof(*rates));
10763 	/* configure supported rates */
10764 	switch (priv->ieee->freq_band) {
10765 	case LIBIPW_52GHZ_BAND:
10766 		rates->ieee_mode = IPW_A_MODE;
10767 		rates->purpose = IPW_RATE_CAPABILITIES;
10768 		ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10769 					LIBIPW_OFDM_DEFAULT_RATES_MASK);
10770 		break;
10771 
10772 	default:		/* Mixed or 2.4Ghz */
10773 		rates->ieee_mode = IPW_G_MODE;
10774 		rates->purpose = IPW_RATE_CAPABILITIES;
10775 		ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10776 				       LIBIPW_CCK_DEFAULT_RATES_MASK);
10777 		if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10778 			ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10779 						LIBIPW_OFDM_DEFAULT_RATES_MASK);
10780 		}
10781 		break;
10782 	}
10783 
10784 	return 0;
10785 }
10786 
10787 static int ipw_config(struct ipw_priv *priv)
10788 {
10789 	/* This is only called from ipw_up, which resets/reloads the firmware
10790 	   so, we don't need to first disable the card before we configure
10791 	   it */
10792 	if (ipw_set_tx_power(priv))
10793 		goto error;
10794 
10795 	/* initialize adapter address */
10796 	if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10797 		goto error;
10798 
10799 	/* set basic system config settings */
10800 	init_sys_config(&priv->sys_config);
10801 
10802 	/* Support Bluetooth if we have BT h/w on board, and user wants to.
10803 	 * Does not support BT priority yet (don't abort or defer our Tx) */
10804 	if (bt_coexist) {
10805 		unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10806 
10807 		if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10808 			priv->sys_config.bt_coexistence
10809 			    |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10810 		if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10811 			priv->sys_config.bt_coexistence
10812 			    |= CFG_BT_COEXISTENCE_OOB;
10813 	}
10814 
10815 #ifdef CONFIG_IPW2200_PROMISCUOUS
10816 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10817 		priv->sys_config.accept_all_data_frames = 1;
10818 		priv->sys_config.accept_non_directed_frames = 1;
10819 		priv->sys_config.accept_all_mgmt_bcpr = 1;
10820 		priv->sys_config.accept_all_mgmt_frames = 1;
10821 	}
10822 #endif
10823 
10824 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10825 		priv->sys_config.answer_broadcast_ssid_probe = 1;
10826 	else
10827 		priv->sys_config.answer_broadcast_ssid_probe = 0;
10828 
10829 	if (ipw_send_system_config(priv))
10830 		goto error;
10831 
10832 	init_supported_rates(priv, &priv->rates);
10833 	if (ipw_send_supported_rates(priv, &priv->rates))
10834 		goto error;
10835 
10836 	/* Set request-to-send threshold */
10837 	if (priv->rts_threshold) {
10838 		if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10839 			goto error;
10840 	}
10841 #ifdef CONFIG_IPW2200_QOS
10842 	IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10843 	ipw_qos_activate(priv, NULL);
10844 #endif				/* CONFIG_IPW2200_QOS */
10845 
10846 	if (ipw_set_random_seed(priv))
10847 		goto error;
10848 
10849 	/* final state transition to the RUN state */
10850 	if (ipw_send_host_complete(priv))
10851 		goto error;
10852 
10853 	priv->status |= STATUS_INIT;
10854 
10855 	ipw_led_init(priv);
10856 	ipw_led_radio_on(priv);
10857 	priv->notif_missed_beacons = 0;
10858 
10859 	/* Set hardware WEP key if it is configured. */
10860 	if ((priv->capability & CAP_PRIVACY_ON) &&
10861 	    (priv->ieee->sec.level == SEC_LEVEL_1) &&
10862 	    !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10863 		ipw_set_hwcrypto_keys(priv);
10864 
10865 	return 0;
10866 
10867       error:
10868 	return -EIO;
10869 }
10870 
10871 /*
10872  * NOTE:
10873  *
10874  * These tables have been tested in conjunction with the
10875  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10876  *
10877  * Altering this values, using it on other hardware, or in geographies
10878  * not intended for resale of the above mentioned Intel adapters has
10879  * not been tested.
10880  *
10881  * Remember to update the table in README.ipw2200 when changing this
10882  * table.
