1 /****************************************************************************** 2 3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 4 5 802.11 status code portion of this file from ethereal-0.10.6: 6 Copyright 2000, Axis Communications AB 7 Ethereal - Network traffic analyzer 8 By Gerald Combs <gerald@ethereal.com> 9 Copyright 1998 Gerald Combs 10 11 This program is free software; you can redistribute it and/or modify it 12 under the terms of version 2 of the GNU General Public License as 13 published by the Free Software Foundation. 14 15 This program is distributed in the hope that it will be useful, but WITHOUT 16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 18 more details. 19 20 You should have received a copy of the GNU General Public License along with 21 this program; if not, write to the Free Software Foundation, Inc., 59 22 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 24 The full GNU General Public License is included in this distribution in the 25 file called LICENSE. 26 27 Contact Information: 28 Intel Linux Wireless <ilw@linux.intel.com> 29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 30 31 ******************************************************************************/ 32 33 #include <linux/sched.h> 34 #include <linux/slab.h> 35 #include <net/cfg80211-wext.h> 36 #include "ipw2200.h" 37 #include "ipw.h" 38 39 40 #ifndef KBUILD_EXTMOD 41 #define VK "k" 42 #else 43 #define VK 44 #endif 45 46 #ifdef CONFIG_IPW2200_DEBUG 47 #define VD "d" 48 #else 49 #define VD 50 #endif 51 52 #ifdef CONFIG_IPW2200_MONITOR 53 #define VM "m" 54 #else 55 #define VM 56 #endif 57 58 #ifdef CONFIG_IPW2200_PROMISCUOUS 59 #define VP "p" 60 #else 61 #define VP 62 #endif 63 64 #ifdef CONFIG_IPW2200_RADIOTAP 65 #define VR "r" 66 #else 67 #define VR 68 #endif 69 70 #ifdef CONFIG_IPW2200_QOS 71 #define VQ "q" 72 #else 73 #define VQ 74 #endif 75 76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ 77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver" 78 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 79 #define DRV_VERSION IPW2200_VERSION 80 81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1) 82 83 MODULE_DESCRIPTION(DRV_DESCRIPTION); 84 MODULE_VERSION(DRV_VERSION); 85 MODULE_AUTHOR(DRV_COPYRIGHT); 86 MODULE_LICENSE("GPL"); 87 MODULE_FIRMWARE("ipw2200-ibss.fw"); 88 #ifdef CONFIG_IPW2200_MONITOR 89 MODULE_FIRMWARE("ipw2200-sniffer.fw"); 90 #endif 91 MODULE_FIRMWARE("ipw2200-bss.fw"); 92 93 static int cmdlog = 0; 94 static int debug = 0; 95 static int default_channel = 0; 96 static int network_mode = 0; 97 98 static u32 ipw_debug_level; 99 static int associate; 100 static int auto_create = 1; 101 static int led_support = 1; 102 static int disable = 0; 103 static int bt_coexist = 0; 104 static int hwcrypto = 0; 105 static int roaming = 1; 106 static const char ipw_modes[] = { 107 'a', 'b', 'g', '?' 108 }; 109 static int antenna = CFG_SYS_ANTENNA_BOTH; 110 111 #ifdef CONFIG_IPW2200_PROMISCUOUS 112 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */ 113 #endif 114 115 static struct ieee80211_rate ipw2200_rates[] = { 116 { .bitrate = 10 }, 117 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 118 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 119 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 120 { .bitrate = 60 }, 121 { .bitrate = 90 }, 122 { .bitrate = 120 }, 123 { .bitrate = 180 }, 124 { .bitrate = 240 }, 125 { .bitrate = 360 }, 126 { .bitrate = 480 }, 127 { .bitrate = 540 } 128 }; 129 130 #define ipw2200_a_rates (ipw2200_rates + 4) 131 #define ipw2200_num_a_rates 8 132 #define ipw2200_bg_rates (ipw2200_rates + 0) 133 #define ipw2200_num_bg_rates 12 134 135 /* Ugly macro to convert literal channel numbers into their mhz equivalents 136 * There are certianly some conditions that will break this (like feeding it '30') 137 * but they shouldn't arise since nothing talks on channel 30. */ 138 #define ieee80211chan2mhz(x) \ 139 (((x) <= 14) ? \ 140 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \ 141 ((x) + 1000) * 5) 142 143 #ifdef CONFIG_IPW2200_QOS 144 static int qos_enable = 0; 145 static int qos_burst_enable = 0; 146 static int qos_no_ack_mask = 0; 147 static int burst_duration_CCK = 0; 148 static int burst_duration_OFDM = 0; 149 150 static struct libipw_qos_parameters def_qos_parameters_OFDM = { 151 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM, 152 QOS_TX3_CW_MIN_OFDM}, 153 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM, 154 QOS_TX3_CW_MAX_OFDM}, 155 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, 156 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, 157 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM, 158 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM} 159 }; 160 161 static struct libipw_qos_parameters def_qos_parameters_CCK = { 162 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK, 163 QOS_TX3_CW_MIN_CCK}, 164 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK, 165 QOS_TX3_CW_MAX_CCK}, 166 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, 167 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, 168 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK, 169 QOS_TX3_TXOP_LIMIT_CCK} 170 }; 171 172 static struct libipw_qos_parameters def_parameters_OFDM = { 173 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM, 174 DEF_TX3_CW_MIN_OFDM}, 175 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM, 176 DEF_TX3_CW_MAX_OFDM}, 177 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, 178 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, 179 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM, 180 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM} 181 }; 182 183 static struct libipw_qos_parameters def_parameters_CCK = { 184 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK, 185 DEF_TX3_CW_MIN_CCK}, 186 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK, 187 DEF_TX3_CW_MAX_CCK}, 188 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, 189 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, 190 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK, 191 DEF_TX3_TXOP_LIMIT_CCK} 192 }; 193 194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 }; 195 196 static int from_priority_to_tx_queue[] = { 197 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1, 198 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4 199 }; 200 201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv); 202 203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters 204 *qos_param); 205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element 206 *qos_param); 207 #endif /* CONFIG_IPW2200_QOS */ 208 209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev); 210 static void ipw_remove_current_network(struct ipw_priv *priv); 211 static void ipw_rx(struct ipw_priv *priv); 212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv, 213 struct clx2_tx_queue *txq, int qindex); 214 static int ipw_queue_reset(struct ipw_priv *priv); 215 216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, 217 int len, int sync); 218 219 static void ipw_tx_queue_free(struct ipw_priv *); 220 221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *); 222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *); 223 static void ipw_rx_queue_replenish(void *); 224 static int ipw_up(struct ipw_priv *); 225 static void ipw_bg_up(struct work_struct *work); 226 static void ipw_down(struct ipw_priv *); 227 static void ipw_bg_down(struct work_struct *work); 228 static int ipw_config(struct ipw_priv *); 229 static int init_supported_rates(struct ipw_priv *priv, 230 struct ipw_supported_rates *prates); 231 static void ipw_set_hwcrypto_keys(struct ipw_priv *); 232 static void ipw_send_wep_keys(struct ipw_priv *, int); 233 234 static int snprint_line(char *buf, size_t count, 235 const u8 * data, u32 len, u32 ofs) 236 { 237 int out, i, j, l; 238 char c; 239 240 out = snprintf(buf, count, "%08X", ofs); 241 242 for (l = 0, i = 0; i < 2; i++) { 243 out += snprintf(buf + out, count - out, " "); 244 for (j = 0; j < 8 && l < len; j++, l++) 245 out += snprintf(buf + out, count - out, "%02X ", 246 data[(i * 8 + j)]); 247 for (; j < 8; j++) 248 out += snprintf(buf + out, count - out, " "); 249 } 250 251 out += snprintf(buf + out, count - out, " "); 252 for (l = 0, i = 0; i < 2; i++) { 253 out += snprintf(buf + out, count - out, " "); 254 for (j = 0; j < 8 && l < len; j++, l++) { 255 c = data[(i * 8 + j)]; 256 if (!isascii(c) || !isprint(c)) 257 c = '.'; 258 259 out += snprintf(buf + out, count - out, "%c", c); 260 } 261 262 for (; j < 8; j++) 263 out += snprintf(buf + out, count - out, " "); 264 } 265 266 return out; 267 } 268 269 static void printk_buf(int level, const u8 * data, u32 len) 270 { 271 char line[81]; 272 u32 ofs = 0; 273 if (!(ipw_debug_level & level)) 274 return; 275 276 while (len) { 277 snprint_line(line, sizeof(line), &data[ofs], 278 min(len, 16U), ofs); 279 printk(KERN_DEBUG "%s\n", line); 280 ofs += 16; 281 len -= min(len, 16U); 282 } 283 } 284 285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len) 286 { 287 size_t out = size; 288 u32 ofs = 0; 289 int total = 0; 290 291 while (size && len) { 292 out = snprint_line(output, size, &data[ofs], 293 min_t(size_t, len, 16U), ofs); 294 295 ofs += 16; 296 output += out; 297 size -= out; 298 len -= min_t(size_t, len, 16U); 299 total += out; 300 } 301 return total; 302 } 303 304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ 305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg); 306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b) 307 308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ 309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg); 310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b) 311 312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value); 314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c) 315 { 316 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__, 317 __LINE__, (u32) (b), (u32) (c)); 318 _ipw_write_reg8(a, b, c); 319 } 320 321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value); 323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c) 324 { 325 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__, 326 __LINE__, (u32) (b), (u32) (c)); 327 _ipw_write_reg16(a, b, c); 328 } 329 330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ 331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value); 332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c) 333 { 334 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__, 335 __LINE__, (u32) (b), (u32) (c)); 336 _ipw_write_reg32(a, b, c); 337 } 338 339 /* 8-bit direct write (low 4K) */ 340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs, 341 u8 val) 342 { 343 writeb(val, ipw->hw_base + ofs); 344 } 345 346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 347 #define ipw_write8(ipw, ofs, val) do { \ 348 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \ 349 __LINE__, (u32)(ofs), (u32)(val)); \ 350 _ipw_write8(ipw, ofs, val); \ 351 } while (0) 352 353 /* 16-bit direct write (low 4K) */ 354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs, 355 u16 val) 356 { 357 writew(val, ipw->hw_base + ofs); 358 } 359 360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 361 #define ipw_write16(ipw, ofs, val) do { \ 362 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \ 363 __LINE__, (u32)(ofs), (u32)(val)); \ 364 _ipw_write16(ipw, ofs, val); \ 365 } while (0) 366 367 /* 32-bit direct write (low 4K) */ 368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs, 369 u32 val) 370 { 371 writel(val, ipw->hw_base + ofs); 372 } 373 374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ 375 #define ipw_write32(ipw, ofs, val) do { \ 376 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \ 377 __LINE__, (u32)(ofs), (u32)(val)); \ 378 _ipw_write32(ipw, ofs, val); \ 379 } while (0) 380 381 /* 8-bit direct read (low 4K) */ 382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs) 383 { 384 return readb(ipw->hw_base + ofs); 385 } 386 387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 388 #define ipw_read8(ipw, ofs) ({ \ 389 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \ 390 (u32)(ofs)); \ 391 _ipw_read8(ipw, ofs); \ 392 }) 393 394 /* 16-bit direct read (low 4K) */ 395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs) 396 { 397 return readw(ipw->hw_base + ofs); 398 } 399 400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 401 #define ipw_read16(ipw, ofs) ({ \ 402 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \ 403 (u32)(ofs)); \ 404 _ipw_read16(ipw, ofs); \ 405 }) 406 407 /* 32-bit direct read (low 4K) */ 408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs) 409 { 410 return readl(ipw->hw_base + ofs); 411 } 412 413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */ 414 #define ipw_read32(ipw, ofs) ({ \ 415 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \ 416 (u32)(ofs)); \ 417 _ipw_read32(ipw, ofs); \ 418 }) 419 420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int); 421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ 422 #define ipw_read_indirect(a, b, c, d) ({ \ 423 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \ 424 __LINE__, (u32)(b), (u32)(d)); \ 425 _ipw_read_indirect(a, b, c, d); \ 426 }) 427 428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ 429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data, 430 int num); 431 #define ipw_write_indirect(a, b, c, d) do { \ 432 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \ 433 __LINE__, (u32)(b), (u32)(d)); \ 434 _ipw_write_indirect(a, b, c, d); \ 435 } while (0) 436 437 /* 32-bit indirect write (above 4K) */ 438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value) 439 { 440 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value); 441 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); 442 _ipw_write32(priv, IPW_INDIRECT_DATA, value); 443 } 444 445 /* 8-bit indirect write (above 4K) */ 446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value) 447 { 448 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ 449 u32 dif_len = reg - aligned_addr; 450 451 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); 452 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 453 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value); 454 } 455 456 /* 16-bit indirect write (above 4K) */ 457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value) 458 { 459 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ 460 u32 dif_len = (reg - aligned_addr) & (~0x1ul); 461 462 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); 463 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 464 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value); 465 } 466 467 /* 8-bit indirect read (above 4K) */ 468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg) 469 { 470 u32 word; 471 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK); 472 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg); 473 word = _ipw_read32(priv, IPW_INDIRECT_DATA); 474 return (word >> ((reg & 0x3) * 8)) & 0xff; 475 } 476 477 /* 32-bit indirect read (above 4K) */ 478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg) 479 { 480 u32 value; 481 482 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg); 483 484 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); 485 value = _ipw_read32(priv, IPW_INDIRECT_DATA); 486 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value); 487 return value; 488 } 489 490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */ 491 /* for area above 1st 4K of SRAM/reg space */ 492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, 493 int num) 494 { 495 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ 496 u32 dif_len = addr - aligned_addr; 497 u32 i; 498 499 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); 500 501 if (num <= 0) { 502 return; 503 } 504 505 /* Read the first dword (or portion) byte by byte */ 506 if (unlikely(dif_len)) { 507 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 508 /* Start reading at aligned_addr + dif_len */ 509 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--) 510 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i); 511 aligned_addr += 4; 512 } 513 514 /* Read all of the middle dwords as dwords, with auto-increment */ 515 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); 516 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) 517 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA); 518 519 /* Read the last dword (or portion) byte by byte */ 520 if (unlikely(num)) { 521 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 522 for (i = 0; num > 0; i++, num--) 523 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i); 524 } 525 } 526 527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */ 528 /* for area above 1st 4K of SRAM/reg space */ 529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, 530 int num) 531 { 532 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ 533 u32 dif_len = addr - aligned_addr; 534 u32 i; 535 536 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); 537 538 if (num <= 0) { 539 return; 540 } 541 542 /* Write the first dword (or portion) byte by byte */ 543 if (unlikely(dif_len)) { 544 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 545 /* Start writing at aligned_addr + dif_len */ 546 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++) 547 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); 548 aligned_addr += 4; 549 } 550 551 /* Write all of the middle dwords as dwords, with auto-increment */ 552 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); 553 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) 554 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf); 555 556 /* Write the last dword (or portion) byte by byte */ 557 if (unlikely(num)) { 558 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); 559 for (i = 0; num > 0; i++, num--, buf++) 560 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); 561 } 562 } 563 564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */ 565 /* for 1st 4K of SRAM/regs space */ 566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf, 567 int num) 568 { 569 memcpy_toio((priv->hw_base + addr), buf, num); 570 } 571 572 /* Set bit(s) in low 4K of SRAM/regs */ 573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask) 574 { 575 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask); 576 } 577 578 /* Clear bit(s) in low 4K of SRAM/regs */ 579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask) 580 { 581 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask); 582 } 583 584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv) 585 { 586 if (priv->status & STATUS_INT_ENABLED) 587 return; 588 priv->status |= STATUS_INT_ENABLED; 589 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL); 590 } 591 592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv) 593 { 594 if (!(priv->status & STATUS_INT_ENABLED)) 595 return; 596 priv->status &= ~STATUS_INT_ENABLED; 597 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 598 } 599 600 static inline void ipw_enable_interrupts(struct ipw_priv *priv) 601 { 602 unsigned long flags; 603 604 spin_lock_irqsave(&priv->irq_lock, flags); 605 __ipw_enable_interrupts(priv); 606 spin_unlock_irqrestore(&priv->irq_lock, flags); 607 } 608 609 static inline void ipw_disable_interrupts(struct ipw_priv *priv) 610 { 611 unsigned long flags; 612 613 spin_lock_irqsave(&priv->irq_lock, flags); 614 __ipw_disable_interrupts(priv); 615 spin_unlock_irqrestore(&priv->irq_lock, flags); 616 } 617 618 static char *ipw_error_desc(u32 val) 619 { 620 switch (val) { 621 case IPW_FW_ERROR_OK: 622 return "ERROR_OK"; 623 case IPW_FW_ERROR_FAIL: 624 return "ERROR_FAIL"; 625 case IPW_FW_ERROR_MEMORY_UNDERFLOW: 626 return "MEMORY_UNDERFLOW"; 627 case IPW_FW_ERROR_MEMORY_OVERFLOW: 628 return "MEMORY_OVERFLOW"; 629 case IPW_FW_ERROR_BAD_PARAM: 630 return "BAD_PARAM"; 631 case IPW_FW_ERROR_BAD_CHECKSUM: 632 return "BAD_CHECKSUM"; 633 case IPW_FW_ERROR_NMI_INTERRUPT: 634 return "NMI_INTERRUPT"; 635 case IPW_FW_ERROR_BAD_DATABASE: 636 return "BAD_DATABASE"; 637 case IPW_FW_ERROR_ALLOC_FAIL: 638 return "ALLOC_FAIL"; 639 case IPW_FW_ERROR_DMA_UNDERRUN: 640 return "DMA_UNDERRUN"; 641 case IPW_FW_ERROR_DMA_STATUS: 642 return "DMA_STATUS"; 643 case IPW_FW_ERROR_DINO_ERROR: 644 return "DINO_ERROR"; 645 case IPW_FW_ERROR_EEPROM_ERROR: 646 return "EEPROM_ERROR"; 647 case IPW_FW_ERROR_SYSASSERT: 648 return "SYSASSERT"; 649 case IPW_FW_ERROR_FATAL_ERROR: 650 return "FATAL_ERROR"; 651 default: 652 return "UNKNOWN_ERROR"; 653 } 654 } 655 656 static void ipw_dump_error_log(struct ipw_priv *priv, 657 struct ipw_fw_error *error) 658 { 659 u32 i; 660 661 if (!error) { 662 IPW_ERROR("Error allocating and capturing error log. " 663 "Nothing to dump.\n"); 664 return; 665 } 666 667 IPW_ERROR("Start IPW Error Log Dump:\n"); 668 IPW_ERROR("Status: 0x%08X, Config: %08X\n", 669 error->status, error->config); 670 671 for (i = 0; i < error->elem_len; i++) 672 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 673 ipw_error_desc(error->elem[i].desc), 674 error->elem[i].time, 675 error->elem[i].blink1, 676 error->elem[i].blink2, 677 error->elem[i].link1, 678 error->elem[i].link2, error->elem[i].data); 679 for (i = 0; i < error->log_len; i++) 680 IPW_ERROR("%i\t0x%08x\t%i\n", 681 error->log[i].time, 682 error->log[i].data, error->log[i].event); 683 } 684 685 static inline int ipw_is_init(struct ipw_priv *priv) 686 { 687 return (priv->status & STATUS_INIT) ? 1 : 0; 688 } 689 690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len) 691 { 692 u32 addr, field_info, field_len, field_count, total_len; 693 694 IPW_DEBUG_ORD("ordinal = %i\n", ord); 695 696 if (!priv || !val || !len) { 697 IPW_DEBUG_ORD("Invalid argument\n"); 698 return -EINVAL; 699 } 700 701 /* verify device ordinal tables have been initialized */ 702 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) { 703 IPW_DEBUG_ORD("Access ordinals before initialization\n"); 704 return -EINVAL; 705 } 706 707 switch (IPW_ORD_TABLE_ID_MASK & ord) { 708 case IPW_ORD_TABLE_0_MASK: 709 /* 710 * TABLE 0: Direct access to a table of 32 bit values 711 * 712 * This is a very simple table with the data directly 713 * read from the table 714 */ 715 716 /* remove the table id from the ordinal */ 717 ord &= IPW_ORD_TABLE_VALUE_MASK; 718 719 /* boundary check */ 720 if (ord > priv->table0_len) { 721 IPW_DEBUG_ORD("ordinal value (%i) longer then " 722 "max (%i)\n", ord, priv->table0_len); 723 return -EINVAL; 724 } 725 726 /* verify we have enough room to store the value */ 727 if (*len < sizeof(u32)) { 728 IPW_DEBUG_ORD("ordinal buffer length too small, " 729 "need %zd\n", sizeof(u32)); 730 return -EINVAL; 731 } 732 733 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n", 734 ord, priv->table0_addr + (ord << 2)); 735 736 *len = sizeof(u32); 737 ord <<= 2; 738 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord); 739 break; 740 741 case IPW_ORD_TABLE_1_MASK: 742 /* 743 * TABLE 1: Indirect access to a table of 32 bit values 744 * 745 * This is a fairly large table of u32 values each 746 * representing starting addr for the data (which is 747 * also a u32) 748 */ 749 750 /* remove the table id from the ordinal */ 751 ord &= IPW_ORD_TABLE_VALUE_MASK; 752 753 /* boundary check */ 754 if (ord > priv->table1_len) { 755 IPW_DEBUG_ORD("ordinal value too long\n"); 756 return -EINVAL; 757 } 758 759 /* verify we have enough room to store the value */ 760 if (*len < sizeof(u32)) { 761 IPW_DEBUG_ORD("ordinal buffer length too small, " 762 "need %zd\n", sizeof(u32)); 763 return -EINVAL; 764 } 765 766 *((u32 *) val) = 767 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2))); 768 *len = sizeof(u32); 769 break; 770 771 case IPW_ORD_TABLE_2_MASK: 772 /* 773 * TABLE 2: Indirect access to a table of variable sized values 774 * 775 * This table consist of six values, each containing 776 * - dword containing the starting offset of the data 777 * - dword containing the lengh in the first 16bits 778 * and the count in the second 16bits 779 */ 780 781 /* remove the table id from the ordinal */ 782 ord &= IPW_ORD_TABLE_VALUE_MASK; 783 784 /* boundary check */ 785 if (ord > priv->table2_len) { 786 IPW_DEBUG_ORD("ordinal value too long\n"); 787 return -EINVAL; 788 } 789 790 /* get the address of statistic */ 791 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3)); 792 793 /* get the second DW of statistics ; 794 * two 16-bit words - first is length, second is count */ 795 field_info = 796 ipw_read_reg32(priv, 797 priv->table2_addr + (ord << 3) + 798 sizeof(u32)); 799 800 /* get each entry length */ 801 field_len = *((u16 *) & field_info); 802 803 /* get number of entries */ 804 field_count = *(((u16 *) & field_info) + 1); 805 806 /* abort if not enough memory */ 807 total_len = field_len * field_count; 808 if (total_len > *len) { 809 *len = total_len; 810 return -EINVAL; 811 } 812 813 *len = total_len; 814 if (!total_len) 815 return 0; 816 817 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, " 818 "field_info = 0x%08x\n", 819 addr, total_len, field_info); 820 ipw_read_indirect(priv, addr, val, total_len); 821 break; 822 823 default: 824 IPW_DEBUG_ORD("Invalid ordinal!\n"); 825 return -EINVAL; 826 827 } 828 829 return 0; 830 } 831 832 static void ipw_init_ordinals(struct ipw_priv *priv) 833 { 834 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER; 835 priv->table0_len = ipw_read32(priv, priv->table0_addr); 836 837 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n", 838 priv->table0_addr, priv->table0_len); 839 840 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1); 841 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr); 842 843 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n", 844 priv->table1_addr, priv->table1_len); 845 846 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2); 847 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr); 848 priv->table2_len &= 0x0000ffff; /* use first two bytes */ 849 850 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n", 851 priv->table2_addr, priv->table2_len); 852 853 } 854 855 static u32 ipw_register_toggle(u32 reg) 856 { 857 reg &= ~IPW_START_STANDBY; 858 if (reg & IPW_GATE_ODMA) 859 reg &= ~IPW_GATE_ODMA; 860 if (reg & IPW_GATE_IDMA) 861 reg &= ~IPW_GATE_IDMA; 862 if (reg & IPW_GATE_ADMA) 863 reg &= ~IPW_GATE_ADMA; 864 return reg; 865 } 866 867 /* 868 * LED behavior: 869 * - On radio ON, turn on any LEDs that require to be on during start 870 * - On initialization, start unassociated blink 871 * - On association, disable unassociated blink 872 * - On disassociation, start unassociated blink 873 * - On radio OFF, turn off any LEDs started during radio on 874 * 875 */ 876 #define LD_TIME_LINK_ON msecs_to_jiffies(300) 877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700) 878 #define LD_TIME_ACT_ON msecs_to_jiffies(250) 879 880 static void ipw_led_link_on(struct ipw_priv *priv) 881 { 882 unsigned long flags; 883 u32 led; 884 885 /* If configured to not use LEDs, or nic_type is 1, 886 * then we don't toggle a LINK led */ 887 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) 888 return; 889 890 spin_lock_irqsave(&priv->lock, flags); 891 892 if (!(priv->status & STATUS_RF_KILL_MASK) && 893 !(priv->status & STATUS_LED_LINK_ON)) { 894 IPW_DEBUG_LED("Link LED On\n"); 895 led = ipw_read_reg32(priv, IPW_EVENT_REG); 896 led |= priv->led_association_on; 897 898 led = ipw_register_toggle(led); 899 900 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 901 ipw_write_reg32(priv, IPW_EVENT_REG, led); 902 903 priv->status |= STATUS_LED_LINK_ON; 904 905 /* If we aren't associated, schedule turning the LED off */ 906 if (!