xref: /linux/drivers/net/wireless/intel/ipw2x00/ipw2200.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 
4   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 
6   802.11 status code portion of this file from ethereal-0.10.6:
7     Copyright 2000, Axis Communications AB
8     Ethereal - Network traffic analyzer
9     By Gerald Combs <gerald@ethereal.com>
10     Copyright 1998 Gerald Combs
11 
12 
13   Contact Information:
14   Intel Linux Wireless <ilw@linux.intel.com>
15   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
16 
17 ******************************************************************************/
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <net/cfg80211-wext.h>
22 #include "ipw2200.h"
23 #include "ipw.h"
24 
25 
26 #ifndef KBUILD_EXTMOD
27 #define VK "k"
28 #else
29 #define VK
30 #endif
31 
32 #ifdef CONFIG_IPW2200_DEBUG
33 #define VD "d"
34 #else
35 #define VD
36 #endif
37 
38 #ifdef CONFIG_IPW2200_MONITOR
39 #define VM "m"
40 #else
41 #define VM
42 #endif
43 
44 #ifdef CONFIG_IPW2200_PROMISCUOUS
45 #define VP "p"
46 #else
47 #define VP
48 #endif
49 
50 #ifdef CONFIG_IPW2200_RADIOTAP
51 #define VR "r"
52 #else
53 #define VR
54 #endif
55 
56 #ifdef CONFIG_IPW2200_QOS
57 #define VQ "q"
58 #else
59 #define VQ
60 #endif
61 
62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
63 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2200/2915 Network Driver"
64 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
65 #define DRV_VERSION     IPW2200_VERSION
66 
67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
68 
69 MODULE_DESCRIPTION(DRV_DESCRIPTION);
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_COPYRIGHT);
72 MODULE_LICENSE("GPL");
73 MODULE_FIRMWARE("ipw2200-ibss.fw");
74 #ifdef CONFIG_IPW2200_MONITOR
75 MODULE_FIRMWARE("ipw2200-sniffer.fw");
76 #endif
77 MODULE_FIRMWARE("ipw2200-bss.fw");
78 
79 static int cmdlog = 0;
80 static int debug = 0;
81 static int default_channel = 0;
82 static int network_mode = 0;
83 
84 static u32 ipw_debug_level;
85 static int associate;
86 static int auto_create = 1;
87 static int led_support = 1;
88 static int disable = 0;
89 static int bt_coexist = 0;
90 static int hwcrypto = 0;
91 static int roaming = 1;
92 static const char ipw_modes[] = {
93 	'a', 'b', 'g', '?'
94 };
95 static int antenna = CFG_SYS_ANTENNA_BOTH;
96 
97 #ifdef CONFIG_IPW2200_PROMISCUOUS
98 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
99 #endif
100 
101 static struct ieee80211_rate ipw2200_rates[] = {
102 	{ .bitrate = 10 },
103 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
104 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
105 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
106 	{ .bitrate = 60 },
107 	{ .bitrate = 90 },
108 	{ .bitrate = 120 },
109 	{ .bitrate = 180 },
110 	{ .bitrate = 240 },
111 	{ .bitrate = 360 },
112 	{ .bitrate = 480 },
113 	{ .bitrate = 540 }
114 };
115 
116 #define ipw2200_a_rates		(ipw2200_rates + 4)
117 #define ipw2200_num_a_rates	8
118 #define ipw2200_bg_rates	(ipw2200_rates + 0)
119 #define ipw2200_num_bg_rates	12
120 
121 /* Ugly macro to convert literal channel numbers into their mhz equivalents
122  * There are certianly some conditions that will break this (like feeding it '30')
123  * but they shouldn't arise since nothing talks on channel 30. */
124 #define ieee80211chan2mhz(x) \
125 	(((x) <= 14) ? \
126 	(((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
127 	((x) + 1000) * 5)
128 
129 #ifdef CONFIG_IPW2200_QOS
130 static int qos_enable = 0;
131 static int qos_burst_enable = 0;
132 static int qos_no_ack_mask = 0;
133 static int burst_duration_CCK = 0;
134 static int burst_duration_OFDM = 0;
135 
136 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
137 	{QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
138 	 QOS_TX3_CW_MIN_OFDM},
139 	{QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
140 	 QOS_TX3_CW_MAX_OFDM},
141 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
142 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
143 	{QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
144 	 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
145 };
146 
147 static struct libipw_qos_parameters def_qos_parameters_CCK = {
148 	{QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
149 	 QOS_TX3_CW_MIN_CCK},
150 	{QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
151 	 QOS_TX3_CW_MAX_CCK},
152 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
153 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
154 	{QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
155 	 QOS_TX3_TXOP_LIMIT_CCK}
156 };
157 
158 static struct libipw_qos_parameters def_parameters_OFDM = {
159 	{DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
160 	 DEF_TX3_CW_MIN_OFDM},
161 	{DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
162 	 DEF_TX3_CW_MAX_OFDM},
163 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
164 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
165 	{DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
166 	 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
167 };
168 
169 static struct libipw_qos_parameters def_parameters_CCK = {
170 	{DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
171 	 DEF_TX3_CW_MIN_CCK},
172 	{DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
173 	 DEF_TX3_CW_MAX_CCK},
174 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
175 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
176 	{DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
177 	 DEF_TX3_TXOP_LIMIT_CCK}
178 };
179 
180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
181 
182 static int from_priority_to_tx_queue[] = {
183 	IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
184 	IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
185 };
186 
187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
188 
189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
190 				       *qos_param);
191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
192 				     *qos_param);
193 #endif				/* CONFIG_IPW2200_QOS */
194 
195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
196 static void ipw_remove_current_network(struct ipw_priv *priv);
197 static void ipw_rx(struct ipw_priv *priv);
198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
199 				struct clx2_tx_queue *txq, int qindex);
200 static int ipw_queue_reset(struct ipw_priv *priv);
201 
202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf,
203 			     int len, int sync);
204 
205 static void ipw_tx_queue_free(struct ipw_priv *);
206 
207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
209 static void ipw_rx_queue_replenish(void *);
210 static int ipw_up(struct ipw_priv *);
211 static void ipw_bg_up(struct work_struct *work);
212 static void ipw_down(struct ipw_priv *);
213 static void ipw_bg_down(struct work_struct *work);
214 static int ipw_config(struct ipw_priv *);
215 static int init_supported_rates(struct ipw_priv *priv,
216 				struct ipw_supported_rates *prates);
217 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
218 static void ipw_send_wep_keys(struct ipw_priv *, int);
219 
220 static int snprint_line(char *buf, size_t count,
221 			const u8 * data, u32 len, u32 ofs)
222 {
223 	int out, i, j, l;
224 	char c;
225 
226 	out = scnprintf(buf, count, "%08X", ofs);
227 
228 	for (l = 0, i = 0; i < 2; i++) {
229 		out += scnprintf(buf + out, count - out, " ");
230 		for (j = 0; j < 8 && l < len; j++, l++)
231 			out += scnprintf(buf + out, count - out, "%02X ",
232 					data[(i * 8 + j)]);
233 		for (; j < 8; j++)
234 			out += scnprintf(buf + out, count - out, "   ");
235 	}
236 
237 	out += scnprintf(buf + out, count - out, " ");
238 	for (l = 0, i = 0; i < 2; i++) {
239 		out += scnprintf(buf + out, count - out, " ");
240 		for (j = 0; j < 8 && l < len; j++, l++) {
241 			c = data[(i * 8 + j)];
242 			if (!isascii(c) || !isprint(c))
243 				c = '.';
244 
245 			out += scnprintf(buf + out, count - out, "%c", c);
246 		}
247 
248 		for (; j < 8; j++)
249 			out += scnprintf(buf + out, count - out, " ");
250 	}
251 
252 	return out;
253 }
254 
255 static void printk_buf(int level, const u8 * data, u32 len)
256 {
257 	char line[81];
258 	u32 ofs = 0;
259 	if (!(ipw_debug_level & level))
260 		return;
261 
262 	while (len) {
263 		snprint_line(line, sizeof(line), &data[ofs],
264 			     min(len, 16U), ofs);
265 		printk(KERN_DEBUG "%s\n", line);
266 		ofs += 16;
267 		len -= min(len, 16U);
268 	}
269 }
270 
271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
272 {
273 	size_t out = size;
274 	u32 ofs = 0;
275 	int total = 0;
276 
277 	while (size && len) {
278 		out = snprint_line(output, size, &data[ofs],
279 				   min_t(size_t, len, 16U), ofs);
280 
281 		ofs += 16;
282 		output += out;
283 		size -= out;
284 		len -= min_t(size_t, len, 16U);
285 		total += out;
286 	}
287 	return total;
288 }
289 
290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
293 
294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
297 
298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
301 {
302 	IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
303 		     __LINE__, (u32) (b), (u32) (c));
304 	_ipw_write_reg8(a, b, c);
305 }
306 
307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
310 {
311 	IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
312 		     __LINE__, (u32) (b), (u32) (c));
313 	_ipw_write_reg16(a, b, c);
314 }
315 
316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
319 {
320 	IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
321 		     __LINE__, (u32) (b), (u32) (c));
322 	_ipw_write_reg32(a, b, c);
323 }
324 
325 /* 8-bit direct write (low 4K) */
326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
327 		u8 val)
328 {
329 	writeb(val, ipw->hw_base + ofs);
330 }
331 
332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
333 #define ipw_write8(ipw, ofs, val) do { \
334 	IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
335 			__LINE__, (u32)(ofs), (u32)(val)); \
336 	_ipw_write8(ipw, ofs, val); \
337 } while (0)
338 
339 /* 16-bit direct write (low 4K) */
340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
341 		u16 val)
342 {
343 	writew(val, ipw->hw_base + ofs);
344 }
345 
346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write16(ipw, ofs, val) do { \
348 	IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
349 			__LINE__, (u32)(ofs), (u32)(val)); \
350 	_ipw_write16(ipw, ofs, val); \
351 } while (0)
352 
353 /* 32-bit direct write (low 4K) */
354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
355 		u32 val)
356 {
357 	writel(val, ipw->hw_base + ofs);
358 }
359 
360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write32(ipw, ofs, val) do { \
362 	IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
363 			__LINE__, (u32)(ofs), (u32)(val)); \
364 	_ipw_write32(ipw, ofs, val); \
365 } while (0)
366 
367 /* 8-bit direct read (low 4K) */
368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
369 {
370 	return readb(ipw->hw_base + ofs);
371 }
372 
373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
374 #define ipw_read8(ipw, ofs) ({ \
375 	IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
376 			(u32)(ofs)); \
377 	_ipw_read8(ipw, ofs); \
378 })
379 
380 /* 16-bit direct read (low 4K) */
381 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
382 {
383 	return readw(ipw->hw_base + ofs);
384 }
385 
386 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
387 #define ipw_read16(ipw, ofs) ({ \
388 	IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
389 			(u32)(ofs)); \
390 	_ipw_read16(ipw, ofs); \
391 })
392 
393 /* 32-bit direct read (low 4K) */
394 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
395 {
396 	return readl(ipw->hw_base + ofs);
397 }
398 
399 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
400 #define ipw_read32(ipw, ofs) ({ \
401 	IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
402 			(u32)(ofs)); \
403 	_ipw_read32(ipw, ofs); \
404 })
405 
406 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
407 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
408 #define ipw_read_indirect(a, b, c, d) ({ \
409 	IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
410 			__LINE__, (u32)(b), (u32)(d)); \
411 	_ipw_read_indirect(a, b, c, d); \
412 })
413 
414 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
415 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
416 				int num);
417 #define ipw_write_indirect(a, b, c, d) do { \
418 	IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
419 			__LINE__, (u32)(b), (u32)(d)); \
420 	_ipw_write_indirect(a, b, c, d); \
421 } while (0)
422 
423 /* 32-bit indirect write (above 4K) */
424 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
425 {
426 	IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
427 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
428 	_ipw_write32(priv, IPW_INDIRECT_DATA, value);
429 }
430 
431 /* 8-bit indirect write (above 4K) */
432 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
433 {
434 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
435 	u32 dif_len = reg - aligned_addr;
436 
437 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
438 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
439 	_ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
440 }
441 
442 /* 16-bit indirect write (above 4K) */
443 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
444 {
445 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
446 	u32 dif_len = (reg - aligned_addr) & (~0x1ul);
447 
448 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
449 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
450 	_ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
451 }
452 
453 /* 8-bit indirect read (above 4K) */
454 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
455 {
456 	u32 word;
457 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
458 	IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
459 	word = _ipw_read32(priv, IPW_INDIRECT_DATA);
460 	return (word >> ((reg & 0x3) * 8)) & 0xff;
461 }
462 
463 /* 32-bit indirect read (above 4K) */
464 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
465 {
466 	u32 value;
467 
468 	IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
469 
470 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
471 	value = _ipw_read32(priv, IPW_INDIRECT_DATA);
472 	IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
473 	return value;
474 }
475 
476 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
477 /*    for area above 1st 4K of SRAM/reg space */
478 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
479 			       int num)
480 {
481 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
482 	u32 dif_len = addr - aligned_addr;
483 	u32 i;
484 
485 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
486 
487 	if (num <= 0) {
488 		return;
489 	}
490 
491 	/* Read the first dword (or portion) byte by byte */
492 	if (unlikely(dif_len)) {
493 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
494 		/* Start reading at aligned_addr + dif_len */
495 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
496 			*buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
497 		aligned_addr += 4;
498 	}
499 
500 	/* Read all of the middle dwords as dwords, with auto-increment */
501 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
502 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
503 		*(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
504 
505 	/* Read the last dword (or portion) byte by byte */
506 	if (unlikely(num)) {
507 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508 		for (i = 0; num > 0; i++, num--)
509 			*buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
510 	}
511 }
512 
513 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
514 /*    for area above 1st 4K of SRAM/reg space */
515 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
516 				int num)
517 {
518 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
519 	u32 dif_len = addr - aligned_addr;
520 	u32 i;
521 
522 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
523 
524 	if (num <= 0) {
525 		return;
526 	}
527 
528 	/* Write the first dword (or portion) byte by byte */
529 	if (unlikely(dif_len)) {
530 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
531 		/* Start writing at aligned_addr + dif_len */
532 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
533 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
534 		aligned_addr += 4;
535 	}
536 
537 	/* Write all of the middle dwords as dwords, with auto-increment */
538 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
539 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
540 		_ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
541 
542 	/* Write the last dword (or portion) byte by byte */
543 	if (unlikely(num)) {
544 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545 		for (i = 0; num > 0; i++, num--, buf++)
546 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
547 	}
548 }
549 
550 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
551 /*    for 1st 4K of SRAM/regs space */
552 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
553 			     int num)
554 {
555 	memcpy_toio((priv->hw_base + addr), buf, num);
556 }
557 
558 /* Set bit(s) in low 4K of SRAM/regs */
559 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
560 {
561 	ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
562 }
563 
564 /* Clear bit(s) in low 4K of SRAM/regs */
565 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
566 {
567 	ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
568 }
569 
570 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
571 {
572 	if (priv->status & STATUS_INT_ENABLED)
573 		return;
574 	priv->status |= STATUS_INT_ENABLED;
575 	ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
576 }
577 
578 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
579 {
580 	if (!(priv->status & STATUS_INT_ENABLED))
581 		return;
582 	priv->status &= ~STATUS_INT_ENABLED;
583 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
584 }
585 
586 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
587 {
588 	unsigned long flags;
589 
590 	spin_lock_irqsave(&priv->irq_lock, flags);
591 	__ipw_enable_interrupts(priv);
592 	spin_unlock_irqrestore(&priv->irq_lock, flags);
593 }
594 
595 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
596 {
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(&priv->irq_lock, flags);
600 	__ipw_disable_interrupts(priv);
601 	spin_unlock_irqrestore(&priv->irq_lock, flags);
602 }
603 
604 static char *ipw_error_desc(u32 val)
605 {
606 	switch (val) {
607 	case IPW_FW_ERROR_OK:
608 		return "ERROR_OK";
609 	case IPW_FW_ERROR_FAIL:
610 		return "ERROR_FAIL";
611 	case IPW_FW_ERROR_MEMORY_UNDERFLOW:
612 		return "MEMORY_UNDERFLOW";
613 	case IPW_FW_ERROR_MEMORY_OVERFLOW:
614 		return "MEMORY_OVERFLOW";
615 	case IPW_FW_ERROR_BAD_PARAM:
616 		return "BAD_PARAM";
617 	case IPW_FW_ERROR_BAD_CHECKSUM:
618 		return "BAD_CHECKSUM";
619 	case IPW_FW_ERROR_NMI_INTERRUPT:
620 		return "NMI_INTERRUPT";
621 	case IPW_FW_ERROR_BAD_DATABASE:
622 		return "BAD_DATABASE";
623 	case IPW_FW_ERROR_ALLOC_FAIL:
624 		return "ALLOC_FAIL";
625 	case IPW_FW_ERROR_DMA_UNDERRUN:
626 		return "DMA_UNDERRUN";
627 	case IPW_FW_ERROR_DMA_STATUS:
628 		return "DMA_STATUS";
629 	case IPW_FW_ERROR_DINO_ERROR:
630 		return "DINO_ERROR";
631 	case IPW_FW_ERROR_EEPROM_ERROR:
632 		return "EEPROM_ERROR";
633 	case IPW_FW_ERROR_SYSASSERT:
634 		return "SYSASSERT";
635 	case IPW_FW_ERROR_FATAL_ERROR:
636 		return "FATAL_ERROR";
637 	default:
638 		return "UNKNOWN_ERROR";
639 	}
640 }
641 
642 static void ipw_dump_error_log(struct ipw_priv *priv,
643 			       struct ipw_fw_error *error)
644 {
645 	u32 i;
646 
647 	if (!error) {
648 		IPW_ERROR("Error allocating and capturing error log.  "
649 			  "Nothing to dump.\n");
650 		return;
651 	}
652 
653 	IPW_ERROR("Start IPW Error Log Dump:\n");
654 	IPW_ERROR("Status: 0x%08X, Config: %08X\n",
655 		  error->status, error->config);
656 
657 	for (i = 0; i < error->elem_len; i++)
658 		IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
659 			  ipw_error_desc(error->elem[i].desc),
660 			  error->elem[i].time,
661 			  error->elem[i].blink1,
662 			  error->elem[i].blink2,
663 			  error->elem[i].link1,
664 			  error->elem[i].link2, error->elem[i].data);
665 	for (i = 0; i < error->log_len; i++)
666 		IPW_ERROR("%i\t0x%08x\t%i\n",
667 			  error->log[i].time,
668 			  error->log[i].data, error->log[i].event);
669 }
670 
671 static inline int ipw_is_init(struct ipw_priv *priv)
672 {
673 	return (priv->status & STATUS_INIT) ? 1 : 0;
674 }
675 
676 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
677 {
678 	u32 addr, field_info, field_len, field_count, total_len;
679 
680 	IPW_DEBUG_ORD("ordinal = %i\n", ord);
681 
682 	if (!priv || !val || !len) {
683 		IPW_DEBUG_ORD("Invalid argument\n");
684 		return -EINVAL;
685 	}
686 
687 	/* verify device ordinal tables have been initialized */
688 	if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
689 		IPW_DEBUG_ORD("Access ordinals before initialization\n");
690 		return -EINVAL;
691 	}
692 
693 	switch (IPW_ORD_TABLE_ID_MASK & ord) {
694 	case IPW_ORD_TABLE_0_MASK:
695 		/*
696 		 * TABLE 0: Direct access to a table of 32 bit values
697 		 *
698 		 * This is a very simple table with the data directly
699 		 * read from the table
700 		 */
701 
702 		/* remove the table id from the ordinal */
703 		ord &= IPW_ORD_TABLE_VALUE_MASK;
704 
705 		/* boundary check */
706 		if (ord > priv->table0_len) {
707 			IPW_DEBUG_ORD("ordinal value (%i) longer then "
708 				      "max (%i)\n", ord, priv->table0_len);
709 			return -EINVAL;
710 		}
711 
712 		/* verify we have enough room to store the value */
713 		if (*len < sizeof(u32)) {
714 			IPW_DEBUG_ORD("ordinal buffer length too small, "
715 				      "need %zd\n", sizeof(u32));
716 			return -EINVAL;
717 		}
718 
719 		IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
720 			      ord, priv->table0_addr + (ord << 2));
721 
722 		*len = sizeof(u32);
723 		ord <<= 2;
724 		*((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
725 		break;
726 
727 	case IPW_ORD_TABLE_1_MASK:
728 		/*
729 		 * TABLE 1: Indirect access to a table of 32 bit values
730 		 *
731 		 * This is a fairly large table of u32 values each
732 		 * representing starting addr for the data (which is
733 		 * also a u32)
734 		 */
735 
736 		/* remove the table id from the ordinal */
737 		ord &= IPW_ORD_TABLE_VALUE_MASK;
738 
739 		/* boundary check */
740 		if (ord > priv->table1_len) {
741 			IPW_DEBUG_ORD("ordinal value too long\n");
742 			return -EINVAL;
743 		}
744 
745 		/* verify we have enough room to store the value */
746 		if (*len < sizeof(u32)) {
747 			IPW_DEBUG_ORD("ordinal buffer length too small, "
748 				      "need %zd\n", sizeof(u32));
749 			return -EINVAL;
750 		}
751 
752 		*((u32 *) val) =
753 		    ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
754 		*len = sizeof(u32);
755 		break;
756 
757 	case IPW_ORD_TABLE_2_MASK:
758 		/*
759 		 * TABLE 2: Indirect access to a table of variable sized values
760 		 *
761 		 * This table consist of six values, each containing
762 		 *     - dword containing the starting offset of the data
763 		 *     - dword containing the lengh in the first 16bits
764 		 *       and the count in the second 16bits
765 		 */
766 
767 		/* remove the table id from the ordinal */
768 		ord &= IPW_ORD_TABLE_VALUE_MASK;
769 
770 		/* boundary check */
771 		if (ord > priv->table2_len) {
772 			IPW_DEBUG_ORD("ordinal value too long\n");
773 			return -EINVAL;
774 		}
775 
776 		/* get the address of statistic */
777 		addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
778 
779 		/* get the second DW of statistics ;
780 		 * two 16-bit words - first is length, second is count */
781 		field_info =
782 		    ipw_read_reg32(priv,
783 				   priv->table2_addr + (ord << 3) +
784 				   sizeof(u32));
785 
786 		/* get each entry length */
787 		field_len = *((u16 *) & field_info);
788 
789 		/* get number of entries */
790 		field_count = *(((u16 *) & field_info) + 1);
791 
792 		/* abort if not enough memory */
793 		total_len = field_len * field_count;
794 		if (total_len > *len) {
795 			*len = total_len;
796 			return -EINVAL;
797 		}
798 
799 		*len = total_len;
800 		if (!total_len)
801 			return 0;
802 
803 		IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
804 			      "field_info = 0x%08x\n",
805 			      addr, total_len, field_info);
806 		ipw_read_indirect(priv, addr, val, total_len);
807 		break;
808 
809 	default:
810 		IPW_DEBUG_ORD("Invalid ordinal!\n");
811 		return -EINVAL;
812 
813 	}
814 
815 	return 0;
816 }
817 
818 static void ipw_init_ordinals(struct ipw_priv *priv)
819 {
820 	priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
821 	priv->table0_len = ipw_read32(priv, priv->table0_addr);
822 
823 	IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
824 		      priv->table0_addr, priv->table0_len);
825 
826 	priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
827 	priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
828 
829 	IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
830 		      priv->table1_addr, priv->table1_len);
831 
832 	priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
833 	priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
834 	priv->table2_len &= 0x0000ffff;	/* use first two bytes */
835 
836 	IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
837 		      priv->table2_addr, priv->table2_len);
838 
839 }
840 
841 static u32 ipw_register_toggle(u32 reg)
842 {
843 	reg &= ~IPW_START_STANDBY;
844 	if (reg & IPW_GATE_ODMA)
845 		reg &= ~IPW_GATE_ODMA;
846 	if (reg & IPW_GATE_IDMA)
847 		reg &= ~IPW_GATE_IDMA;
848 	if (reg & IPW_GATE_ADMA)
849 		reg &= ~IPW_GATE_ADMA;
850 	return reg;
851 }
852 
853 /*
854  * LED behavior:
855  * - On radio ON, turn on any LEDs that require to be on during start
856  * - On initialization, start unassociated blink
857  * - On association, disable unassociated blink
858  * - On disassociation, start unassociated blink
859  * - On radio OFF, turn off any LEDs started during radio on
860  *
861  */
862 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
863 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
864 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
865 
866 static void ipw_led_link_on(struct ipw_priv *priv)
867 {
868 	unsigned long flags;
869 	u32 led;
870 
871 	/* If configured to not use LEDs, or nic_type is 1,
872 	 * then we don't toggle a LINK led */
873 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
874 		return;
875 
876 	spin_lock_irqsave(&priv->lock, flags);
877 
878 	if (!(priv->status & STATUS_RF_KILL_MASK) &&
879 	    !(priv->status & STATUS_LED_LINK_ON)) {
880 		IPW_DEBUG_LED("Link LED On\n");
881 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
882 		led |= priv->led_association_on;
883 
884 		led = ipw_register_toggle(led);
885 
886 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
887 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
888 
889 		priv->status |= STATUS_LED_LINK_ON;
890 
891 		/* If we aren't associated, schedule turning the LED off */
892 		if (!(priv->status & STATUS_ASSOCIATED))
893 			schedule_delayed_work(&priv->led_link_off,
894 					      LD_TIME_LINK_ON);
895 	}
896 
897 	spin_unlock_irqrestore(&priv->lock, flags);
898 }
899 
900 static void ipw_bg_led_link_on(struct work_struct *work)
901 {
902 	struct ipw_priv *priv =
903 		container_of(work, struct ipw_priv, led_link_on.work);
904 	mutex_lock(&priv->mutex);
905 	ipw_led_link_on(priv);
906 	mutex_unlock(&priv->mutex);
907 }
908 
909 static void ipw_led_link_off(struct ipw_priv *priv)
910 {
911 	unsigned long flags;
912 	u32 led;
913 
914 	/* If configured not to use LEDs, or nic type is 1,
915 	 * then we don't goggle the LINK led. */
916 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
917 		return;
918 
919 	spin_lock_irqsave(&priv->lock, flags);
920 
921 	if (priv->status & STATUS_LED_LINK_ON) {
922 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
923 		led &= priv->led_association_off;
924 		led = ipw_register_toggle(led);
925 
926 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
927 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
928 
929 		IPW_DEBUG_LED("Link LED Off\n");
930 
931 		priv->status &= ~STATUS_LED_LINK_ON;
932 
933 		/* If we aren't associated and the radio is on, schedule
934 		 * turning the LED on (blink while unassociated) */
935 		if (!(priv->status & STATUS_RF_KILL_MASK) &&
936 		    !(priv->status & STATUS_ASSOCIATED))
937 			schedule_delayed_work(&priv->led_link_on,
938 					      LD_TIME_LINK_OFF);
939 
940 	}
941 
942 	spin_unlock_irqrestore(&priv->lock, flags);
943 }
944 
945 static void ipw_bg_led_link_off(struct work_struct *work)
946 {
947 	struct ipw_priv *priv =
948 		container_of(work, struct ipw_priv, led_link_off.work);
949 	mutex_lock(&priv->mutex);
950 	ipw_led_link_off(priv);
951 	mutex_unlock(&priv->mutex);
952 }
953 
954 static void __ipw_led_activity_on(struct ipw_priv *priv)
955 {
956 	u32 led;
957 
958 	if (priv->config & CFG_NO_LED)
959 		return;
960 
961 	if (priv->status & STATUS_RF_KILL_MASK)
962 		return;
963 
964 	if (!(priv->status & STATUS_LED_ACT_ON)) {
965 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
966 		led |= priv->led_activity_on;
967 
968 		led = ipw_register_toggle(led);
969 
970 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
971 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
972 
973 		IPW_DEBUG_LED("Activity LED On\n");
974 
975 		priv->status |= STATUS_LED_ACT_ON;
976 
977 		cancel_delayed_work(&priv->led_act_off);
978 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
979 	} else {
980 		/* Reschedule LED off for full time period */
981 		cancel_delayed_work(&priv->led_act_off);
982 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
983 	}
984 }
985 
986 #if 0
987 void ipw_led_activity_on(struct ipw_priv *priv)
988 {
989 	unsigned long flags;
990 	spin_lock_irqsave(&priv->lock, flags);
991 	__ipw_led_activity_on(priv);
992 	spin_unlock_irqrestore(&priv->lock, flags);
993 }
994 #endif  /*  0  */
995 
996 static void ipw_led_activity_off(struct ipw_priv *priv)
997 {
998 	unsigned long flags;
999 	u32 led;
1000 
1001 	if (priv->config & CFG_NO_LED)
1002 		return;
1003 
1004 	spin_lock_irqsave(&priv->lock, flags);
1005 
1006 	if (priv->status & STATUS_LED_ACT_ON) {
1007 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
1008 		led &= priv->led_activity_off;
1009 
1010 		led = ipw_register_toggle(led);
1011 
1012 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1013 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
1014 
1015 		IPW_DEBUG_LED("Activity LED Off\n");
1016 
1017 		priv->status &= ~STATUS_LED_ACT_ON;
1018 	}
1019 
1020 	spin_unlock_irqrestore(&priv->lock, flags);
1021 }
1022 
1023 static void ipw_bg_led_activity_off(struct work_struct *work)
1024 {
1025 	struct ipw_priv *priv =
1026 		container_of(work, struct ipw_priv, led_act_off.work);
1027 	mutex_lock(&priv->mutex);
1028 	ipw_led_activity_off(priv);
1029 	mutex_unlock(&priv->mutex);
1030 }
1031 
1032 static void ipw_led_band_on(struct ipw_priv *priv)
1033 {
1034 	unsigned long flags;
1035 	u32 led;
1036 
1037 	/* Only nic type 1 supports mode LEDs */
1038 	if (priv->config & CFG_NO_LED ||
1039 	    priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1040 		return;
1041 
1042 	spin_lock_irqsave(&priv->lock, flags);
1043 
1044 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045 	if (priv->assoc_network->mode == IEEE_A) {
1046 		led |= priv->led_ofdm_on;
1047 		led &= priv->led_association_off;
1048 		IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1049 	} else if (priv->assoc_network->mode == IEEE_G) {
1050 		led |= priv->led_ofdm_on;
1051 		led |= priv->led_association_on;
1052 		IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1053 	} else {
1054 		led &= priv->led_ofdm_off;
1055 		led |= priv->led_association_on;
1056 		IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1057 	}
1058 
1059 	led = ipw_register_toggle(led);
1060 
1061 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1062 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1063 
1064 	spin_unlock_irqrestore(&priv->lock, flags);
1065 }
1066 
1067 static void ipw_led_band_off(struct ipw_priv *priv)
1068 {
1069 	unsigned long flags;
1070 	u32 led;
1071 
1072 	/* Only nic type 1 supports mode LEDs */
1073 	if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1074 		return;
1075 
1076 	spin_lock_irqsave(&priv->lock, flags);
1077 
1078 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1079 	led &= priv->led_ofdm_off;
1080 	led &= priv->led_association_off;
1081 
1082 	led = ipw_register_toggle(led);
1083 
1084 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1085 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1086 
1087 	spin_unlock_irqrestore(&priv->lock, flags);
1088 }
1089 
1090 static void ipw_led_radio_on(struct ipw_priv *priv)
1091 {
1092 	ipw_led_link_on(priv);
1093 }
1094 
1095 static void ipw_led_radio_off(struct ipw_priv *priv)
1096 {
1097 	ipw_led_activity_off(priv);
1098 	ipw_led_link_off(priv);
1099 }
1100 
1101 static void ipw_led_link_up(struct ipw_priv *priv)
1102 {
1103 	/* Set the Link Led on for all nic types */
1104 	ipw_led_link_on(priv);
1105 }
1106 
1107 static void ipw_led_link_down(struct ipw_priv *priv)
1108 {
1109 	ipw_led_activity_off(priv);
1110 	ipw_led_link_off(priv);
1111 
1112 	if (priv->status & STATUS_RF_KILL_MASK)
1113 		ipw_led_radio_off(priv);
1114 }
1115 
1116 static void ipw_led_init(struct ipw_priv *priv)
1117 {
1118 	priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1119 
1120 	/* Set the default PINs for the link and activity leds */
1121 	priv->led_activity_on = IPW_ACTIVITY_LED;
1122 	priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1123 
1124 	priv->led_association_on = IPW_ASSOCIATED_LED;
1125 	priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1126 
1127 	/* Set the default PINs for the OFDM leds */
1128 	priv->led_ofdm_on = IPW_OFDM_LED;
1129 	priv->led_ofdm_off = ~(IPW_OFDM_LED);
1130 
1131 	switch (priv->nic_type) {
1132 	case EEPROM_NIC_TYPE_1:
1133 		/* In this NIC type, the LEDs are reversed.... */
1134 		priv->led_activity_on = IPW_ASSOCIATED_LED;
1135 		priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1136 		priv->led_association_on = IPW_ACTIVITY_LED;
1137 		priv->led_association_off = ~(IPW_ACTIVITY_LED);
1138 
1139 		if (!(priv->config & CFG_NO_LED))
1140 			ipw_led_band_on(priv);
1141 
1142 		/* And we don't blink link LEDs for this nic, so
1143 		 * just return here */
1144 		return;
1145 
1146 	case EEPROM_NIC_TYPE_3:
1147 	case EEPROM_NIC_TYPE_2:
1148 	case EEPROM_NIC_TYPE_4:
1149 	case EEPROM_NIC_TYPE_0:
1150 		break;
1151 
1152 	default:
1153 		IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1154 			       priv->nic_type);
1155 		priv->nic_type = EEPROM_NIC_TYPE_0;
1156 		break;
1157 	}
1158 
1159 	if (!(priv->config & CFG_NO_LED)) {
1160 		if (priv->status & STATUS_ASSOCIATED)
1161 			ipw_led_link_on(priv);
1162 		else
1163 			ipw_led_link_off(priv);
1164 	}
1165 }
1166 
1167 static void ipw_led_shutdown(struct ipw_priv *priv)
1168 {
1169 	ipw_led_activity_off(priv);
1170 	ipw_led_link_off(priv);
1171 	ipw_led_band_off(priv);
1172 	cancel_delayed_work(&priv->led_link_on);
1173 	cancel_delayed_work(&priv->led_link_off);
1174 	cancel_delayed_work(&priv->led_act_off);
1175 }
1176 
1177 /*
1178  * The following adds a new attribute to the sysfs representation
1179  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1180  * used for controlling the debug level.
1181  *
1182  * See the level definitions in ipw for details.
1183  */
1184 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1185 {
1186 	return sprintf(buf, "0x%08X\n", ipw_debug_level);
1187 }
1188 
1189 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1190 				 size_t count)
1191 {
1192 	char *p = (char *)buf;
1193 	u32 val;
1194 
1195 	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1196 		p++;
1197 		if (p[0] == 'x' || p[0] == 'X')
1198 			p++;
1199 		val = simple_strtoul(p, &p, 16);
1200 	} else
1201 		val = simple_strtoul(p, &p, 10);
1202 	if (p == buf)
1203 		printk(KERN_INFO DRV_NAME
1204 		       ": %s is not in hex or decimal form.\n", buf);
1205 	else
1206 		ipw_debug_level = val;
1207 
1208 	return strnlen(buf, count);
1209 }
1210 static DRIVER_ATTR_RW(debug_level);
1211 
1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1213 {
1214 	/* length = 1st dword in log */
1215 	return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1216 }
1217 
1218 static void ipw_capture_event_log(struct ipw_priv *priv,
1219 				  u32 log_len, struct ipw_event *log)
1220 {
1221 	u32 base;
1222 
1223 	if (log_len) {
1224 		base = ipw_read32(priv, IPW_EVENT_LOG);
1225 		ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1226 				  (u8 *) log, sizeof(*log) * log_len);
1227 	}
1228 }
1229 
1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1231 {
1232 	struct ipw_fw_error *error;
1233 	u32 log_len = ipw_get_event_log_len(priv);
1234 	u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1235 	u32 elem_len = ipw_read_reg32(priv, base);
1236 
1237 	error = kmalloc(sizeof(*error) +
1238 			sizeof(*error->elem) * elem_len +
1239 			sizeof(*error->log) * log_len, GFP_ATOMIC);
1240 	if (!error) {
1241 		IPW_ERROR("Memory allocation for firmware error log "
1242 			  "failed.\n");
1243 		return NULL;
1244 	}
1245 	error->jiffies = jiffies;
1246 	error->status = priv->status;
1247 	error->config = priv->config;
1248 	error->elem_len = elem_len;
1249 	error->log_len = log_len;
1250 	error->elem = (struct ipw_error_elem *)error->payload;
1251 	error->log = (struct ipw_event *)(error->elem + elem_len);
1252 
1253 	ipw_capture_event_log(priv, log_len, error->log);
1254 
1255 	if (elem_len)
1256 		ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1257 				  sizeof(*error->elem) * elem_len);
1258 
1259 	return error;
1260 }
1261 
1262 static ssize_t show_event_log(struct device *d,
1263 			      struct device_attribute *attr, char *buf)
1264 {
1265 	struct ipw_priv *priv = dev_get_drvdata(d);
1266 	u32 log_len = ipw_get_event_log_len(priv);
1267 	u32 log_size;
1268 	struct ipw_event *log;
1269 	u32 len = 0, i;
1270 
1271 	/* not using min() because of its strict type checking */
1272 	log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1273 			sizeof(*log) * log_len : PAGE_SIZE;
1274 	log = kzalloc(log_size, GFP_KERNEL);
1275 	if (!log) {
1276 		IPW_ERROR("Unable to allocate memory for log\n");
1277 		return 0;
1278 	}
1279 	log_len = log_size / sizeof(*log);
1280 	ipw_capture_event_log(priv, log_len, log);
1281 
1282 	len += scnprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1283 	for (i = 0; i < log_len; i++)
1284 		len += scnprintf(buf + len, PAGE_SIZE - len,
1285 				"\n%08X%08X%08X",
1286 				log[i].time, log[i].event, log[i].data);
1287 	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1288 	kfree(log);
1289 	return len;
1290 }
1291 
1292 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1293 
1294 static ssize_t show_error(struct device *d,
1295 			  struct device_attribute *attr, char *buf)
1296 {
1297 	struct ipw_priv *priv = dev_get_drvdata(d);
1298 	u32 len = 0, i;
1299 	if (!priv->error)
1300 		return 0;
1301 	len += scnprintf(buf + len, PAGE_SIZE - len,
1302 			"%08lX%08X%08X%08X",
1303 			priv->error->jiffies,
1304 			priv->error->status,
1305 			priv->error->config, priv->error->elem_len);
1306 	for (i = 0; i < priv->error->elem_len; i++)
1307 		len += scnprintf(buf + len, PAGE_SIZE - len,
1308 				"\n%08X%08X%08X%08X%08X%08X%08X",
1309 				priv->error->elem[i].time,
1310 				priv->error->elem[i].desc,
1311 				priv->error->elem[i].blink1,
1312 				priv->error->elem[i].blink2,
1313 				priv->error->elem[i].link1,
1314 				priv->error->elem[i].link2,
1315 				priv->error->elem[i].data);
1316 
1317 	len += scnprintf(buf + len, PAGE_SIZE - len,
1318 			"\n%08X", priv->error->log_len);
1319 	for (i = 0; i < priv->error->log_len; i++)
1320 		len += scnprintf(buf + len, PAGE_SIZE - len,
1321 				"\n%08X%08X%08X",
1322 				priv->error->log[i].time,
1323 				priv->error->log[i].event,
1324 				priv->error->log[i].data);
1325 	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1326 	return len;
1327 }
1328 
1329 static ssize_t clear_error(struct device *d,
1330 			   struct device_attribute *attr,
1331 			   const char *buf, size_t count)
1332 {
1333 	struct ipw_priv *priv = dev_get_drvdata(d);
1334 
1335 	kfree(priv->error);
1336 	priv->error = NULL;
1337 	return count;
1338 }
1339 
1340 static DEVICE_ATTR(error, 0644, show_error, clear_error);
1341 
1342 static ssize_t show_cmd_log(struct device *d,
1343 			    struct device_attribute *attr, char *buf)
1344 {
1345 	struct ipw_priv *priv = dev_get_drvdata(d);
1346 	u32 len = 0, i;
1347 	if (!priv->cmdlog)
1348 		return 0;
1349 	for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1350 	     (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1351 	     i = (i + 1) % priv->cmdlog_len) {
1352 		len +=
1353 		    scnprintf(buf + len, PAGE_SIZE - len,
1354 			     "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1355 			     priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1356 			     priv->cmdlog[i].cmd.len);
1357 		len +=
1358 		    snprintk_buf(buf + len, PAGE_SIZE - len,
1359 				 (u8 *) priv->cmdlog[i].cmd.param,
1360 				 priv->cmdlog[i].cmd.len);
1361 		len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1362 	}
1363 	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1364 	return len;
1365 }
1366 
1367 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1368 
1369 #ifdef CONFIG_IPW2200_PROMISCUOUS
1370 static void ipw_prom_free(struct ipw_priv *priv);
1371 static int ipw_prom_alloc(struct ipw_priv *priv);
1372 static ssize_t store_rtap_iface(struct device *d,
1373 			 struct device_attribute *attr,
1374 			 const char *buf, size_t count)
1375 {
1376 	struct ipw_priv *priv = dev_get_drvdata(d);
1377 	int rc = 0;
1378 
1379 	if (count < 1)
1380 		return -EINVAL;
1381 
1382 	switch (buf[0]) {
1383 	case '0':
1384 		if (!rtap_iface)
1385 			return count;
1386 
1387 		if (netif_running(priv->prom_net_dev)) {
1388 			IPW_WARNING("Interface is up.  Cannot unregister.\n");
1389 			return count;
1390 		}
1391 
1392 		ipw_prom_free(priv);
1393 		rtap_iface = 0;
1394 		break;
1395 
1396 	case '1':
1397 		if (rtap_iface)
1398 			return count;
1399 
1400 		rc = ipw_prom_alloc(priv);
1401 		if (!rc)
1402 			rtap_iface = 1;
1403 		break;
1404 
1405 	default:
1406 		return -EINVAL;
1407 	}
1408 
1409 	if (rc) {
1410 		IPW_ERROR("Failed to register promiscuous network "
1411 			  "device (error %d).\n", rc);
1412 	}
1413 
1414 	return count;
1415 }
1416 
1417 static ssize_t show_rtap_iface(struct device *d,
1418 			struct device_attribute *attr,
1419 			char *buf)
1420 {
1421 	struct ipw_priv *priv = dev_get_drvdata(d);
1422 	if (rtap_iface)
1423 		return sprintf(buf, "%s", priv->prom_net_dev->name);
1424 	else {
1425 		buf[0] = '-';
1426 		buf[1] = '1';
1427 		buf[2] = '\0';
1428 		return 3;
1429 	}
1430 }
1431 
1432 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1433 
1434 static ssize_t store_rtap_filter(struct device *d,
1435 			 struct device_attribute *attr,
1436 			 const char *buf, size_t count)
1437 {
1438 	struct ipw_priv *priv = dev_get_drvdata(d);
1439 
1440 	if (!priv->prom_priv) {
1441 		IPW_ERROR("Attempting to set filter without "
1442 			  "rtap_iface enabled.\n");
1443 		return -EPERM;
1444 	}
1445 
1446 	priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1447 
1448 	IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1449 		       BIT_ARG16(priv->prom_priv->filter));
1450 
1451 	return count;
1452 }
1453 
1454 static ssize_t show_rtap_filter(struct device *d,
1455 			struct device_attribute *attr,
1456 			char *buf)
1457 {
1458 	struct ipw_priv *priv = dev_get_drvdata(d);
1459 	return sprintf(buf, "0x%04X",
1460 		       priv->prom_priv ? priv->prom_priv->filter : 0);
1461 }
1462 
1463 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1464 #endif
1465 
1466 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1467 			     char *buf)
1468 {
1469 	struct ipw_priv *priv = dev_get_drvdata(d);
1470 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
1471 }
1472 
1473 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1474 			      const char *buf, size_t count)
1475 {
1476 	struct ipw_priv *priv = dev_get_drvdata(d);
1477 	struct net_device *dev = priv->net_dev;
1478 	char buffer[] = "00000000";
1479 	unsigned long len =
1480 	    (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1481 	unsigned long val;
1482 	char *p = buffer;
1483 
1484 	IPW_DEBUG_INFO("enter\n");
1485 
1486 	strncpy(buffer, buf, len);
1487 	buffer[len] = 0;
1488 
1489 	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1490 		p++;
1491 		if (p[0] == 'x' || p[0] == 'X')
1492 			p++;
1493 		val = simple_strtoul(p, &p, 16);
1494 	} else
1495 		val = simple_strtoul(p, &p, 10);
1496 	if (p == buffer) {
1497 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1498 	} else {
1499 		priv->ieee->scan_age = val;
1500 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1501 	}
1502 
1503 	IPW_DEBUG_INFO("exit\n");
1504 	return len;
1505 }
1506 
1507 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1508 
1509 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1510 			char *buf)
1511 {
1512 	struct ipw_priv *priv = dev_get_drvdata(d);
1513 	return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1514 }
1515 
1516 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1517 			 const char *buf, size_t count)
1518 {
1519 	struct ipw_priv *priv = dev_get_drvdata(d);
1520 
1521 	IPW_DEBUG_INFO("enter\n");
1522 
1523 	if (count == 0)
1524 		return 0;
1525 
1526 	if (*buf == 0) {
1527 		IPW_DEBUG_LED("Disabling LED control.\n");
1528 		priv->config |= CFG_NO_LED;
1529 		ipw_led_shutdown(priv);
1530 	} else {
1531 		IPW_DEBUG_LED("Enabling LED control.\n");
1532 		priv->config &= ~CFG_NO_LED;
1533 		ipw_led_init(priv);
1534 	}
1535 
1536 	IPW_DEBUG_INFO("exit\n");
1537 	return count;
1538 }
1539 
1540 static DEVICE_ATTR(led, 0644, show_led, store_led);
1541 
1542 static ssize_t show_status(struct device *d,
1543 			   struct device_attribute *attr, char *buf)
1544 {
1545 	struct ipw_priv *p = dev_get_drvdata(d);
1546 	return sprintf(buf, "0x%08x\n", (int)p->status);
1547 }
1548 
1549 static DEVICE_ATTR(status, 0444, show_status, NULL);
1550 
1551 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1552 			char *buf)
1553 {
1554 	struct ipw_priv *p = dev_get_drvdata(d);
1555 	return sprintf(buf, "0x%08x\n", (int)p->config);
1556 }
1557 
1558 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1559 
1560 static ssize_t show_nic_type(struct device *d,
1561 			     struct device_attribute *attr, char *buf)
1562 {
1563 	struct ipw_priv *priv = dev_get_drvdata(d);
1564 	return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1565 }
1566 
1567 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1568 
1569 static ssize_t show_ucode_version(struct device *d,
1570 				  struct device_attribute *attr, char *buf)
1571 {
1572 	u32 len = sizeof(u32), tmp = 0;
1573 	struct ipw_priv *p = dev_get_drvdata(d);
1574 
1575 	if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1576 		return 0;
1577 
1578 	return sprintf(buf, "0x%08x\n", tmp);
1579 }
1580 
1581 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1582 
1583 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1584 			char *buf)
1585 {
1586 	u32 len = sizeof(u32), tmp = 0;
1587 	struct ipw_priv *p = dev_get_drvdata(d);
1588 
1589 	if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1590 		return 0;
1591 
1592 	return sprintf(buf, "0x%08x\n", tmp);
1593 }
1594 
1595 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1596 
1597 /*
1598  * Add a device attribute to view/control the delay between eeprom
1599  * operations.