10883  *
10884  */
10885 static const struct libipw_geo ipw_geos[] = {
10886 	{			/* Restricted */
10887 	 "---",
10888 	 .bg_channels = 11,
10889 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10890 		{2427, 4}, {2432, 5}, {2437, 6},
10891 		{2442, 7}, {2447, 8}, {2452, 9},
10892 		{2457, 10}, {2462, 11}},
10893 	 },
10894 
10895 	{			/* Custom US/Canada */
10896 	 "ZZF",
10897 	 .bg_channels = 11,
10898 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10899 		{2427, 4}, {2432, 5}, {2437, 6},
10900 		{2442, 7}, {2447, 8}, {2452, 9},
10901 		{2457, 10}, {2462, 11}},
10902 	 .a_channels = 8,
10903 	 .a = {{5180, 36},
10904 	       {5200, 40},
10905 	       {5220, 44},
10906 	       {5240, 48},
10907 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10908 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10909 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10910 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10911 	 },
10912 
10913 	{			/* Rest of World */
10914 	 "ZZD",
10915 	 .bg_channels = 13,
10916 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10917 		{2427, 4}, {2432, 5}, {2437, 6},
10918 		{2442, 7}, {2447, 8}, {2452, 9},
10919 		{2457, 10}, {2462, 11}, {2467, 12},
10920 		{2472, 13}},
10921 	 },
10922 
10923 	{			/* Custom USA & Europe & High */
10924 	 "ZZA",
10925 	 .bg_channels = 11,
10926 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10927 		{2427, 4}, {2432, 5}, {2437, 6},
10928 		{2442, 7}, {2447, 8}, {2452, 9},
10929 		{2457, 10}, {2462, 11}},
10930 	 .a_channels = 13,
10931 	 .a = {{5180, 36},
10932 	       {5200, 40},
10933 	       {5220, 44},
10934 	       {5240, 48},
10935 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10936 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10937 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10938 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10939 	       {5745, 149},
10940 	       {5765, 153},
10941 	       {5785, 157},
10942 	       {5805, 161},
10943 	       {5825, 165}},
10944 	 },
10945 
10946 	{			/* Custom NA & Europe */
10947 	 "ZZB",
10948 	 .bg_channels = 11,
10949 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10950 		{2427, 4}, {2432, 5}, {2437, 6},
10951 		{2442, 7}, {2447, 8}, {2452, 9},
10952 		{2457, 10}, {2462, 11}},
10953 	 .a_channels = 13,
10954 	 .a = {{5180, 36},
10955 	       {5200, 40},
10956 	       {5220, 44},
10957 	       {5240, 48},
10958 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10959 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10960 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10961 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10962 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10963 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10964 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10965 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10966 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10967 	 },
10968 
10969 	{			/* Custom Japan */
10970 	 "ZZC",
10971 	 .bg_channels = 11,
10972 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10973 		{2427, 4}, {2432, 5}, {2437, 6},
10974 		{2442, 7}, {2447, 8}, {2452, 9},
10975 		{2457, 10}, {2462, 11}},
10976 	 .a_channels = 4,
10977 	 .a = {{5170, 34}, {5190, 38},
10978 	       {5210, 42}, {5230, 46}},
10979 	 },
10980 
10981 	{			/* Custom */
10982 	 "ZZM",
10983 	 .bg_channels = 11,
10984 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10985 		{2427, 4}, {2432, 5}, {2437, 6},
10986 		{2442, 7}, {2447, 8}, {2452, 9},
10987 		{2457, 10}, {2462, 11}},
10988 	 },
10989 
10990 	{			/* Europe */
10991 	 "ZZE",
10992 	 .bg_channels = 13,
10993 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10994 		{2427, 4}, {2432, 5}, {2437, 6},
10995 		{2442, 7}, {2447, 8}, {2452, 9},
10996 		{2457, 10}, {2462, 11}, {2467, 12},
10997 		{2472, 13}},
10998 	 .a_channels = 19,
10999 	 .a = {{5180, 36},
11000 	       {5200, 40},
11001 	       {5220, 44},
11002 	       {5240, 48},
11003 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11004 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11005 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11006 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11007 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11008 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11009 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11010 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11011 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11012 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11013 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11014 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11015 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11016 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11017 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11018 	 },
11019 
11020 	{			/* Custom Japan */
11021 	 "ZZJ",
11022 	 .bg_channels = 14,
11023 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11024 		{2427, 4}, {2432, 5}, {2437, 6},
11025 		{2442, 7}, {2447, 8}, {2452, 9},
11026 		{2457, 10}, {2462, 11}, {2467, 12},
11027 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11028 	 .a_channels = 4,
11029 	 .a = {{5170, 34}, {5190, 38},
11030 	       {5210, 42}, {5230, 46}},
11031 	 },
11032 
11033 	{			/* Rest of World */
11034 	 "ZZR",
11035 	 .bg_channels = 14,
11036 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11037 		{2427, 4}, {2432, 5}, {2437, 6},
11038 		{2442, 7}, {2447, 8}, {2452, 9},
11039 		{2457, 10}, {2462, 11}, {2467, 12},
11040 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11041 			     LIBIPW_CH_PASSIVE_ONLY}},