(priv->status & STATUS_ASSOCIATED)) 907 schedule_delayed_work(&priv->led_link_off, 908 LD_TIME_LINK_ON); 909 } 910 911 spin_unlock_irqrestore(&priv->lock, flags); 912 } 913 914 static void ipw_bg_led_link_on(struct work_struct *work) 915 { 916 struct ipw_priv *priv = 917 container_of(work, struct ipw_priv, led_link_on.work); 918 mutex_lock(&priv->mutex); 919 ipw_led_link_on(priv); 920 mutex_unlock(&priv->mutex); 921 } 922 923 static void ipw_led_link_off(struct ipw_priv *priv) 924 { 925 unsigned long flags; 926 u32 led; 927 928 /* If configured not to use LEDs, or nic type is 1, 929 * then we don't goggle the LINK led. */ 930 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) 931 return; 932 933 spin_lock_irqsave(&priv->lock, flags); 934 935 if (priv->status & STATUS_LED_LINK_ON) { 936 led = ipw_read_reg32(priv, IPW_EVENT_REG); 937 led &= priv->led_association_off; 938 led = ipw_register_toggle(led); 939 940 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 941 ipw_write_reg32(priv, IPW_EVENT_REG, led); 942 943 IPW_DEBUG_LED("Link LED Off\n"); 944 945 priv->status &= ~STATUS_LED_LINK_ON; 946 947 /* If we aren't associated and the radio is on, schedule 948 * turning the LED on (blink while unassociated) */ 949 if (!(priv->status & STATUS_RF_KILL_MASK) && 950 !(priv->status & STATUS_ASSOCIATED)) 951 schedule_delayed_work(&priv->led_link_on, 952 LD_TIME_LINK_OFF); 953 954 } 955 956 spin_unlock_irqrestore(&priv->lock, flags); 957 } 958 959 static void ipw_bg_led_link_off(struct work_struct *work) 960 { 961 struct ipw_priv *priv = 962 container_of(work, struct ipw_priv, led_link_off.work); 963 mutex_lock(&priv->mutex); 964 ipw_led_link_off(priv); 965 mutex_unlock(&priv->mutex); 966 } 967 968 static void __ipw_led_activity_on(struct ipw_priv *priv) 969 { 970 u32 led; 971 972 if (priv->config & CFG_NO_LED) 973 return; 974 975 if (priv->status & STATUS_RF_KILL_MASK) 976 return; 977 978 if (!(priv->status & STATUS_LED_ACT_ON)) { 979 led = ipw_read_reg32(priv, IPW_EVENT_REG); 980 led |= priv->led_activity_on; 981 982 led = ipw_register_toggle(led); 983 984 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 985 ipw_write_reg32(priv, IPW_EVENT_REG, led); 986 987 IPW_DEBUG_LED("Activity LED On\n"); 988 989 priv->status |= STATUS_LED_ACT_ON; 990 991 cancel_delayed_work(&priv->led_act_off); 992 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); 993 } else { 994 /* Reschedule LED off for full time period */ 995 cancel_delayed_work(&priv->led_act_off); 996 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); 997 } 998 } 999 1000 #if 0 1001 void ipw_led_activity_on(struct ipw_priv *priv) 1002 { 1003 unsigned long flags; 1004 spin_lock_irqsave(&priv->lock, flags); 1005 __ipw_led_activity_on(priv); 1006 spin_unlock_irqrestore(&priv->lock, flags); 1007 } 1008 #endif /* 0 */ 1009 1010 static void ipw_led_activity_off(struct ipw_priv *priv) 1011 { 1012 unsigned long flags; 1013 u32 led; 1014 1015 if (priv->config & CFG_NO_LED) 1016 return; 1017 1018 spin_lock_irqsave(&priv->lock, flags); 1019 1020 if (priv->status & STATUS_LED_ACT_ON) { 1021 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1022 led &= priv->led_activity_off; 1023 1024 led = ipw_register_toggle(led); 1025 1026 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1027 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1028 1029 IPW_DEBUG_LED("Activity LED Off\n"); 1030 1031 priv->status &= ~STATUS_LED_ACT_ON; 1032 } 1033 1034 spin_unlock_irqrestore(&priv->lock, flags); 1035 } 1036 1037 static void ipw_bg_led_activity_off(struct work_struct *work) 1038 { 1039 struct ipw_priv *priv = 1040 container_of(work, struct ipw_priv, led_act_off.work); 1041 mutex_lock(&priv->mutex); 1042 ipw_led_activity_off(priv); 1043 mutex_unlock(&priv->mutex); 1044 } 1045 1046 static void ipw_led_band_on(struct ipw_priv *priv) 1047 { 1048 unsigned long flags; 1049 u32 led; 1050 1051 /* Only nic type 1 supports mode LEDs */ 1052 if (priv->config & CFG_NO_LED || 1053 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network) 1054 return; 1055 1056 spin_lock_irqsave(&priv->lock, flags); 1057 1058 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1059 if (priv->assoc_network->mode == IEEE_A) { 1060 led |= priv->led_ofdm_on; 1061 led &= priv->led_association_off; 1062 IPW_DEBUG_LED("Mode LED On: 802.11a\n"); 1063 } else if (priv->assoc_network->mode == IEEE_G) { 1064 led |= priv->led_ofdm_on; 1065 led |= priv->led_association_on; 1066 IPW_DEBUG_LED("Mode LED On: 802.11g\n"); 1067 } else { 1068 led &= priv->led_ofdm_off; 1069 led |= priv->led_association_on; 1070 IPW_DEBUG_LED("Mode LED On: 802.11b\n"); 1071 } 1072 1073 led = ipw_register_toggle(led); 1074 1075 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1076 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1077 1078 spin_unlock_irqrestore(&priv->lock, flags); 1079 } 1080 1081 static void ipw_led_band_off(struct ipw_priv *priv) 1082 { 1083 unsigned long flags; 1084 u32 led; 1085 1086 /* Only nic type 1 supports mode LEDs */ 1087 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1) 1088 return; 1089 1090 spin_lock_irqsave(&priv->lock, flags); 1091 1092 led = ipw_read_reg32(priv, IPW_EVENT_REG); 1093 led &= priv->led_ofdm_off; 1094 led &= priv->led_association_off; 1095 1096 led = ipw_register_toggle(led); 1097 1098 IPW_DEBUG_LED("Reg: 0x%08X\n", led); 1099 ipw_write_reg32(priv, IPW_EVENT_REG, led); 1100 1101 spin_unlock_irqrestore(&priv->lock, flags); 1102 } 1103 1104 static void ipw_led_radio_on(struct ipw_priv *priv) 1105 { 1106 ipw_led_link_on(priv); 1107 } 1108 1109 static void ipw_led_radio_off(struct ipw_priv *priv) 1110 { 1111 ipw_led_activity_off(priv); 1112 ipw_led_link_off(priv); 1113 } 1114 1115 static void ipw_led_link_up(struct ipw_priv *priv) 1116 { 1117 /* Set the Link Led on for all nic types */ 1118 ipw_led_link_on(priv); 1119 } 1120 1121 static void ipw_led_link_down(struct ipw_priv *priv) 1122 { 1123 ipw_led_activity_off(priv); 1124 ipw_led_link_off(priv); 1125 1126 if (priv->status & STATUS_RF_KILL_MASK) 1127 ipw_led_radio_off(priv); 1128 } 1129 1130 static void ipw_led_init(struct ipw_priv *priv) 1131 { 1132 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE]; 1133 1134 /* Set the default PINs for the link and activity leds */ 1135 priv->led_activity_on = IPW_ACTIVITY_LED; 1136 priv->led_activity_off = ~(IPW_ACTIVITY_LED); 1137 1138 priv->led_association_on = IPW_ASSOCIATED_LED; 1139 priv->led_association_off = ~(IPW_ASSOCIATED_LED); 1140 1141 /* Set the default PINs for the OFDM leds */ 1142 priv->led_ofdm_on = IPW_OFDM_LED; 1143 priv->led_ofdm_off = ~(IPW_OFDM_LED); 1144 1145 switch (priv->nic_type) { 1146 case EEPROM_NIC_TYPE_1: 1147 /* In this NIC type, the LEDs are reversed.... */ 1148 priv->led_activity_on = IPW_ASSOCIATED_LED; 1149 priv->led_activity_off = ~(IPW_ASSOCIATED_LED); 1150 priv->led_association_on = IPW_ACTIVITY_LED; 1151 priv->led_association_off = ~(IPW_ACTIVITY_LED); 1152 1153 if (!(priv->config & CFG_NO_LED)) 1154 ipw_led_band_on(priv); 1155 1156 /* And we don't blink link LEDs for this nic, so 1157 * just return here */ 1158 return; 1159 1160 case EEPROM_NIC_TYPE_3: 1161 case EEPROM_NIC_TYPE_2: 1162 case EEPROM_NIC_TYPE_4: 1163 case EEPROM_NIC_TYPE_0: 1164 break; 1165 1166 default: 1167 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n", 1168 priv->nic_type); 1169 priv->nic_type = EEPROM_NIC_TYPE_0; 1170 break; 1171 } 1172 1173 if (!(priv->config & CFG_NO_LED)) { 1174 if (priv->status & STATUS_ASSOCIATED) 1175 ipw_led_link_on(priv); 1176 else 1177 ipw_led_link_off(priv); 1178 } 1179 } 1180 1181 static void ipw_led_shutdown(struct ipw_priv *priv) 1182 { 1183 ipw_led_activity_off(priv); 1184 ipw_led_link_off(priv); 1185 ipw_led_band_off(priv); 1186 cancel_delayed_work(&priv->led_link_on); 1187 cancel_delayed_work(&priv->led_link_off); 1188 cancel_delayed_work(&priv->led_act_off); 1189 } 1190 1191 /* 1192 * The following adds a new attribute to the sysfs representation 1193 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/) 1194 * used for controlling the debug level. 1195 * 1196 * See the level definitions in ipw for details. 1197 */ 1198 static ssize_t show_debug_level(struct device_driver *d, char *buf) 1199 { 1200 return sprintf(buf, "0x%08X\n", ipw_debug_level); 1201 } 1202 1203 static ssize_t store_debug_level(struct device_driver *d, const char *buf, 1204 size_t count) 1205 { 1206 char *p = (char *)buf; 1207 u32 val; 1208 1209 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { 1210 p++; 1211 if (p[0] == 'x' || p[0] == 'X') 1212 p++; 1213 val = simple_strtoul(p, &p, 16); 1214 } else 1215 val = simple_strtoul(p, &p, 10); 1216 if (p == buf) 1217 printk(KERN_INFO DRV_NAME 1218 ": %s is not in hex or decimal form.\n", buf); 1219 else 1220 ipw_debug_level = val; 1221 1222 return strnlen(buf, count); 1223 } 1224 1225 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, 1226 show_debug_level, store_debug_level); 1227 1228 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv) 1229 { 1230 /* length = 1st dword in log */ 1231 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG)); 1232 } 1233 1234 static void ipw_capture_event_log(struct ipw_priv *priv, 1235 u32 log_len, struct ipw_event *log) 1236 { 1237 u32 base; 1238 1239 if (log_len) { 1240 base = ipw_read32(priv, IPW_EVENT_LOG); 1241 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32), 1242 (u8 *) log, sizeof(*log) * log_len); 1243 } 1244 } 1245 1246 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv) 1247 { 1248 struct ipw_fw_error *error; 1249 u32 log_len = ipw_get_event_log_len(priv); 1250 u32 base = ipw_read32(priv, IPW_ERROR_LOG); 1251 u32 elem_len = ipw_read_reg32(priv, base); 1252 1253 error = kmalloc(sizeof(*error) + 1254 sizeof(*error->elem) * elem_len + 1255 sizeof(*error->log) * log_len, GFP_ATOMIC); 1256 if (!error) { 1257 IPW_ERROR("Memory allocation for firmware error log " 1258 "failed.\n"); 1259 return NULL; 1260 } 1261 error->jiffies = jiffies; 1262 error->status = priv->status; 1263 error->config = priv->config; 1264 error->elem_len = elem_len; 1265 error->log_len = log_len; 1266 error->elem = (struct ipw_error_elem *)error->payload; 1267 error->log = (struct ipw_event *)(error->elem + elem_len); 1268 1269 ipw_capture_event_log(priv, log_len, error->log); 1270 1271 if (elem_len) 1272 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem, 1273 sizeof(*error->elem) * elem_len); 1274 1275 return error; 1276 } 1277 1278 static ssize_t show_event_log(struct device *d, 1279 struct device_attribute *attr, char *buf) 1280 { 1281 struct ipw_priv *priv = dev_get_drvdata(d); 1282 u32 log_len = ipw_get_event_log_len(priv); 1283 u32 log_size; 1284 struct ipw_event *log; 1285 u32 len = 0, i; 1286 1287 /* not using min() because of its strict type checking */ 1288 log_size = PAGE_SIZE / sizeof(*log) > log_len ? 1289 sizeof(*log) * log_len : PAGE_SIZE; 1290 log = kzalloc(log_size, GFP_KERNEL); 1291 if (!log) { 1292 IPW_ERROR("Unable to allocate memory for log\n"); 1293 return 0; 1294 } 1295 log_len = log_size / sizeof(*log); 1296 ipw_capture_event_log(priv, log_len, log); 1297 1298 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len); 1299 for (i = 0; i < log_len; i++) 1300 len += snprintf(buf + len, PAGE_SIZE - len, 1301 "\n%08X%08X%08X", 1302 log[i].time, log[i].event, log[i].data); 1303 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1304 kfree(log); 1305 return len; 1306 } 1307 1308 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL); 1309 1310 static ssize_t show_error(struct device *d, 1311 struct device_attribute *attr, char *buf) 1312 { 1313 struct ipw_priv *priv = dev_get_drvdata(d); 1314 u32 len = 0, i; 1315 if (!priv->error) 1316 return 0; 1317 len += snprintf(buf + len, PAGE_SIZE - len, 1318 "%08lX%08X%08X%08X", 1319 priv->error->jiffies, 1320 priv->error->status, 1321 priv->error->config, priv->error->elem_len); 1322 for (i = 0; i < priv->error->elem_len; i++) 1323 len += snprintf(buf + len, PAGE_SIZE - len, 1324 "\n%08X%08X%08X%08X%08X%08X%08X", 1325 priv->error->elem[i].time, 1326 priv->error->elem[i].desc, 1327 priv->error->elem[i].blink1, 1328 priv->error->elem[i].blink2, 1329 priv->error->elem[i].link1, 1330 priv->error->elem[i].link2, 1331 priv->error->elem[i].data); 1332 1333 len += snprintf(buf + len, PAGE_SIZE - len, 1334 "\n%08X", priv->error->log_len); 1335 for (i = 0; i < priv->error->log_len; i++) 1336 len += snprintf(buf + len, PAGE_SIZE - len, 1337 "\n%08X%08X%08X", 1338 priv->error->log[i].time, 1339 priv->error->log[i].event, 1340 priv->error->log[i].data); 1341 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1342 return len; 1343 } 1344 1345 static ssize_t clear_error(struct device *d, 1346 struct device_attribute *attr, 1347 const char *buf, size_t count) 1348 { 1349 struct ipw_priv *priv = dev_get_drvdata(d); 1350 1351 kfree(priv->error); 1352 priv->error = NULL; 1353 return count; 1354 } 1355 1356 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error); 1357 1358 static ssize_t show_cmd_log(struct device *d, 1359 struct device_attribute *attr, char *buf) 1360 { 1361 struct ipw_priv *priv = dev_get_drvdata(d); 1362 u32 len = 0, i; 1363 if (!priv->cmdlog) 1364 return 0; 1365 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len; 1366 (i != priv->cmdlog_pos) && (len < PAGE_SIZE); 1367 i = (i + 1) % priv->cmdlog_len) { 1368 len += 1369 snprintf(buf + len, PAGE_SIZE - len, 1370 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies, 1371 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd, 1372 priv->cmdlog[i].cmd.len); 1373 len += 1374 snprintk_buf(buf + len, PAGE_SIZE - len, 1375 (u8 *) priv->cmdlog[i].cmd.param, 1376 priv->cmdlog[i].cmd.len); 1377 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1378 } 1379 len += snprintf(buf + len, PAGE_SIZE - len, "\n"); 1380 return len; 1381 } 1382 1383 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL); 1384 1385 #ifdef CONFIG_IPW2200_PROMISCUOUS 1386 static void ipw_prom_free(struct ipw_priv *priv); 1387 static int ipw_prom_alloc(struct ipw_priv *priv); 1388 static ssize_t store_rtap_iface(struct device *d, 1389 struct device_attribute *attr, 1390 const char *buf, size_t count) 1391 { 1392 struct ipw_priv *priv = dev_get_drvdata(d); 1393 int rc = 0; 1394 1395 if (count < 1) 1396 return -EINVAL; 1397 1398 switch (buf[0]) { 1399 case '0': 1400 if (!rtap_iface) 1401 return count; 1402 1403 if (netif_running(priv->prom_net_dev)) { 1404 IPW_WARNING("Interface is up. Cannot unregister.\n"); 1405 return count; 1406 } 1407 1408 ipw_prom_free(priv); 1409 rtap_iface = 0; 1410 break; 1411 1412 case '1': 1413 if (rtap_iface) 1414 return count; 1415 1416 rc = ipw_prom_alloc(priv); 1417 if (!rc) 1418 rtap_iface = 1; 1419 break; 1420 1421 default: 1422 return -EINVAL; 1423 } 1424 1425 if (rc) { 1426 IPW_ERROR("Failed to register promiscuous network " 1427 "device (error %d).\n", rc); 1428 } 1429 1430 return count; 1431 } 1432 1433 static ssize_t show_rtap_iface(struct device *d, 1434 struct device_attribute *attr, 1435 char *buf) 1436 { 1437 struct ipw_priv *priv = dev_get_drvdata(d); 1438 if (rtap_iface) 1439 return sprintf(buf, "%s", priv->prom_net_dev->name); 1440 else { 1441 buf[0] = '-'; 1442 buf[1] = '1'; 1443 buf[2] = '\0'; 1444 return 3; 1445 } 1446 } 1447 1448 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface, 1449 store_rtap_iface); 1450 1451 static ssize_t store_rtap_filter(struct device *d, 1452 struct device_attribute *attr, 1453 const char *buf, size_t count) 1454 { 1455 struct ipw_priv *priv = dev_get_drvdata(d); 1456 1457 if (!priv->prom_priv) { 1458 IPW_ERROR("Attempting to set filter without " 1459 "rtap_iface enabled.\n"); 1460 return -EPERM; 1461 } 1462 1463 priv->prom_priv->filter = simple_strtol(buf, NULL, 0); 1464 1465 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n", 1466 BIT_ARG16(priv->prom_priv->filter)); 1467 1468 return count; 1469 } 1470 1471 static ssize_t show_rtap_filter(struct device *d, 1472 struct device_attribute *attr, 1473 char *buf) 1474 { 1475 struct ipw_priv *priv = dev_get_drvdata(d); 1476 return sprintf(buf, "0x%04X", 1477 priv->prom_priv ? priv->prom_priv->filter : 0); 1478 } 1479 1480 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter, 1481 store_rtap_filter); 1482 #endif 1483 1484 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr, 1485 char *buf) 1486 { 1487 struct ipw_priv *priv = dev_get_drvdata(d); 1488 return sprintf(buf, "%d\n", priv->ieee->scan_age); 1489 } 1490 1491 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr, 1492 const char *buf, size_t count) 1493 { 1494 struct ipw_priv *priv = dev_get_drvdata(d); 1495 struct net_device *dev = priv->net_dev; 1496 char buffer[] = "00000000"; 1497 unsigned long len = 1498 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1; 1499 unsigned long val; 1500 char *p = buffer; 1501 1502 IPW_DEBUG_INFO("enter\n"); 1503 1504 strncpy(buffer, buf, len); 1505 buffer[len] = 0; 1506 1507 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { 1508 p++; 1509 if (p[0] == 'x' || p[0] == 'X') 1510 p++; 1511 val = simple_strtoul(p, &p, 16); 1512 } else 1513 val = simple_strtoul(p, &p, 10); 1514 if (p == buffer) { 1515 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); 1516 } else { 1517 priv->ieee->scan_age = val; 1518 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); 1519 } 1520 1521 IPW_DEBUG_INFO("exit\n"); 1522 return len; 1523 } 1524 1525 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age); 1526 1527 static ssize_t show_led(struct device *d, struct device_attribute *attr, 1528 char *buf) 1529 { 1530 struct ipw_priv *priv = dev_get_drvdata(d); 1531 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1); 1532 } 1533 1534 static ssize_t store_led(struct device *d, struct device_attribute *attr, 1535 const char *buf, size_t count) 1536 { 1537 struct ipw_priv *priv = dev_get_drvdata(d); 1538 1539 IPW_DEBUG_INFO("enter\n"); 1540 1541 if (count == 0) 1542 return 0; 1543 1544 if (*buf == 0) { 1545 IPW_DEBUG_LED("Disabling LED control.\n"); 1546 priv->config |= CFG_NO_LED; 1547 ipw_led_shutdown(priv); 1548 } else { 1549 IPW_DEBUG_LED("Enabling LED control.\n"); 1550 priv->config &= ~CFG_NO_LED; 1551 ipw_led_init(priv); 1552 } 1553 1554 IPW_DEBUG_INFO("exit\n"); 1555 return count; 1556 } 1557 1558 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led); 1559 1560 static ssize_t show_status(struct device *d, 1561 struct device_attribute *attr, char *buf) 1562 { 1563 struct ipw_priv *p = dev_get_drvdata(d); 1564 return sprintf(buf, "0x%08x\n", (int)p->status); 1565 } 1566 1567 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL); 1568 1569 static ssize_t show_cfg(struct device *d, struct device_attribute *attr, 1570 char *buf) 1571 { 1572 struct ipw_priv *p = dev_get_drvdata(d); 1573 return sprintf(buf, "0x%08x\n", (int)p->config); 1574 } 1575 1576 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL); 1577 1578 static ssize_t show_nic_type(struct device *d, 1579 struct device_attribute *attr, char *buf) 1580 { 1581 struct ipw_priv *priv = dev_get_drvdata(d); 1582 return sprintf(buf, "TYPE: %d\n", priv->nic_type); 1583 } 1584 1585 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL); 1586 1587 static ssize_t show_ucode_version(struct device *d, 1588 struct device_attribute *attr, char *buf) 1589 { 1590 u32 len = sizeof(u32), tmp = 0; 1591 struct ipw_priv *p = dev_get_drvdata(d); 1592 1593 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len)) 1594 return 0; 1595 1596 return sprintf(buf, "0x%08x\n", tmp); 1597 } 1598 1599 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL); 1600 1601 static ssize_t show_rtc(struct device *d, struct device_attribute *attr, 1602 char *buf) 1603 { 1604 u32 len = sizeof(u32), tmp = 0; 1605 struct ipw_priv *p = dev_get_drvdata(d); 1606 1607 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len)) 1608 return 0; 1609 1610 return sprintf(buf, "0x%08x\n", tmp); 1611 } 1612 1613 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL); 1614 1615 /* 1616 * Add a device attribute to view/control the delay between eeprom 1617 * operations. 1618 */ 1619 static ssize_t show_eeprom_delay(struct device *d, 1620 struct device_attribute *attr, char *buf) 1621 { 1622 struct ipw_priv *p = dev_get_drvdata(d); 1623 int n = p->eeprom_delay; 1624 return sprintf(buf, "%i\n", n); 1625 } 1626 static ssize_t store_eeprom_delay(struct device *d, 1627 struct device_attribute *attr, 1628 const char *buf, size_t count) 1629 { 1630 struct ipw_priv *p = dev_get_drvdata(d); 1631 sscanf(buf, "%i", &p->eeprom_delay); 1632 return strnlen(buf, count); 1633 } 1634 1635 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO, 1636 show_eeprom_delay, store_eeprom_delay); 1637 1638 static ssize_t show_command_event_reg(struct device *d, 1639 struct device_attribute *attr, char *buf) 1640 { 1641 u32 reg = 0; 1642 struct ipw_priv *p = dev_get_drvdata(d); 1643 1644 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT); 1645 return sprintf(buf, "0x%08x\n", reg); 1646 } 1647 static ssize_t store_command_event_reg(struct device *d, 1648 struct device_attribute *attr, 1649 const char *buf, size_t count) 1650 { 1651 u32 reg; 1652 struct ipw_priv *p = dev_get_drvdata(d); 1653 1654 sscanf(buf, "%x", ®); 1655 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg); 1656 return strnlen(buf, count); 1657 } 1658 1659 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO, 1660 show_command_event_reg, store_command_event_reg); 1661 1662 static ssize_t show_mem_gpio_reg(struct device *d, 1663 struct device_attribute *attr, char *buf) 1664 { 1665 u32 reg = 0; 1666 struct ipw_priv *p = dev_get_drvdata(d); 1667 1668 reg = ipw_read_reg32(p, 0x301100); 1669 return sprintf(buf, "0x%08x\n", reg); 1670 } 1671 static ssize_t store_mem_gpio_reg(struct device *d, 1672 struct device_attribute *attr, 1673 const char *buf, size_t count) 1674 { 1675 u32 reg; 1676 struct ipw_priv *p = dev_get_drvdata(d); 1677 1678 sscanf(buf, "%x", ®); 1679 ipw_write_reg32(p, 0x301100, reg); 1680 return strnlen(buf, count); 1681 } 1682 1683 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO, 1684 show_mem_gpio_reg, store_mem_gpio_reg); 1685 1686 static ssize_t show_indirect_dword(struct device *d, 1687 struct device_attribute *attr, char *buf) 1688 { 1689 u32 reg = 0; 1690 struct ipw_priv *priv = dev_get_drvdata(d); 1691 1692 if (priv->status & STATUS_INDIRECT_DWORD) 1693 reg = ipw_read_reg32(priv, priv->indirect_dword); 1694 else 1695 reg = 0; 1696 1697 return sprintf(buf, "0x%08x\n", reg); 1698 } 1699 static ssize_t store_indirect_dword(struct device *d, 1700 struct device_attribute *attr, 1701 const char *buf, size_t count) 1702 { 1703 struct ipw_priv *priv = dev_get_drvdata(d); 1704 1705 sscanf(buf, "%x", &priv->indirect_dword); 1706 priv->status |= STATUS_INDIRECT_DWORD; 1707 return strnlen(buf, count); 1708 } 1709 1710 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO, 1711 show_indirect_dword, store_indirect_dword); 1712 1713 static ssize_t show_indirect_byte(struct device *d, 1714 struct device_attribute *attr, char *buf) 1715 { 1716 u8 reg = 0; 1717 struct ipw_priv *priv = dev_get_drvdata(d); 1718 1719 if (priv->status & STATUS_INDIRECT_BYTE) 1720 reg = ipw_read_reg8(priv, priv->indirect_byte); 1721 else 1722 reg = 0; 1723 1724 return sprintf(buf, "0x%02x\n", reg); 1725 } 1726 static ssize_t store_indirect_byte(struct device *d, 1727 struct device_attribute *attr, 1728 const char *buf, size_t count) 1729 { 1730 struct ipw_priv *priv = dev_get_drvdata(d); 1731 1732 sscanf(buf, "%x", &priv->indirect_byte); 1733 priv->status |= STATUS_INDIRECT_BYTE; 1734 return strnlen(buf, count); 1735 } 1736 1737 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO, 1738 show_indirect_byte, store_indirect_byte); 1739 1740 static ssize_t show_direct_dword(struct device *d, 1741 struct device_attribute *attr, char *buf) 1742 { 1743 u32 reg = 0; 1744 struct ipw_priv *priv = dev_get_drvdata(d); 1745 1746 if (priv->status & STATUS_DIRECT_DWORD) 1747 reg = ipw_read32(priv, priv->direct_dword); 1748 else 1749 reg = 0; 1750 1751 return sprintf(buf, "0x%08x\n", reg); 1752 } 1753 static ssize_t store_direct_dword(struct device *d, 1754 struct device_attribute *attr, 1755 const char *buf, size_t count) 1756 { 1757 struct ipw_priv *priv = dev_get_drvdata(d); 1758 1759 sscanf(buf, "%x", &priv->direct_dword); 1760 priv->status |= STATUS_DIRECT_DWORD; 1761 return strnlen(buf, count); 1762 } 1763 1764 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO, 1765 show_direct_dword, store_direct_dword); 1766 1767 static int rf_kill_active(struct ipw_priv *priv) 1768 { 1769 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) { 1770 priv->status |= STATUS_RF_KILL_HW; 1771 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 1772 } else { 1773 priv->status &= ~STATUS_RF_KILL_HW; 1774 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1775 } 1776 1777 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0; 1778 } 1779 1780 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, 1781 char *buf) 1782 { 1783 /* 0 - RF kill not enabled 1784 1 - SW based RF kill active (sysfs) 1785 2 - HW based RF kill active 1786 3 - Both HW and SW baed RF kill active */ 1787 struct ipw_priv *priv = dev_get_drvdata(d); 1788 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | 1789 (rf_kill_active(priv) ? 0x2 : 0x0); 1790 return sprintf(buf, "%i\n", val); 1791 } 1792 1793 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio) 1794 { 1795 if ((disable_radio ? 1 : 0) == 1796 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0)) 1797 return 0; 1798 1799 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", 1800 disable_radio ? "OFF" : "ON"); 1801 1802 if (disable_radio) { 1803 priv->status |= STATUS_RF_KILL_SW; 1804 1805 cancel_delayed_work(&priv->request_scan); 1806 cancel_delayed_work(&priv->request_direct_scan); 1807 cancel_delayed_work(&priv->request_passive_scan); 1808 cancel_delayed_work(&priv->scan_event); 1809 schedule_work(&priv->down); 1810 } else { 1811 priv->status &= ~STATUS_RF_KILL_SW; 1812 if (rf_kill_active(priv)) { 1813 IPW_DEBUG_RF_KILL("Can not turn radio back on - " 1814 "disabled by HW switch\n"); 1815 /* Make sure the RF_KILL check timer is running */ 1816 cancel_delayed_work(&priv->rf_kill); 1817 schedule_delayed_work(&priv->rf_kill, 1818 round_jiffies_relative(2 * HZ)); 1819 } else 1820 schedule_work(&priv->up); 1821 } 1822 1823 return 1; 1824 } 1825 1826 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, 1827 const char *buf, size_t count) 1828 { 1829 struct ipw_priv *priv = dev_get_drvdata(d); 1830 1831 ipw_radio_kill_sw(priv, buf[0] == '1'); 1832 1833 return count; 1834 } 1835 1836 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill); 1837 1838 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr, 1839 char *buf) 1840 { 1841 struct ipw_priv *priv = dev_get_drvdata(d); 1842 int pos = 0, len = 0; 1843 if (priv->config & CFG_SPEED_SCAN) { 1844 while (priv->speed_scan[pos] != 0) 1845 len += sprintf(&buf[len], "%d ", 1846 priv->speed_scan[pos++]); 1847 return len + sprintf(&buf[len], "\n"); 1848 } 1849 1850 return sprintf(buf, "0\n"); 1851 } 1852 1853 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr, 1854 const char *buf, size_t count) 1855 { 1856 struct ipw_priv *priv = dev_get_drvdata(d); 1857 int channel, pos = 0; 1858 const char *p = buf; 1859 1860 /* list of space separated channels to scan, optionally ending with 0 */ 1861 while ((channel = simple_strtol(p, NULL, 0))) { 1862 if (pos == MAX_SPEED_SCAN - 1) { 1863 priv->speed_scan[pos] = 0; 1864 break; 1865 } 1866 1867 if (libipw_is_valid_channel(priv->ieee, channel)) 1868 priv->speed_scan[pos++] = channel; 1869 else 1870 IPW_WARNING("Skipping invalid channel request: %d\n", 1871 channel); 1872 p = strchr(p, ' '); 1873 if (!p) 1874 break; 1875 while (*p == ' ' || *p == '\t') 1876 p++; 1877 } 1878 1879 if (pos == 0) 1880 priv->config &= ~CFG_SPEED_SCAN; 1881 else { 1882 priv->speed_scan_pos = 0; 1883 priv->config |= CFG_SPEED_SCAN; 1884 } 1885 1886 return count; 1887 } 1888 1889 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan, 1890 store_speed_scan); 1891 1892 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr, 1893 char *buf) 1894 { 1895 struct ipw_priv *priv = dev_get_drvdata(d); 1896 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0'); 1897 } 1898 1899 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr, 1900 const char *buf, size_t count) 1901 { 1902 struct ipw_priv *priv = dev_get_drvdata(d); 1903 if (buf[0] == '1') 1904 priv->config |= CFG_NET_STATS; 1905 else 1906 priv->config &= ~CFG_NET_STATS; 1907 1908 return count; 1909 } 1910 1911 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO, 1912 show_net_stats, store_net_stats); 1913 1914 static ssize_t show_channels(struct device *d, 1915 struct device_attribute *attr, 1916 char *buf) 1917 { 1918 struct ipw_priv *priv = dev_get_drvdata(d); 1919 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 1920 int len = 0, i; 1921 1922 len = sprintf(&buf[len], 1923 "Displaying %d channels in 2.4Ghz band " 1924 "(802.11bg):\n", geo->bg_channels); 1925 1926 for (i = 0; i < geo->bg_channels; i++) { 1927 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n", 1928 geo->bg[i].channel, 1929 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ? 