1600  */
1601 static ssize_t show_eeprom_delay(struct device *d,
1602 				 struct device_attribute *attr, char *buf)
1603 {
1604 	struct ipw_priv *p = dev_get_drvdata(d);
1605 	int n = p->eeprom_delay;
1606 	return sprintf(buf, "%i\n", n);
1607 }
1608 static ssize_t store_eeprom_delay(struct device *d,
1609 				  struct device_attribute *attr,
1610 				  const char *buf, size_t count)
1611 {
1612 	struct ipw_priv *p = dev_get_drvdata(d);
1613 	sscanf(buf, "%i", &p->eeprom_delay);
1614 	return strnlen(buf, count);
1615 }
1616 
1617 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1618 
1619 static ssize_t show_command_event_reg(struct device *d,
1620 				      struct device_attribute *attr, char *buf)
1621 {
1622 	u32 reg = 0;
1623 	struct ipw_priv *p = dev_get_drvdata(d);
1624 
1625 	reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1626 	return sprintf(buf, "0x%08x\n", reg);
1627 }
1628 static ssize_t store_command_event_reg(struct device *d,
1629 				       struct device_attribute *attr,
1630 				       const char *buf, size_t count)
1631 {
1632 	u32 reg;
1633 	struct ipw_priv *p = dev_get_drvdata(d);
1634 
1635 	sscanf(buf, "%x", &reg);
1636 	ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1637 	return strnlen(buf, count);
1638 }
1639 
1640 static DEVICE_ATTR(command_event_reg, 0644,
1641 		   show_command_event_reg, store_command_event_reg);
1642 
1643 static ssize_t show_mem_gpio_reg(struct device *d,
1644 				 struct device_attribute *attr, char *buf)
1645 {
1646 	u32 reg = 0;
1647 	struct ipw_priv *p = dev_get_drvdata(d);
1648 
1649 	reg = ipw_read_reg32(p, 0x301100);
1650 	return sprintf(buf, "0x%08x\n", reg);
1651 }
1652 static ssize_t store_mem_gpio_reg(struct device *d,
1653 				  struct device_attribute *attr,
1654 				  const char *buf, size_t count)
1655 {
1656 	u32 reg;
1657 	struct ipw_priv *p = dev_get_drvdata(d);
1658 
1659 	sscanf(buf, "%x", &reg);
1660 	ipw_write_reg32(p, 0x301100, reg);
1661 	return strnlen(buf, count);
1662 }
1663 
1664 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1665 
1666 static ssize_t show_indirect_dword(struct device *d,
1667 				   struct device_attribute *attr, char *buf)
1668 {
1669 	u32 reg = 0;
1670 	struct ipw_priv *priv = dev_get_drvdata(d);
1671 
1672 	if (priv->status & STATUS_INDIRECT_DWORD)
1673 		reg = ipw_read_reg32(priv, priv->indirect_dword);
1674 	else
1675 		reg = 0;
1676 
1677 	return sprintf(buf, "0x%08x\n", reg);
1678 }
1679 static ssize_t store_indirect_dword(struct device *d,
1680 				    struct device_attribute *attr,
1681 				    const char *buf, size_t count)
1682 {
1683 	struct ipw_priv *priv = dev_get_drvdata(d);
1684 
1685 	sscanf(buf, "%x", &priv->indirect_dword);
1686 	priv->status |= STATUS_INDIRECT_DWORD;
1687 	return strnlen(buf, count);
1688 }
1689 
1690 static DEVICE_ATTR(indirect_dword, 0644,
1691 		   show_indirect_dword, store_indirect_dword);
1692 
1693 static ssize_t show_indirect_byte(struct device *d,
1694 				  struct device_attribute *attr, char *buf)
1695 {
1696 	u8 reg = 0;
1697 	struct ipw_priv *priv = dev_get_drvdata(d);
1698 
1699 	if (priv->status & STATUS_INDIRECT_BYTE)
1700 		reg = ipw_read_reg8(priv, priv->indirect_byte);
1701 	else
1702 		reg = 0;
1703 
1704 	return sprintf(buf, "0x%02x\n", reg);
1705 }
1706 static ssize_t store_indirect_byte(struct device *d,
1707 				   struct device_attribute *attr,
1708 				   const char *buf, size_t count)
1709 {
1710 	struct ipw_priv *priv = dev_get_drvdata(d);
1711 
1712 	sscanf(buf, "%x", &priv->indirect_byte);
1713 	priv->status |= STATUS_INDIRECT_BYTE;
1714 	return strnlen(buf, count);
1715 }
1716 
1717 static DEVICE_ATTR(indirect_byte, 0644,
1718 		   show_indirect_byte, store_indirect_byte);
1719 
1720 static ssize_t show_direct_dword(struct device *d,
1721 				 struct device_attribute *attr, char *buf)
1722 {
1723 	u32 reg = 0;
1724 	struct ipw_priv *priv = dev_get_drvdata(d);
1725 
1726 	if (priv->status & STATUS_DIRECT_DWORD)
1727 		reg = ipw_read32(priv, priv->direct_dword);
1728 	else
1729 		reg = 0;
1730 
1731 	return sprintf(buf, "0x%08x\n", reg);
1732 }
1733 static ssize_t store_direct_dword(struct device *d,
1734 				  struct device_attribute *attr,
1735 				  const char *buf, size_t count)
1736 {
1737 	struct ipw_priv *priv = dev_get_drvdata(d);
1738 
1739 	sscanf(buf, "%x", &priv->direct_dword);
1740 	priv->status |= STATUS_DIRECT_DWORD;
1741 	return strnlen(buf, count);
1742 }
1743 
1744 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1745 
1746 static int rf_kill_active(struct ipw_priv *priv)
1747 {
1748 	if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1749 		priv->status |= STATUS_RF_KILL_HW;
1750 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1751 	} else {
1752 		priv->status &= ~STATUS_RF_KILL_HW;
1753 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1754 	}
1755 
1756 	return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1757 }
1758 
1759 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1760 			    char *buf)
1761 {
1762 	/* 0 - RF kill not enabled
1763 	   1 - SW based RF kill active (sysfs)
1764 	   2 - HW based RF kill active
1765 	   3 - Both HW and SW baed RF kill active */
1766 	struct ipw_priv *priv = dev_get_drvdata(d);
1767 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1768 	    (rf_kill_active(priv) ? 0x2 : 0x0);
1769 	return sprintf(buf, "%i\n", val);
1770 }
1771 
1772 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1773 {
1774 	if ((disable_radio ? 1 : 0) ==
1775 	    ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1776 		return 0;
1777 
1778 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1779 			  disable_radio ? "OFF" : "ON");
1780 
1781 	if (disable_radio) {
1782 		priv->status |= STATUS_RF_KILL_SW;
1783 
1784 		cancel_delayed_work(&priv->request_scan);
1785 		cancel_delayed_work(&priv->request_direct_scan);
1786 		cancel_delayed_work(&priv->request_passive_scan);
1787 		cancel_delayed_work(&priv->scan_event);
1788 		schedule_work(&priv->down);
1789 	} else {
1790 		priv->status &= ~STATUS_RF_KILL_SW;
1791 		if (rf_kill_active(priv)) {
1792 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1793 					  "disabled by HW switch\n");
1794 			/* Make sure the RF_KILL check timer is running */
1795 			cancel_delayed_work(&priv->rf_kill);
1796 			schedule_delayed_work(&priv->rf_kill,
1797 					      round_jiffies_relative(2 * HZ));
1798 		} else
1799 			schedule_work(&priv->up);
1800 	}
1801 
1802 	return 1;
1803 }
1804 
1805 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1806 			     const char *buf, size_t count)
1807 {
1808 	struct ipw_priv *priv = dev_get_drvdata(d);
1809 
1810 	ipw_radio_kill_sw(priv, buf[0] == '1');
1811 
1812 	return count;
1813 }
1814 
1815 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1816 
1817 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1818 			       char *buf)
1819 {
1820 	struct ipw_priv *priv = dev_get_drvdata(d);
1821 	int pos = 0, len = 0;
1822 	if (priv->config & CFG_SPEED_SCAN) {
1823 		while (priv->speed_scan[pos] != 0)
1824 			len += sprintf(&buf[len], "%d ",
1825 				       priv->speed_scan[pos++]);
1826 		return len + sprintf(&buf[len], "\n");
1827 	}
1828 
1829 	return sprintf(buf, "0\n");
1830 }
1831 
1832 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1833 				const char *buf, size_t count)
1834 {
1835 	struct ipw_priv *priv = dev_get_drvdata(d);
1836 	int channel, pos = 0;
1837 	const char *p = buf;
1838 
1839 	/* list of space separated channels to scan, optionally ending with 0 */
1840 	while ((channel = simple_strtol(p, NULL, 0))) {
1841 		if (pos == MAX_SPEED_SCAN - 1) {
1842 			priv->speed_scan[pos] = 0;
1843 			break;
1844 		}
1845 
1846 		if (libipw_is_valid_channel(priv->ieee, channel))
1847 			priv->speed_scan[pos++] = channel;
1848 		else
1849 			IPW_WARNING("Skipping invalid channel request: %d\n",
1850 				    channel);
1851 		p = strchr(p, ' ');
1852 		if (!p)
1853 			break;
1854 		while (*p == ' ' || *p == '\t')
1855 			p++;
1856 	}
1857 
1858 	if (pos == 0)
1859 		priv->config &= ~CFG_SPEED_SCAN;
1860 	else {
1861 		priv->speed_scan_pos = 0;
1862 		priv->config |= CFG_SPEED_SCAN;
1863 	}
1864 
1865 	return count;
1866 }
1867 
1868 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1869 
1870 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1871 			      char *buf)
1872 {
1873 	struct ipw_priv *priv = dev_get_drvdata(d);
1874 	return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1875 }
1876 
1877 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1878 			       const char *buf, size_t count)
1879 {
1880 	struct ipw_priv *priv = dev_get_drvdata(d);
1881 	if (buf[0] == '1')
1882 		priv->config |= CFG_NET_STATS;
1883 	else
1884 		priv->config &= ~CFG_NET_STATS;
1885 
1886 	return count;
1887 }
1888 
1889 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1890 
1891 static ssize_t show_channels(struct device *d,
1892 			     struct device_attribute *attr,
1893 			     char *buf)
1894 {
1895 	struct ipw_priv *priv = dev_get_drvdata(d);
1896 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1897 	int len = 0, i;
1898 
1899 	len = sprintf(&buf[len],
1900 		      "Displaying %d channels in 2.4Ghz band "
1901 		      "(802.11bg):\n", geo->bg_channels);
1902 
1903 	for (i = 0; i < geo->bg_channels; i++) {
1904 		len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1905 			       geo->bg[i].channel,
1906 			       geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1907 			       " (radar spectrum)" : "",
1908 			       ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1909 				(geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1910 			       ? "" : ", IBSS",
1911 			       geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1912 			       "passive only" : "active/passive",
1913 			       geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1914 			       "B" : "B/G");
1915 	}
1916 
1917 	len += sprintf(&buf[len],
1918 		       "Displaying %d channels in 5.2Ghz band "
1919 		       "(802.11a):\n", geo->a_channels);
1920 	for (i = 0; i < geo->a_channels; i++) {
1921 		len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1922 			       geo->a[i].channel,
1923 			       geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924 			       " (radar spectrum)" : "",
1925 			       ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1926 				(geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1927 			       ? "" : ", IBSS",
1928 			       geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929 			       "passive only" : "active/passive");
1930 	}
1931 
1932 	return len;
1933 }
1934 
1935 static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1936 
1937 static void notify_wx_assoc_event(struct ipw_priv *priv)
1938 {
1939 	union iwreq_data wrqu;
1940 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1941 	if (priv->status & STATUS_ASSOCIATED)
1942 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1943 	else
1944 		eth_zero_addr(wrqu.ap_addr.sa_data);
1945 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1946 }
1947 
1948 static void ipw_irq_tasklet(struct tasklet_struct *t)
1949 {
1950 	struct ipw_priv *priv = from_tasklet(priv, t, irq_tasklet);
1951 	u32 inta, inta_mask, handled = 0;
1952 	unsigned long flags;
1953 
1954 	spin_lock_irqsave(&priv->irq_lock, flags);
1955 
1956 	inta = ipw_read32(priv, IPW_INTA_RW);
1957 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1958 
1959 	if (inta == 0xFFFFFFFF) {
1960 		/* Hardware disappeared */
1961 		IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1962 		/* Only handle the cached INTA values */
1963 		inta = 0;
1964 	}
1965 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
1966 
1967 	/* Add any cached INTA values that need to be handled */
1968 	inta |= priv->isr_inta;
1969 
1970 	spin_unlock_irqrestore(&priv->irq_lock, flags);
1971 
1972 	spin_lock_irqsave(&priv->lock, flags);
1973 
1974 	/* handle all the justifications for the interrupt */
1975 	if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1976 		ipw_rx(priv);
1977 		handled |= IPW_INTA_BIT_RX_TRANSFER;
1978 	}
1979 
1980 	if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1981 		IPW_DEBUG_HC("Command completed.\n");
1982 		ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1983 		priv->status &= ~STATUS_HCMD_ACTIVE;
1984 		wake_up_interruptible(&priv->wait_command_queue);
1985 		handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1986 	}
1987 
1988 	if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1989 		IPW_DEBUG_TX("TX_QUEUE_1\n");
1990 		ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1991 		handled |= IPW_INTA_BIT_TX_QUEUE_1;
1992 	}
1993 
1994 	if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1995 		IPW_DEBUG_TX("TX_QUEUE_2\n");
1996 		ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1997 		handled |= IPW_INTA_BIT_TX_QUEUE_2;
1998 	}
1999 
2000 	if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2001 		IPW_DEBUG_TX("TX_QUEUE_3\n");
2002 		ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2003 		handled |= IPW_INTA_BIT_TX_QUEUE_3;
2004 	}
2005 
2006 	if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2007 		IPW_DEBUG_TX("TX_QUEUE_4\n");
2008 		ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2009 		handled |= IPW_INTA_BIT_TX_QUEUE_4;
2010 	}
2011 
2012 	if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2013 		IPW_WARNING("STATUS_CHANGE\n");
2014 		handled |= IPW_INTA_BIT_STATUS_CHANGE;
2015 	}
2016 
2017 	if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2018 		IPW_WARNING("TX_PERIOD_EXPIRED\n");
2019 		handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2020 	}
2021 
2022 	if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2023 		IPW_WARNING("HOST_CMD_DONE\n");
2024 		handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2025 	}
2026 
2027 	if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2028 		IPW_WARNING("FW_INITIALIZATION_DONE\n");
2029 		handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2030 	}
2031 
2032 	if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2033 		IPW_WARNING("PHY_OFF_DONE\n");
2034 		handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2035 	}
2036 
2037 	if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2038 		IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2039 		priv->status |= STATUS_RF_KILL_HW;
2040 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2041 		wake_up_interruptible(&priv->wait_command_queue);
2042 		priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2043 		cancel_delayed_work(&priv->request_scan);
2044 		cancel_delayed_work(&priv->request_direct_scan);
2045 		cancel_delayed_work(&priv->request_passive_scan);
2046 		cancel_delayed_work(&priv->scan_event);
2047 		schedule_work(&priv->link_down);
2048 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2049 		handled |= IPW_INTA_BIT_RF_KILL_DONE;
2050 	}
2051 
2052 	if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2053 		IPW_WARNING("Firmware error detected.  Restarting.\n");
2054 		if (priv->error) {
2055 			IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2056 			if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2057 				struct ipw_fw_error *error =
2058 				    ipw_alloc_error_log(priv);
2059 				ipw_dump_error_log(priv, error);
2060 				kfree(error);
2061 			}
2062 		} else {
2063 			priv->error = ipw_alloc_error_log(priv);
2064 			if (priv->error)
2065 				IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2066 			else
2067 				IPW_DEBUG_FW("Error allocating sysfs 'error' "
2068 					     "log.\n");
2069 			if (ipw_debug_level & IPW_DL_FW_ERRORS)
2070 				ipw_dump_error_log(priv, priv->error);
2071 		}
2072 
2073 		/* XXX: If hardware encryption is for WPA/WPA2,
2074 		 * we have to notify the supplicant. */
2075 		if (priv->ieee->sec.encrypt) {
2076 			priv->status &= ~STATUS_ASSOCIATED;
2077 			notify_wx_assoc_event(priv);
2078 		}
2079 
2080 		/* Keep the restart process from trying to send host
2081 		 * commands by clearing the INIT status bit */
2082 		priv->status &= ~STATUS_INIT;
2083 
2084 		/* Cancel currently queued command. */
2085 		priv->status &= ~STATUS_HCMD_ACTIVE;
2086 		wake_up_interruptible(&priv->wait_command_queue);
2087 
2088 		schedule_work(&priv->adapter_restart);
2089 		handled |= IPW_INTA_BIT_FATAL_ERROR;
2090 	}
2091 
2092 	if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2093 		IPW_ERROR("Parity error\n");
2094 		handled |= IPW_INTA_BIT_PARITY_ERROR;
2095 	}
2096 
2097 	if (handled != inta) {
2098 		IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2099 	}
2100 
2101 	spin_unlock_irqrestore(&priv->lock, flags);
2102 
2103 	/* enable all interrupts */
2104 	ipw_enable_interrupts(priv);
2105 }
2106 
2107 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2108 static char *get_cmd_string(u8 cmd)
2109 {
2110 	switch (cmd) {
2111 		IPW_CMD(HOST_COMPLETE);
2112 		IPW_CMD(POWER_DOWN);
2113 		IPW_CMD(SYSTEM_CONFIG);
2114 		IPW_CMD(MULTICAST_ADDRESS);
2115 		IPW_CMD(SSID);
2116 		IPW_CMD(ADAPTER_ADDRESS);
2117 		IPW_CMD(PORT_TYPE);
2118 		IPW_CMD(RTS_THRESHOLD);
2119 		IPW_CMD(FRAG_THRESHOLD);
2120 		IPW_CMD(POWER_MODE);
2121 		IPW_CMD(WEP_KEY);
2122 		IPW_CMD(TGI_TX_KEY);
2123 		IPW_CMD(SCAN_REQUEST);
2124 		IPW_CMD(SCAN_REQUEST_EXT);
2125 		IPW_CMD(ASSOCIATE);
2126 		IPW_CMD(SUPPORTED_RATES);
2127 		IPW_CMD(SCAN_ABORT);
2128 		IPW_CMD(TX_FLUSH);
2129 		IPW_CMD(QOS_PARAMETERS);
2130 		IPW_CMD(DINO_CONFIG);
2131 		IPW_CMD(RSN_CAPABILITIES);
2132 		IPW_CMD(RX_KEY);
2133 		IPW_CMD(CARD_DISABLE);
2134 		IPW_CMD(SEED_NUMBER);
2135 		IPW_CMD(TX_POWER);
2136 		IPW_CMD(COUNTRY_INFO);
2137 		IPW_CMD(AIRONET_INFO);
2138 		IPW_CMD(AP_TX_POWER);
2139 		IPW_CMD(CCKM_INFO);
2140 		IPW_CMD(CCX_VER_INFO);
2141 		IPW_CMD(SET_CALIBRATION);
2142 		IPW_CMD(SENSITIVITY_CALIB);
2143 		IPW_CMD(RETRY_LIMIT);
2144 		IPW_CMD(IPW_PRE_POWER_DOWN);
2145 		IPW_CMD(VAP_BEACON_TEMPLATE);
2146 		IPW_CMD(VAP_DTIM_PERIOD);
2147 		IPW_CMD(EXT_SUPPORTED_RATES);
2148 		IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2149 		IPW_CMD(VAP_QUIET_INTERVALS);
2150 		IPW_CMD(VAP_CHANNEL_SWITCH);
2151 		IPW_CMD(VAP_MANDATORY_CHANNELS);
2152 		IPW_CMD(VAP_CELL_PWR_LIMIT);
2153 		IPW_CMD(VAP_CF_PARAM_SET);
2154 		IPW_CMD(VAP_SET_BEACONING_STATE);
2155 		IPW_CMD(MEASUREMENT);
2156 		IPW_CMD(POWER_CAPABILITY);
2157 		IPW_CMD(SUPPORTED_CHANNELS);
2158 		IPW_CMD(TPC_REPORT);
2159 		IPW_CMD(WME_INFO);
2160 		IPW_CMD(PRODUCTION_COMMAND);
2161 	default:
2162 		return "UNKNOWN";
2163 	}
2164 }
2165 
2166 #define HOST_COMPLETE_TIMEOUT HZ
2167 
2168 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2169 {
2170 	int rc = 0;
2171 	unsigned long flags;
2172 	unsigned long now, end;
2173 
2174 	spin_lock_irqsave(&priv->lock, flags);
2175 	if (priv->status & STATUS_HCMD_ACTIVE) {
2176 		IPW_ERROR("Failed to send %s: Already sending a command.\n",
2177 			  get_cmd_string(cmd->cmd));
2178 		spin_unlock_irqrestore(&priv->lock, flags);
2179 		return -EAGAIN;
2180 	}
2181 
2182 	priv->status |= STATUS_HCMD_ACTIVE;
2183 
2184 	if (priv->cmdlog) {
2185 		priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2186 		priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2187 		priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2188 		memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2189 		       cmd->len);
2190 		priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2191 	}
2192 
2193 	IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2194 		     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2195 		     priv->status);
2196 
2197 #ifndef DEBUG_CMD_WEP_KEY
2198 	if (cmd->cmd == IPW_CMD_WEP_KEY)
2199 		IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2200 	else
2201 #endif
2202 		printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2203 
2204 	rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2205 	if (rc) {
2206 		priv->status &= ~STATUS_HCMD_ACTIVE;
2207 		IPW_ERROR("Failed to send %s: Reason %d\n",
2208 			  get_cmd_string(cmd->cmd), rc);
2209 		spin_unlock_irqrestore(&priv->lock, flags);
2210 		goto exit;
2211 	}
2212 	spin_unlock_irqrestore(&priv->lock, flags);
2213 
2214 	now = jiffies;
2215 	end = now + HOST_COMPLETE_TIMEOUT;
2216 again:
2217 	rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2218 					      !(priv->
2219 						status & STATUS_HCMD_ACTIVE),
2220 					      end - now);
2221 	if (rc < 0) {
2222 		now = jiffies;
2223 		if (time_before(now, end))
2224 			goto again;
2225 		rc = 0;
2226 	}
2227 
2228 	if (rc == 0) {
2229 		spin_lock_irqsave(&priv->lock, flags);
2230 		if (priv->status & STATUS_HCMD_ACTIVE) {
2231 			IPW_ERROR("Failed to send %s: Command timed out.\n",
2232 				  get_cmd_string(cmd->cmd));
2233 			priv->status &= ~STATUS_HCMD_ACTIVE;
2234 			spin_unlock_irqrestore(&priv->lock, flags);
2235 			rc = -EIO;
2236 			goto exit;
2237 		}
2238 		spin_unlock_irqrestore(&priv->lock, flags);
2239 	} else
2240 		rc = 0;
2241 
2242 	if (priv->status & STATUS_RF_KILL_HW) {
2243 		IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2244 			  get_cmd_string(cmd->cmd));
2245 		rc = -EIO;
2246 		goto exit;
2247 	}
2248 
2249       exit:
2250 	if (priv->cmdlog) {
2251 		priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2252 		priv->cmdlog_pos %= priv->cmdlog_len;
2253 	}
2254 	return rc;
2255 }
2256 
2257 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2258 {
2259 	struct host_cmd cmd = {
2260 		.cmd = command,
2261 	};
2262 
2263 	return __ipw_send_cmd(priv, &cmd);
2264 }
2265 
2266 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2267 			    const void *data)
2268 {
2269 	struct host_cmd cmd = {
2270 		.cmd = command,
2271 		.len = len,
2272 		.param = data,
2273 	};
2274 
2275 	return __ipw_send_cmd(priv, &cmd);
2276 }
2277 
2278 static int ipw_send_host_complete(struct ipw_priv *priv)
2279 {
2280 	if (!priv) {
2281 		IPW_ERROR("Invalid args\n");
2282 		return -1;
2283 	}
2284 
2285 	return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2286 }
2287 
2288 static int ipw_send_system_config(struct ipw_priv *priv)
2289 {
2290 	return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2291 				sizeof(priv->sys_config),
2292 				&priv->sys_config);
2293 }
2294 
2295 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2296 {
2297 	if (!priv || !ssid) {
2298 		IPW_ERROR("Invalid args\n");
2299 		return -1;
2300 	}
2301 
2302 	return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2303 				ssid);
2304 }
2305 
2306 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2307 {
2308 	if (!priv || !mac) {
2309 		IPW_ERROR("Invalid args\n");
2310 		return -1;
2311 	}
2312 
2313 	IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2314 		       priv->net_dev->name, mac);
2315 
2316 	return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2317 }
2318 
2319 static void ipw_adapter_restart(void *adapter)
2320 {
2321 	struct ipw_priv *priv = adapter;
2322 
2323 	if (priv->status & STATUS_RF_KILL_MASK)
2324 		return;
2325 
2326 	ipw_down(priv);
2327 
2328 	if (priv->assoc_network &&
2329 	    (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2330 		ipw_remove_current_network(priv);
2331 
2332 	if (ipw_up(priv)) {
2333 		IPW_ERROR("Failed to up device\n");
2334 		return;
2335 	}
2336 }
2337 
2338 static void ipw_bg_adapter_restart(struct work_struct *work)
2339 {
2340 	struct ipw_priv *priv =
2341 		container_of(work, struct ipw_priv, adapter_restart);
2342 	mutex_lock(&priv->mutex);
2343 	ipw_adapter_restart(priv);
2344 	mutex_unlock(&priv->mutex);
2345 }
2346 
2347 static void ipw_abort_scan(struct ipw_priv *priv);
2348 
2349 #define IPW_SCAN_CHECK_WATCHDOG	(5 * HZ)
2350 
2351 static void ipw_scan_check(void *data)
2352 {
2353 	struct ipw_priv *priv = data;
2354 
2355 	if (priv->status & STATUS_SCAN_ABORTING) {
2356 		IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2357 			       "adapter after (%dms).\n",
2358 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2359 		schedule_work(&priv->adapter_restart);
2360 	} else if (priv->status & STATUS_SCANNING) {
2361 		IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2362 			       "after (%dms).\n",
2363 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2364 		ipw_abort_scan(priv);
2365 		schedule_delayed_work(&priv->scan_check, HZ);
2366 	}
2367 }
2368 
2369 static void ipw_bg_scan_check(struct work_struct *work)
2370 {
2371 	struct ipw_priv *priv =
2372 		container_of(work, struct ipw_priv, scan_check.work);
2373 	mutex_lock(&priv->mutex);
2374 	ipw_scan_check(priv);
2375 	mutex_unlock(&priv->mutex);
2376 }
2377 
2378 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2379 				     struct ipw_scan_request_ext *request)
2380 {
2381 	return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2382 				sizeof(*request), request);
2383 }
2384 
2385 static int ipw_send_scan_abort(struct ipw_priv *priv)
2386 {
2387 	if (!priv) {
2388 		IPW_ERROR("Invalid args\n");
2389 		return -1;
2390 	}
2391 
2392 	return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2393 }
2394 
2395 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2396 {
2397 	struct ipw_sensitivity_calib calib = {
2398 		.beacon_rssi_raw = cpu_to_le16(sens),
2399 	};
2400 
2401 	return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2402 				&calib);
2403 }
2404 
2405 static int ipw_send_associate(struct ipw_priv *priv,
2406 			      struct ipw_associate *associate)
2407 {
2408 	if (!priv || !associate) {
2409 		IPW_ERROR("Invalid args\n");
2410 		return -1;
2411 	}
2412 
2413 	return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2414 				associate);
2415 }
2416 
2417 static int ipw_send_supported_rates(struct ipw_priv *priv,
2418 				    struct ipw_supported_rates *rates)
2419 {
2420 	if (!priv || !rates) {
2421 		IPW_ERROR("Invalid args\n");
2422 		return -1;
2423 	}
2424 
2425 	return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2426 				rates);
2427 }
2428 
2429 static int ipw_set_random_seed(struct ipw_priv *priv)
2430 {
2431 	u32 val;
2432 
2433 	if (!priv) {
2434 		IPW_ERROR("Invalid args\n");
2435 		return -1;
2436 	}
2437 
2438 	get_random_bytes(&val, sizeof(val));
2439 
2440 	return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2441 }
2442 
2443 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2444 {
2445 	__le32 v = cpu_to_le32(phy_off);
2446 	if (!priv) {
2447 		IPW_ERROR("Invalid args\n");
2448 		return -1;
2449 	}
2450 
2451 	return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2452 }
2453 
2454 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2455 {
2456 	if (!priv || !power) {
2457 		IPW_ERROR("Invalid args\n");
2458 		return -1;
2459 	}
2460 
2461 	return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2462 }
2463 
2464 static int ipw_set_tx_power(struct ipw_priv *priv)
2465 {
2466 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2467 	struct ipw_tx_power tx_power;
2468 	s8 max_power;
2469 	int i;
2470 
2471 	memset(&tx_power, 0, sizeof(tx_power));
2472 
2473 	/* configure device for 'G' band */
2474 	tx_power.ieee_mode = IPW_G_MODE;
2475 	tx_power.num_channels = geo->bg_channels;
2476 	for (i = 0; i < geo->bg_channels; i++) {
2477 		max_power = geo->bg[i].max_power;
2478 		tx_power.channels_tx_power[i].channel_number =
2479 		    geo->bg[i].channel;
2480 		tx_power.channels_tx_power[i].tx_power = max_power ?
2481 		    min(max_power, priv->tx_power) : priv->tx_power;
2482 	}
2483 	if (ipw_send_tx_power(priv, &tx_power))
2484 		return -EIO;
2485 
2486 	/* configure device to also handle 'B' band */
2487 	tx_power.ieee_mode = IPW_B_MODE;
2488 	if (ipw_send_tx_power(priv, &tx_power))
2489 		return -EIO;
2490 
2491 	/* configure device to also handle 'A' band */
2492 	if (priv->ieee->abg_true) {
2493 		tx_power.ieee_mode = IPW_A_MODE;
2494 		tx_power.num_channels = geo->a_channels;
2495 		for (i = 0; i < tx_power.num_channels; i++) {
2496 			max_power = geo->a[i].max_power;
2497 			tx_power.channels_tx_power[i].channel_number =
2498 			    geo->a[i].channel;
2499 			tx_power.channels_tx_power[i].tx_power = max_power ?
2500 			    min(max_power, priv->tx_power) : priv->tx_power;
2501 		}
2502 		if (ipw_send_tx_power(priv, &tx_power))
2503 			return -EIO;
2504 	}
2505 	return 0;
2506 }
2507 
2508 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2509 {
2510 	struct ipw_rts_threshold rts_threshold = {
2511 		.rts_threshold = cpu_to_le16(rts),
2512 	};
2513 
2514 	if (!priv) {
2515 		IPW_ERROR("Invalid args\n");
2516 		return -1;
2517 	}
2518 
2519 	return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2520 				sizeof(rts_threshold), &rts_threshold);
2521 }
2522 
2523 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2524 {
2525 	struct ipw_frag_threshold frag_threshold = {
2526 		.frag_threshold = cpu_to_le16(frag),
2527 	};
2528 
2529 	if (!priv) {
2530 		IPW_ERROR("Invalid args\n");
2531 		return -1;
2532 	}
2533 
2534 	return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2535 				sizeof(frag_threshold), &frag_threshold);
2536 }
2537 
2538 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2539 {
2540 	__le32 param;
2541 
2542 	if (!priv) {
2543 		IPW_ERROR("Invalid args\n");
2544 		return -1;
2545 	}
2546 
2547 	/* If on battery, set to 3, if AC set to CAM, else user
2548 	 * level */
2549 	switch (mode) {
2550 	case IPW_POWER_BATTERY:
2551 		param = cpu_to_le32(IPW_POWER_INDEX_3);
2552 		break;
2553 	case IPW_POWER_AC:
2554 		param = cpu_to_le32(IPW_POWER_MODE_CAM);
2555 		break;
2556 	default:
2557 		param = cpu_to_le32(mode);
2558 		break;
2559 	}
2560 
2561 	return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2562 				&param);
2563 }
2564 
2565 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2566 {
2567 	struct ipw_retry_limit retry_limit = {
2568 		.short_retry_limit = slimit,
2569 		.long_retry_limit = llimit
2570 	};
2571 
2572 	if (!priv) {
2573 		IPW_ERROR("Invalid args\n");
2574 		return -1;
2575 	}
2576 
2577 	return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2578 				&retry_limit);
2579 }
2580 
2581 /*
2582  * The IPW device contains a Microwire compatible EEPROM that stores
2583  * various data like the MAC address.  Usually the firmware has exclusive
2584  * access to the eeprom, but during device initialization (before the
2585  * device driver has sent the HostComplete command to the firmware) the
2586  * device driver has read access to the EEPROM by way of indirect addressing
2587  * through a couple of memory mapped registers.
2588  *
2589  * The following is a simplified implementation for pulling data out of the
2590  * the eeprom, along with some helper functions to find information in
2591  * the per device private data's copy of the eeprom.
2592  *
2593  * NOTE: To better understand how these functions work (i.e what is a chip
2594  *       select and why do have to keep driving the eeprom clock?), read
2595  *       just about any data sheet for a Microwire compatible EEPROM.
2596  */
2597 
2598 /* write a 32 bit value into the indirect accessor register */
2599 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2600 {
2601 	ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2602 
2603 	/* the eeprom requires some time to complete the operation */
2604 	udelay(p->eeprom_delay);
2605 }
2606 
2607 /* perform a chip select operation */
2608 static void eeprom_cs(struct ipw_priv *priv)
2609 {
2610 	eeprom_write_reg(priv, 0);
2611 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2612 	eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2613 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2614 }
2615 
2616 /* perform a chip select operation */
2617 static void eeprom_disable_cs(struct ipw_priv *priv)
2618 {
2619 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2620 	eeprom_write_reg(priv, 0);
2621 	eeprom_write_reg(priv, EEPROM_BIT_SK);
2622 }
2623 
2624 /* push a single bit down to the eeprom */
2625 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2626 {
2627 	int d = (bit ? EEPROM_BIT_DI : 0);
2628 	eeprom_write_reg(p, EEPROM_BIT_CS | d);
2629 	eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2630 }
2631 
2632 /* push an opcode followed by an address down to the eeprom */
2633 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2634 {
2635 	int i;
2636 
2637 	eeprom_cs(priv);
2638 	eeprom_write_bit(priv, 1);
2639 	eeprom_write_bit(priv, op & 2);
2640 	eeprom_write_bit(priv, op & 1);
2641 	for (i = 7; i >= 0; i--) {
2642 		eeprom_write_bit(priv, addr & (1 << i));
2643 	}
2644 }
2645 
2646 /* pull 16 bits off the eeprom, one bit at a time */
2647 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2648 {
2649 	int i;
2650 	u16 r = 0;
2651 
2652 	/* Send READ Opcode */
2653 	eeprom_op(priv, EEPROM_CMD_READ, addr);
2654 
2655 	/* Send dummy bit */
2656 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2657 
2658 	/* Read the byte off the eeprom one bit at a time */
2659 	for (i = 0; i < 16; i++) {
2660 		u32 data = 0;
2661 		eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2662 		eeprom_write_reg(priv, EEPROM_BIT_CS);
2663 		data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2664 		r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2665 	}
2666 
2667 	/* Send another dummy bit */
2668 	eeprom_write_reg(priv, 0);
2669 	eeprom_disable_cs(priv);
2670 
2671 	return r;
2672 }
2673 
2674 /* helper function for pulling the mac address out of the private */
2675 /* data's copy of the eeprom data                                 */
2676 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2677 {
2678 	memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2679 }
2680 
2681 static void ipw_read_eeprom(struct ipw_priv *priv)
2682 {
2683 	int i;
2684 	__le16 *eeprom = (__le16 *) priv->eeprom;
2685 
2686 	IPW_DEBUG_TRACE(">>\n");
2687 
2688 	/* read entire contents of eeprom into private buffer */
2689 	for (i = 0; i < 128; i++)
2690 		eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2691 
2692 	IPW_DEBUG_TRACE("<<\n");
2693 }
2694 
2695 /*
2696  * Either the device driver (i.e. the host) or the firmware can
2697  * load eeprom data into the designated region in SRAM.  If neither
2698  * happens then the FW will shutdown with a fatal error.
2699  *
2700  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2701  * bit needs region of shared SRAM needs to be non-zero.
2702  */
2703 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2704 {
2705 	int i;
2706 
2707 	IPW_DEBUG_TRACE(">>\n");
2708 
2709 	/*
2710 	   If the data looks correct, then copy it to our private
2711 	   copy.  Otherwise let the firmware know to perform the operation
2712 	   on its own.
2713 	 */
2714 	if (priv->eeprom[EEPROM_VERSION] != 0) {
2715 		IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2716 
2717 		/* write the eeprom data to sram */
2718 		for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2719 			ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2720 
2721 		/* Do not load eeprom data on fatal error or suspend */
2722 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2723 	} else {
2724 		IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2725 
2726 		/* Load eeprom data on fatal error or suspend */
2727 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2728 	}
2729 
2730 	IPW_DEBUG_TRACE("<<\n");
2731 }
2732 
2733 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2734 {
2735 	count >>= 2;
2736 	if (!count)
2737 		return;
2738 	_ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2739 	while (count--)
2740 		_ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2741 }
2742 
2743 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2744 {
2745 	ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2746 			CB_NUMBER_OF_ELEMENTS_SMALL *
2747 			sizeof(struct command_block));
2748 }
2749 
2750 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2751 {				/* start dma engine but no transfers yet */
2752 
2753 	IPW_DEBUG_FW(">> :\n");
2754 
2755 	/* Start the dma */
2756 	ipw_fw_dma_reset_command_blocks(priv);
2757 
2758 	/* Write CB base address */
2759 	ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2760 
2761 	IPW_DEBUG_FW("<< :\n");
2762 	return 0;
2763 }
2764 
2765 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2766 {
2767 	u32 control = 0;
2768 
2769 	IPW_DEBUG_FW(">> :\n");
2770 
2771 	/* set the Stop and Abort bit */
2772 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2773 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2774 	priv->sram_desc.last_cb_index = 0;
2775 
2776 	IPW_DEBUG_FW("<<\n");
2777 }
2778 
2779 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2780 					  struct command_block *cb)
2781 {
2782 	u32 address =
2783 	    IPW_SHARED_SRAM_DMA_CONTROL +
2784 	    (sizeof(struct command_block) * index);
2785 	IPW_DEBUG_FW(">> :\n");
2786 
2787 	ipw_write_indirect(priv, address, (u8 *) cb,
2788 			   (int)sizeof(struct command_block));
2789 
2790 	IPW_DEBUG_FW("<< :\n");
2791 	return 0;
2792 
2793 }
2794 
2795 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2796 {
2797 	u32 control = 0;
2798 	u32 index = 0;
2799 
2800 	IPW_DEBUG_FW(">> :\n");
2801 
2802 	for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2803 		ipw_fw_dma_write_command_block(priv, index,
2804 					       &priv->sram_desc.cb_list[index]);
2805 
2806 	/* Enable the DMA in the CSR register */
2807 	ipw_clear_bit(priv, IPW_RESET_REG,
2808 		      IPW_RESET_REG_MASTER_DISABLED |
2809 		      IPW_RESET_REG_STOP_MASTER);
2810 
2811 	/* Set the Start bit. */
2812 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2813 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2814 
2815 	IPW_DEBUG_FW("<< :\n");
2816 	return 0;
2817 }
2818 
2819 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2820 {
2821 	u32 address;
2822 	u32 register_value = 0;
2823 	u32 cb_fields_address = 0;
2824 
2825 	IPW_DEBUG_FW(">> :\n");
2826 	address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2827 	IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2828 
2829 	/* Read the DMA Controlor register */
2830 	register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2831 	IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2832 
2833 	/* Print the CB values */
2834 	cb_fields_address = address;
2835 	register_value = ipw_read_reg32(priv, cb_fields_address);
2836 	IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2837 
2838 	cb_fields_address += sizeof(u32);
2839 	register_value = ipw_read_reg32(priv, cb_fields_address);
2840 	IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2841 
2842 	cb_fields_address += sizeof(u32);
2843 	register_value = ipw_read_reg32(priv, cb_fields_address);
2844 	IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2845 			  register_value);
2846 
2847 	cb_fields_address += sizeof(u32);
2848 	register_value = ipw_read_reg32(priv, cb_fields_address);
2849 	IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2850 
2851 	IPW_DEBUG_FW(">> :\n");
2852 }
2853 
2854 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2855 {
2856 	u32 current_cb_address = 0;
2857 	u32 current_cb_index = 0;
2858 
2859 	IPW_DEBUG_FW("<< :\n");
2860 	current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2861 
2862 	current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2863 	    sizeof(struct command_block);
2864 
2865 	IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2866 			  current_cb_index, current_cb_address);
2867 
2868 	IPW_DEBUG_FW(">> :\n");
2869 	return current_cb_index;
2870 
2871 }
2872 
2873 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2874 					u32 src_address,
2875 					u32 dest_address,
2876 					u32 length,
2877 					int interrupt_enabled, int is_last)
2878 {
2879 
2880 	u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2881 	    CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2882 	    CB_DEST_SIZE_LONG;
2883 	struct command_block *cb;
2884 	u32 last_cb_element = 0;
2885 
2886 	IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2887 			  src_address, dest_address, length);
2888 
2889 	if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2890 		return -1;
2891 
2892 	last_cb_element = priv->sram_desc.last_cb_index;
2893 	cb = &priv->sram_desc.cb_list[last_cb_element];
2894 	priv->sram_desc.last_cb_index++;
2895 
2896 	/* Calculate the new CB control word */
2897 	if (interrupt_enabled)
2898 		control |= CB_INT_ENABLED;
2899 
2900 	if (is_last)
2901 		control |= CB_LAST_VALID;
2902 
2903 	control |= length;
2904 
2905 	/* Calculate the CB Element's checksum value */
2906 	cb->status = control ^ src_address ^ dest_address;
2907 
2908 	/* Copy the Source and Destination addresses */
2909 	cb->dest_addr = dest_address;
2910 	cb->source_addr = src_address;
2911 
2912 	/* Copy the Control Word last */
2913 	cb->control = control;
2914 
2915 	return 0;
2916 }
2917 
2918 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2919 				 int nr, u32 dest_address, u32 len)
2920 {
2921 	int ret, i;
2922 	u32 size;
2923 
2924 	IPW_DEBUG_FW(">>\n");
2925 	IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2926 			  nr, dest_address, len);
2927 
2928 	for (i = 0; i < nr; i++) {
2929 		size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2930 		ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2931 						   dest_address +
2932 						   i * CB_MAX_LENGTH, size,
2933 						   0, 0);
2934 		if (ret) {
2935 			IPW_DEBUG_FW_INFO(": Failed\n");
2936 			return -1;
2937 		} else
2938 			IPW_DEBUG_FW_INFO(": Added new cb\n");
2939 	}
2940 
2941 	IPW_DEBUG_FW("<<\n");
2942 	return 0;
2943 }
2944 
2945 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2946 {
2947 	u32 current_index = 0, previous_index;
2948 	u32 watchdog = 0;
2949 
2950 	IPW_DEBUG_FW(">> :\n");
2951 
2952 	current_index = ipw_fw_dma_command_block_index(priv);
2953 	IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2954 			  (int)priv->sram_desc.last_cb_index);
2955 
2956 	while (current_index < priv->sram_desc.last_cb_index) {
2957 		udelay(50);
2958 		previous_index = current_index;
2959 		current_index = ipw_fw_dma_command_block_index(priv);
2960 
2961 		if (previous_index < current_index) {
2962 			watchdog = 0;
2963 			continue;
2964 		}
2965 		if (++watchdog > 400) {
2966 			IPW_DEBUG_FW_INFO("Timeout\n");
2967 			ipw_fw_dma_dump_command_block(priv);
2968 			ipw_fw_dma_abort(priv);
2969 			return -1;
2970 		}
2971 	}
2972 
2973 	ipw_fw_dma_abort(priv);
2974 
2975 	/*Disable the DMA in the CSR register */
2976 	ipw_set_bit(priv, IPW_RESET_REG,
2977 		    IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2978 
2979 	IPW_DEBUG_FW("<< dmaWaitSync\n");
2980 	return 0;
2981 }
2982 
2983 static void ipw_remove_current_network(struct ipw_priv *priv)
2984 {
2985 	struct list_head *element, *safe;
2986 	struct libipw_network *network = NULL;
2987 	unsigned long flags;
2988 
2989 	spin_lock_irqsave(&priv->ieee->lock, flags);
2990 	list_for_each_safe(element, safe, &priv->ieee->network_list) {
2991 		network = list_entry(element, struct libipw_network, list);
2992 		if (ether_addr_equal(network->bssid, priv->bssid)) {
2993 			list_del(element);
2994 			list_add_tail(&network->list,
2995 				      &priv->ieee->network_free_list);
2996 		}
2997 	}
2998 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
2999 }
3000 
3001 /*
3002  * Check that card is still alive.
3003  * Reads debug register from domain0.
3004  * If card is present, pre-defined value should
3005  * be found there.
3006  *
3007  * @param priv
3008  * @return 1 if card is present, 0 otherwise
3009  */
3010 static inline int ipw_alive(struct ipw_priv *priv)
3011 {
3012 	return ipw_read32(priv, 0x90) == 0xd55555d5;
3013 }
3014 
3015 /* timeout in msec, attempted in 10-msec quanta */
3016 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3017 			       int timeout)
3018 {
3019 	int i = 0;
3020 
3021 	do {
3022 		if ((ipw_read32(priv, addr) & mask) == mask)
3023 			return i;
3024 		mdelay(10);
3025 		i += 10;
3026 	} while (i < timeout);
3027 
3028 	return -ETIME;
3029 }
3030 
3031 /* These functions load the firmware and micro code for the operation of
3032  * the ipw hardware.  It assumes the buffer has all the bits for the
3033  * image and the caller is handling the memory allocation and clean up.
3034  */
3035 
3036 static int ipw_stop_master(struct ipw_priv *priv)
3037 {
3038 	int rc;
3039 
3040 	IPW_DEBUG_TRACE(">>\n");
3041 	/* stop master. typical delay - 0 */
3042 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3043 
3044 	/* timeout is in msec, polled in 10-msec quanta */
3045 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3046 			  IPW_RESET_REG_MASTER_DISABLED, 100);
3047 	if (rc < 0) {
3048 		IPW_ERROR("wait for stop master failed after 100ms\n");
3049 		return -1;
3050 	}
3051 
3052 	IPW_DEBUG_INFO("stop master %dms\n", rc);
3053 
3054 	return rc;
3055 }
3056 
3057 static void ipw_arc_release(struct ipw_priv *priv)
3058 {
3059 	IPW_DEBUG_TRACE(">>\n");
3060 	mdelay(5);
3061 
3062 	ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3063 
3064 	/* no one knows timing, for safety add some delay */
3065 	mdelay(5);
3066 }
3067 
3068 struct fw_chunk {
3069 	__le32 address;
3070 	__le32 length;
3071 };
3072 
3073 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3074 {
3075 	int rc = 0, i, addr;
3076 	u8 cr = 0;
3077 	__le16 *image;
3078 
3079 	image = (__le16 *) data;
3080 
3081 	IPW_DEBUG_TRACE(">>\n");
3082 
3083 	rc = ipw_stop_master(priv);
3084 
3085 	if (rc < 0)
3086 		return rc;
3087 
3088 	for (addr = IPW_SHARED_LOWER_BOUND;
3089 	     addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3090 		ipw_write32(priv, addr, 0);
3091 	}
3092 
3093 	/* no ucode (yet) */
3094 	memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3095 	/* destroy DMA queues */
3096 	/* reset sequence */
3097 
3098 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3099 	ipw_arc_release(priv);
3100 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3101 	mdelay(1);
3102 
3103 	/* reset PHY */
3104 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3105 	mdelay(1);
3106 
3107 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3108 	mdelay(1);
3109 
3110 	/* enable ucode store */
3111 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3112 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3113 	mdelay(1);
3114 
3115 	/* write ucode */
3116 	/*
3117 	 * @bug
3118 	 * Do NOT set indirect address register once and then
3119 	 * store data to indirect data register in the loop.
3120 	 * It seems very reasonable, but in this case DINO do not
3121 	 * accept ucode. It is essential to set address each time.