11042 	 },
11043 
11044 	{			/* High Band */
11045 	 "ZZH",
11046 	 .bg_channels = 13,
11047 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11048 		{2427, 4}, {2432, 5}, {2437, 6},
11049 		{2442, 7}, {2447, 8}, {2452, 9},
11050 		{2457, 10}, {2462, 11},
11051 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11052 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11053 	 .a_channels = 4,
11054 	 .a = {{5745, 149}, {5765, 153},
11055 	       {5785, 157}, {5805, 161}},
11056 	 },
11057 
11058 	{			/* Custom Europe */
11059 	 "ZZG",
11060 	 .bg_channels = 13,
11061 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11062 		{2427, 4}, {2432, 5}, {2437, 6},
11063 		{2442, 7}, {2447, 8}, {2452, 9},
11064 		{2457, 10}, {2462, 11},
11065 		{2467, 12}, {2472, 13}},
11066 	 .a_channels = 4,
11067 	 .a = {{5180, 36}, {5200, 40},
11068 	       {5220, 44}, {5240, 48}},
11069 	 },
11070 
11071 	{			/* Europe */
11072 	 "ZZK",
11073 	 .bg_channels = 13,
11074 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11075 		{2427, 4}, {2432, 5}, {2437, 6},
11076 		{2442, 7}, {2447, 8}, {2452, 9},
11077 		{2457, 10}, {2462, 11},
11078 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11079 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11080 	 .a_channels = 24,
11081 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11082 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11083 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11084 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11085 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11086 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11087 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11088 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11089 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11090 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11091 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11092 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11093 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11094 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11095 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11096 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11097 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11098 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11099 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11100 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11101 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11102 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11103 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11104 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11105 	 },
11106 
11107 	{			/* Europe */
11108 	 "ZZL",
11109 	 .bg_channels = 11,
11110 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11111 		{2427, 4}, {2432, 5}, {2437, 6},
11112 		{2442, 7}, {2447, 8}, {2452, 9},
11113 		{2457, 10}, {2462, 11}},
11114 	 .a_channels = 13,
11115 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11116 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11117 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11118 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11119 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11120 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11121 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11122 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11123 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11124 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11125 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11126 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11127 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11128 	 }
11129 };
11130 
11131 static void ipw_set_geo(struct ipw_priv *priv)
11132 {
11133 	int j;
11134 
11135 	for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11136 		if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11137 			    ipw_geos[j].name, 3))
11138 			break;
11139 	}
11140 
11141 	if (j == ARRAY_SIZE(ipw_geos)) {
11142 		IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11143 			    priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11144 			    priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11145 			    priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11146 		j = 0;
11147 	}
11148 
11149 	libipw_set_geo(priv->ieee, &ipw_geos[j]);
11150 }
11151 
11152 #define MAX_HW_RESTARTS 5
11153 static int ipw_up(struct ipw_priv *priv)
11154 {
11155 	int rc, i;
11156 
11157 	/* Age scan list entries found before suspend */
11158 	if (priv->suspend_time) {
11159 		libipw_networks_age(priv->ieee, priv->suspend_time);
11160 		priv->suspend_time = 0;
11161 	}
11162 
11163 	if (priv->status & STATUS_EXIT_PENDING)
11164 		return -EIO;
11165 
11166 	if (cmdlog && !priv->cmdlog) {
11167 		priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11168 				       GFP_KERNEL);
11169 		if (priv->cmdlog == NULL) {
11170 			IPW_ERROR("Error allocating %d command log entries.\n",
11171 				  cmdlog);
11172 			return -ENOMEM;
11173 		} else {
11174 			priv->cmdlog_len = cmdlog;
11175 		}
11176 	}
11177 
11178 	for (i = 0; i < MAX_HW_RESTARTS; i++) {
11179 		/* Load the microcode, firmware, and eeprom.
11180 		 * Also start the clocks. */
11181 		rc = ipw_load(priv);
11182 		if (rc) {
11183 			IPW_ERROR("Unable to load firmware: %d\n", rc);
11184 			return rc;
11185 		}
11186 
11187 		ipw_init_ordinals(priv);
11188 		if (!(priv->config & CFG_CUSTOM_MAC))
11189 			eeprom_parse_mac(priv, priv->mac_addr);
11190 		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11191 