1930 " (radar spectrum)" : "", 1931 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) || 1932 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)) 1933 ? "" : ", IBSS", 1934 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ? 1935 "passive only" : "active/passive", 1936 geo->bg[i].flags & LIBIPW_CH_B_ONLY ? 1937 "B" : "B/G"); 1938 } 1939 1940 len += sprintf(&buf[len], 1941 "Displaying %d channels in 5.2Ghz band " 1942 "(802.11a):\n", geo->a_channels); 1943 for (i = 0; i < geo->a_channels; i++) { 1944 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n", 1945 geo->a[i].channel, 1946 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ? 1947 " (radar spectrum)" : "", 1948 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) || 1949 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)) 1950 ? "" : ", IBSS", 1951 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ? 1952 "passive only" : "active/passive"); 1953 } 1954 1955 return len; 1956 } 1957 1958 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL); 1959 1960 static void notify_wx_assoc_event(struct ipw_priv *priv) 1961 { 1962 union iwreq_data wrqu; 1963 wrqu.ap_addr.sa_family = ARPHRD_ETHER; 1964 if (priv->status & STATUS_ASSOCIATED) 1965 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); 1966 else 1967 eth_zero_addr(wrqu.ap_addr.sa_data); 1968 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1969 } 1970 1971 static void ipw_irq_tasklet(struct ipw_priv *priv) 1972 { 1973 u32 inta, inta_mask, handled = 0; 1974 unsigned long flags; 1975 int rc = 0; 1976 1977 spin_lock_irqsave(&priv->irq_lock, flags); 1978 1979 inta = ipw_read32(priv, IPW_INTA_RW); 1980 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); 1981 1982 if (inta == 0xFFFFFFFF) { 1983 /* Hardware disappeared */ 1984 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n"); 1985 /* Only handle the cached INTA values */ 1986 inta = 0; 1987 } 1988 inta &= (IPW_INTA_MASK_ALL & inta_mask); 1989 1990 /* Add any cached INTA values that need to be handled */ 1991 inta |= priv->isr_inta; 1992 1993 spin_unlock_irqrestore(&priv->irq_lock, flags); 1994 1995 spin_lock_irqsave(&priv->lock, flags); 1996 1997 /* handle all the justifications for the interrupt */ 1998 if (inta & IPW_INTA_BIT_RX_TRANSFER) { 1999 ipw_rx(priv); 2000 handled |= IPW_INTA_BIT_RX_TRANSFER; 2001 } 2002 2003 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) { 2004 IPW_DEBUG_HC("Command completed.\n"); 2005 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1); 2006 priv->status &= ~STATUS_HCMD_ACTIVE; 2007 wake_up_interruptible(&priv->wait_command_queue); 2008 handled |= IPW_INTA_BIT_TX_CMD_QUEUE; 2009 } 2010 2011 if (inta & IPW_INTA_BIT_TX_QUEUE_1) { 2012 IPW_DEBUG_TX("TX_QUEUE_1\n"); 2013 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0); 2014 handled |= IPW_INTA_BIT_TX_QUEUE_1; 2015 } 2016 2017 if (inta & IPW_INTA_BIT_TX_QUEUE_2) { 2018 IPW_DEBUG_TX("TX_QUEUE_2\n"); 2019 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1); 2020 handled |= IPW_INTA_BIT_TX_QUEUE_2; 2021 } 2022 2023 if (inta & IPW_INTA_BIT_TX_QUEUE_3) { 2024 IPW_DEBUG_TX("TX_QUEUE_3\n"); 2025 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2); 2026 handled |= IPW_INTA_BIT_TX_QUEUE_3; 2027 } 2028 2029 if (inta & IPW_INTA_BIT_TX_QUEUE_4) { 2030 IPW_DEBUG_TX("TX_QUEUE_4\n"); 2031 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3); 2032 handled |= IPW_INTA_BIT_TX_QUEUE_4; 2033 } 2034 2035 if (inta & IPW_INTA_BIT_STATUS_CHANGE) { 2036 IPW_WARNING("STATUS_CHANGE\n"); 2037 handled |= IPW_INTA_BIT_STATUS_CHANGE; 2038 } 2039 2040 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) { 2041 IPW_WARNING("TX_PERIOD_EXPIRED\n"); 2042 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED; 2043 } 2044 2045 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) { 2046 IPW_WARNING("HOST_CMD_DONE\n"); 2047 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE; 2048 } 2049 2050 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) { 2051 IPW_WARNING("FW_INITIALIZATION_DONE\n"); 2052 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE; 2053 } 2054 2055 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) { 2056 IPW_WARNING("PHY_OFF_DONE\n"); 2057 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE; 2058 } 2059 2060 if (inta & IPW_INTA_BIT_RF_KILL_DONE) { 2061 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n"); 2062 priv->status |= STATUS_RF_KILL_HW; 2063 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 2064 wake_up_interruptible(&priv->wait_command_queue); 2065 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 2066 cancel_delayed_work(&priv->request_scan); 2067 cancel_delayed_work(&priv->request_direct_scan); 2068 cancel_delayed_work(&priv->request_passive_scan); 2069 cancel_delayed_work(&priv->scan_event); 2070 schedule_work(&priv->link_down); 2071 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 2072 handled |= IPW_INTA_BIT_RF_KILL_DONE; 2073 } 2074 2075 if (inta & IPW_INTA_BIT_FATAL_ERROR) { 2076 IPW_WARNING("Firmware error detected. Restarting.\n"); 2077 if (priv->error) { 2078 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n"); 2079 if (ipw_debug_level & IPW_DL_FW_ERRORS) { 2080 struct ipw_fw_error *error = 2081 ipw_alloc_error_log(priv); 2082 ipw_dump_error_log(priv, error); 2083 kfree(error); 2084 } 2085 } else { 2086 priv->error = ipw_alloc_error_log(priv); 2087 if (priv->error) 2088 IPW_DEBUG_FW("Sysfs 'error' log captured.\n"); 2089 else 2090 IPW_DEBUG_FW("Error allocating sysfs 'error' " 2091 "log.\n"); 2092 if (ipw_debug_level & IPW_DL_FW_ERRORS) 2093 ipw_dump_error_log(priv, priv->error); 2094 } 2095 2096 /* XXX: If hardware encryption is for WPA/WPA2, 2097 * we have to notify the supplicant. */ 2098 if (priv->ieee->sec.encrypt) { 2099 priv->status &= ~STATUS_ASSOCIATED; 2100 notify_wx_assoc_event(priv); 2101 } 2102 2103 /* Keep the restart process from trying to send host 2104 * commands by clearing the INIT status bit */ 2105 priv->status &= ~STATUS_INIT; 2106 2107 /* Cancel currently queued command. */ 2108 priv->status &= ~STATUS_HCMD_ACTIVE; 2109 wake_up_interruptible(&priv->wait_command_queue); 2110 2111 schedule_work(&priv->adapter_restart); 2112 handled |= IPW_INTA_BIT_FATAL_ERROR; 2113 } 2114 2115 if (inta & IPW_INTA_BIT_PARITY_ERROR) { 2116 IPW_ERROR("Parity error\n"); 2117 handled |= IPW_INTA_BIT_PARITY_ERROR; 2118 } 2119 2120 if (handled != inta) { 2121 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled); 2122 } 2123 2124 spin_unlock_irqrestore(&priv->lock, flags); 2125 2126 /* enable all interrupts */ 2127 ipw_enable_interrupts(priv); 2128 } 2129 2130 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x 2131 static char *get_cmd_string(u8 cmd) 2132 { 2133 switch (cmd) { 2134 IPW_CMD(HOST_COMPLETE); 2135 IPW_CMD(POWER_DOWN); 2136 IPW_CMD(SYSTEM_CONFIG); 2137 IPW_CMD(MULTICAST_ADDRESS); 2138 IPW_CMD(SSID); 2139 IPW_CMD(ADAPTER_ADDRESS); 2140 IPW_CMD(PORT_TYPE); 2141 IPW_CMD(RTS_THRESHOLD); 2142 IPW_CMD(FRAG_THRESHOLD); 2143 IPW_CMD(POWER_MODE); 2144 IPW_CMD(WEP_KEY); 2145 IPW_CMD(TGI_TX_KEY); 2146 IPW_CMD(SCAN_REQUEST); 2147 IPW_CMD(SCAN_REQUEST_EXT); 2148 IPW_CMD(ASSOCIATE); 2149 IPW_CMD(SUPPORTED_RATES); 2150 IPW_CMD(SCAN_ABORT); 2151 IPW_CMD(TX_FLUSH); 2152 IPW_CMD(QOS_PARAMETERS); 2153 IPW_CMD(DINO_CONFIG); 2154 IPW_CMD(RSN_CAPABILITIES); 2155 IPW_CMD(RX_KEY); 2156 IPW_CMD(CARD_DISABLE); 2157 IPW_CMD(SEED_NUMBER); 2158 IPW_CMD(TX_POWER); 2159 IPW_CMD(COUNTRY_INFO); 2160 IPW_CMD(AIRONET_INFO); 2161 IPW_CMD(AP_TX_POWER); 2162 IPW_CMD(CCKM_INFO); 2163 IPW_CMD(CCX_VER_INFO); 2164 IPW_CMD(SET_CALIBRATION); 2165 IPW_CMD(SENSITIVITY_CALIB); 2166 IPW_CMD(RETRY_LIMIT); 2167 IPW_CMD(IPW_PRE_POWER_DOWN); 2168 IPW_CMD(VAP_BEACON_TEMPLATE); 2169 IPW_CMD(VAP_DTIM_PERIOD); 2170 IPW_CMD(EXT_SUPPORTED_RATES); 2171 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT); 2172 IPW_CMD(VAP_QUIET_INTERVALS); 2173 IPW_CMD(VAP_CHANNEL_SWITCH); 2174 IPW_CMD(VAP_MANDATORY_CHANNELS); 2175 IPW_CMD(VAP_CELL_PWR_LIMIT); 2176 IPW_CMD(VAP_CF_PARAM_SET); 2177 IPW_CMD(VAP_SET_BEACONING_STATE); 2178 IPW_CMD(MEASUREMENT); 2179 IPW_CMD(POWER_CAPABILITY); 2180 IPW_CMD(SUPPORTED_CHANNELS); 2181 IPW_CMD(TPC_REPORT); 2182 IPW_CMD(WME_INFO); 2183 IPW_CMD(PRODUCTION_COMMAND); 2184 default: 2185 return "UNKNOWN"; 2186 } 2187 } 2188 2189 #define HOST_COMPLETE_TIMEOUT HZ 2190 2191 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd) 2192 { 2193 int rc = 0; 2194 unsigned long flags; 2195 unsigned long now, end; 2196 2197 spin_lock_irqsave(&priv->lock, flags); 2198 if (priv->status & STATUS_HCMD_ACTIVE) { 2199 IPW_ERROR("Failed to send %s: Already sending a command.\n", 2200 get_cmd_string(cmd->cmd)); 2201 spin_unlock_irqrestore(&priv->lock, flags); 2202 return -EAGAIN; 2203 } 2204 2205 priv->status |= STATUS_HCMD_ACTIVE; 2206 2207 if (priv->cmdlog) { 2208 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies; 2209 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd; 2210 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len; 2211 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param, 2212 cmd->len); 2213 priv->cmdlog[priv->cmdlog_pos].retcode = -1; 2214 } 2215 2216 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n", 2217 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len, 2218 priv->status); 2219 2220 #ifndef DEBUG_CMD_WEP_KEY 2221 if (cmd->cmd == IPW_CMD_WEP_KEY) 2222 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n"); 2223 else 2224 #endif 2225 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len); 2226 2227 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0); 2228 if (rc) { 2229 priv->status &= ~STATUS_HCMD_ACTIVE; 2230 IPW_ERROR("Failed to send %s: Reason %d\n", 2231 get_cmd_string(cmd->cmd), rc); 2232 spin_unlock_irqrestore(&priv->lock, flags); 2233 goto exit; 2234 } 2235 spin_unlock_irqrestore(&priv->lock, flags); 2236 2237 now = jiffies; 2238 end = now + HOST_COMPLETE_TIMEOUT; 2239 again: 2240 rc = wait_event_interruptible_timeout(priv->wait_command_queue, 2241 !(priv-> 2242 status & STATUS_HCMD_ACTIVE), 2243 end - now); 2244 if (rc < 0) { 2245 now = jiffies; 2246 if (time_before(now, end)) 2247 goto again; 2248 rc = 0; 2249 } 2250 2251 if (rc == 0) { 2252 spin_lock_irqsave(&priv->lock, flags); 2253 if (priv->status & STATUS_HCMD_ACTIVE) { 2254 IPW_ERROR("Failed to send %s: Command timed out.\n", 2255 get_cmd_string(cmd->cmd)); 2256 priv->status &= ~STATUS_HCMD_ACTIVE; 2257 spin_unlock_irqrestore(&priv->lock, flags); 2258 rc = -EIO; 2259 goto exit; 2260 } 2261 spin_unlock_irqrestore(&priv->lock, flags); 2262 } else 2263 rc = 0; 2264 2265 if (priv->status & STATUS_RF_KILL_HW) { 2266 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n", 2267 get_cmd_string(cmd->cmd)); 2268 rc = -EIO; 2269 goto exit; 2270 } 2271 2272 exit: 2273 if (priv->cmdlog) { 2274 priv->cmdlog[priv->cmdlog_pos++].retcode = rc; 2275 priv->cmdlog_pos %= priv->cmdlog_len; 2276 } 2277 return rc; 2278 } 2279 2280 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command) 2281 { 2282 struct host_cmd cmd = { 2283 .cmd = command, 2284 }; 2285 2286 return __ipw_send_cmd(priv, &cmd); 2287 } 2288 2289 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len, 2290 void *data) 2291 { 2292 struct host_cmd cmd = { 2293 .cmd = command, 2294 .len = len, 2295 .param = data, 2296 }; 2297 2298 return __ipw_send_cmd(priv, &cmd); 2299 } 2300 2301 static int ipw_send_host_complete(struct ipw_priv *priv) 2302 { 2303 if (!priv) { 2304 IPW_ERROR("Invalid args\n"); 2305 return -1; 2306 } 2307 2308 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE); 2309 } 2310 2311 static int ipw_send_system_config(struct ipw_priv *priv) 2312 { 2313 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG, 2314 sizeof(priv->sys_config), 2315 &priv->sys_config); 2316 } 2317 2318 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len) 2319 { 2320 if (!priv || !ssid) { 2321 IPW_ERROR("Invalid args\n"); 2322 return -1; 2323 } 2324 2325 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE), 2326 ssid); 2327 } 2328 2329 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac) 2330 { 2331 if (!priv || !mac) { 2332 IPW_ERROR("Invalid args\n"); 2333 return -1; 2334 } 2335 2336 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n", 2337 priv->net_dev->name, mac); 2338 2339 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac); 2340 } 2341 2342 static void ipw_adapter_restart(void *adapter) 2343 { 2344 struct ipw_priv *priv = adapter; 2345 2346 if (priv->status & STATUS_RF_KILL_MASK) 2347 return; 2348 2349 ipw_down(priv); 2350 2351 if (priv->assoc_network && 2352 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS)) 2353 ipw_remove_current_network(priv); 2354 2355 if (ipw_up(priv)) { 2356 IPW_ERROR("Failed to up device\n"); 2357 return; 2358 } 2359 } 2360 2361 static void ipw_bg_adapter_restart(struct work_struct *work) 2362 { 2363 struct ipw_priv *priv = 2364 container_of(work, struct ipw_priv, adapter_restart); 2365 mutex_lock(&priv->mutex); 2366 ipw_adapter_restart(priv); 2367 mutex_unlock(&priv->mutex); 2368 } 2369 2370 static void ipw_abort_scan(struct ipw_priv *priv); 2371 2372 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ) 2373 2374 static void ipw_scan_check(void *data) 2375 { 2376 struct ipw_priv *priv = data; 2377 2378 if (priv->status & STATUS_SCAN_ABORTING) { 2379 IPW_DEBUG_SCAN("Scan completion watchdog resetting " 2380 "adapter after (%dms).\n", 2381 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); 2382 schedule_work(&priv->adapter_restart); 2383 } else if (priv->status & STATUS_SCANNING) { 2384 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan " 2385 "after (%dms).\n", 2386 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); 2387 ipw_abort_scan(priv); 2388 schedule_delayed_work(&priv->scan_check, HZ); 2389 } 2390 } 2391 2392 static void ipw_bg_scan_check(struct work_struct *work) 2393 { 2394 struct ipw_priv *priv = 2395 container_of(work, struct ipw_priv, scan_check.work); 2396 mutex_lock(&priv->mutex); 2397 ipw_scan_check(priv); 2398 mutex_unlock(&priv->mutex); 2399 } 2400 2401 static int ipw_send_scan_request_ext(struct ipw_priv *priv, 2402 struct ipw_scan_request_ext *request) 2403 { 2404 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT, 2405 sizeof(*request), request); 2406 } 2407 2408 static int ipw_send_scan_abort(struct ipw_priv *priv) 2409 { 2410 if (!priv) { 2411 IPW_ERROR("Invalid args\n"); 2412 return -1; 2413 } 2414 2415 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT); 2416 } 2417 2418 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens) 2419 { 2420 struct ipw_sensitivity_calib calib = { 2421 .beacon_rssi_raw = cpu_to_le16(sens), 2422 }; 2423 2424 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib), 2425 &calib); 2426 } 2427 2428 static int ipw_send_associate(struct ipw_priv *priv, 2429 struct ipw_associate *associate) 2430 { 2431 if (!priv || !associate) { 2432 IPW_ERROR("Invalid args\n"); 2433 return -1; 2434 } 2435 2436 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate), 2437 associate); 2438 } 2439 2440 static int ipw_send_supported_rates(struct ipw_priv *priv, 2441 struct ipw_supported_rates *rates) 2442 { 2443 if (!priv || !rates) { 2444 IPW_ERROR("Invalid args\n"); 2445 return -1; 2446 } 2447 2448 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates), 2449 rates); 2450 } 2451 2452 static int ipw_set_random_seed(struct ipw_priv *priv) 2453 { 2454 u32 val; 2455 2456 if (!priv) { 2457 IPW_ERROR("Invalid args\n"); 2458 return -1; 2459 } 2460 2461 get_random_bytes(&val, sizeof(val)); 2462 2463 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val); 2464 } 2465 2466 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off) 2467 { 2468 __le32 v = cpu_to_le32(phy_off); 2469 if (!priv) { 2470 IPW_ERROR("Invalid args\n"); 2471 return -1; 2472 } 2473 2474 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v); 2475 } 2476 2477 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power) 2478 { 2479 if (!priv || !power) { 2480 IPW_ERROR("Invalid args\n"); 2481 return -1; 2482 } 2483 2484 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power); 2485 } 2486 2487 static int ipw_set_tx_power(struct ipw_priv *priv) 2488 { 2489 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 2490 struct ipw_tx_power tx_power; 2491 s8 max_power; 2492 int i; 2493 2494 memset(&tx_power, 0, sizeof(tx_power)); 2495 2496 /* configure device for 'G' band */ 2497 tx_power.ieee_mode = IPW_G_MODE; 2498 tx_power.num_channels = geo->bg_channels; 2499 for (i = 0; i < geo->bg_channels; i++) { 2500 max_power = geo->bg[i].max_power; 2501 tx_power.channels_tx_power[i].channel_number = 2502 geo->bg[i].channel; 2503 tx_power.channels_tx_power[i].tx_power = max_power ? 2504 min(max_power, priv->tx_power) : priv->tx_power; 2505 } 2506 if (ipw_send_tx_power(priv, &tx_power)) 2507 return -EIO; 2508 2509 /* configure device to also handle 'B' band */ 2510 tx_power.ieee_mode = IPW_B_MODE; 2511 if (ipw_send_tx_power(priv, &tx_power)) 2512 return -EIO; 2513 2514 /* configure device to also handle 'A' band */ 2515 if (priv->ieee->abg_true) { 2516 tx_power.ieee_mode = IPW_A_MODE; 2517 tx_power.num_channels = geo->a_channels; 2518 for (i = 0; i < tx_power.num_channels; i++) { 2519 max_power = geo->a[i].max_power; 2520 tx_power.channels_tx_power[i].channel_number = 2521 geo->a[i].channel; 2522 tx_power.channels_tx_power[i].tx_power = max_power ? 2523 min(max_power, priv->tx_power) : priv->tx_power; 2524 } 2525 if (ipw_send_tx_power(priv, &tx_power)) 2526 return -EIO; 2527 } 2528 return 0; 2529 } 2530 2531 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts) 2532 { 2533 struct ipw_rts_threshold rts_threshold = { 2534 .rts_threshold = cpu_to_le16(rts), 2535 }; 2536 2537 if (!priv) { 2538 IPW_ERROR("Invalid args\n"); 2539 return -1; 2540 } 2541 2542 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD, 2543 sizeof(rts_threshold), &rts_threshold); 2544 } 2545 2546 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag) 2547 { 2548 struct ipw_frag_threshold frag_threshold = { 2549 .frag_threshold = cpu_to_le16(frag), 2550 }; 2551 2552 if (!priv) { 2553 IPW_ERROR("Invalid args\n"); 2554 return -1; 2555 } 2556 2557 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD, 2558 sizeof(frag_threshold), &frag_threshold); 2559 } 2560 2561 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode) 2562 { 2563 __le32 param; 2564 2565 if (!priv) { 2566 IPW_ERROR("Invalid args\n"); 2567 return -1; 2568 } 2569 2570 /* If on battery, set to 3, if AC set to CAM, else user 2571 * level */ 2572 switch (mode) { 2573 case IPW_POWER_BATTERY: 2574 param = cpu_to_le32(IPW_POWER_INDEX_3); 2575 break; 2576 case IPW_POWER_AC: 2577 param = cpu_to_le32(IPW_POWER_MODE_CAM); 2578 break; 2579 default: 2580 param = cpu_to_le32(mode); 2581 break; 2582 } 2583 2584 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param), 2585 ¶m); 2586 } 2587 2588 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit) 2589 { 2590 struct ipw_retry_limit retry_limit = { 2591 .short_retry_limit = slimit, 2592 .long_retry_limit = llimit 2593 }; 2594 2595 if (!priv) { 2596 IPW_ERROR("Invalid args\n"); 2597 return -1; 2598 } 2599 2600 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit), 2601 &retry_limit); 2602 } 2603 2604 /* 2605 * The IPW device contains a Microwire compatible EEPROM that stores 2606 * various data like the MAC address. Usually the firmware has exclusive 2607 * access to the eeprom, but during device initialization (before the 2608 * device driver has sent the HostComplete command to the firmware) the 2609 * device driver has read access to the EEPROM by way of indirect addressing 2610 * through a couple of memory mapped registers. 2611 * 2612 * The following is a simplified implementation for pulling data out of the 2613 * the eeprom, along with some helper functions to find information in 2614 * the per device private data's copy of the eeprom. 2615 * 2616 * NOTE: To better understand how these functions work (i.e what is a chip 2617 * select and why do have to keep driving the eeprom clock?), read 2618 * just about any data sheet for a Microwire compatible EEPROM. 2619 */ 2620 2621 /* write a 32 bit value into the indirect accessor register */ 2622 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data) 2623 { 2624 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data); 2625 2626 /* the eeprom requires some time to complete the operation */ 2627 udelay(p->eeprom_delay); 2628 } 2629 2630 /* perform a chip select operation */ 2631 static void eeprom_cs(struct ipw_priv *priv) 2632 { 2633 eeprom_write_reg(priv, 0); 2634 eeprom_write_reg(priv, EEPROM_BIT_CS); 2635 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); 2636 eeprom_write_reg(priv, EEPROM_BIT_CS); 2637 } 2638 2639 /* perform a chip select operation */ 2640 static void eeprom_disable_cs(struct ipw_priv *priv) 2641 { 2642 eeprom_write_reg(priv, EEPROM_BIT_CS); 2643 eeprom_write_reg(priv, 0); 2644 eeprom_write_reg(priv, EEPROM_BIT_SK); 2645 } 2646 2647 /* push a single bit down to the eeprom */ 2648 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit) 2649 { 2650 int d = (bit ? EEPROM_BIT_DI : 0); 2651 eeprom_write_reg(p, EEPROM_BIT_CS | d); 2652 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK); 2653 } 2654 2655 /* push an opcode followed by an address down to the eeprom */ 2656 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr) 2657 { 2658 int i; 2659 2660 eeprom_cs(priv); 2661 eeprom_write_bit(priv, 1); 2662 eeprom_write_bit(priv, op & 2); 2663 eeprom_write_bit(priv, op & 1); 2664 for (i = 7; i >= 0; i--) { 2665 eeprom_write_bit(priv, addr & (1 << i)); 2666 } 2667 } 2668 2669 /* pull 16 bits off the eeprom, one bit at a time */ 2670 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr) 2671 { 2672 int i; 2673 u16 r = 0; 2674 2675 /* Send READ Opcode */ 2676 eeprom_op(priv, EEPROM_CMD_READ, addr); 2677 2678 /* Send dummy bit */ 2679 eeprom_write_reg(priv, EEPROM_BIT_CS); 2680 2681 /* Read the byte off the eeprom one bit at a time */ 2682 for (i = 0; i < 16; i++) { 2683 u32 data = 0; 2684 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); 2685 eeprom_write_reg(priv, EEPROM_BIT_CS); 2686 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS); 2687 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0); 2688 } 2689 2690 /* Send another dummy bit */ 2691 eeprom_write_reg(priv, 0); 2692 eeprom_disable_cs(priv); 2693 2694 return r; 2695 } 2696 2697 /* helper function for pulling the mac address out of the private */ 2698 /* data's copy of the eeprom data */ 2699 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac) 2700 { 2701 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN); 2702 } 2703 2704 static void ipw_read_eeprom(struct ipw_priv *priv) 2705 { 2706 int i; 2707 __le16 *eeprom = (__le16 *) priv->eeprom; 2708 2709 IPW_DEBUG_TRACE(">>\n"); 2710 2711 /* read entire contents of eeprom into private buffer */ 2712 for (i = 0; i < 128; i++) 2713 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i)); 2714 2715 IPW_DEBUG_TRACE("<<\n"); 2716 } 2717 2718 /* 2719 * Either the device driver (i.e. the host) or the firmware can 2720 * load eeprom data into the designated region in SRAM. If neither 2721 * happens then the FW will shutdown with a fatal error. 