3122 	 */
3123 	/* load new ipw uCode */
3124 	for (i = 0; i < len / 2; i++)
3125 		ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3126 				le16_to_cpu(image[i]));
3127 
3128 	/* enable DINO */
3129 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3130 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3131 
3132 	/* this is where the igx / win driver deveates from the VAP driver. */
3133 
3134 	/* wait for alive response */
3135 	for (i = 0; i < 100; i++) {
3136 		/* poll for incoming data */
3137 		cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3138 		if (cr & DINO_RXFIFO_DATA)
3139 			break;
3140 		mdelay(1);
3141 	}
3142 
3143 	if (cr & DINO_RXFIFO_DATA) {
3144 		/* alive_command_responce size is NOT multiple of 4 */
3145 		__le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3146 
3147 		for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3148 			response_buffer[i] =
3149 			    cpu_to_le32(ipw_read_reg32(priv,
3150 						       IPW_BASEBAND_RX_FIFO_READ));
3151 		memcpy(&priv->dino_alive, response_buffer,
3152 		       sizeof(priv->dino_alive));
3153 		if (priv->dino_alive.alive_command == 1
3154 		    && priv->dino_alive.ucode_valid == 1) {
3155 			rc = 0;
3156 			IPW_DEBUG_INFO
3157 			    ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3158 			     "of %02d/%02d/%02d %02d:%02d\n",
3159 			     priv->dino_alive.software_revision,
3160 			     priv->dino_alive.software_revision,
3161 			     priv->dino_alive.device_identifier,
3162 			     priv->dino_alive.device_identifier,
3163 			     priv->dino_alive.time_stamp[0],
3164 			     priv->dino_alive.time_stamp[1],
3165 			     priv->dino_alive.time_stamp[2],
3166 			     priv->dino_alive.time_stamp[3],
3167 			     priv->dino_alive.time_stamp[4]);
3168 		} else {
3169 			IPW_DEBUG_INFO("Microcode is not alive\n");
3170 			rc = -EINVAL;
3171 		}
3172 	} else {
3173 		IPW_DEBUG_INFO("No alive response from DINO\n");
3174 		rc = -ETIME;
3175 	}
3176 
3177 	/* disable DINO, otherwise for some reason
3178 	   firmware have problem getting alive resp. */
3179 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3180 
3181 	return rc;
3182 }
3183 
3184 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3185 {
3186 	int ret = -1;
3187 	int offset = 0;
3188 	struct fw_chunk *chunk;
3189 	int total_nr = 0;
3190 	int i;
3191 	struct dma_pool *pool;
3192 	void **virts;
3193 	dma_addr_t *phys;
3194 
3195 	IPW_DEBUG_TRACE("<< :\n");
3196 
3197 	virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3198 			      GFP_KERNEL);
3199 	if (!virts)
3200 		return -ENOMEM;
3201 
3202 	phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3203 			     GFP_KERNEL);
3204 	if (!phys) {
3205 		kfree(virts);
3206 		return -ENOMEM;
3207 	}
3208 	pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3209 			       0);
3210 	if (!pool) {
3211 		IPW_ERROR("dma_pool_create failed\n");
3212 		kfree(phys);
3213 		kfree(virts);
3214 		return -ENOMEM;
3215 	}
3216 
3217 	/* Start the Dma */
3218 	ret = ipw_fw_dma_enable(priv);
3219 
3220 	/* the DMA is already ready this would be a bug. */
3221 	BUG_ON(priv->sram_desc.last_cb_index > 0);
3222 
3223 	do {
3224 		u32 chunk_len;
3225 		u8 *start;
3226 		int size;
3227 		int nr = 0;
3228 
3229 		chunk = (struct fw_chunk *)(data + offset);
3230 		offset += sizeof(struct fw_chunk);
3231 		chunk_len = le32_to_cpu(chunk->length);
3232 		start = data + offset;
3233 
3234 		nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3235 		for (i = 0; i < nr; i++) {
3236 			virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3237 							 &phys[total_nr]);
3238 			if (!virts[total_nr]) {
3239 				ret = -ENOMEM;
3240 				goto out;
3241 			}
3242 			size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3243 				     CB_MAX_LENGTH);
3244 			memcpy(virts[total_nr], start, size);
3245 			start += size;
3246 			total_nr++;
3247 			/* We don't support fw chunk larger than 64*8K */
3248 			BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3249 		}
3250 
3251 		/* build DMA packet and queue up for sending */
3252 		/* dma to chunk->address, the chunk->length bytes from data +
3253 		 * offeset*/
3254 		/* Dma loading */
3255 		ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3256 					    nr, le32_to_cpu(chunk->address),
3257 					    chunk_len);
3258 		if (ret) {
3259 			IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3260 			goto out;
3261 		}
3262 
3263 		offset += chunk_len;
3264 	} while (offset < len);
3265 
3266 	/* Run the DMA and wait for the answer */
3267 	ret = ipw_fw_dma_kick(priv);
3268 	if (ret) {
3269 		IPW_ERROR("dmaKick Failed\n");
3270 		goto out;
3271 	}
3272 
3273 	ret = ipw_fw_dma_wait(priv);
3274 	if (ret) {
3275 		IPW_ERROR("dmaWaitSync Failed\n");
3276 		goto out;
3277 	}
3278  out:
3279 	for (i = 0; i < total_nr; i++)
3280 		dma_pool_free(pool, virts[i], phys[i]);
3281 
3282 	dma_pool_destroy(pool);
3283 	kfree(phys);
3284 	kfree(virts);
3285 
3286 	return ret;
3287 }
3288 
3289 /* stop nic */
3290 static int ipw_stop_nic(struct ipw_priv *priv)
3291 {
3292 	int rc = 0;
3293 
3294 	/* stop */
3295 	ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3296 
3297 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3298 			  IPW_RESET_REG_MASTER_DISABLED, 500);
3299 	if (rc < 0) {
3300 		IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3301 		return rc;
3302 	}
3303 
3304 	ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3305 
3306 	return rc;
3307 }
3308 
3309 static void ipw_start_nic(struct ipw_priv *priv)
3310 {
3311 	IPW_DEBUG_TRACE(">>\n");
3312 
3313 	/* prvHwStartNic  release ARC */
3314 	ipw_clear_bit(priv, IPW_RESET_REG,
3315 		      IPW_RESET_REG_MASTER_DISABLED |
3316 		      IPW_RESET_REG_STOP_MASTER |
3317 		      CBD_RESET_REG_PRINCETON_RESET);
3318 
3319 	/* enable power management */
3320 	ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3321 		    IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3322 
3323 	IPW_DEBUG_TRACE("<<\n");
3324 }
3325 
3326 static int ipw_init_nic(struct ipw_priv *priv)
3327 {
3328 	int rc;
3329 
3330 	IPW_DEBUG_TRACE(">>\n");
3331 	/* reset */
3332 	/*prvHwInitNic */
3333 	/* set "initialization complete" bit to move adapter to D0 state */
3334 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3335 
3336 	/* low-level PLL activation */
3337 	ipw_write32(priv, IPW_READ_INT_REGISTER,
3338 		    IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3339 
3340 	/* wait for clock stabilization */
3341 	rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3342 			  IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3343 	if (rc < 0)
3344 		IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3345 
3346 	/* assert SW reset */
3347 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3348 
3349 	udelay(10);
3350 
3351 	/* set "initialization complete" bit to move adapter to D0 state */
3352 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3353 
3354 	IPW_DEBUG_TRACE(">>\n");
3355 	return 0;
3356 }
3357 
3358 /* Call this function from process context, it will sleep in request_firmware.
3359  * Probe is an ok place to call this from.
3360  */
3361 static int ipw_reset_nic(struct ipw_priv *priv)
3362 {
3363 	int rc = 0;
3364 	unsigned long flags;
3365 
3366 	IPW_DEBUG_TRACE(">>\n");
3367 
3368 	rc = ipw_init_nic(priv);
3369 
3370 	spin_lock_irqsave(&priv->lock, flags);
3371 	/* Clear the 'host command active' bit... */
3372 	priv->status &= ~STATUS_HCMD_ACTIVE;
3373 	wake_up_interruptible(&priv->wait_command_queue);
3374 	priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3375 	wake_up_interruptible(&priv->wait_state);
3376 	spin_unlock_irqrestore(&priv->lock, flags);
3377 
3378 	IPW_DEBUG_TRACE("<<\n");
3379 	return rc;
3380 }
3381 
3382 
3383 struct ipw_fw {
3384 	__le32 ver;
3385 	__le32 boot_size;
3386 	__le32 ucode_size;
3387 	__le32 fw_size;
3388 	u8 data[];
3389 };
3390 
3391 static int ipw_get_fw(struct ipw_priv *priv,
3392 		      const struct firmware **raw, const char *name)
3393 {
3394 	struct ipw_fw *fw;
3395 	int rc;
3396 
3397 	/* ask firmware_class module to get the boot firmware off disk */
3398 	rc = request_firmware(raw, name, &priv->pci_dev->dev);
3399 	if (rc < 0) {
3400 		IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3401 		return rc;
3402 	}
3403 
3404 	if ((*raw)->size < sizeof(*fw)) {
3405 		IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3406 		return -EINVAL;
3407 	}
3408 
3409 	fw = (void *)(*raw)->data;
3410 
3411 	if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3412 	    le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3413 		IPW_ERROR("%s is too small or corrupt (%zd)\n",
3414 			  name, (*raw)->size);
3415 		return -EINVAL;
3416 	}
3417 
3418 	IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3419 		       name,
3420 		       le32_to_cpu(fw->ver) >> 16,
3421 		       le32_to_cpu(fw->ver) & 0xff,
3422 		       (*raw)->size - sizeof(*fw));
3423 	return 0;
3424 }
3425 
3426 #define IPW_RX_BUF_SIZE (3000)
3427 
3428 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3429 				      struct ipw_rx_queue *rxq)
3430 {
3431 	unsigned long flags;
3432 	int i;
3433 
3434 	spin_lock_irqsave(&rxq->lock, flags);
3435 
3436 	INIT_LIST_HEAD(&rxq->rx_free);
3437 	INIT_LIST_HEAD(&rxq->rx_used);
3438 
3439 	/* Fill the rx_used queue with _all_ of the Rx buffers */
3440 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3441 		/* In the reset function, these buffers may have been allocated
3442 		 * to an SKB, so we need to unmap and free potential storage */
3443 		if (rxq->pool[i].skb != NULL) {
3444 			dma_unmap_single(&priv->pci_dev->dev,
3445 					 rxq->pool[i].dma_addr,
3446 					 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
3447 			dev_kfree_skb(rxq->pool[i].skb);
3448 			rxq->pool[i].skb = NULL;
3449 		}
3450 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3451 	}
3452 
3453 	/* Set us so that we have processed and used all buffers, but have
3454 	 * not restocked the Rx queue with fresh buffers */
3455 	rxq->read = rxq->write = 0;
3456 	rxq->free_count = 0;
3457 	spin_unlock_irqrestore(&rxq->lock, flags);
3458 }
3459 
3460 #ifdef CONFIG_PM
3461 static int fw_loaded = 0;
3462 static const struct firmware *raw = NULL;
3463 
3464 static void free_firmware(void)
3465 {
3466 	if (fw_loaded) {
3467 		release_firmware(raw);
3468 		raw = NULL;
3469 		fw_loaded = 0;
3470 	}
3471 }
3472 #else
3473 #define free_firmware() do {} while (0)
3474 #endif
3475 
3476 static int ipw_load(struct ipw_priv *priv)
3477 {
3478 #ifndef CONFIG_PM
3479 	const struct firmware *raw = NULL;
3480 #endif
3481 	struct ipw_fw *fw;
3482 	u8 *boot_img, *ucode_img, *fw_img;
3483 	u8 *name = NULL;
3484 	int rc = 0, retries = 3;
3485 
3486 	switch (priv->ieee->iw_mode) {
3487 	case IW_MODE_ADHOC:
3488 		name = "ipw2200-ibss.fw";
3489 		break;
3490 #ifdef CONFIG_IPW2200_MONITOR
3491 	case IW_MODE_MONITOR:
3492 		name = "ipw2200-sniffer.fw";
3493 		break;
3494 #endif
3495 	case IW_MODE_INFRA:
3496 		name = "ipw2200-bss.fw";
3497 		break;
3498 	}
3499 
3500 	if (!name) {
3501 		rc = -EINVAL;
3502 		goto error;
3503 	}
3504 
3505 #ifdef CONFIG_PM
3506 	if (!fw_loaded) {
3507 #endif
3508 		rc = ipw_get_fw(priv, &raw, name);
3509 		if (rc < 0)
3510 			goto error;
3511 #ifdef CONFIG_PM
3512 	}
3513 #endif
3514 
3515 	fw = (void *)raw->data;
3516 	boot_img = &fw->data[0];
3517 	ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3518 	fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3519 			   le32_to_cpu(fw->ucode_size)];
3520 
3521 	if (!priv->rxq)
3522 		priv->rxq = ipw_rx_queue_alloc(priv);
3523 	else
3524 		ipw_rx_queue_reset(priv, priv->rxq);
3525 	if (!priv->rxq) {
3526 		IPW_ERROR("Unable to initialize Rx queue\n");
3527 		rc = -ENOMEM;
3528 		goto error;
3529 	}
3530 
3531       retry:
3532 	/* Ensure interrupts are disabled */
3533 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3534 	priv->status &= ~STATUS_INT_ENABLED;
3535 
3536 	/* ack pending interrupts */
3537 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3538 
3539 	ipw_stop_nic(priv);
3540 
3541 	rc = ipw_reset_nic(priv);
3542 	if (rc < 0) {
3543 		IPW_ERROR("Unable to reset NIC\n");
3544 		goto error;
3545 	}
3546 
3547 	ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3548 			IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3549 
3550 	/* DMA the initial boot firmware into the device */
3551 	rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3552 	if (rc < 0) {
3553 		IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3554 		goto error;
3555 	}
3556 
3557 	/* kick start the device */
3558 	ipw_start_nic(priv);
3559 
3560 	/* wait for the device to finish its initial startup sequence */
3561 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3562 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3563 	if (rc < 0) {
3564 		IPW_ERROR("device failed to boot initial fw image\n");
3565 		goto error;
3566 	}
3567 	IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3568 
3569 	/* ack fw init done interrupt */
3570 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3571 
3572 	/* DMA the ucode into the device */
3573 	rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3574 	if (rc < 0) {
3575 		IPW_ERROR("Unable to load ucode: %d\n", rc);
3576 		goto error;
3577 	}
3578 
3579 	/* stop nic */
3580 	ipw_stop_nic(priv);
3581 
3582 	/* DMA bss firmware into the device */
3583 	rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3584 	if (rc < 0) {
3585 		IPW_ERROR("Unable to load firmware: %d\n", rc);
3586 		goto error;
3587 	}
3588 #ifdef CONFIG_PM
3589 	fw_loaded = 1;
3590 #endif
3591 
3592 	ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3593 
3594 	rc = ipw_queue_reset(priv);
3595 	if (rc < 0) {
3596 		IPW_ERROR("Unable to initialize queues\n");
3597 		goto error;
3598 	}
3599 
3600 	/* Ensure interrupts are disabled */
3601 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3602 	/* ack pending interrupts */
3603 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3604 
3605 	/* kick start the device */
3606 	ipw_start_nic(priv);
3607 
3608 	if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3609 		if (retries > 0) {
3610 			IPW_WARNING("Parity error.  Retrying init.\n");
3611 			retries--;
3612 			goto retry;
3613 		}
3614 
3615 		IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3616 		rc = -EIO;
3617 		goto error;
3618 	}
3619 
3620 	/* wait for the device */
3621 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3622 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3623 	if (rc < 0) {
3624 		IPW_ERROR("device failed to start within 500ms\n");
3625 		goto error;
3626 	}
3627 	IPW_DEBUG_INFO("device response after %dms\n", rc);
3628 
3629 	/* ack fw init done interrupt */
3630 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3631 
3632 	/* read eeprom data */
3633 	priv->eeprom_delay = 1;
3634 	ipw_read_eeprom(priv);
3635 	/* initialize the eeprom region of sram */
3636 	ipw_eeprom_init_sram(priv);
3637 
3638 	/* enable interrupts */
3639 	ipw_enable_interrupts(priv);
3640 
3641 	/* Ensure our queue has valid packets */
3642 	ipw_rx_queue_replenish(priv);
3643 
3644 	ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3645 
3646 	/* ack pending interrupts */
3647 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3648 
3649 #ifndef CONFIG_PM
3650 	release_firmware(raw);
3651 #endif
3652 	return 0;
3653 
3654       error:
3655 	if (priv->rxq) {
3656 		ipw_rx_queue_free(priv, priv->rxq);
3657 		priv->rxq = NULL;
3658 	}
3659 	ipw_tx_queue_free(priv);
3660 	release_firmware(raw);
3661 #ifdef CONFIG_PM
3662 	fw_loaded = 0;
3663 	raw = NULL;
3664 #endif
3665 
3666 	return rc;
3667 }
3668 
3669 /*
3670  * DMA services
3671  *
3672  * Theory of operation
3673  *
3674  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3675  * 2 empty entries always kept in the buffer to protect from overflow.
3676  *
3677  * For Tx queue, there are low mark and high mark limits. If, after queuing
3678  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3679  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3680  * Tx queue resumed.
3681  *
3682  * The IPW operates with six queues, one receive queue in the device's
3683  * sram, one transmit queue for sending commands to the device firmware,
3684  * and four transmit queues for data.
3685  *
3686  * The four transmit queues allow for performing quality of service (qos)
3687  * transmissions as per the 802.11 protocol.  Currently Linux does not
3688  * provide a mechanism to the user for utilizing prioritized queues, so
3689  * we only utilize the first data transmit queue (queue1).
3690  */
3691 
3692 /*
3693  * Driver allocates buffers of this size for Rx
3694  */
3695 
3696 /*
3697  * ipw_rx_queue_space - Return number of free slots available in queue.
3698  */
3699 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3700 {
3701 	int s = q->read - q->write;
3702 	if (s <= 0)
3703 		s += RX_QUEUE_SIZE;
3704 	/* keep some buffer to not confuse full and empty queue */
3705 	s -= 2;
3706 	if (s < 0)
3707 		s = 0;
3708 	return s;
3709 }
3710 
3711 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3712 {
3713 	int s = q->last_used - q->first_empty;
3714 	if (s <= 0)
3715 		s += q->n_bd;
3716 	s -= 2;			/* keep some reserve to not confuse empty and full situations */
3717 	if (s < 0)
3718 		s = 0;
3719 	return s;
3720 }
3721 
3722 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3723 {
3724 	return (++index == n_bd) ? 0 : index;
3725 }
3726 
3727 /*
3728  * Initialize common DMA queue structure
3729  *
3730  * @param q                queue to init
3731  * @param count            Number of BD's to allocate. Should be power of 2
3732  * @param read_register    Address for 'read' register
3733  *                         (not offset within BAR, full address)
3734  * @param write_register   Address for 'write' register
3735  *                         (not offset within BAR, full address)
3736  * @param base_register    Address for 'base' register
3737  *                         (not offset within BAR, full address)
3738  * @param size             Address for 'size' register
3739  *                         (not offset within BAR, full address)
3740  */
3741 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3742 			   int count, u32 read, u32 write, u32 base, u32 size)
3743 {
3744 	q->n_bd = count;
3745 
3746 	q->low_mark = q->n_bd / 4;
3747 	if (q->low_mark < 4)
3748 		q->low_mark = 4;
3749 
3750 	q->high_mark = q->n_bd / 8;
3751 	if (q->high_mark < 2)
3752 		q->high_mark = 2;
3753 
3754 	q->first_empty = q->last_used = 0;
3755 	q->reg_r = read;
3756 	q->reg_w = write;
3757 
3758 	ipw_write32(priv, base, q->dma_addr);
3759 	ipw_write32(priv, size, count);
3760 	ipw_write32(priv, read, 0);
3761 	ipw_write32(priv, write, 0);
3762 
3763 	_ipw_read32(priv, 0x90);
3764 }
3765 
3766 static int ipw_queue_tx_init(struct ipw_priv *priv,
3767 			     struct clx2_tx_queue *q,
3768 			     int count, u32 read, u32 write, u32 base, u32 size)
3769 {
3770 	struct pci_dev *dev = priv->pci_dev;
3771 
3772 	q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3773 	if (!q->txb)
3774 		return -ENOMEM;
3775 
3776 	q->bd =
3777 	    dma_alloc_coherent(&dev->dev, sizeof(q->bd[0]) * count,
3778 			       &q->q.dma_addr, GFP_KERNEL);
3779 	if (!q->bd) {
3780 		IPW_ERROR("dma_alloc_coherent(%zd) failed\n",
3781 			  sizeof(q->bd[0]) * count);
3782 		kfree(q->txb);
3783 		q->txb = NULL;
3784 		return -ENOMEM;
3785 	}
3786 
3787 	ipw_queue_init(priv, &q->q, count, read, write, base, size);
3788 	return 0;
3789 }
3790 
3791 /*
3792  * Free one TFD, those at index [txq->q.last_used].
3793  * Do NOT advance any indexes
3794  *
3795  * @param dev
3796  * @param txq
3797  */
3798 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3799 				  struct clx2_tx_queue *txq)
3800 {
3801 	struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3802 	struct pci_dev *dev = priv->pci_dev;
3803 	int i;
3804 
3805 	/* classify bd */
3806 	if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3807 		/* nothing to cleanup after for host commands */
3808 		return;
3809 
3810 	/* sanity check */
3811 	if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3812 		IPW_ERROR("Too many chunks: %i\n",
3813 			  le32_to_cpu(bd->u.data.num_chunks));
3814 		/* @todo issue fatal error, it is quite serious situation */
3815 		return;
3816 	}
3817 
3818 	/* unmap chunks if any */
3819 	for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3820 		dma_unmap_single(&dev->dev,
3821 				 le32_to_cpu(bd->u.data.chunk_ptr[i]),
3822 				 le16_to_cpu(bd->u.data.chunk_len[i]),
3823 				 DMA_TO_DEVICE);
3824 		if (txq->txb[txq->q.last_used]) {
3825 			libipw_txb_free(txq->txb[txq->q.last_used]);
3826 			txq->txb[txq->q.last_used] = NULL;
3827 		}
3828 	}
3829 }
3830 
3831 /*
3832  * Deallocate DMA queue.
3833  *
3834  * Empty queue by removing and destroying all BD's.
3835  * Free all buffers.
3836  *
3837  * @param dev
3838  * @param q
3839  */
3840 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3841 {
3842 	struct clx2_queue *q = &txq->q;
3843 	struct pci_dev *dev = priv->pci_dev;
3844 
3845 	if (q->n_bd == 0)
3846 		return;
3847 
3848 	/* first, empty all BD's */
3849 	for (; q->first_empty != q->last_used;
3850 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3851 		ipw_queue_tx_free_tfd(priv, txq);
3852 	}
3853 
3854 	/* free buffers belonging to queue itself */
3855 	dma_free_coherent(&dev->dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3856 			  q->dma_addr);
3857 	kfree(txq->txb);
3858 
3859 	/* 0 fill whole structure */
3860 	memset(txq, 0, sizeof(*txq));
3861 }
3862 
3863 /*
3864  * Destroy all DMA queues and structures
3865  *
3866  * @param priv
3867  */
3868 static void ipw_tx_queue_free(struct ipw_priv *priv)
3869 {
3870 	/* Tx CMD queue */
3871 	ipw_queue_tx_free(priv, &priv->txq_cmd);
3872 
3873 	/* Tx queues */
3874 	ipw_queue_tx_free(priv, &priv->txq[0]);
3875 	ipw_queue_tx_free(priv, &priv->txq[1]);
3876 	ipw_queue_tx_free(priv, &priv->txq[2]);
3877 	ipw_queue_tx_free(priv, &priv->txq[3]);
3878 }
3879 
3880 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3881 {
3882 	/* First 3 bytes are manufacturer */
3883 	bssid[0] = priv->mac_addr[0];
3884 	bssid[1] = priv->mac_addr[1];
3885 	bssid[2] = priv->mac_addr[2];
3886 
3887 	/* Last bytes are random */
3888 	get_random_bytes(&bssid[3], ETH_ALEN - 3);
3889 
3890 	bssid[0] &= 0xfe;	/* clear multicast bit */
3891 	bssid[0] |= 0x02;	/* set local assignment bit (IEEE802) */
3892 }
3893 
3894 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3895 {
3896 	struct ipw_station_entry entry;
3897 	int i;
3898 
3899 	for (i = 0; i < priv->num_stations; i++) {
3900 		if (ether_addr_equal(priv->stations[i], bssid)) {
3901 			/* Another node is active in network */
3902 			priv->missed_adhoc_beacons = 0;
3903 			if (!(priv->config & CFG_STATIC_CHANNEL))
3904 				/* when other nodes drop out, we drop out */
3905 				priv->config &= ~CFG_ADHOC_PERSIST;
3906 
3907 			return i;
3908 		}
3909 	}
3910 
3911 	if (i == MAX_STATIONS)
3912 		return IPW_INVALID_STATION;
3913 
3914 	IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3915 
3916 	entry.reserved = 0;
3917 	entry.support_mode = 0;
3918 	memcpy(entry.mac_addr, bssid, ETH_ALEN);
3919 	memcpy(priv->stations[i], bssid, ETH_ALEN);
3920 	ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3921 			 &entry, sizeof(entry));
3922 	priv->num_stations++;
3923 
3924 	return i;
3925 }
3926 
3927 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3928 {
3929 	int i;
3930 
3931 	for (i = 0; i < priv->num_stations; i++)
3932 		if (ether_addr_equal(priv->stations[i], bssid))
3933 			return i;
3934 
3935 	return IPW_INVALID_STATION;
3936 }
3937 
3938 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3939 {
3940 	int err;
3941 
3942 	if (priv->status & STATUS_ASSOCIATING) {
3943 		IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3944 		schedule_work(&priv->disassociate);
3945 		return;
3946 	}
3947 
3948 	if (!(priv->status & STATUS_ASSOCIATED)) {
3949 		IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3950 		return;
3951 	}
3952 
3953 	IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3954 			"on channel %d.\n",
3955 			priv->assoc_request.bssid,
3956 			priv->assoc_request.channel);
3957 
3958 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3959 	priv->status |= STATUS_DISASSOCIATING;
3960 
3961 	if (quiet)
3962 		priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3963 	else
3964 		priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3965 
3966 	err = ipw_send_associate(priv, &priv->assoc_request);
3967 	if (err) {
3968 		IPW_DEBUG_HC("Attempt to send [dis]associate command "
3969 			     "failed.\n");
3970 		return;
3971 	}
3972 
3973 }
3974 
3975 static int ipw_disassociate(void *data)
3976 {
3977 	struct ipw_priv *priv = data;
3978 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3979 		return 0;
3980 	ipw_send_disassociate(data, 0);
3981 	netif_carrier_off(priv->net_dev);
3982 	return 1;
3983 }
3984 
3985 static void ipw_bg_disassociate(struct work_struct *work)
3986 {
3987 	struct ipw_priv *priv =
3988 		container_of(work, struct ipw_priv, disassociate);
3989 	mutex_lock(&priv->mutex);
3990 	ipw_disassociate(priv);
3991 	mutex_unlock(&priv->mutex);
3992 }
3993 
3994 static void ipw_system_config(struct work_struct *work)
3995 {
3996 	struct ipw_priv *priv =
3997 		container_of(work, struct ipw_priv, system_config);
3998 
3999 #ifdef CONFIG_IPW2200_PROMISCUOUS
4000 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4001 		priv->sys_config.accept_all_data_frames = 1;
4002 		priv->sys_config.accept_non_directed_frames = 1;
4003 		priv->sys_config.accept_all_mgmt_bcpr = 1;
4004 		priv->sys_config.accept_all_mgmt_frames = 1;
4005 	}
4006 #endif
4007 
4008 	ipw_send_system_config(priv);
4009 }
4010 
4011 struct ipw_status_code {
4012 	u16 status;
4013 	const char *reason;
4014 };
4015 
4016 static const struct ipw_status_code ipw_status_codes[] = {
4017 	{0x00, "Successful"},
4018 	{0x01, "Unspecified failure"},
4019 	{0x0A, "Cannot support all requested capabilities in the "
4020 	 "Capability information field"},
4021 	{0x0B, "Reassociation denied due to inability to confirm that "
4022 	 "association exists"},
4023 	{0x0C, "Association denied due to reason outside the scope of this "
4024 	 "standard"},
4025 	{0x0D,
4026 	 "Responding station does not support the specified authentication "
4027 	 "algorithm"},
4028 	{0x0E,
4029 	 "Received an Authentication frame with authentication sequence "
4030 	 "transaction sequence number out of expected sequence"},
4031 	{0x0F, "Authentication rejected because of challenge failure"},
4032 	{0x10, "Authentication rejected due to timeout waiting for next "
4033 	 "frame in sequence"},
4034 	{0x11, "Association denied because AP is unable to handle additional "
4035 	 "associated stations"},
4036 	{0x12,
4037 	 "Association denied due to requesting station not supporting all "
4038 	 "of the datarates in the BSSBasicServiceSet Parameter"},
4039 	{0x13,
4040 	 "Association denied due to requesting station not supporting "
4041 	 "short preamble operation"},
4042 	{0x14,
4043 	 "Association denied due to requesting station not supporting "
4044 	 "PBCC encoding"},
4045 	{0x15,
4046 	 "Association denied due to requesting station not supporting "
4047 	 "channel agility"},
4048 	{0x19,
4049 	 "Association denied due to requesting station not supporting "
4050 	 "short slot operation"},
4051 	{0x1A,
4052 	 "Association denied due to requesting station not supporting "
4053 	 "DSSS-OFDM operation"},
4054 	{0x28, "Invalid Information Element"},
4055 	{0x29, "Group Cipher is not valid"},
4056 	{0x2A, "Pairwise Cipher is not valid"},
4057 	{0x2B, "AKMP is not valid"},
4058 	{0x2C, "Unsupported RSN IE version"},
4059 	{0x2D, "Invalid RSN IE Capabilities"},
4060 	{0x2E, "Cipher suite is rejected per security policy"},
4061 };
4062 
4063 static const char *ipw_get_status_code(u16 status)
4064 {
4065 	int i;
4066 	for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4067 		if (ipw_status_codes[i].status == (status & 0xff))
4068 			return ipw_status_codes[i].reason;
4069 	return "Unknown status value.";
4070 }
4071 
4072 static inline void average_init(struct average *avg)
4073 {
4074 	memset(avg, 0, sizeof(*avg));
4075 }
4076 
4077 #define DEPTH_RSSI 8
4078 #define DEPTH_NOISE 16
4079 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4080 {
4081 	return ((depth-1)*prev_avg +  val)/depth;
4082 }
4083 
4084 static void average_add(struct average *avg, s16 val)
4085 {
4086 	avg->sum -= avg->entries[avg->pos];
4087 	avg->sum += val;
4088 	avg->entries[avg->pos++] = val;
4089 	if (unlikely(avg->pos == AVG_ENTRIES)) {
4090 		avg->init = 1;
4091 		avg->pos = 0;
4092 	}
4093 }
4094 
4095 static s16 average_value(struct average *avg)
4096 {
4097 	if (!unlikely(avg->init)) {
4098 		if (avg->pos)
4099 			return avg->sum / avg->pos;
4100 		return 0;
4101 	}
4102 
4103 	return avg->sum / AVG_ENTRIES;
4104 }
4105 
4106 static void ipw_reset_stats(struct ipw_priv *priv)
4107 {
4108 	u32 len = sizeof(u32);
4109 
4110 	priv->quality = 0;
4111 
4112 	average_init(&priv->average_missed_beacons);
4113 	priv->exp_avg_rssi = -60;
4114 	priv->exp_avg_noise = -85 + 0x100;
4115 
4116 	priv->last_rate = 0;
4117 	priv->last_missed_beacons = 0;
4118 	priv->last_rx_packets = 0;
4119 	priv->last_tx_packets = 0;
4120 	priv->last_tx_failures = 0;
4121 
4122 	/* Firmware managed, reset only when NIC is restarted, so we have to
4123 	 * normalize on the current value */
4124 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4125 			&priv->last_rx_err, &len);
4126 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4127 			&priv->last_tx_failures, &len);
4128 
4129 	/* Driver managed, reset with each association */
4130 	priv->missed_adhoc_beacons = 0;
4131 	priv->missed_beacons = 0;
4132 	priv->tx_packets = 0;
4133 	priv->rx_packets = 0;
4134 
4135 }
4136 
4137 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4138 {
4139 	u32 i = 0x80000000;
4140 	u32 mask = priv->rates_mask;
4141 	/* If currently associated in B mode, restrict the maximum
4142 	 * rate match to B rates */
4143 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4144 		mask &= LIBIPW_CCK_RATES_MASK;
4145 
4146 	/* TODO: Verify that the rate is supported by the current rates
4147 	 * list. */
4148 
4149 	while (i && !(mask & i))
4150 		i >>= 1;
4151 	switch (i) {
4152 	case LIBIPW_CCK_RATE_1MB_MASK:
4153 		return 1000000;
4154 	case LIBIPW_CCK_RATE_2MB_MASK:
4155 		return 2000000;
4156 	case LIBIPW_CCK_RATE_5MB_MASK:
4157 		return 5500000;
4158 	case LIBIPW_OFDM_RATE_6MB_MASK:
4159 		return 6000000;
4160 	case LIBIPW_OFDM_RATE_9MB_MASK:
4161 		return 9000000;
4162 	case LIBIPW_CCK_RATE_11MB_MASK:
4163 		return 11000000;
4164 	case LIBIPW_OFDM_RATE_12MB_MASK:
4165 		return 12000000;
4166 	case LIBIPW_OFDM_RATE_18MB_MASK:
4167 		return 18000000;
4168 	case LIBIPW_OFDM_RATE_24MB_MASK:
4169 		return 24000000;
4170 	case LIBIPW_OFDM_RATE_36MB_MASK:
4171 		return 36000000;
4172 	case LIBIPW_OFDM_RATE_48MB_MASK:
4173 		return 48000000;
4174 	case LIBIPW_OFDM_RATE_54MB_MASK:
4175 		return 54000000;
4176 	}
4177 
4178 	if (priv->ieee->mode == IEEE_B)
4179 		return 11000000;
4180 	else
4181 		return 54000000;
4182 }
4183 
4184 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4185 {
4186 	u32 rate, len = sizeof(rate);
4187 	int err;
4188 
4189 	if (!(priv->status & STATUS_ASSOCIATED))
4190 		return 0;
4191 
4192 	if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4193 		err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4194 				      &len);
4195 		if (err) {
4196 			IPW_DEBUG_INFO("failed querying ordinals.\n");
4197 			return 0;
4198 		}
4199 	} else
4200 		return ipw_get_max_rate(priv);
4201 
4202 	switch (rate) {
4203 	case IPW_TX_RATE_1MB:
4204 		return 1000000;
4205 	case IPW_TX_RATE_2MB:
4206 		return 2000000;
4207 	case IPW_TX_RATE_5MB:
4208 		return 5500000;
4209 	case IPW_TX_RATE_6MB:
4210 		return 6000000;
4211 	case IPW_TX_RATE_9MB:
4212 		return 9000000;
4213 	case IPW_TX_RATE_11MB:
4214 		return 11000000;
4215 	case IPW_TX_RATE_12MB:
4216 		return 12000000;
4217 	case IPW_TX_RATE_18MB:
4218 		return 18000000;
4219 	case IPW_TX_RATE_24MB:
4220 		return 24000000;
4221 	case IPW_TX_RATE_36MB:
4222 		return 36000000;
4223 	case IPW_TX_RATE_48MB:
4224 		return 48000000;
4225 	case IPW_TX_RATE_54MB:
4226 		return 54000000;
4227 	}
4228 
4229 	return 0;
4230 }
4231 
4232 #define IPW_STATS_INTERVAL (2 * HZ)
4233 static void ipw_gather_stats(struct ipw_priv *priv)
4234 {
4235 	u32 rx_err, rx_err_delta, rx_packets_delta;
4236 	u32 tx_failures, tx_failures_delta, tx_packets_delta;
4237 	u32 missed_beacons_percent, missed_beacons_delta;
4238 	u32 quality = 0;
4239 	u32 len = sizeof(u32);
4240 	s16 rssi;
4241 	u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4242 	    rate_quality;
4243 	u32 max_rate;
4244 
4245 	if (!(priv->status & STATUS_ASSOCIATED)) {
4246 		priv->quality = 0;
4247 		return;
4248 	}
4249 
4250 	/* Update the statistics */
4251 	ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4252 			&priv->missed_beacons, &len);
4253 	missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4254 	priv->last_missed_beacons = priv->missed_beacons;
4255 	if (priv->assoc_request.beacon_interval) {
4256 		missed_beacons_percent = missed_beacons_delta *
4257 		    (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4258 		    (IPW_STATS_INTERVAL * 10);
4259 	} else {
4260 		missed_beacons_percent = 0;
4261 	}
4262 	average_add(&priv->average_missed_beacons, missed_beacons_percent);
4263 
4264 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4265 	rx_err_delta = rx_err - priv->last_rx_err;
4266 	priv->last_rx_err = rx_err;
4267 
4268 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4269 	tx_failures_delta = tx_failures - priv->last_tx_failures;
4270 	priv->last_tx_failures = tx_failures;
4271 
4272 	rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4273 	priv->last_rx_packets = priv->rx_packets;
4274 
4275 	tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4276 	priv->last_tx_packets = priv->tx_packets;
4277 
4278 	/* Calculate quality based on the following:
4279 	 *
4280 	 * Missed beacon: 100% = 0, 0% = 70% missed
4281 	 * Rate: 60% = 1Mbs, 100% = Max
4282 	 * Rx and Tx errors represent a straight % of total Rx/Tx
4283 	 * RSSI: 100% = > -50,  0% = < -80
4284 	 * Rx errors: 100% = 0, 0% = 50% missed
4285 	 *
4286 	 * The lowest computed quality is used.
4287 	 *
4288 	 */
4289 #define BEACON_THRESHOLD 5
4290 	beacon_quality = 100 - missed_beacons_percent;
4291 	if (beacon_quality < BEACON_THRESHOLD)
4292 		beacon_quality = 0;
4293 	else
4294 		beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4295 		    (100 - BEACON_THRESHOLD);
4296 	IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4297 			beacon_quality, missed_beacons_percent);
4298 
4299 	priv->last_rate = ipw_get_current_rate(priv);
4300 	max_rate = ipw_get_max_rate(priv);
4301 	rate_quality = priv->last_rate * 40 / max_rate + 60;
4302 	IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4303 			rate_quality, priv->last_rate / 1000000);
4304 
4305 	if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4306 		rx_quality = 100 - (rx_err_delta * 100) /
4307 		    (rx_packets_delta + rx_err_delta);
4308 	else
4309 		rx_quality = 100;
4310 	IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4311 			rx_quality, rx_err_delta, rx_packets_delta);
4312 
4313 	if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4314 		tx_quality = 100 - (tx_failures_delta * 100) /
4315 		    (tx_packets_delta + tx_failures_delta);
4316 	else
4317 		tx_quality = 100;
4318 	IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4319 			tx_quality, tx_failures_delta, tx_packets_delta);
4320 
4321 	rssi = priv->exp_avg_rssi;
4322 	signal_quality =
4323 	    (100 *
4324 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4325 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4326 	     (priv->ieee->perfect_rssi - rssi) *
4327 	     (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4328 	      62 * (priv->ieee->perfect_rssi - rssi))) /
4329 	    ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4330 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4331 	if (signal_quality > 100)
4332 		signal_quality = 100;
4333 	else if (signal_quality < 1)
4334 		signal_quality = 0;
4335 
4336 	IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4337 			signal_quality, rssi);
4338 
4339 	quality = min(rx_quality, signal_quality);
4340 	quality = min(tx_quality, quality);
4341 	quality = min(rate_quality, quality);
4342 	quality = min(beacon_quality, quality);
4343 	if (quality == beacon_quality)
4344 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4345 				quality);
4346 	if (quality == rate_quality)
4347 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4348 				quality);
4349 	if (quality == tx_quality)
4350 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4351 				quality);
4352 	if (quality == rx_quality)
4353 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4354 				quality);
4355 	if (quality == signal_quality)
4356 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4357 				quality);
4358 
4359 	priv->quality = quality;
4360 
4361 	schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4362 }
4363 
4364 static void ipw_bg_gather_stats(struct work_struct *work)
4365 {
4366 	struct ipw_priv *priv =
4367 		container_of(work, struct ipw_priv, gather_stats.work);
4368 	mutex_lock(&priv->mutex);
4369 	ipw_gather_stats(priv);
4370 	mutex_unlock(&priv->mutex);
4371 }
4372 
4373 /* Missed beacon behavior:
4374  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4375  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4376  * Above disassociate threshold, give up and stop scanning.
4377  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4378 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4379 					    int missed_count)
4380 {
4381 	priv->notif_missed_beacons = missed_count;
4382 
4383 	if (missed_count > priv->disassociate_threshold &&
4384 	    priv->status & STATUS_ASSOCIATED) {
4385 		/* If associated and we've hit the missed
4386 		 * beacon threshold, disassociate, turn
4387 		 * off roaming, and abort any active scans */
4388 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4389 			  IPW_DL_STATE | IPW_DL_ASSOC,
4390 			  "Missed beacon: %d - disassociate\n", missed_count);
4391 		priv->status &= ~STATUS_ROAMING;
4392 		if (priv->status & STATUS_SCANNING) {
4393 			IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4394 				  IPW_DL_STATE,
4395 				  "Aborting scan with missed beacon.\n");
4396 			schedule_work(&priv->abort_scan);
4397 		}
4398 
4399 		schedule_work(&priv->disassociate);
4400 		return;
4401 	}
4402 
4403 	if (priv->status & STATUS_ROAMING) {
4404 		/* If we are currently roaming, then just
4405 		 * print a debug statement... */
4406 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4407 			  "Missed beacon: %d - roam in progress\n",
4408 			  missed_count);
4409 		return;
4410 	}
4411 
4412 	if (roaming &&
4413 	    (missed_count > priv->roaming_threshold &&
4414 	     missed_count <= priv->disassociate_threshold)) {
4415 		/* If we are not already roaming, set the ROAM
4416 		 * bit in the status and kick off a scan.
4417 		 * This can happen several times before we reach
4418 		 * disassociate_threshold. */
4419 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4420 			  "Missed beacon: %d - initiate "
4421 			  "roaming\n", missed_count);
4422 		if (!(priv->status & STATUS_ROAMING)) {
4423 			priv->status |= STATUS_ROAMING;
4424 			if (!(priv->status & STATUS_SCANNING))
4425 				schedule_delayed_work(&priv->request_scan, 0);
4426 		}
4427 		return;
4428 	}
4429 
4430 	if (priv->status & STATUS_SCANNING &&
4431 	    missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4432 		/* Stop scan to keep fw from getting
4433 		 * stuck (only if we aren't roaming --
4434 		 * otherwise we'll never scan more than 2 or 3
4435 		 * channels..) */
4436 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4437 			  "Aborting scan with missed beacon.\n");
4438 		schedule_work(&priv->abort_scan);
4439 	}
4440 
4441 	IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4442 }
4443 
4444 static void ipw_scan_event(struct work_struct *work)
4445 {
4446 	union iwreq_data wrqu;
4447 
4448 	struct ipw_priv *priv =
4449 		container_of(work, struct ipw_priv, scan_event.work);
4450 
4451 	wrqu.data.length = 0;
4452 	wrqu.data.flags = 0;
4453 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4454 }
4455 
4456 static void handle_scan_event(struct ipw_priv *priv)
4457 {
4458 	/* Only userspace-requested scan completion events go out immediately */
4459 	if (!priv->user_requested_scan) {
4460 		schedule_delayed_work(&priv->scan_event,
4461 				      round_jiffies_relative(msecs_to_jiffies(4000)));
4462 	} else {
4463 		priv->user_requested_scan = 0;
4464 		mod_delayed_work(system_wq, &priv->scan_event, 0);
4465 	}
4466 }
4467 
4468 /*
4469  * Handle host notification packet.
4470  * Called from interrupt routine
4471  */
4472 static void ipw_rx_notification(struct ipw_priv *priv,
4473 				       struct ipw_rx_notification *notif)
4474 {
4475 	u16 size = le16_to_cpu(notif->size);
4476 
4477 	IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4478 
4479 	switch (notif->subtype) {
4480 	case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4481 			struct notif_association *assoc = &notif->u.assoc;
4482 
4483 			switch (assoc->state) {
4484 			case CMAS_ASSOCIATED:{
4485 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4486 						  IPW_DL_ASSOC,
4487 						  "associated: '%*pE' %pM\n",
4488 						  priv->essid_len, priv->essid,
4489 						  priv->bssid);
4490 
4491 					switch (priv->ieee->iw_mode) {
4492 					case IW_MODE_INFRA:
4493 						memcpy(priv->ieee->bssid,
4494 						       priv->bssid, ETH_ALEN);
4495 						break;
4496 
4497 					case IW_MODE_ADHOC:
4498 						memcpy(priv->ieee->bssid,
4499 						       priv->bssid, ETH_ALEN);
4500 
4501 						/* clear out the station table */
4502 						priv->num_stations = 0;
4503 
4504 						IPW_DEBUG_ASSOC
4505 						    ("queueing adhoc check\n");
4506 						schedule_delayed_work(
4507 							&priv->adhoc_check,
4508 							le16_to_cpu(priv->
4509 							assoc_request.