11192 		ipw_set_geo(priv);
11193 
11194 		if (priv->status & STATUS_RF_KILL_SW) {
11195 			IPW_WARNING("Radio disabled by module parameter.\n");
11196 			return 0;
11197 		} else if (rf_kill_active(priv)) {
11198 			IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11199 				    "Kill switch must be turned off for "
11200 				    "wireless networking to work.\n");
11201 			schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11202 			return 0;
11203 		}
11204 
11205 		rc = ipw_config(priv);
11206 		if (!rc) {
11207 			IPW_DEBUG_INFO("Configured device on count %i\n", i);
11208 
11209 			/* If configure to try and auto-associate, kick
11210 			 * off a scan. */
11211 			schedule_delayed_work(&priv->request_scan, 0);
11212 
11213 			return 0;
11214 		}
11215 
11216 		IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11217 		IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11218 			       i, MAX_HW_RESTARTS);
11219 
11220 		/* We had an error bringing up the hardware, so take it
11221 		 * all the way back down so we can try again */
11222 		ipw_down(priv);
11223 	}
11224 
11225 	/* tried to restart and config the device for as long as our
11226 	 * patience could withstand */
11227 	IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11228 
11229 	return -EIO;
11230 }
11231 
11232 static void ipw_bg_up(struct work_struct *work)
11233 {
11234 	struct ipw_priv *priv =
11235 		container_of(work, struct ipw_priv, up);
11236 	mutex_lock(&priv->mutex);
11237 	ipw_up(priv);
11238 	mutex_unlock(&priv->mutex);
11239 }
11240 
11241 static void ipw_deinit(struct ipw_priv *priv)
11242 {
11243 	int i;
11244 
11245 	if (priv->status & STATUS_SCANNING) {
11246 		IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11247 		ipw_abort_scan(priv);
11248 	}
11249 
11250 	if (priv->status & STATUS_ASSOCIATED) {
11251 		IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11252 		ipw_disassociate(priv);
11253 	}
11254 
11255 	ipw_led_shutdown(priv);
11256 
11257 	/* Wait up to 1s for status to change to not scanning and not
11258 	 * associated (disassociation can take a while for a ful 802.11
11259 	 * exchange */
11260 	for (i = 1000; i && (priv->status &
11261 			     (STATUS_DISASSOCIATING |
11262 			      STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11263 		udelay(10);
11264 
11265 	if (priv->status & (STATUS_DISASSOCIATING |
11266 			    STATUS_ASSOCIATED | STATUS_SCANNING))
11267 		IPW_DEBUG_INFO("Still associated or scanning...\n");
11268 	else
11269 		IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11270 
11271 	/* Attempt to disable the card */
11272 	ipw_send_card_disable(priv, 0);
11273 
11274 	priv->status &= ~STATUS_INIT;
11275 }
11276 
11277 static void ipw_down(struct ipw_priv *priv)
11278 {
11279 	int exit_pending = priv->status & STATUS_EXIT_PENDING;
11280 
11281 	priv->status |= STATUS_EXIT_PENDING;
11282 
11283 	if (ipw_is_init(priv))
11284 		ipw_deinit(priv);
11285 
11286 	/* Wipe out the EXIT_PENDING status bit if we are not actually
11287 	 * exiting the module */
11288 	if (!exit_pending)
11289 		priv->status &= ~STATUS_EXIT_PENDING;
11290 
11291 	/* tell the device to stop sending interrupts */
11292 	ipw_disable_interrupts(priv);
11293 
11294 	/* Clear all bits but the RF Kill */
11295 	priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11296 	netif_carrier_off(priv->net_dev);
11297 
11298 	ipw_stop_nic(priv);
11299 
11300 	ipw_led_radio_off(priv);
11301 }
11302 
11303 static void ipw_bg_down(struct work_struct *work)
11304 {
11305 	struct ipw_priv *priv =
11306 		container_of(work, struct ipw_priv, down);
11307 	mutex_lock(&priv->mutex);
11308 	ipw_down(priv);
11309 	mutex_unlock(&priv->mutex);
11310 }
11311 
11312 static int ipw_wdev_init(struct net_device *dev)
11313 {
11314 	int i, rc = 0;
11315 	struct ipw_priv *priv = libipw_priv(dev);
11316 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11317 	struct wireless_dev *wdev = &priv->ieee->wdev;
11318 
11319 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11320 
11321 	/* fill-out priv->ieee->bg_band */
11322 	if (geo->bg_channels) {
11323 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11324 
11325 		bg_band->band = NL80211_BAND_2GHZ;
11326 		bg_band->n_channels = geo->bg_channels;
11327 		bg_band->channels = kcalloc(geo->bg_channels,
11328 					    sizeof(struct ieee80211_channel),
11329 					    GFP_KERNEL);
11330 		if (!bg_band->channels) {
11331 			rc = -ENOMEM;
11332 			goto out;
11333 		}
11334 		/* translate geo->bg to bg_band.channels */
11335 		for (i = 0; i < geo->bg_channels; i++) {
11336 			bg_band->channels[i].band = NL80211_BAND_2GHZ;
11337 			bg_band->channels[i].center_freq = geo->bg[i].freq;
11338 			bg_band->channels[i].hw_value = geo->bg[i].channel;
11339 			bg_band->channels[i].max_power = geo->bg[i].max_power;
11340 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11341 				bg_band->channels[i].flags |=
11342 					IEEE80211_CHAN_NO_IR;
11343 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11344 				bg_band->channels[i].flags |=
11345 					IEEE80211_CHAN_NO_IR;
11346 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11347 				bg_band->channels[i].flags |=
11348 					IEEE80211_CHAN_RADAR;
11349 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11350 			   LIBIPW_CH_UNIFORM_SPREADING, or
11351 			   LIBIPW_CH_B_ONLY... */
11352 		}
11353 		/* point at bitrate info */
11354 		bg_band->bitrates = ipw2200_bg_rates;
11355 		bg_band->n_bitrates = ipw2200_num_bg_rates;
11356 
11357 		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11358 	}
11359 
11360 	/* fill-out priv->ieee->a_band */
11361 	if (geo->a_channels) {