2722 * 2723 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE 2724 * bit needs region of shared SRAM needs to be non-zero. 2725 */ 2726 static void ipw_eeprom_init_sram(struct ipw_priv *priv) 2727 { 2728 int i; 2729 2730 IPW_DEBUG_TRACE(">>\n"); 2731 2732 /* 2733 If the data looks correct, then copy it to our private 2734 copy. Otherwise let the firmware know to perform the operation 2735 on its own. 2736 */ 2737 if (priv->eeprom[EEPROM_VERSION] != 0) { 2738 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n"); 2739 2740 /* write the eeprom data to sram */ 2741 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) 2742 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]); 2743 2744 /* Do not load eeprom data on fatal error or suspend */ 2745 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); 2746 } else { 2747 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n"); 2748 2749 /* Load eeprom data on fatal error or suspend */ 2750 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1); 2751 } 2752 2753 IPW_DEBUG_TRACE("<<\n"); 2754 } 2755 2756 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count) 2757 { 2758 count >>= 2; 2759 if (!count) 2760 return; 2761 _ipw_write32(priv, IPW_AUTOINC_ADDR, start); 2762 while (count--) 2763 _ipw_write32(priv, IPW_AUTOINC_DATA, 0); 2764 } 2765 2766 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv) 2767 { 2768 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL, 2769 CB_NUMBER_OF_ELEMENTS_SMALL * 2770 sizeof(struct command_block)); 2771 } 2772 2773 static int ipw_fw_dma_enable(struct ipw_priv *priv) 2774 { /* start dma engine but no transfers yet */ 2775 2776 IPW_DEBUG_FW(">> :\n"); 2777 2778 /* Start the dma */ 2779 ipw_fw_dma_reset_command_blocks(priv); 2780 2781 /* Write CB base address */ 2782 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL); 2783 2784 IPW_DEBUG_FW("<< :\n"); 2785 return 0; 2786 } 2787 2788 static void ipw_fw_dma_abort(struct ipw_priv *priv) 2789 { 2790 u32 control = 0; 2791 2792 IPW_DEBUG_FW(">> :\n"); 2793 2794 /* set the Stop and Abort bit */ 2795 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT; 2796 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); 2797 priv->sram_desc.last_cb_index = 0; 2798 2799 IPW_DEBUG_FW("<<\n"); 2800 } 2801 2802 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index, 2803 struct command_block *cb) 2804 { 2805 u32 address = 2806 IPW_SHARED_SRAM_DMA_CONTROL + 2807 (sizeof(struct command_block) * index); 2808 IPW_DEBUG_FW(">> :\n"); 2809 2810 ipw_write_indirect(priv, address, (u8 *) cb, 2811 (int)sizeof(struct command_block)); 2812 2813 IPW_DEBUG_FW("<< :\n"); 2814 return 0; 2815 2816 } 2817 2818 static int ipw_fw_dma_kick(struct ipw_priv *priv) 2819 { 2820 u32 control = 0; 2821 u32 index = 0; 2822 2823 IPW_DEBUG_FW(">> :\n"); 2824 2825 for (index = 0; index < priv->sram_desc.last_cb_index; index++) 2826 ipw_fw_dma_write_command_block(priv, index, 2827 &priv->sram_desc.cb_list[index]); 2828 2829 /* Enable the DMA in the CSR register */ 2830 ipw_clear_bit(priv, IPW_RESET_REG, 2831 IPW_RESET_REG_MASTER_DISABLED | 2832 IPW_RESET_REG_STOP_MASTER); 2833 2834 /* Set the Start bit. */ 2835 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START; 2836 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); 2837 2838 IPW_DEBUG_FW("<< :\n"); 2839 return 0; 2840 } 2841 2842 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv) 2843 { 2844 u32 address; 2845 u32 register_value = 0; 2846 u32 cb_fields_address = 0; 2847 2848 IPW_DEBUG_FW(">> :\n"); 2849 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); 2850 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address); 2851 2852 /* Read the DMA Controlor register */ 2853 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL); 2854 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value); 2855 2856 /* Print the CB values */ 2857 cb_fields_address = address; 2858 register_value = ipw_read_reg32(priv, cb_fields_address); 2859 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value); 2860 2861 cb_fields_address += sizeof(u32); 2862 register_value = ipw_read_reg32(priv, cb_fields_address); 2863 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value); 2864 2865 cb_fields_address += sizeof(u32); 2866 register_value = ipw_read_reg32(priv, cb_fields_address); 2867 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n", 2868 register_value); 2869 2870 cb_fields_address += sizeof(u32); 2871 register_value = ipw_read_reg32(priv, cb_fields_address); 2872 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value); 2873 2874 IPW_DEBUG_FW(">> :\n"); 2875 } 2876 2877 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv) 2878 { 2879 u32 current_cb_address = 0; 2880 u32 current_cb_index = 0; 2881 2882 IPW_DEBUG_FW("<< :\n"); 2883 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); 2884 2885 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) / 2886 sizeof(struct command_block); 2887 2888 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n", 2889 current_cb_index, current_cb_address); 2890 2891 IPW_DEBUG_FW(">> :\n"); 2892 return current_cb_index; 2893 2894 } 2895 2896 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv, 2897 u32 src_address, 2898 u32 dest_address, 2899 u32 length, 2900 int interrupt_enabled, int is_last) 2901 { 2902 2903 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC | 2904 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG | 2905 CB_DEST_SIZE_LONG; 2906 struct command_block *cb; 2907 u32 last_cb_element = 0; 2908 2909 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n", 2910 src_address, dest_address, length); 2911 2912 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL) 2913 return -1; 2914 2915 last_cb_element = priv->sram_desc.last_cb_index; 2916 cb = &priv->sram_desc.cb_list[last_cb_element]; 2917 priv->sram_desc.last_cb_index++; 2918 2919 /* Calculate the new CB control word */ 2920 if (interrupt_enabled) 2921 control |= CB_INT_ENABLED; 2922 2923 if (is_last) 2924 control |= CB_LAST_VALID; 2925 2926 control |= length; 2927 2928 /* Calculate the CB Element's checksum value */ 2929 cb->status = control ^ src_address ^ dest_address; 2930 2931 /* Copy the Source and Destination addresses */ 2932 cb->dest_addr = dest_address; 2933 cb->source_addr = src_address; 2934 2935 /* Copy the Control Word last */ 2936 cb->control = control; 2937 2938 return 0; 2939 } 2940 2941 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address, 2942 int nr, u32 dest_address, u32 len) 2943 { 2944 int ret, i; 2945 u32 size; 2946 2947 IPW_DEBUG_FW(">>\n"); 2948 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n", 2949 nr, dest_address, len); 2950 2951 for (i = 0; i < nr; i++) { 2952 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH); 2953 ret = ipw_fw_dma_add_command_block(priv, src_address[i], 2954 dest_address + 2955 i * CB_MAX_LENGTH, size, 2956 0, 0); 2957 if (ret) { 2958 IPW_DEBUG_FW_INFO(": Failed\n"); 2959 return -1; 2960 } else 2961 IPW_DEBUG_FW_INFO(": Added new cb\n"); 2962 } 2963 2964 IPW_DEBUG_FW("<<\n"); 2965 return 0; 2966 } 2967 2968 static int ipw_fw_dma_wait(struct ipw_priv *priv) 2969 { 2970 u32 current_index = 0, previous_index; 2971 u32 watchdog = 0; 2972 2973 IPW_DEBUG_FW(">> :\n"); 2974 2975 current_index = ipw_fw_dma_command_block_index(priv); 2976 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n", 2977 (int)priv->sram_desc.last_cb_index); 2978 2979 while (current_index < priv->sram_desc.last_cb_index) { 2980 udelay(50); 2981 previous_index = current_index; 2982 current_index = ipw_fw_dma_command_block_index(priv); 2983 2984 if (previous_index < current_index) { 2985 watchdog = 0; 2986 continue; 2987 } 2988 if (++watchdog > 400) { 2989 IPW_DEBUG_FW_INFO("Timeout\n"); 2990 ipw_fw_dma_dump_command_block(priv); 2991 ipw_fw_dma_abort(priv); 2992 return -1; 2993 } 2994 } 2995 2996 ipw_fw_dma_abort(priv); 2997 2998 /*Disable the DMA in the CSR register */ 2999 ipw_set_bit(priv, IPW_RESET_REG, 3000 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER); 3001 3002 IPW_DEBUG_FW("<< dmaWaitSync\n"); 3003 return 0; 3004 } 3005 3006 static void ipw_remove_current_network(struct ipw_priv *priv) 3007 { 3008 struct list_head *element, *safe; 3009 struct libipw_network *network = NULL; 3010 unsigned long flags; 3011 3012 spin_lock_irqsave(&priv->ieee->lock, flags); 3013 list_for_each_safe(element, safe, &priv->ieee->network_list) { 3014 network = list_entry(element, struct libipw_network, list); 3015 if (ether_addr_equal(network->bssid, priv->bssid)) { 3016 list_del(element); 3017 list_add_tail(&network->list, 3018 &priv->ieee->network_free_list); 3019 } 3020 } 3021 spin_unlock_irqrestore(&priv->ieee->lock, flags); 3022 } 3023 3024 /** 3025 * Check that card is still alive. 3026 * Reads debug register from domain0. 3027 * If card is present, pre-defined value should 3028 * be found there. 3029 * 3030 * @param priv 3031 * @return 1 if card is present, 0 otherwise 3032 */ 3033 static inline int ipw_alive(struct ipw_priv *priv) 3034 { 3035 return ipw_read32(priv, 0x90) == 0xd55555d5; 3036 } 3037 3038 /* timeout in msec, attempted in 10-msec quanta */ 3039 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask, 3040 int timeout) 3041 { 3042 int i = 0; 3043 3044 do { 3045 if ((ipw_read32(priv, addr) & mask) == mask) 3046 return i; 3047 mdelay(10); 3048 i += 10; 3049 } while (i < timeout); 3050 3051 return -ETIME; 3052 } 3053 3054 /* These functions load the firmware and micro code for the operation of 3055 * the ipw hardware. It assumes the buffer has all the bits for the 3056 * image and the caller is handling the memory allocation and clean up. 3057 */ 3058 3059 static int ipw_stop_master(struct ipw_priv *priv) 3060 { 3061 int rc; 3062 3063 IPW_DEBUG_TRACE(">>\n"); 3064 /* stop master. typical delay - 0 */ 3065 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); 3066 3067 /* timeout is in msec, polled in 10-msec quanta */ 3068 rc = ipw_poll_bit(priv, IPW_RESET_REG, 3069 IPW_RESET_REG_MASTER_DISABLED, 100); 3070 if (rc < 0) { 3071 IPW_ERROR("wait for stop master failed after 100ms\n"); 3072 return -1; 3073 } 3074 3075 IPW_DEBUG_INFO("stop master %dms\n", rc); 3076 3077 return rc; 3078 } 3079 3080 static void ipw_arc_release(struct ipw_priv *priv) 3081 { 3082 IPW_DEBUG_TRACE(">>\n"); 3083 mdelay(5); 3084 3085 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); 3086 3087 /* no one knows timing, for safety add some delay */ 3088 mdelay(5); 3089 } 3090 3091 struct fw_chunk { 3092 __le32 address; 3093 __le32 length; 3094 }; 3095 3096 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len) 3097 { 3098 int rc = 0, i, addr; 3099 u8 cr = 0; 3100 __le16 *image; 3101 3102 image = (__le16 *) data; 3103 3104 IPW_DEBUG_TRACE(">>\n"); 3105 3106 rc = ipw_stop_master(priv); 3107 3108 if (rc < 0) 3109 return rc; 3110 3111 for (addr = IPW_SHARED_LOWER_BOUND; 3112 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) { 3113 ipw_write32(priv, addr, 0); 3114 } 3115 3116 /* no ucode (yet) */ 3117 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive)); 3118 /* destroy DMA queues */ 3119 /* reset sequence */ 3120 3121 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON); 3122 ipw_arc_release(priv); 3123 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF); 3124 mdelay(1); 3125 3126 /* reset PHY */ 3127 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN); 3128 mdelay(1); 3129 3130 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0); 3131 mdelay(1); 3132 3133 /* enable ucode store */ 3134 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0); 3135 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS); 3136 mdelay(1); 3137 3138 /* write ucode */ 3139 /** 3140 * @bug 3141 * Do NOT set indirect address register once and then 3142 * store data to indirect data register in the loop. 3143 * It seems very reasonable, but in this case DINO do not 3144 * accept ucode. It is essential to set address each time. 3145 */ 3146 /* load new ipw uCode */ 3147 for (i = 0; i < len / 2; i++) 3148 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE, 3149 le16_to_cpu(image[i])); 3150 3151 /* enable DINO */ 3152 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); 3153 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM); 3154 3155 /* this is where the igx / win driver deveates from the VAP driver. */ 3156 3157 /* wait for alive response */ 3158 for (i = 0; i < 100; i++) { 3159 /* poll for incoming data */ 3160 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS); 3161 if (cr & DINO_RXFIFO_DATA) 3162 break; 3163 mdelay(1); 3164 } 3165 3166 if (cr & DINO_RXFIFO_DATA) { 3167 /* alive_command_responce size is NOT multiple of 4 */ 3168 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4]; 3169 3170 for (i = 0; i < ARRAY_SIZE(response_buffer); i++) 3171 response_buffer[i] = 3172 cpu_to_le32(ipw_read_reg32(priv, 3173 IPW_BASEBAND_RX_FIFO_READ)); 3174 memcpy(&priv->dino_alive, response_buffer, 3175 sizeof(priv->dino_alive)); 3176 if (priv->dino_alive.alive_command == 1 3177 && priv->dino_alive.ucode_valid == 1) { 3178 rc = 0; 3179 IPW_DEBUG_INFO 3180 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) " 3181 "of %02d/%02d/%02d %02d:%02d\n", 3182 priv->dino_alive.software_revision, 3183 priv->dino_alive.software_revision, 3184 priv->dino_alive.device_identifier, 3185 priv->dino_alive.device_identifier, 3186 priv->dino_alive.time_stamp[0], 3187 priv->dino_alive.time_stamp[1], 3188 priv->dino_alive.time_stamp[2], 3189 priv->dino_alive.time_stamp[3], 3190 priv->dino_alive.time_stamp[4]); 3191 } else { 3192 IPW_DEBUG_INFO("Microcode is not alive\n"); 3193 rc = -EINVAL; 3194 } 3195 } else { 3196 IPW_DEBUG_INFO("No alive response from DINO\n"); 3197 rc = -ETIME; 3198 } 3199 3200 /* disable DINO, otherwise for some reason 3201 firmware have problem getting alive resp. */ 3202 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); 3203 3204 return rc; 3205 } 3206 3207 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len) 3208 { 3209 int ret = -1; 3210 int offset = 0; 3211 struct fw_chunk *chunk; 3212 int total_nr = 0; 3213 int i; 3214 struct pci_pool *pool; 3215 void **virts; 3216 dma_addr_t *phys; 3217 3218 IPW_DEBUG_TRACE("<< :\n"); 3219 3220 virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL, 3221 GFP_KERNEL); 3222 if (!virts) 3223 return -ENOMEM; 3224 3225 phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL, 3226 GFP_KERNEL); 3227 if (!phys) { 3228 kfree(virts); 3229 return -ENOMEM; 3230 } 3231 pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0); 3232 if (!pool) { 3233 IPW_ERROR("pci_pool_create failed\n"); 3234 kfree(phys); 3235 kfree(virts); 3236 return -ENOMEM; 3237 } 3238 3239 /* Start the Dma */ 3240 ret = ipw_fw_dma_enable(priv); 3241 3242 /* the DMA is already ready this would be a bug. */ 3243 BUG_ON(priv->sram_desc.last_cb_index > 0); 3244 3245 do { 3246 u32 chunk_len; 3247 u8 *start; 3248 int size; 3249 int nr = 0; 3250 3251 chunk = (struct fw_chunk *)(data + offset); 3252 offset += sizeof(struct fw_chunk); 3253 chunk_len = le32_to_cpu(chunk->length); 3254 start = data + offset; 3255 3256 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH; 3257 for (i = 0; i < nr; i++) { 3258 virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL, 3259 &phys[total_nr]); 3260 if (!virts[total_nr]) { 3261 ret = -ENOMEM; 3262 goto out; 3263 } 3264 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH, 3265 CB_MAX_LENGTH); 3266 memcpy(virts[total_nr], start, size); 3267 start += size; 3268 total_nr++; 3269 /* We don't support fw chunk larger than 64*8K */ 3270 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL); 3271 } 3272 3273 /* build DMA packet and queue up for sending */ 3274 /* dma to chunk->address, the chunk->length bytes from data + 3275 * offeset*/ 3276 /* Dma loading */ 3277 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr], 3278 nr, le32_to_cpu(chunk->address), 3279 chunk_len); 3280 if (ret) { 3281 IPW_DEBUG_INFO("dmaAddBuffer Failed\n"); 3282 goto out; 3283 } 3284 3285 offset += chunk_len; 3286 } while (offset < len); 3287 3288 /* Run the DMA and wait for the answer */ 3289 ret = ipw_fw_dma_kick(priv); 3290 if (ret) { 3291 IPW_ERROR("dmaKick Failed\n"); 3292 goto out; 3293 } 3294 3295 ret = ipw_fw_dma_wait(priv); 3296 if (ret) { 3297 IPW_ERROR("dmaWaitSync Failed\n"); 3298 goto out; 3299 } 3300 out: 3301 for (i = 0; i < total_nr; i++) 3302 pci_pool_free(pool, virts[i], phys[i]); 3303 3304 pci_pool_destroy(pool); 3305 kfree(phys); 3306 kfree(virts); 3307 3308 return ret; 3309 } 3310 3311 /* stop nic */ 3312 static int ipw_stop_nic(struct ipw_priv *priv) 3313 { 3314 int rc = 0; 3315 3316 /* stop */ 3317 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); 3318 3319 rc = ipw_poll_bit(priv, IPW_RESET_REG, 3320 IPW_RESET_REG_MASTER_DISABLED, 500); 3321 if (rc < 0) { 3322 IPW_ERROR("wait for reg master disabled failed after 500ms\n"); 3323 return rc; 3324 } 3325 3326 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); 3327 3328 return rc; 3329 } 3330 3331 static void ipw_start_nic(struct ipw_priv *priv) 3332 { 3333 IPW_DEBUG_TRACE(">>\n"); 3334 3335 /* prvHwStartNic release ARC */ 3336 ipw_clear_bit(priv, IPW_RESET_REG, 3337 IPW_RESET_REG_MASTER_DISABLED | 3338 IPW_RESET_REG_STOP_MASTER | 3339 CBD_RESET_REG_PRINCETON_RESET); 3340 3341 /* enable power management */ 3342 ipw_set_bit(priv, IPW_GP_CNTRL_RW, 3343 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); 3344 3345 IPW_DEBUG_TRACE("<<\n"); 3346 } 3347 3348 static int ipw_init_nic(struct ipw_priv *priv) 3349 { 3350 int rc; 3351 3352 IPW_DEBUG_TRACE(">>\n"); 3353 /* reset */ 3354 /*prvHwInitNic */ 3355 /* set "initialization complete" bit to move adapter to D0 state */ 3356 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); 3357 3358 /* low-level PLL activation */ 3359 ipw_write32(priv, IPW_READ_INT_REGISTER, 3360 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER); 3361 3362 /* wait for clock stabilization */ 3363 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW, 3364 IPW_GP_CNTRL_BIT_CLOCK_READY, 250); 3365 if (rc < 0) 3366 IPW_DEBUG_INFO("FAILED wait for clock stablization\n"); 3367 3368 /* assert SW reset */ 3369 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET); 3370 3371 udelay(10); 3372 3373 /* set "initialization complete" bit to move adapter to D0 state */ 3374 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); 3375 3376 IPW_DEBUG_TRACE(">>\n"); 3377 return 0; 3378 } 3379 3380 /* Call this function from process context, it will sleep in request_firmware. 3381 * Probe is an ok place to call this from. 3382 */ 3383 static int ipw_reset_nic(struct ipw_priv *priv) 3384 { 3385 int rc = 0; 3386 unsigned long flags; 3387 3388 IPW_DEBUG_TRACE(">>\n"); 3389 3390 rc = ipw_init_nic(priv); 3391 3392 spin_lock_irqsave(&priv->lock, flags); 3393 /* Clear the 'host command active' bit... */ 3394 priv->status &= ~STATUS_HCMD_ACTIVE; 3395 wake_up_interruptible(&priv->wait_command_queue); 3396 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); 3397 wake_up_interruptible(&priv->wait_state); 3398 spin_unlock_irqrestore(&priv->lock, flags); 3399 3400 IPW_DEBUG_TRACE("<<\n"); 3401 return rc; 3402 } 3403 3404 3405 struct ipw_fw { 3406 __le32 ver; 3407 __le32 boot_size; 3408 __le32 ucode_size; 3409 __le32 fw_size; 3410 u8 data[0]; 3411 }; 3412 3413 static int ipw_get_fw(struct ipw_priv *priv, 3414 const struct firmware **raw, const char *name) 3415 { 3416 struct ipw_fw *fw; 3417 int rc; 3418 3419 /* ask firmware_class module to get the boot firmware off disk */ 3420 rc = request_firmware(raw, name, &priv->pci_dev->dev); 3421 if (rc < 0) { 3422 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc); 3423 return rc; 3424 } 3425 3426 if ((*raw)->size < sizeof(*fw)) { 3427 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size); 3428 return -EINVAL; 3429 } 3430 3431 fw = (void *)(*raw)->data; 3432 3433 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) + 3434 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) { 3435 IPW_ERROR("%s is too small or corrupt (%zd)\n", 3436 name, (*raw)->size); 3437 return -EINVAL; 3438 } 3439 3440 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n", 3441 name, 3442 le32_to_cpu(fw->ver) >> 16, 3443 le32_to_cpu(fw->ver) & 0xff, 3444 (*raw)->size - sizeof(*fw)); 3445 return 0; 3446 } 3447 3448 #define IPW_RX_BUF_SIZE (3000) 3449 3450 static void ipw_rx_queue_reset(struct ipw_priv *priv, 3451 struct ipw_rx_queue *rxq) 3452 { 3453 unsigned long flags; 3454 int i; 3455 3456 spin_lock_irqsave(&rxq->lock, flags); 3457 3458 INIT_LIST_HEAD(&rxq->rx_free); 3459 INIT_LIST_HEAD(&rxq->rx_used); 3460 3461 /* Fill the rx_used queue with _all_ of the Rx buffers */ 3462 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) { 3463 /* In the reset function, these buffers may have been allocated 3464 * to an SKB, so we need to unmap and free potential storage */ 3465 if (rxq->pool[i].skb != NULL) { 3466 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, 3467 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 3468 dev_kfree_skb(rxq->pool[i].skb); 3469 rxq->pool[i].skb = NULL; 3470 } 3471 list_add_tail(&rxq->pool[i].list, &rxq->rx_used); 3472 } 3473 3474 /* Set us so that we have processed and used all buffers, but have 3475 * not restocked the Rx queue with fresh buffers */ 3476 rxq->read = rxq->write = 0; 3477 rxq->free_count = 0; 3478 spin_unlock_irqrestore(&rxq->lock, flags); 3479 } 3480 3481 #ifdef CONFIG_PM 3482 static int fw_loaded = 0; 3483 static const struct firmware *raw = NULL; 3484 3485 static void free_firmware(void) 3486 { 3487 if (fw_loaded) { 3488 release_firmware(raw); 3489 raw = NULL; 3490 fw_loaded = 0; 3491 } 3492 } 3493 #else 3494 #define free_firmware() do {} while (0) 3495 #endif 3496 3497 static int ipw_load(struct ipw_priv *priv) 3498 { 3499 #ifndef CONFIG_PM 3500 const struct firmware *raw = NULL; 3501 #endif 3502 struct ipw_fw *fw; 3503 u8 *boot_img, *ucode_img, *fw_img; 3504 u8 *name = NULL; 3505 int rc = 0, retries = 3; 3506 3507 switch (priv->ieee->iw_mode) { 3508 case IW_MODE_ADHOC: 3509 name = "ipw2200-ibss.fw"; 3510 break; 3511 #ifdef CONFIG_IPW2200_MONITOR 3512 case IW_MODE_MONITOR: 3513 name = "ipw2200-sniffer.fw"; 3514 break; 3515 #endif 3516 case IW_MODE_INFRA: 3517 name = "ipw2200-bss.fw"; 3518 break; 3519 } 3520 3521 if (!name) { 3522 rc = -EINVAL; 3523 goto error; 3524 } 3525 3526 #ifdef CONFIG_PM 3527 if (!fw_loaded) { 3528 #endif 3529 rc = ipw_get_fw(priv, &raw, name); 3530 if (rc < 0) 3531 goto error; 3532 #ifdef CONFIG_PM 3533 } 3534 #endif 3535 3536 fw = (void *)raw->data; 3537 boot_img = &fw->data[0]; 3538 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)]; 3539 fw_img = &fw->data[le32_to_cpu(fw->boot_size) + 3540 le32_to_cpu(fw->ucode_size)]; 3541 3542 if (rc < 0) 3543 goto error; 3544 3545 if (!priv->rxq) 3546 priv->rxq = ipw_rx_queue_alloc(priv); 3547 else 3548 ipw_rx_queue_reset(priv, priv->rxq); 3549 if (!priv->rxq) { 3550 IPW_ERROR("Unable to initialize Rx queue\n"); 3551 rc = -ENOMEM; 3552 goto error; 3553 } 3554 3555 retry: 3556 /* Ensure interrupts are disabled */ 3557 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 3558 priv->status &= ~STATUS_INT_ENABLED; 3559 3560 /* ack pending interrupts */ 3561 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3562 3563 ipw_stop_nic(priv); 3564 3565 rc = ipw_reset_nic(priv); 3566 if (rc < 0) { 3567 IPW_ERROR("Unable to reset NIC\n"); 3568 goto error; 3569 } 3570 3571 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND, 3572 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND); 3573 3574 /* DMA the initial boot firmware into the device */ 3575 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size)); 3576 if (rc < 0) { 3577 IPW_ERROR("Unable to load boot firmware: %d\n", rc); 3578 goto error; 3579 } 3580 3581 /* kick start the device */ 3582 ipw_start_nic(priv); 3583 3584 /* wait for the device to finish its initial startup sequence */ 3585 rc = ipw_poll_bit(priv, IPW_INTA_RW, 3586 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); 3587 if (rc < 0) { 3588 IPW_ERROR("device failed to boot initial fw image\n"); 3589 goto error; 3590 } 3591 IPW_DEBUG_INFO("initial device response after %dms\n", rc); 3592 3593 /* ack fw init done interrupt */ 3594 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); 3595 3596 /* DMA the ucode into the device */ 3597 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size)); 3598 if (rc < 0) { 3599 IPW_ERROR("Unable to load ucode: %d\n", rc); 3600 goto error; 3601 } 3602 3603 /* stop nic */ 3604 ipw_stop_nic(priv); 3605 3606 /* DMA bss firmware into the device */ 3607 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size)); 3608 if (rc < 0) { 3609 IPW_ERROR("Unable to load firmware: %d\n", rc); 3610 goto error; 3611 } 3612 #ifdef CONFIG_PM 3613 fw_loaded = 1; 3614 #endif 3615 3616 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); 3617 3618 rc = ipw_queue_reset(priv); 3619 if (rc < 0) { 3620 IPW_ERROR("Unable to initialize queues\n"); 3621 goto error; 3622 } 3623 3624 /* Ensure interrupts are disabled */ 3625 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); 3626 /* ack pending interrupts */ 3627 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3628 3629 /* kick start the device */ 3630 ipw_start_nic(priv); 3631 3632 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) { 3633 if (retries > 0) { 3634 IPW_WARNING("Parity error. Retrying init.\n"); 3635 retries--; 3636 goto retry; 3637 } 3638 3639 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n"); 3640 rc = -EIO; 3641 goto error; 3642 } 3643 3644 /* wait for the device */ 3645 rc = ipw_poll_bit(priv, IPW_INTA_RW, 3646 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); 3647 if (rc < 0) { 3648 IPW_ERROR("device failed to start within 500ms\n"); 3649 goto error; 3650 } 3651 IPW_DEBUG_INFO("device response after %dms\n", rc); 3652 3653 /* ack fw init done interrupt */ 3654 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); 3655 3656 /* read eeprom data */ 3657 priv->eeprom_delay = 1; 3658 ipw_read_eeprom(priv); 3659 /* initialize the eeprom region of sram */ 3660 ipw_eeprom_init_sram(priv); 3661 3662 /* enable interrupts */ 3663 ipw_enable_interrupts(priv); 3664 3665 /* Ensure our queue has valid packets */ 3666 ipw_rx_queue_replenish(priv); 3667 3668 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read); 3669 3670 /* ack pending interrupts */ 3671 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); 3672 3673 #ifndef CONFIG_PM 3674 release_firmware(raw); 3675 #endif 3676 return 0; 3677 3678 error: 3679 if (priv->rxq) { 3680 ipw_rx_queue_free(priv, priv->rxq); 3681 priv->rxq = NULL; 3682 } 3683 ipw_tx_queue_free(priv); 3684 release_firmware(raw); 3685 #ifdef CONFIG_PM 3686 fw_loaded = 0; 3687 raw = NULL; 3688 #endif 3689 3690 return rc; 3691 } 3692 3693 /** 3694 * DMA services 3695 * 3696 * Theory of operation 3697 * 3698 * A queue is a circular buffers with 'Read' and 'Write' pointers. 3699 * 2 empty entries always kept in the buffer to protect from overflow. 3700 * 3701 * For Tx queue, there are low mark and high mark limits. If, after queuing 3702 * the packet for Tx, free space become < low mark, Tx queue stopped. When 3703 * reclaiming packets (on 'tx done IRQ), if free space become > high mark, 3704 * Tx queue resumed. 3705 * 3706 * The IPW operates with six queues, one receive queue in the device's 3707 * sram, one transmit queue for sending commands to the device firmware, 3708 * and four transmit queues for data. 3709 * 3710 * The four transmit queues allow for performing quality of service (qos) 3711 * transmissions as per the 802.11 protocol. Currently Linux does not 3712 * provide a mechanism to the user for utilizing prioritized queues, so 3713 * we only utilize the first data transmit queue (queue1). 3714 */ 3715 3716 /** 3717 * Driver allocates buffers of this size for Rx 3718 */ 3719 3720 /** 3721 * ipw_rx_queue_space - Return number of free slots available in queue. 3722 */ 3723 static int ipw_rx_queue_space(const struct ipw_rx_queue *q) 3724 { 3725 int s = q->read - q->write; 3726 if (s <= 0) 3727 s += RX_QUEUE_SIZE; 3728 /* keep some buffer to not confuse full and empty queue */ 3729 s -= 2; 3730 if (s < 0) 3731 s = 0; 3732 return s; 3733 } 3734 3735 static inline int ipw_tx_queue_space(const struct clx2_queue *q) 3736 { 3737 int s = q->last_used - q->first_empty; 3738 if (s <= 0) 3739 s += q->n_bd; 3740 s -= 2; /* keep some reserve to not confuse empty and full situations */ 3741 if (s < 0) 3742 s = 0; 3743 return s; 3744 } 3745 3746 static inline int ipw_queue_inc_wrap(int index, int n_bd) 3747 { 3748 return (++index == n_bd) ? 0 : index; 3749 } 3750 3751 /** 3752 * Initialize common DMA queue structure 3753 * 3754 * @param q queue to init 3755 * @param count Number of BD's to allocate. Should be power of 2 3756 * @param read_register Address for 'read' register 3757 * (not offset within BAR, full address) 3758 * @param write_register Address for 'write' register 3759 * (not offset within BAR, full address) 3760 * @param base_register Address for 'base' register 3761 * (not offset within BAR, full address) 3762 * @param size Address for 'size' register 3763 * (not offset within BAR, full address) 3764 */ 3765 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q, 3766 int count, u32 read, u32 write, u32 base, u32 size) 3767 { 3768 q->n_bd = count; 3769 3770 q->low_mark = q->n_bd / 4; 3771 if (q->low_mark < 4) 3772 q->low_mark = 4; 3773 3774 q->high_mark = q->n_bd / 8; 3775 if (q->high_mark < 2) 3776 q->high_mark = 2; 3777 3778 q->first_empty = q->last_used = 0; 3779 q->reg_r = read; 3780 q->reg_w = write; 3781 3782 ipw_write32(priv, base, q->dma_addr); 3783 ipw_write32(priv, size, count); 3784 ipw_write32(priv, read, 0); 3785 ipw_write32(priv, write, 0); 3786 3787 _ipw_read32(priv, 0x90); 3788 } 3789 3790 static int ipw_queue_tx_init(struct ipw_priv *priv, 3791 struct clx2_tx_queue *q, 3792 int count, u32 read, u32 write, u32 base, u32 size) 3793 { 3794 struct pci_dev *dev = priv->pci_dev; 3795 3796 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL); 3797 if (!q->txb) { 3798 IPW_ERROR("vmalloc for auxiliary BD structures failed\n"); 3799 return -ENOMEM; 3800 } 3801 3802 q->bd = 3803 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr); 3804 if (!q->bd) { 3805 IPW_ERROR("pci_alloc_consistent(%zd) failed\n", 3806 sizeof(q->bd[0]) * count); 3807 kfree(q->txb); 3808 q->txb = NULL; 3809 return -ENOMEM; 3810 } 3811 3812 ipw_queue_init(priv, &q->q, count, read, write, base, size); 3813 return 0; 3814 } 3815 3816 /** 3817 * Free one TFD, those at index [txq->q.last_used]. 3818 * Do NOT advance any indexes 3819 * 3820 * @param dev 3821 * @param txq 3822 */ 3823 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv, 3824 struct clx2_tx_queue *txq) 3825 { 3826 struct tfd_frame *bd = &txq->bd[txq->q.last_used]; 3827 struct pci_dev *dev = priv->pci_dev; 3828 int i; 3829 3830 /* classify bd */ 3831 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE) 3832 /* nothing to cleanup after for host commands */ 3833 return; 3834 3835 /* sanity check */ 3836 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) { 3837 IPW_ERROR("Too many chunks: %i\n", 3838 le32_to_cpu(bd->u.data.num_chunks)); 3839 /** @todo issue fatal error, it is quite serious situation */ 3840 return; 3841 } 3842 3843 /* unmap chunks if any */ 3844 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) { 3845 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]), 3846 le16_to_cpu(bd->u.data.chunk_len[i]), 3847 PCI_DMA_TODEVICE); 3848 if (txq->txb[txq->q.last_used]) { 3849 libipw_txb_free(txq->txb[txq->q.last_used]); 3850 txq->txb[txq->q.last_used] = NULL; 3851 } 3852 } 3853 } 3854 3855 /** 3856 * Deallocate DMA queue. 