4510 							beacon_interval));
4511 						break;
4512 					}
4513 
4514 					priv->status &= ~STATUS_ASSOCIATING;
4515 					priv->status |= STATUS_ASSOCIATED;
4516 					schedule_work(&priv->system_config);
4517 
4518 #ifdef CONFIG_IPW2200_QOS
4519 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4520 			 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4521 					if ((priv->status & STATUS_AUTH) &&
4522 					    (IPW_GET_PACKET_STYPE(&notif->u.raw)
4523 					     == IEEE80211_STYPE_ASSOC_RESP)) {
4524 						if ((sizeof
4525 						     (struct
4526 						      libipw_assoc_response)
4527 						     <= size)
4528 						    && (size <= 2314)) {
4529 							struct
4530 							libipw_rx_stats
4531 							    stats = {
4532 								.len = size - 1,
4533 							};
4534 
4535 							IPW_DEBUG_QOS
4536 							    ("QoS Associate "
4537 							     "size %d\n", size);
4538 							libipw_rx_mgt(priv->
4539 									 ieee,
4540 									 (struct
4541 									  libipw_hdr_4addr
4542 									  *)
4543 									 &notif->u.raw, &stats);
4544 						}
4545 					}
4546 #endif
4547 
4548 					schedule_work(&priv->link_up);
4549 
4550 					break;
4551 				}
4552 
4553 			case CMAS_AUTHENTICATED:{
4554 					if (priv->
4555 					    status & (STATUS_ASSOCIATED |
4556 						      STATUS_AUTH)) {
4557 						struct notif_authenticate *auth
4558 						    = &notif->u.auth;
4559 						IPW_DEBUG(IPW_DL_NOTIF |
4560 							  IPW_DL_STATE |
4561 							  IPW_DL_ASSOC,
4562 							  "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4563 							  priv->essid_len,
4564 							  priv->essid,
4565 							  priv->bssid,
4566 							  le16_to_cpu(auth->status),
4567 							  ipw_get_status_code
4568 							  (le16_to_cpu
4569 							   (auth->status)));
4570 
4571 						priv->status &=
4572 						    ~(STATUS_ASSOCIATING |
4573 						      STATUS_AUTH |
4574 						      STATUS_ASSOCIATED);
4575 
4576 						schedule_work(&priv->link_down);
4577 						break;
4578 					}
4579 
4580 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4581 						  IPW_DL_ASSOC,
4582 						  "authenticated: '%*pE' %pM\n",
4583 						  priv->essid_len, priv->essid,
4584 						  priv->bssid);
4585 					break;
4586 				}
4587 
4588 			case CMAS_INIT:{
4589 					if (priv->status & STATUS_AUTH) {
4590 						struct
4591 						    libipw_assoc_response
4592 						*resp;
4593 						resp =
4594 						    (struct
4595 						     libipw_assoc_response
4596 						     *)&notif->u.raw;
4597 						IPW_DEBUG(IPW_DL_NOTIF |
4598 							  IPW_DL_STATE |
4599 							  IPW_DL_ASSOC,
4600 							  "association failed (0x%04X): %s\n",
4601 							  le16_to_cpu(resp->status),
4602 							  ipw_get_status_code
4603 							  (le16_to_cpu
4604 							   (resp->status)));
4605 					}
4606 
4607 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4608 						  IPW_DL_ASSOC,
4609 						  "disassociated: '%*pE' %pM\n",
4610 						  priv->essid_len, priv->essid,
4611 						  priv->bssid);
4612 
4613 					priv->status &=
4614 					    ~(STATUS_DISASSOCIATING |
4615 					      STATUS_ASSOCIATING |
4616 					      STATUS_ASSOCIATED | STATUS_AUTH);
4617 					if (priv->assoc_network
4618 					    && (priv->assoc_network->
4619 						capability &
4620 						WLAN_CAPABILITY_IBSS))
4621 						ipw_remove_current_network
4622 						    (priv);
4623 
4624 					schedule_work(&priv->link_down);
4625 
4626 					break;
4627 				}
4628 
4629 			case CMAS_RX_ASSOC_RESP:
4630 				break;
4631 
4632 			default:
4633 				IPW_ERROR("assoc: unknown (%d)\n",
4634 					  assoc->state);
4635 				break;
4636 			}
4637 
4638 			break;
4639 		}
4640 
4641 	case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4642 			struct notif_authenticate *auth = &notif->u.auth;
4643 			switch (auth->state) {
4644 			case CMAS_AUTHENTICATED:
4645 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4646 					  "authenticated: '%*pE' %pM\n",
4647 					  priv->essid_len, priv->essid,
4648 					  priv->bssid);
4649 				priv->status |= STATUS_AUTH;
4650 				break;
4651 
4652 			case CMAS_INIT:
4653 				if (priv->status & STATUS_AUTH) {
4654 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655 						  IPW_DL_ASSOC,
4656 						  "authentication failed (0x%04X): %s\n",
4657 						  le16_to_cpu(auth->status),
4658 						  ipw_get_status_code(le16_to_cpu
4659 								      (auth->
4660 								       status)));
4661 				}
4662 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663 					  IPW_DL_ASSOC,
4664 					  "deauthenticated: '%*pE' %pM\n",
4665 					  priv->essid_len, priv->essid,
4666 					  priv->bssid);
4667 
4668 				priv->status &= ~(STATUS_ASSOCIATING |
4669 						  STATUS_AUTH |
4670 						  STATUS_ASSOCIATED);
4671 
4672 				schedule_work(&priv->link_down);
4673 				break;
4674 
4675 			case CMAS_TX_AUTH_SEQ_1:
4676 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4677 					  IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4678 				break;
4679 			case CMAS_RX_AUTH_SEQ_2:
4680 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4681 					  IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4682 				break;
4683 			case CMAS_AUTH_SEQ_1_PASS:
4684 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4685 					  IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4686 				break;
4687 			case CMAS_AUTH_SEQ_1_FAIL:
4688 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4689 					  IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4690 				break;
4691 			case CMAS_TX_AUTH_SEQ_3:
4692 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4693 					  IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4694 				break;
4695 			case CMAS_RX_AUTH_SEQ_4:
4696 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4697 					  IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4698 				break;
4699 			case CMAS_AUTH_SEQ_2_PASS:
4700 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4701 					  IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4702 				break;
4703 			case CMAS_AUTH_SEQ_2_FAIL:
4704 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4705 					  IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4706 				break;
4707 			case CMAS_TX_ASSOC:
4708 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4709 					  IPW_DL_ASSOC, "TX_ASSOC\n");
4710 				break;
4711 			case CMAS_RX_ASSOC_RESP:
4712 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4713 					  IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4714 
4715 				break;
4716 			case CMAS_ASSOCIATED:
4717 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718 					  IPW_DL_ASSOC, "ASSOCIATED\n");
4719 				break;
4720 			default:
4721 				IPW_DEBUG_NOTIF("auth: failure - %d\n",
4722 						auth->state);
4723 				break;
4724 			}
4725 			break;
4726 		}
4727 
4728 	case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4729 			struct notif_channel_result *x =
4730 			    &notif->u.channel_result;
4731 
4732 			if (size == sizeof(*x)) {
4733 				IPW_DEBUG_SCAN("Scan result for channel %d\n",
4734 					       x->channel_num);
4735 			} else {
4736 				IPW_DEBUG_SCAN("Scan result of wrong size %d "
4737 					       "(should be %zd)\n",
4738 					       size, sizeof(*x));
4739 			}
4740 			break;
4741 		}
4742 
4743 	case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4744 			struct notif_scan_complete *x = &notif->u.scan_complete;
4745 			if (size == sizeof(*x)) {
4746 				IPW_DEBUG_SCAN
4747 				    ("Scan completed: type %d, %d channels, "
4748 				     "%d status\n", x->scan_type,
4749 				     x->num_channels, x->status);
4750 			} else {
4751 				IPW_ERROR("Scan completed of wrong size %d "
4752 					  "(should be %zd)\n",
4753 					  size, sizeof(*x));
4754 			}
4755 
4756 			priv->status &=
4757 			    ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4758 
4759 			wake_up_interruptible(&priv->wait_state);
4760 			cancel_delayed_work(&priv->scan_check);
4761 
4762 			if (priv->status & STATUS_EXIT_PENDING)
4763 				break;
4764 
4765 			priv->ieee->scans++;
4766 
4767 #ifdef CONFIG_IPW2200_MONITOR
4768 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4769 				priv->status |= STATUS_SCAN_FORCED;
4770 				schedule_delayed_work(&priv->request_scan, 0);
4771 				break;
4772 			}
4773 			priv->status &= ~STATUS_SCAN_FORCED;
4774 #endif				/* CONFIG_IPW2200_MONITOR */
4775 
4776 			/* Do queued direct scans first */
4777 			if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4778 				schedule_delayed_work(&priv->request_direct_scan, 0);
4779 
4780 			if (!(priv->status & (STATUS_ASSOCIATED |
4781 					      STATUS_ASSOCIATING |
4782 					      STATUS_ROAMING |
4783 					      STATUS_DISASSOCIATING)))
4784 				schedule_work(&priv->associate);
4785 			else if (priv->status & STATUS_ROAMING) {
4786 				if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4787 					/* If a scan completed and we are in roam mode, then
4788 					 * the scan that completed was the one requested as a
4789 					 * result of entering roam... so, schedule the
4790 					 * roam work */
4791 					schedule_work(&priv->roam);
4792 				else
4793 					/* Don't schedule if we aborted the scan */
4794 					priv->status &= ~STATUS_ROAMING;
4795 			} else if (priv->status & STATUS_SCAN_PENDING)
4796 				schedule_delayed_work(&priv->request_scan, 0);
4797 			else if (priv->config & CFG_BACKGROUND_SCAN
4798 				 && priv->status & STATUS_ASSOCIATED)
4799 				schedule_delayed_work(&priv->request_scan,
4800 						      round_jiffies_relative(HZ));
4801 
4802 			/* Send an empty event to user space.
4803 			 * We don't send the received data on the event because
4804 			 * it would require us to do complex transcoding, and
4805 			 * we want to minimise the work done in the irq handler
4806 			 * Use a request to extract the data.
4807 			 * Also, we generate this even for any scan, regardless
4808 			 * on how the scan was initiated. User space can just
4809 			 * sync on periodic scan to get fresh data...
4810 			 * Jean II */
4811 			if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4812 				handle_scan_event(priv);
4813 			break;
4814 		}
4815 
4816 	case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4817 			struct notif_frag_length *x = &notif->u.frag_len;
4818 
4819 			if (size == sizeof(*x))
4820 				IPW_ERROR("Frag length: %d\n",
4821 					  le16_to_cpu(x->frag_length));
4822 			else
4823 				IPW_ERROR("Frag length of wrong size %d "
4824 					  "(should be %zd)\n",
4825 					  size, sizeof(*x));
4826 			break;
4827 		}
4828 
4829 	case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4830 			struct notif_link_deterioration *x =
4831 			    &notif->u.link_deterioration;
4832 
4833 			if (size == sizeof(*x)) {
4834 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4835 					"link deterioration: type %d, cnt %d\n",
4836 					x->silence_notification_type,
4837 					x->silence_count);
4838 				memcpy(&priv->last_link_deterioration, x,
4839 				       sizeof(*x));
4840 			} else {
4841 				IPW_ERROR("Link Deterioration of wrong size %d "
4842 					  "(should be %zd)\n",
4843 					  size, sizeof(*x));
4844 			}
4845 			break;
4846 		}
4847 
4848 	case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4849 			IPW_ERROR("Dino config\n");
4850 			if (priv->hcmd
4851 			    && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4852 				IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4853 
4854 			break;
4855 		}
4856 
4857 	case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4858 			struct notif_beacon_state *x = &notif->u.beacon_state;
4859 			if (size != sizeof(*x)) {
4860 				IPW_ERROR
4861 				    ("Beacon state of wrong size %d (should "
4862 				     "be %zd)\n", size, sizeof(*x));
4863 				break;
4864 			}
4865 
4866 			if (le32_to_cpu(x->state) ==
4867 			    HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4868 				ipw_handle_missed_beacon(priv,
4869 							 le32_to_cpu(x->
4870 								     number));
4871 
4872 			break;
4873 		}
4874 
4875 	case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4876 			struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4877 			if (size == sizeof(*x)) {
4878 				IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4879 					  "0x%02x station %d\n",
4880 					  x->key_state, x->security_type,
4881 					  x->station_index);
4882 				break;
4883 			}
4884 
4885 			IPW_ERROR
4886 			    ("TGi Tx Key of wrong size %d (should be %zd)\n",
4887 			     size, sizeof(*x));
4888 			break;
4889 		}
4890 
4891 	case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4892 			struct notif_calibration *x = &notif->u.calibration;
4893 
4894 			if (size == sizeof(*x)) {
4895 				memcpy(&priv->calib, x, sizeof(*x));
4896 				IPW_DEBUG_INFO("TODO: Calibration\n");
4897 				break;
4898 			}
4899 
4900 			IPW_ERROR
4901 			    ("Calibration of wrong size %d (should be %zd)\n",
4902 			     size, sizeof(*x));
4903 			break;
4904 		}
4905 
4906 	case HOST_NOTIFICATION_NOISE_STATS:{
4907 			if (size == sizeof(u32)) {
4908 				priv->exp_avg_noise =
4909 				    exponential_average(priv->exp_avg_noise,
4910 				    (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4911 				    DEPTH_NOISE);
4912 				break;
4913 			}
4914 
4915 			IPW_ERROR
4916 			    ("Noise stat is wrong size %d (should be %zd)\n",
4917 			     size, sizeof(u32));
4918 			break;
4919 		}
4920 
4921 	default:
4922 		IPW_DEBUG_NOTIF("Unknown notification: "
4923 				"subtype=%d,flags=0x%2x,size=%d\n",
4924 				notif->subtype, notif->flags, size);
4925 	}
4926 }
4927 
4928 /*
4929  * Destroys all DMA structures and initialise them again
4930  *
4931  * @param priv
4932  * @return error code
4933  */
4934 static int ipw_queue_reset(struct ipw_priv *priv)
4935 {
4936 	int rc = 0;
4937 	/* @todo customize queue sizes */
4938 	int nTx = 64, nTxCmd = 8;
4939 	ipw_tx_queue_free(priv);
4940 	/* Tx CMD queue */
4941 	rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4942 			       IPW_TX_CMD_QUEUE_READ_INDEX,
4943 			       IPW_TX_CMD_QUEUE_WRITE_INDEX,
4944 			       IPW_TX_CMD_QUEUE_BD_BASE,
4945 			       IPW_TX_CMD_QUEUE_BD_SIZE);
4946 	if (rc) {
4947 		IPW_ERROR("Tx Cmd queue init failed\n");
4948 		goto error;
4949 	}
4950 	/* Tx queue(s) */
4951 	rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4952 			       IPW_TX_QUEUE_0_READ_INDEX,
4953 			       IPW_TX_QUEUE_0_WRITE_INDEX,
4954 			       IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4955 	if (rc) {
4956 		IPW_ERROR("Tx 0 queue init failed\n");
4957 		goto error;
4958 	}
4959 	rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4960 			       IPW_TX_QUEUE_1_READ_INDEX,
4961 			       IPW_TX_QUEUE_1_WRITE_INDEX,
4962 			       IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4963 	if (rc) {
4964 		IPW_ERROR("Tx 1 queue init failed\n");
4965 		goto error;
4966 	}
4967 	rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4968 			       IPW_TX_QUEUE_2_READ_INDEX,
4969 			       IPW_TX_QUEUE_2_WRITE_INDEX,
4970 			       IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4971 	if (rc) {
4972 		IPW_ERROR("Tx 2 queue init failed\n");
4973 		goto error;
4974 	}
4975 	rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4976 			       IPW_TX_QUEUE_3_READ_INDEX,
4977 			       IPW_TX_QUEUE_3_WRITE_INDEX,
4978 			       IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4979 	if (rc) {
4980 		IPW_ERROR("Tx 3 queue init failed\n");
4981 		goto error;
4982 	}
4983 	/* statistics */
4984 	priv->rx_bufs_min = 0;
4985 	priv->rx_pend_max = 0;
4986 	return rc;
4987 
4988       error:
4989 	ipw_tx_queue_free(priv);
4990 	return rc;
4991 }
4992 
4993 /*
4994  * Reclaim Tx queue entries no more used by NIC.
4995  *
4996  * When FW advances 'R' index, all entries between old and
4997  * new 'R' index need to be reclaimed. As result, some free space
4998  * forms. If there is enough free space (> low mark), wake Tx queue.
4999  *
5000  * @note Need to protect against garbage in 'R' index
5001  * @param priv
5002  * @param txq
5003  * @param qindex
5004  * @return Number of used entries remains in the queue
5005  */
5006 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5007 				struct clx2_tx_queue *txq, int qindex)
5008 {
5009 	u32 hw_tail;
5010 	int used;
5011 	struct clx2_queue *q = &txq->q;
5012 
5013 	hw_tail = ipw_read32(priv, q->reg_r);
5014 	if (hw_tail >= q->n_bd) {
5015 		IPW_ERROR
5016 		    ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5017 		     hw_tail, q->n_bd);
5018 		goto done;
5019 	}
5020 	for (; q->last_used != hw_tail;
5021 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5022 		ipw_queue_tx_free_tfd(priv, txq);
5023 		priv->tx_packets++;
5024 	}
5025       done:
5026 	if ((ipw_tx_queue_space(q) > q->low_mark) &&
5027 	    (qindex >= 0))
5028 		netif_wake_queue(priv->net_dev);
5029 	used = q->first_empty - q->last_used;
5030 	if (used < 0)
5031 		used += q->n_bd;
5032 
5033 	return used;
5034 }
5035 
5036 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf,
5037 			     int len, int sync)
5038 {
5039 	struct clx2_tx_queue *txq = &priv->txq_cmd;
5040 	struct clx2_queue *q = &txq->q;
5041 	struct tfd_frame *tfd;
5042 
5043 	if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5044 		IPW_ERROR("No space for Tx\n");
5045 		return -EBUSY;
5046 	}
5047 
5048 	tfd = &txq->bd[q->first_empty];
5049 	txq->txb[q->first_empty] = NULL;
5050 
5051 	memset(tfd, 0, sizeof(*tfd));
5052 	tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5053 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5054 	priv->hcmd_seq++;
5055 	tfd->u.cmd.index = hcmd;
5056 	tfd->u.cmd.length = len;
5057 	memcpy(tfd->u.cmd.payload, buf, len);
5058 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5059 	ipw_write32(priv, q->reg_w, q->first_empty);
5060 	_ipw_read32(priv, 0x90);
5061 
5062 	return 0;
5063 }
5064 
5065 /*
5066  * Rx theory of operation
5067  *
5068  * The host allocates 32 DMA target addresses and passes the host address
5069  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5070  * 0 to 31
5071  *
5072  * Rx Queue Indexes
5073  * The host/firmware share two index registers for managing the Rx buffers.
5074  *
5075  * The READ index maps to the first position that the firmware may be writing
5076  * to -- the driver can read up to (but not including) this position and get
5077  * good data.
5078  * The READ index is managed by the firmware once the card is enabled.
5079  *
5080  * The WRITE index maps to the last position the driver has read from -- the
5081  * position preceding WRITE is the last slot the firmware can place a packet.
5082  *
5083  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5084  * WRITE = READ.
5085  *
5086  * During initialization the host sets up the READ queue position to the first
5087  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5088  *
5089  * When the firmware places a packet in a buffer it will advance the READ index
5090  * and fire the RX interrupt.  The driver can then query the READ index and
5091  * process as many packets as possible, moving the WRITE index forward as it
5092  * resets the Rx queue buffers with new memory.
5093  *
5094  * The management in the driver is as follows:
5095  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5096  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5097  *   to replensish the ipw->rxq->rx_free.
5098  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5099  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5100  *   'processed' and 'read' driver indexes as well)
5101  * + A received packet is processed and handed to the kernel network stack,
5102  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5103  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5104  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5105  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5106  *   were enough free buffers and RX_STALLED is set it is cleared.
5107  *
5108  *
5109  * Driver sequence:
5110  *
5111  * ipw_rx_queue_alloc()       Allocates rx_free
5112  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5113  *                            ipw_rx_queue_restock
5114  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5115  *                            queue, updates firmware pointers, and updates
5116  *                            the WRITE index.  If insufficient rx_free buffers
5117  *                            are available, schedules ipw_rx_queue_replenish
5118  *
5119  * -- enable interrupts --
5120  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5121  *                            READ INDEX, detaching the SKB from the pool.
5122  *                            Moves the packet buffer from queue to rx_used.
5123  *                            Calls ipw_rx_queue_restock to refill any empty
5124  *                            slots.
5125  * ...
5126  *
5127  */
5128 
5129 /*
5130  * If there are slots in the RX queue that  need to be restocked,
5131  * and we have free pre-allocated buffers, fill the ranks as much
5132  * as we can pulling from rx_free.
5133  *
5134  * This moves the 'write' index forward to catch up with 'processed', and
5135  * also updates the memory address in the firmware to reference the new
5136  * target buffer.
5137  */
5138 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5139 {
5140 	struct ipw_rx_queue *rxq = priv->rxq;
5141 	struct list_head *element;
5142 	struct ipw_rx_mem_buffer *rxb;
5143 	unsigned long flags;
5144 	int write;
5145 
5146 	spin_lock_irqsave(&rxq->lock, flags);
5147 	write = rxq->write;
5148 	while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5149 		element = rxq->rx_free.next;
5150 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5151 		list_del(element);
5152 
5153 		ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5154 			    rxb->dma_addr);
5155 		rxq->queue[rxq->write] = rxb;
5156 		rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5157 		rxq->free_count--;
5158 	}
5159 	spin_unlock_irqrestore(&rxq->lock, flags);
5160 
5161 	/* If the pre-allocated buffer pool is dropping low, schedule to
5162 	 * refill it */
5163 	if (rxq->free_count <= RX_LOW_WATERMARK)
5164 		schedule_work(&priv->rx_replenish);
5165 
5166 	/* If we've added more space for the firmware to place data, tell it */
5167 	if (write != rxq->write)
5168 		ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5169 }
5170 
5171 /*
5172  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5173  * Also restock the Rx queue via ipw_rx_queue_restock.
5174  *
5175  * This is called as a scheduled work item (except for during initialization)
5176  */
5177 static void ipw_rx_queue_replenish(void *data)
5178 {
5179 	struct ipw_priv *priv = data;
5180 	struct ipw_rx_queue *rxq = priv->rxq;
5181 	struct list_head *element;
5182 	struct ipw_rx_mem_buffer *rxb;
5183 	unsigned long flags;
5184 
5185 	spin_lock_irqsave(&rxq->lock, flags);
5186 	while (!list_empty(&rxq->rx_used)) {
5187 		element = rxq->rx_used.next;
5188 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5189 		rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5190 		if (!rxb->skb) {
5191 			printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5192 			       priv->net_dev->name);
5193 			/* We don't reschedule replenish work here -- we will
5194 			 * call the restock method and if it still needs
5195 			 * more buffers it will schedule replenish */
5196 			break;
5197 		}
5198 		list_del(element);
5199 
5200 		rxb->dma_addr =
5201 		    dma_map_single(&priv->pci_dev->dev, rxb->skb->data,
5202 				   IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5203 
5204 		list_add_tail(&rxb->list, &rxq->rx_free);
5205 		rxq->free_count++;
5206 	}
5207 	spin_unlock_irqrestore(&rxq->lock, flags);
5208 
5209 	ipw_rx_queue_restock(priv);
5210 }
5211 
5212 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5213 {
5214 	struct ipw_priv *priv =
5215 		container_of(work, struct ipw_priv, rx_replenish);
5216 	mutex_lock(&priv->mutex);
5217 	ipw_rx_queue_replenish(priv);
5218 	mutex_unlock(&priv->mutex);
5219 }
5220 
5221 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5222  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5223  * This free routine walks the list of POOL entries and if SKB is set to
5224  * non NULL it is unmapped and freed
5225  */
5226 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5227 {
5228 	int i;
5229 
5230 	if (!rxq)
5231 		return;
5232 
5233 	for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5234 		if (rxq->pool[i].skb != NULL) {
5235 			dma_unmap_single(&priv->pci_dev->dev,
5236 					 rxq->pool[i].dma_addr,
5237 					 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5238 			dev_kfree_skb(rxq->pool[i].skb);
5239 		}
5240 	}
5241 
5242 	kfree(rxq);
5243 }
5244 
5245 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5246 {
5247 	struct ipw_rx_queue *rxq;
5248 	int i;
5249 
5250 	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5251 	if (unlikely(!rxq)) {
5252 		IPW_ERROR("memory allocation failed\n");
5253 		return NULL;
5254 	}
5255 	spin_lock_init(&rxq->lock);
5256 	INIT_LIST_HEAD(&rxq->rx_free);
5257 	INIT_LIST_HEAD(&rxq->rx_used);
5258 
5259 	/* Fill the rx_used queue with _all_ of the Rx buffers */
5260 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5261 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5262 
5263 	/* Set us so that we have processed and used all buffers, but have
5264 	 * not restocked the Rx queue with fresh buffers */
5265 	rxq->read = rxq->write = 0;
5266 	rxq->free_count = 0;
5267 
5268 	return rxq;
5269 }
5270 
5271 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5272 {
5273 	rate &= ~LIBIPW_BASIC_RATE_MASK;
5274 	if (ieee_mode == IEEE_A) {
5275 		switch (rate) {
5276 		case LIBIPW_OFDM_RATE_6MB:
5277 			return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5278 			    1 : 0;
5279 		case LIBIPW_OFDM_RATE_9MB:
5280 			return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5281 			    1 : 0;
5282 		case LIBIPW_OFDM_RATE_12MB:
5283 			return priv->
5284 			    rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5285 		case LIBIPW_OFDM_RATE_18MB:
5286 			return priv->
5287 			    rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5288 		case LIBIPW_OFDM_RATE_24MB:
5289 			return priv->
5290 			    rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5291 		case LIBIPW_OFDM_RATE_36MB:
5292 			return priv->
5293 			    rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5294 		case LIBIPW_OFDM_RATE_48MB:
5295 			return priv->
5296 			    rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5297 		case LIBIPW_OFDM_RATE_54MB:
5298 			return priv->
5299 			    rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5300 		default:
5301 			return 0;
5302 		}
5303 	}
5304 
5305 	/* B and G mixed */
5306 	switch (rate) {
5307 	case LIBIPW_CCK_RATE_1MB:
5308 		return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5309 	case LIBIPW_CCK_RATE_2MB:
5310 		return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5311 	case LIBIPW_CCK_RATE_5MB:
5312 		return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5313 	case LIBIPW_CCK_RATE_11MB:
5314 		return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5315 	}
5316 
5317 	/* If we are limited to B modulations, bail at this point */
5318 	if (ieee_mode == IEEE_B)
5319 		return 0;
5320 
5321 	/* G */
5322 	switch (rate) {
5323 	case LIBIPW_OFDM_RATE_6MB:
5324 		return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5325 	case LIBIPW_OFDM_RATE_9MB:
5326 		return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5327 	case LIBIPW_OFDM_RATE_12MB:
5328 		return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5329 	case LIBIPW_OFDM_RATE_18MB:
5330 		return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5331 	case LIBIPW_OFDM_RATE_24MB:
5332 		return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5333 	case LIBIPW_OFDM_RATE_36MB:
5334 		return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5335 	case LIBIPW_OFDM_RATE_48MB:
5336 		return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5337 	case LIBIPW_OFDM_RATE_54MB:
5338 		return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5339 	}
5340 
5341 	return 0;
5342 }
5343 
5344 static int ipw_compatible_rates(struct ipw_priv *priv,
5345 				const struct libipw_network *network,
5346 				struct ipw_supported_rates *rates)
5347 {
5348 	int num_rates, i;
5349 
5350 	memset(rates, 0, sizeof(*rates));
5351 	num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5352 	rates->num_rates = 0;
5353 	for (i = 0; i < num_rates; i++) {
5354 		if (!ipw_is_rate_in_mask(priv, network->mode,
5355 					 network->rates[i])) {
5356 
5357 			if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5358 				IPW_DEBUG_SCAN("Adding masked mandatory "
5359 					       "rate %02X\n",
5360 					       network->rates[i]);
5361 				rates->supported_rates[rates->num_rates++] =
5362 				    network->rates[i];
5363 				continue;
5364 			}
5365 
5366 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5367 				       network->rates[i], priv->rates_mask);
5368 			continue;
5369 		}
5370 
5371 		rates->supported_rates[rates->num_rates++] = network->rates[i];
5372 	}
5373 
5374 	num_rates = min(network->rates_ex_len,
5375 			(u8) (IPW_MAX_RATES - num_rates));
5376 	for (i = 0; i < num_rates; i++) {
5377 		if (!ipw_is_rate_in_mask(priv, network->mode,
5378 					 network->rates_ex[i])) {
5379 			if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5380 				IPW_DEBUG_SCAN("Adding masked mandatory "
5381 					       "rate %02X\n",
5382 					       network->rates_ex[i]);
5383 				rates->supported_rates[rates->num_rates++] =
5384 				    network->rates[i];
5385 				continue;
5386 			}
5387 
5388 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5389 				       network->rates_ex[i], priv->rates_mask);
5390 			continue;
5391 		}
5392 
5393 		rates->supported_rates[rates->num_rates++] =
5394 		    network->rates_ex[i];
5395 	}
5396 
5397 	return 1;
5398 }
5399 
5400 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5401 				  const struct ipw_supported_rates *src)
5402 {
5403 	u8 i;
5404 	for (i = 0; i < src->num_rates; i++)
5405 		dest->supported_rates[i] = src->supported_rates[i];
5406 	dest->num_rates = src->num_rates;
5407 }
5408 
5409 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5410  * mask should ever be used -- right now all callers to add the scan rates are
5411  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5412 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5413 				   u8 modulation, u32 rate_mask)
5414 {
5415 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5416 	    LIBIPW_BASIC_RATE_MASK : 0;
5417 
5418 	if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5419 		rates->supported_rates[rates->num_rates++] =
5420 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5421 
5422 	if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5423 		rates->supported_rates[rates->num_rates++] =
5424 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5425 
5426 	if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5427 		rates->supported_rates[rates->num_rates++] = basic_mask |
5428 		    LIBIPW_CCK_RATE_5MB;
5429 
5430 	if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5431 		rates->supported_rates[rates->num_rates++] = basic_mask |
5432 		    LIBIPW_CCK_RATE_11MB;
5433 }
5434 
5435 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5436 				    u8 modulation, u32 rate_mask)
5437 {
5438 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5439 	    LIBIPW_BASIC_RATE_MASK : 0;
5440 
5441 	if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5442 		rates->supported_rates[rates->num_rates++] = basic_mask |
5443 		    LIBIPW_OFDM_RATE_6MB;
5444 
5445 	if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5446 		rates->supported_rates[rates->num_rates++] =
5447 		    LIBIPW_OFDM_RATE_9MB;
5448 
5449 	if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5450 		rates->supported_rates[rates->num_rates++] = basic_mask |
5451 		    LIBIPW_OFDM_RATE_12MB;
5452 
5453 	if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5454 		rates->supported_rates[rates->num_rates++] =
5455 		    LIBIPW_OFDM_RATE_18MB;
5456 
5457 	if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5458 		rates->supported_rates[rates->num_rates++] = basic_mask |
5459 		    LIBIPW_OFDM_RATE_24MB;
5460 
5461 	if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5462 		rates->supported_rates[rates->num_rates++] =
5463 		    LIBIPW_OFDM_RATE_36MB;
5464 
5465 	if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5466 		rates->supported_rates[rates->num_rates++] =
5467 		    LIBIPW_OFDM_RATE_48MB;
5468 
5469 	if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5470 		rates->supported_rates[rates->num_rates++] =
5471 		    LIBIPW_OFDM_RATE_54MB;
5472 }
5473 
5474 struct ipw_network_match {
5475 	struct libipw_network *network;
5476 	struct ipw_supported_rates rates;
5477 };
5478 
5479 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5480 				  struct ipw_network_match *match,
5481 				  struct libipw_network *network,
5482 				  int roaming)
5483 {
5484 	struct ipw_supported_rates rates;
5485 
5486 	/* Verify that this network's capability is compatible with the
5487 	 * current mode (AdHoc or Infrastructure) */
5488 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5489 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5490 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5491 				network->ssid_len, network->ssid,
5492 				network->bssid);
5493 		return 0;
5494 	}
5495 
5496 	if (unlikely(roaming)) {
5497 		/* If we are roaming, then ensure check if this is a valid
5498 		 * network to try and roam to */
5499 		if ((network->ssid_len != match->network->ssid_len) ||
5500 		    memcmp(network->ssid, match->network->ssid,
5501 			   network->ssid_len)) {
5502 			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5503 					network->ssid_len, network->ssid,
5504 					network->bssid);
5505 			return 0;
5506 		}
5507 	} else {
5508 		/* If an ESSID has been configured then compare the broadcast
5509 		 * ESSID to ours */
5510 		if ((priv->config & CFG_STATIC_ESSID) &&
5511 		    ((network->ssid_len != priv->essid_len) ||
5512 		     memcmp(network->ssid, priv->essid,
5513 			    min(network->ssid_len, priv->essid_len)))) {
5514 			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5515 					network->ssid_len, network->ssid,
5516 					network->bssid, priv->essid_len,
5517 					priv->essid);
5518 			return 0;
5519 		}
5520 	}
5521 
5522 	/* If the old network rate is better than this one, don't bother
5523 	 * testing everything else. */
5524 
5525 	if (network->time_stamp[0] < match->network->time_stamp[0]) {
5526 		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5527 				match->network->ssid_len, match->network->ssid);
5528 		return 0;
5529 	} else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5530 		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5531 				match->network->ssid_len, match->network->ssid);
5532 		return 0;
5533 	}
5534 
5535 	/* Now go through and see if the requested network is valid... */
5536 	if (priv->ieee->scan_age != 0 &&
5537 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5538 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5539 				network->ssid_len, network->ssid,
5540 				network->bssid,
5541 				jiffies_to_msecs(jiffies -
5542 						 network->last_scanned));
5543 		return 0;
5544 	}
5545 
5546 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5547 	    (network->channel != priv->channel)) {
5548 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5549 				network->ssid_len, network->ssid,
5550 				network->bssid,
5551 				network->channel, priv->channel);
5552 		return 0;
5553 	}
5554 
5555 	/* Verify privacy compatibility */
5556 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5557 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5558 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5559 				network->ssid_len, network->ssid,
5560 				network->bssid,
5561 				priv->
5562 				capability & CAP_PRIVACY_ON ? "on" : "off",
5563 				network->
5564 				capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5565 				"off");
5566 		return 0;
5567 	}
5568 
5569 	if (ether_addr_equal(network->bssid, priv->bssid)) {
5570 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5571 				network->ssid_len, network->ssid,
5572 				network->bssid, priv->bssid);
5573 		return 0;
5574 	}
5575 
5576 	/* Filter out any incompatible freq / mode combinations */
5577 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5578 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5579 				network->ssid_len, network->ssid,
5580 				network->bssid);
5581 		return 0;
5582 	}
5583 
5584 	/* Ensure that the rates supported by the driver are compatible with
5585 	 * this AP, including verification of basic rates (mandatory) */
5586 	if (!ipw_compatible_rates(priv, network, &rates)) {
5587 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5588 				network->ssid_len, network->ssid,
5589 				network->bssid);
5590 		return 0;
5591 	}
5592 
5593 	if (rates.num_rates == 0) {
5594 		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5595 				network->ssid_len, network->ssid,
5596 				network->bssid);
5597 		return 0;
5598 	}
5599 
5600 	/* TODO: Perform any further minimal comparititive tests.  We do not
5601 	 * want to put too much policy logic here; intelligent scan selection
5602 	 * should occur within a generic IEEE 802.11 user space tool.  */
5603 
5604 	/* Set up 'new' AP to this network */
5605 	ipw_copy_rates(&match->rates, &rates);
5606 	match->network = network;
5607 	IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5608 			network->ssid_len, network->ssid, network->bssid);
5609 
5610 	return 1;
5611 }
5612 
5613 static void ipw_merge_adhoc_network(struct work_struct *work)
5614 {
5615 	struct ipw_priv *priv =
5616 		container_of(work, struct ipw_priv, merge_networks);
5617 	struct libipw_network *network = NULL;
5618 	struct ipw_network_match match = {
5619 		.network = priv->assoc_network
5620 	};
5621 
5622 	if ((priv->status & STATUS_ASSOCIATED) &&
5623 	    (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5624 		/* First pass through ROAM process -- look for a better
5625 		 * network */
5626 		unsigned long flags;
5627 
5628 		spin_lock_irqsave(&priv->ieee->lock, flags);
5629 		list_for_each_entry(network, &priv->ieee->network_list, list) {
5630 			if (network != priv->assoc_network)
5631 				ipw_find_adhoc_network(priv, &match, network,
5632 						       1);
5633 		}
5634 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
5635 
5636 		if (match.network == priv->assoc_network) {
5637 			IPW_DEBUG_MERGE("No better ADHOC in this network to "
5638 					"merge to.\n");
5639 			return;
5640 		}
5641 
5642 		mutex_lock(&priv->mutex);
5643 		if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5644 			IPW_DEBUG_MERGE("remove network %*pE\n",
5645 					priv->essid_len, priv->essid);
5646 			ipw_remove_current_network(priv);
5647 		}
5648 
5649 		ipw_disassociate(priv);
5650 		priv->assoc_network = match.network;
5651 		mutex_unlock(&priv->mutex);
5652 		return;
5653 	}
5654 }
5655 
5656 static int ipw_best_network(struct ipw_priv *priv,
5657 			    struct ipw_network_match *match,
5658 			    struct libipw_network *network, int roaming)
5659 {
5660 	struct ipw_supported_rates rates;
5661 
5662 	/* Verify that this network's capability is compatible with the
5663 	 * current mode (AdHoc or Infrastructure) */
5664 	if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5665 	     !(network->capability & WLAN_CAPABILITY_ESS)) ||
5666 	    (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5667 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5668 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5669 				network->ssid_len, network->ssid,
5670 				network->bssid);
5671 		return 0;
5672 	}
5673 
5674 	if (unlikely(roaming)) {
5675 		/* If we are roaming, then ensure check if this is a valid
5676 		 * network to try and roam to */
5677 		if ((network->ssid_len != match->network->ssid_len) ||
5678 		    memcmp(network->ssid, match->network->ssid,
5679 			   network->ssid_len)) {
5680 			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5681 					network->ssid_len, network->ssid,
5682 					network->bssid);
5683 			return 0;
5684 		}
5685 	} else {
5686 		/* If an ESSID has been configured then compare the broadcast
5687 		 * ESSID to ours */
5688 		if ((priv->config & CFG_STATIC_ESSID) &&
5689 		    ((network->ssid_len != priv->essid_len) ||
5690 		     memcmp(network->ssid, priv->essid,
5691 			    min(network->ssid_len, priv->essid_len)))) {
5692 			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5693 					network->ssid_len, network->ssid,
5694 					network->bssid, priv->essid_len,
5695 					priv->essid);
5696 			return 0;
5697 		}
5698 	}
5699 
5700 	/* If the old network rate is better than this one, don't bother
5701 	 * testing everything else. */
5702 	if (match->network && match->network->stats.rssi > network->stats.rssi) {
5703 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5704 				network->ssid_len, network->ssid,
5705 				network->bssid, match->network->ssid_len,
5706 				match->network->ssid, match->network->bssid);
5707 		return 0;
5708 	}
5709 
5710 	/* If this network has already had an association attempt within the
5711 	 * last 3 seconds, do not try and associate again... */
5712 	if (network->last_associate &&
5713 	    time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5714 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5715 				network->ssid_len, network->ssid,
5716 				network->bssid,
5717 				jiffies_to_msecs(jiffies -
5718 						 network->last_associate));
5719 		return 0;
5720 	}
5721 
5722 	/* Now go through and see if the requested network is valid... */
5723 	if (priv->ieee->scan_age != 0 &&
5724 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5725 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5726 				network->ssid_len, network->ssid,
5727 				network->bssid,
5728 				jiffies_to_msecs(jiffies -
5729 						 network->last_scanned));
5730 		return 0;
5731 	}
5732 
5733 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5734 	    (network->channel != priv->channel)) {
5735 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5736 				network->ssid_len, network->ssid,
5737 				network->bssid,
5738 				network->channel, priv->channel);
5739 		return 0;
5740 	}
5741 
5742 	/* Verify privacy compatibility */
5743 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5744 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5745 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5746 				network->ssid_len, network->ssid,
5747 				network->bssid,
5748 				priv->capability & CAP_PRIVACY_ON ? "on" :
5749 				"off",
5750 				network->capability &
5751 				WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5752 		return 0;
5753 	}
5754 
5755 	if ((priv->config & CFG_STATIC_BSSID) &&
5756 	    !ether_addr_equal(network->bssid, priv->bssid)) {
5757 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5758 				network->ssid_len, network->ssid,
5759 				network->bssid, priv->bssid);
5760 		return 0;
5761 	}
5762 
5763 	/* Filter out any incompatible freq / mode combinations */
5764 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5765 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5766 				network->ssid_len, network->ssid,
5767 				network->bssid);
5768 		return 0;
5769 	}
5770 
5771 	/* Filter out invalid channel in current GEO */
5772 	if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5773 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5774 				network->ssid_len, network->ssid,
5775 				network->bssid);
5776 		return 0;
5777 	}
5778 
5779 	/* Ensure that the rates supported by the driver are compatible with
5780 	 * this AP, including verification of basic rates (mandatory) */
5781 	if (!ipw_compatible_rates(priv, network, &rates)) {
5782 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5783 				network->ssid_len, network->ssid,
5784 				network->bssid);
5785 		return 0;
5786 	}
5787 
5788 	if (rates.num_rates == 0) {
5789 		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5790 				network->ssid_len, network->ssid,
5791 				network->bssid);
5792 		return 0;
5793 	}
5794 
5795 	/* TODO: Perform any further minimal comparititive tests.  We do not
5796 	 * want to put too much policy logic here; intelligent scan selection
5797 	 * should occur within a generic IEEE 802.11 user space tool.  */
5798 
5799 	/* Set up 'new' AP to this network */
5800 	ipw_copy_rates(&match->rates, &rates);
5801 	match->network = network;
5802 
5803 	IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5804 			network->ssid_len, network->ssid, network->bssid);
5805 
5806 	return 1;
5807 }
5808 
5809 static void ipw_adhoc_create(struct ipw_priv *priv,
5810 			     struct libipw_network *network)
5811 {
5812 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5813 	int i;
5814 
5815 	/*
5816 	 * For the purposes of scanning, we can set our wireless mode
5817 	 * to trigger scans across combinations of bands, but when it
5818 	 * comes to creating a new ad-hoc network, we have tell the FW
5819 	 * exactly which band to use.
5820 	 *
5821 	 * We also have the possibility of an invalid channel for the
5822 	 * chossen band.  Attempting to create a new ad-hoc network
5823 	 * with an invalid channel for wireless mode will trigger a
5824 	 * FW fatal error.
5825 	 *
5826 	 */
5827 	switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5828 	case LIBIPW_52GHZ_BAND:
5829 		network->mode = IEEE_A;
5830 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5831 		BUG_ON(i == -1);
5832 		if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5833 			IPW_WARNING("Overriding invalid channel\n");
5834 			priv->channel = geo->a[0].channel;
5835 		}
5836 		break;
5837 
5838 	case LIBIPW_24GHZ_BAND:
5839 		if (priv->ieee->mode & IEEE_G)
5840 			network->mode = IEEE_G;
5841 		else
5842 			network->mode = IEEE_B;
5843 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5844 		BUG_ON(i == -1);
5845 		if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5846 			IPW_WARNING("Overriding invalid channel\n");
5847 			priv->channel = geo->bg[0].channel;
5848 		}
5849 		break;
5850 
5851 	default:
5852 		IPW_WARNING("Overriding invalid channel\n");
5853 		if (priv->ieee->mode & IEEE_A) {
5854 			network->mode = IEEE_A;
5855 			priv->channel = geo->a[0].channel;
5856 		} else if (priv->ieee->mode & IEEE_G) {
5857 			network->mode = IEEE_G;
5858 			priv->channel = geo->bg[0].channel;
5859 		} else {
5860 			network->mode = IEEE_B;
5861 			priv->channel = geo->bg[0].channel;
5862 		}
5863 		break;
5864 	}
5865 
5866 	network->channel = priv->channel;
5867 	priv->config |= CFG_ADHOC_PERSIST;
5868 	ipw_create_bssid(priv, network->bssid);
5869 	network->ssid_len = priv->essid_len;
5870 	memcpy(network->ssid, priv->essid, priv->essid_len);
5871 	memset(&network->stats, 0, sizeof(network->stats));
5872 	network->capability = WLAN_CAPABILITY_IBSS;
5873 	if (!(priv->config & CFG_PREAMBLE_LONG))
5874 		network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5875 	if (priv->capability & CAP_PRIVACY_ON)
5876 		network->capability |= WLAN_CAPABILITY_PRIVACY;
5877 	network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5878 	memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5879 	network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5880 	memcpy(network->rates_ex,
5881 	       &priv->rates.supported_rates[network->rates_len],
5882 	       network->rates_ex_len);
5883 	network->last_scanned = 0;
5884 	network->flags = 0;
5885 	network->last_associate = 0;
5886 	network->time_stamp[0] = 0;
5887 	network->time_stamp[1] = 0;
5888 	network->beacon_interval = 100;	/* Default */
5889 	network->listen_interval = 10;	/* Default */
5890 	network->atim_window = 0;	/* Default */
5891 	network->wpa_ie_len = 0;
5892 	network->rsn_ie_len = 0;
5893 }
5894 
5895 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5896 {
5897 	struct ipw_tgi_tx_key key;
5898 
5899 	if (!(priv->ieee->sec.flags & (1 << index)))
5900 		return;
5901 
5902 	key.key_id = index;
5903 	memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5904 	key.security_type = type;
5905 	key.station_index = 0;	/* always 0 for BSS */
5906 	key.flags = 0;
5907 	/* 0 for new key; previous value of counter (after fatal error) */
5908 	key.tx_counter[0] = cpu_to_le32(0);
5909 	key.tx_counter[1] = cpu_to_le32(0);
5910 
5911 	ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5912 }
5913 
5914 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5915 {
5916 	struct ipw_wep_key key;
5917 	int i;
5918 
5919 	key.cmd_id = DINO_CMD_WEP_KEY;
5920 	key.seq_num = 0;
5921 
5922 	/* Note: AES keys cannot be set for multiple times.
5923 	 * Only set it at the first time. */
5924 	for (i = 0; i < 4; i++) {
5925 		key.key_index = i | type;
5926 		if (!(priv->ieee->sec.flags & (1 << i))) {
5927 			key.key_size = 0;
5928 			continue;
5929 		}
5930 
5931 		key.key_size = priv->ieee->sec.key_sizes[i];
5932 		memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5933 
5934 		ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5935 	}
5936 }
5937 
5938 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5939 {
5940 	if (priv->ieee->host_encrypt)
5941 		return;
5942 
5943 	switch (level) {
5944 	case SEC_LEVEL_3:
5945 		priv->sys_config.disable_unicast_decryption = 0;
5946 		priv->ieee->host_decrypt = 0;
5947 		break;
5948 	case SEC_LEVEL_2:
5949 		priv->sys_config.disable_unicast_decryption = 1;
5950 		priv->ieee->host_decrypt = 1;
5951 		break;
5952 	case SEC_LEVEL_1:
5953 		priv->sys_config.disable_unicast_decryption = 0;
5954 		priv->ieee->host_decrypt = 0;
5955 		break;
5956 	case SEC_LEVEL_0:
5957 		priv->sys_config.disable_unicast_decryption = 1;
5958 		break;
5959 	default:
5960 		break;
5961 	}
5962 }
5963 
5964 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5965 {
5966 	if (priv->ieee->host_encrypt)
5967 		return;
5968 
5969 	switch (level) {
5970 	case SEC_LEVEL_3:
5971 		priv->sys_config.disable_multicast_decryption = 0;
5972 		break;
5973 	case SEC_LEVEL_2:
5974 		priv->sys_config.disable_multicast_decryption = 1;
5975 		break;
5976 	case SEC_LEVEL_1:
5977 		priv->sys_config.disable_multicast_decryption = 0;
5978 		break;
5979 	case SEC_LEVEL_0:
5980 		priv->sys_config.disable_multicast_decryption = 1;
5981 		break;
5982 	default:
5983 		break;
5984 	}
5985 }
5986 
5987 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5988 {
5989 	switch (priv->ieee->sec.level) {
5990 	case SEC_LEVEL_3:
5991 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5992 			ipw_send_tgi_tx_key(priv,
5993 					    DCT_FLAG_EXT_SECURITY_CCM,
5994 					    priv->ieee->sec.active_key);
5995 
5996 		if (!priv->ieee->host_mc_decrypt)
5997 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5998 		break;
5999 	case SEC_LEVEL_2:
6000 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6001 			ipw_send_tgi_tx_key(priv,
6002 					    DCT_FLAG_EXT_SECURITY_TKIP,
6003 					    priv->ieee->sec.active_key);
6004 		break;
6005 	case SEC_LEVEL_1:
6006 		ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6007 		ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6008 		ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6009 		break;
6010 	case SEC_LEVEL_0:
6011 	default:
6012 		break;
6013 	}
6014 }
6015 
6016 static void ipw_adhoc_check(void *data)
6017 {
6018 	struct ipw_priv *priv = data;
6019 
6020 	if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6021 	    !(priv->config & CFG_ADHOC_PERSIST)) {
6022 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6023 			  IPW_DL_STATE | IPW_DL_ASSOC,
6024 			  "Missed beacon: %d - disassociate\n",
6025 			  priv->missed_adhoc_beacons);
6026 		ipw_remove_current_network(priv);
6027 		ipw_disassociate(priv);
6028 		return;
6029 	}
6030 
6031 	schedule_delayed_work(&priv->adhoc_check,
6032 			      le16_to_cpu(priv->assoc_request.beacon_interval));
6033 }
6034 
6035 static void ipw_bg_adhoc_check(struct work_struct *work)
6036 {
6037 	struct ipw_priv *priv =
6038 		container_of(work, struct ipw_priv, adhoc_check.work);
6039 	mutex_lock(&priv->mutex);
6040 	ipw_adhoc_check(priv);
6041 	mutex_unlock(&priv->mutex);
6042 }
6043 
6044 static void ipw_debug_config(struct ipw_priv *priv)
6045 {
6046 	IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6047 		       "[CFG 0x%08X]\n", priv->config);
6048 	if (priv->config & CFG_STATIC_CHANNEL)
6049 		IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6050 	else
6051 		IPW_DEBUG_INFO("Channel unlocked.\n");
6052 	if (priv->config & CFG_STATIC_ESSID)
6053 		IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6054 			       priv->essid_len, priv->essid);
6055 	else
6056 		IPW_DEBUG_INFO("ESSID unlocked.\n");
6057 	if (priv->config & CFG_STATIC_BSSID)
6058 		IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6059 	else
6060 		IPW_DEBUG_INFO("BSSID unlocked.\n");
6061 	if (priv->capability & CAP_PRIVACY_ON)
6062 		IPW_DEBUG_INFO("PRIVACY on\n");
6063 	else
6064 		IPW_DEBUG_INFO("PRIVACY off\n");
6065 	IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6066 }
6067 
6068 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6069 {
6070 	/* TODO: Verify that this works... */
6071 	struct ipw_fixed_rate fr;
6072 	u32 reg;
6073 	u16 mask = 0;
6074 	u16 new_tx_rates = priv->rates_mask;
6075 
6076 	/* Identify 'current FW band' and match it with the fixed
6077 	 * Tx rates */
6078 
6079 	switch (priv->ieee->freq_band) {
6080 	case LIBIPW_52GHZ_BAND:	/* A only */
6081 		/* IEEE_A */
6082 		if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6083 			/* Invalid fixed rate mask */
6084 			IPW_DEBUG_WX
6085 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6086 			new_tx_rates = 0;
6087 			break;
6088 		}
6089 
6090 		new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6091 		break;
6092 
6093 	default:		/* 2.4Ghz or Mixed */
6094 		/* IEEE_B */
6095 		if (mode == IEEE_B) {
6096 			if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6097 				/* Invalid fixed rate mask */
6098 				IPW_DEBUG_WX
6099 				    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6100 				new_tx_rates = 0;
6101 			}
6102 			break;
6103 		}
6104 
6105 		/* IEEE_G */
6106 		if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6107 				    LIBIPW_OFDM_RATES_MASK)) {
6108 			/* Invalid fixed rate mask */
6109 			IPW_DEBUG_WX
6110 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6111 			new_tx_rates = 0;
6112 			break;
6113 		}
6114 
6115 		if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6116 			mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6117 			new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6118 		}
6119 
6120 		if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6121 			mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6122 			new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6123 		}
6124 
6125 		if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6126 			mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6127 			new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6128 		}
6129 
6130 		new_tx_rates |= mask;
6131 		break;
6132 	}
6133 
6134 	fr.tx_rates = cpu_to_le16(new_tx_rates);
6135 
6136 	reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6137 	ipw_write_reg32(priv, reg, *(u32 *) & fr);
6138 }
6139 
6140 static void ipw_abort_scan(struct ipw_priv *priv)
6141 {
6142 	int err;
6143 
6144 	if (priv->status & STATUS_SCAN_ABORTING) {
6145 		IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6146 		return;
6147 	}
6148 	priv->status |= STATUS_SCAN_ABORTING;
6149 
6150 	err = ipw_send_scan_abort(priv);
6151 	if (err)
6152 		IPW_DEBUG_HC("Request to abort scan failed.\n");
6153 }
6154 
6155 static void ipw_add_scan_channels(struct ipw_priv *priv,
6156 				  struct ipw_scan_request_ext *scan,
6157 				  int scan_type)
6158 {
6159 	int channel_index = 0;
6160 	const struct libipw_geo *geo;
6161 	int i;
6162 
6163 	geo = libipw_get_geo(priv->ieee);
6164 
6165 	if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6166 		int start = channel_index;
6167 		for (i = 0; i < geo->a_channels; i++) {
6168 			if ((priv->status & STATUS_ASSOCIATED) &&
6169 			    geo->a[i].channel == priv->channel)
6170 				continue;
6171 			channel_index++;
6172 			scan->channels_list[channel_index] = geo->a[i].channel;
6173 			ipw_set_scan_type(scan, channel_index,
6174 					  geo->a[i].