11362 		struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11363 
11364 		a_band->band = NL80211_BAND_5GHZ;
11365 		a_band->n_channels = geo->a_channels;
11366 		a_band->channels = kcalloc(geo->a_channels,
11367 					   sizeof(struct ieee80211_channel),
11368 					   GFP_KERNEL);
11369 		if (!a_band->channels) {
11370 			rc = -ENOMEM;
11371 			goto out;
11372 		}
11373 		/* translate geo->a to a_band.channels */
11374 		for (i = 0; i < geo->a_channels; i++) {
11375 			a_band->channels[i].band = NL80211_BAND_5GHZ;
11376 			a_band->channels[i].center_freq = geo->a[i].freq;
11377 			a_band->channels[i].hw_value = geo->a[i].channel;
11378 			a_band->channels[i].max_power = geo->a[i].max_power;
11379 			if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11380 				a_band->channels[i].flags |=
11381 					IEEE80211_CHAN_NO_IR;
11382 			if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11383 				a_band->channels[i].flags |=
11384 					IEEE80211_CHAN_NO_IR;
11385 			if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11386 				a_band->channels[i].flags |=
11387 					IEEE80211_CHAN_RADAR;
11388 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11389 			   LIBIPW_CH_UNIFORM_SPREADING, or
11390 			   LIBIPW_CH_B_ONLY... */
11391 		}
11392 		/* point at bitrate info */
11393 		a_band->bitrates = ipw2200_a_rates;
11394 		a_band->n_bitrates = ipw2200_num_a_rates;
11395 
11396 		wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11397 	}
11398 
11399 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
11400 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11401 
11402 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11403 
11404 	/* With that information in place, we can now register the wiphy... */
11405 	if (wiphy_register(wdev->wiphy))
11406 		rc = -EIO;
11407 out:
11408 	return rc;
11409 }
11410 
11411 /* PCI driver stuff */
11412 static const struct pci_device_id card_ids[] = {
11413 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11414 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11415 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11416 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11417 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11418 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11419 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11420 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11421 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11422 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11423 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11424 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11425 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11426 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11427 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11428 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11429 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11430 	{PCI_VDEVICE(INTEL, 0x104f), 0},
11431 	{PCI_VDEVICE(INTEL, 0x4220), 0},	/* BG */
11432 	{PCI_VDEVICE(INTEL, 0x4221), 0},	/* BG */
11433 	{PCI_VDEVICE(INTEL, 0x4223), 0},	/* ABG */
11434 	{PCI_VDEVICE(INTEL, 0x4224), 0},	/* ABG */
11435 
11436 	/* required last entry */
11437 	{0,}
11438 };
11439 
11440 MODULE_DEVICE_TABLE(pci, card_ids);
11441 
11442 static struct attribute *ipw_sysfs_entries[] = {
11443 	&dev_attr_rf_kill.attr,
11444 	&dev_attr_direct_dword.attr,
11445 	&dev_attr_indirect_byte.attr,
11446 	&dev_attr_indirect_dword.attr,
11447 	&dev_attr_mem_gpio_reg.attr,
11448 	&dev_attr_command_event_reg.attr,
11449 	&dev_attr_nic_type.attr,
11450 	&dev_attr_status.attr,
11451 	&dev_attr_cfg.attr,
11452 	&dev_attr_error.attr,
11453 	&dev_attr_event_log.attr,
11454 	&dev_attr_cmd_log.attr,
11455 	&dev_attr_eeprom_delay.attr,
11456 	&dev_attr_ucode_version.attr,
11457 	&dev_attr_rtc.attr,
11458 	&dev_attr_scan_age.attr,
11459 	&dev_attr_led.attr,
11460 	&dev_attr_speed_scan.attr,
11461 	&dev_attr_net_stats.attr,
11462 	&dev_attr_channels.attr,
11463 #ifdef CONFIG_IPW2200_PROMISCUOUS
11464 	&dev_attr_rtap_iface.attr,
11465 	&dev_attr_rtap_filter.attr,
11466 #endif
11467 	NULL
11468 };
11469 
11470 static const struct attribute_group ipw_attribute_group = {
11471 	.name = NULL,		/* put in device directory */
11472 	.attrs = ipw_sysfs_entries,
11473 };
11474 
11475 #ifdef CONFIG_IPW2200_PROMISCUOUS
11476 static int ipw_prom_open(struct net_device *dev)
11477 {
11478 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11479 	struct ipw_priv *priv = prom_priv->priv;
11480 
11481 	IPW_DEBUG_INFO("prom dev->open\n");
11482 	netif_carrier_off(dev);
11483 
11484 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11485 		priv->sys_config.accept_all_data_frames = 1;
11486 		priv->sys_config.accept_non_directed_frames = 1;
11487 		priv->sys_config.accept_all_mgmt_bcpr = 1;
11488 		priv->sys_config.accept_all_mgmt_frames = 1;
11489 
11490 		ipw_send_system_config(priv);
11491 	}
11492 
11493 	return 0;
11494 }
11495 
11496 static int ipw_prom_stop(struct net_device *dev)
11497 {
11498 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11499 	struct ipw_priv *priv = prom_priv->priv;
11500 
11501 	IPW_DEBUG_INFO("prom dev->stop\n");
11502 
11503 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11504 		priv->sys_config.accept_all_data_frames = 0;
11505 		priv->sys_config.accept_non_directed_frames = 0;
11506 		priv->sys_config.accept_all_mgmt_bcpr = 0;
11507 		priv->sys_config.accept_all_mgmt_frames = 0;
11508 
11509 		ipw_send_system_config(priv);
11510 	}
11511 
11512 	return 0;
11513 }
11514 
11515 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11516 					    struct net_device *dev)
11517 {