3857 * 3858 * Empty queue by removing and destroying all BD's. 3859 * Free all buffers. 3860 * 3861 * @param dev 3862 * @param q 3863 */ 3864 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq) 3865 { 3866 struct clx2_queue *q = &txq->q; 3867 struct pci_dev *dev = priv->pci_dev; 3868 3869 if (q->n_bd == 0) 3870 return; 3871 3872 /* first, empty all BD's */ 3873 for (; q->first_empty != q->last_used; 3874 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { 3875 ipw_queue_tx_free_tfd(priv, txq); 3876 } 3877 3878 /* free buffers belonging to queue itself */ 3879 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd, 3880 q->dma_addr); 3881 kfree(txq->txb); 3882 3883 /* 0 fill whole structure */ 3884 memset(txq, 0, sizeof(*txq)); 3885 } 3886 3887 /** 3888 * Destroy all DMA queues and structures 3889 * 3890 * @param priv 3891 */ 3892 static void ipw_tx_queue_free(struct ipw_priv *priv) 3893 { 3894 /* Tx CMD queue */ 3895 ipw_queue_tx_free(priv, &priv->txq_cmd); 3896 3897 /* Tx queues */ 3898 ipw_queue_tx_free(priv, &priv->txq[0]); 3899 ipw_queue_tx_free(priv, &priv->txq[1]); 3900 ipw_queue_tx_free(priv, &priv->txq[2]); 3901 ipw_queue_tx_free(priv, &priv->txq[3]); 3902 } 3903 3904 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid) 3905 { 3906 /* First 3 bytes are manufacturer */ 3907 bssid[0] = priv->mac_addr[0]; 3908 bssid[1] = priv->mac_addr[1]; 3909 bssid[2] = priv->mac_addr[2]; 3910 3911 /* Last bytes are random */ 3912 get_random_bytes(&bssid[3], ETH_ALEN - 3); 3913 3914 bssid[0] &= 0xfe; /* clear multicast bit */ 3915 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */ 3916 } 3917 3918 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid) 3919 { 3920 struct ipw_station_entry entry; 3921 int i; 3922 3923 for (i = 0; i < priv->num_stations; i++) { 3924 if (ether_addr_equal(priv->stations[i], bssid)) { 3925 /* Another node is active in network */ 3926 priv->missed_adhoc_beacons = 0; 3927 if (!(priv->config & CFG_STATIC_CHANNEL)) 3928 /* when other nodes drop out, we drop out */ 3929 priv->config &= ~CFG_ADHOC_PERSIST; 3930 3931 return i; 3932 } 3933 } 3934 3935 if (i == MAX_STATIONS) 3936 return IPW_INVALID_STATION; 3937 3938 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid); 3939 3940 entry.reserved = 0; 3941 entry.support_mode = 0; 3942 memcpy(entry.mac_addr, bssid, ETH_ALEN); 3943 memcpy(priv->stations[i], bssid, ETH_ALEN); 3944 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry), 3945 &entry, sizeof(entry)); 3946 priv->num_stations++; 3947 3948 return i; 3949 } 3950 3951 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid) 3952 { 3953 int i; 3954 3955 for (i = 0; i < priv->num_stations; i++) 3956 if (ether_addr_equal(priv->stations[i], bssid)) 3957 return i; 3958 3959 return IPW_INVALID_STATION; 3960 } 3961 3962 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet) 3963 { 3964 int err; 3965 3966 if (priv->status & STATUS_ASSOCIATING) { 3967 IPW_DEBUG_ASSOC("Disassociating while associating.\n"); 3968 schedule_work(&priv->disassociate); 3969 return; 3970 } 3971 3972 if (!(priv->status & STATUS_ASSOCIATED)) { 3973 IPW_DEBUG_ASSOC("Disassociating while not associated.\n"); 3974 return; 3975 } 3976 3977 IPW_DEBUG_ASSOC("Disassocation attempt from %pM " 3978 "on channel %d.\n", 3979 priv->assoc_request.bssid, 3980 priv->assoc_request.channel); 3981 3982 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); 3983 priv->status |= STATUS_DISASSOCIATING; 3984 3985 if (quiet) 3986 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET; 3987 else 3988 priv->assoc_request.assoc_type = HC_DISASSOCIATE; 3989 3990 err = ipw_send_associate(priv, &priv->assoc_request); 3991 if (err) { 3992 IPW_DEBUG_HC("Attempt to send [dis]associate command " 3993 "failed.\n"); 3994 return; 3995 } 3996 3997 } 3998 3999 static int ipw_disassociate(void *data) 4000 { 4001 struct ipw_priv *priv = data; 4002 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) 4003 return 0; 4004 ipw_send_disassociate(data, 0); 4005 netif_carrier_off(priv->net_dev); 4006 return 1; 4007 } 4008 4009 static void ipw_bg_disassociate(struct work_struct *work) 4010 { 4011 struct ipw_priv *priv = 4012 container_of(work, struct ipw_priv, disassociate); 4013 mutex_lock(&priv->mutex); 4014 ipw_disassociate(priv); 4015 mutex_unlock(&priv->mutex); 4016 } 4017 4018 static void ipw_system_config(struct work_struct *work) 4019 { 4020 struct ipw_priv *priv = 4021 container_of(work, struct ipw_priv, system_config); 4022 4023 #ifdef CONFIG_IPW2200_PROMISCUOUS 4024 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { 4025 priv->sys_config.accept_all_data_frames = 1; 4026 priv->sys_config.accept_non_directed_frames = 1; 4027 priv->sys_config.accept_all_mgmt_bcpr = 1; 4028 priv->sys_config.accept_all_mgmt_frames = 1; 4029 } 4030 #endif 4031 4032 ipw_send_system_config(priv); 4033 } 4034 4035 struct ipw_status_code { 4036 u16 status; 4037 const char *reason; 4038 }; 4039 4040 static const struct ipw_status_code ipw_status_codes[] = { 4041 {0x00, "Successful"}, 4042 {0x01, "Unspecified failure"}, 4043 {0x0A, "Cannot support all requested capabilities in the " 4044 "Capability information field"}, 4045 {0x0B, "Reassociation denied due to inability to confirm that " 4046 "association exists"}, 4047 {0x0C, "Association denied due to reason outside the scope of this " 4048 "standard"}, 4049 {0x0D, 4050 "Responding station does not support the specified authentication " 4051 "algorithm"}, 4052 {0x0E, 4053 "Received an Authentication frame with authentication sequence " 4054 "transaction sequence number out of expected sequence"}, 4055 {0x0F, "Authentication rejected because of challenge failure"}, 4056 {0x10, "Authentication rejected due to timeout waiting for next " 4057 "frame in sequence"}, 4058 {0x11, "Association denied because AP is unable to handle additional " 4059 "associated stations"}, 4060 {0x12, 4061 "Association denied due to requesting station not supporting all " 4062 "of the datarates in the BSSBasicServiceSet Parameter"}, 4063 {0x13, 4064 "Association denied due to requesting station not supporting " 4065 "short preamble operation"}, 4066 {0x14, 4067 "Association denied due to requesting station not supporting " 4068 "PBCC encoding"}, 4069 {0x15, 4070 "Association denied due to requesting station not supporting " 4071 "channel agility"}, 4072 {0x19, 4073 "Association denied due to requesting station not supporting " 4074 "short slot operation"}, 4075 {0x1A, 4076 "Association denied due to requesting station not supporting " 4077 "DSSS-OFDM operation"}, 4078 {0x28, "Invalid Information Element"}, 4079 {0x29, "Group Cipher is not valid"}, 4080 {0x2A, "Pairwise Cipher is not valid"}, 4081 {0x2B, "AKMP is not valid"}, 4082 {0x2C, "Unsupported RSN IE version"}, 4083 {0x2D, "Invalid RSN IE Capabilities"}, 4084 {0x2E, "Cipher suite is rejected per security policy"}, 4085 }; 4086 4087 static const char *ipw_get_status_code(u16 status) 4088 { 4089 int i; 4090 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++) 4091 if (ipw_status_codes[i].status == (status & 0xff)) 4092 return ipw_status_codes[i].reason; 4093 return "Unknown status value."; 4094 } 4095 4096 static void inline average_init(struct average *avg) 4097 { 4098 memset(avg, 0, sizeof(*avg)); 4099 } 4100 4101 #define DEPTH_RSSI 8 4102 #define DEPTH_NOISE 16 4103 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth) 4104 { 4105 return ((depth-1)*prev_avg + val)/depth; 4106 } 4107 4108 static void average_add(struct average *avg, s16 val) 4109 { 4110 avg->sum -= avg->entries[avg->pos]; 4111 avg->sum += val; 4112 avg->entries[avg->pos++] = val; 4113 if (unlikely(avg->pos == AVG_ENTRIES)) { 4114 avg->init = 1; 4115 avg->pos = 0; 4116 } 4117 } 4118 4119 static s16 average_value(struct average *avg) 4120 { 4121 if (!unlikely(avg->init)) { 4122 if (avg->pos) 4123 return avg->sum / avg->pos; 4124 return 0; 4125 } 4126 4127 return avg->sum / AVG_ENTRIES; 4128 } 4129 4130 static void ipw_reset_stats(struct ipw_priv *priv) 4131 { 4132 u32 len = sizeof(u32); 4133 4134 priv->quality = 0; 4135 4136 average_init(&priv->average_missed_beacons); 4137 priv->exp_avg_rssi = -60; 4138 priv->exp_avg_noise = -85 + 0x100; 4139 4140 priv->last_rate = 0; 4141 priv->last_missed_beacons = 0; 4142 priv->last_rx_packets = 0; 4143 priv->last_tx_packets = 0; 4144 priv->last_tx_failures = 0; 4145 4146 /* Firmware managed, reset only when NIC is restarted, so we have to 4147 * normalize on the current value */ 4148 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, 4149 &priv->last_rx_err, &len); 4150 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, 4151 &priv->last_tx_failures, &len); 4152 4153 /* Driver managed, reset with each association */ 4154 priv->missed_adhoc_beacons = 0; 4155 priv->missed_beacons = 0; 4156 priv->tx_packets = 0; 4157 priv->rx_packets = 0; 4158 4159 } 4160 4161 static u32 ipw_get_max_rate(struct ipw_priv *priv) 4162 { 4163 u32 i = 0x80000000; 4164 u32 mask = priv->rates_mask; 4165 /* If currently associated in B mode, restrict the maximum 4166 * rate match to B rates */ 4167 if (priv->assoc_request.ieee_mode == IPW_B_MODE) 4168 mask &= LIBIPW_CCK_RATES_MASK; 4169 4170 /* TODO: Verify that the rate is supported by the current rates 4171 * list. */ 4172 4173 while (i && !(mask & i)) 4174 i >>= 1; 4175 switch (i) { 4176 case LIBIPW_CCK_RATE_1MB_MASK: 4177 return 1000000; 4178 case LIBIPW_CCK_RATE_2MB_MASK: 4179 return 2000000; 4180 case LIBIPW_CCK_RATE_5MB_MASK: 4181 return 5500000; 4182 case LIBIPW_OFDM_RATE_6MB_MASK: 4183 return 6000000; 4184 case LIBIPW_OFDM_RATE_9MB_MASK: 4185 return 9000000; 4186 case LIBIPW_CCK_RATE_11MB_MASK: 4187 return 11000000; 4188 case LIBIPW_OFDM_RATE_12MB_MASK: 4189 return 12000000; 4190 case LIBIPW_OFDM_RATE_18MB_MASK: 4191 return 18000000; 4192 case LIBIPW_OFDM_RATE_24MB_MASK: 4193 return 24000000; 4194 case LIBIPW_OFDM_RATE_36MB_MASK: 4195 return 36000000; 4196 case LIBIPW_OFDM_RATE_48MB_MASK: 4197 return 48000000; 4198 case LIBIPW_OFDM_RATE_54MB_MASK: 4199 return 54000000; 4200 } 4201 4202 if (priv->ieee->mode == IEEE_B) 4203 return 11000000; 4204 else 4205 return 54000000; 4206 } 4207 4208 static u32 ipw_get_current_rate(struct ipw_priv *priv) 4209 { 4210 u32 rate, len = sizeof(rate); 4211 int err; 4212 4213 if (!(priv->status & STATUS_ASSOCIATED)) 4214 return 0; 4215 4216 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) { 4217 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate, 4218 &len); 4219 if (err) { 4220 IPW_DEBUG_INFO("failed querying ordinals.\n"); 4221 return 0; 4222 } 4223 } else 4224 return ipw_get_max_rate(priv); 4225 4226 switch (rate) { 4227 case IPW_TX_RATE_1MB: 4228 return 1000000; 4229 case IPW_TX_RATE_2MB: 4230 return 2000000; 4231 case IPW_TX_RATE_5MB: 4232 return 5500000; 4233 case IPW_TX_RATE_6MB: 4234 return 6000000; 4235 case IPW_TX_RATE_9MB: 4236 return 9000000; 4237 case IPW_TX_RATE_11MB: 4238 return 11000000; 4239 case IPW_TX_RATE_12MB: 4240 return 12000000; 4241 case IPW_TX_RATE_18MB: 4242 return 18000000; 4243 case IPW_TX_RATE_24MB: 4244 return 24000000; 4245 case IPW_TX_RATE_36MB: 4246 return 36000000; 4247 case IPW_TX_RATE_48MB: 4248 return 48000000; 4249 case IPW_TX_RATE_54MB: 4250 return 54000000; 4251 } 4252 4253 return 0; 4254 } 4255 4256 #define IPW_STATS_INTERVAL (2 * HZ) 4257 static void ipw_gather_stats(struct ipw_priv *priv) 4258 { 4259 u32 rx_err, rx_err_delta, rx_packets_delta; 4260 u32 tx_failures, tx_failures_delta, tx_packets_delta; 4261 u32 missed_beacons_percent, missed_beacons_delta; 4262 u32 quality = 0; 4263 u32 len = sizeof(u32); 4264 s16 rssi; 4265 u32 beacon_quality, signal_quality, tx_quality, rx_quality, 4266 rate_quality; 4267 u32 max_rate; 4268 4269 if (!(priv->status & STATUS_ASSOCIATED)) { 4270 priv->quality = 0; 4271 return; 4272 } 4273 4274 /* Update the statistics */ 4275 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS, 4276 &priv->missed_beacons, &len); 4277 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons; 4278 priv->last_missed_beacons = priv->missed_beacons; 4279 if (priv->assoc_request.beacon_interval) { 4280 missed_beacons_percent = missed_beacons_delta * 4281 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) / 4282 (IPW_STATS_INTERVAL * 10); 4283 } else { 4284 missed_beacons_percent = 0; 4285 } 4286 average_add(&priv->average_missed_beacons, missed_beacons_percent); 4287 4288 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len); 4289 rx_err_delta = rx_err - priv->last_rx_err; 4290 priv->last_rx_err = rx_err; 4291 4292 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len); 4293 tx_failures_delta = tx_failures - priv->last_tx_failures; 4294 priv->last_tx_failures = tx_failures; 4295 4296 rx_packets_delta = priv->rx_packets - priv->last_rx_packets; 4297 priv->last_rx_packets = priv->rx_packets; 4298 4299 tx_packets_delta = priv->tx_packets - priv->last_tx_packets; 4300 priv->last_tx_packets = priv->tx_packets; 4301 4302 /* Calculate quality based on the following: 4303 * 4304 * Missed beacon: 100% = 0, 0% = 70% missed 4305 * Rate: 60% = 1Mbs, 100% = Max 4306 * Rx and Tx errors represent a straight % of total Rx/Tx 4307 * RSSI: 100% = > -50, 0% = < -80 4308 * Rx errors: 100% = 0, 0% = 50% missed 4309 * 4310 * The lowest computed quality is used. 4311 * 4312 */ 4313 #define BEACON_THRESHOLD 5 4314 beacon_quality = 100 - missed_beacons_percent; 4315 if (beacon_quality < BEACON_THRESHOLD) 4316 beacon_quality = 0; 4317 else 4318 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 / 4319 (100 - BEACON_THRESHOLD); 4320 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n", 4321 beacon_quality, missed_beacons_percent); 4322 4323 priv->last_rate = ipw_get_current_rate(priv); 4324 max_rate = ipw_get_max_rate(priv); 4325 rate_quality = priv->last_rate * 40 / max_rate + 60; 4326 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n", 4327 rate_quality, priv->last_rate / 1000000); 4328 4329 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta) 4330 rx_quality = 100 - (rx_err_delta * 100) / 4331 (rx_packets_delta + rx_err_delta); 4332 else 4333 rx_quality = 100; 4334 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n", 4335 rx_quality, rx_err_delta, rx_packets_delta); 4336 4337 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta) 4338 tx_quality = 100 - (tx_failures_delta * 100) / 4339 (tx_packets_delta + tx_failures_delta); 4340 else 4341 tx_quality = 100; 4342 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n", 4343 tx_quality, tx_failures_delta, tx_packets_delta); 4344 4345 rssi = priv->exp_avg_rssi; 4346 signal_quality = 4347 (100 * 4348 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * 4349 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) - 4350 (priv->ieee->perfect_rssi - rssi) * 4351 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) + 4352 62 * (priv->ieee->perfect_rssi - rssi))) / 4353 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * 4354 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi)); 4355 if (signal_quality > 100) 4356 signal_quality = 100; 4357 else if (signal_quality < 1) 4358 signal_quality = 0; 4359 4360 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n", 4361 signal_quality, rssi); 4362 4363 quality = min(rx_quality, signal_quality); 4364 quality = min(tx_quality, quality); 4365 quality = min(rate_quality, quality); 4366 quality = min(beacon_quality, quality); 4367 if (quality == beacon_quality) 4368 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n", 4369 quality); 4370 if (quality == rate_quality) 4371 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n", 4372 quality); 4373 if (quality == tx_quality) 4374 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n", 4375 quality); 4376 if (quality == rx_quality) 4377 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n", 4378 quality); 4379 if (quality == signal_quality) 4380 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n", 4381 quality); 4382 4383 priv->quality = quality; 4384 4385 schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL); 4386 } 4387 4388 static void ipw_bg_gather_stats(struct work_struct *work) 4389 { 4390 struct ipw_priv *priv = 4391 container_of(work, struct ipw_priv, gather_stats.work); 4392 mutex_lock(&priv->mutex); 4393 ipw_gather_stats(priv); 4394 mutex_unlock(&priv->mutex); 4395 } 4396 4397 /* Missed beacon behavior: 4398 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam. 4399 * roaming_threshold -> disassociate_threshold, scan and roam for better signal. 4400 * Above disassociate threshold, give up and stop scanning. 4401 * Roaming is disabled if disassociate_threshold <= roaming_threshold */ 4402 static void ipw_handle_missed_beacon(struct ipw_priv *priv, 4403 int missed_count) 4404 { 4405 priv->notif_missed_beacons = missed_count; 4406 4407 if (missed_count > priv->disassociate_threshold && 4408 priv->status & STATUS_ASSOCIATED) { 4409 /* If associated and we've hit the missed 4410 * beacon threshold, disassociate, turn 4411 * off roaming, and abort any active scans */ 4412 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 4413 IPW_DL_STATE | IPW_DL_ASSOC, 4414 "Missed beacon: %d - disassociate\n", missed_count); 4415 priv->status &= ~STATUS_ROAMING; 4416 if (priv->status & STATUS_SCANNING) { 4417 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 4418 IPW_DL_STATE, 4419 "Aborting scan with missed beacon.\n"); 4420 schedule_work(&priv->abort_scan); 4421 } 4422 4423 schedule_work(&priv->disassociate); 4424 return; 4425 } 4426 4427 if (priv->status & STATUS_ROAMING) { 4428 /* If we are currently roaming, then just 4429 * print a debug statement... */ 4430 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4431 "Missed beacon: %d - roam in progress\n", 4432 missed_count); 4433 return; 4434 } 4435 4436 if (roaming && 4437 (missed_count > priv->roaming_threshold && 4438 missed_count <= priv->disassociate_threshold)) { 4439 /* If we are not already roaming, set the ROAM 4440 * bit in the status and kick off a scan. 4441 * This can happen several times before we reach 4442 * disassociate_threshold. */ 4443 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4444 "Missed beacon: %d - initiate " 4445 "roaming\n", missed_count); 4446 if (!(priv->status & STATUS_ROAMING)) { 4447 priv->status |= STATUS_ROAMING; 4448 if (!(priv->status & STATUS_SCANNING)) 4449 schedule_delayed_work(&priv->request_scan, 0); 4450 } 4451 return; 4452 } 4453 4454 if (priv->status & STATUS_SCANNING && 4455 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) { 4456 /* Stop scan to keep fw from getting 4457 * stuck (only if we aren't roaming -- 4458 * otherwise we'll never scan more than 2 or 3 4459 * channels..) */ 4460 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE, 4461 "Aborting scan with missed beacon.\n"); 4462 schedule_work(&priv->abort_scan); 4463 } 4464 4465 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count); 4466 } 4467 4468 static void ipw_scan_event(struct work_struct *work) 4469 { 4470 union iwreq_data wrqu; 4471 4472 struct ipw_priv *priv = 4473 container_of(work, struct ipw_priv, scan_event.work); 4474 4475 wrqu.data.length = 0; 4476 wrqu.data.flags = 0; 4477 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); 4478 } 4479 4480 static void handle_scan_event(struct ipw_priv *priv) 4481 { 4482 /* Only userspace-requested scan completion events go out immediately */ 4483 if (!priv->user_requested_scan) { 4484 schedule_delayed_work(&priv->scan_event, 4485 round_jiffies_relative(msecs_to_jiffies(4000))); 4486 } else { 4487 priv->user_requested_scan = 0; 4488 mod_delayed_work(system_wq, &priv->scan_event, 0); 4489 } 4490 } 4491 4492 /** 4493 * Handle host notification packet. 4494 * Called from interrupt routine 4495 */ 4496 static void ipw_rx_notification(struct ipw_priv *priv, 4497 struct ipw_rx_notification *notif) 4498 { 4499 u16 size = le16_to_cpu(notif->size); 4500 4501 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size); 4502 4503 switch (notif->subtype) { 4504 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{ 4505 struct notif_association *assoc = ¬if->u.assoc; 4506 4507 switch (assoc->state) { 4508 case CMAS_ASSOCIATED:{ 4509 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4510 IPW_DL_ASSOC, 4511 "associated: '%*pE' %pM\n", 4512 priv->essid_len, priv->essid, 4513 priv->bssid); 4514 4515 switch (priv->ieee->iw_mode) { 4516 case IW_MODE_INFRA: 4517 memcpy(priv->ieee->bssid, 4518 priv->bssid, ETH_ALEN); 4519 break; 4520 4521 case IW_MODE_ADHOC: 4522 memcpy(priv->ieee->bssid, 4523 priv->bssid, ETH_ALEN); 4524 4525 /* clear out the station table */ 4526 priv->num_stations = 0; 4527 4528 IPW_DEBUG_ASSOC 4529 ("queueing adhoc check\n"); 4530 schedule_delayed_work( 4531 &priv->adhoc_check, 4532 le16_to_cpu(priv-> 4533 assoc_request. 4534 beacon_interval)); 4535 break; 4536 } 4537 4538 priv->status &= ~STATUS_ASSOCIATING; 4539 priv->status |= STATUS_ASSOCIATED; 4540 schedule_work(&priv->system_config); 4541 4542 #ifdef CONFIG_IPW2200_QOS 4543 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \ 4544 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control)) 4545 if ((priv->status & STATUS_AUTH) && 4546 (IPW_GET_PACKET_STYPE(¬if->u.raw) 4547 == IEEE80211_STYPE_ASSOC_RESP)) { 4548 if ((sizeof 4549 (struct 4550 libipw_assoc_response) 4551 <= size) 4552 && (size <= 2314)) { 4553 struct 4554 libipw_rx_stats 4555 stats = { 4556 .len = size - 1, 4557 }; 4558 4559 IPW_DEBUG_QOS 4560 ("QoS Associate " 4561 "size %d\n", size); 4562 libipw_rx_mgt(priv-> 4563 ieee, 4564 (struct 4565 libipw_hdr_4addr 4566 *) 4567 ¬if->u.raw, &stats); 4568 } 4569 } 4570 #endif 4571 4572 schedule_work(&priv->link_up); 4573 4574 break; 4575 } 4576 4577 case CMAS_AUTHENTICATED:{ 4578 if (priv-> 4579 status & (STATUS_ASSOCIATED | 4580 STATUS_AUTH)) { 4581 struct notif_authenticate *auth 4582 = ¬if->u.auth; 4583 IPW_DEBUG(IPW_DL_NOTIF | 4584 IPW_DL_STATE | 4585 IPW_DL_ASSOC, 4586 "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n", 4587 priv->essid_len, 4588 priv->essid, 4589 priv->bssid, 4590 le16_to_cpu(auth->status), 4591 ipw_get_status_code 4592 (le16_to_cpu 4593 (auth->status))); 4594 4595 priv->status &= 4596 ~(STATUS_ASSOCIATING | 4597 STATUS_AUTH | 4598 STATUS_ASSOCIATED); 4599 4600 schedule_work(&priv->link_down); 4601 break; 4602 } 4603 4604 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4605 IPW_DL_ASSOC, 4606 "authenticated: '%*pE' %pM\n", 4607 priv->essid_len, priv->essid, 4608 priv->bssid); 4609 break; 4610 } 4611 4612 case CMAS_INIT:{ 4613 if (priv->status & STATUS_AUTH) { 4614 struct 4615 libipw_assoc_response 4616 *resp; 4617 resp = 4618 (struct 4619 libipw_assoc_response 4620 *)¬if->u.raw; 4621 IPW_DEBUG(IPW_DL_NOTIF | 4622 IPW_DL_STATE | 4623 IPW_DL_ASSOC, 4624 "association failed (0x%04X): %s\n", 4625 le16_to_cpu(resp->status), 4626 ipw_get_status_code 4627 (le16_to_cpu 4628 (resp->status))); 4629 } 4630 4631 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4632 IPW_DL_ASSOC, 4633 "disassociated: '%*pE' %pM\n", 4634 priv->essid_len, priv->essid, 4635 priv->bssid); 4636 4637 priv->status &= 4638 ~(STATUS_DISASSOCIATING | 4639 STATUS_ASSOCIATING | 4640 STATUS_ASSOCIATED | STATUS_AUTH); 4641 if (priv->assoc_network 4642 && (priv->assoc_network-> 4643 capability & 4644 WLAN_CAPABILITY_IBSS)) 4645 ipw_remove_current_network 4646 (priv); 4647 4648 schedule_work(&priv->link_down); 4649 4650 break; 4651 } 4652 4653 case CMAS_RX_ASSOC_RESP: 4654 break; 4655 4656 default: 4657 IPW_ERROR("assoc: unknown (%d)\n", 4658 assoc->state); 4659 break; 4660 } 4661 4662 break; 4663 } 4664 4665 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{ 4666 struct notif_authenticate *auth = ¬if->u.auth; 4667 switch (auth->state) { 4668 case CMAS_AUTHENTICATED: 4669 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4670 "authenticated: '%*pE' %pM\n", 4671 priv->essid_len, priv->essid, 4672 priv->bssid); 4673 priv->status |= STATUS_AUTH; 4674 break; 4675 4676 case CMAS_INIT: 4677 if (priv->status & STATUS_AUTH) { 4678 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4679 IPW_DL_ASSOC, 4680 "authentication failed (0x%04X): %s\n", 4681 le16_to_cpu(auth->status), 4682 ipw_get_status_code(le16_to_cpu 4683 (auth-> 4684 status))); 4685 } 4686 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4687 IPW_DL_ASSOC, 4688 "deauthenticated: '%*pE' %pM\n", 4689 priv->essid_len, priv->essid, 4690 priv->bssid); 4691 4692 priv->status &= ~(STATUS_ASSOCIATING | 4693 STATUS_AUTH | 4694 STATUS_ASSOCIATED); 4695 4696 schedule_work(&priv->link_down); 4697 break; 4698 4699 case CMAS_TX_AUTH_SEQ_1: 4700 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4701 IPW_DL_ASSOC, "AUTH_SEQ_1\n"); 4702 break; 4703 case CMAS_RX_AUTH_SEQ_2: 4704 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4705 IPW_DL_ASSOC, "AUTH_SEQ_2\n"); 4706 break; 4707 case CMAS_AUTH_SEQ_1_PASS: 4708 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4709 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n"); 4710 break; 4711 case CMAS_AUTH_SEQ_1_FAIL: 4712 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4713 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n"); 4714 break; 4715 case CMAS_TX_AUTH_SEQ_3: 4716 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4717 IPW_DL_ASSOC, "AUTH_SEQ_3\n"); 4718 break; 4719 case CMAS_RX_AUTH_SEQ_4: 4720 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4721 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n"); 4722 break; 4723 case CMAS_AUTH_SEQ_2_PASS: 4724 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4725 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n"); 4726 break; 4727 case CMAS_AUTH_SEQ_2_FAIL: 4728 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4729 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n"); 4730 break; 4731 case CMAS_TX_ASSOC: 4732 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4733 IPW_DL_ASSOC, "TX_ASSOC\n"); 4734 break; 4735 case CMAS_RX_ASSOC_RESP: 4736 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4737 IPW_DL_ASSOC, "RX_ASSOC_RESP\n"); 4738 4739 break; 4740 case CMAS_ASSOCIATED: 4741 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | 4742 IPW_DL_ASSOC, "ASSOCIATED\n"); 4743 break; 4744 default: 4745 IPW_DEBUG_NOTIF("auth: failure - %d\n", 4746 auth->state); 4747 break; 4748 } 4749 break; 4750 } 4751 4752 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{ 4753 struct notif_channel_result *x = 4754 ¬if->u.channel_result; 4755 4756 if (size == sizeof(*x)) { 4757 IPW_DEBUG_SCAN("Scan result for channel %d\n", 4758 x->channel_num); 4759 } else { 4760 IPW_DEBUG_SCAN("Scan result of wrong size %d " 4761 "(should be %zd)\n", 4762 size, sizeof(*x)); 4763 } 4764 break; 4765 } 4766 4767 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{ 4768 struct notif_scan_complete *x = ¬if->u.scan_complete; 4769 if (size == sizeof(*x)) { 4770 IPW_DEBUG_SCAN 4771 ("Scan completed: type %d, %d channels, " 4772 "%d status\n", x->scan_type, 4773 x->num_channels, x->status); 4774 } else { 4775 IPW_ERROR("Scan completed of wrong size %d " 4776 "(should be %zd)\n", 4777 size, sizeof(*x)); 4778 } 4779 4780 priv->status &= 4781 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); 4782 4783 wake_up_interruptible(&priv->wait_state); 4784 cancel_delayed_work(&priv->scan_check); 4785 4786 if (priv->status & STATUS_EXIT_PENDING) 4787 break; 4788 4789 priv->ieee->scans++; 4790 4791 #ifdef CONFIG_IPW2200_MONITOR 4792 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 4793 priv->status |= STATUS_SCAN_FORCED; 4794 schedule_delayed_work(&priv->request_scan, 0); 4795 break; 4796 } 4797 priv->status &= ~STATUS_SCAN_FORCED; 4798 #endif /* CONFIG_IPW2200_MONITOR */ 4799 4800 /* Do queued direct scans first */ 4801 if (priv->status & STATUS_DIRECT_SCAN_PENDING) 4802 schedule_delayed_work(&priv->request_direct_scan, 0); 4803 4804 if (!