6175 					  flags & LIBIPW_CH_PASSIVE_ONLY ?
6176 					  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6177 					  scan_type);
6178 		}
6179 
6180 		if (start != channel_index) {
6181 			scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6182 			    (channel_index - start);
6183 			channel_index++;
6184 		}
6185 	}
6186 
6187 	if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6188 		int start = channel_index;
6189 		if (priv->config & CFG_SPEED_SCAN) {
6190 			int index;
6191 			u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6192 				/* nop out the list */
6193 				[0] = 0
6194 			};
6195 
6196 			u8 channel;
6197 			while (channel_index < IPW_SCAN_CHANNELS - 1) {
6198 				channel =
6199 				    priv->speed_scan[priv->speed_scan_pos];
6200 				if (channel == 0) {
6201 					priv->speed_scan_pos = 0;
6202 					channel = priv->speed_scan[0];
6203 				}
6204 				if ((priv->status & STATUS_ASSOCIATED) &&
6205 				    channel == priv->channel) {
6206 					priv->speed_scan_pos++;
6207 					continue;
6208 				}
6209 
6210 				/* If this channel has already been
6211 				 * added in scan, break from loop
6212 				 * and this will be the first channel
6213 				 * in the next scan.
6214 				 */
6215 				if (channels[channel - 1] != 0)
6216 					break;
6217 
6218 				channels[channel - 1] = 1;
6219 				priv->speed_scan_pos++;
6220 				channel_index++;
6221 				scan->channels_list[channel_index] = channel;
6222 				index =
6223 				    libipw_channel_to_index(priv->ieee, channel);
6224 				ipw_set_scan_type(scan, channel_index,
6225 						  geo->bg[index].
6226 						  flags &
6227 						  LIBIPW_CH_PASSIVE_ONLY ?
6228 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6229 						  : scan_type);
6230 			}
6231 		} else {
6232 			for (i = 0; i < geo->bg_channels; i++) {
6233 				if ((priv->status & STATUS_ASSOCIATED) &&
6234 				    geo->bg[i].channel == priv->channel)
6235 					continue;
6236 				channel_index++;
6237 				scan->channels_list[channel_index] =
6238 				    geo->bg[i].channel;
6239 				ipw_set_scan_type(scan, channel_index,
6240 						  geo->bg[i].
6241 						  flags &
6242 						  LIBIPW_CH_PASSIVE_ONLY ?
6243 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6244 						  : scan_type);
6245 			}
6246 		}
6247 
6248 		if (start != channel_index) {
6249 			scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6250 			    (channel_index - start);
6251 		}
6252 	}
6253 }
6254 
6255 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6256 {
6257 	/* staying on passive channels longer than the DTIM interval during a
6258 	 * scan, while associated, causes the firmware to cancel the scan
6259 	 * without notification. Hence, don't stay on passive channels longer
6260 	 * than the beacon interval.
6261 	 */
6262 	if (priv->status & STATUS_ASSOCIATED
6263 	    && priv->assoc_network->beacon_interval > 10)
6264 		return priv->assoc_network->beacon_interval - 10;
6265 	else
6266 		return 120;
6267 }
6268 
6269 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6270 {
6271 	struct ipw_scan_request_ext scan;
6272 	int err = 0, scan_type;
6273 
6274 	if (!(priv->status & STATUS_INIT) ||
6275 	    (priv->status & STATUS_EXIT_PENDING))
6276 		return 0;
6277 
6278 	mutex_lock(&priv->mutex);
6279 
6280 	if (direct && (priv->direct_scan_ssid_len == 0)) {
6281 		IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6282 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6283 		goto done;
6284 	}
6285 
6286 	if (priv->status & STATUS_SCANNING) {
6287 		IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6288 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6289 					STATUS_SCAN_PENDING;
6290 		goto done;
6291 	}
6292 
6293 	if (!(priv->status & STATUS_SCAN_FORCED) &&
6294 	    priv->status & STATUS_SCAN_ABORTING) {
6295 		IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6296 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6297 					STATUS_SCAN_PENDING;
6298 		goto done;
6299 	}
6300 
6301 	if (priv->status & STATUS_RF_KILL_MASK) {
6302 		IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6303 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6304 					STATUS_SCAN_PENDING;
6305 		goto done;
6306 	}
6307 
6308 	memset(&scan, 0, sizeof(scan));
6309 	scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6310 
6311 	if (type == IW_SCAN_TYPE_PASSIVE) {
6312 		IPW_DEBUG_WX("use passive scanning\n");
6313 		scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6314 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6315 			cpu_to_le16(ipw_passive_dwell_time(priv));
6316 		ipw_add_scan_channels(priv, &scan, scan_type);
6317 		goto send_request;
6318 	}
6319 
6320 	/* Use active scan by default. */
6321 	if (priv->config & CFG_SPEED_SCAN)
6322 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6323 			cpu_to_le16(30);
6324 	else
6325 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6326 			cpu_to_le16(20);
6327 
6328 	scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6329 		cpu_to_le16(20);
6330 
6331 	scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6332 		cpu_to_le16(ipw_passive_dwell_time(priv));
6333 	scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6334 
6335 #ifdef CONFIG_IPW2200_MONITOR
6336 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6337 		u8 channel;
6338 		u8 band = 0;
6339 
6340 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6341 		case LIBIPW_52GHZ_BAND:
6342 			band = (u8) (IPW_A_MODE << 6) | 1;
6343 			channel = priv->channel;
6344 			break;
6345 
6346 		case LIBIPW_24GHZ_BAND:
6347 			band = (u8) (IPW_B_MODE << 6) | 1;
6348 			channel = priv->channel;
6349 			break;
6350 
6351 		default:
6352 			band = (u8) (IPW_B_MODE << 6) | 1;
6353 			channel = 9;
6354 			break;
6355 		}
6356 
6357 		scan.channels_list[0] = band;
6358 		scan.channels_list[1] = channel;
6359 		ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6360 
6361 		/* NOTE:  The card will sit on this channel for this time
6362 		 * period.  Scan aborts are timing sensitive and frequently
6363 		 * result in firmware restarts.  As such, it is best to
6364 		 * set a small dwell_time here and just keep re-issuing
6365 		 * scans.  Otherwise fast channel hopping will not actually
6366 		 * hop channels.
6367 		 *
6368 		 * TODO: Move SPEED SCAN support to all modes and bands */
6369 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6370 			cpu_to_le16(2000);
6371 	} else {
6372 #endif				/* CONFIG_IPW2200_MONITOR */
6373 		/* Honor direct scans first, otherwise if we are roaming make
6374 		 * this a direct scan for the current network.  Finally,
6375 		 * ensure that every other scan is a fast channel hop scan */
6376 		if (direct) {
6377 			err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6378 			                    priv->direct_scan_ssid_len);
6379 			if (err) {
6380 				IPW_DEBUG_HC("Attempt to send SSID command  "
6381 					     "failed\n");
6382 				goto done;
6383 			}
6384 
6385 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6386 		} else if ((priv->status & STATUS_ROAMING)
6387 			   || (!(priv->status & STATUS_ASSOCIATED)
6388 			       && (priv->config & CFG_STATIC_ESSID)
6389 			       && (le32_to_cpu(scan.full_scan_index) % 2))) {
6390 			err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6391 			if (err) {
6392 				IPW_DEBUG_HC("Attempt to send SSID command "
6393 					     "failed.\n");
6394 				goto done;
6395 			}
6396 
6397 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6398 		} else
6399 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6400 
6401 		ipw_add_scan_channels(priv, &scan, scan_type);
6402 #ifdef CONFIG_IPW2200_MONITOR
6403 	}
6404 #endif
6405 
6406 send_request:
6407 	err = ipw_send_scan_request_ext(priv, &scan);
6408 	if (err) {
6409 		IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6410 		goto done;
6411 	}
6412 
6413 	priv->status |= STATUS_SCANNING;
6414 	if (direct) {
6415 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6416 		priv->direct_scan_ssid_len = 0;
6417 	} else
6418 		priv->status &= ~STATUS_SCAN_PENDING;
6419 
6420 	schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6421 done:
6422 	mutex_unlock(&priv->mutex);
6423 	return err;
6424 }
6425 
6426 static void ipw_request_passive_scan(struct work_struct *work)
6427 {
6428 	struct ipw_priv *priv =
6429 		container_of(work, struct ipw_priv, request_passive_scan.work);
6430 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6431 }
6432 
6433 static void ipw_request_scan(struct work_struct *work)
6434 {
6435 	struct ipw_priv *priv =
6436 		container_of(work, struct ipw_priv, request_scan.work);
6437 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6438 }
6439 
6440 static void ipw_request_direct_scan(struct work_struct *work)
6441 {
6442 	struct ipw_priv *priv =
6443 		container_of(work, struct ipw_priv, request_direct_scan.work);
6444 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6445 }
6446 
6447 static void ipw_bg_abort_scan(struct work_struct *work)
6448 {
6449 	struct ipw_priv *priv =
6450 		container_of(work, struct ipw_priv, abort_scan);
6451 	mutex_lock(&priv->mutex);
6452 	ipw_abort_scan(priv);
6453 	mutex_unlock(&priv->mutex);
6454 }
6455 
6456 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6457 {
6458 	/* This is called when wpa_supplicant loads and closes the driver
6459 	 * interface. */
6460 	priv->ieee->wpa_enabled = value;
6461 	return 0;
6462 }
6463 
6464 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6465 {
6466 	struct libipw_device *ieee = priv->ieee;
6467 	struct libipw_security sec = {
6468 		.flags = SEC_AUTH_MODE,
6469 	};
6470 	int ret = 0;
6471 
6472 	if (value & IW_AUTH_ALG_SHARED_KEY) {
6473 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6474 		ieee->open_wep = 0;
6475 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6476 		sec.auth_mode = WLAN_AUTH_OPEN;
6477 		ieee->open_wep = 1;
6478 	} else if (value & IW_AUTH_ALG_LEAP) {
6479 		sec.auth_mode = WLAN_AUTH_LEAP;
6480 		ieee->open_wep = 1;
6481 	} else
6482 		return -EINVAL;
6483 
6484 	if (ieee->set_security)
6485 		ieee->set_security(ieee->dev, &sec);
6486 	else
6487 		ret = -EOPNOTSUPP;
6488 
6489 	return ret;
6490 }
6491 
6492 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6493 				int wpa_ie_len)
6494 {
6495 	/* make sure WPA is enabled */
6496 	ipw_wpa_enable(priv, 1);
6497 }
6498 
6499 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6500 			    char *capabilities, int length)
6501 {
6502 	IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6503 
6504 	return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6505 				capabilities);
6506 }
6507 
6508 /*
6509  * WE-18 support
6510  */
6511 
6512 /* SIOCSIWGENIE */
6513 static int ipw_wx_set_genie(struct net_device *dev,
6514 			    struct iw_request_info *info,
6515 			    union iwreq_data *wrqu, char *extra)
6516 {
6517 	struct ipw_priv *priv = libipw_priv(dev);
6518 	struct libipw_device *ieee = priv->ieee;
6519 	u8 *buf;
6520 	int err = 0;
6521 
6522 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
6523 	    (wrqu->data.length && extra == NULL))
6524 		return -EINVAL;
6525 
6526 	if (wrqu->data.length) {
6527 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6528 		if (buf == NULL) {
6529 			err = -ENOMEM;
6530 			goto out;
6531 		}
6532 
6533 		kfree(ieee->wpa_ie);
6534 		ieee->wpa_ie = buf;
6535 		ieee->wpa_ie_len = wrqu->data.length;
6536 	} else {
6537 		kfree(ieee->wpa_ie);
6538 		ieee->wpa_ie = NULL;
6539 		ieee->wpa_ie_len = 0;
6540 	}
6541 
6542 	ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6543       out:
6544 	return err;
6545 }
6546 
6547 /* SIOCGIWGENIE */
6548 static int ipw_wx_get_genie(struct net_device *dev,
6549 			    struct iw_request_info *info,
6550 			    union iwreq_data *wrqu, char *extra)
6551 {
6552 	struct ipw_priv *priv = libipw_priv(dev);
6553 	struct libipw_device *ieee = priv->ieee;
6554 	int err = 0;
6555 
6556 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6557 		wrqu->data.length = 0;
6558 		goto out;
6559 	}
6560 
6561 	if (wrqu->data.length < ieee->wpa_ie_len) {
6562 		err = -E2BIG;
6563 		goto out;
6564 	}
6565 
6566 	wrqu->data.length = ieee->wpa_ie_len;
6567 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6568 
6569       out:
6570 	return err;
6571 }
6572 
6573 static int wext_cipher2level(int cipher)
6574 {
6575 	switch (cipher) {
6576 	case IW_AUTH_CIPHER_NONE:
6577 		return SEC_LEVEL_0;
6578 	case IW_AUTH_CIPHER_WEP40:
6579 	case IW_AUTH_CIPHER_WEP104:
6580 		return SEC_LEVEL_1;
6581 	case IW_AUTH_CIPHER_TKIP:
6582 		return SEC_LEVEL_2;
6583 	case IW_AUTH_CIPHER_CCMP:
6584 		return SEC_LEVEL_3;
6585 	default:
6586 		return -1;
6587 	}
6588 }
6589 
6590 /* SIOCSIWAUTH */
6591 static int ipw_wx_set_auth(struct net_device *dev,
6592 			   struct iw_request_info *info,
6593 			   union iwreq_data *wrqu, char *extra)
6594 {
6595 	struct ipw_priv *priv = libipw_priv(dev);
6596 	struct libipw_device *ieee = priv->ieee;
6597 	struct iw_param *param = &wrqu->param;
6598 	struct lib80211_crypt_data *crypt;
6599 	unsigned long flags;
6600 	int ret = 0;
6601 
6602 	switch (param->flags & IW_AUTH_INDEX) {
6603 	case IW_AUTH_WPA_VERSION:
6604 		break;
6605 	case IW_AUTH_CIPHER_PAIRWISE:
6606 		ipw_set_hw_decrypt_unicast(priv,
6607 					   wext_cipher2level(param->value));
6608 		break;
6609 	case IW_AUTH_CIPHER_GROUP:
6610 		ipw_set_hw_decrypt_multicast(priv,
6611 					     wext_cipher2level(param->value));
6612 		break;
6613 	case IW_AUTH_KEY_MGMT:
6614 		/*
6615 		 * ipw2200 does not use these parameters
6616 		 */
6617 		break;
6618 
6619 	case IW_AUTH_TKIP_COUNTERMEASURES:
6620 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6621 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6622 			break;
6623 
6624 		flags = crypt->ops->get_flags(crypt->priv);
6625 
6626 		if (param->value)
6627 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6628 		else
6629 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6630 
6631 		crypt->ops->set_flags(flags, crypt->priv);
6632 
6633 		break;
6634 
6635 	case IW_AUTH_DROP_UNENCRYPTED:{
6636 			/* HACK:
6637 			 *
6638 			 * wpa_supplicant calls set_wpa_enabled when the driver
6639 			 * is loaded and unloaded, regardless of if WPA is being
6640 			 * used.  No other calls are made which can be used to
6641 			 * determine if encryption will be used or not prior to
6642 			 * association being expected.  If encryption is not being
6643 			 * used, drop_unencrypted is set to false, else true -- we
6644 			 * can use this to determine if the CAP_PRIVACY_ON bit should
6645 			 * be set.
6646 			 */
6647 			struct libipw_security sec = {
6648 				.flags = SEC_ENABLED,
6649 				.enabled = param->value,
6650 			};
6651 			priv->ieee->drop_unencrypted = param->value;
6652 			/* We only change SEC_LEVEL for open mode. Others
6653 			 * are set by ipw_wpa_set_encryption.
6654 			 */
6655 			if (!param->value) {
6656 				sec.flags |= SEC_LEVEL;
6657 				sec.level = SEC_LEVEL_0;
6658 			} else {
6659 				sec.flags |= SEC_LEVEL;
6660 				sec.level = SEC_LEVEL_1;
6661 			}
6662 			if (priv->ieee->set_security)
6663 				priv->ieee->set_security(priv->ieee->dev, &sec);
6664 			break;
6665 		}
6666 
6667 	case IW_AUTH_80211_AUTH_ALG:
6668 		ret = ipw_wpa_set_auth_algs(priv, param->value);
6669 		break;
6670 
6671 	case IW_AUTH_WPA_ENABLED:
6672 		ret = ipw_wpa_enable(priv, param->value);
6673 		ipw_disassociate(priv);
6674 		break;
6675 
6676 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6677 		ieee->ieee802_1x = param->value;
6678 		break;
6679 
6680 	case IW_AUTH_PRIVACY_INVOKED:
6681 		ieee->privacy_invoked = param->value;
6682 		break;
6683 
6684 	default:
6685 		return -EOPNOTSUPP;
6686 	}
6687 	return ret;
6688 }
6689 
6690 /* SIOCGIWAUTH */
6691 static int ipw_wx_get_auth(struct net_device *dev,
6692 			   struct iw_request_info *info,
6693 			   union iwreq_data *wrqu, char *extra)
6694 {
6695 	struct ipw_priv *priv = libipw_priv(dev);
6696 	struct libipw_device *ieee = priv->ieee;
6697 	struct lib80211_crypt_data *crypt;
6698 	struct iw_param *param = &wrqu->param;
6699 
6700 	switch (param->flags & IW_AUTH_INDEX) {
6701 	case IW_AUTH_WPA_VERSION:
6702 	case IW_AUTH_CIPHER_PAIRWISE:
6703 	case IW_AUTH_CIPHER_GROUP:
6704 	case IW_AUTH_KEY_MGMT:
6705 		/*
6706 		 * wpa_supplicant will control these internally
6707 		 */
6708 		return -EOPNOTSUPP;
6709 
6710 	case IW_AUTH_TKIP_COUNTERMEASURES:
6711 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6712 		if (!crypt || !crypt->ops->get_flags)
6713 			break;
6714 
6715 		param->value = (crypt->ops->get_flags(crypt->priv) &
6716 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6717 
6718 		break;
6719 
6720 	case IW_AUTH_DROP_UNENCRYPTED:
6721 		param->value = ieee->drop_unencrypted;
6722 		break;
6723 
6724 	case IW_AUTH_80211_AUTH_ALG:
6725 		param->value = ieee->sec.auth_mode;
6726 		break;
6727 
6728 	case IW_AUTH_WPA_ENABLED:
6729 		param->value = ieee->wpa_enabled;
6730 		break;
6731 
6732 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6733 		param->value = ieee->ieee802_1x;
6734 		break;
6735 
6736 	case IW_AUTH_ROAMING_CONTROL:
6737 	case IW_AUTH_PRIVACY_INVOKED:
6738 		param->value = ieee->privacy_invoked;
6739 		break;
6740 
6741 	default:
6742 		return -EOPNOTSUPP;
6743 	}
6744 	return 0;
6745 }
6746 
6747 /* SIOCSIWENCODEEXT */
6748 static int ipw_wx_set_encodeext(struct net_device *dev,
6749 				struct iw_request_info *info,
6750 				union iwreq_data *wrqu, char *extra)
6751 {
6752 	struct ipw_priv *priv = libipw_priv(dev);
6753 	struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6754 
6755 	if (hwcrypto) {
6756 		if (ext->alg == IW_ENCODE_ALG_TKIP) {
6757 			/* IPW HW can't build TKIP MIC,
6758 			   host decryption still needed */
6759 			if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6760 				priv->ieee->host_mc_decrypt = 1;
6761 			else {
6762 				priv->ieee->host_encrypt = 0;
6763 				priv->ieee->host_encrypt_msdu = 1;
6764 				priv->ieee->host_decrypt = 1;
6765 			}
6766 		} else {
6767 			priv->ieee->host_encrypt = 0;
6768 			priv->ieee->host_encrypt_msdu = 0;
6769 			priv->ieee->host_decrypt = 0;
6770 			priv->ieee->host_mc_decrypt = 0;
6771 		}
6772 	}
6773 
6774 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6775 }
6776 
6777 /* SIOCGIWENCODEEXT */
6778 static int ipw_wx_get_encodeext(struct net_device *dev,
6779 				struct iw_request_info *info,
6780 				union iwreq_data *wrqu, char *extra)
6781 {
6782 	struct ipw_priv *priv = libipw_priv(dev);
6783 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6784 }
6785 
6786 /* SIOCSIWMLME */
6787 static int ipw_wx_set_mlme(struct net_device *dev,
6788 			   struct iw_request_info *info,
6789 			   union iwreq_data *wrqu, char *extra)
6790 {
6791 	struct ipw_priv *priv = libipw_priv(dev);
6792 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
6793 
6794 	switch (mlme->cmd) {
6795 	case IW_MLME_DEAUTH:
6796 		/* silently ignore */
6797 		break;
6798 
6799 	case IW_MLME_DISASSOC:
6800 		ipw_disassociate(priv);
6801 		break;
6802 
6803 	default:
6804 		return -EOPNOTSUPP;
6805 	}
6806 	return 0;
6807 }
6808 
6809 #ifdef CONFIG_IPW2200_QOS
6810 
6811 /* QoS */
6812 /*
6813 * get the modulation type of the current network or
6814 * the card current mode
6815 */
6816 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6817 {
6818 	u8 mode = 0;
6819 
6820 	if (priv->status & STATUS_ASSOCIATED) {
6821 		unsigned long flags;
6822 
6823 		spin_lock_irqsave(&priv->ieee->lock, flags);
6824 		mode = priv->assoc_network->mode;
6825 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6826 	} else {
6827 		mode = priv->ieee->mode;
6828 	}
6829 	IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6830 	return mode;
6831 }
6832 
6833 /*
6834 * Handle management frame beacon and probe response
6835 */
6836 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6837 					 int active_network,
6838 					 struct libipw_network *network)
6839 {
6840 	u32 size = sizeof(struct libipw_qos_parameters);
6841 
6842 	if (network->capability & WLAN_CAPABILITY_IBSS)
6843 		network->qos_data.active = network->qos_data.supported;
6844 
6845 	if (network->flags & NETWORK_HAS_QOS_MASK) {
6846 		if (active_network &&
6847 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6848 			network->qos_data.active = network->qos_data.supported;
6849 
6850 		if ((network->qos_data.active == 1) && (active_network == 1) &&
6851 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6852 		    (network->qos_data.old_param_count !=
6853 		     network->qos_data.param_count)) {
6854 			network->qos_data.old_param_count =
6855 			    network->qos_data.param_count;
6856 			schedule_work(&priv->qos_activate);
6857 			IPW_DEBUG_QOS("QoS parameters change call "
6858 				      "qos_activate\n");
6859 		}
6860 	} else {
6861 		if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6862 			memcpy(&network->qos_data.parameters,
6863 			       &def_parameters_CCK, size);
6864 		else
6865 			memcpy(&network->qos_data.parameters,
6866 			       &def_parameters_OFDM, size);
6867 
6868 		if ((network->qos_data.active == 1) && (active_network == 1)) {
6869 			IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6870 			schedule_work(&priv->qos_activate);
6871 		}
6872 
6873 		network->qos_data.active = 0;
6874 		network->qos_data.supported = 0;
6875 	}
6876 	if ((priv->status & STATUS_ASSOCIATED) &&
6877 	    (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6878 		if (!ether_addr_equal(network->bssid, priv->bssid))
6879 			if (network->capability & WLAN_CAPABILITY_IBSS)
6880 				if ((network->ssid_len ==
6881 				     priv->assoc_network->ssid_len) &&
6882 				    !memcmp(network->ssid,
6883 					    priv->assoc_network->ssid,
6884 					    network->ssid_len)) {
6885 					schedule_work(&priv->merge_networks);
6886 				}
6887 	}
6888 
6889 	return 0;
6890 }
6891 
6892 /*
6893 * This function set up the firmware to support QoS. It sends
6894 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6895 */
6896 static int ipw_qos_activate(struct ipw_priv *priv,
6897 			    struct libipw_qos_data *qos_network_data)
6898 {
6899 	int err;
6900 	struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6901 	struct libipw_qos_parameters *active_one = NULL;
6902 	u32 size = sizeof(struct libipw_qos_parameters);
6903 	u32 burst_duration;
6904 	int i;
6905 	u8 type;
6906 
6907 	type = ipw_qos_current_mode(priv);
6908 
6909 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6910 	memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6911 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6912 	memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6913 
6914 	if (qos_network_data == NULL) {
6915 		if (type == IEEE_B) {
6916 			IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6917 			active_one = &def_parameters_CCK;
6918 		} else
6919 			active_one = &def_parameters_OFDM;
6920 
6921 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6922 		burst_duration = ipw_qos_get_burst_duration(priv);
6923 		for (i = 0; i < QOS_QUEUE_NUM; i++)
6924 			qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6925 			    cpu_to_le16(burst_duration);
6926 	} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6927 		if (type == IEEE_B) {
6928 			IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6929 				      type);
6930 			if (priv->qos_data.qos_enable == 0)
6931 				active_one = &def_parameters_CCK;
6932 			else
6933 				active_one = priv->qos_data.def_qos_parm_CCK;
6934 		} else {
6935 			if (priv->qos_data.qos_enable == 0)
6936 				active_one = &def_parameters_OFDM;
6937 			else
6938 				active_one = priv->qos_data.def_qos_parm_OFDM;
6939 		}
6940 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6941 	} else {
6942 		unsigned long flags;
6943 		int active;
6944 
6945 		spin_lock_irqsave(&priv->ieee->lock, flags);
6946 		active_one = &(qos_network_data->parameters);
6947 		qos_network_data->old_param_count =
6948 		    qos_network_data->param_count;
6949 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6950 		active = qos_network_data->supported;
6951 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6952 
6953 		if (active == 0) {
6954 			burst_duration = ipw_qos_get_burst_duration(priv);
6955 			for (i = 0; i < QOS_QUEUE_NUM; i++)
6956 				qos_parameters[QOS_PARAM_SET_ACTIVE].
6957 				    tx_op_limit[i] = cpu_to_le16(burst_duration);
6958 		}
6959 	}
6960 
6961 	IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6962 	err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6963 	if (err)
6964 		IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6965 
6966 	return err;
6967 }
6968 
6969 /*
6970 * send IPW_CMD_WME_INFO to the firmware
6971 */
6972 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6973 {
6974 	int ret = 0;
6975 	struct libipw_qos_information_element qos_info;
6976 
6977 	if (priv == NULL)
6978 		return -1;
6979 
6980 	qos_info.elementID = QOS_ELEMENT_ID;
6981 	qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6982 
6983 	qos_info.version = QOS_VERSION_1;
6984 	qos_info.ac_info = 0;
6985 
6986 	memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6987 	qos_info.qui_type = QOS_OUI_TYPE;
6988 	qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6989 
6990 	ret = ipw_send_qos_info_command(priv, &qos_info);
6991 	if (ret != 0) {
6992 		IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6993 	}
6994 	return ret;
6995 }
6996 
6997 /*
6998 * Set the QoS parameter with the association request structure
6999 */
7000 static int ipw_qos_association(struct ipw_priv *priv,
7001 			       struct libipw_network *network)
7002 {
7003 	int err = 0;
7004 	struct libipw_qos_data *qos_data = NULL;
7005 	struct libipw_qos_data ibss_data = {
7006 		.supported = 1,
7007 		.active = 1,
7008 	};
7009 
7010 	switch (priv->ieee->iw_mode) {
7011 	case IW_MODE_ADHOC:
7012 		BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7013 
7014 		qos_data = &ibss_data;
7015 		break;
7016 
7017 	case IW_MODE_INFRA:
7018 		qos_data = &network->qos_data;
7019 		break;
7020 
7021 	default:
7022 		BUG();
7023 		break;
7024 	}
7025 
7026 	err = ipw_qos_activate(priv, qos_data);
7027 	if (err) {
7028 		priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7029 		return err;
7030 	}
7031 
7032 	if (priv->qos_data.qos_enable && qos_data->supported) {
7033 		IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7034 		priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7035 		return ipw_qos_set_info_element(priv);
7036 	}
7037 
7038 	return 0;
7039 }
7040 
7041 /*
7042 * handling the beaconing responses. if we get different QoS setting
7043 * off the network from the associated setting, adjust the QoS
7044 * setting
7045 */
7046 static void ipw_qos_association_resp(struct ipw_priv *priv,
7047 				    struct libipw_network *network)
7048 {
7049 	unsigned long flags;
7050 	u32 size = sizeof(struct libipw_qos_parameters);
7051 	int set_qos_param = 0;
7052 
7053 	if ((priv == NULL) || (network == NULL) ||
7054 	    (priv->assoc_network == NULL))
7055 		return;
7056 
7057 	if (!(priv->status & STATUS_ASSOCIATED))
7058 		return;
7059 
7060 	if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7061 		return;
7062 
7063 	spin_lock_irqsave(&priv->ieee->lock, flags);
7064 	if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7065 		memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7066 		       sizeof(struct libipw_qos_data));
7067 		priv->assoc_network->qos_data.active = 1;
7068 		if ((network->qos_data.old_param_count !=
7069 		     network->qos_data.param_count)) {
7070 			set_qos_param = 1;
7071 			network->qos_data.old_param_count =
7072 			    network->qos_data.param_count;
7073 		}
7074 
7075 	} else {
7076 		if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7077 			memcpy(&priv->assoc_network->qos_data.parameters,
7078 			       &def_parameters_CCK, size);
7079 		else
7080 			memcpy(&priv->assoc_network->qos_data.parameters,
7081 			       &def_parameters_OFDM, size);
7082 		priv->assoc_network->qos_data.active = 0;
7083 		priv->assoc_network->qos_data.supported = 0;
7084 		set_qos_param = 1;
7085 	}
7086 
7087 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7088 
7089 	if (set_qos_param == 1)
7090 		schedule_work(&priv->qos_activate);
7091 }
7092 
7093 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7094 {
7095 	u32 ret = 0;
7096 
7097 	if (!priv)
7098 		return 0;
7099 
7100 	if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7101 		ret = priv->qos_data.burst_duration_CCK;
7102 	else
7103 		ret = priv->qos_data.burst_duration_OFDM;
7104 
7105 	return ret;
7106 }
7107 
7108 /*
7109 * Initialize the setting of QoS global
7110 */
7111 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7112 			 int burst_enable, u32 burst_duration_CCK,
7113 			 u32 burst_duration_OFDM)
7114 {
7115 	priv->qos_data.qos_enable = enable;
7116 
7117 	if (priv->qos_data.qos_enable) {
7118 		priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7119 		priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7120 		IPW_DEBUG_QOS("QoS is enabled\n");
7121 	} else {
7122 		priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7123 		priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7124 		IPW_DEBUG_QOS("QoS is not enabled\n");
7125 	}
7126 
7127 	priv->qos_data.burst_enable = burst_enable;
7128 
7129 	if (burst_enable) {
7130 		priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7131 		priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7132 	} else {
7133 		priv->qos_data.burst_duration_CCK = 0;
7134 		priv->qos_data.burst_duration_OFDM = 0;
7135 	}
7136 }
7137 
7138 /*
7139 * map the packet priority to the right TX Queue
7140 */
7141 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7142 {
7143 	if (priority > 7 || !priv->qos_data.qos_enable)
7144 		priority = 0;
7145 
7146 	return from_priority_to_tx_queue[priority] - 1;
7147 }
7148 
7149 static int ipw_is_qos_active(struct net_device *dev,
7150 			     struct sk_buff *skb)
7151 {
7152 	struct ipw_priv *priv = libipw_priv(dev);
7153 	struct libipw_qos_data *qos_data = NULL;
7154 	int active, supported;
7155 	u8 *daddr = skb->data + ETH_ALEN;
7156 	int unicast = !is_multicast_ether_addr(daddr);
7157 
7158 	if (!(priv->status & STATUS_ASSOCIATED))
7159 		return 0;
7160 
7161 	qos_data = &priv->assoc_network->qos_data;
7162 
7163 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7164 		if (unicast == 0)
7165 			qos_data->active = 0;
7166 		else
7167 			qos_data->active = qos_data->supported;
7168 	}
7169 	active = qos_data->active;
7170 	supported = qos_data->supported;
7171 	IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7172 		      "unicast %d\n",
7173 		      priv->qos_data.qos_enable, active, supported, unicast);
7174 	if (active && priv->qos_data.qos_enable)
7175 		return 1;
7176 
7177 	return 0;
7178 
7179 }
7180 /*
7181 * add QoS parameter to the TX command
7182 */
7183 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7184 					u16 priority,
7185 					struct tfd_data *tfd)
7186 {
7187 	int tx_queue_id = 0;
7188 
7189 
7190 	tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7191 	tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7192 
7193 	if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7194 		tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7195 		tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7196 	}
7197 	return 0;
7198 }
7199 
7200 /*
7201 * background support to run QoS activate functionality
7202 */
7203 static void ipw_bg_qos_activate(struct work_struct *work)
7204 {
7205 	struct ipw_priv *priv =
7206 		container_of(work, struct ipw_priv, qos_activate);
7207 
7208 	mutex_lock(&priv->mutex);
7209 
7210 	if (priv->status & STATUS_ASSOCIATED)
7211 		ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7212 
7213 	mutex_unlock(&priv->mutex);
7214 }
7215 
7216 static int ipw_handle_probe_response(struct net_device *dev,
7217 				     struct libipw_probe_response *resp,
7218 				     struct libipw_network *network)
7219 {
7220 	struct ipw_priv *priv = libipw_priv(dev);
7221 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7222 			      (network == priv->assoc_network));
7223 
7224 	ipw_qos_handle_probe_response(priv, active_network, network);
7225 
7226 	return 0;
7227 }
7228 
7229 static int ipw_handle_beacon(struct net_device *dev,
7230 			     struct libipw_beacon *resp,
7231 			     struct libipw_network *network)
7232 {
7233 	struct ipw_priv *priv = libipw_priv(dev);
7234 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7235 			      (network == priv->assoc_network));
7236 
7237 	ipw_qos_handle_probe_response(priv, active_network, network);
7238 
7239 	return 0;
7240 }
7241 
7242 static int ipw_handle_assoc_response(struct net_device *dev,
7243 				     struct libipw_assoc_response *resp,
7244 				     struct libipw_network *network)
7245 {
7246 	struct ipw_priv *priv = libipw_priv(dev);
7247 	ipw_qos_association_resp(priv, network);
7248 	return 0;
7249 }
7250 
7251 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7252 				       *qos_param)
7253 {
7254 	return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7255 				sizeof(*qos_param) * 3, qos_param);
7256 }
7257 
7258 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7259 				     *qos_param)
7260 {
7261 	return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7262 				qos_param);
7263 }
7264 
7265 #endif				/* CONFIG_IPW2200_QOS */
7266 
7267 static int ipw_associate_network(struct ipw_priv *priv,
7268 				 struct libipw_network *network,
7269 				 struct ipw_supported_rates *rates, int roaming)
7270 {
7271 	int err;
7272 
7273 	if (priv->config & CFG_FIXED_RATE)
7274 		ipw_set_fixed_rate(priv, network->mode);
7275 
7276 	if (!(priv->config & CFG_STATIC_ESSID)) {
7277 		priv->essid_len = min(network->ssid_len,
7278 				      (u8) IW_ESSID_MAX_SIZE);
7279 		memcpy(priv->essid, network->ssid, priv->essid_len);
7280 	}
7281 
7282 	network->last_associate = jiffies;
7283 
7284 	memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7285 	priv->assoc_request.channel = network->channel;
7286 	priv->assoc_request.auth_key = 0;
7287 
7288 	if ((priv->capability & CAP_PRIVACY_ON) &&
7289 	    (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7290 		priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7291 		priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7292 
7293 		if (priv->ieee->sec.level == SEC_LEVEL_1)
7294 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7295 
7296 	} else if ((priv->capability & CAP_PRIVACY_ON) &&
7297 		   (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7298 		priv->assoc_request.auth_type = AUTH_LEAP;
7299 	else
7300 		priv->assoc_request.auth_type = AUTH_OPEN;
7301 
7302 	if (priv->ieee->wpa_ie_len) {
7303 		priv->assoc_request.policy_support = cpu_to_le16(0x02);	/* RSN active */
7304 		ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7305 				 priv->ieee->wpa_ie_len);
7306 	}
7307 
7308 	/*
7309 	 * It is valid for our ieee device to support multiple modes, but
7310 	 * when it comes to associating to a given network we have to choose
7311 	 * just one mode.
7312 	 */
7313 	if (network->mode & priv->ieee->mode & IEEE_A)
7314 		priv->assoc_request.ieee_mode = IPW_A_MODE;
7315 	else if (network->mode & priv->ieee->mode & IEEE_G)
7316 		priv->assoc_request.ieee_mode = IPW_G_MODE;
7317 	else if (network->mode & priv->ieee->mode & IEEE_B)
7318 		priv->assoc_request.ieee_mode = IPW_B_MODE;
7319 
7320 	priv->assoc_request.capability = cpu_to_le16(network->capability);
7321 	if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7322 	    && !(priv->config & CFG_PREAMBLE_LONG)) {
7323 		priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7324 	} else {
7325 		priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7326 
7327 		/* Clear the short preamble if we won't be supporting it */
7328 		priv->assoc_request.capability &=
7329 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7330 	}
7331 
7332 	/* Clear capability bits that aren't used in Ad Hoc */
7333 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7334 		priv->assoc_request.capability &=
7335 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7336 
7337 	IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7338 			roaming ? "Rea" : "A",
7339 			priv->essid_len, priv->essid,
7340 			network->channel,
7341 			ipw_modes[priv->assoc_request.ieee_mode],
7342 			rates->num_rates,
7343 			(priv->assoc_request.preamble_length ==
7344 			 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7345 			network->capability &
7346 			WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7347 			priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7348 			priv->capability & CAP_PRIVACY_ON ?
7349 			(priv->capability & CAP_SHARED_KEY ? "(shared)" :
7350 			 "(open)") : "",
7351 			priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7352 			priv->capability & CAP_PRIVACY_ON ?
7353 			'1' + priv->ieee->sec.active_key : '.',
7354 			priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7355 
7356 	priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7357 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7358 	    (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7359 		priv->assoc_request.assoc_type = HC_IBSS_START;
7360 		priv->assoc_request.assoc_tsf_msw = 0;
7361 		priv->assoc_request.assoc_tsf_lsw = 0;
7362 	} else {
7363 		if (unlikely(roaming))
7364 			priv->assoc_request.assoc_type = HC_REASSOCIATE;
7365 		else
7366 			priv->assoc_request.assoc_type = HC_ASSOCIATE;
7367 		priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7368 		priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7369 	}
7370 
7371 	memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7372 
7373 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7374 		eth_broadcast_addr(priv->assoc_request.dest);
7375 		priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7376 	} else {
7377 		memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7378 		priv->assoc_request.atim_window = 0;
7379 	}
7380 
7381 	priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7382 
7383 	err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7384 	if (err) {
7385 		IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7386 		return err;
7387 	}
7388 
7389 	rates->ieee_mode = priv->assoc_request.ieee_mode;
7390 	rates->purpose = IPW_RATE_CONNECT;
7391 	ipw_send_supported_rates(priv, rates);
7392 
7393 	if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7394 		priv->sys_config.dot11g_auto_detection = 1;
7395 	else
7396 		priv->sys_config.dot11g_auto_detection = 0;
7397 
7398 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7399 		priv->sys_config.answer_broadcast_ssid_probe = 1;
7400 	else
7401 		priv->sys_config.answer_broadcast_ssid_probe = 0;
7402 
7403 	err = ipw_send_system_config(priv);
7404 	if (err) {
7405 		IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7406 		return err;
7407 	}
7408 
7409 	IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7410 	err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7411 	if (err) {
7412 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7413 		return err;
7414 	}
7415 
7416 	/*
7417 	 * If preemption is enabled, it is possible for the association
7418 	 * to complete before we return from ipw_send_associate.  Therefore
7419 	 * we have to be sure and update our priviate data first.
7420 	 */
7421 	priv->channel = network->channel;
7422 	memcpy(priv->bssid, network->bssid, ETH_ALEN);
7423 	priv->status |= STATUS_ASSOCIATING;
7424 	priv->status &= ~STATUS_SECURITY_UPDATED;
7425 
7426 	priv->assoc_network = network;
7427 
7428 #ifdef CONFIG_IPW2200_QOS
7429 	ipw_qos_association(priv, network);
7430 #endif
7431 
7432 	err = ipw_send_associate(priv, &priv->assoc_request);
7433 	if (err) {
7434 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7435 		return err;
7436 	}
7437 
7438 	IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7439 		  priv->essid_len, priv->essid, priv->bssid);
7440 
7441 	return 0;
7442 }
7443 
7444 static void ipw_roam(void *data)
7445 {
7446 	struct ipw_priv *priv = data;
7447 	struct libipw_network *network = NULL;
7448 	struct ipw_network_match match = {
7449 		.network = priv->assoc_network
7450 	};
7451 
7452 	/* The roaming process is as follows:
7453 	 *
7454 	 * 1.  Missed beacon threshold triggers the roaming process by
7455 	 *     setting the status ROAM bit and requesting a scan.
7456 	 * 2.  When the scan completes, it schedules the ROAM work
7457 	 * 3.  The ROAM work looks at all of the known networks for one that
7458 	 *     is a better network than the currently associated.  If none
7459 	 *     found, the ROAM process is over (ROAM bit cleared)
7460 	 * 4.  If a better network is found, a disassociation request is
7461 	 *     sent.
7462 	 * 5.  When the disassociation completes, the roam work is again
7463 	 *     scheduled.  The second time through, the driver is no longer
7464 	 *     associated, and the newly selected network is sent an
7465 	 *     association request.
7466 	 * 6.  At this point ,the roaming process is complete and the ROAM
7467 	 *     status bit is cleared.
7468 	 */
7469 
7470 	/* If we are no longer associated, and the roaming bit is no longer
7471 	 * set, then we are not actively roaming, so just return */
7472 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7473 		return;
7474 
7475 	if (priv->status & STATUS_ASSOCIATED) {
7476 		/* First pass through ROAM process -- look for a better
7477 		 * network */
7478 		unsigned long flags;
7479 		u8 rssi = priv->assoc_network->stats.rssi;
7480 		priv->assoc_network->stats.rssi = -128;
7481 		spin_lock_irqsave(&priv->ieee->lock, flags);
7482 		list_for_each_entry(network, &priv->ieee->network_list, list) {
7483 			if (network != priv->assoc_network)
7484 				ipw_best_network(priv, &match, network, 1);
7485 		}
7486 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
7487 		priv->assoc_network->stats.rssi = rssi;
7488 
7489 		if (match.network == priv->assoc_network) {
7490 			IPW_DEBUG_ASSOC("No better APs in this network to "
7491 					"roam to.\n");
7492 			priv->status &= ~STATUS_ROAMING;
7493 			ipw_debug_config(priv);
7494 			return;
7495 		}
7496 
7497 		ipw_send_disassociate(priv, 1);
7498 		priv->assoc_network = match.network;
7499 
7500 		return;
7501 	}
7502 
7503 	/* Second pass through ROAM process -- request association */
7504 	ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7505 	ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7506 	priv->status &= ~STATUS_ROAMING;
7507 }
7508 
7509 static void ipw_bg_roam(struct work_struct *work)
7510 {
7511 	struct ipw_priv *priv =
7512 		container_of(work, struct ipw_priv, roam);
7513 	mutex_lock(&priv->mutex);
7514 	ipw_roam(priv);
7515 	mutex_unlock(&priv->mutex);
7516 }
7517 
7518 static int ipw_associate(void *data)
7519 {
7520 	struct ipw_priv *priv = data;
7521 
7522 	struct libipw_network *network = NULL;
7523 	struct ipw_network_match match = {
7524 		.network = NULL
7525 	};
7526 	struct ipw_supported_rates *rates;
7527 	struct list_head *element;
7528 	unsigned long flags;
7529 
7530 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7531 		IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7532 		return 0;
7533 	}
7534 
7535 	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7536 		IPW_DEBUG_ASSOC("Not attempting association (already in "
7537 				"progress)\n");
7538 		return 0;
7539 	}
7540 
7541 	if (priv->status & STATUS_DISASSOCIATING) {
7542 		IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7543 		schedule_work(&priv->associate);
7544 		return 0;
7545 	}
7546 
7547 	if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7548 		IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7549 				"initialized)\n");
7550 		return 0;
7551 	}
7552 
7553 	if (!(priv->config & CFG_ASSOCIATE) &&
7554 	    !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7555 		IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7556 		return 0;
7557 	}
7558 
7559 	/* Protect our use of the network_list */
7560 	spin_lock_irqsave(&priv->ieee->lock, flags);
7561 	list_for_each_entry(network, &priv->ieee->network_list, list)
7562 	    ipw_best_network(priv, &match, network, 0);
7563 
7564 	network = match.network;
7565 	rates = &match.rates;
7566 
7567 	if (network == NULL &&
7568 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
7569 	    priv->config & CFG_ADHOC_CREATE &&
7570 	    priv->config & CFG_STATIC_ESSID &&
7571 	    priv->config & CFG_STATIC_CHANNEL) {
7572 		/* Use oldest network if the free list is empty */
7573 		if (list_empty(&priv->ieee->network_free_list)) {
7574 			struct libipw_network *oldest = NULL;
7575 			struct libipw_network *target;
7576 
7577 			list_for_each_entry(target, &priv->ieee->network_list, list) {
7578 				if ((oldest == NULL) ||
7579 				    (target->last_scanned < oldest->last_scanned))
7580 					oldest = target;
7581 			}
7582 
7583 			/* If there are no more slots, expire the oldest */
7584 			list_del(&oldest->list);
7585 			target = oldest;
7586 			IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7587 					target->ssid_len, target->ssid,
7588 					target->bssid);
7589 			list_add_tail(&target->list,
7590 				      &priv->ieee->network_free_list);
7591 		}
7592 
7593 		element = priv->ieee->network_free_list.next;
7594 		network = list_entry(element, struct libipw_network, list);
7595 		ipw_adhoc_create(priv, network);
7596 		rates = &priv->rates;
7597 		list_del(element);
7598 		list_add_tail(&network->list, &priv->ieee->network_list);
7599 	}
7600 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7601 
7602 	/* If we reached the end of the list, then we don't have any valid
7603 	 * matching APs */
7604 	if (!network) {
7605 		ipw_debug_config(priv);
7606 
7607 		if (!(priv->status & STATUS_SCANNING)) {
7608 			if (!(priv->config & CFG_SPEED_SCAN))
7609 				schedule_delayed_work(&priv->request_scan,
7610 						      SCAN_INTERVAL);
7611 			else
7612 				schedule_delayed_work(&priv->request_scan, 0);
7613 		}
7614 
7615 		return 0;
7616 	}
7617 
7618 	ipw_associate_network(priv, network, rates, 0);
7619 
7620 	return 1;
7621 }
7622 
7623 static void ipw_bg_associate(struct work_struct *work)
7624 {
7625 	struct ipw_priv *priv =
7626 		container_of(work, struct ipw_priv, associate);
7627 	mutex_lock(&priv->mutex);
7628 	ipw_associate(priv);
7629 	mutex_unlock(&priv->mutex);
7630 }
7631 
7632 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7633 				      struct sk_buff *skb)
7634 {
7635 	struct ieee80211_hdr *hdr;
7636 	u16 fc;
7637 
7638 	hdr = (struct ieee80211_hdr *)skb->data;
7639 	fc = le16_to_cpu(hdr->frame_control);
7640 	if (!(fc & IEEE80211_FCTL_PROTECTED))
7641 		return;
7642 
7643 	fc &= ~IEEE80211_FCTL_PROTECTED;
7644 	hdr->frame_control = cpu_to_le16(fc);
7645 	switch (priv->ieee->sec.level) {
7646 	case SEC_LEVEL_3:
7647 		/* Remove CCMP HDR */
7648 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7649 			skb->data + LIBIPW_3ADDR_LEN + 8,
7650 			skb->len - LIBIPW_3ADDR_LEN - 8);
7651 		skb_trim(skb, skb->len - 16);	/* CCMP_HDR_LEN + CCMP_MIC_LEN */
7652 		break;
7653 	case SEC_LEVEL_2:
7654 		break;
7655 	case SEC_LEVEL_1:
7656 		/* Remove IV */
7657 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7658 			skb->data + LIBIPW_3ADDR_LEN + 4,
7659 			skb->len - LIBIPW_3ADDR_LEN - 4);
7660 		skb_trim(skb, skb->len - 8);	/* IV + ICV */
7661 		break;
7662 	case SEC_LEVEL_0:
7663 		break;
7664 	default:
7665 		printk(KERN_ERR "Unknown security level %d\n",
7666 		       priv->ieee->sec.level);
7667 		break;
7668 	}
7669 }
7670 
7671 static void ipw_handle_data_packet(struct ipw_priv *priv,
7672 				   struct ipw_rx_mem_buffer *rxb,
7673 				   struct libipw_rx_stats *stats)
7674 {
7675 	struct net_device *dev = priv->net_dev;
7676 	struct libipw_hdr_4addr *hdr;
7677 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7678 
7679 	/* We received data from the HW, so stop the watchdog */
7680 	netif_trans_update(dev);
7681 
7682 	/* We only process data packets if the
7683 	 * interface is open */
7684 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7685 		     skb_tailroom(rxb->skb))) {
7686 		dev->stats.rx_errors++;
7687 		priv->wstats.discard.misc++;
7688 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7689 		return;
7690 	} else if (unlikely(!netif_running(priv->net_dev))) {
7691 		dev->stats.rx_dropped++;
7692 		priv->wstats.discard.misc++;
7693 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7694 		return;
7695 	}
7696 
7697 	/* Advance skb->data to the start of the actual payload */
7698 	skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7699 
7700 	/* Set the size of the skb to the size of the frame */
7701 	skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7702 
7703 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7704 
7705 	/* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7706 	hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7707 	if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7708 	    (is_multicast_ether_addr(hdr->addr1) ?