11518 	IPW_DEBUG_INFO("prom dev->xmit\n");
11519 	dev_kfree_skb(skb);
11520 	return NETDEV_TX_OK;
11521 }
11522 
11523 static const struct net_device_ops ipw_prom_netdev_ops = {
11524 	.ndo_open 		= ipw_prom_open,
11525 	.ndo_stop		= ipw_prom_stop,
11526 	.ndo_start_xmit		= ipw_prom_hard_start_xmit,
11527 	.ndo_set_mac_address 	= eth_mac_addr,
11528 	.ndo_validate_addr	= eth_validate_addr,
11529 };
11530 
11531 static int ipw_prom_alloc(struct ipw_priv *priv)
11532 {
11533 	int rc = 0;
11534 
11535 	if (priv->prom_net_dev)
11536 		return -EPERM;
11537 
11538 	priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11539 	if (priv->prom_net_dev == NULL)
11540 		return -ENOMEM;
11541 
11542 	priv->prom_priv = libipw_priv(priv->prom_net_dev);
11543 	priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11544 	priv->prom_priv->priv = priv;
11545 
11546 	strcpy(priv->prom_net_dev->name, "rtap%d");
11547 	memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11548 
11549 	priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11550 	priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11551 
11552 	priv->prom_net_dev->min_mtu = 68;
11553 	priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11554 
11555 	priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11556 	SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11557 
11558 	rc = register_netdev(priv->prom_net_dev);
11559 	if (rc) {
11560 		free_libipw(priv->prom_net_dev, 1);
11561 		priv->prom_net_dev = NULL;
11562 		return rc;
11563 	}
11564 
11565 	return 0;
11566 }
11567 
11568 static void ipw_prom_free(struct ipw_priv *priv)
11569 {
11570 	if (!priv->prom_net_dev)
11571 		return;
11572 
11573 	unregister_netdev(priv->prom_net_dev);
11574 	free_libipw(priv->prom_net_dev, 1);
11575 
11576 	priv->prom_net_dev = NULL;
11577 }
11578 
11579 #endif
11580 
11581 static const struct net_device_ops ipw_netdev_ops = {
11582 	.ndo_open		= ipw_net_open,
11583 	.ndo_stop		= ipw_net_stop,
11584 	.ndo_set_rx_mode	= ipw_net_set_multicast_list,
11585 	.ndo_set_mac_address	= ipw_net_set_mac_address,
11586 	.ndo_start_xmit		= libipw_xmit,
11587 	.ndo_validate_addr	= eth_validate_addr,
11588 };
11589 
11590 static int ipw_pci_probe(struct pci_dev *pdev,
11591 				   const struct pci_device_id *ent)
11592 {
11593 	int err = 0;
11594 	struct net_device *net_dev;
11595 	void __iomem *base;
11596 	u32 length, val;
11597 	struct ipw_priv *priv;
11598 	int i;
11599 
11600 	net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11601 	if (net_dev == NULL) {
11602 		err = -ENOMEM;
11603 		goto out;
11604 	}
11605 
11606 	priv = libipw_priv(net_dev);
11607 	priv->ieee = netdev_priv(net_dev);
11608 
11609 	priv->net_dev = net_dev;
11610 	priv->pci_dev = pdev;
11611 	ipw_debug_level = debug;
11612 	spin_lock_init(&priv->irq_lock);
11613 	spin_lock_init(&priv->lock);
11614 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11615 		INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11616 
11617 	mutex_init(&priv->mutex);
11618 	if (pci_enable_device(pdev)) {
11619 		err = -ENODEV;
11620 		goto out_free_libipw;
11621 	}
11622 
11623 	pci_set_master(pdev);
11624 
11625 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
11626 	if (!err)
11627 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
11628 	if (err) {
11629 		printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11630 		goto out_pci_disable_device;
11631 	}
11632 
11633 	pci_set_drvdata(pdev, priv);
11634 
11635 	err = pci_request_regions(pdev, DRV_NAME);
11636 	if (err)
11637 		goto out_pci_disable_device;
11638 
11639 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
11640 	 * PCI Tx retries from interfering with C3 CPU state */
11641 	pci_read_config_dword(pdev, 0x40, &val);
11642 	if ((val & 0x0000ff00) != 0)
11643 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11644 
11645 	length = pci_resource_len(pdev, 0);
11646 	priv->hw_len = length;
11647 
11648 	base = pci_ioremap_bar(pdev, 0);
11649 	if (!base) {
11650 		err = -ENODEV;
11651 		goto out_pci_release_regions;
11652 	}
11653 
11654 	priv->hw_base = base;
11655 	IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11656 	IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11657 
11658 	ipw_setup_deferred_work(priv);
11659 
11660 	ipw_sw_reset(priv, 1);
11661 
11662 	err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11663 	if (err) {
11664 		IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11665 		goto out_iounmap;
11666 	}
11667 
11668 	SET_NETDEV_DEV(net_dev, &pdev->dev);
11669 
11670 	mutex_lock(&priv->mutex);
11671 
11672 	priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11673 	priv->ieee->set_security = shim__set_security;
11674 	priv->ieee->is_queue_full = ipw_net_is_queue_full;
11675 
11676 #ifdef CONFIG_IPW2200_QOS
11677 	priv->ieee->is_qos_active = ipw_is_qos_active;
11678 	priv->ieee->handle_probe_response = ipw_handle_beacon;
11679 	priv->ieee->handle_beacon = ipw_handle_probe_response;
11680 	priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11681 #endif				/* CONFIG_IPW2200_QOS */
11682 
11683 	priv->ieee->perfect_rssi = -20;
11684 	priv->ieee->worst_rssi = -85;
11685 
11686 	net_dev->netdev_ops = &ipw_netdev_ops;
11687 	priv->wireless_data.spy_data = &priv->ieee->spy_data;
11688 	net_dev->wireless_data = &priv->wireless_data;
11689 	net_dev->wireless_handlers = &ipw_wx_handler_def;
11690 	net_dev->ethtool_ops = &ipw_ethtool_ops;
11691 
11692 	net_dev->min_mtu = 68;
11693 	net_dev->max_mtu = LIBIPW_DATA_LEN;
11694 
11695 	err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11696 	if (err) {
11697 		IPW_ERROR("failed to create sysfs device attributes\n");