(priv->status & (STATUS_ASSOCIATED | 4805 STATUS_ASSOCIATING | 4806 STATUS_ROAMING | 4807 STATUS_DISASSOCIATING))) 4808 schedule_work(&priv->associate); 4809 else if (priv->status & STATUS_ROAMING) { 4810 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) 4811 /* If a scan completed and we are in roam mode, then 4812 * the scan that completed was the one requested as a 4813 * result of entering roam... so, schedule the 4814 * roam work */ 4815 schedule_work(&priv->roam); 4816 else 4817 /* Don't schedule if we aborted the scan */ 4818 priv->status &= ~STATUS_ROAMING; 4819 } else if (priv->status & STATUS_SCAN_PENDING) 4820 schedule_delayed_work(&priv->request_scan, 0); 4821 else if (priv->config & CFG_BACKGROUND_SCAN 4822 && priv->status & STATUS_ASSOCIATED) 4823 schedule_delayed_work(&priv->request_scan, 4824 round_jiffies_relative(HZ)); 4825 4826 /* Send an empty event to user space. 4827 * We don't send the received data on the event because 4828 * it would require us to do complex transcoding, and 4829 * we want to minimise the work done in the irq handler 4830 * Use a request to extract the data. 4831 * Also, we generate this even for any scan, regardless 4832 * on how the scan was initiated. User space can just 4833 * sync on periodic scan to get fresh data... 4834 * Jean II */ 4835 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) 4836 handle_scan_event(priv); 4837 break; 4838 } 4839 4840 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{ 4841 struct notif_frag_length *x = ¬if->u.frag_len; 4842 4843 if (size == sizeof(*x)) 4844 IPW_ERROR("Frag length: %d\n", 4845 le16_to_cpu(x->frag_length)); 4846 else 4847 IPW_ERROR("Frag length of wrong size %d " 4848 "(should be %zd)\n", 4849 size, sizeof(*x)); 4850 break; 4851 } 4852 4853 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{ 4854 struct notif_link_deterioration *x = 4855 ¬if->u.link_deterioration; 4856 4857 if (size == sizeof(*x)) { 4858 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 4859 "link deterioration: type %d, cnt %d\n", 4860 x->silence_notification_type, 4861 x->silence_count); 4862 memcpy(&priv->last_link_deterioration, x, 4863 sizeof(*x)); 4864 } else { 4865 IPW_ERROR("Link Deterioration of wrong size %d " 4866 "(should be %zd)\n", 4867 size, sizeof(*x)); 4868 } 4869 break; 4870 } 4871 4872 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{ 4873 IPW_ERROR("Dino config\n"); 4874 if (priv->hcmd 4875 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG) 4876 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n"); 4877 4878 break; 4879 } 4880 4881 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{ 4882 struct notif_beacon_state *x = ¬if->u.beacon_state; 4883 if (size != sizeof(*x)) { 4884 IPW_ERROR 4885 ("Beacon state of wrong size %d (should " 4886 "be %zd)\n", size, sizeof(*x)); 4887 break; 4888 } 4889 4890 if (le32_to_cpu(x->state) == 4891 HOST_NOTIFICATION_STATUS_BEACON_MISSING) 4892 ipw_handle_missed_beacon(priv, 4893 le32_to_cpu(x-> 4894 number)); 4895 4896 break; 4897 } 4898 4899 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{ 4900 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key; 4901 if (size == sizeof(*x)) { 4902 IPW_ERROR("TGi Tx Key: state 0x%02x sec type " 4903 "0x%02x station %d\n", 4904 x->key_state, x->security_type, 4905 x->station_index); 4906 break; 4907 } 4908 4909 IPW_ERROR 4910 ("TGi Tx Key of wrong size %d (should be %zd)\n", 4911 size, sizeof(*x)); 4912 break; 4913 } 4914 4915 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{ 4916 struct notif_calibration *x = ¬if->u.calibration; 4917 4918 if (size == sizeof(*x)) { 4919 memcpy(&priv->calib, x, sizeof(*x)); 4920 IPW_DEBUG_INFO("TODO: Calibration\n"); 4921 break; 4922 } 4923 4924 IPW_ERROR 4925 ("Calibration of wrong size %d (should be %zd)\n", 4926 size, sizeof(*x)); 4927 break; 4928 } 4929 4930 case HOST_NOTIFICATION_NOISE_STATS:{ 4931 if (size == sizeof(u32)) { 4932 priv->exp_avg_noise = 4933 exponential_average(priv->exp_avg_noise, 4934 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff), 4935 DEPTH_NOISE); 4936 break; 4937 } 4938 4939 IPW_ERROR 4940 ("Noise stat is wrong size %d (should be %zd)\n", 4941 size, sizeof(u32)); 4942 break; 4943 } 4944 4945 default: 4946 IPW_DEBUG_NOTIF("Unknown notification: " 4947 "subtype=%d,flags=0x%2x,size=%d\n", 4948 notif->subtype, notif->flags, size); 4949 } 4950 } 4951 4952 /** 4953 * Destroys all DMA structures and initialise them again 4954 * 4955 * @param priv 4956 * @return error code 4957 */ 4958 static int ipw_queue_reset(struct ipw_priv *priv) 4959 { 4960 int rc = 0; 4961 /** @todo customize queue sizes */ 4962 int nTx = 64, nTxCmd = 8; 4963 ipw_tx_queue_free(priv); 4964 /* Tx CMD queue */ 4965 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd, 4966 IPW_TX_CMD_QUEUE_READ_INDEX, 4967 IPW_TX_CMD_QUEUE_WRITE_INDEX, 4968 IPW_TX_CMD_QUEUE_BD_BASE, 4969 IPW_TX_CMD_QUEUE_BD_SIZE); 4970 if (rc) { 4971 IPW_ERROR("Tx Cmd queue init failed\n"); 4972 goto error; 4973 } 4974 /* Tx queue(s) */ 4975 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx, 4976 IPW_TX_QUEUE_0_READ_INDEX, 4977 IPW_TX_QUEUE_0_WRITE_INDEX, 4978 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE); 4979 if (rc) { 4980 IPW_ERROR("Tx 0 queue init failed\n"); 4981 goto error; 4982 } 4983 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx, 4984 IPW_TX_QUEUE_1_READ_INDEX, 4985 IPW_TX_QUEUE_1_WRITE_INDEX, 4986 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE); 4987 if (rc) { 4988 IPW_ERROR("Tx 1 queue init failed\n"); 4989 goto error; 4990 } 4991 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx, 4992 IPW_TX_QUEUE_2_READ_INDEX, 4993 IPW_TX_QUEUE_2_WRITE_INDEX, 4994 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE); 4995 if (rc) { 4996 IPW_ERROR("Tx 2 queue init failed\n"); 4997 goto error; 4998 } 4999 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx, 5000 IPW_TX_QUEUE_3_READ_INDEX, 5001 IPW_TX_QUEUE_3_WRITE_INDEX, 5002 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE); 5003 if (rc) { 5004 IPW_ERROR("Tx 3 queue init failed\n"); 5005 goto error; 5006 } 5007 /* statistics */ 5008 priv->rx_bufs_min = 0; 5009 priv->rx_pend_max = 0; 5010 return rc; 5011 5012 error: 5013 ipw_tx_queue_free(priv); 5014 return rc; 5015 } 5016 5017 /** 5018 * Reclaim Tx queue entries no more used by NIC. 5019 * 5020 * When FW advances 'R' index, all entries between old and 5021 * new 'R' index need to be reclaimed. As result, some free space 5022 * forms. If there is enough free space (> low mark), wake Tx queue. 5023 * 5024 * @note Need to protect against garbage in 'R' index 5025 * @param priv 5026 * @param txq 5027 * @param qindex 5028 * @return Number of used entries remains in the queue 5029 */ 5030 static int ipw_queue_tx_reclaim(struct ipw_priv *priv, 5031 struct clx2_tx_queue *txq, int qindex) 5032 { 5033 u32 hw_tail; 5034 int used; 5035 struct clx2_queue *q = &txq->q; 5036 5037 hw_tail = ipw_read32(priv, q->reg_r); 5038 if (hw_tail >= q->n_bd) { 5039 IPW_ERROR 5040 ("Read index for DMA queue (%d) is out of range [0-%d)\n", 5041 hw_tail, q->n_bd); 5042 goto done; 5043 } 5044 for (; q->last_used != hw_tail; 5045 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { 5046 ipw_queue_tx_free_tfd(priv, txq); 5047 priv->tx_packets++; 5048 } 5049 done: 5050 if ((ipw_tx_queue_space(q) > q->low_mark) && 5051 (qindex >= 0)) 5052 netif_wake_queue(priv->net_dev); 5053 used = q->first_empty - q->last_used; 5054 if (used < 0) 5055 used += q->n_bd; 5056 5057 return used; 5058 } 5059 5060 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, 5061 int len, int sync) 5062 { 5063 struct clx2_tx_queue *txq = &priv->txq_cmd; 5064 struct clx2_queue *q = &txq->q; 5065 struct tfd_frame *tfd; 5066 5067 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) { 5068 IPW_ERROR("No space for Tx\n"); 5069 return -EBUSY; 5070 } 5071 5072 tfd = &txq->bd[q->first_empty]; 5073 txq->txb[q->first_empty] = NULL; 5074 5075 memset(tfd, 0, sizeof(*tfd)); 5076 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE; 5077 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; 5078 priv->hcmd_seq++; 5079 tfd->u.cmd.index = hcmd; 5080 tfd->u.cmd.length = len; 5081 memcpy(tfd->u.cmd.payload, buf, len); 5082 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); 5083 ipw_write32(priv, q->reg_w, q->first_empty); 5084 _ipw_read32(priv, 0x90); 5085 5086 return 0; 5087 } 5088 5089 /* 5090 * Rx theory of operation 5091 * 5092 * The host allocates 32 DMA target addresses and passes the host address 5093 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is 5094 * 0 to 31 5095 * 5096 * Rx Queue Indexes 5097 * The host/firmware share two index registers for managing the Rx buffers. 5098 * 5099 * The READ index maps to the first position that the firmware may be writing 5100 * to -- the driver can read up to (but not including) this position and get 5101 * good data. 5102 * The READ index is managed by the firmware once the card is enabled. 5103 * 5104 * The WRITE index maps to the last position the driver has read from -- the 5105 * position preceding WRITE is the last slot the firmware can place a packet. 5106 * 5107 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 5108 * WRITE = READ. 5109 * 5110 * During initialization the host sets up the READ queue position to the first 5111 * INDEX position, and WRITE to the last (READ - 1 wrapped) 5112 * 5113 * When the firmware places a packet in a buffer it will advance the READ index 5114 * and fire the RX interrupt. The driver can then query the READ index and 5115 * process as many packets as possible, moving the WRITE index forward as it 5116 * resets the Rx queue buffers with new memory. 5117 * 5118 * The management in the driver is as follows: 5119 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When 5120 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled 5121 * to replensish the ipw->rxq->rx_free. 5122 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the 5123 * ipw->rxq is replenished and the READ INDEX is updated (updating the 5124 * 'processed' and 'read' driver indexes as well) 5125 * + A received packet is processed and handed to the kernel network stack, 5126 * detached from the ipw->rxq. The driver 'processed' index is updated. 5127 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free 5128 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ 5129 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there 5130 * were enough free buffers and RX_STALLED is set it is cleared. 5131 * 5132 * 5133 * Driver sequence: 5134 * 5135 * ipw_rx_queue_alloc() Allocates rx_free 5136 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls 5137 * ipw_rx_queue_restock 5138 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx 5139 * queue, updates firmware pointers, and updates 5140 * the WRITE index. If insufficient rx_free buffers 5141 * are available, schedules ipw_rx_queue_replenish 5142 * 5143 * -- enable interrupts -- 5144 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the 5145 * READ INDEX, detaching the SKB from the pool. 5146 * Moves the packet buffer from queue to rx_used. 5147 * Calls ipw_rx_queue_restock to refill any empty 5148 * slots. 5149 * ... 5150 * 5151 */ 5152 5153 /* 5154 * If there are slots in the RX queue that need to be restocked, 5155 * and we have free pre-allocated buffers, fill the ranks as much 5156 * as we can pulling from rx_free. 5157 * 5158 * This moves the 'write' index forward to catch up with 'processed', and 5159 * also updates the memory address in the firmware to reference the new 5160 * target buffer. 5161 */ 5162 static void ipw_rx_queue_restock(struct ipw_priv *priv) 5163 { 5164 struct ipw_rx_queue *rxq = priv->rxq; 5165 struct list_head *element; 5166 struct ipw_rx_mem_buffer *rxb; 5167 unsigned long flags; 5168 int write; 5169 5170 spin_lock_irqsave(&rxq->lock, flags); 5171 write = rxq->write; 5172 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) { 5173 element = rxq->rx_free.next; 5174 rxb = list_entry(element, struct ipw_rx_mem_buffer, list); 5175 list_del(element); 5176 5177 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE, 5178 rxb->dma_addr); 5179 rxq->queue[rxq->write] = rxb; 5180 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE; 5181 rxq->free_count--; 5182 } 5183 spin_unlock_irqrestore(&rxq->lock, flags); 5184 5185 /* If the pre-allocated buffer pool is dropping low, schedule to 5186 * refill it */ 5187 if (rxq->free_count <= RX_LOW_WATERMARK) 5188 schedule_work(&priv->rx_replenish); 5189 5190 /* If we've added more space for the firmware to place data, tell it */ 5191 if (write != rxq->write) 5192 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write); 5193 } 5194 5195 /* 5196 * Move all used packet from rx_used to rx_free, allocating a new SKB for each. 5197 * Also restock the Rx queue via ipw_rx_queue_restock. 5198 * 5199 * This is called as a scheduled work item (except for during intialization) 5200 */ 5201 static void ipw_rx_queue_replenish(void *data) 5202 { 5203 struct ipw_priv *priv = data; 5204 struct ipw_rx_queue *rxq = priv->rxq; 5205 struct list_head *element; 5206 struct ipw_rx_mem_buffer *rxb; 5207 unsigned long flags; 5208 5209 spin_lock_irqsave(&rxq->lock, flags); 5210 while (!list_empty(&rxq->rx_used)) { 5211 element = rxq->rx_used.next; 5212 rxb = list_entry(element, struct ipw_rx_mem_buffer, list); 5213 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC); 5214 if (!rxb->skb) { 5215 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n", 5216 priv->net_dev->name); 5217 /* We don't reschedule replenish work here -- we will 5218 * call the restock method and if it still needs 5219 * more buffers it will schedule replenish */ 5220 break; 5221 } 5222 list_del(element); 5223 5224 rxb->dma_addr = 5225 pci_map_single(priv->pci_dev, rxb->skb->data, 5226 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 5227 5228 list_add_tail(&rxb->list, &rxq->rx_free); 5229 rxq->free_count++; 5230 } 5231 spin_unlock_irqrestore(&rxq->lock, flags); 5232 5233 ipw_rx_queue_restock(priv); 5234 } 5235 5236 static void ipw_bg_rx_queue_replenish(struct work_struct *work) 5237 { 5238 struct ipw_priv *priv = 5239 container_of(work, struct ipw_priv, rx_replenish); 5240 mutex_lock(&priv->mutex); 5241 ipw_rx_queue_replenish(priv); 5242 mutex_unlock(&priv->mutex); 5243 } 5244 5245 /* Assumes that the skb field of the buffers in 'pool' is kept accurate. 5246 * If an SKB has been detached, the POOL needs to have its SKB set to NULL 5247 * This free routine walks the list of POOL entries and if SKB is set to 5248 * non NULL it is unmapped and freed 5249 */ 5250 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq) 5251 { 5252 int i; 5253 5254 if (!rxq) 5255 return; 5256 5257 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) { 5258 if (rxq->pool[i].skb != NULL) { 5259 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, 5260 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 5261 dev_kfree_skb(rxq->pool[i].skb); 5262 } 5263 } 5264 5265 kfree(rxq); 5266 } 5267 5268 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv) 5269 { 5270 struct ipw_rx_queue *rxq; 5271 int i; 5272 5273 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL); 5274 if (unlikely(!rxq)) { 5275 IPW_ERROR("memory allocation failed\n"); 5276 return NULL; 5277 } 5278 spin_lock_init(&rxq->lock); 5279 INIT_LIST_HEAD(&rxq->rx_free); 5280 INIT_LIST_HEAD(&rxq->rx_used); 5281 5282 /* Fill the rx_used queue with _all_ of the Rx buffers */ 5283 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) 5284 list_add_tail(&rxq->pool[i].list, &rxq->rx_used); 5285 5286 /* Set us so that we have processed and used all buffers, but have 5287 * not restocked the Rx queue with fresh buffers */ 5288 rxq->read = rxq->write = 0; 5289 rxq->free_count = 0; 5290 5291 return rxq; 5292 } 5293 5294 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate) 5295 { 5296 rate &= ~LIBIPW_BASIC_RATE_MASK; 5297 if (ieee_mode == IEEE_A) { 5298 switch (rate) { 5299 case LIBIPW_OFDM_RATE_6MB: 5300 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 5301 1 : 0; 5302 case LIBIPW_OFDM_RATE_9MB: 5303 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 5304 1 : 0; 5305 case LIBIPW_OFDM_RATE_12MB: 5306 return priv-> 5307 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; 5308 case LIBIPW_OFDM_RATE_18MB: 5309 return priv-> 5310 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; 5311 case LIBIPW_OFDM_RATE_24MB: 5312 return priv-> 5313 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; 5314 case LIBIPW_OFDM_RATE_36MB: 5315 return priv-> 5316 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; 5317 case LIBIPW_OFDM_RATE_48MB: 5318 return priv-> 5319 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; 5320 case LIBIPW_OFDM_RATE_54MB: 5321 return priv-> 5322 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; 5323 default: 5324 return 0; 5325 } 5326 } 5327 5328 /* B and G mixed */ 5329 switch (rate) { 5330 case LIBIPW_CCK_RATE_1MB: 5331 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0; 5332 case LIBIPW_CCK_RATE_2MB: 5333 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0; 5334 case LIBIPW_CCK_RATE_5MB: 5335 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0; 5336 case LIBIPW_CCK_RATE_11MB: 5337 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0; 5338 } 5339 5340 /* If we are limited to B modulations, bail at this point */ 5341 if (ieee_mode == IEEE_B) 5342 return 0; 5343 5344 /* G */ 5345 switch (rate) { 5346 case LIBIPW_OFDM_RATE_6MB: 5347 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0; 5348 case LIBIPW_OFDM_RATE_9MB: 5349 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0; 5350 case LIBIPW_OFDM_RATE_12MB: 5351 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; 5352 case LIBIPW_OFDM_RATE_18MB: 5353 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; 5354 case LIBIPW_OFDM_RATE_24MB: 5355 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; 5356 case LIBIPW_OFDM_RATE_36MB: 5357 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; 5358 case LIBIPW_OFDM_RATE_48MB: 5359 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; 5360 case LIBIPW_OFDM_RATE_54MB: 5361 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; 5362 } 5363 5364 return 0; 5365 } 5366 5367 static int ipw_compatible_rates(struct ipw_priv *priv, 5368 const struct libipw_network *network, 5369 struct ipw_supported_rates *rates) 5370 { 5371 int num_rates, i; 5372 5373 memset(rates, 0, sizeof(*rates)); 5374 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES); 5375 rates->num_rates = 0; 5376 for (i = 0; i < num_rates; i++) { 5377 if (!ipw_is_rate_in_mask(priv, network->mode, 5378 network->rates[i])) { 5379 5380 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) { 5381 IPW_DEBUG_SCAN("Adding masked mandatory " 5382 "rate %02X\n", 5383 network->rates[i]); 5384 rates->supported_rates[rates->num_rates++] = 5385 network->rates[i]; 5386 continue; 5387 } 5388 5389 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", 5390 network->rates[i], priv->rates_mask); 5391 continue; 5392 } 5393 5394 rates->supported_rates[rates->num_rates++] = network->rates[i]; 5395 } 5396 5397 num_rates = min(network->rates_ex_len, 5398 (u8) (IPW_MAX_RATES - num_rates)); 5399 for (i = 0; i < num_rates; i++) { 5400 if (!ipw_is_rate_in_mask(priv, network->mode, 5401 network->rates_ex[i])) { 5402 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) { 5403 IPW_DEBUG_SCAN("Adding masked mandatory " 5404 "rate %02X\n", 5405 network->rates_ex[i]); 5406 rates->supported_rates[rates->num_rates++] = 5407 network->rates[i]; 5408 continue; 5409 } 5410 5411 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", 5412 network->rates_ex[i], priv->rates_mask); 5413 continue; 5414 } 5415 5416 rates->supported_rates[rates->num_rates++] = 5417 network->rates_ex[i]; 5418 } 5419 5420 return 1; 5421 } 5422 5423 static void ipw_copy_rates(struct ipw_supported_rates *dest, 5424 const struct ipw_supported_rates *src) 5425 { 5426 u8 i; 5427 for (i = 0; i < src->num_rates; i++) 5428 dest->supported_rates[i] = src->supported_rates[i]; 5429 dest->num_rates = src->num_rates; 5430 } 5431 5432 /* TODO: Look at sniffed packets in the air to determine if the basic rate 5433 * mask should ever be used -- right now all callers to add the scan rates are 5434 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */ 5435 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates, 5436 u8 modulation, u32 rate_mask) 5437 { 5438 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? 5439 LIBIPW_BASIC_RATE_MASK : 0; 5440 5441 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK) 5442 rates->supported_rates[rates->num_rates++] = 5443 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB; 5444 5445 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK) 5446 rates->supported_rates[rates->num_rates++] = 5447 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB; 5448 5449 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK) 5450 rates->supported_rates[rates->num_rates++] = basic_mask | 5451 LIBIPW_CCK_RATE_5MB; 5452 5453 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK) 5454 rates->supported_rates[rates->num_rates++] = basic_mask | 5455 LIBIPW_CCK_RATE_11MB; 5456 } 5457 5458 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates, 5459 u8 modulation, u32 rate_mask) 5460 { 5461 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? 5462 LIBIPW_BASIC_RATE_MASK : 0; 5463 5464 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK) 5465 rates->supported_rates[rates->num_rates++] = basic_mask | 5466 LIBIPW_OFDM_RATE_6MB; 5467 5468 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK) 5469 rates->supported_rates[rates->num_rates++] = 5470 LIBIPW_OFDM_RATE_9MB; 5471 5472 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK) 5473 rates->supported_rates[rates->num_rates++] = basic_mask | 5474 LIBIPW_OFDM_RATE_12MB; 5475 5476 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK) 5477 rates->supported_rates[rates->num_rates++] = 5478 LIBIPW_OFDM_RATE_18MB; 5479 5480 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK) 5481 rates->supported_rates[rates->num_rates++] = basic_mask | 5482 LIBIPW_OFDM_RATE_24MB; 5483 5484 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK) 5485 rates->supported_rates[rates->num_rates++] = 5486 LIBIPW_OFDM_RATE_36MB; 5487 5488 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK) 5489 rates->supported_rates[rates->num_rates++] = 5490 LIBIPW_OFDM_RATE_48MB; 5491 5492 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK) 5493 rates->supported_rates[rates->num_rates++] = 5494 LIBIPW_OFDM_RATE_54MB; 5495 } 5496 5497 struct ipw_network_match { 5498 struct libipw_network *network; 5499 struct ipw_supported_rates rates; 5500 }; 5501 5502 static int ipw_find_adhoc_network(struct ipw_priv *priv, 5503 struct ipw_network_match *match, 5504 struct libipw_network *network, 5505 int roaming) 5506 { 5507 struct ipw_supported_rates rates; 5508 5509 /* Verify that this network's capability is compatible with the 5510 * current mode (AdHoc or Infrastructure) */ 5511 if ((priv->ieee->iw_mode == IW_MODE_ADHOC && 5512 !(network->capability & WLAN_CAPABILITY_IBSS))) { 5513 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n", 5514 network->ssid_len, network->ssid, 5515 network->bssid); 5516 return 0; 5517 } 5518 5519 if (unlikely(roaming)) { 5520 /* If we are roaming, then ensure check if this is a valid 5521 * network to try and roam to */ 5522 if ((network->ssid_len != match->network->ssid_len) || 5523 memcmp(network->ssid, match->network->ssid, 5524 network->ssid_len)) { 5525 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n", 5526 network->ssid_len, network->ssid, 5527 network->bssid); 5528 return 0; 5529 } 5530 } else { 5531 /* If an ESSID has been configured then compare the broadcast 5532 * ESSID to ours */ 5533 if ((priv->config & CFG_STATIC_ESSID) && 5534 ((network->ssid_len != priv->essid_len) || 5535 memcmp(network->ssid, priv->essid, 5536 min(network->ssid_len, priv->essid_len)))) { 5537 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n", 5538 network->ssid_len, network->ssid, 5539 network->bssid, priv->essid_len, 5540 priv->essid); 5541 return 0; 5542 } 5543 } 5544 5545 /* If the old network rate is better than this one, don't bother 5546 * testing everything else. */ 5547 5548 if (network->time_stamp[0] < match->network->time_stamp[0]) { 5549 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n", 5550 match->network->ssid_len, match->network->ssid); 5551 return 0; 5552 } else if (network->time_stamp[1] < match->network->time_stamp[1]) { 5553 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n", 5554 match->network->ssid_len, match->network->ssid); 5555 return 0; 5556 } 5557 5558 /* Now go through and see if the requested network is valid... */ 5559 if (priv->ieee->scan_age != 0 && 5560 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { 5561 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n", 5562 network->ssid_len, network->ssid, 5563 network->bssid, 5564 jiffies_to_msecs(jiffies - 5565 network->last_scanned)); 5566 return 0; 5567 } 5568 5569 if ((priv->config & CFG_STATIC_CHANNEL) && 5570 (network->channel != priv->channel)) { 5571 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n", 5572 network->ssid_len, network->ssid, 5573 network->bssid, 5574 network->channel, priv->channel); 5575 return 0; 5576 } 5577 5578 /* Verify privacy compatibility */ 5579 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != 5580 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { 5581 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n", 5582 network->ssid_len, network->ssid, 5583 network->bssid, 5584 priv-> 5585 capability & CAP_PRIVACY_ON ? "on" : "off", 5586 network-> 5587 capability & WLAN_CAPABILITY_PRIVACY ? "on" : 5588 "off"); 5589 return 0; 5590 } 5591 5592 if (ether_addr_equal(network->bssid, priv->bssid)) { 5593 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n", 5594 network->ssid_len, network->ssid, 5595 network->bssid, priv->bssid); 5596 return 0; 5597 } 5598 5599 /* Filter out any incompatible freq / mode combinations */ 5600 if (!libipw_is_valid_mode(priv->ieee, network->mode)) { 5601 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n", 5602 network->ssid_len, network->ssid, 5603 network->bssid); 5604 return 0; 5605 } 5606 5607 /* Ensure that the rates supported by the driver are compatible with 5608 * this AP, including verification of basic rates (mandatory) */ 5609 if (!ipw_compatible_rates(priv, network, &rates)) { 5610 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n", 5611 network->ssid_len, network->ssid, 5612 network->bssid); 5613 return 0; 5614 } 5615 5616 if (rates.num_rates == 0) { 5617 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n", 5618 network->ssid_len, network->ssid, 5619 network->bssid); 5620 return 0; 5621 } 5622 5623 /* TODO: Perform any further minimal comparititive tests. We do not 5624 * want to put too much policy logic here; intelligent scan selection 5625 * should occur within a generic IEEE 802.11 user space tool. */ 5626 5627 /* Set up 'new' AP to this network */ 5628 ipw_copy_rates(&match->rates, &rates); 5629 match->network = network; 5630 IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n", 5631 network->ssid_len, network->ssid, network->bssid); 5632 5633 return 1; 5634 } 5635 5636 static void ipw_merge_adhoc_network(struct work_struct *work) 5637 { 5638 struct ipw_priv *priv = 5639 container_of(work, struct ipw_priv, merge_networks); 5640 struct libipw_network *network = NULL; 5641 struct ipw_network_match match = { 5642 .network = priv->assoc_network 5643 }; 5644 5645 if ((priv->status & STATUS_ASSOCIATED) && 5646 (priv->ieee->iw_mode == IW_MODE_ADHOC)) { 5647 /* First pass through ROAM process -- look for a better 5648 * network */ 5649 unsigned long flags; 5650 5651 spin_lock_irqsave(&priv->ieee->lock, flags); 5652 list_for_each_entry(network, &priv->ieee->network_list, list) { 5653 if (network != priv->assoc_network) 5654 ipw_find_adhoc_network(priv, &match, network, 5655 1); 5656 } 5657 spin_unlock_irqrestore(&priv->ieee->lock, flags); 5658 5659 if (match.network == priv->assoc_network) { 5660 IPW_DEBUG_MERGE("No better ADHOC in this network to " 5661 "merge to.