7709 	     !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7710 		ipw_rebuild_decrypted_skb(priv, rxb->skb);
7711 
7712 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7713 		dev->stats.rx_errors++;
7714 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7715 		rxb->skb = NULL;
7716 		__ipw_led_activity_on(priv);
7717 	}
7718 }
7719 
7720 #ifdef CONFIG_IPW2200_RADIOTAP
7721 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7722 					   struct ipw_rx_mem_buffer *rxb,
7723 					   struct libipw_rx_stats *stats)
7724 {
7725 	struct net_device *dev = priv->net_dev;
7726 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7727 	struct ipw_rx_frame *frame = &pkt->u.frame;
7728 
7729 	/* initial pull of some data */
7730 	u16 received_channel = frame->received_channel;
7731 	u8 antennaAndPhy = frame->antennaAndPhy;
7732 	s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;	/* call it signed anyhow */
7733 	u16 pktrate = frame->rate;
7734 
7735 	/* Magic struct that slots into the radiotap header -- no reason
7736 	 * to build this manually element by element, we can write it much
7737 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
7738 	struct ipw_rt_hdr *ipw_rt;
7739 
7740 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7741 
7742 	/* We received data from the HW, so stop the watchdog */
7743 	netif_trans_update(dev);
7744 
7745 	/* We only process data packets if the
7746 	 * interface is open */
7747 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7748 		     skb_tailroom(rxb->skb))) {
7749 		dev->stats.rx_errors++;
7750 		priv->wstats.discard.misc++;
7751 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7752 		return;
7753 	} else if (unlikely(!netif_running(priv->net_dev))) {
7754 		dev->stats.rx_dropped++;
7755 		priv->wstats.discard.misc++;
7756 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7757 		return;
7758 	}
7759 
7760 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7761 	 * that now */
7762 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7763 		/* FIXME: Should alloc bigger skb instead */
7764 		dev->stats.rx_dropped++;
7765 		priv->wstats.discard.misc++;
7766 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7767 		return;
7768 	}
7769 
7770 	/* copy the frame itself */
7771 	memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7772 		rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7773 
7774 	ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7775 
7776 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7777 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7778 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr));	/* total header+data */
7779 
7780 	/* Big bitfield of all the fields we provide in radiotap */
7781 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7782 	     (1 << IEEE80211_RADIOTAP_TSFT) |
7783 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7784 	     (1 << IEEE80211_RADIOTAP_RATE) |
7785 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7786 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7787 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7788 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7789 
7790 	/* Zero the flags, we'll add to them as we go */
7791 	ipw_rt->rt_flags = 0;
7792 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7793 			       frame->parent_tsf[2] << 16 |
7794 			       frame->parent_tsf[1] << 8  |
7795 			       frame->parent_tsf[0]);
7796 
7797 	/* Convert signal to DBM */
7798 	ipw_rt->rt_dbmsignal = antsignal;
7799 	ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7800 
7801 	/* Convert the channel data and set the flags */
7802 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7803 	if (received_channel > 14) {	/* 802.11a */
7804 		ipw_rt->rt_chbitmask =
7805 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7806 	} else if (antennaAndPhy & 32) {	/* 802.11b */
7807 		ipw_rt->rt_chbitmask =
7808 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7809 	} else {		/* 802.11g */
7810 		ipw_rt->rt_chbitmask =
7811 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7812 	}
7813 
7814 	/* set the rate in multiples of 500k/s */
7815 	switch (pktrate) {
7816 	case IPW_TX_RATE_1MB:
7817 		ipw_rt->rt_rate = 2;
7818 		break;
7819 	case IPW_TX_RATE_2MB:
7820 		ipw_rt->rt_rate = 4;
7821 		break;
7822 	case IPW_TX_RATE_5MB:
7823 		ipw_rt->rt_rate = 10;
7824 		break;
7825 	case IPW_TX_RATE_6MB:
7826 		ipw_rt->rt_rate = 12;
7827 		break;
7828 	case IPW_TX_RATE_9MB:
7829 		ipw_rt->rt_rate = 18;
7830 		break;
7831 	case IPW_TX_RATE_11MB:
7832 		ipw_rt->rt_rate = 22;
7833 		break;
7834 	case IPW_TX_RATE_12MB:
7835 		ipw_rt->rt_rate = 24;
7836 		break;
7837 	case IPW_TX_RATE_18MB:
7838 		ipw_rt->rt_rate = 36;
7839 		break;
7840 	case IPW_TX_RATE_24MB:
7841 		ipw_rt->rt_rate = 48;
7842 		break;
7843 	case IPW_TX_RATE_36MB:
7844 		ipw_rt->rt_rate = 72;
7845 		break;
7846 	case IPW_TX_RATE_48MB:
7847 		ipw_rt->rt_rate = 96;
7848 		break;
7849 	case IPW_TX_RATE_54MB:
7850 		ipw_rt->rt_rate = 108;
7851 		break;
7852 	default:
7853 		ipw_rt->rt_rate = 0;
7854 		break;
7855 	}
7856 
7857 	/* antenna number */
7858 	ipw_rt->rt_antenna = (antennaAndPhy & 3);	/* Is this right? */
7859 
7860 	/* set the preamble flag if we have it */
7861 	if ((antennaAndPhy & 64))
7862 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7863 
7864 	/* Set the size of the skb to the size of the frame */
7865 	skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7866 
7867 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7868 
7869 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7870 		dev->stats.rx_errors++;
7871 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7872 		rxb->skb = NULL;
7873 		/* no LED during capture */
7874 	}
7875 }
7876 #endif
7877 
7878 #ifdef CONFIG_IPW2200_PROMISCUOUS
7879 #define libipw_is_probe_response(fc) \
7880    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7881     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7882 
7883 #define libipw_is_management(fc) \
7884    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7885 
7886 #define libipw_is_control(fc) \
7887    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7888 
7889 #define libipw_is_data(fc) \
7890    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7891 
7892 #define libipw_is_assoc_request(fc) \
7893    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7894 
7895 #define libipw_is_reassoc_request(fc) \
7896    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7897 
7898 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7899 				      struct ipw_rx_mem_buffer *rxb,
7900 				      struct libipw_rx_stats *stats)
7901 {
7902 	struct net_device *dev = priv->prom_net_dev;
7903 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7904 	struct ipw_rx_frame *frame = &pkt->u.frame;
7905 	struct ipw_rt_hdr *ipw_rt;
7906 
7907 	/* First cache any information we need before we overwrite
7908 	 * the information provided in the skb from the hardware */
7909 	struct ieee80211_hdr *hdr;
7910 	u16 channel = frame->received_channel;
7911 	u8 phy_flags = frame->antennaAndPhy;
7912 	s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7913 	s8 noise = (s8) le16_to_cpu(frame->noise);
7914 	u8 rate = frame->rate;
7915 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7916 	struct sk_buff *skb;
7917 	int hdr_only = 0;
7918 	u16 filter = priv->prom_priv->filter;
7919 
7920 	/* If the filter is set to not include Rx frames then return */
7921 	if (filter & IPW_PROM_NO_RX)
7922 		return;
7923 
7924 	/* We received data from the HW, so stop the watchdog */
7925 	netif_trans_update(dev);
7926 
7927 	if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7928 		dev->stats.rx_errors++;
7929 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7930 		return;
7931 	}
7932 
7933 	/* We only process data packets if the interface is open */
7934 	if (unlikely(!netif_running(dev))) {
7935 		dev->stats.rx_dropped++;
7936 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7937 		return;
7938 	}
7939 
7940 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7941 	 * that now */
7942 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7943 		/* FIXME: Should alloc bigger skb instead */
7944 		dev->stats.rx_dropped++;
7945 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7946 		return;
7947 	}
7948 
7949 	hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7950 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7951 		if (filter & IPW_PROM_NO_MGMT)
7952 			return;
7953 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7954 			hdr_only = 1;
7955 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7956 		if (filter & IPW_PROM_NO_CTL)
7957 			return;
7958 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
7959 			hdr_only = 1;
7960 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7961 		if (filter & IPW_PROM_NO_DATA)
7962 			return;
7963 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
7964 			hdr_only = 1;
7965 	}
7966 
7967 	/* Copy the SKB since this is for the promiscuous side */
7968 	skb = skb_copy(rxb->skb, GFP_ATOMIC);
7969 	if (skb == NULL) {
7970 		IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7971 		return;
7972 	}
7973 
7974 	/* copy the frame data to write after where the radiotap header goes */
7975 	ipw_rt = (void *)skb->data;
7976 
7977 	if (hdr_only)
7978 		len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7979 
7980 	memcpy(ipw_rt->payload, hdr, len);
7981 
7982 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7983 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7984 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));	/* total header+data */
7985 
7986 	/* Set the size of the skb to the size of the frame */
7987 	skb_put(skb, sizeof(*ipw_rt) + len);
7988 
7989 	/* Big bitfield of all the fields we provide in radiotap */
7990 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7991 	     (1 << IEEE80211_RADIOTAP_TSFT) |
7992 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7993 	     (1 << IEEE80211_RADIOTAP_RATE) |
7994 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7995 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7996 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7997 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7998 
7999 	/* Zero the flags, we'll add to them as we go */
8000 	ipw_rt->rt_flags = 0;
8001 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8002 			       frame->parent_tsf[2] << 16 |
8003 			       frame->parent_tsf[1] << 8  |
8004 			       frame->parent_tsf[0]);
8005 
8006 	/* Convert to DBM */
8007 	ipw_rt->rt_dbmsignal = signal;
8008 	ipw_rt->rt_dbmnoise = noise;
8009 
8010 	/* Convert the channel data and set the flags */
8011 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8012 	if (channel > 14) {	/* 802.11a */
8013 		ipw_rt->rt_chbitmask =
8014 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8015 	} else if (phy_flags & (1 << 5)) {	/* 802.11b */
8016 		ipw_rt->rt_chbitmask =
8017 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8018 	} else {		/* 802.11g */
8019 		ipw_rt->rt_chbitmask =
8020 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8021 	}
8022 
8023 	/* set the rate in multiples of 500k/s */
8024 	switch (rate) {
8025 	case IPW_TX_RATE_1MB:
8026 		ipw_rt->rt_rate = 2;
8027 		break;
8028 	case IPW_TX_RATE_2MB:
8029 		ipw_rt->rt_rate = 4;
8030 		break;
8031 	case IPW_TX_RATE_5MB:
8032 		ipw_rt->rt_rate = 10;
8033 		break;
8034 	case IPW_TX_RATE_6MB:
8035 		ipw_rt->rt_rate = 12;
8036 		break;
8037 	case IPW_TX_RATE_9MB:
8038 		ipw_rt->rt_rate = 18;
8039 		break;
8040 	case IPW_TX_RATE_11MB:
8041 		ipw_rt->rt_rate = 22;
8042 		break;
8043 	case IPW_TX_RATE_12MB:
8044 		ipw_rt->rt_rate = 24;
8045 		break;
8046 	case IPW_TX_RATE_18MB:
8047 		ipw_rt->rt_rate = 36;
8048 		break;
8049 	case IPW_TX_RATE_24MB:
8050 		ipw_rt->rt_rate = 48;
8051 		break;
8052 	case IPW_TX_RATE_36MB:
8053 		ipw_rt->rt_rate = 72;
8054 		break;
8055 	case IPW_TX_RATE_48MB:
8056 		ipw_rt->rt_rate = 96;
8057 		break;
8058 	case IPW_TX_RATE_54MB:
8059 		ipw_rt->rt_rate = 108;
8060 		break;
8061 	default:
8062 		ipw_rt->rt_rate = 0;
8063 		break;
8064 	}
8065 
8066 	/* antenna number */
8067 	ipw_rt->rt_antenna = (phy_flags & 3);
8068 
8069 	/* set the preamble flag if we have it */
8070 	if (phy_flags & (1 << 6))
8071 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8072 
8073 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8074 
8075 	if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8076 		dev->stats.rx_errors++;
8077 		dev_kfree_skb_any(skb);
8078 	}
8079 }
8080 #endif
8081 
8082 static int is_network_packet(struct ipw_priv *priv,
8083 				    struct libipw_hdr_4addr *header)
8084 {
8085 	/* Filter incoming packets to determine if they are targeted toward
8086 	 * this network, discarding packets coming from ourselves */
8087 	switch (priv->ieee->iw_mode) {
8088 	case IW_MODE_ADHOC:	/* Header: Dest. | Source    | BSSID */
8089 		/* packets from our adapter are dropped (echo) */
8090 		if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8091 			return 0;
8092 
8093 		/* {broad,multi}cast packets to our BSSID go through */
8094 		if (is_multicast_ether_addr(header->addr1))
8095 			return ether_addr_equal(header->addr3, priv->bssid);
8096 
8097 		/* packets to our adapter go through */
8098 		return ether_addr_equal(header->addr1,
8099 					priv->net_dev->dev_addr);
8100 
8101 	case IW_MODE_INFRA:	/* Header: Dest. | BSSID | Source */
8102 		/* packets from our adapter are dropped (echo) */
8103 		if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8104 			return 0;
8105 
8106 		/* {broad,multi}cast packets to our BSS go through */
8107 		if (is_multicast_ether_addr(header->addr1))
8108 			return ether_addr_equal(header->addr2, priv->bssid);
8109 
8110 		/* packets to our adapter go through */
8111 		return ether_addr_equal(header->addr1,
8112 					priv->net_dev->dev_addr);
8113 	}
8114 
8115 	return 1;
8116 }
8117 
8118 #define IPW_PACKET_RETRY_TIME HZ
8119 
8120 static  int is_duplicate_packet(struct ipw_priv *priv,
8121 				      struct libipw_hdr_4addr *header)
8122 {
8123 	u16 sc = le16_to_cpu(header->seq_ctl);
8124 	u16 seq = WLAN_GET_SEQ_SEQ(sc);
8125 	u16 frag = WLAN_GET_SEQ_FRAG(sc);
8126 	u16 *last_seq, *last_frag;
8127 	unsigned long *last_time;
8128 
8129 	switch (priv->ieee->iw_mode) {
8130 	case IW_MODE_ADHOC:
8131 		{
8132 			struct list_head *p;
8133 			struct ipw_ibss_seq *entry = NULL;
8134 			u8 *mac = header->addr2;
8135 			int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8136 
8137 			list_for_each(p, &priv->ibss_mac_hash[index]) {
8138 				entry =
8139 				    list_entry(p, struct ipw_ibss_seq, list);
8140 				if (ether_addr_equal(entry->mac, mac))
8141 					break;
8142 			}
8143 			if (p == &priv->ibss_mac_hash[index]) {
8144 				entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8145 				if (!entry) {
8146 					IPW_ERROR
8147 					    ("Cannot malloc new mac entry\n");
8148 					return 0;
8149 				}
8150 				memcpy(entry->mac, mac, ETH_ALEN);
8151 				entry->seq_num = seq;
8152 				entry->frag_num = frag;
8153 				entry->packet_time = jiffies;
8154 				list_add(&entry->list,
8155 					 &priv->ibss_mac_hash[index]);
8156 				return 0;
8157 			}
8158 			last_seq = &entry->seq_num;
8159 			last_frag = &entry->frag_num;
8160 			last_time = &entry->packet_time;
8161 			break;
8162 		}
8163 	case IW_MODE_INFRA:
8164 		last_seq = &priv->last_seq_num;
8165 		last_frag = &priv->last_frag_num;
8166 		last_time = &priv->last_packet_time;
8167 		break;
8168 	default:
8169 		return 0;
8170 	}
8171 	if ((*last_seq == seq) &&
8172 	    time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8173 		if (*last_frag == frag)
8174 			goto drop;
8175 		if (*last_frag + 1 != frag)
8176 			/* out-of-order fragment */
8177 			goto drop;
8178 	} else
8179 		*last_seq = seq;
8180 
8181 	*last_frag = frag;
8182 	*last_time = jiffies;
8183 	return 0;
8184 
8185       drop:
8186 	/* Comment this line now since we observed the card receives
8187 	 * duplicate packets but the FCTL_RETRY bit is not set in the
8188 	 * IBSS mode with fragmentation enabled.
8189 	 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8190 	return 1;
8191 }
8192 
8193 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8194 				   struct ipw_rx_mem_buffer *rxb,
8195 				   struct libipw_rx_stats *stats)
8196 {
8197 	struct sk_buff *skb = rxb->skb;
8198 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8199 	struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8200 	    (skb->data + IPW_RX_FRAME_SIZE);
8201 
8202 	libipw_rx_mgt(priv->ieee, header, stats);
8203 
8204 	if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8205 	    ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8206 	      IEEE80211_STYPE_PROBE_RESP) ||
8207 	     (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8208 	      IEEE80211_STYPE_BEACON))) {
8209 		if (ether_addr_equal(header->addr3, priv->bssid))
8210 			ipw_add_station(priv, header->addr2);
8211 	}
8212 
8213 	if (priv->config & CFG_NET_STATS) {
8214 		IPW_DEBUG_HC("sending stat packet\n");
8215 
8216 		/* Set the size of the skb to the size of the full
8217 		 * ipw header and 802.11 frame */
8218 		skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8219 			IPW_RX_FRAME_SIZE);
8220 
8221 		/* Advance past the ipw packet header to the 802.11 frame */
8222 		skb_pull(skb, IPW_RX_FRAME_SIZE);
8223 
8224 		/* Push the libipw_rx_stats before the 802.11 frame */
8225 		memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8226 
8227 		skb->dev = priv->ieee->dev;
8228 
8229 		/* Point raw at the libipw_stats */
8230 		skb_reset_mac_header(skb);
8231 
8232 		skb->pkt_type = PACKET_OTHERHOST;
8233 		skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8234 		memset(skb->cb, 0, sizeof(rxb->skb->cb));
8235 		netif_rx(skb);
8236 		rxb->skb = NULL;
8237 	}
8238 }
8239 
8240 /*
8241  * Main entry function for receiving a packet with 80211 headers.  This
8242  * should be called when ever the FW has notified us that there is a new
8243  * skb in the receive queue.
8244  */
8245 static void ipw_rx(struct ipw_priv *priv)
8246 {
8247 	struct ipw_rx_mem_buffer *rxb;
8248 	struct ipw_rx_packet *pkt;
8249 	struct libipw_hdr_4addr *header;
8250 	u32 r, i;
8251 	u8 network_packet;
8252 	u8 fill_rx = 0;
8253 
8254 	r = ipw_read32(priv, IPW_RX_READ_INDEX);
8255 	ipw_read32(priv, IPW_RX_WRITE_INDEX);
8256 	i = priv->rxq->read;
8257 
8258 	if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8259 		fill_rx = 1;
8260 
8261 	while (i != r) {
8262 		rxb = priv->rxq->queue[i];
8263 		if (unlikely(rxb == NULL)) {
8264 			printk(KERN_CRIT "Queue not allocated!\n");
8265 			break;
8266 		}
8267 		priv->rxq->queue[i] = NULL;
8268 
8269 		dma_sync_single_for_cpu(&priv->pci_dev->dev, rxb->dma_addr,
8270 					IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8271 
8272 		pkt = (struct ipw_rx_packet *)rxb->skb->data;
8273 		IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8274 			     pkt->header.message_type,
8275 			     pkt->header.rx_seq_num, pkt->header.control_bits);
8276 
8277 		switch (pkt->header.message_type) {
8278 		case RX_FRAME_TYPE:	/* 802.11 frame */  {
8279 				struct libipw_rx_stats stats = {
8280 					.rssi = pkt->u.frame.rssi_dbm -
8281 					    IPW_RSSI_TO_DBM,
8282 					.signal =
8283 					    pkt->u.frame.rssi_dbm -
8284 					    IPW_RSSI_TO_DBM + 0x100,
8285 					.noise =
8286 					    le16_to_cpu(pkt->u.frame.noise),
8287 					.rate = pkt->u.frame.rate,
8288 					.mac_time = jiffies,
8289 					.received_channel =
8290 					    pkt->u.frame.received_channel,
8291 					.freq =
8292 					    (pkt->u.frame.
8293 					     control & (1 << 0)) ?
8294 					    LIBIPW_24GHZ_BAND :
8295 					    LIBIPW_52GHZ_BAND,
8296 					.len = le16_to_cpu(pkt->u.frame.length),
8297 				};
8298 
8299 				if (stats.rssi != 0)
8300 					stats.mask |= LIBIPW_STATMASK_RSSI;
8301 				if (stats.signal != 0)
8302 					stats.mask |= LIBIPW_STATMASK_SIGNAL;
8303 				if (stats.noise != 0)
8304 					stats.mask |= LIBIPW_STATMASK_NOISE;
8305 				if (stats.rate != 0)
8306 					stats.mask |= LIBIPW_STATMASK_RATE;
8307 
8308 				priv->rx_packets++;
8309 
8310 #ifdef CONFIG_IPW2200_PROMISCUOUS
8311 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8312 		ipw_handle_promiscuous_rx(priv, rxb, &stats);
8313 #endif
8314 
8315 #ifdef CONFIG_IPW2200_MONITOR
8316 				if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8317 #ifdef CONFIG_IPW2200_RADIOTAP
8318 
8319                 ipw_handle_data_packet_monitor(priv,
8320 					       rxb,
8321 					       &stats);
8322 #else
8323 		ipw_handle_data_packet(priv, rxb,
8324 				       &stats);
8325 #endif
8326 					break;
8327 				}
8328 #endif
8329 
8330 				header =
8331 				    (struct libipw_hdr_4addr *)(rxb->skb->
8332 								   data +
8333 								   IPW_RX_FRAME_SIZE);
8334 				/* TODO: Check Ad-Hoc dest/source and make sure
8335 				 * that we are actually parsing these packets
8336 				 * correctly -- we should probably use the
8337 				 * frame control of the packet and disregard
8338 				 * the current iw_mode */
8339 
8340 				network_packet =
8341 				    is_network_packet(priv, header);
8342 				if (network_packet && priv->assoc_network) {
8343 					priv->assoc_network->stats.rssi =
8344 					    stats.rssi;
8345 					priv->exp_avg_rssi =
8346 					    exponential_average(priv->exp_avg_rssi,
8347 					    stats.rssi, DEPTH_RSSI);
8348 				}
8349 
8350 				IPW_DEBUG_RX("Frame: len=%u\n",
8351 					     le16_to_cpu(pkt->u.frame.length));
8352 
8353 				if (le16_to_cpu(pkt->u.frame.length) <
8354 				    libipw_get_hdrlen(le16_to_cpu(
8355 						    header->frame_ctl))) {
8356 					IPW_DEBUG_DROP
8357 					    ("Received packet is too small. "
8358 					     "Dropping.\n");
8359 					priv->net_dev->stats.rx_errors++;
8360 					priv->wstats.discard.misc++;
8361 					break;
8362 				}
8363 
8364 				switch (WLAN_FC_GET_TYPE
8365 					(le16_to_cpu(header->frame_ctl))) {
8366 
8367 				case IEEE80211_FTYPE_MGMT:
8368 					ipw_handle_mgmt_packet(priv, rxb,
8369 							       &stats);
8370 					break;
8371 
8372 				case IEEE80211_FTYPE_CTL:
8373 					break;
8374 
8375 				case IEEE80211_FTYPE_DATA:
8376 					if (unlikely(!network_packet ||
8377 						     is_duplicate_packet(priv,
8378 									 header)))
8379 					{
8380 						IPW_DEBUG_DROP("Dropping: "
8381 							       "%pM, "
8382 							       "%pM, "
8383 							       "%pM\n",
8384 							       header->addr1,
8385 							       header->addr2,
8386 							       header->addr3);
8387 						break;
8388 					}
8389 
8390 					ipw_handle_data_packet(priv, rxb,
8391 							       &stats);
8392 
8393 					break;
8394 				}
8395 				break;
8396 			}
8397 
8398 		case RX_HOST_NOTIFICATION_TYPE:{
8399 				IPW_DEBUG_RX
8400 				    ("Notification: subtype=%02X flags=%02X size=%d\n",
8401 				     pkt->u.notification.subtype,
8402 				     pkt->u.notification.flags,
8403 				     le16_to_cpu(pkt->u.notification.size));
8404 				ipw_rx_notification(priv, &pkt->u.notification);
8405 				break;
8406 			}
8407 
8408 		default:
8409 			IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8410 				     pkt->header.message_type);
8411 			break;
8412 		}
8413 
8414 		/* For now we just don't re-use anything.  We can tweak this
8415 		 * later to try and re-use notification packets and SKBs that
8416 		 * fail to Rx correctly */
8417 		if (rxb->skb != NULL) {
8418 			dev_kfree_skb_any(rxb->skb);
8419 			rxb->skb = NULL;
8420 		}
8421 
8422 		dma_unmap_single(&priv->pci_dev->dev, rxb->dma_addr,
8423 				 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8424 		list_add_tail(&rxb->list, &priv->rxq->rx_used);
8425 
8426 		i = (i + 1) % RX_QUEUE_SIZE;
8427 
8428 		/* If there are a lot of unsued frames, restock the Rx queue
8429 		 * so the ucode won't assert */
8430 		if (fill_rx) {
8431 			priv->rxq->read = i;
8432 			ipw_rx_queue_replenish(priv);
8433 		}
8434 	}
8435 
8436 	/* Backtrack one entry */
8437 	priv->rxq->read = i;
8438 	ipw_rx_queue_restock(priv);
8439 }
8440 
8441 #define DEFAULT_RTS_THRESHOLD     2304U
8442 #define MIN_RTS_THRESHOLD         1U
8443 #define MAX_RTS_THRESHOLD         2304U
8444 #define DEFAULT_BEACON_INTERVAL   100U
8445 #define	DEFAULT_SHORT_RETRY_LIMIT 7U
8446 #define	DEFAULT_LONG_RETRY_LIMIT  4U
8447 
8448 /*
8449  * ipw_sw_reset
8450  * @option: options to control different reset behaviour
8451  * 	    0 = reset everything except the 'disable' module_param
8452  * 	    1 = reset everything and print out driver info (for probe only)
8453  * 	    2 = reset everything
8454  */
8455 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8456 {
8457 	int band, modulation;
8458 	int old_mode = priv->ieee->iw_mode;
8459 
8460 	/* Initialize module parameter values here */
8461 	priv->config = 0;
8462 
8463 	/* We default to disabling the LED code as right now it causes
8464 	 * too many systems to lock up... */
8465 	if (!led_support)
8466 		priv->config |= CFG_NO_LED;
8467 
8468 	if (associate)
8469 		priv->config |= CFG_ASSOCIATE;
8470 	else
8471 		IPW_DEBUG_INFO("Auto associate disabled.\n");
8472 
8473 	if (auto_create)
8474 		priv->config |= CFG_ADHOC_CREATE;
8475 	else
8476 		IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8477 
8478 	priv->config &= ~CFG_STATIC_ESSID;
8479 	priv->essid_len = 0;
8480 	memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8481 
8482 	if (disable && option) {
8483 		priv->status |= STATUS_RF_KILL_SW;
8484 		IPW_DEBUG_INFO("Radio disabled.\n");
8485 	}
8486 
8487 	if (default_channel != 0) {
8488 		priv->config |= CFG_STATIC_CHANNEL;
8489 		priv->channel = default_channel;
8490 		IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8491 		/* TODO: Validate that provided channel is in range */
8492 	}
8493 #ifdef CONFIG_IPW2200_QOS
8494 	ipw_qos_init(priv, qos_enable, qos_burst_enable,
8495 		     burst_duration_CCK, burst_duration_OFDM);
8496 #endif				/* CONFIG_IPW2200_QOS */
8497 
8498 	switch (network_mode) {
8499 	case 1:
8500 		priv->ieee->iw_mode = IW_MODE_ADHOC;
8501 		priv->net_dev->type = ARPHRD_ETHER;
8502 
8503 		break;
8504 #ifdef CONFIG_IPW2200_MONITOR
8505 	case 2:
8506 		priv->ieee->iw_mode = IW_MODE_MONITOR;
8507 #ifdef CONFIG_IPW2200_RADIOTAP
8508 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8509 #else
8510 		priv->net_dev->type = ARPHRD_IEEE80211;
8511 #endif
8512 		break;
8513 #endif
8514 	default:
8515 	case 0:
8516 		priv->net_dev->type = ARPHRD_ETHER;
8517 		priv->ieee->iw_mode = IW_MODE_INFRA;
8518 		break;
8519 	}
8520 
8521 	if (hwcrypto) {
8522 		priv->ieee->host_encrypt = 0;
8523 		priv->ieee->host_encrypt_msdu = 0;
8524 		priv->ieee->host_decrypt = 0;
8525 		priv->ieee->host_mc_decrypt = 0;
8526 	}
8527 	IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8528 
8529 	/* IPW2200/2915 is abled to do hardware fragmentation. */
8530 	priv->ieee->host_open_frag = 0;
8531 
8532 	if ((priv->pci_dev->device == 0x4223) ||
8533 	    (priv->pci_dev->device == 0x4224)) {
8534 		if (option == 1)
8535 			printk(KERN_INFO DRV_NAME
8536 			       ": Detected Intel PRO/Wireless 2915ABG Network "
8537 			       "Connection\n");
8538 		priv->ieee->abg_true = 1;
8539 		band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8540 		modulation = LIBIPW_OFDM_MODULATION |
8541 		    LIBIPW_CCK_MODULATION;
8542 		priv->adapter = IPW_2915ABG;
8543 		priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8544 	} else {
8545 		if (option == 1)
8546 			printk(KERN_INFO DRV_NAME
8547 			       ": Detected Intel PRO/Wireless 2200BG Network "
8548 			       "Connection\n");
8549 
8550 		priv->ieee->abg_true = 0;
8551 		band = LIBIPW_24GHZ_BAND;
8552 		modulation = LIBIPW_OFDM_MODULATION |
8553 		    LIBIPW_CCK_MODULATION;
8554 		priv->adapter = IPW_2200BG;
8555 		priv->ieee->mode = IEEE_G | IEEE_B;
8556 	}
8557 
8558 	priv->ieee->freq_band = band;
8559 	priv->ieee->modulation = modulation;
8560 
8561 	priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8562 
8563 	priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8564 	priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8565 
8566 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8567 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8568 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8569 
8570 	/* If power management is turned on, default to AC mode */
8571 	priv->power_mode = IPW_POWER_AC;
8572 	priv->tx_power = IPW_TX_POWER_DEFAULT;
8573 
8574 	return old_mode == priv->ieee->iw_mode;
8575 }
8576 
8577 /*
8578  * This file defines the Wireless Extension handlers.  It does not
8579  * define any methods of hardware manipulation and relies on the
8580  * functions defined in ipw_main to provide the HW interaction.
8581  *
8582  * The exception to this is the use of the ipw_get_ordinal()
8583  * function used to poll the hardware vs. making unnecessary calls.
8584  *
8585  */
8586 
8587 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8588 {
8589 	if (channel == 0) {
8590 		IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8591 		priv->config &= ~CFG_STATIC_CHANNEL;
8592 		IPW_DEBUG_ASSOC("Attempting to associate with new "
8593 				"parameters.\n");
8594 		ipw_associate(priv);
8595 		return 0;
8596 	}
8597 
8598 	priv->config |= CFG_STATIC_CHANNEL;
8599 
8600 	if (priv->channel == channel) {
8601 		IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8602 			       channel);
8603 		return 0;
8604 	}
8605 
8606 	IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8607 	priv->channel = channel;
8608 
8609 #ifdef CONFIG_IPW2200_MONITOR
8610 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8611 		int i;
8612 		if (priv->status & STATUS_SCANNING) {
8613 			IPW_DEBUG_SCAN("Scan abort triggered due to "
8614 				       "channel change.\n");
8615 			ipw_abort_scan(priv);
8616 		}
8617 
8618 		for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8619 			udelay(10);
8620 
8621 		if (priv->status & STATUS_SCANNING)
8622 			IPW_DEBUG_SCAN("Still scanning...\n");
8623 		else
8624 			IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8625 				       1000 - i);
8626 
8627 		return 0;
8628 	}
8629 #endif				/* CONFIG_IPW2200_MONITOR */
8630 
8631 	/* Network configuration changed -- force [re]association */
8632 	IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8633 	if (!ipw_disassociate(priv))
8634 		ipw_associate(priv);
8635 
8636 	return 0;
8637 }
8638 
8639 static int ipw_wx_set_freq(struct net_device *dev,
8640 			   struct iw_request_info *info,
8641 			   union iwreq_data *wrqu, char *extra)
8642 {
8643 	struct ipw_priv *priv = libipw_priv(dev);
8644 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8645 	struct iw_freq *fwrq = &wrqu->freq;
8646 	int ret = 0, i;
8647 	u8 channel, flags;
8648 	int band;
8649 
8650 	if (fwrq->m == 0) {
8651 		IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8652 		mutex_lock(&priv->mutex);
8653 		ret = ipw_set_channel(priv, 0);
8654 		mutex_unlock(&priv->mutex);
8655 		return ret;
8656 	}
8657 	/* if setting by freq convert to channel */
8658 	if (fwrq->e == 1) {
8659 		channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8660 		if (channel == 0)
8661 			return -EINVAL;
8662 	} else
8663 		channel = fwrq->m;
8664 
8665 	if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8666 		return -EINVAL;
8667 
8668 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8669 		i = libipw_channel_to_index(priv->ieee, channel);
8670 		if (i == -1)
8671 			return -EINVAL;
8672 
8673 		flags = (band == LIBIPW_24GHZ_BAND) ?