11698 		mutex_unlock(&priv->mutex);
11699 		goto out_release_irq;
11700 	}
11701 
11702 	if (ipw_up(priv)) {
11703 		mutex_unlock(&priv->mutex);
11704 		err = -EIO;
11705 		goto out_remove_sysfs;
11706 	}
11707 
11708 	mutex_unlock(&priv->mutex);
11709 
11710 	err = ipw_wdev_init(net_dev);
11711 	if (err) {
11712 		IPW_ERROR("failed to register wireless device\n");
11713 		goto out_remove_sysfs;
11714 	}
11715 
11716 	err = register_netdev(net_dev);
11717 	if (err) {
11718 		IPW_ERROR("failed to register network device\n");
11719 		goto out_unregister_wiphy;
11720 	}
11721 
11722 #ifdef CONFIG_IPW2200_PROMISCUOUS
11723 	if (rtap_iface) {
11724 	        err = ipw_prom_alloc(priv);
11725 		if (err) {
11726 			IPW_ERROR("Failed to register promiscuous network "
11727 				  "device (error %d).\n", err);
11728 			unregister_netdev(priv->net_dev);
11729 			goto out_unregister_wiphy;
11730 		}
11731 	}
11732 #endif
11733 
11734 	printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11735 	       "channels, %d 802.11a channels)\n",
11736 	       priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11737 	       priv->ieee->geo.a_channels);
11738 
11739 	return 0;
11740 
11741       out_unregister_wiphy:
11742 	wiphy_unregister(priv->ieee->wdev.wiphy);
11743 	kfree(priv->ieee->a_band.channels);
11744 	kfree(priv->ieee->bg_band.channels);
11745       out_remove_sysfs:
11746 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11747       out_release_irq:
11748 	free_irq(pdev->irq, priv);
11749       out_iounmap:
11750 	iounmap(priv->hw_base);
11751       out_pci_release_regions:
11752 	pci_release_regions(pdev);
11753       out_pci_disable_device:
11754 	pci_disable_device(pdev);
11755       out_free_libipw:
11756 	free_libipw(priv->net_dev, 0);
11757       out:
11758 	return err;
11759 }
11760 
11761 static void ipw_pci_remove(struct pci_dev *pdev)
11762 {
11763 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11764 	struct list_head *p, *q;
11765 	int i;
11766 
11767 	if (!priv)
11768 		return;
11769 
11770 	mutex_lock(&priv->mutex);
11771 
11772 	priv->status |= STATUS_EXIT_PENDING;
11773 	ipw_down(priv);
11774 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11775 
11776 	mutex_unlock(&priv->mutex);
11777 
11778 	unregister_netdev(priv->net_dev);
11779 
11780 	if (priv->rxq) {
11781 		ipw_rx_queue_free(priv, priv->rxq);
11782 		priv->rxq = NULL;
11783 	}
11784 	ipw_tx_queue_free(priv);
11785 
11786 	if (priv->cmdlog) {
11787 		kfree(priv->cmdlog);
11788 		priv->cmdlog = NULL;
11789 	}
11790 
11791 	/* make sure all works are inactive */
11792 	cancel_delayed_work_sync(&priv->adhoc_check);
11793 	cancel_work_sync(&priv->associate);
11794 	cancel_work_sync(&priv->disassociate);
11795 	cancel_work_sync(&priv->system_config);
11796 	cancel_work_sync(&priv->rx_replenish);
11797 	cancel_work_sync(&priv->adapter_restart);
11798 	cancel_delayed_work_sync(&priv->rf_kill);
11799 	cancel_work_sync(&priv->up);
11800 	cancel_work_sync(&priv->down);
11801 	cancel_delayed_work_sync(&priv->request_scan);
11802 	cancel_delayed_work_sync(&priv->request_direct_scan);
11803 	cancel_delayed_work_sync(&priv->request_passive_scan);
11804 	cancel_delayed_work_sync(&priv->scan_event);
11805 	cancel_delayed_work_sync(&priv->gather_stats);
11806 	cancel_work_sync(&priv->abort_scan);
11807 	cancel_work_sync(&priv->roam);
11808 	cancel_delayed_work_sync(&priv->scan_check);
11809 	cancel_work_sync(&priv->link_up);
11810 	cancel_work_sync(&priv->link_down);
11811 	cancel_delayed_work_sync(&priv->led_link_on);
11812 	cancel_delayed_work_sync(&priv->led_link_off);
11813 	cancel_delayed_work_sync(&priv->led_act_off);
11814 	cancel_work_sync(&priv->merge_networks);
11815 
11816 	/* Free MAC hash list for ADHOC */
11817 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11818 		list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11819 			list_del(p);
11820 			kfree(list_entry(p, struct ipw_ibss_seq, list));
11821 		}
11822 	}
11823 
11824 	kfree(priv->error);
11825 	priv->error = NULL;
11826 
11827 #ifdef CONFIG_IPW2200_PROMISCUOUS
11828 	ipw_prom_free(priv);
11829 #endif
11830 
11831 	free_irq(pdev->irq, priv);
11832 	iounmap(priv->hw_base);
11833 	pci_release_regions(pdev);
11834 	pci_disable_device(pdev);
11835 	/* wiphy_unregister needs to be here, before free_libipw */
11836 	wiphy_unregister(priv->ieee->wdev.wiphy);
11837 	kfree(priv->ieee->a_band.channels);
11838 	kfree(priv->ieee->bg_band.channels);
11839 	free_libipw(priv->net_dev, 0);
11840 	free_firmware();
11841 }
11842 
11843 static int __maybe_unused ipw_pci_suspend(struct device *dev_d)
11844 {
11845 	struct ipw_priv *priv = dev_get_drvdata(dev_d);
11846 	struct net_device *dev = priv->net_dev;
11847 
11848 	printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11849 
11850 	/* Take down the device; powers it off, etc. */
11851 	ipw_down(priv);
11852 
11853 	/* Remove the PRESENT state of the device */
11854 	netif_device_detach(dev);
11855 
11856 	priv->suspend_at = ktime_get_boottime_seconds();
11857 
11858 	return 0;
11859 }
11860 
11861 static int __maybe_unused ipw_pci_resume(struct device *dev_d)
11862 {
11863 	struct pci_dev *pdev = to_pci_dev(dev_d);
11864 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11865 	struct net_device *dev = priv->net_dev;
11866 	u32 val;
11867 
11868 	printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11869 
11870 	/*
11871 	 * Suspend/Resume resets the PCI configuration space, so we have to
11872 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11873 	 * from interfering with C3 CPU state. pci_restore_state won't help
11874 	 * here since it only restores the first 64 bytes pci config header.