\n"); 5662 return; 5663 } 5664 5665 mutex_lock(&priv->mutex); 5666 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) { 5667 IPW_DEBUG_MERGE("remove network %*pE\n", 5668 priv->essid_len, priv->essid); 5669 ipw_remove_current_network(priv); 5670 } 5671 5672 ipw_disassociate(priv); 5673 priv->assoc_network = match.network; 5674 mutex_unlock(&priv->mutex); 5675 return; 5676 } 5677 } 5678 5679 static int ipw_best_network(struct ipw_priv *priv, 5680 struct ipw_network_match *match, 5681 struct libipw_network *network, int roaming) 5682 { 5683 struct ipw_supported_rates rates; 5684 5685 /* Verify that this network's capability is compatible with the 5686 * current mode (AdHoc or Infrastructure) */ 5687 if ((priv->ieee->iw_mode == IW_MODE_INFRA && 5688 !(network->capability & WLAN_CAPABILITY_ESS)) || 5689 (priv->ieee->iw_mode == IW_MODE_ADHOC && 5690 !(network->capability & WLAN_CAPABILITY_IBSS))) { 5691 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n", 5692 network->ssid_len, network->ssid, 5693 network->bssid); 5694 return 0; 5695 } 5696 5697 if (unlikely(roaming)) { 5698 /* If we are roaming, then ensure check if this is a valid 5699 * network to try and roam to */ 5700 if ((network->ssid_len != match->network->ssid_len) || 5701 memcmp(network->ssid, match->network->ssid, 5702 network->ssid_len)) { 5703 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n", 5704 network->ssid_len, network->ssid, 5705 network->bssid); 5706 return 0; 5707 } 5708 } else { 5709 /* If an ESSID has been configured then compare the broadcast 5710 * ESSID to ours */ 5711 if ((priv->config & CFG_STATIC_ESSID) && 5712 ((network->ssid_len != priv->essid_len) || 5713 memcmp(network->ssid, priv->essid, 5714 min(network->ssid_len, priv->essid_len)))) { 5715 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n", 5716 network->ssid_len, network->ssid, 5717 network->bssid, priv->essid_len, 5718 priv->essid); 5719 return 0; 5720 } 5721 } 5722 5723 /* If the old network rate is better than this one, don't bother 5724 * testing everything else. */ 5725 if (match->network && match->network->stats.rssi > network->stats.rssi) { 5726 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n", 5727 network->ssid_len, network->ssid, 5728 network->bssid, match->network->ssid_len, 5729 match->network->ssid, match->network->bssid); 5730 return 0; 5731 } 5732 5733 /* If this network has already had an association attempt within the 5734 * last 3 seconds, do not try and associate again... */ 5735 if (network->last_associate && 5736 time_after(network->last_associate + (HZ * 3UL), jiffies)) { 5737 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n", 5738 network->ssid_len, network->ssid, 5739 network->bssid, 5740 jiffies_to_msecs(jiffies - 5741 network->last_associate)); 5742 return 0; 5743 } 5744 5745 /* Now go through and see if the requested network is valid... */ 5746 if (priv->ieee->scan_age != 0 && 5747 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { 5748 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n", 5749 network->ssid_len, network->ssid, 5750 network->bssid, 5751 jiffies_to_msecs(jiffies - 5752 network->last_scanned)); 5753 return 0; 5754 } 5755 5756 if ((priv->config & CFG_STATIC_CHANNEL) && 5757 (network->channel != priv->channel)) { 5758 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n", 5759 network->ssid_len, network->ssid, 5760 network->bssid, 5761 network->channel, priv->channel); 5762 return 0; 5763 } 5764 5765 /* Verify privacy compatibility */ 5766 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != 5767 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { 5768 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n", 5769 network->ssid_len, network->ssid, 5770 network->bssid, 5771 priv->capability & CAP_PRIVACY_ON ? "on" : 5772 "off", 5773 network->capability & 5774 WLAN_CAPABILITY_PRIVACY ? "on" : "off"); 5775 return 0; 5776 } 5777 5778 if ((priv->config & CFG_STATIC_BSSID) && 5779 !ether_addr_equal(network->bssid, priv->bssid)) { 5780 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n", 5781 network->ssid_len, network->ssid, 5782 network->bssid, priv->bssid); 5783 return 0; 5784 } 5785 5786 /* Filter out any incompatible freq / mode combinations */ 5787 if (!libipw_is_valid_mode(priv->ieee, network->mode)) { 5788 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n", 5789 network->ssid_len, network->ssid, 5790 network->bssid); 5791 return 0; 5792 } 5793 5794 /* Filter out invalid channel in current GEO */ 5795 if (!libipw_is_valid_channel(priv->ieee, network->channel)) { 5796 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n", 5797 network->ssid_len, network->ssid, 5798 network->bssid); 5799 return 0; 5800 } 5801 5802 /* Ensure that the rates supported by the driver are compatible with 5803 * this AP, including verification of basic rates (mandatory) */ 5804 if (!ipw_compatible_rates(priv, network, &rates)) { 5805 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n", 5806 network->ssid_len, network->ssid, 5807 network->bssid); 5808 return 0; 5809 } 5810 5811 if (rates.num_rates == 0) { 5812 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n", 5813 network->ssid_len, network->ssid, 5814 network->bssid); 5815 return 0; 5816 } 5817 5818 /* TODO: Perform any further minimal comparititive tests. We do not 5819 * want to put too much policy logic here; intelligent scan selection 5820 * should occur within a generic IEEE 802.11 user space tool. */ 5821 5822 /* Set up 'new' AP to this network */ 5823 ipw_copy_rates(&match->rates, &rates); 5824 match->network = network; 5825 5826 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n", 5827 network->ssid_len, network->ssid, network->bssid); 5828 5829 return 1; 5830 } 5831 5832 static void ipw_adhoc_create(struct ipw_priv *priv, 5833 struct libipw_network *network) 5834 { 5835 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 5836 int i; 5837 5838 /* 5839 * For the purposes of scanning, we can set our wireless mode 5840 * to trigger scans across combinations of bands, but when it 5841 * comes to creating a new ad-hoc network, we have tell the FW 5842 * exactly which band to use. 5843 * 5844 * We also have the possibility of an invalid channel for the 5845 * chossen band. Attempting to create a new ad-hoc network 5846 * with an invalid channel for wireless mode will trigger a 5847 * FW fatal error. 5848 * 5849 */ 5850 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 5851 case LIBIPW_52GHZ_BAND: 5852 network->mode = IEEE_A; 5853 i = libipw_channel_to_index(priv->ieee, priv->channel); 5854 BUG_ON(i == -1); 5855 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) { 5856 IPW_WARNING("Overriding invalid channel\n"); 5857 priv->channel = geo->a[0].channel; 5858 } 5859 break; 5860 5861 case LIBIPW_24GHZ_BAND: 5862 if (priv->ieee->mode & IEEE_G) 5863 network->mode = IEEE_G; 5864 else 5865 network->mode = IEEE_B; 5866 i = libipw_channel_to_index(priv->ieee, priv->channel); 5867 BUG_ON(i == -1); 5868 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) { 5869 IPW_WARNING("Overriding invalid channel\n"); 5870 priv->channel = geo->bg[0].channel; 5871 } 5872 break; 5873 5874 default: 5875 IPW_WARNING("Overriding invalid channel\n"); 5876 if (priv->ieee->mode & IEEE_A) { 5877 network->mode = IEEE_A; 5878 priv->channel = geo->a[0].channel; 5879 } else if (priv->ieee->mode & IEEE_G) { 5880 network->mode = IEEE_G; 5881 priv->channel = geo->bg[0].channel; 5882 } else { 5883 network->mode = IEEE_B; 5884 priv->channel = geo->bg[0].channel; 5885 } 5886 break; 5887 } 5888 5889 network->channel = priv->channel; 5890 priv->config |= CFG_ADHOC_PERSIST; 5891 ipw_create_bssid(priv, network->bssid); 5892 network->ssid_len = priv->essid_len; 5893 memcpy(network->ssid, priv->essid, priv->essid_len); 5894 memset(&network->stats, 0, sizeof(network->stats)); 5895 network->capability = WLAN_CAPABILITY_IBSS; 5896 if (!(priv->config & CFG_PREAMBLE_LONG)) 5897 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE; 5898 if (priv->capability & CAP_PRIVACY_ON) 5899 network->capability |= WLAN_CAPABILITY_PRIVACY; 5900 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH); 5901 memcpy(network->rates, priv->rates.supported_rates, network->rates_len); 5902 network->rates_ex_len = priv->rates.num_rates - network->rates_len; 5903 memcpy(network->rates_ex, 5904 &priv->rates.supported_rates[network->rates_len], 5905 network->rates_ex_len); 5906 network->last_scanned = 0; 5907 network->flags = 0; 5908 network->last_associate = 0; 5909 network->time_stamp[0] = 0; 5910 network->time_stamp[1] = 0; 5911 network->beacon_interval = 100; /* Default */ 5912 network->listen_interval = 10; /* Default */ 5913 network->atim_window = 0; /* Default */ 5914 network->wpa_ie_len = 0; 5915 network->rsn_ie_len = 0; 5916 } 5917 5918 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index) 5919 { 5920 struct ipw_tgi_tx_key key; 5921 5922 if (!(priv->ieee->sec.flags & (1 << index))) 5923 return; 5924 5925 key.key_id = index; 5926 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH); 5927 key.security_type = type; 5928 key.station_index = 0; /* always 0 for BSS */ 5929 key.flags = 0; 5930 /* 0 for new key; previous value of counter (after fatal error) */ 5931 key.tx_counter[0] = cpu_to_le32(0); 5932 key.tx_counter[1] = cpu_to_le32(0); 5933 5934 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key); 5935 } 5936 5937 static void ipw_send_wep_keys(struct ipw_priv *priv, int type) 5938 { 5939 struct ipw_wep_key key; 5940 int i; 5941 5942 key.cmd_id = DINO_CMD_WEP_KEY; 5943 key.seq_num = 0; 5944 5945 /* Note: AES keys cannot be set for multiple times. 5946 * Only set it at the first time. */ 5947 for (i = 0; i < 4; i++) { 5948 key.key_index = i | type; 5949 if (!(priv->ieee->sec.flags & (1 << i))) { 5950 key.key_size = 0; 5951 continue; 5952 } 5953 5954 key.key_size = priv->ieee->sec.key_sizes[i]; 5955 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size); 5956 5957 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key); 5958 } 5959 } 5960 5961 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level) 5962 { 5963 if (priv->ieee->host_encrypt) 5964 return; 5965 5966 switch (level) { 5967 case SEC_LEVEL_3: 5968 priv->sys_config.disable_unicast_decryption = 0; 5969 priv->ieee->host_decrypt = 0; 5970 break; 5971 case SEC_LEVEL_2: 5972 priv->sys_config.disable_unicast_decryption = 1; 5973 priv->ieee->host_decrypt = 1; 5974 break; 5975 case SEC_LEVEL_1: 5976 priv->sys_config.disable_unicast_decryption = 0; 5977 priv->ieee->host_decrypt = 0; 5978 break; 5979 case SEC_LEVEL_0: 5980 priv->sys_config.disable_unicast_decryption = 1; 5981 break; 5982 default: 5983 break; 5984 } 5985 } 5986 5987 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level) 5988 { 5989 if (priv->ieee->host_encrypt) 5990 return; 5991 5992 switch (level) { 5993 case SEC_LEVEL_3: 5994 priv->sys_config.disable_multicast_decryption = 0; 5995 break; 5996 case SEC_LEVEL_2: 5997 priv->sys_config.disable_multicast_decryption = 1; 5998 break; 5999 case SEC_LEVEL_1: 6000 priv->sys_config.disable_multicast_decryption = 0; 6001 break; 6002 case SEC_LEVEL_0: 6003 priv->sys_config.disable_multicast_decryption = 1; 6004 break; 6005 default: 6006 break; 6007 } 6008 } 6009 6010 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv) 6011 { 6012 switch (priv->ieee->sec.level) { 6013 case SEC_LEVEL_3: 6014 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) 6015 ipw_send_tgi_tx_key(priv, 6016 DCT_FLAG_EXT_SECURITY_CCM, 6017 priv->ieee->sec.active_key); 6018 6019 if (!priv->ieee->host_mc_decrypt) 6020 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM); 6021 break; 6022 case SEC_LEVEL_2: 6023 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) 6024 ipw_send_tgi_tx_key(priv, 6025 DCT_FLAG_EXT_SECURITY_TKIP, 6026 priv->ieee->sec.active_key); 6027 break; 6028 case SEC_LEVEL_1: 6029 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); 6030 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level); 6031 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level); 6032 break; 6033 case SEC_LEVEL_0: 6034 default: 6035 break; 6036 } 6037 } 6038 6039 static void ipw_adhoc_check(void *data) 6040 { 6041 struct ipw_priv *priv = data; 6042 6043 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold && 6044 !(priv->config & CFG_ADHOC_PERSIST)) { 6045 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 6046 IPW_DL_STATE | IPW_DL_ASSOC, 6047 "Missed beacon: %d - disassociate\n", 6048 priv->missed_adhoc_beacons); 6049 ipw_remove_current_network(priv); 6050 ipw_disassociate(priv); 6051 return; 6052 } 6053 6054 schedule_delayed_work(&priv->adhoc_check, 6055 le16_to_cpu(priv->assoc_request.beacon_interval)); 6056 } 6057 6058 static void ipw_bg_adhoc_check(struct work_struct *work) 6059 { 6060 struct ipw_priv *priv = 6061 container_of(work, struct ipw_priv, adhoc_check.work); 6062 mutex_lock(&priv->mutex); 6063 ipw_adhoc_check(priv); 6064 mutex_unlock(&priv->mutex); 6065 } 6066 6067 static void ipw_debug_config(struct ipw_priv *priv) 6068 { 6069 IPW_DEBUG_INFO("Scan completed, no valid APs matched " 6070 "[CFG 0x%08X]\n", priv->config); 6071 if (priv->config & CFG_STATIC_CHANNEL) 6072 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel); 6073 else 6074 IPW_DEBUG_INFO("Channel unlocked.\n"); 6075 if (priv->config & CFG_STATIC_ESSID) 6076 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n", 6077 priv->essid_len, priv->essid); 6078 else 6079 IPW_DEBUG_INFO("ESSID unlocked.\n"); 6080 if (priv->config & CFG_STATIC_BSSID) 6081 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid); 6082 else 6083 IPW_DEBUG_INFO("BSSID unlocked.\n"); 6084 if (priv->capability & CAP_PRIVACY_ON) 6085 IPW_DEBUG_INFO("PRIVACY on\n"); 6086 else 6087 IPW_DEBUG_INFO("PRIVACY off\n"); 6088 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask); 6089 } 6090 6091 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode) 6092 { 6093 /* TODO: Verify that this works... */ 6094 struct ipw_fixed_rate fr; 6095 u32 reg; 6096 u16 mask = 0; 6097 u16 new_tx_rates = priv->rates_mask; 6098 6099 /* Identify 'current FW band' and match it with the fixed 6100 * Tx rates */ 6101 6102 switch (priv->ieee->freq_band) { 6103 case LIBIPW_52GHZ_BAND: /* A only */ 6104 /* IEEE_A */ 6105 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) { 6106 /* Invalid fixed rate mask */ 6107 IPW_DEBUG_WX 6108 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6109 new_tx_rates = 0; 6110 break; 6111 } 6112 6113 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A; 6114 break; 6115 6116 default: /* 2.4Ghz or Mixed */ 6117 /* IEEE_B */ 6118 if (mode == IEEE_B) { 6119 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) { 6120 /* Invalid fixed rate mask */ 6121 IPW_DEBUG_WX 6122 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6123 new_tx_rates = 0; 6124 } 6125 break; 6126 } 6127 6128 /* IEEE_G */ 6129 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK | 6130 LIBIPW_OFDM_RATES_MASK)) { 6131 /* Invalid fixed rate mask */ 6132 IPW_DEBUG_WX 6133 ("invalid fixed rate mask in ipw_set_fixed_rate\n"); 6134 new_tx_rates = 0; 6135 break; 6136 } 6137 6138 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) { 6139 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1); 6140 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK; 6141 } 6142 6143 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) { 6144 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1); 6145 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK; 6146 } 6147 6148 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) { 6149 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1); 6150 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK; 6151 } 6152 6153 new_tx_rates |= mask; 6154 break; 6155 } 6156 6157 fr.tx_rates = cpu_to_le16(new_tx_rates); 6158 6159 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE); 6160 ipw_write_reg32(priv, reg, *(u32 *) & fr); 6161 } 6162 6163 static void ipw_abort_scan(struct ipw_priv *priv) 6164 { 6165 int err; 6166 6167 if (priv->status & STATUS_SCAN_ABORTING) { 6168 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n"); 6169 return; 6170 } 6171 priv->status |= STATUS_SCAN_ABORTING; 6172 6173 err = ipw_send_scan_abort(priv); 6174 if (err) 6175 IPW_DEBUG_HC("Request to abort scan failed.\n"); 6176 } 6177 6178 static void ipw_add_scan_channels(struct ipw_priv *priv, 6179 struct ipw_scan_request_ext *scan, 6180 int scan_type) 6181 { 6182 int channel_index = 0; 6183 const struct libipw_geo *geo; 6184 int i; 6185 6186 geo = libipw_get_geo(priv->ieee); 6187 6188 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) { 6189 int start = channel_index; 6190 for (i = 0; i < geo->a_channels; i++) { 6191 if ((priv->status & STATUS_ASSOCIATED) && 6192 geo->a[i].channel == priv->channel) 6193 continue; 6194 channel_index++; 6195 scan->channels_list[channel_index] = geo->a[i].channel; 6196 ipw_set_scan_type(scan, channel_index, 6197 geo->a[i]. 6198 flags & LIBIPW_CH_PASSIVE_ONLY ? 6199 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN : 6200 scan_type); 6201 } 6202 6203 if (start != channel_index) { 6204 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) | 6205 (channel_index - start); 6206 channel_index++; 6207 } 6208 } 6209 6210 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) { 6211 int start = channel_index; 6212 if (priv->config & CFG_SPEED_SCAN) { 6213 int index; 6214 u8 channels[LIBIPW_24GHZ_CHANNELS] = { 6215 /* nop out the list */ 6216 [0] = 0 6217 }; 6218 6219 u8 channel; 6220 while (channel_index < IPW_SCAN_CHANNELS - 1) { 6221 channel = 6222 priv->speed_scan[priv->speed_scan_pos]; 6223 if (channel == 0) { 6224 priv->speed_scan_pos = 0; 6225 channel = priv->speed_scan[0]; 6226 } 6227 if ((priv->status & STATUS_ASSOCIATED) && 6228 channel == priv->channel) { 6229 priv->speed_scan_pos++; 6230 continue; 6231 } 6232 6233 /* If this channel has already been 6234 * added in scan, break from loop 6235 * and this will be the first channel 6236 * in the next scan. 6237 */ 6238 if (channels[channel - 1] != 0) 6239 break; 6240 6241 channels[channel - 1] = 1; 6242 priv->speed_scan_pos++; 6243 channel_index++; 6244 scan->channels_list[channel_index] = channel; 6245 index = 6246 libipw_channel_to_index(priv->ieee, channel); 6247 ipw_set_scan_type(scan, channel_index, 6248 geo->bg[index]. 6249 flags & 6250 LIBIPW_CH_PASSIVE_ONLY ? 6251 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN 6252 : scan_type); 6253 } 6254 } else { 6255 for (i = 0; i < geo->bg_channels; i++) { 6256 if ((priv->status & STATUS_ASSOCIATED) && 6257 geo->bg[i].channel == priv->channel) 6258 continue; 6259 channel_index++; 6260 scan->channels_list[channel_index] = 6261 geo->bg[i].channel; 6262 ipw_set_scan_type(scan, channel_index, 6263 geo->bg[i]. 6264 flags & 6265 LIBIPW_CH_PASSIVE_ONLY ? 6266 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN 6267 : scan_type); 6268 } 6269 } 6270 6271 if (start != channel_index) { 6272 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) | 6273 (channel_index - start); 6274 } 6275 } 6276 } 6277 6278 static int ipw_passive_dwell_time(struct ipw_priv *priv) 6279 { 6280 /* staying on passive channels longer than the DTIM interval during a 6281 * scan, while associated, causes the firmware to cancel the scan 6282 * without notification. Hence, don't stay on passive channels longer 6283 * than the beacon interval. 6284 */ 6285 if (priv->status & STATUS_ASSOCIATED 6286 && priv->assoc_network->beacon_interval > 10) 6287 return priv->assoc_network->beacon_interval - 10; 6288 else 6289 return 120; 6290 } 6291 6292 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct) 6293 { 6294 struct ipw_scan_request_ext scan; 6295 int err = 0, scan_type; 6296 6297 if (!(priv->status & STATUS_INIT) || 6298 (priv->status & STATUS_EXIT_PENDING)) 6299 return 0; 6300 6301 mutex_lock(&priv->mutex); 6302 6303 if (direct && (priv->direct_scan_ssid_len == 0)) { 6304 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n"); 6305 priv->status &= ~STATUS_DIRECT_SCAN_PENDING; 6306 goto done; 6307 } 6308 6309 if (priv->status & STATUS_SCANNING) { 6310 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n"); 6311 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6312 STATUS_SCAN_PENDING; 6313 goto done; 6314 } 6315 6316 if (!(priv->status & STATUS_SCAN_FORCED) && 6317 priv->status & STATUS_SCAN_ABORTING) { 6318 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n"); 6319 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6320 STATUS_SCAN_PENDING; 6321 goto done; 6322 } 6323 6324 if (priv->status & STATUS_RF_KILL_MASK) { 6325 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n"); 6326 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : 6327 STATUS_SCAN_PENDING; 6328 goto done; 6329 } 6330 6331 memset(&scan, 0, sizeof(scan)); 6332 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee)); 6333 6334 if (type == IW_SCAN_TYPE_PASSIVE) { 6335 IPW_DEBUG_WX("use passive scanning\n"); 6336 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN; 6337 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6338 cpu_to_le16(ipw_passive_dwell_time(priv)); 6339 ipw_add_scan_channels(priv, &scan, scan_type); 6340 goto send_request; 6341 } 6342 6343 /* Use active scan by default. */ 6344 if (priv->config & CFG_SPEED_SCAN) 6345 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 6346 cpu_to_le16(30); 6347 else 6348 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 6349 cpu_to_le16(20); 6350 6351 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = 6352 cpu_to_le16(20); 6353 6354 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6355 cpu_to_le16(ipw_passive_dwell_time(priv)); 6356 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20); 6357 6358 #ifdef CONFIG_IPW2200_MONITOR 6359 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 6360 u8 channel; 6361 u8 band = 0; 6362 6363 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 6364 case LIBIPW_52GHZ_BAND: 6365 band = (u8) (IPW_A_MODE << 6) | 1; 6366 channel = priv->channel; 6367 break; 6368 6369 case LIBIPW_24GHZ_BAND: 6370 band = (u8) (IPW_B_MODE << 6) | 1; 6371 channel = priv->channel; 6372 break; 6373 6374 default: 6375 band = (u8) (IPW_B_MODE << 6) | 1; 6376 channel = 9; 6377 break; 6378 } 6379 6380 scan.channels_list[0] = band; 6381 scan.channels_list[1] = channel; 6382 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN); 6383 6384 /* NOTE: The card will sit on this channel for this time 6385 * period. Scan aborts are timing sensitive and frequently 6386 * result in firmware restarts. As such, it is best to 6387 * set a small dwell_time here and just keep re-issuing 6388 * scans. Otherwise fast channel hopping will not actually 6389 * hop channels. 6390 * 6391 * TODO: Move SPEED SCAN support to all modes and bands */ 6392 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 6393 cpu_to_le16(2000); 6394 } else { 6395 #endif /* CONFIG_IPW2200_MONITOR */ 6396 /* Honor direct scans first, otherwise if we are roaming make 6397 * this a direct scan for the current network. Finally, 6398 * ensure that every other scan is a fast channel hop scan */ 6399 if (direct) { 6400 err = ipw_send_ssid(priv, priv->direct_scan_ssid, 6401 priv->direct_scan_ssid_len); 6402 if (err) { 6403 IPW_DEBUG_HC("Attempt to send SSID command " 6404 "failed\n"); 6405 goto done; 6406 } 6407 6408 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; 6409 } else if ((priv->status & STATUS_ROAMING) 6410 || (!(priv->status & STATUS_ASSOCIATED) 6411 && (priv->config & CFG_STATIC_ESSID) 6412 && (le32_to_cpu(scan.full_scan_index) % 2))) { 6413 err = ipw_send_ssid(priv, priv->essid, priv->essid_len); 6414 if (err) { 6415 IPW_DEBUG_HC("Attempt to send SSID command " 6416 "failed.