8674 		    geo->bg[i].flags : geo->a[i].flags;
8675 		if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8676 			IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8677 			return -EINVAL;
8678 		}
8679 	}
8680 
8681 	IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8682 	mutex_lock(&priv->mutex);
8683 	ret = ipw_set_channel(priv, channel);
8684 	mutex_unlock(&priv->mutex);
8685 	return ret;
8686 }
8687 
8688 static int ipw_wx_get_freq(struct net_device *dev,
8689 			   struct iw_request_info *info,
8690 			   union iwreq_data *wrqu, char *extra)
8691 {
8692 	struct ipw_priv *priv = libipw_priv(dev);
8693 
8694 	wrqu->freq.e = 0;
8695 
8696 	/* If we are associated, trying to associate, or have a statically
8697 	 * configured CHANNEL then return that; otherwise return ANY */
8698 	mutex_lock(&priv->mutex);
8699 	if (priv->config & CFG_STATIC_CHANNEL ||
8700 	    priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8701 		int i;
8702 
8703 		i = libipw_channel_to_index(priv->ieee, priv->channel);
8704 		BUG_ON(i == -1);
8705 		wrqu->freq.e = 1;
8706 
8707 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8708 		case LIBIPW_52GHZ_BAND:
8709 			wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8710 			break;
8711 
8712 		case LIBIPW_24GHZ_BAND:
8713 			wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8714 			break;
8715 
8716 		default:
8717 			BUG();
8718 		}
8719 	} else
8720 		wrqu->freq.m = 0;
8721 
8722 	mutex_unlock(&priv->mutex);
8723 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8724 	return 0;
8725 }
8726 
8727 static int ipw_wx_set_mode(struct net_device *dev,
8728 			   struct iw_request_info *info,
8729 			   union iwreq_data *wrqu, char *extra)
8730 {
8731 	struct ipw_priv *priv = libipw_priv(dev);
8732 	int err = 0;
8733 
8734 	IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8735 
8736 	switch (wrqu->mode) {
8737 #ifdef CONFIG_IPW2200_MONITOR
8738 	case IW_MODE_MONITOR:
8739 #endif
8740 	case IW_MODE_ADHOC:
8741 	case IW_MODE_INFRA:
8742 		break;
8743 	case IW_MODE_AUTO:
8744 		wrqu->mode = IW_MODE_INFRA;
8745 		break;
8746 	default:
8747 		return -EINVAL;
8748 	}
8749 	if (wrqu->mode == priv->ieee->iw_mode)
8750 		return 0;
8751 
8752 	mutex_lock(&priv->mutex);
8753 
8754 	ipw_sw_reset(priv, 0);
8755 
8756 #ifdef CONFIG_IPW2200_MONITOR
8757 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8758 		priv->net_dev->type = ARPHRD_ETHER;
8759 
8760 	if (wrqu->mode == IW_MODE_MONITOR)
8761 #ifdef CONFIG_IPW2200_RADIOTAP
8762 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8763 #else
8764 		priv->net_dev->type = ARPHRD_IEEE80211;
8765 #endif
8766 #endif				/* CONFIG_IPW2200_MONITOR */
8767 
8768 	/* Free the existing firmware and reset the fw_loaded
8769 	 * flag so ipw_load() will bring in the new firmware */
8770 	free_firmware();
8771 
8772 	priv->ieee->iw_mode = wrqu->mode;
8773 
8774 	schedule_work(&priv->adapter_restart);
8775 	mutex_unlock(&priv->mutex);
8776 	return err;
8777 }
8778 
8779 static int ipw_wx_get_mode(struct net_device *dev,
8780 			   struct iw_request_info *info,
8781 			   union iwreq_data *wrqu, char *extra)
8782 {
8783 	struct ipw_priv *priv = libipw_priv(dev);
8784 	mutex_lock(&priv->mutex);
8785 	wrqu->mode = priv->ieee->iw_mode;
8786 	IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8787 	mutex_unlock(&priv->mutex);
8788 	return 0;
8789 }
8790 
8791 /* Values are in microsecond */
8792 static const s32 timeout_duration[] = {
8793 	350000,
8794 	250000,
8795 	75000,
8796 	37000,
8797 	25000,
8798 };
8799 
8800 static const s32 period_duration[] = {
8801 	400000,
8802 	700000,
8803 	1000000,
8804 	1000000,
8805 	1000000
8806 };
8807 
8808 static int ipw_wx_get_range(struct net_device *dev,
8809 			    struct iw_request_info *info,
8810 			    union iwreq_data *wrqu, char *extra)
8811 {
8812 	struct ipw_priv *priv = libipw_priv(dev);
8813 	struct iw_range *range = (struct iw_range *)extra;
8814 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8815 	int i = 0, j;
8816 
8817 	wrqu->data.length = sizeof(*range);
8818 	memset(range, 0, sizeof(*range));
8819 
8820 	/* 54Mbs == ~27 Mb/s real (802.11g) */
8821 	range->throughput = 27 * 1000 * 1000;
8822 
8823 	range->max_qual.qual = 100;
8824 	/* TODO: Find real max RSSI and stick here */
8825 	range->max_qual.level = 0;
8826 	range->max_qual.noise = 0;
8827 	range->max_qual.updated = 7;	/* Updated all three */
8828 
8829 	range->avg_qual.qual = 70;
8830 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8831 	range->avg_qual.level = 0;	/* FIXME to real average level */
8832 	range->avg_qual.noise = 0;
8833 	range->avg_qual.updated = 7;	/* Updated all three */
8834 	mutex_lock(&priv->mutex);
8835 	range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8836 
8837 	for (i = 0; i < range->num_bitrates; i++)
8838 		range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8839 		    500000;
8840 
8841 	range->max_rts = DEFAULT_RTS_THRESHOLD;
8842 	range->min_frag = MIN_FRAG_THRESHOLD;
8843 	range->max_frag = MAX_FRAG_THRESHOLD;
8844 
8845 	range->encoding_size[0] = 5;
8846 	range->encoding_size[1] = 13;
8847 	range->num_encoding_sizes = 2;
8848 	range->max_encoding_tokens = WEP_KEYS;
8849 
8850 	/* Set the Wireless Extension versions */
8851 	range->we_version_compiled = WIRELESS_EXT;
8852 	range->we_version_source = 18;
8853 
8854 	i = 0;
8855 	if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8856 		for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8857 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8858 			    (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8859 				continue;
8860 
8861 			range->freq[i].i = geo->bg[j].channel;
8862 			range->freq[i].m = geo->bg[j].freq * 100000;
8863 			range->freq[i].e = 1;
8864 			i++;
8865 		}
8866 	}
8867 
8868 	if (priv->ieee->mode & IEEE_A) {
8869 		for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8870 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8871 			    (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8872 				continue;
8873 
8874 			range->freq[i].i = geo->a[j].channel;
8875 			range->freq[i].m = geo->a[j].freq * 100000;
8876 			range->freq[i].e = 1;
8877 			i++;
8878 		}
8879 	}
8880 
8881 	range->num_channels = i;
8882 	range->num_frequency = i;
8883 
8884 	mutex_unlock(&priv->mutex);
8885 
8886 	/* Event capability (kernel + driver) */
8887 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8888 				IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8889 				IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8890 				IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8891 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
8892 
8893 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8894 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8895 
8896 	range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8897 
8898 	IPW_DEBUG_WX("GET Range\n");
8899 	return 0;
8900 }
8901 
8902 static int ipw_wx_set_wap(struct net_device *dev,
8903 			  struct iw_request_info *info,
8904 			  union iwreq_data *wrqu, char *extra)
8905 {
8906 	struct ipw_priv *priv = libipw_priv(dev);
8907 
8908 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8909 		return -EINVAL;
8910 	mutex_lock(&priv->mutex);
8911 	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8912 	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8913 		/* we disable mandatory BSSID association */
8914 		IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8915 		priv->config &= ~CFG_STATIC_BSSID;
8916 		IPW_DEBUG_ASSOC("Attempting to associate with new "
8917 				"parameters.\n");
8918 		ipw_associate(priv);
8919 		mutex_unlock(&priv->mutex);
8920 		return 0;
8921 	}
8922 
8923 	priv->config |= CFG_STATIC_BSSID;
8924 	if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8925 		IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8926 		mutex_unlock(&priv->mutex);
8927 		return 0;
8928 	}
8929 
8930 	IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8931 		     wrqu->ap_addr.sa_data);
8932 
8933 	memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8934 
8935 	/* Network configuration changed -- force [re]association */
8936 	IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8937 	if (!ipw_disassociate(priv))
8938 		ipw_associate(priv);
8939 
8940 	mutex_unlock(&priv->mutex);
8941 	return 0;
8942 }
8943 
8944 static int ipw_wx_get_wap(struct net_device *dev,
8945 			  struct iw_request_info *info,
8946 			  union iwreq_data *wrqu, char *extra)
8947 {
8948 	struct ipw_priv *priv = libipw_priv(dev);
8949 
8950 	/* If we are associated, trying to associate, or have a statically
8951 	 * configured BSSID then return that; otherwise return ANY */
8952 	mutex_lock(&priv->mutex);
8953 	if (priv->config & CFG_STATIC_BSSID ||
8954 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8955 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8956 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8957 	} else
8958 		eth_zero_addr(wrqu->ap_addr.sa_data);
8959 
8960 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8961 		     wrqu->ap_addr.sa_data);
8962 	mutex_unlock(&priv->mutex);
8963 	return 0;
8964 }
8965 
8966 static int ipw_wx_set_essid(struct net_device *dev,
8967 			    struct iw_request_info *info,
8968 			    union iwreq_data *wrqu, char *extra)
8969 {
8970 	struct ipw_priv *priv = libipw_priv(dev);
8971         int length;
8972 
8973         mutex_lock(&priv->mutex);
8974 
8975         if (!wrqu->essid.flags)
8976         {
8977                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8978                 ipw_disassociate(priv);
8979                 priv->config &= ~CFG_STATIC_ESSID;
8980                 ipw_associate(priv);
8981                 mutex_unlock(&priv->mutex);
8982                 return 0;
8983         }
8984 
8985 	length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8986 
8987 	priv->config |= CFG_STATIC_ESSID;
8988 
8989 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8990 	    && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8991 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8992 		mutex_unlock(&priv->mutex);
8993 		return 0;
8994 	}
8995 
8996 	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
8997 
8998 	priv->essid_len = length;
8999 	memcpy(priv->essid, extra, priv->essid_len);
9000 
9001 	/* Network configuration changed -- force [re]association */
9002 	IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9003 	if (!ipw_disassociate(priv))
9004 		ipw_associate(priv);
9005 
9006 	mutex_unlock(&priv->mutex);
9007 	return 0;
9008 }
9009 
9010 static int ipw_wx_get_essid(struct net_device *dev,
9011 			    struct iw_request_info *info,
9012 			    union iwreq_data *wrqu, char *extra)
9013 {
9014 	struct ipw_priv *priv = libipw_priv(dev);
9015 
9016 	/* If we are associated, trying to associate, or have a statically
9017 	 * configured ESSID then return that; otherwise return ANY */
9018 	mutex_lock(&priv->mutex);
9019 	if (priv->config & CFG_STATIC_ESSID ||
9020 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9021 		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9022 			     priv->essid_len, priv->essid);
9023 		memcpy(extra, priv->essid, priv->essid_len);
9024 		wrqu->essid.length = priv->essid_len;
9025 		wrqu->essid.flags = 1;	/* active */
9026 	} else {
9027 		IPW_DEBUG_WX("Getting essid: ANY\n");
9028 		wrqu->essid.length = 0;
9029 		wrqu->essid.flags = 0;	/* active */
9030 	}
9031 	mutex_unlock(&priv->mutex);
9032 	return 0;
9033 }
9034 
9035 static int ipw_wx_set_nick(struct net_device *dev,
9036 			   struct iw_request_info *info,
9037 			   union iwreq_data *wrqu, char *extra)
9038 {
9039 	struct ipw_priv *priv = libipw_priv(dev);
9040 
9041 	IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9042 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9043 		return -E2BIG;
9044 	mutex_lock(&priv->mutex);
9045 	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9046 	memset(priv->nick, 0, sizeof(priv->nick));
9047 	memcpy(priv->nick, extra, wrqu->data.length);
9048 	IPW_DEBUG_TRACE("<<\n");
9049 	mutex_unlock(&priv->mutex);
9050 	return 0;
9051 
9052 }
9053 
9054 static int ipw_wx_get_nick(struct net_device *dev,
9055 			   struct iw_request_info *info,
9056 			   union iwreq_data *wrqu, char *extra)
9057 {
9058 	struct ipw_priv *priv = libipw_priv(dev);
9059 	IPW_DEBUG_WX("Getting nick\n");
9060 	mutex_lock(&priv->mutex);
9061 	wrqu->data.length = strlen(priv->nick);
9062 	memcpy(extra, priv->nick, wrqu->data.length);
9063 	wrqu->data.flags = 1;	/* active */
9064 	mutex_unlock(&priv->mutex);
9065 	return 0;
9066 }
9067 
9068 static int ipw_wx_set_sens(struct net_device *dev,
9069 			    struct iw_request_info *info,
9070 			    union iwreq_data *wrqu, char *extra)
9071 {
9072 	struct ipw_priv *priv = libipw_priv(dev);
9073 	int err = 0;
9074 
9075 	IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9076 	IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9077 	mutex_lock(&priv->mutex);
9078 
9079 	if (wrqu->sens.fixed == 0)
9080 	{
9081 		priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9082 		priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9083 		goto out;
9084 	}
9085 	if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9086 	    (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9087 		err = -EINVAL;
9088 		goto out;
9089 	}
9090 
9091 	priv->roaming_threshold = wrqu->sens.value;
9092 	priv->disassociate_threshold = 3*wrqu->sens.value;
9093       out:
9094 	mutex_unlock(&priv->mutex);
9095 	return err;
9096 }
9097 
9098 static int ipw_wx_get_sens(struct net_device *dev,
9099 			    struct iw_request_info *info,
9100 			    union iwreq_data *wrqu, char *extra)
9101 {
9102 	struct ipw_priv *priv = libipw_priv(dev);
9103 	mutex_lock(&priv->mutex);
9104 	wrqu->sens.fixed = 1;
9105 	wrqu->sens.value = priv->roaming_threshold;
9106 	mutex_unlock(&priv->mutex);
9107 
9108 	IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9109 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9110 
9111 	return 0;
9112 }
9113 
9114 static int ipw_wx_set_rate(struct net_device *dev,
9115 			   struct iw_request_info *info,
9116 			   union iwreq_data *wrqu, char *extra)
9117 {
9118 	/* TODO: We should use semaphores or locks for access to priv */
9119 	struct ipw_priv *priv = libipw_priv(dev);
9120 	u32 target_rate = wrqu->bitrate.value;
9121 	u32 fixed, mask;
9122 
9123 	/* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9124 	/* value = X, fixed = 1 means only rate X */
9125 	/* value = X, fixed = 0 means all rates lower equal X */
9126 
9127 	if (target_rate == -1) {
9128 		fixed = 0;
9129 		mask = LIBIPW_DEFAULT_RATES_MASK;
9130 		/* Now we should reassociate */
9131 		goto apply;
9132 	}
9133 
9134 	mask = 0;
9135 	fixed = wrqu->bitrate.fixed;
9136 
9137 	if (target_rate == 1000000 || !fixed)
9138 		mask |= LIBIPW_CCK_RATE_1MB_MASK;
9139 	if (target_rate == 1000000)
9140 		goto apply;
9141 
9142 	if (target_rate == 2000000 || !fixed)
9143 		mask |= LIBIPW_CCK_RATE_2MB_MASK;
9144 	if (target_rate == 2000000)
9145 		goto apply;
9146 
9147 	if (target_rate == 5500000 || !fixed)
9148 		mask |= LIBIPW_CCK_RATE_5MB_MASK;
9149 	if (target_rate == 5500000)
9150 		goto apply;
9151 
9152 	if (target_rate == 6000000 || !fixed)
9153 		mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9154 	if (target_rate == 6000000)
9155 		goto apply;
9156 
9157 	if (target_rate == 9000000 || !fixed)
9158 		mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9159 	if (target_rate == 9000000)
9160 		goto apply;
9161 
9162 	if (target_rate == 11000000 || !fixed)
9163 		mask |= LIBIPW_CCK_RATE_11MB_MASK;
9164 	if (target_rate == 11000000)
9165 		goto apply;
9166 
9167 	if (target_rate == 12000000 || !fixed)
9168 		mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9169 	if (target_rate == 12000000)
9170 		goto apply;
9171 
9172 	if (target_rate == 18000000 || !fixed)
9173 		mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9174 	if (target_rate == 18000000)
9175 		goto apply;
9176 
9177 	if (target_rate == 24000000 || !fixed)
9178 		mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9179 	if (target_rate == 24000000)
9180 		goto apply;
9181 
9182 	if (target_rate == 36000000 || !fixed)
9183 		mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9184 	if (target_rate == 36000000)
9185 		goto apply;
9186 
9187 	if (target_rate == 48000000 || !fixed)
9188 		mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9189 	if (target_rate == 48000000)
9190 		goto apply;
9191 
9192 	if (target_rate == 54000000 || !fixed)
9193 		mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9194 	if (target_rate == 54000000)
9195 		goto apply;
9196 
9197 	IPW_DEBUG_WX("invalid rate specified, returning error\n");
9198 	return -EINVAL;
9199 
9200       apply:
9201 	IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9202 		     mask, fixed ? "fixed" : "sub-rates");
9203 	mutex_lock(&priv->mutex);
9204 	if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9205 		priv->config &= ~CFG_FIXED_RATE;
9206 		ipw_set_fixed_rate(priv, priv->ieee->mode);
9207 	} else
9208 		priv->config |= CFG_FIXED_RATE;
9209 
9210 	if (priv->rates_mask == mask) {
9211 		IPW_DEBUG_WX("Mask set to current mask.\n");
9212 		mutex_unlock(&priv->mutex);
9213 		return 0;
9214 	}
9215 
9216 	priv->rates_mask = mask;
9217 
9218 	/* Network configuration changed -- force [re]association */
9219 	IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9220 	if (!ipw_disassociate(priv))
9221 		ipw_associate(priv);
9222 
9223 	mutex_unlock(&priv->mutex);
9224 	return 0;
9225 }
9226 
9227 static int ipw_wx_get_rate(struct net_device *dev,
9228 			   struct iw_request_info *info,
9229 			   union iwreq_data *wrqu, char *extra)
9230 {
9231 	struct ipw_priv *priv = libipw_priv(dev);
9232 	mutex_lock(&priv->mutex);
9233 	wrqu->bitrate.value = priv->last_rate;
9234 	wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9235 	mutex_unlock(&priv->mutex);
9236 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9237 	return 0;
9238 }
9239 
9240 static int ipw_wx_set_rts(struct net_device *dev,
9241 			  struct iw_request_info *info,
9242 			  union iwreq_data *wrqu, char *extra)
9243 {
9244 	struct ipw_priv *priv = libipw_priv(dev);
9245 	mutex_lock(&priv->mutex);
9246 	if (wrqu->rts.disabled || !wrqu->rts.fixed)
9247 		priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9248 	else {
9249 		if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9250 		    wrqu->rts.value > MAX_RTS_THRESHOLD) {
9251 			mutex_unlock(&priv->mutex);
9252 			return -EINVAL;
9253 		}
9254 		priv->rts_threshold = wrqu->rts.value;
9255 	}
9256 
9257 	ipw_send_rts_threshold(priv, priv->rts_threshold);
9258 	mutex_unlock(&priv->mutex);
9259 	IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9260 	return 0;
9261 }
9262 
9263 static int ipw_wx_get_rts(struct net_device *dev,
9264 			  struct iw_request_info *info,
9265 			  union iwreq_data *wrqu, char *extra)
9266 {
9267 	struct ipw_priv *priv = libipw_priv(dev);
9268 	mutex_lock(&priv->mutex);
9269 	wrqu->rts.value = priv->rts_threshold;
9270 	wrqu->rts.fixed = 0;	/* no auto select */
9271 	wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9272 	mutex_unlock(&priv->mutex);
9273 	IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9274 	return 0;
9275 }
9276 
9277 static int ipw_wx_set_txpow(struct net_device *dev,
9278 			    struct iw_request_info *info,
9279 			    union iwreq_data *wrqu, char *extra)
9280 {
9281 	struct ipw_priv *priv = libipw_priv(dev);
9282 	int err = 0;
9283 
9284 	mutex_lock(&priv->mutex);
9285 	if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9286 		err = -EINPROGRESS;
9287 		goto out;
9288 	}
9289 
9290 	if (!wrqu->power.fixed)
9291 		wrqu->power.value = IPW_TX_POWER_DEFAULT;
9292 
9293 	if (wrqu->power.flags != IW_TXPOW_DBM) {
9294 		err = -EINVAL;
9295 		goto out;
9296 	}
9297 
9298 	if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9299 	    (wrqu->power.value < IPW_TX_POWER_MIN)) {
9300 		err = -EINVAL;
9301 		goto out;
9302 	}
9303 
9304 	priv->tx_power = wrqu->power.value;
9305 	err = ipw_set_tx_power(priv);
9306       out:
9307 	mutex_unlock(&priv->mutex);
9308 	return err;
9309 }
9310 
9311 static int ipw_wx_get_txpow(struct net_device *dev,
9312 			    struct iw_request_info *info,
9313 			    union iwreq_data *wrqu, char *extra)
9314 {
9315 	struct ipw_priv *priv = libipw_priv(dev);
9316 	mutex_lock(&priv->mutex);
9317 	wrqu->power.value = priv->tx_power;
9318 	wrqu->power.fixed = 1;
9319 	wrqu->power.flags = IW_TXPOW_DBM;
9320 	wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9321 	mutex_unlock(&priv->mutex);
9322 
9323 	IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9324 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9325 
9326 	return 0;
9327 }
9328 
9329 static int ipw_wx_set_frag(struct net_device *dev,
9330 			   struct iw_request_info *info,
9331 			   union iwreq_data *wrqu, char *extra)
9332 {
9333 	struct ipw_priv *priv = libipw_priv(dev);
9334 	mutex_lock(&priv->mutex);
9335 	if (wrqu->frag.disabled || !wrqu->frag.fixed)
9336 		priv->ieee->fts = DEFAULT_FTS;
9337 	else {
9338 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9339 		    wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9340 			mutex_unlock(&priv->mutex);
9341 			return -EINVAL;
9342 		}
9343 
9344 		priv->ieee->fts = wrqu->frag.value & ~0x1;
9345 	}
9346 
9347 	ipw_send_frag_threshold(priv, wrqu->frag.value);
9348 	mutex_unlock(&priv->mutex);
9349 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9350 	return 0;
9351 }
9352 
9353 static int ipw_wx_get_frag(struct net_device *dev,
9354 			   struct iw_request_info *info,
9355 			   union iwreq_data *wrqu, char *extra)
9356 {
9357 	struct ipw_priv *priv = libipw_priv(dev);
9358 	mutex_lock(&priv->mutex);
9359 	wrqu->frag.value = priv->ieee->fts;
9360 	wrqu->frag.fixed = 0;	/* no auto select */
9361 	wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9362 	mutex_unlock(&priv->mutex);
9363 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9364 
9365 	return 0;
9366 }
9367 
9368 static int ipw_wx_set_retry(struct net_device *dev,
9369 			    struct iw_request_info *info,
9370 			    union iwreq_data *wrqu, char *extra)
9371 {
9372 	struct ipw_priv *priv = libipw_priv(dev);
9373 
9374 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9375 		return -EINVAL;
9376 
9377 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9378 		return 0;
9379 
9380 	if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9381 		return -EINVAL;
9382 
9383 	mutex_lock(&priv->mutex);
9384 	if (wrqu->retry.flags & IW_RETRY_SHORT)
9385 		priv->short_retry_limit = (u8) wrqu->retry.value;
9386 	else if (wrqu->retry.flags & IW_RETRY_LONG)
9387 		priv->long_retry_limit = (u8) wrqu->retry.value;
9388 	else {
9389 		priv->short_retry_limit = (u8) wrqu->retry.value;
9390 		priv->long_retry_limit = (u8) wrqu->retry.value;
9391 	}
9392 
9393 	ipw_send_retry_limit(priv, priv->short_retry_limit,
9394 			     priv->long_retry_limit);
9395 	mutex_unlock(&priv->mutex);
9396 	IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9397 		     priv->short_retry_limit, priv->long_retry_limit);
9398 	return 0;
9399 }
9400 
9401 static int ipw_wx_get_retry(struct net_device *dev,
9402 			    struct iw_request_info *info,
9403 			    union iwreq_data *wrqu, char *extra)
9404 {
9405 	struct ipw_priv *priv = libipw_priv(dev);
9406 
9407 	mutex_lock(&priv->mutex);
9408 	wrqu->retry.disabled = 0;
9409 
9410 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9411 		mutex_unlock(&priv->mutex);
9412 		return -EINVAL;
9413 	}
9414 
9415 	if (wrqu->retry.flags & IW_RETRY_LONG) {
9416 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9417 		wrqu->retry.value = priv->long_retry_limit;
9418 	} else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9419 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9420 		wrqu->retry.value = priv->short_retry_limit;
9421 	} else {
9422 		wrqu->retry.flags = IW_RETRY_LIMIT;
9423 		wrqu->retry.value = priv->short_retry_limit;
9424 	}
9425 	mutex_unlock(&priv->mutex);
9426 
9427 	IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9428 
9429 	return 0;
9430 }
9431 
9432 static int ipw_wx_set_scan(struct net_device *dev,
9433 			   struct iw_request_info *info,
9434 			   union iwreq_data *wrqu, char *extra)
9435 {
9436 	struct ipw_priv *priv = libipw_priv(dev);
9437 	struct iw_scan_req *req = (struct iw_scan_req *)extra;
9438 	struct delayed_work *work = NULL;
9439 
9440 	mutex_lock(&priv->mutex);
9441 
9442 	priv->user_requested_scan = 1;
9443 
9444 	if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9445 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9446 			int len = min((int)req->essid_len,
9447 			              (int)sizeof(priv->direct_scan_ssid));
9448 			memcpy(priv->direct_scan_ssid, req->essid, len);
9449 			priv->direct_scan_ssid_len = len;
9450 			work = &priv->request_direct_scan;
9451 		} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9452 			work = &priv->request_passive_scan;
9453 		}
9454 	} else {
9455 		/* Normal active broadcast scan */
9456 		work = &priv->request_scan;
9457 	}
9458 
9459 	mutex_unlock(&priv->mutex);
9460 
9461 	IPW_DEBUG_WX("Start scan\n");
9462 
9463 	schedule_delayed_work(work, 0);
9464 
9465 	return 0;
9466 }
9467 
9468 static int ipw_wx_get_scan(struct net_device *dev,
9469 			   struct iw_request_info *info,
9470 			   union iwreq_data *wrqu, char *extra)
9471 {
9472 	struct ipw_priv *priv = libipw_priv(dev);
9473 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9474 }
9475 
9476 static int ipw_wx_set_encode(struct net_device *dev,
9477 			     struct iw_request_info *info,
9478 			     union iwreq_data *wrqu, char *key)
9479 {
9480 	struct ipw_priv *priv = libipw_priv(dev);
9481 	int ret;
9482 	u32 cap = priv->capability;
9483 
9484 	mutex_lock(&priv->mutex);
9485 	ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9486 
9487 	/* In IBSS mode, we need to notify the firmware to update
9488 	 * the beacon info after we changed the capability. */
9489 	if (cap != priv->capability &&
9490 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
9491 	    priv->status & STATUS_ASSOCIATED)
9492 		ipw_disassociate(priv);
9493 
9494 	mutex_unlock(&priv->mutex);
9495 	return ret;
9496 }
9497 
9498 static int ipw_wx_get_encode(struct net_device *dev,
9499 			     struct iw_request_info *info,
9500 			     union iwreq_data *wrqu, char *key)
9501 {
9502 	struct ipw_priv *priv = libipw_priv(dev);
9503 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9504 }
9505 
9506 static int ipw_wx_set_power(struct net_device *dev,
9507 			    struct iw_request_info *info,
9508 			    union iwreq_data *wrqu, char *extra)
9509 {
9510 	struct ipw_priv *priv = libipw_priv(dev);
9511 	int err;
9512 	mutex_lock(&priv->mutex);
9513 	if (wrqu->power.disabled) {
9514 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9515 		err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9516 		if (err) {
9517 			IPW_DEBUG_WX("failed setting power mode.\n");
9518 			mutex_unlock(&priv->mutex);
9519 			return err;
9520 		}
9521 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9522 		mutex_unlock(&priv->mutex);
9523 		return 0;
9524 	}
9525 
9526 	switch (wrqu->power.flags & IW_POWER_MODE) {
9527 	case IW_POWER_ON:	/* If not specified */
9528 	case IW_POWER_MODE:	/* If set all mask */
9529 	case IW_POWER_ALL_R:	/* If explicitly state all */
9530 		break;
9531 	default:		/* Otherwise we don't support it */
9532 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9533 			     wrqu->power.flags);
9534 		mutex_unlock(&priv->mutex);
9535 		return -EOPNOTSUPP;
9536 	}
9537 
9538 	/* If the user hasn't specified a power management mode yet, default
9539 	 * to BATTERY */
9540 	if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9541 		priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9542 	else
9543 		priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9544 
9545 	err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9546 	if (err) {
9547 		IPW_DEBUG_WX("failed setting power mode.\n");
9548 		mutex_unlock(&priv->mutex);
9549 		return err;
9550 	}
9551 
9552 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9553 	mutex_unlock(&priv->mutex);
9554 	return 0;
9555 }
9556 
9557 static int ipw_wx_get_power(struct net_device *dev,
9558 			    struct iw_request_info *info,
9559 			    union iwreq_data *wrqu, char *extra)
9560 {
9561 	struct ipw_priv *priv = libipw_priv(dev);
9562 	mutex_lock(&priv->mutex);
9563 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9564 		wrqu->power.disabled = 1;
9565 	else
9566 		wrqu->power.disabled = 0;
9567 
9568 	mutex_unlock(&priv->mutex);
9569 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9570 
9571 	return 0;
9572 }
9573 
9574 static int ipw_wx_set_powermode(struct net_device *dev,
9575 				struct iw_request_info *info,
9576 				union iwreq_data *wrqu, char *extra)
9577 {
9578 	struct ipw_priv *priv = libipw_priv(dev);
9579 	int mode = *(int *)extra;
9580 	int err;
9581 
9582 	mutex_lock(&priv->mutex);
9583 	if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9584 		mode = IPW_POWER_AC;
9585 
9586 	if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9587 		err = ipw_send_power_mode(priv, mode);
9588 		if (err) {
9589 			IPW_DEBUG_WX("failed setting power mode.\n");
9590 			mutex_unlock(&priv->mutex);
9591 			return err;
9592 		}
9593 		priv->power_mode = IPW_POWER_ENABLED | mode;
9594 	}
9595 	mutex_unlock(&priv->mutex);
9596 	return 0;
9597 }
9598 
9599 #define MAX_WX_STRING 80
9600 static int ipw_wx_get_powermode(struct net_device *dev,
9601 				struct iw_request_info *info,
9602 				union iwreq_data *wrqu, char *extra)
9603 {
9604 	struct ipw_priv *priv = libipw_priv(dev);
9605 	int level = IPW_POWER_LEVEL(priv->power_mode);
9606 	char *p = extra;
9607 
9608 	p += scnprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9609 
9610 	switch (level) {
9611 	case IPW_POWER_AC:
9612 		p += scnprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9613 		break;
9614 	case IPW_POWER_BATTERY:
9615 		p += scnprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9616 		break;
9617 	default:
9618 		p += scnprintf(p, MAX_WX_STRING - (p - extra),
9619 			      "(Timeout %dms, Period %dms)",
9620 			      timeout_duration[level - 1] / 1000,
9621 			      period_duration[level - 1] / 1000);
9622 	}
9623 
9624 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9625 		p += scnprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9626 
9627 	wrqu->data.length = p - extra + 1;
9628 
9629 	return 0;
9630 }
9631 
9632 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9633 				    struct iw_request_info *info,
9634 				    union iwreq_data *wrqu, char *extra)
9635 {
9636 	struct ipw_priv *priv = libipw_priv(dev);
9637 	int mode = *(int *)extra;
9638 	u8 band = 0, modulation = 0;
9639 
9640 	if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9641 		IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9642 		return -EINVAL;
9643 	}
9644 	mutex_lock(&priv->mutex);
9645 	if (priv->adapter == IPW_2915ABG) {
9646 		priv->ieee->abg_true = 1;
9647 		if (mode & IEEE_A) {
9648 			band |= LIBIPW_52GHZ_BAND;
9649 			modulation |= LIBIPW_OFDM_MODULATION;
9650 		} else
9651 			priv->ieee->abg_true = 0;
9652 	} else {
9653 		if (mode & IEEE_A) {
9654 			IPW_WARNING("Attempt to set 2200BG into "
9655 				    "802.11a mode\n");
9656 			mutex_unlock(&priv->mutex);
9657 			return -EINVAL;
9658 		}
9659 
9660 		priv->ieee->abg_true = 0;
9661 	}
9662 
9663 	if (mode & IEEE_B) {
9664 		band |= LIBIPW_24GHZ_BAND;
9665 		modulation |= LIBIPW_CCK_MODULATION;
9666 	} else
9667 		priv->ieee->abg_true = 0;
9668 
9669 	if (mode & IEEE_G) {
9670 		band |= LIBIPW_24GHZ_BAND;
9671 		modulation |= LIBIPW_OFDM_MODULATION;
9672 	} else
9673 		priv->ieee->abg_true = 0;
9674 
9675 	priv->ieee->mode = mode;
9676 	priv->ieee->freq_band = band;
9677 	priv->ieee->modulation = modulation;
9678 	init_supported_rates(priv, &priv->rates);
9679 
9680 	/* Network configuration changed -- force [re]association */
9681 	IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9682 	if (!ipw_disassociate(priv)) {
9683 		ipw_send_supported_rates(priv, &priv->rates);
9684 		ipw_associate(priv);
9685 	}
9686 
9687 	/* Update the band LEDs */
9688 	ipw_led_band_on(priv);
9689 
9690 	IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9691 		     mode & IEEE_A ? 'a' : '.',
9692 		     mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9693 	mutex_unlock(&priv->mutex);
9694 	return 0;
9695 }
9696 
9697 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9698 				    struct iw_request_info *info,
9699 				    union iwreq_data *wrqu, char *extra)
9700 {
9701 	struct ipw_priv *priv = libipw_priv(dev);
9702 	mutex_lock(&priv->mutex);
9703 	switch (priv->ieee->mode) {
9704 	case IEEE_A:
9705 		strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9706 		break;
9707 	case IEEE_B:
9708 		strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9709 		break;
9710 	case IEEE_A | IEEE_B:
9711 		strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9712 		break;
9713 	case IEEE_G:
9714 		strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9715 		break;
9716 	case IEEE_A | IEEE_G:
9717 		strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9718 		break;
9719 	case IEEE_B | IEEE_G:
9720 		strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9721 		break;
9722 	case IEEE_A | IEEE_B | IEEE_G:
9723 		strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9724 		break;
9725 	default:
9726 		strncpy(extra, "unknown", MAX_WX_STRING);
9727 		break;
9728 	}
9729 	extra[MAX_WX_STRING - 1] = '\0';
9730 
9731 	IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9732 
9733 	wrqu->data.length = strlen(extra) + 1;
9734 	mutex_unlock(&priv->mutex);
9735 
9736 	return 0;
9737 }
9738 
9739 static int ipw_wx_set_preamble(struct net_device *dev,
9740 			       struct iw_request_info *info,
9741 			       union iwreq_data *wrqu, char *extra)
9742 {
9743 	struct ipw_priv *priv = libipw_priv(dev);
9744 	int mode = *(int *)extra;
9745 	mutex_lock(&priv->mutex);
9746 	/* Switching from SHORT -> LONG requires a disassociation */
9747 	if (mode == 1) {
9748 		if (!(priv->config & CFG_PREAMBLE_LONG)) {
9749 			priv->config |= CFG_PREAMBLE_LONG;
9750 
9751 			/* Network configuration changed -- force [re]association */
9752 			IPW_DEBUG_ASSOC
9753 			    ("[re]association triggered due to preamble change.\n");
9754 			if (!ipw_disassociate(priv))
9755 				ipw_associate(priv);
9756 		}
9757 		goto done;
9758 	}
9759 
9760 	if (mode == 0) {
9761 		priv->config &= ~CFG_PREAMBLE_LONG;
9762 		goto done;
9763 	}
9764 	mutex_unlock(&priv->mutex);
9765 	return -EINVAL;
9766 
9767       done:
9768 	mutex_unlock(&priv->mutex);
9769 	return 0;
9770 }
9771 
9772 static int ipw_wx_get_preamble(struct net_device *dev,
9773 			       struct iw_request_info *info,
9774 			       union iwreq_data *wrqu, char *extra)
9775 {
9776 	struct ipw_priv *priv = libipw_priv(dev);
9777 	mutex_lock(&priv->mutex);
9778 	if (priv->config & CFG_PREAMBLE_LONG)
9779 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9780 	else
9781 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9782 	mutex_unlock(&priv->mutex);
9783 	return 0;
9784 }
9785 
9786 #ifdef CONFIG_IPW2200_MONITOR
9787 static int ipw_wx_set_monitor(struct net_device *dev,
9788 			      struct iw_request_info *info,
9789 			      union iwreq_data *wrqu, char *extra)
9790 {
9791 	struct ipw_priv *priv = libipw_priv(dev);
9792 	int *parms = (int *)extra;
9793 	int enable = (parms[0] > 0);
9794 	mutex_lock(&priv->mutex);
9795 	IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9796 	if (enable) {
9797 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9798 #ifdef CONFIG_IPW2200_RADIOTAP
9799 			priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9800 #else
9801 			priv->net_dev->type = ARPHRD_IEEE80211;
9802 #endif
9803 			schedule_work(&priv->adapter_restart);
9804 		}
9805 
9806 		ipw_set_channel(priv, parms[1]);
9807 	} else {
9808 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9809 			mutex_unlock(&priv->mutex);
9810 			return 0;
9811 		}
9812 		priv->net_dev->type = ARPHRD_ETHER;
9813 		schedule_work(&priv->adapter_restart);
9814 	}
9815 	mutex_unlock(&priv->mutex);
9816 	return 0;
9817 }
9818 
9819 #endif				/* CONFIG_IPW2200_MONITOR */
9820 
9821 static int ipw_wx_reset(struct net_device *dev,
9822 			struct iw_request_info *info,
9823 			union iwreq_data *wrqu, char *extra)
9824 {
9825 	struct ipw_priv *priv = libipw_priv(dev);
9826 	IPW_DEBUG_WX("RESET\n");
9827 	schedule_work(&priv->adapter_restart);
9828 	return 0;
9829 }
9830 
9831 static int ipw_wx_sw_reset(struct net_device *dev,
9832 			   struct iw_request_info *info,
9833 			   union iwreq_data *wrqu, char *extra)
9834 {
9835 	struct ipw_priv *priv = libipw_priv(dev);
9836 	union iwreq_data wrqu_sec = {
9837 		.encoding = {
9838 			     .flags = IW_ENCODE_DISABLED,
9839 			     },
9840 	};
9841 	int ret;
9842 
9843 	IPW_DEBUG_WX("SW_RESET\n");
9844 
9845 	mutex_lock(&priv->mutex);
9846 
9847 	ret = ipw_sw_reset(priv, 2);
9848 	if (!ret) {
9849 		free_firmware();
9850 		ipw_adapter_restart(priv);
9851 	}
9852 
9853 	/* The SW reset bit might have been toggled on by the 'disable'
9854 	 * module parameter, so take appropriate action */
9855 	ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9856 
9857 	mutex_unlock(&priv->mutex);
9858 	libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9859 	mutex_lock(&priv->mutex);
9860 
9861 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
9862 		/* Configuration likely changed -- force [re]association */
9863 		IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9864 				"reset.\n");
9865 		if (!ipw_disassociate(priv))
9866 			ipw_associate(priv);
9867 	}
9868 
9869 	mutex_unlock(&priv->mutex);
9870 
9871 	return 0;
9872 }
9873 
9874 /* Rebase the WE IOCTLs to zero for the handler array */
9875 static iw_handler ipw_wx_handlers[] = {
9876 	IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9877 	IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9878 	IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9879 	IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9880 	IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9881 	IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9882 	IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9883 	IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9884 	IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9885 	IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9886 	IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9887 	IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9888 	IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9889 	IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9890 	IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9891 	IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9892 	IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9893 	IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9894 	IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9895 	IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9896 	IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9897 	IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9898 	IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9899 	IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9900 	IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9901 	IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9902 	IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9903 	IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9904 	IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9905 	IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9906 	IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9907 	IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9908 	IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9909 	IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9910 	IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9911 	IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9912 	IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9913 	IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9914 	IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9915 	IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9916 	IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9917 };
9918 
9919 enum {
9920 	IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9921 	IPW_PRIV_GET_POWER,
9922 	IPW_PRIV_SET_MODE,
9923 	IPW_PRIV_GET_MODE,
9924 	IPW_PRIV_SET_PREAMBLE,
9925 	IPW_PRIV_GET_PREAMBLE,
9926 	IPW_PRIV_RESET,
9927 	IPW_PRIV_SW_RESET,
9928 #ifdef CONFIG_IPW2200_MONITOR
9929 	IPW_PRIV_SET_MONITOR,
9930 #endif
9931 };
9932 
9933 static struct iw_priv_args ipw_priv_args[] = {
9934 	{
9935 	 .cmd = IPW_PRIV_SET_POWER,
9936 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9937 	 .name = "set_power"},
9938 	{
9939 	 .cmd = IPW_PRIV_GET_POWER,
9940 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9941 	 .name = "get_power"},
9942 	{
9943 	 .cmd = IPW_PRIV_SET_MODE,
9944 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9945 	 .name = "set_mode"},
9946 	{
9947 	 .cmd = IPW_PRIV_GET_MODE,
9948 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9949 	 .name = "get_mode"},
9950 	{
9951 	 .cmd = IPW_PRIV_SET_PREAMBLE,
9952 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9953 	 .name = "set_preamble"},
9954 	{
9955 	 .cmd = IPW_PRIV_GET_PREAMBLE,
9956 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9957 	 .name = "get_preamble"},
9958 	{
9959 	 IPW_PRIV_RESET,
9960 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9961 	{
9962 	 IPW_PRIV_SW_RESET,
9963 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9964 #ifdef CONFIG_IPW2200_MONITOR
9965 	{
9966 	 IPW_PRIV_SET_MONITOR,
9967 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9968 #endif				/* CONFIG_IPW2200_MONITOR */
9969 };
9970 
9971 static iw_handler ipw_priv_handler[] = {
9972 	ipw_wx_set_powermode,
9973 	ipw_wx_get_powermode,
9974 	ipw_wx_set_wireless_mode,
9975 	ipw_wx_get_wireless_mode,
9976 	ipw_wx_set_preamble,
9977 	ipw_wx_get_preamble,
9978 	ipw_wx_reset,
9979 	ipw_wx_sw_reset,
9980 #ifdef CONFIG_IPW2200_MONITOR
9981 	ipw_wx_set_monitor,
9982 #endif
9983 };
9984 
9985 static const struct iw_handler_def ipw_wx_handler_def = {
9986 	.standard = ipw_wx_handlers,
9987 	.num_standard = ARRAY_SIZE(ipw_wx_handlers),
9988 	.num_private = ARRAY_SIZE(ipw_priv_handler),
9989 	.num_private_args = ARRAY_SIZE(ipw_priv_args),
9990 	.private = ipw_priv_handler,
9991 	.private_args = ipw_priv_args,
9992 	.get_wireless_stats = ipw_get_wireless_stats,
9993 };
9994 
9995 /*
9996  * Get wireless statistics.
9997  * Called by /proc/net/wireless
9998  * Also called by SIOCGIWSTATS
9999  */
10000 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10001 {
10002 	struct ipw_priv *priv = libipw_priv(dev);
10003 	struct iw_statistics *wstats;
10004 
10005 	wstats = &priv->wstats;
10006 
10007 	/* if hw is disabled, then ipw_get_ordinal() can't be called.
10008 	 * netdev->get_wireless_stats seems to be called before fw is
10009 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10010 	 * and associated; if not associcated, the values are all meaningless
10011 	 * anyway, so set them all to NULL and INVALID */
10012 	if (!(priv->status & STATUS_ASSOCIATED)) {
10013 		wstats->miss.beacon = 0;
10014 		wstats->discard.retries = 0;
10015 		wstats->qual.qual = 0;
10016 		wstats->qual.level = 0;
10017 		wstats->qual.noise = 0;
10018 		wstats->qual.updated = 7;
10019 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10020 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10021 		return wstats;
10022 	}
10023 
10024 	wstats->qual.qual = priv->quality;
10025 	wstats->qual.level = priv->exp_avg_rssi;
10026 	wstats->qual.noise = priv->exp_avg_noise;
10027 	wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10028 	    IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10029 
10030 	wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10031 	wstats->discard.retries = priv->last_tx_failures;
10032 	wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10033 
10034 /*	if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10035 	goto fail_get_ordinal;
10036 	wstats->discard.retries += tx_retry; */
10037 
10038 	return wstats;
10039 }
10040 
10041 /* net device stuff */
10042 
10043 static  void init_sys_config(struct ipw_sys_config *sys_config)
10044 {
10045 	memset(sys_config, 0, sizeof(struct ipw_sys_config));
10046 	sys_config->bt_coexistence = 0;
10047 	sys_config->answer_broadcast_ssid_probe = 0;
10048 	sys_config->accept_all_data_frames = 0;
10049 	sys_config->accept_non_directed_frames = 1;
10050 	sys_config->exclude_unicast_unencrypted = 0;
10051 	sys_config->disable_unicast_decryption = 1;
10052 	sys_config->exclude_multicast_unencrypted = 0;
10053 	sys_config->disable_multicast_decryption = 1;
10054 	if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10055 		antenna = CFG_SYS_ANTENNA_BOTH;
10056 	sys_config->antenna_diversity = antenna;
10057 	sys_config->pass_crc_to_host = 0;	/* TODO: See if 1 gives us FCS */
10058 	sys_config->dot11g_auto_detection = 0;
10059 	sys_config->enable_cts_to_self = 0;
10060 	sys_config->bt_coexist_collision_thr = 0;
10061 	sys_config->pass_noise_stats_to_host = 1;	/* 1 -- fix for 256 */
10062 	sys_config->silence_threshold = 0x1e;
10063 }
10064 
10065 static int ipw_net_open(struct net_device *dev)
10066 {
10067 	IPW_DEBUG_INFO("dev->open\n");
10068 	netif_start_queue(dev);
10069 	return 0;
10070 }
10071 
10072 static int ipw_net_stop(struct net_device *dev)
10073 {
10074 	IPW_DEBUG_INFO("dev->close\n");
10075 	netif_stop_queue(dev);
10076 	return 0;
10077 }
10078 
10079 /*
10080 todo:
10081 
10082 modify to send one tfd per fragment instead of using chunking.  otherwise
10083 we need to heavily modify the libipw_skb_to_txb.
10084 */
10085 
10086 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10087 			     int pri)
10088 {
10089 	struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10090 	    txb->fragments[0]->data;
10091 	int i = 0;
10092 	struct tfd_frame *tfd;
10093 #ifdef CONFIG_IPW2200_QOS
10094 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10095 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10096 #else
10097 	struct clx2_tx_queue *txq = &priv->txq[0];
10098 #endif
10099 	struct clx2_queue *q = &txq->q;
10100 	u8 id, hdr_len, unicast;
10101 	int fc;
10102 
10103 	if (!(priv->status & STATUS_ASSOCIATED))
10104 		goto drop;
10105 
10106 	hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10107 	switch (priv->ieee->iw_mode) {
10108 	case IW_MODE_ADHOC:
10109 		unicast = !is_multicast_ether_addr(hdr->addr1);
10110 		id = ipw_find_station(priv, hdr->addr1);
10111 		if (id == IPW_INVALID_STATION) {
10112 			id = ipw_add_station(priv, hdr->addr1);
10113 			if (id == IPW_INVALID_STATION) {
10114 				IPW_WARNING("Attempt to send data to "
10115 					    "invalid cell: %pM\n",
10116 					    hdr->addr1);
10117 				goto drop;
10118 			}
10119 		}
10120 		break;
10121 
10122 	case IW_MODE_INFRA:
10123 	default:
10124 		unicast = !is_multicast_ether_addr(hdr->addr3);
10125 		id = 0;
10126 		break;
10127 	}
10128 
10129 	tfd = &txq->bd[q->first_empty];
10130 	txq->txb[q->first_empty] = txb;
10131 	memset(tfd, 0, sizeof(*tfd));
10132 	tfd->u.data.station_number = id;
10133 
10134 	tfd->control_flags.message_type = TX_FRAME_TYPE;
10135 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10136 
10137 	tfd->u.data.cmd_id = DINO_CMD_TX;
10138 	tfd->u.data.len = cpu_to_le16(txb->payload_size);
10139 
10140 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10141 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10142 	else
10143 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10144 
10145 	if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10146 		tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10147 
10148 	fc = le16_to_cpu(hdr->frame_ctl);
10149 	hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10150 
10151 	memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10152 
10153 	if (likely(unicast))
10154 		tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10155 
10156 	if (txb->encrypted && !priv->ieee->host_encrypt) {
10157 		switch (priv->ieee->sec.level) {
10158 		case SEC_LEVEL_3:
10159 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10160 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10161 			/* XXX: ACK flag must be set for CCMP even if it
10162 			 * is a multicast/broadcast packet, because CCMP
10163 			 * group communication encrypted by GTK is
10164 			 * actually done by the AP. */
10165 			if (!unicast)
10166 				tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10167 
10168 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10169 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10170 			tfd->u.data.key_index = 0;
10171 			tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10172 			break;
10173 		case SEC_LEVEL_2:
10174 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10175 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10176 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10177 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10178 			tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10179 			break;
10180 		case SEC_LEVEL_1:
10181 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10182 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10183 			tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10184 			if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10185 			    40)
10186 				tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10187 			else
10188 				tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10189 			break;
10190 		case SEC_LEVEL_0:
10191 			break;
10192 		default:
10193 			printk(KERN_ERR "Unknown security level %d\n",
10194 			       priv->ieee->sec.level);
10195 			break;
10196 		}
10197 	} else
10198 		/* No hardware encryption */
10199 		tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10200 
10201 #ifdef CONFIG_IPW2200_QOS
10202 	if (fc & IEEE80211_STYPE_QOS_DATA)
10203 		ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10204 #endif				/* CONFIG_IPW2200_QOS */
10205 
10206 	/* payload */
10207 	tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10208 						 txb->nr_frags));
10209 	IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10210 		       txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10211 	for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10212 		IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10213 			       i, le32_to_cpu(tfd->u.data.num_chunks),
10214 			       txb->fragments[i]->len - hdr_len);
10215 		IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10216 			     i, tfd->u.data.num_chunks,
10217 			     txb->fragments[i]->len - hdr_len);
10218 		printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10219 			   txb->fragments[i]->len - hdr_len);
10220 
10221 		tfd->u.data.chunk_ptr[i] =
10222 		    cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10223 					       txb->fragments[i]->data + hdr_len,
10224 					       txb->fragments[i]->len - hdr_len,
10225 					       DMA_TO_DEVICE));
10226 		tfd->u.data.chunk_len[i] =
10227 		    cpu_to_le16(txb->fragments[i]->len - hdr_len);
10228 	}
10229 
10230 	if (i != txb->nr_frags) {
10231 		struct sk_buff *skb;
10232 		u16 remaining_bytes = 0;
10233 		int j;
10234 
10235 		for (j = i; j < txb->nr_frags; j++)
10236 			remaining_bytes += txb->fragments[j]->len - hdr_len;
10237 
10238 		printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10239 		       remaining_bytes);
10240 		skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10241 		if (skb != NULL) {
10242 			tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10243 			for (j = i; j < txb->nr_frags; j++) {
10244 				int size = txb->fragments[j]->len - hdr_len;
10245 
10246 				printk(KERN_INFO "Adding frag %d %d...\n",
10247 				       j, size);
10248 				skb_put_data(skb,
10249 					     txb->fragments[j]->data + hdr_len,
10250 					     size);
10251 			}
10252 			dev_kfree_skb_any(txb->fragments[i]);
10253 			txb->fragments[i] = skb;
10254 			tfd->u.data.chunk_ptr[i] =
10255 			    cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10256 						       skb->data,
10257 						       remaining_bytes,
10258 						       DMA_TO_DEVICE));
10259 
10260 			le32_add_cpu(&tfd->u.data.num_chunks, 1);
10261 		}
10262 	}
10263 
10264 	/* kick DMA */
10265 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10266 	ipw_write32(priv, q->reg_w, q->first_empty);
10267 
10268 	if (ipw_tx_queue_space(q) < q->high_mark)
10269 		netif_stop_queue(priv->net_dev);
10270 
10271 	return NETDEV_TX_OK;
10272 
10273       drop:
10274 	IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10275 	libipw_txb_free(txb);
10276 	return NETDEV_TX_OK;
10277 }
10278 
10279 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10280 {
10281 	struct ipw_priv *priv = libipw_priv(dev);
10282 #ifdef CONFIG_IPW2200_QOS
10283 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10284 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10285 #else
10286 	struct clx2_tx_queue *txq = &priv->txq[0];
10287 #endif				/* CONFIG_IPW2200_QOS */
10288 
10289 	if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10290 		return 1;
10291 
10292 	return 0;
10293 }
10294 
10295 #ifdef CONFIG_IPW2200_PROMISCUOUS
10296 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10297 				      struct libipw_txb *txb)
10298 {
10299 	struct libipw_rx_stats dummystats;
10300 	struct ieee80211_hdr *hdr;
10301 	u8 n;
10302 	u16 filter = priv->prom_priv->filter;
10303 	int hdr_only = 0;
10304 
10305 	if (filter & IPW_PROM_NO_TX)
10306 		return;
10307 
10308 	memset(&dummystats, 0, sizeof(dummystats));
10309 
10310 	/* Filtering of fragment chains is done against the first fragment */
10311 	hdr = (void *)txb->fragments[0]->data;
10312 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10313 		if (filter & IPW_PROM_NO_MGMT)
10314 			return;
10315 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10316 			hdr_only = 1;
10317 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10318 		if (filter & IPW_PROM_NO_CTL)
10319 			return;
10320 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
10321 			hdr_only = 1;
10322 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10323 		if (filter & IPW_PROM_NO_DATA)
10324 			return;
10325 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
10326 			hdr_only = 1;
10327 	}
10328 
10329 	for(n=0; n<txb->nr_frags; ++n) {
10330 		struct sk_buff *src = txb->fragments[n];
10331 		struct sk_buff *dst;
10332 		struct ieee80211_radiotap_header *rt_hdr;
10333 		int len;
10334 
10335 		if (hdr_only) {
10336 			hdr = (void *)src->data;
10337 			len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10338 		} else
10339 			len = src->len;
10340 
10341 		dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10342 		if (!dst)
10343 			continue;
10344 
10345 		rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10346 
10347 		rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10348 		rt_hdr->it_pad = 0;
10349 		rt_hdr->it_present = 0; /* after all, it's just an idea */
10350 		rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10351 
10352 		*(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10353 			ieee80211chan2mhz(priv->channel));
10354 		if (priv->channel > 14) 	/* 802.11a */
10355 			*(__le16*)skb_put(dst, sizeof(u16)) =
10356 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10357 					     IEEE80211_CHAN_5GHZ);
10358 		else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10359 			*(__le16*)skb_put(dst, sizeof(u16)) =
10360 				cpu_to_le16(IEEE80211_CHAN_CCK |
10361 					     IEEE80211_CHAN_2GHZ);
10362 		else 		/* 802.11g */
10363 			*(__le16*)skb_put(dst, sizeof(u16)) =
10364 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10365 				 IEEE80211_CHAN_2GHZ);
10366 
10367 		rt_hdr->it_len = cpu_to_le16(dst->len);
10368 
10369 		skb_copy_from_linear_data(src, skb_put(dst, len), len);
10370 
10371 		if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10372 			dev_kfree_skb_any(dst);
10373 	}
10374 }
10375 #endif
10376 
10377 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10378 					   struct net_device *dev, int pri)
10379 {
10380 	struct ipw_priv *priv = libipw_priv(dev);
10381 	unsigned long flags;
10382 	netdev_tx_t ret;
10383 
10384 	IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10385 	spin_lock_irqsave(&priv->lock, flags);
10386 
10387 #ifdef CONFIG_IPW2200_PROMISCUOUS
10388 	if (rtap_iface && netif_running(priv->prom_net_dev))
10389 		ipw_handle_promiscuous_tx(priv, txb);
10390 #endif
10391 
10392 	ret = ipw_tx_skb(priv, txb, pri);
10393 	if (ret == NETDEV_TX_OK)
10394 		__ipw_led_activity_on(priv);
10395 	spin_unlock_irqrestore(&priv->lock, flags);
10396 
10397 	return ret;
10398 }
10399 
10400 static void ipw_net_set_multicast_list(struct net_device *dev)
10401 {
10402 
10403 }
10404 
10405 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10406 {
10407 	struct ipw_priv *priv = libipw_priv(dev);
10408 	struct sockaddr *addr = p;
10409 
10410 	if (!is_valid_ether_addr(addr->sa_data))
10411 		return -EADDRNOTAVAIL;
10412 	mutex_lock(&priv->mutex);
10413 	priv->config |= CFG_CUSTOM_MAC;
10414 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10415 	printk(KERN_INFO "%s: Setting MAC to %pM\n",
10416 	       priv->net_dev->name, priv->mac_addr);
10417 	schedule_work(&priv->adapter_restart);
10418 	mutex_unlock(&priv->mutex);
10419 	return 0;
10420 }
10421 
10422 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10423 				    struct ethtool_drvinfo *info)
10424 {
10425 	struct ipw_priv *p = libipw_priv(dev);
10426 	char vers[64];
10427 	char date[32];
10428 	u32 len;
10429 
10430 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10431 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10432 
10433 	len = sizeof(vers);
10434 	ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10435 	len = sizeof(date);
10436 	ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10437 
10438 	snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10439 		 vers, date);
10440 	strlcpy(info->bus_info, pci_name(p->pci_dev),
10441 		sizeof(info->bus_info));
10442 }
10443 
10444 static u32 ipw_ethtool_get_link(struct net_device *dev)
10445 {
10446 	struct ipw_priv *priv = libipw_priv(dev);
10447 	return (priv->status & STATUS_ASSOCIATED) != 0;
10448 }
10449 
10450 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10451 {
10452 	return IPW_EEPROM_IMAGE_SIZE;
10453 }
10454 
10455 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10456 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10457 {
10458 	struct ipw_priv *p = libipw_priv(dev);
10459 
10460 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10461 		return -EINVAL;
10462 	mutex_lock(&p->mutex);
10463 	memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10464 	mutex_unlock(&p->mutex);
10465 	return 0;
10466 }
10467 
10468 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10469 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10470 {
10471 	struct ipw_priv *p = libipw_priv(dev);
10472 	int i;
10473 
10474 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10475 		return -EINVAL;
10476 	mutex_lock(&p->mutex);
10477 	memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10478 	for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10479 		ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10480 	mutex_unlock(&p->mutex);
10481 	return 0;
10482 }
10483 
10484 static const struct ethtool_ops ipw_ethtool_ops = {
10485 	.get_link = ipw_ethtool_get_link,
10486 	.get_drvinfo = ipw_ethtool_get_drvinfo,
10487 	.get_eeprom_len = ipw_ethtool_get_eeprom_len,
10488 	.get_eeprom = ipw_ethtool_get_eeprom,
10489 	.set_eeprom = ipw_ethtool_set_eeprom,
10490 };
10491 
10492 static irqreturn_t ipw_isr(int irq, void *data)
10493 {
10494 	struct ipw_priv *priv = data;
10495 	u32 inta, inta_mask;
10496 
10497 	if (!priv)
10498 		return IRQ_NONE;
10499 
10500 	spin_lock(&priv->irq_lock);
10501 
10502 	if (!(priv->status & STATUS_INT_ENABLED)) {
10503 		/* IRQ is disabled */
10504 		goto none;
10505 	}
10506 
10507 	inta = ipw_read32(priv, IPW_INTA_RW);
10508 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10509 
10510 	if (inta == 0xFFFFFFFF) {
10511 		/* Hardware disappeared */
10512 		IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10513 		goto none;
10514 	}
10515 
10516 	if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10517 		/* Shared interrupt */
10518 		goto none;
10519 	}
10520 
10521 	/* tell the device to stop sending interrupts */
10522 	__ipw_disable_interrupts(priv);
10523 
10524 	/* ack current interrupts */
10525 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
10526 	ipw_write32(priv, IPW_INTA_RW, inta);
10527 
10528 	/* Cache INTA value for our tasklet */
10529 	priv->isr_inta = inta;
10530 
10531 	tasklet_schedule(&priv->irq_tasklet);
10532 
10533 	spin_unlock(&priv->irq_lock);
10534 
10535 	return IRQ_HANDLED;
10536       none:
10537 	spin_unlock(&priv->irq_lock);
10538 	return IRQ_NONE;
10539 }
10540 
10541 static void ipw_rf_kill(void *adapter)
10542 {
10543 	struct ipw_priv *priv = adapter;
10544 	unsigned long flags;
10545 
10546 	spin_lock_irqsave(&priv->lock, flags);
10547 
10548 	if (rf_kill_active(priv)) {
10549 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10550 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10551 		goto exit_unlock;
10552 	}
10553 
10554 	/* RF Kill is now disabled, so bring the device back up */
10555 
10556 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
10557 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10558 				  "device\n");
10559 
10560 		/* we can not do an adapter restart while inside an irq lock */
10561 		schedule_work(&priv->adapter_restart);
10562 	} else
10563 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10564 				  "enabled\n");
10565 
10566       exit_unlock:
10567 	spin_unlock_irqrestore(&priv->lock, flags);
10568 }
10569 
10570 static void ipw_bg_rf_kill(struct work_struct *work)
10571 {
10572 	struct ipw_priv *priv =
10573 		container_of(work, struct ipw_priv, rf_kill.work);
10574 	mutex_lock(&priv->mutex);
10575 	ipw_rf_kill(priv);
10576 	mutex_unlock(&priv->mutex);
10577 }
10578 
10579 static void ipw_link_up(struct ipw_priv *priv)
10580 {
10581 	priv->last_seq_num = -1;
10582 	priv->last_frag_num = -1;
10583 	priv->last_packet_time = 0;
10584 
10585 	netif_carrier_on(priv->net_dev);
10586 
10587 	cancel_delayed_work(&priv->request_scan);
10588 	cancel_delayed_work(&priv->request_direct_scan);
10589 	cancel_delayed_work(&priv->request_passive_scan);
10590 	cancel_delayed_work(&priv->scan_event);
10591 	ipw_reset_stats(priv);
10592 	/* Ensure the rate is updated immediately */
10593 	priv->last_rate = ipw_get_current_rate(priv);
10594 	ipw_gather_stats(priv);
10595 	ipw_led_link_up(priv);
10596 	notify_wx_assoc_event(priv);
10597 
10598 	if (priv->config & CFG_BACKGROUND_SCAN)
10599 		schedule_delayed_work(&priv->request_scan, HZ);
10600 }
10601 
10602 static void ipw_bg_link_up(struct work_struct *work)
10603 {
10604 	struct ipw_priv *priv =
10605 		container_of(work, struct ipw_priv, link_up);
10606 	mutex_lock(&priv->mutex);
10607 	ipw_link_up(priv);
10608 	mutex_unlock(&priv->mutex);
10609 }
10610 
10611 static void ipw_link_down(struct ipw_priv *priv)
10612 {
10613 	ipw_led_link_down(priv);
10614 	netif_carrier_off(priv->net_dev);
10615 	notify_wx_assoc_event(priv);
10616 
10617 	/* Cancel any queued work ... */
10618 	cancel_delayed_work(&priv->request_scan);
10619 	cancel_delayed_work(&priv->request_direct_scan);
10620 	cancel_delayed_work(&priv->request_passive_scan);
10621 	cancel_delayed_work(&priv->adhoc_check);
10622 	cancel_delayed_work(&priv->gather_stats);
10623 
10624 	ipw_reset_stats(priv);
10625 
10626 	if (!(priv->status & STATUS_EXIT_PENDING)) {
10627 		/* Queue up another scan... */
10628 		schedule_delayed_work(&priv->request_scan, 0);
10629 	} else
10630 		cancel_delayed_work(&priv->scan_event);
10631 }
10632 
10633 static void ipw_bg_link_down(struct work_struct *work)
10634 {
10635 	struct ipw_priv *priv =
10636 		container_of(work, struct ipw_priv, link_down);
10637 	mutex_lock(&priv->mutex);
10638 	ipw_link_down(priv);
10639 	mutex_unlock(&priv->mutex);
10640 }
10641 
10642 static void ipw_setup_deferred_work(struct ipw_priv *priv)
10643 {
10644 	init_waitqueue_head(&priv->wait_command_queue);
10645 	init_waitqueue_head(&priv->wait_state);
10646 
10647 	INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10648 	INIT_WORK(&priv->associate, ipw_bg_associate);
10649 	INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10650 	INIT_WORK(&priv->system_config, ipw_system_config);
10651 	INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10652 	INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10653 	INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10654 	INIT_WORK(&priv->up, ipw_bg_up);
10655 	INIT_WORK(&priv->down, ipw_bg_down);
10656 	INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10657 	INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10658 	INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10659 	INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10660 	INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10661 	INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10662 	INIT_WORK(&priv->roam, ipw_bg_roam);
10663 	INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10664 	INIT_WORK(&priv->link_up, ipw_bg_link_up);
10665 	INIT_WORK(&priv->link_down, ipw_bg_link_down);
10666 	INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10667 	INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10668 	INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10669 	INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10670 
10671 #ifdef CONFIG_IPW2200_QOS
10672 	INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10673 #endif				/* CONFIG_IPW2200_QOS */
10674 
10675 	tasklet_setup(&priv->irq_tasklet, ipw_irq_tasklet);
10676 }
10677 
10678 static void shim__set_security(struct net_device *dev,
10679 			       struct libipw_security *sec)
10680 {
10681 	struct ipw_priv *priv = libipw_priv(dev);
10682 	int i;
10683 	for (i = 0; i < 4; i++) {
10684 		if (sec->flags & (1 << i)) {
10685 			priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10686 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10687 			if (sec->key_sizes[i] == 0)
10688 				priv->ieee->sec.flags &= ~(1 << i);
10689 			else {
10690 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10691 				       sec->key_sizes[i]);
10692 				priv->ieee->sec.flags |= (1 << i);
10693 			}
10694 			priv->status |= STATUS_SECURITY_UPDATED;
10695 		} else if (sec->level != SEC_LEVEL_1)
10696 			priv->ieee->sec.flags &= ~(1 << i);
10697 	}
10698 
10699 	if (sec->flags & SEC_ACTIVE_KEY) {
10700 		priv->ieee->sec.active_key = sec->active_key;
10701 		priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10702 		priv->status |= STATUS_SECURITY_UPDATED;
10703 	} else
10704 		priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10705 
10706 	if ((sec->flags & SEC_AUTH_MODE) &&
10707 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10708 		priv->ieee->sec.auth_mode = sec->auth_mode;
10709 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
10710 		if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10711 			priv->capability |= CAP_SHARED_KEY;
10712 		else
10713 			priv->capability &= ~CAP_SHARED_KEY;
10714 		priv->status |= STATUS_SECURITY_UPDATED;
10715 	}
10716 
10717 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10718 		priv->ieee->sec.flags |= SEC_ENABLED;
10719 		priv->ieee->sec.enabled = sec->enabled;
10720 		priv->status |= STATUS_SECURITY_UPDATED;
10721 		if (sec->enabled)
10722 			priv->capability |= CAP_PRIVACY_ON;
10723 		else
10724 			priv->capability &= ~CAP_PRIVACY_ON;
10725 	}
10726 
10727 	if (sec->flags & SEC_ENCRYPT)
10728 		priv->ieee->sec.encrypt = sec->encrypt;
10729 
10730 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10731 		priv->ieee->sec.level = sec->level;
10732 		priv->ieee->sec.flags |= SEC_LEVEL;
10733 		priv->status |= STATUS_SECURITY_UPDATED;
10734 	}
10735 
10736 	if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10737 		ipw_set_hwcrypto_keys(priv);
10738 
10739 	/* To match current functionality of ipw2100 (which works well w/
10740 	 * various supplicants, we don't force a disassociate if the
10741 	 * privacy capability changes ... */
10742 #if 0
10743 	if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10744 	    (((priv->assoc_request.capability &
10745 	       cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10746 	     (!(priv->assoc_request.capability &
10747 		cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10748 		IPW_DEBUG_ASSOC("Disassociating due to capability "
10749 				"change.\n");
10750 		ipw_disassociate(priv);
10751 	}
10752 #endif
10753 }
10754 
10755 static int init_supported_rates(struct ipw_priv *priv,
10756 				struct ipw_supported_rates *rates)
10757 {
10758 	/* TODO: Mask out rates based on priv->rates_mask */
10759 
10760 	memset(rates, 0, sizeof(*rates));
10761 	/* configure supported rates */
10762 	switch (priv->ieee->freq_band) {
10763 	case LIBIPW_52GHZ_BAND:
10764 		rates->ieee_mode = IPW_A_MODE;
10765 		rates->purpose = IPW_RATE_CAPABILITIES;
10766 		ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10767 					LIBIPW_OFDM_DEFAULT_RATES_MASK);
10768 		break;
10769 
10770 	default:		/* Mixed or 2.4Ghz */
10771 		rates->ieee_mode = IPW_G_MODE;
10772 		rates->purpose = IPW_RATE_CAPABILITIES;
10773 		ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10774 				       LIBIPW_CCK_DEFAULT_RATES_MASK);
10775 		if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10776 			ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10777 						LIBIPW_OFDM_DEFAULT_RATES_MASK);
10778 		}
10779 		break;
10780 	}
10781 
10782 	return 0;
10783 }
10784 
10785 static int ipw_config(struct ipw_priv *priv)
10786 {
10787 	/* This is only called from ipw_up, which resets/reloads the firmware
10788 	   so, we don't need to first disable the card before we configure
10789 	   it */
10790 	if (ipw_set_tx_power(priv))
10791 		goto error;
10792 
10793 	/* initialize adapter address */
10794 	if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10795 		goto error;
10796 
10797 	/* set basic system config settings */
10798 	init_sys_config(&priv->sys_config);
10799 
10800 	/* Support Bluetooth if we have BT h/w on board, and user wants to.