11875 	 */
11876 	pci_read_config_dword(pdev, 0x40, &val);
11877 	if ((val & 0x0000ff00) != 0)
11878 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11879 
11880 	/* Set the device back into the PRESENT state; this will also wake
11881 	 * the queue of needed */
11882 	netif_device_attach(dev);
11883 
11884 	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11885 
11886 	/* Bring the device back up */
11887 	schedule_work(&priv->up);
11888 
11889 	return 0;
11890 }
11891 
11892 static void ipw_pci_shutdown(struct pci_dev *pdev)
11893 {
11894 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11895 
11896 	/* Take down the device; powers it off, etc. */
11897 	ipw_down(priv);
11898 
11899 	pci_disable_device(pdev);
11900 }
11901 
11902 static SIMPLE_DEV_PM_OPS(ipw_pci_pm_ops, ipw_pci_suspend, ipw_pci_resume);
11903 
11904 /* driver initialization stuff */
11905 static struct pci_driver ipw_driver = {
11906 	.name = DRV_NAME,
11907 	.id_table = card_ids,
11908 	.probe = ipw_pci_probe,
11909 	.remove = ipw_pci_remove,
11910 	.driver.pm = &ipw_pci_pm_ops,
11911 	.shutdown = ipw_pci_shutdown,
11912 };
11913 
11914 static int __init ipw_init(void)
11915 {
11916 	int ret;
11917 
11918 	printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11919 	printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11920 
11921 	ret = pci_register_driver(&ipw_driver);
11922 	if (ret) {
11923 		IPW_ERROR("Unable to initialize PCI module\n");
11924 		return ret;
11925 	}
11926 
11927 	ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11928 	if (ret) {
11929 		IPW_ERROR("Unable to create driver sysfs file\n");
11930 		pci_unregister_driver(&ipw_driver);
11931 		return ret;
11932 	}
11933 
11934 	return ret;
11935 }
11936 
11937 static void __exit ipw_exit(void)
11938 {
11939 	driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11940 	pci_unregister_driver(&ipw_driver);
11941 }
11942 
11943 module_param(disable, int, 0444);
11944 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11945 
11946 module_param(associate, int, 0444);
11947 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11948 
11949 module_param(auto_create, int, 0444);
11950 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11951 
11952 module_param_named(led, led_support, int, 0444);
11953 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11954 
11955 module_param(debug, int, 0444);
11956 MODULE_PARM_DESC(debug, "debug output mask");
11957 
11958 module_param_named(channel, default_channel, int, 0444);
11959 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11960 
11961 #ifdef CONFIG_IPW2200_PROMISCUOUS
11962 module_param(rtap_iface, int, 0444);
11963 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11964 #endif
11965 
11966 #ifdef CONFIG_IPW2200_QOS
11967 module_param(qos_enable, int, 0444);
11968 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11969 
11970 module_param(qos_burst_enable, int, 0444);
11971 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11972 
11973 module_param(qos_no_ack_mask, int, 0444);
11974 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11975 
11976 module_param(burst_duration_CCK, int, 0444);
11977 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11978 
11979 module_param(burst_duration_OFDM, int, 0444);
11980 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11981 #endif				/* CONFIG_IPW2200_QOS */
11982 
11983 #ifdef CONFIG_IPW2200_MONITOR
11984 module_param_named(mode, network_mode, int, 0444);
11985 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11986 #else
11987 module_param_named(mode, network_mode, int, 0444);
11988 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11989 #endif
11990 
11991 module_param(bt_coexist, int, 0444);
11992 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11993 
11994 module_param(hwcrypto, int, 0444);
11995 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11996 
11997 module_param(cmdlog, int, 0444);
11998 MODULE_PARM_DESC(cmdlog,
11999 		 "allocate a ring buffer for logging firmware commands");
12000 
12001 module_param(roaming, int, 0444);
12002 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12003 
12004 module_param(antenna, int, 0444);
12005 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12006 
12007 module_exit(ipw_exit);
12008 module_init(ipw_init);
12009