10801 	 * Does not support BT priority yet (don't abort or defer our Tx) */
10802 	if (bt_coexist) {
10803 		unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10804 
10805 		if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10806 			priv->sys_config.bt_coexistence
10807 			    |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10808 		if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10809 			priv->sys_config.bt_coexistence
10810 			    |= CFG_BT_COEXISTENCE_OOB;
10811 	}
10812 
10813 #ifdef CONFIG_IPW2200_PROMISCUOUS
10814 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10815 		priv->sys_config.accept_all_data_frames = 1;
10816 		priv->sys_config.accept_non_directed_frames = 1;
10817 		priv->sys_config.accept_all_mgmt_bcpr = 1;
10818 		priv->sys_config.accept_all_mgmt_frames = 1;
10819 	}
10820 #endif
10821 
10822 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10823 		priv->sys_config.answer_broadcast_ssid_probe = 1;
10824 	else
10825 		priv->sys_config.answer_broadcast_ssid_probe = 0;
10826 
10827 	if (ipw_send_system_config(priv))
10828 		goto error;
10829 
10830 	init_supported_rates(priv, &priv->rates);
10831 	if (ipw_send_supported_rates(priv, &priv->rates))
10832 		goto error;
10833 
10834 	/* Set request-to-send threshold */
10835 	if (priv->rts_threshold) {
10836 		if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10837 			goto error;
10838 	}
10839 #ifdef CONFIG_IPW2200_QOS
10840 	IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10841 	ipw_qos_activate(priv, NULL);
10842 #endif				/* CONFIG_IPW2200_QOS */
10843 
10844 	if (ipw_set_random_seed(priv))
10845 		goto error;
10846 
10847 	/* final state transition to the RUN state */
10848 	if (ipw_send_host_complete(priv))
10849 		goto error;
10850 
10851 	priv->status |= STATUS_INIT;
10852 
10853 	ipw_led_init(priv);
10854 	ipw_led_radio_on(priv);
10855 	priv->notif_missed_beacons = 0;
10856 
10857 	/* Set hardware WEP key if it is configured. */
10858 	if ((priv->capability & CAP_PRIVACY_ON) &&
10859 	    (priv->ieee->sec.level == SEC_LEVEL_1) &&
10860 	    !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10861 		ipw_set_hwcrypto_keys(priv);
10862 
10863 	return 0;
10864 
10865       error:
10866 	return -EIO;
10867 }
10868 
10869 /*
10870  * NOTE:
10871  *
10872  * These tables have been tested in conjunction with the
10873  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10874  *
10875  * Altering this values, using it on other hardware, or in geographies
10876  * not intended for resale of the above mentioned Intel adapters has
10877  * not been tested.
10878  *
10879  * Remember to update the table in README.ipw2200 when changing this
10880  * table.
10881  *
10882  */
10883 static const struct libipw_geo ipw_geos[] = {
10884 	{			/* Restricted */
10885 	 "---",
10886 	 .bg_channels = 11,
10887 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10888 		{2427, 4}, {2432, 5}, {2437, 6},
10889 		{2442, 7}, {2447, 8}, {2452, 9},
10890 		{2457, 10}, {2462, 11}},
10891 	 },
10892 
10893 	{			/* Custom US/Canada */
10894 	 "ZZF",
10895 	 .bg_channels = 11,
10896 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10897 		{2427, 4}, {2432, 5}, {2437, 6},
10898 		{2442, 7}, {2447, 8}, {2452, 9},
10899 		{2457, 10}, {2462, 11}},
10900 	 .a_channels = 8,
10901 	 .a = {{5180, 36},
10902 	       {5200, 40},
10903 	       {5220, 44},
10904 	       {5240, 48},
10905 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10906 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10907 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10908 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10909 	 },
10910 
10911 	{			/* Rest of World */
10912 	 "ZZD",
10913 	 .bg_channels = 13,
10914 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10915 		{2427, 4}, {2432, 5}, {2437, 6},
10916 		{2442, 7}, {2447, 8}, {2452, 9},
10917 		{2457, 10}, {2462, 11}, {2467, 12},
10918 		{2472, 13}},
10919 	 },
10920 
10921 	{			/* Custom USA & Europe & High */
10922 	 "ZZA",
10923 	 .bg_channels = 11,
10924 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10925 		{2427, 4}, {2432, 5}, {2437, 6},
10926 		{2442, 7}, {2447, 8}, {2452, 9},
10927 		{2457, 10}, {2462, 11}},
10928 	 .a_channels = 13,
10929 	 .a = {{5180, 36},
10930 	       {5200, 40},
10931 	       {5220, 44},
10932 	       {5240, 48},
10933 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10934 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10935 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10936 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10937 	       {5745, 149},
10938 	       {5765, 153},
10939 	       {5785, 157},
10940 	       {5805, 161},
10941 	       {5825, 165}},
10942 	 },
10943 
10944 	{			/* Custom NA & Europe */
10945 	 "ZZB",
10946 	 .bg_channels = 11,
10947 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10948 		{2427, 4}, {2432, 5}, {2437, 6},
10949 		{2442, 7}, {2447, 8}, {2452, 9},
10950 		{2457, 10}, {2462, 11}},
10951 	 .a_channels = 13,
10952 	 .a = {{5180, 36},
10953 	       {5200, 40},
10954 	       {5220, 44},
10955 	       {5240, 48},
10956 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10957 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10958 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10959 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10960 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10961 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10962 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10963 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10964 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10965 	 },
10966 
10967 	{			/* Custom Japan */
10968 	 "ZZC",
10969 	 .bg_channels = 11,
10970 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10971 		{2427, 4}, {2432, 5}, {2437, 6},
10972 		{2442, 7}, {2447, 8}, {2452, 9},
10973 		{2457, 10}, {2462, 11}},
10974 	 .a_channels = 4,
10975 	 .a = {{5170, 34}, {5190, 38},
10976 	       {5210, 42}, {5230, 46}},
10977 	 },
10978 
10979 	{			/* Custom */
10980 	 "ZZM",
10981 	 .bg_channels = 11,
10982 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10983 		{2427, 4}, {2432, 5}, {2437, 6},
10984 		{2442, 7}, {2447, 8}, {2452, 9},
10985 		{2457, 10}, {2462, 11}},
10986 	 },
10987 
10988 	{			/* Europe */
10989 	 "ZZE",
10990 	 .bg_channels = 13,
10991 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10992 		{2427, 4}, {2432, 5}, {2437, 6},
10993 		{2442, 7}, {2447, 8}, {2452, 9},
10994 		{2457, 10}, {2462, 11}, {2467, 12},
10995 		{2472, 13}},
10996 	 .a_channels = 19,
10997 	 .a = {{5180, 36},
10998 	       {5200, 40},
10999 	       {5220, 44},
11000 	       {5240, 48},
11001 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11002 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11003 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11004 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11005 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11006 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11007 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11008 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11009 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11010 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11011 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11012 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11013 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11014 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11015 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11016 	 },
11017 
11018 	{			/* Custom Japan */
11019 	 "ZZJ",
11020 	 .bg_channels = 14,
11021 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11022 		{2427, 4}, {2432, 5}, {2437, 6},
11023 		{2442, 7}, {2447, 8}, {2452, 9},
11024 		{2457, 10}, {2462, 11}, {2467, 12},
11025 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11026 	 .a_channels = 4,
11027 	 .a = {{5170, 34}, {5190, 38},
11028 	       {5210, 42}, {5230, 46}},
11029 	 },
11030 
11031 	{			/* Rest of World */
11032 	 "ZZR",
11033 	 .bg_channels = 14,
11034 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11035 		{2427, 4}, {2432, 5}, {2437, 6},
11036 		{2442, 7}, {2447, 8}, {2452, 9},
11037 		{2457, 10}, {2462, 11}, {2467, 12},
11038 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11039 			     LIBIPW_CH_PASSIVE_ONLY}},
11040 	 },
11041 
11042 	{			/* High Band */
11043 	 "ZZH",
11044 	 .bg_channels = 13,
11045 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11046 		{2427, 4}, {2432, 5}, {2437, 6},
11047 		{2442, 7}, {2447, 8}, {2452, 9},
11048 		{2457, 10}, {2462, 11},
11049 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11050 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11051 	 .a_channels = 4,
11052 	 .a = {{5745, 149}, {5765, 153},
11053 	       {5785, 157}, {5805, 161}},
11054 	 },
11055 
11056 	{			/* Custom Europe */
11057 	 "ZZG",
11058 	 .bg_channels = 13,
11059 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11060 		{2427, 4}, {2432, 5}, {2437, 6},
11061 		{2442, 7}, {2447, 8}, {2452, 9},
11062 		{2457, 10}, {2462, 11},
11063 		{2467, 12}, {2472, 13}},
11064 	 .a_channels = 4,
11065 	 .a = {{5180, 36}, {5200, 40},
11066 	       {5220, 44}, {5240, 48}},
11067 	 },
11068 
11069 	{			/* Europe */
11070 	 "ZZK",
11071 	 .bg_channels = 13,
11072 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11073 		{2427, 4}, {2432, 5}, {2437, 6},
11074 		{2442, 7}, {2447, 8}, {2452, 9},
11075 		{2457, 10}, {2462, 11},
11076 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11077 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11078 	 .a_channels = 24,
11079 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11080 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11081 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11082 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11083 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11084 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11085 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11086 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11087 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11088 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11089 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11090 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11091 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11092 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11093 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11094 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11095 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11096 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11097 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11098 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11099 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11100 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11101 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11102 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11103 	 },
11104 
11105 	{			/* Europe */
11106 	 "ZZL",
11107 	 .bg_channels = 11,
11108 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11109 		{2427, 4}, {2432, 5}, {2437, 6},
11110 		{2442, 7}, {2447, 8}, {2452, 9},
11111 		{2457, 10}, {2462, 11}},
11112 	 .a_channels = 13,
11113 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11114 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11115 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11116 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11117 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11118 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11119 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11120 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11121 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11122 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11123 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11124 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11125 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11126 	 }
11127 };
11128 
11129 static void ipw_set_geo(struct ipw_priv *priv)
11130 {
11131 	int j;
11132 
11133 	for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11134 		if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11135 			    ipw_geos[j].name, 3))
11136 			break;
11137 	}
11138 
11139 	if (j == ARRAY_SIZE(ipw_geos)) {
11140 		IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11141 			    priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11142 			    priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11143 			    priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11144 		j = 0;
11145 	}
11146 
11147 	libipw_set_geo(priv->ieee, &ipw_geos[j]);
11148 }
11149 
11150 #define MAX_HW_RESTARTS 5
11151 static int ipw_up(struct ipw_priv *priv)
11152 {
11153 	int rc, i;
11154 
11155 	/* Age scan list entries found before suspend */
11156 	if (priv->suspend_time) {
11157 		libipw_networks_age(priv->ieee, priv->suspend_time);
11158 		priv->suspend_time = 0;
11159 	}
11160 
11161 	if (priv->status & STATUS_EXIT_PENDING)
11162 		return -EIO;
11163 
11164 	if (cmdlog && !priv->cmdlog) {
11165 		priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11166 				       GFP_KERNEL);
11167 		if (priv->cmdlog == NULL) {
11168 			IPW_ERROR("Error allocating %d command log entries.\n",
11169 				  cmdlog);
11170 			return -ENOMEM;
11171 		} else {
11172 			priv->cmdlog_len = cmdlog;
11173 		}
11174 	}
11175 
11176 	for (i = 0; i < MAX_HW_RESTARTS; i++) {
11177 		/* Load the microcode, firmware, and eeprom.
11178 		 * Also start the clocks. */
11179 		rc = ipw_load(priv);
11180 		if (rc) {
11181 			IPW_ERROR("Unable to load firmware: %d\n", rc);
11182 			return rc;
11183 		}
11184 
11185 		ipw_init_ordinals(priv);
11186 		if (!(priv->config & CFG_CUSTOM_MAC))
11187 			eeprom_parse_mac(priv, priv->mac_addr);
11188 		eth_hw_addr_set(priv->net_dev, priv->mac_addr);
11189 
11190 		ipw_set_geo(priv);
11191 
11192 		if (priv->status & STATUS_RF_KILL_SW) {
11193 			IPW_WARNING("Radio disabled by module parameter.\n");
11194 			return 0;
11195 		} else if (rf_kill_active(priv)) {
11196 			IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11197 				    "Kill switch must be turned off for "
11198 				    "wireless networking to work.\n");
11199 			schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11200 			return 0;
11201 		}
11202 
11203 		rc = ipw_config(priv);
11204 		if (!rc) {
11205 			IPW_DEBUG_INFO("Configured device on count %i\n", i);
11206 
11207 			/* If configure to try and auto-associate, kick
11208 			 * off a scan. */
11209 			schedule_delayed_work(&priv->request_scan, 0);
11210 
11211 			return 0;
11212 		}
11213 
11214 		IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11215 		IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11216 			       i, MAX_HW_RESTARTS);
11217 
11218 		/* We had an error bringing up the hardware, so take it
11219 		 * all the way back down so we can try again */
11220 		ipw_down(priv);
11221 	}
11222 
11223 	/* tried to restart and config the device for as long as our
11224 	 * patience could withstand */
11225 	IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11226 
11227 	return -EIO;
11228 }
11229 
11230 static void ipw_bg_up(struct work_struct *work)
11231 {
11232 	struct ipw_priv *priv =
11233 		container_of(work, struct ipw_priv, up);
11234 	mutex_lock(&priv->mutex);
11235 	ipw_up(priv);
11236 	mutex_unlock(&priv->mutex);
11237 }
11238 
11239 static void ipw_deinit(struct ipw_priv *priv)
11240 {
11241 	int i;
11242 
11243 	if (priv->status & STATUS_SCANNING) {
11244 		IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11245 		ipw_abort_scan(priv);
11246 	}
11247 
11248 	if (priv->status & STATUS_ASSOCIATED) {
11249 		IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11250 		ipw_disassociate(priv);
11251 	}
11252 
11253 	ipw_led_shutdown(priv);
11254 
11255 	/* Wait up to 1s for status to change to not scanning and not
11256 	 * associated (disassociation can take a while for a ful 802.11
11257 	 * exchange */
11258 	for (i = 1000; i && (priv->status &
11259 			     (STATUS_DISASSOCIATING |
11260 			      STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11261 		udelay(10);
11262 
11263 	if (priv->status & (STATUS_DISASSOCIATING |
11264 			    STATUS_ASSOCIATED | STATUS_SCANNING))
11265 		IPW_DEBUG_INFO("Still associated or scanning...\n");
11266 	else
11267 		IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11268 
11269 	/* Attempt to disable the card */
11270 	ipw_send_card_disable(priv, 0);
11271 
11272 	priv->status &= ~STATUS_INIT;
11273 }
11274 
11275 static void ipw_down(struct ipw_priv *priv)
11276 {
11277 	int exit_pending = priv->status & STATUS_EXIT_PENDING;
11278 
11279 	priv->status |= STATUS_EXIT_PENDING;
11280 
11281 	if (ipw_is_init(priv))
11282 		ipw_deinit(priv);
11283 
11284 	/* Wipe out the EXIT_PENDING status bit if we are not actually
11285 	 * exiting the module */
11286 	if (!exit_pending)
11287 		priv->status &= ~STATUS_EXIT_PENDING;
11288 
11289 	/* tell the device to stop sending interrupts */
11290 	ipw_disable_interrupts(priv);
11291 
11292 	/* Clear all bits but the RF Kill */
11293 	priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11294 	netif_carrier_off(priv->net_dev);
11295 
11296 	ipw_stop_nic(priv);
11297 
11298 	ipw_led_radio_off(priv);
11299 }
11300 
11301 static void ipw_bg_down(struct work_struct *work)
11302 {
11303 	struct ipw_priv *priv =
11304 		container_of(work, struct ipw_priv, down);
11305 	mutex_lock(&priv->mutex);
11306 	ipw_down(priv);
11307 	mutex_unlock(&priv->mutex);
11308 }
11309 
11310 static int ipw_wdev_init(struct net_device *dev)
11311 {
11312 	int i, rc = 0;
11313 	struct ipw_priv *priv = libipw_priv(dev);
11314 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11315 	struct wireless_dev *wdev = &priv->ieee->wdev;
11316 
11317 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11318 
11319 	/* fill-out priv->ieee->bg_band */
11320 	if (geo->bg_channels) {
11321 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11322 
11323 		bg_band->band = NL80211_BAND_2GHZ;
11324 		bg_band->n_channels = geo->bg_channels;
11325 		bg_band->channels = kcalloc(geo->bg_channels,
11326 					    sizeof(struct ieee80211_channel),
11327 					    GFP_KERNEL);
11328 		if (!bg_band->channels) {
11329 			rc = -ENOMEM;
11330 			goto out;
11331 		}
11332 		/* translate geo->bg to bg_band.channels */
11333 		for (i = 0; i < geo->bg_channels; i++) {
11334 			bg_band->channels[i].band = NL80211_BAND_2GHZ;
11335 			bg_band->channels[i].center_freq = geo->bg[i].freq;
11336 			bg_band->channels[i].hw_value = geo->bg[i].channel;
11337 			bg_band->channels[i].max_power = geo->bg[i].max_power;
11338 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11339 				bg_band->channels[i].flags |=
11340 					IEEE80211_CHAN_NO_IR;
11341 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11342 				bg_band->channels[i].flags |=
11343 					IEEE80211_CHAN_NO_IR;
11344 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11345 				bg_band->channels[i].flags |=
11346 					IEEE80211_CHAN_RADAR;
11347 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11348 			   LIBIPW_CH_UNIFORM_SPREADING, or
11349 			   LIBIPW_CH_B_ONLY... */
11350 		}
11351 		/* point at bitrate info */
11352 		bg_band->bitrates = ipw2200_bg_rates;
11353 		bg_band->n_bitrates = ipw2200_num_bg_rates;
11354 
11355 		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11356 	}
11357 
11358 	/* fill-out priv->ieee->a_band */
11359 	if (geo->a_channels) {
11360 		struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11361 
11362 		a_band->band = NL80211_BAND_5GHZ;
11363 		a_band->n_channels = geo->a_channels;
11364 		a_band->channels = kcalloc(geo->a_channels,
11365 					   sizeof(struct ieee80211_channel),
11366 					   GFP_KERNEL);
11367 		if (!a_band->channels) {
11368 			rc = -ENOMEM;
11369 			goto out;
11370 		}
11371 		/* translate geo->a to a_band.channels */
11372 		for (i = 0; i < geo->a_channels; i++) {
11373 			a_band->channels[i].band = NL80211_BAND_5GHZ;
11374 			a_band->channels[i].center_freq = geo->a[i].freq;
11375 			a_band->channels[i].hw_value = geo->a[i].channel;
11376 			a_band->channels[i].max_power = geo->a[i].max_power;
11377 			if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11378 				a_band->channels[i].flags |=
11379 					IEEE80211_CHAN_NO_IR;
11380 			if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11381 				a_band->channels[i].flags |=
11382 					IEEE80211_CHAN_NO_IR;
11383 			if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11384 				a_band->channels[i].flags |=
11385 					IEEE80211_CHAN_RADAR;
11386 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11387 			   LIBIPW_CH_UNIFORM_SPREADING, or
11388 			   LIBIPW_CH_B_ONLY... */
11389 		}
11390 		/* point at bitrate info */
11391 		a_band->bitrates = ipw2200_a_rates;
11392 		a_band->n_bitrates = ipw2200_num_a_rates;
11393 
11394 		wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11395 	}
11396 
11397 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
11398 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11399 
11400 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11401 
11402 	/* With that information in place, we can now register the wiphy... */
11403 	if (wiphy_register(wdev->wiphy))
11404 		rc = -EIO;
11405 out:
11406 	return rc;
11407 }
11408 
11409 /* PCI driver stuff */
11410 static const struct pci_device_id card_ids[] = {
11411 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11412 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11413 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11414 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11415 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11416 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11417 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11418 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11419 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11420 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11421 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11422 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11423 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11424 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11425 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11426 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11427 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11428 	{PCI_VDEVICE(INTEL, 0x104f), 0},
11429 	{PCI_VDEVICE(INTEL, 0x4220), 0},	/* BG */
11430 	{PCI_VDEVICE(INTEL, 0x4221), 0},	/* BG */
11431 	{PCI_VDEVICE(INTEL, 0x4223), 0},	/* ABG */
11432 	{PCI_VDEVICE(INTEL, 0x4224), 0},	/* ABG */
11433 
11434 	/* required last entry */
11435 	{0,}
11436 };
11437 
11438 MODULE_DEVICE_TABLE(pci, card_ids);
11439 
11440 static struct attribute *ipw_sysfs_entries[] = {
11441 	&dev_attr_rf_kill.attr,
11442 	&dev_attr_direct_dword.attr,
11443 	&dev_attr_indirect_byte.attr,
11444 	&dev_attr_indirect_dword.attr,
11445 	&dev_attr_mem_gpio_reg.attr,
11446 	&dev_attr_command_event_reg.attr,
11447 	&dev_attr_nic_type.attr,
11448 	&dev_attr_status.attr,
11449 	&dev_attr_cfg.attr,
11450 	&dev_attr_error.attr,
11451 	&dev_attr_event_log.attr,
11452 	&dev_attr_cmd_log.attr,
11453 	&dev_attr_eeprom_delay.attr,
11454 	&dev_attr_ucode_version.attr,
11455 	&dev_attr_rtc.attr,
11456 	&dev_attr_scan_age.attr,
11457 	&dev_attr_led.attr,
11458 	&dev_attr_speed_scan.attr,
11459 	&dev_attr_net_stats.attr,
11460 	&dev_attr_channels.attr,
11461 #ifdef CONFIG_IPW2200_PROMISCUOUS
11462 	&dev_attr_rtap_iface.attr,
11463 	&dev_attr_rtap_filter.attr,
11464 #endif
11465 	NULL
11466 };
11467 
11468 static const struct attribute_group ipw_attribute_group = {
11469 	.name = NULL,		/* put in device directory */
11470 	.attrs = ipw_sysfs_entries,
11471 };
11472 
11473 #ifdef CONFIG_IPW2200_PROMISCUOUS
11474 static int ipw_prom_open(struct net_device *dev)
11475 {
11476 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11477 	struct ipw_priv *priv = prom_priv->priv;
11478 
11479 	IPW_DEBUG_INFO("prom dev->open\n");
11480 	netif_carrier_off(dev);
11481 
11482 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11483 		priv->sys_config.accept_all_data_frames = 1;
11484 		priv->sys_config.accept_non_directed_frames = 1;
11485 		priv->sys_config.accept_all_mgmt_bcpr = 1;
11486 		priv->sys_config.accept_all_mgmt_frames = 1;
11487 
11488 		ipw_send_system_config(priv);
11489 	}
11490 
11491 	return 0;
11492 }
11493 
11494 static int ipw_prom_stop(struct net_device *dev)
11495 {
11496 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11497 	struct ipw_priv *priv = prom_priv->priv;
11498 
11499 	IPW_DEBUG_INFO("prom dev->stop\n");
11500 
11501 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11502 		priv->sys_config.accept_all_data_frames = 0;
11503 		priv->sys_config.accept_non_directed_frames = 0;
11504 		priv->sys_config.accept_all_mgmt_bcpr = 0;
11505 		priv->sys_config.accept_all_mgmt_frames = 0;
11506 
11507 		ipw_send_system_config(priv);
11508 	}
11509 
11510 	return 0;
11511 }
11512 
11513 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11514 					    struct net_device *dev)
11515 {
11516 	IPW_DEBUG_INFO("prom dev->xmit\n");
11517 	dev_kfree_skb(skb);
11518 	return NETDEV_TX_OK;
11519 }
11520 
11521 static const struct net_device_ops ipw_prom_netdev_ops = {
11522 	.ndo_open 		= ipw_prom_open,
11523 	.ndo_stop		= ipw_prom_stop,
11524 	.ndo_start_xmit		= ipw_prom_hard_start_xmit,
11525 	.ndo_set_mac_address 	= eth_mac_addr,
11526 	.ndo_validate_addr	= eth_validate_addr,
11527 };
11528 
11529 static int ipw_prom_alloc(struct ipw_priv *priv)
11530 {
11531 	int rc = 0;
11532 
11533 	if (priv->prom_net_dev)
11534 		return -EPERM;
11535 
11536 	priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11537 	if (priv->prom_net_dev == NULL)
11538 		return -ENOMEM;
11539 
11540 	priv->prom_priv = libipw_priv(priv->prom_net_dev);
11541 	priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11542 	priv->prom_priv->priv = priv;
11543 
11544 	strcpy(priv->prom_net_dev->name, "rtap%d");
11545 	eth_hw_addr_set(priv->prom_net_dev, priv->mac_addr);
11546 
11547 	priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11548 	priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11549 
11550 	priv->prom_net_dev->min_mtu = 68;
11551 	priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11552 
11553 	priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11554 	SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11555 
11556 	rc = register_netdev(priv->prom_net_dev);
11557 	if (rc) {
11558 		free_libipw(priv->prom_net_dev, 1);
11559 		priv->prom_net_dev = NULL;
11560 		return rc;
11561 	}
11562 
11563 	return 0;
11564 }
11565 
11566 static void ipw_prom_free(struct ipw_priv *priv)
11567 {
11568 	if (!priv->prom_net_dev)
11569 		return;
11570 
11571 	unregister_netdev(priv->prom_net_dev);
11572 	free_libipw(priv->prom_net_dev, 1);
11573 
11574 	priv->prom_net_dev = NULL;
11575 }
11576 
11577 #endif
11578 
11579 static const struct net_device_ops ipw_netdev_ops = {
11580 	.ndo_open		= ipw_net_open,
11581 	.ndo_stop		= ipw_net_stop,
11582 	.ndo_set_rx_mode	= ipw_net_set_multicast_list,
11583 	.ndo_set_mac_address	= ipw_net_set_mac_address,
11584 	.ndo_start_xmit		= libipw_xmit,
11585 	.ndo_validate_addr	= eth_validate_addr,
11586 };
11587 
11588 static int ipw_pci_probe(struct pci_dev *pdev,
11589 				   const struct pci_device_id *ent)
11590 {
11591 	int err = 0;
11592 	struct net_device *net_dev;
11593 	void __iomem *base;
11594 	u32 length, val;
11595 	struct ipw_priv *priv;
11596 	int i;
11597 
11598 	net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11599 	if (net_dev == NULL) {
11600 		err = -ENOMEM;
11601 		goto out;
11602 	}
11603 
11604 	priv = libipw_priv(net_dev);
11605 	priv->ieee = netdev_priv(net_dev);
11606 
11607 	priv->net_dev = net_dev;
11608 	priv->pci_dev = pdev;
11609 	ipw_debug_level = debug;
11610 	spin_lock_init(&priv->irq_lock);
11611 	spin_lock_init(&priv->lock);
11612 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11613 		INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11614 
11615 	mutex_init(&priv->mutex);
11616 	if (pci_enable_device(pdev)) {
11617 		err = -ENODEV;
11618 		goto out_free_libipw;
11619 	}
11620 
11621 	pci_set_master(pdev);
11622 
11623 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
11624 	if (!err)
11625 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
11626 	if (err) {
11627 		printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11628 		goto out_pci_disable_device;
11629 	}
11630 
11631 	pci_set_drvdata(pdev, priv);
11632 
11633 	err = pci_request_regions(pdev, DRV_NAME);
11634 	if (err)
11635 		goto out_pci_disable_device;
11636 
11637 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
11638 	 * PCI Tx retries from interfering with C3 CPU state */
11639 	pci_read_config_dword(pdev, 0x40, &val);
11640 	if ((val & 0x0000ff00) != 0)
11641 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11642 
11643 	length = pci_resource_len(pdev, 0);
11644 	priv->hw_len = length;
11645 
11646 	base = pci_ioremap_bar(pdev, 0);
11647 	if (!base) {
11648 		err = -ENODEV;
11649 		goto out_pci_release_regions;
11650 	}
11651 
11652 	priv->hw_base = base;
11653 	IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11654 	IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11655 
11656 	ipw_setup_deferred_work(priv);
11657 
11658 	ipw_sw_reset(priv, 1);
11659 
11660 	err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11661 	if (err) {
11662 		IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11663 		goto out_iounmap;
11664 	}
11665 
11666 	SET_NETDEV_DEV(net_dev, &pdev->dev);
11667 
11668 	mutex_lock(&priv->mutex);
11669 
11670 	priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11671 	priv->ieee->set_security = shim__set_security;
11672 	priv->ieee->is_queue_full = ipw_net_is_queue_full;
11673 
11674 #ifdef CONFIG_IPW2200_QOS
11675 	priv->ieee->is_qos_active = ipw_is_qos_active;
11676 	priv->ieee->handle_probe_response = ipw_handle_beacon;
11677 	priv->ieee->handle_beacon = ipw_handle_probe_response;
11678 	priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11679 #endif				/* CONFIG_IPW2200_QOS */
11680 
11681 	priv->ieee->perfect_rssi = -20;
11682 	priv->ieee->worst_rssi = -85;
11683 
11684 	net_dev->netdev_ops = &ipw_netdev_ops;
11685 	priv->wireless_data.spy_data = &priv->ieee->spy_data;
11686 	net_dev->wireless_data = &priv->wireless_data;
11687 	net_dev->wireless_handlers = &ipw_wx_handler_def;
11688 	net_dev->ethtool_ops = &ipw_ethtool_ops;
11689 
11690 	net_dev->min_mtu = 68;
11691 	net_dev->max_mtu = LIBIPW_DATA_LEN;
11692 
11693 	err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11694 	if (err) {
11695 		IPW_ERROR("failed to create sysfs device attributes\n");
11696 		mutex_unlock(&priv->mutex);
11697 		goto out_release_irq;
11698 	}
11699 
11700 	if (ipw_up(priv)) {
11701 		mutex_unlock(&priv->mutex);
11702 		err = -EIO;
11703 		goto out_remove_sysfs;
11704 	}
11705 
11706 	mutex_unlock(&priv->mutex);
11707 
11708 	err = ipw_wdev_init(net_dev);
11709 	if (err) {
11710 		IPW_ERROR("failed to register wireless device\n");
11711 		goto out_remove_sysfs;
11712 	}
11713 
11714 	err = register_netdev(net_dev);
11715 	if (err) {
11716 		IPW_ERROR("failed to register network device\n");
11717 		goto out_unregister_wiphy;
11718 	}
11719 
11720 #ifdef CONFIG_IPW2200_PROMISCUOUS
11721 	if (rtap_iface) {
11722 	        err = ipw_prom_alloc(priv);
11723 		if (err) {
11724 			IPW_ERROR("Failed to register promiscuous network "
11725 				  "device (error %d).\n", err);
11726 			unregister_netdev(priv->net_dev);
11727 			goto out_unregister_wiphy;
11728 		}
11729 	}
11730 #endif
11731 
11732 	printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11733 	       "channels, %d 802.11a channels)\n",
11734 	       priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11735 	       priv->ieee->geo.a_channels);
11736 
11737 	return 0;
11738 
11739       out_unregister_wiphy:
11740 	wiphy_unregister(priv->ieee->wdev.wiphy);
11741 	kfree(priv->ieee->a_band.channels);
11742 	kfree(priv->ieee->bg_band.channels);
11743       out_remove_sysfs:
11744 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11745       out_release_irq:
11746 	free_irq(pdev->irq, priv);
11747       out_iounmap:
11748 	iounmap(priv->hw_base);
11749       out_pci_release_regions:
11750 	pci_release_regions(pdev);
11751       out_pci_disable_device:
11752 	pci_disable_device(pdev);
11753       out_free_libipw:
11754 	free_libipw(priv->net_dev, 0);
11755       out:
11756 	return err;
11757 }
11758 
11759 static void ipw_pci_remove(struct pci_dev *pdev)
11760 {
11761 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11762 	struct list_head *p, *q;
11763 	int i;
11764 
11765 	if (!priv)
11766 		return;
11767 
11768 	mutex_lock(&priv->mutex);
11769 
11770 	priv->status |= STATUS_EXIT_PENDING;
11771 	ipw_down(priv);
11772 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11773 
11774 	mutex_unlock(&priv->mutex);
11775 
11776 	unregister_netdev(priv->net_dev);
11777 
11778 	if (priv->rxq) {
11779 		ipw_rx_queue_free(priv, priv->rxq);
11780 		priv->rxq = NULL;
11781 	}
11782 	ipw_tx_queue_free(priv);
11783 
11784 	if (priv->cmdlog) {
11785 		kfree(priv->cmdlog);
11786 		priv->cmdlog = NULL;
11787 	}
11788 
11789 	/* make sure all works are inactive */
11790 	cancel_delayed_work_sync(&priv->adhoc_check);
11791 	cancel_work_sync(&priv->associate);
11792 	cancel_work_sync(&priv->disassociate);
11793 	cancel_work_sync(&priv->system_config);
11794 	cancel_work_sync(&priv->rx_replenish);
11795 	cancel_work_sync(&priv->adapter_restart);
11796 	cancel_delayed_work_sync(&priv->rf_kill);
11797 	cancel_work_sync(&priv->up);
11798 	cancel_work_sync(&priv->down);
11799 	cancel_delayed_work_sync(&priv->request_scan);
11800 	cancel_delayed_work_sync(&priv->request_direct_scan);
11801 	cancel_delayed_work_sync(&priv->request_passive_scan);
11802 	cancel_delayed_work_sync(&priv->scan_event);
11803 	cancel_delayed_work_sync(&priv->gather_stats);
11804 	cancel_work_sync(&priv->abort_scan);
11805 	cancel_work_sync(&priv->roam);
11806 	cancel_delayed_work_sync(&priv->scan_check);
11807 	cancel_work_sync(&priv->link_up);
11808 	cancel_work_sync(&priv->link_down);
11809 	cancel_delayed_work_sync(&priv->led_link_on);
11810 	cancel_delayed_work_sync(&priv->led_link_off);
11811 	cancel_delayed_work_sync(&priv->led_act_off);
11812 	cancel_work_sync(&priv->merge_networks);
11813 
11814 	/* Free MAC hash list for ADHOC */
11815 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11816 		list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11817 			list_del(p);
11818 			kfree(list_entry(p, struct ipw_ibss_seq, list));
11819 		}
11820 	}
11821 
11822 	kfree(priv->error);
11823 	priv->error = NULL;
11824 
11825 #ifdef CONFIG_IPW2200_PROMISCUOUS
11826 	ipw_prom_free(priv);
11827 #endif
11828 
11829 	free_irq(pdev->irq, priv);
11830 	iounmap(priv->hw_base);
11831 	pci_release_regions(pdev);
11832 	pci_disable_device(pdev);
11833 	/* wiphy_unregister needs to be here, before free_libipw */
11834 	wiphy_unregister(priv->ieee->wdev.wiphy);
11835 	kfree(priv->ieee->a_band.channels);
11836 	kfree(priv->ieee->bg_band.channels);
11837 	free_libipw(priv->net_dev, 0);
11838 	free_firmware();
11839 }
11840 
11841 static int __maybe_unused ipw_pci_suspend(struct device *dev_d)
11842 {
11843 	struct ipw_priv *priv = dev_get_drvdata(dev_d);
11844 	struct net_device *dev = priv->net_dev;
11845 
11846 	printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11847 
11848 	/* Take down the device; powers it off, etc. */
11849 	ipw_down(priv);
11850 
11851 	/* Remove the PRESENT state of the device */
11852 	netif_device_detach(dev);
11853 
11854 	priv->suspend_at = ktime_get_boottime_seconds();
11855 
11856 	return 0;
11857 }
11858 
11859 static int __maybe_unused ipw_pci_resume(struct device *dev_d)
11860 {
11861 	struct pci_dev *pdev = to_pci_dev(dev_d);
11862 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11863 	struct net_device *dev = priv->net_dev;
11864 	u32 val;
11865 
11866 	printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11867 
11868 	/*
11869 	 * Suspend/Resume resets the PCI configuration space, so we have to
11870 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11871 	 * from interfering with C3 CPU state. pci_restore_state won't help
11872 	 * here since it only restores the first 64 bytes pci config header.
11873 	 */
11874 	pci_read_config_dword(pdev, 0x40, &val);
11875 	if ((val & 0x0000ff00) != 0)
11876 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11877 
11878 	/* Set the device back into the PRESENT state; this will also wake
11879 	 * the queue of needed */
11880 	netif_device_attach(dev);
11881 
11882 	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11883 
11884 	/* Bring the device back up */
11885 	schedule_work(&priv->up);
11886 
11887 	return 0;
11888 }
11889 
11890 static void ipw_pci_shutdown(struct pci_dev *pdev)
11891 {
11892 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11893 
11894 	/* Take down the device; powers it off, etc. */
11895 	ipw_down(priv);
11896 
11897 	pci_disable_device(pdev);
11898 }
11899 
11900 static SIMPLE_DEV_PM_OPS(ipw_pci_pm_ops, ipw_pci_suspend, ipw_pci_resume);
11901 
11902 /* driver initialization stuff */
11903 static struct pci_driver ipw_driver = {
11904 	.name = DRV_NAME,
11905 	.id_table = card_ids,
11906 	.probe = ipw_pci_probe,
11907 	.remove = ipw_pci_remove,
11908 	.driver.pm = &ipw_pci_pm_ops,
11909 	.shutdown = ipw_pci_shutdown,
11910 };
11911 
11912 static int __init ipw_init(void)
11913 {
11914 	int ret;
11915 
11916 	printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11917 	printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11918 
11919 	ret = pci_register_driver(&ipw_driver);
11920 	if (ret) {
11921 		IPW_ERROR("Unable to initialize PCI module\n");
11922 		return ret;
11923 	}
11924 
11925 	ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11926 	if (ret) {
11927 		IPW_ERROR("Unable to create driver sysfs file\n");
11928 		pci_unregister_driver(&ipw_driver);
11929 		return ret;
11930 	}
11931 
11932 	return ret;
11933 }
11934 
11935 static void __exit ipw_exit(void)
11936 {
11937 	driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11938 	pci_unregister_driver(&ipw_driver);
11939 }
11940 
11941 module_param(disable, int, 0444);
11942 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11943 
11944 module_param(associate, int, 0444);
11945 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11946 
11947 module_param(auto_create, int, 0444);
11948 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11949 
11950 module_param_named(led, led_support, int, 0444);
11951 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11952 
11953 module_param(debug, int, 0444);
11954 MODULE_PARM_DESC(debug, "debug output mask");
11955 
11956 module_param_named(channel, default_channel, int, 0444);
11957 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11958 
11959 #ifdef CONFIG_IPW2200_PROMISCUOUS
11960 module_param(rtap_iface, int, 0444);
11961 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11962 #endif
11963 
11964 #ifdef CONFIG_IPW2200_QOS
11965 module_param(qos_enable, int, 0444);
11966 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11967 
11968 module_param(qos_burst_enable, int, 0444);
11969 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11970 
11971 module_param(qos_no_ack_mask, int, 0444);
11972 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11973 
11974 module_param(burst_duration_CCK, int, 0444);
11975 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11976 
11977 module_param(burst_duration_OFDM, int, 0444);
11978 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11979 #endif				/* CONFIG_IPW2200_QOS */
11980 
11981 #ifdef CONFIG_IPW2200_MONITOR
11982 module_param_named(mode, network_mode, int, 0444);
11983 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11984 #else
11985 module_param_named(mode, network_mode, int, 0444);
11986 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11987 #endif
11988 
11989 module_param(bt_coexist, int, 0444);
11990 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11991 
11992 module_param(hwcrypto, int, 0444);
11993 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11994 
11995 module_param(cmdlog, int, 0444);
11996 MODULE_PARM_DESC(cmdlog,
11997 		 "allocate a ring buffer for logging firmware commands");
11998 
11999 module_param(roaming, int, 0444);
12000 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12001 
12002 module_param(antenna, int, 0444);
12003 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12004 
12005 module_exit(ipw_exit);
12006 module_init(ipw_init);
12007