\n"); 6417 goto done; 6418 } 6419 6420 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; 6421 } else 6422 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN; 6423 6424 ipw_add_scan_channels(priv, &scan, scan_type); 6425 #ifdef CONFIG_IPW2200_MONITOR 6426 } 6427 #endif 6428 6429 send_request: 6430 err = ipw_send_scan_request_ext(priv, &scan); 6431 if (err) { 6432 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err); 6433 goto done; 6434 } 6435 6436 priv->status |= STATUS_SCANNING; 6437 if (direct) { 6438 priv->status &= ~STATUS_DIRECT_SCAN_PENDING; 6439 priv->direct_scan_ssid_len = 0; 6440 } else 6441 priv->status &= ~STATUS_SCAN_PENDING; 6442 6443 schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG); 6444 done: 6445 mutex_unlock(&priv->mutex); 6446 return err; 6447 } 6448 6449 static void ipw_request_passive_scan(struct work_struct *work) 6450 { 6451 struct ipw_priv *priv = 6452 container_of(work, struct ipw_priv, request_passive_scan.work); 6453 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0); 6454 } 6455 6456 static void ipw_request_scan(struct work_struct *work) 6457 { 6458 struct ipw_priv *priv = 6459 container_of(work, struct ipw_priv, request_scan.work); 6460 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0); 6461 } 6462 6463 static void ipw_request_direct_scan(struct work_struct *work) 6464 { 6465 struct ipw_priv *priv = 6466 container_of(work, struct ipw_priv, request_direct_scan.work); 6467 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1); 6468 } 6469 6470 static void ipw_bg_abort_scan(struct work_struct *work) 6471 { 6472 struct ipw_priv *priv = 6473 container_of(work, struct ipw_priv, abort_scan); 6474 mutex_lock(&priv->mutex); 6475 ipw_abort_scan(priv); 6476 mutex_unlock(&priv->mutex); 6477 } 6478 6479 static int ipw_wpa_enable(struct ipw_priv *priv, int value) 6480 { 6481 /* This is called when wpa_supplicant loads and closes the driver 6482 * interface. */ 6483 priv->ieee->wpa_enabled = value; 6484 return 0; 6485 } 6486 6487 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value) 6488 { 6489 struct libipw_device *ieee = priv->ieee; 6490 struct libipw_security sec = { 6491 .flags = SEC_AUTH_MODE, 6492 }; 6493 int ret = 0; 6494 6495 if (value & IW_AUTH_ALG_SHARED_KEY) { 6496 sec.auth_mode = WLAN_AUTH_SHARED_KEY; 6497 ieee->open_wep = 0; 6498 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { 6499 sec.auth_mode = WLAN_AUTH_OPEN; 6500 ieee->open_wep = 1; 6501 } else if (value & IW_AUTH_ALG_LEAP) { 6502 sec.auth_mode = WLAN_AUTH_LEAP; 6503 ieee->open_wep = 1; 6504 } else 6505 return -EINVAL; 6506 6507 if (ieee->set_security) 6508 ieee->set_security(ieee->dev, &sec); 6509 else 6510 ret = -EOPNOTSUPP; 6511 6512 return ret; 6513 } 6514 6515 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie, 6516 int wpa_ie_len) 6517 { 6518 /* make sure WPA is enabled */ 6519 ipw_wpa_enable(priv, 1); 6520 } 6521 6522 static int ipw_set_rsn_capa(struct ipw_priv *priv, 6523 char *capabilities, int length) 6524 { 6525 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n"); 6526 6527 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length, 6528 capabilities); 6529 } 6530 6531 /* 6532 * WE-18 support 6533 */ 6534 6535 /* SIOCSIWGENIE */ 6536 static int ipw_wx_set_genie(struct net_device *dev, 6537 struct iw_request_info *info, 6538 union iwreq_data *wrqu, char *extra) 6539 { 6540 struct ipw_priv *priv = libipw_priv(dev); 6541 struct libipw_device *ieee = priv->ieee; 6542 u8 *buf; 6543 int err = 0; 6544 6545 if (wrqu->data.length > MAX_WPA_IE_LEN || 6546 (wrqu->data.length && extra == NULL)) 6547 return -EINVAL; 6548 6549 if (wrqu->data.length) { 6550 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); 6551 if (buf == NULL) { 6552 err = -ENOMEM; 6553 goto out; 6554 } 6555 6556 kfree(ieee->wpa_ie); 6557 ieee->wpa_ie = buf; 6558 ieee->wpa_ie_len = wrqu->data.length; 6559 } else { 6560 kfree(ieee->wpa_ie); 6561 ieee->wpa_ie = NULL; 6562 ieee->wpa_ie_len = 0; 6563 } 6564 6565 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); 6566 out: 6567 return err; 6568 } 6569 6570 /* SIOCGIWGENIE */ 6571 static int ipw_wx_get_genie(struct net_device *dev, 6572 struct iw_request_info *info, 6573 union iwreq_data *wrqu, char *extra) 6574 { 6575 struct ipw_priv *priv = libipw_priv(dev); 6576 struct libipw_device *ieee = priv->ieee; 6577 int err = 0; 6578 6579 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { 6580 wrqu->data.length = 0; 6581 goto out; 6582 } 6583 6584 if (wrqu->data.length < ieee->wpa_ie_len) { 6585 err = -E2BIG; 6586 goto out; 6587 } 6588 6589 wrqu->data.length = ieee->wpa_ie_len; 6590 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); 6591 6592 out: 6593 return err; 6594 } 6595 6596 static int wext_cipher2level(int cipher) 6597 { 6598 switch (cipher) { 6599 case IW_AUTH_CIPHER_NONE: 6600 return SEC_LEVEL_0; 6601 case IW_AUTH_CIPHER_WEP40: 6602 case IW_AUTH_CIPHER_WEP104: 6603 return SEC_LEVEL_1; 6604 case IW_AUTH_CIPHER_TKIP: 6605 return SEC_LEVEL_2; 6606 case IW_AUTH_CIPHER_CCMP: 6607 return SEC_LEVEL_3; 6608 default: 6609 return -1; 6610 } 6611 } 6612 6613 /* SIOCSIWAUTH */ 6614 static int ipw_wx_set_auth(struct net_device *dev, 6615 struct iw_request_info *info, 6616 union iwreq_data *wrqu, char *extra) 6617 { 6618 struct ipw_priv *priv = libipw_priv(dev); 6619 struct libipw_device *ieee = priv->ieee; 6620 struct iw_param *param = &wrqu->param; 6621 struct lib80211_crypt_data *crypt; 6622 unsigned long flags; 6623 int ret = 0; 6624 6625 switch (param->flags & IW_AUTH_INDEX) { 6626 case IW_AUTH_WPA_VERSION: 6627 break; 6628 case IW_AUTH_CIPHER_PAIRWISE: 6629 ipw_set_hw_decrypt_unicast(priv, 6630 wext_cipher2level(param->value)); 6631 break; 6632 case IW_AUTH_CIPHER_GROUP: 6633 ipw_set_hw_decrypt_multicast(priv, 6634 wext_cipher2level(param->value)); 6635 break; 6636 case IW_AUTH_KEY_MGMT: 6637 /* 6638 * ipw2200 does not use these parameters 6639 */ 6640 break; 6641 6642 case IW_AUTH_TKIP_COUNTERMEASURES: 6643 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 6644 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) 6645 break; 6646 6647 flags = crypt->ops->get_flags(crypt->priv); 6648 6649 if (param->value) 6650 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 6651 else 6652 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 6653 6654 crypt->ops->set_flags(flags, crypt->priv); 6655 6656 break; 6657 6658 case IW_AUTH_DROP_UNENCRYPTED:{ 6659 /* HACK: 6660 * 6661 * wpa_supplicant calls set_wpa_enabled when the driver 6662 * is loaded and unloaded, regardless of if WPA is being 6663 * used. No other calls are made which can be used to 6664 * determine if encryption will be used or not prior to 6665 * association being expected. If encryption is not being 6666 * used, drop_unencrypted is set to false, else true -- we 6667 * can use this to determine if the CAP_PRIVACY_ON bit should 6668 * be set. 6669 */ 6670 struct libipw_security sec = { 6671 .flags = SEC_ENABLED, 6672 .enabled = param->value, 6673 }; 6674 priv->ieee->drop_unencrypted = param->value; 6675 /* We only change SEC_LEVEL for open mode. Others 6676 * are set by ipw_wpa_set_encryption. 6677 */ 6678 if (!param->value) { 6679 sec.flags |= SEC_LEVEL; 6680 sec.level = SEC_LEVEL_0; 6681 } else { 6682 sec.flags |= SEC_LEVEL; 6683 sec.level = SEC_LEVEL_1; 6684 } 6685 if (priv->ieee->set_security) 6686 priv->ieee->set_security(priv->ieee->dev, &sec); 6687 break; 6688 } 6689 6690 case IW_AUTH_80211_AUTH_ALG: 6691 ret = ipw_wpa_set_auth_algs(priv, param->value); 6692 break; 6693 6694 case IW_AUTH_WPA_ENABLED: 6695 ret = ipw_wpa_enable(priv, param->value); 6696 ipw_disassociate(priv); 6697 break; 6698 6699 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 6700 ieee->ieee802_1x = param->value; 6701 break; 6702 6703 case IW_AUTH_PRIVACY_INVOKED: 6704 ieee->privacy_invoked = param->value; 6705 break; 6706 6707 default: 6708 return -EOPNOTSUPP; 6709 } 6710 return ret; 6711 } 6712 6713 /* SIOCGIWAUTH */ 6714 static int ipw_wx_get_auth(struct net_device *dev, 6715 struct iw_request_info *info, 6716 union iwreq_data *wrqu, char *extra) 6717 { 6718 struct ipw_priv *priv = libipw_priv(dev); 6719 struct libipw_device *ieee = priv->ieee; 6720 struct lib80211_crypt_data *crypt; 6721 struct iw_param *param = &wrqu->param; 6722 6723 switch (param->flags & IW_AUTH_INDEX) { 6724 case IW_AUTH_WPA_VERSION: 6725 case IW_AUTH_CIPHER_PAIRWISE: 6726 case IW_AUTH_CIPHER_GROUP: 6727 case IW_AUTH_KEY_MGMT: 6728 /* 6729 * wpa_supplicant will control these internally 6730 */ 6731 return -EOPNOTSUPP; 6732 6733 case IW_AUTH_TKIP_COUNTERMEASURES: 6734 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 6735 if (!crypt || !crypt->ops->get_flags) 6736 break; 6737 6738 param->value = (crypt->ops->get_flags(crypt->priv) & 6739 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; 6740 6741 break; 6742 6743 case IW_AUTH_DROP_UNENCRYPTED: 6744 param->value = ieee->drop_unencrypted; 6745 break; 6746 6747 case IW_AUTH_80211_AUTH_ALG: 6748 param->value = ieee->sec.auth_mode; 6749 break; 6750 6751 case IW_AUTH_WPA_ENABLED: 6752 param->value = ieee->wpa_enabled; 6753 break; 6754 6755 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 6756 param->value = ieee->ieee802_1x; 6757 break; 6758 6759 case IW_AUTH_ROAMING_CONTROL: 6760 case IW_AUTH_PRIVACY_INVOKED: 6761 param->value = ieee->privacy_invoked; 6762 break; 6763 6764 default: 6765 return -EOPNOTSUPP; 6766 } 6767 return 0; 6768 } 6769 6770 /* SIOCSIWENCODEEXT */ 6771 static int ipw_wx_set_encodeext(struct net_device *dev, 6772 struct iw_request_info *info, 6773 union iwreq_data *wrqu, char *extra) 6774 { 6775 struct ipw_priv *priv = libipw_priv(dev); 6776 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra; 6777 6778 if (hwcrypto) { 6779 if (ext->alg == IW_ENCODE_ALG_TKIP) { 6780 /* IPW HW can't build TKIP MIC, 6781 host decryption still needed */ 6782 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY) 6783 priv->ieee->host_mc_decrypt = 1; 6784 else { 6785 priv->ieee->host_encrypt = 0; 6786 priv->ieee->host_encrypt_msdu = 1; 6787 priv->ieee->host_decrypt = 1; 6788 } 6789 } else { 6790 priv->ieee->host_encrypt = 0; 6791 priv->ieee->host_encrypt_msdu = 0; 6792 priv->ieee->host_decrypt = 0; 6793 priv->ieee->host_mc_decrypt = 0; 6794 } 6795 } 6796 6797 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); 6798 } 6799 6800 /* SIOCGIWENCODEEXT */ 6801 static int ipw_wx_get_encodeext(struct net_device *dev, 6802 struct iw_request_info *info, 6803 union iwreq_data *wrqu, char *extra) 6804 { 6805 struct ipw_priv *priv = libipw_priv(dev); 6806 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); 6807 } 6808 6809 /* SIOCSIWMLME */ 6810 static int ipw_wx_set_mlme(struct net_device *dev, 6811 struct iw_request_info *info, 6812 union iwreq_data *wrqu, char *extra) 6813 { 6814 struct ipw_priv *priv = libipw_priv(dev); 6815 struct iw_mlme *mlme = (struct iw_mlme *)extra; 6816 __le16 reason; 6817 6818 reason = cpu_to_le16(mlme->reason_code); 6819 6820 switch (mlme->cmd) { 6821 case IW_MLME_DEAUTH: 6822 /* silently ignore */ 6823 break; 6824 6825 case IW_MLME_DISASSOC: 6826 ipw_disassociate(priv); 6827 break; 6828 6829 default: 6830 return -EOPNOTSUPP; 6831 } 6832 return 0; 6833 } 6834 6835 #ifdef CONFIG_IPW2200_QOS 6836 6837 /* QoS */ 6838 /* 6839 * get the modulation type of the current network or 6840 * the card current mode 6841 */ 6842 static u8 ipw_qos_current_mode(struct ipw_priv * priv) 6843 { 6844 u8 mode = 0; 6845 6846 if (priv->status & STATUS_ASSOCIATED) { 6847 unsigned long flags; 6848 6849 spin_lock_irqsave(&priv->ieee->lock, flags); 6850 mode = priv->assoc_network->mode; 6851 spin_unlock_irqrestore(&priv->ieee->lock, flags); 6852 } else { 6853 mode = priv->ieee->mode; 6854 } 6855 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode); 6856 return mode; 6857 } 6858 6859 /* 6860 * Handle management frame beacon and probe response 6861 */ 6862 static int ipw_qos_handle_probe_response(struct ipw_priv *priv, 6863 int active_network, 6864 struct libipw_network *network) 6865 { 6866 u32 size = sizeof(struct libipw_qos_parameters); 6867 6868 if (network->capability & WLAN_CAPABILITY_IBSS) 6869 network->qos_data.active = network->qos_data.supported; 6870 6871 if (network->flags & NETWORK_HAS_QOS_MASK) { 6872 if (active_network && 6873 (network->flags & NETWORK_HAS_QOS_PARAMETERS)) 6874 network->qos_data.active = network->qos_data.supported; 6875 6876 if ((network->qos_data.active == 1) && (active_network == 1) && 6877 (network->flags & NETWORK_HAS_QOS_PARAMETERS) && 6878 (network->qos_data.old_param_count != 6879 network->qos_data.param_count)) { 6880 network->qos_data.old_param_count = 6881 network->qos_data.param_count; 6882 schedule_work(&priv->qos_activate); 6883 IPW_DEBUG_QOS("QoS parameters change call " 6884 "qos_activate\n"); 6885 } 6886 } else { 6887 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B)) 6888 memcpy(&network->qos_data.parameters, 6889 &def_parameters_CCK, size); 6890 else 6891 memcpy(&network->qos_data.parameters, 6892 &def_parameters_OFDM, size); 6893 6894 if ((network->qos_data.active == 1) && (active_network == 1)) { 6895 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n"); 6896 schedule_work(&priv->qos_activate); 6897 } 6898 6899 network->qos_data.active = 0; 6900 network->qos_data.supported = 0; 6901 } 6902 if ((priv->status & STATUS_ASSOCIATED) && 6903 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) { 6904 if (!ether_addr_equal(network->bssid, priv->bssid)) 6905 if (network->capability & WLAN_CAPABILITY_IBSS) 6906 if ((network->ssid_len == 6907 priv->assoc_network->ssid_len) && 6908 !memcmp(network->ssid, 6909 priv->assoc_network->ssid, 6910 network->ssid_len)) { 6911 schedule_work(&priv->merge_networks); 6912 } 6913 } 6914 6915 return 0; 6916 } 6917 6918 /* 6919 * This function set up the firmware to support QoS. It sends 6920 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO 6921 */ 6922 static int ipw_qos_activate(struct ipw_priv *priv, 6923 struct libipw_qos_data *qos_network_data) 6924 { 6925 int err; 6926 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS]; 6927 struct libipw_qos_parameters *active_one = NULL; 6928 u32 size = sizeof(struct libipw_qos_parameters); 6929 u32 burst_duration; 6930 int i; 6931 u8 type; 6932 6933 type = ipw_qos_current_mode(priv); 6934 6935 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]); 6936 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size); 6937 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]); 6938 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size); 6939 6940 if (qos_network_data == NULL) { 6941 if (type == IEEE_B) { 6942 IPW_DEBUG_QOS("QoS activate network mode %d\n", type); 6943 active_one = &def_parameters_CCK; 6944 } else 6945 active_one = &def_parameters_OFDM; 6946 6947 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6948 burst_duration = ipw_qos_get_burst_duration(priv); 6949 for (i = 0; i < QOS_QUEUE_NUM; i++) 6950 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] = 6951 cpu_to_le16(burst_duration); 6952 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 6953 if (type == IEEE_B) { 6954 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n", 6955 type); 6956 if (priv->qos_data.qos_enable == 0) 6957 active_one = &def_parameters_CCK; 6958 else 6959 active_one = priv->qos_data.def_qos_parm_CCK; 6960 } else { 6961 if (priv->qos_data.qos_enable == 0) 6962 active_one = &def_parameters_OFDM; 6963 else 6964 active_one = priv->qos_data.def_qos_parm_OFDM; 6965 } 6966 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6967 } else { 6968 unsigned long flags; 6969 int active; 6970 6971 spin_lock_irqsave(&priv->ieee->lock, flags); 6972 active_one = &(qos_network_data->parameters); 6973 qos_network_data->old_param_count = 6974 qos_network_data->param_count; 6975 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); 6976 active = qos_network_data->supported; 6977 spin_unlock_irqrestore(&priv->ieee->lock, flags); 6978 6979 if (active == 0) { 6980 burst_duration = ipw_qos_get_burst_duration(priv); 6981 for (i = 0; i < QOS_QUEUE_NUM; i++) 6982 qos_parameters[QOS_PARAM_SET_ACTIVE]. 6983 tx_op_limit[i] = cpu_to_le16(burst_duration); 6984 } 6985 } 6986 6987 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n"); 6988 err = ipw_send_qos_params_command(priv, &qos_parameters[0]); 6989 if (err) 6990 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n"); 6991 6992 return err; 6993 } 6994 6995 /* 6996 * send IPW_CMD_WME_INFO to the firmware 6997 */ 6998 static int ipw_qos_set_info_element(struct ipw_priv *priv) 6999 { 7000 int ret = 0; 7001 struct libipw_qos_information_element qos_info; 7002 7003 if (priv == NULL) 7004 return -1; 7005 7006 qos_info.elementID = QOS_ELEMENT_ID; 7007 qos_info.length = sizeof(struct libipw_qos_information_element) - 2; 7008 7009 qos_info.version = QOS_VERSION_1; 7010 qos_info.ac_info = 0; 7011 7012 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN); 7013 qos_info.qui_type = QOS_OUI_TYPE; 7014 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE; 7015 7016 ret = ipw_send_qos_info_command(priv, &qos_info); 7017 if (ret != 0) { 7018 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n"); 7019 } 7020 return ret; 7021 } 7022 7023 /* 7024 * Set the QoS parameter with the association request structure 7025 */ 7026 static int ipw_qos_association(struct ipw_priv *priv, 7027 struct libipw_network *network) 7028 { 7029 int err = 0; 7030 struct libipw_qos_data *qos_data = NULL; 7031 struct libipw_qos_data ibss_data = { 7032 .supported = 1, 7033 .active = 1, 7034 }; 7035 7036 switch (priv->ieee->iw_mode) { 7037 case IW_MODE_ADHOC: 7038 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS)); 7039 7040 qos_data = &ibss_data; 7041 break; 7042 7043 case IW_MODE_INFRA: 7044 qos_data = &network->qos_data; 7045 break; 7046 7047 default: 7048 BUG(); 7049 break; 7050 } 7051 7052 err = ipw_qos_activate(priv, qos_data); 7053 if (err) { 7054 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC; 7055 return err; 7056 } 7057 7058 if (priv->qos_data.qos_enable && qos_data->supported) { 7059 IPW_DEBUG_QOS("QoS will be enabled for this association\n"); 7060 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC; 7061 return ipw_qos_set_info_element(priv); 7062 } 7063 7064 return 0; 7065 } 7066 7067 /* 7068 * handling the beaconing responses. if we get different QoS setting 7069 * off the network from the associated setting, adjust the QoS 7070 * setting 7071 */ 7072 static int ipw_qos_association_resp(struct ipw_priv *priv, 7073 struct libipw_network *network) 7074 { 7075 int ret = 0; 7076 unsigned long flags; 7077 u32 size = sizeof(struct libipw_qos_parameters); 7078 int set_qos_param = 0; 7079 7080 if ((priv == NULL) || (network == NULL) || 7081 (priv->assoc_network == NULL)) 7082 return ret; 7083 7084 if (!(priv->status & STATUS_ASSOCIATED)) 7085 return ret; 7086 7087 if ((priv->ieee->iw_mode != IW_MODE_INFRA)) 7088 return ret; 7089 7090 spin_lock_irqsave(&priv->ieee->lock, flags); 7091 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) { 7092 memcpy(&priv->assoc_network->qos_data, &network->qos_data, 7093 sizeof(struct libipw_qos_data)); 7094 priv->assoc_network->qos_data.active = 1; 7095 if ((network->qos_data.old_param_count != 7096 network->qos_data.param_count)) { 7097 set_qos_param = 1; 7098 network->qos_data.old_param_count = 7099 network->qos_data.param_count; 7100 } 7101 7102 } else { 7103 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B)) 7104 memcpy(&priv->assoc_network->qos_data.parameters, 7105 &def_parameters_CCK, size); 7106 else 7107 memcpy(&priv->assoc_network->qos_data.parameters, 7108 &def_parameters_OFDM, size); 7109 priv->assoc_network->qos_data.active = 0; 7110 priv->assoc_network->qos_data.supported = 0; 7111 set_qos_param = 1; 7112 } 7113 7114 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7115 7116 if (set_qos_param == 1) 7117 schedule_work(&priv->qos_activate); 7118 7119 return ret; 7120 } 7121 7122 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv) 7123 { 7124 u32 ret = 0; 7125 7126 if ((priv == NULL)) 7127 return 0; 7128 7129 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION)) 7130 ret = priv->qos_data.burst_duration_CCK; 7131 else 7132 ret = priv->qos_data.burst_duration_OFDM; 7133 7134 return ret; 7135 } 7136 7137 /* 7138 * Initialize the setting of QoS global 7139 */ 7140 static void ipw_qos_init(struct ipw_priv *priv, int enable, 7141 int burst_enable, u32 burst_duration_CCK, 7142 u32 burst_duration_OFDM) 7143 { 7144 priv->qos_data.qos_enable = enable; 7145 7146 if (priv->qos_data.qos_enable) { 7147 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK; 7148 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM; 7149 IPW_DEBUG_QOS("QoS is enabled\n"); 7150 } else { 7151 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK; 7152 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM; 7153 IPW_DEBUG_QOS("QoS is not enabled\n"); 7154 } 7155 7156 priv->qos_data.burst_enable = burst_enable; 7157 7158 if (burst_enable) { 7159 priv->qos_data.burst_duration_CCK = burst_duration_CCK; 7160 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM; 7161 } else { 7162 priv->qos_data.burst_duration_CCK = 0; 7163 priv->qos_data.burst_duration_OFDM = 0; 7164 } 7165 } 7166 7167 /* 7168 * map the packet priority to the right TX Queue 7169 */ 7170 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority) 7171 { 7172 if (priority > 7 || !priv->qos_data.qos_enable) 7173 priority = 0; 7174 7175 return from_priority_to_tx_queue[priority] - 1; 7176 } 7177 7178 static int ipw_is_qos_active(struct net_device *dev, 7179 struct sk_buff *skb) 7180 { 7181 struct ipw_priv *priv = libipw_priv(dev); 7182 struct libipw_qos_data *qos_data = NULL; 7183 int active, supported; 7184 u8 *daddr = skb->data + ETH_ALEN; 7185 int unicast = !is_multicast_ether_addr(daddr); 7186 7187 if (!(priv->status & STATUS_ASSOCIATED)) 7188 return 0; 7189 7190 qos_data = &priv->assoc_network->qos_data; 7191 7192 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 7193 if (unicast == 0) 7194 qos_data->active = 0; 7195 else 7196 qos_data->active = qos_data->supported; 7197 } 7198 active = qos_data->active; 7199 supported = qos_data->supported; 7200 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d " 7201 "unicast %d\n", 7202 priv->qos_data.qos_enable, active, supported, unicast); 7203 if (active && priv->qos_data.qos_enable) 7204 return 1; 7205 7206 return 0; 7207 7208 } 7209 /* 7210 * add QoS parameter to the TX command 7211 */ 7212 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv, 7213 u16 priority, 7214 struct tfd_data *tfd) 7215 { 7216 int tx_queue_id = 0; 7217 7218 7219 tx_queue_id = from_priority_to_tx_queue[priority] - 1; 7220 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED; 7221 7222 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) { 7223 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD; 7224 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK); 7225 } 7226 return 0; 7227 } 7228 7229 /* 7230 * background support to run QoS activate functionality 7231 */ 7232 static void ipw_bg_qos_activate(struct work_struct *work) 7233 { 7234 struct ipw_priv *priv = 7235 container_of(work, struct ipw_priv, qos_activate); 7236 7237 mutex_lock(&priv->mutex); 7238 7239 if (priv->status & STATUS_ASSOCIATED) 7240 ipw_qos_activate(priv, &(priv->assoc_network->qos_data)); 7241 7242 mutex_unlock(&priv->mutex); 7243 } 7244 7245 static int ipw_handle_probe_response(struct net_device *dev, 7246 struct libipw_probe_response *resp, 7247 struct libipw_network *network) 7248 { 7249 struct ipw_priv *priv = libipw_priv(dev); 7250 int active_network = ((priv->status & STATUS_ASSOCIATED) && 7251 (network == priv->assoc_network)); 7252 7253 ipw_qos_handle_probe_response(priv, active_network, network); 7254 7255 return 0; 7256 } 7257 7258 static int ipw_handle_beacon(struct net_device *dev, 7259 struct libipw_beacon *resp, 7260 struct libipw_network *network) 7261 { 7262 struct ipw_priv *priv = libipw_priv(dev); 7263 int active_network = ((priv->status & STATUS_ASSOCIATED) && 7264 (network == priv->assoc_network)); 7265 7266 ipw_qos_handle_probe_response(priv, active_network, network); 7267 7268 return 0; 7269 } 7270 7271 static int ipw_handle_assoc_response(struct net_device *dev, 7272 struct libipw_assoc_response *resp, 7273 struct libipw_network *network) 7274 { 7275 struct ipw_priv *priv = libipw_priv(dev); 7276 ipw_qos_association_resp(priv, network); 7277 return 0; 7278 } 7279 7280 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters 7281 *qos_param) 7282 { 7283 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS, 7284 sizeof(*qos_param) * 3, qos_param); 7285 } 7286 7287 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element 7288 *qos_param) 7289 { 7290 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param), 7291 qos_param); 7292 } 7293 7294 #endif /* CONFIG_IPW2200_QOS */ 7295 7296 static int ipw_associate_network(struct ipw_priv *priv, 7297 struct libipw_network *network, 7298 struct ipw_supported_rates *rates, int roaming) 7299 { 7300 int err; 7301 7302 if (priv->config & CFG_FIXED_RATE) 7303 ipw_set_fixed_rate(priv, network->mode); 7304 7305 if (!(priv->config & CFG_STATIC_ESSID)) { 7306 priv->essid_len = min(network->ssid_len, 7307 (u8) IW_ESSID_MAX_SIZE); 7308 memcpy(priv->essid, network->ssid, priv->essid_len); 7309 } 7310 7311 network->last_associate = jiffies; 7312 7313 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request)); 7314 priv->assoc_request.channel = network->channel; 7315 priv->assoc_request.auth_key = 0; 7316 7317 if ((priv->capability & CAP_PRIVACY_ON) && 7318 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) { 7319 priv->assoc_request.auth_type = AUTH_SHARED_KEY; 7320 priv->assoc_request.auth_key = priv->ieee->sec.active_key; 7321 7322 if (priv->ieee->sec.level == SEC_LEVEL_1) 7323 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); 7324 7325 } else if ((priv->capability & CAP_PRIVACY_ON) && 7326 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)) 7327 priv->assoc_request.auth_type = AUTH_LEAP; 7328 else 7329 priv->assoc_request.auth_type = AUTH_OPEN; 7330 7331 if (priv->ieee->wpa_ie_len) { 7332 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */ 7333 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie, 7334 priv->ieee->wpa_ie_len); 7335 } 7336 7337 /* 7338 * It is valid for our ieee device to support multiple modes, but 7339 * when it comes to associating to a given network we have to choose 7340 * just one mode. 7341 */ 7342 if (network->mode & priv->ieee->mode & IEEE_A) 7343 priv->assoc_request.ieee_mode = IPW_A_MODE; 7344 else if (network->mode & priv->ieee->mode & IEEE_G) 7345 priv->assoc_request.ieee_mode = IPW_G_MODE; 7346 else if (network->mode & priv->ieee->mode & IEEE_B) 7347 priv->assoc_request.ieee_mode = IPW_B_MODE; 7348 7349 priv->assoc_request.capability = cpu_to_le16(network->capability); 7350 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE) 7351 && !(priv->config & CFG_PREAMBLE_LONG)) { 7352 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE; 7353 } else { 7354 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE; 7355 7356 /* Clear the short preamble if we won't be supporting it */ 7357 priv->assoc_request.capability &= 7358 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE); 7359 } 7360 7361 /* Clear capability bits that aren't used in Ad Hoc */ 7362 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 7363 priv->assoc_request.capability &= 7364 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME); 7365 7366 IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n", 7367 roaming ? "Rea" : "A", 7368 priv->essid_len, priv->essid, 7369 network->channel, 7370 ipw_modes[priv->assoc_request.ieee_mode], 7371 rates->num_rates, 7372 (priv->assoc_request.preamble_length == 7373 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short", 7374 network->capability & 7375 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long", 7376 priv->capability & CAP_PRIVACY_ON ? "on " : "off", 7377 priv->capability & CAP_PRIVACY_ON ? 7378 (priv->capability & CAP_SHARED_KEY ? "(shared)" : 7379 "(open)") : "", 7380 priv->capability & CAP_PRIVACY_ON ? " key=" : "", 7381 priv->capability & CAP_PRIVACY_ON ? 7382 '1' + priv->ieee->sec.active_key : '.', 7383 priv->capability & CAP_PRIVACY_ON ? '.' : ' '); 7384 7385 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval); 7386 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 7387 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) { 7388 priv->assoc_request.assoc_type = HC_IBSS_START; 7389 priv->assoc_request.assoc_tsf_msw = 0; 7390 priv->assoc_request.assoc_tsf_lsw = 0; 7391 } else { 7392 if (unlikely(roaming)) 7393 priv->assoc_request.assoc_type = HC_REASSOCIATE; 7394 else 7395 priv->assoc_request.assoc_type = HC_ASSOCIATE; 7396 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]); 7397 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]); 7398 } 7399 7400 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN); 7401 7402 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 7403 eth_broadcast_addr(priv->assoc_request.dest); 7404 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window); 7405 } else { 7406 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN); 7407 priv->assoc_request.atim_window = 0; 7408 } 7409 7410 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval); 7411 7412 err = ipw_send_ssid(priv, priv->essid, priv->essid_len); 7413 if (err) { 7414 IPW_DEBUG_HC("Attempt to send SSID command failed.\n"); 7415 return err; 7416 } 7417 7418 rates->ieee_mode = priv->assoc_request.ieee_mode; 7419 rates->purpose = IPW_RATE_CONNECT; 7420 ipw_send_supported_rates(priv, rates); 7421 7422 if (priv->assoc_request.ieee_mode == IPW_G_MODE) 7423 priv->sys_config.dot11g_auto_detection = 1; 7424 else 7425 priv->sys_config.dot11g_auto_detection = 0; 7426 7427 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 7428 priv->sys_config.answer_broadcast_ssid_probe = 1; 7429 else 7430 priv->sys_config.answer_broadcast_ssid_probe = 0; 7431 7432 err = ipw_send_system_config(priv); 7433 if (err) { 7434 IPW_DEBUG_HC("Attempt to send sys config command failed.\n"); 7435 return err; 7436 } 7437 7438 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi); 7439 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM); 7440 if (err) { 7441 IPW_DEBUG_HC("Attempt to send associate command failed.\n"); 7442 return err; 7443 } 7444 7445 /* 7446 * If preemption is enabled, it is possible for the association 7447 * to complete before we return from ipw_send_associate. Therefore 7448 * we have to be sure and update our priviate data first. 7449 */ 7450 priv->channel = network->channel; 7451 memcpy(priv->bssid, network->bssid, ETH_ALEN); 7452 priv->status |= STATUS_ASSOCIATING; 7453 priv->status &= ~STATUS_SECURITY_UPDATED; 7454 7455 priv->assoc_network = network; 7456 7457 #ifdef CONFIG_IPW2200_QOS 7458 ipw_qos_association(priv, network); 7459 #endif 7460 7461 err = ipw_send_associate(priv, &priv->assoc_request); 7462 if (err) { 7463 IPW_DEBUG_HC("Attempt to send associate command failed.\n"); 7464 return err; 7465 } 7466 7467 IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n", 7468 priv->essid_len, priv->essid, priv->bssid); 7469 7470 return 0; 7471 } 7472 7473 static void ipw_roam(void *data) 7474 { 7475 struct ipw_priv *priv = data; 7476 struct libipw_network *network = NULL; 7477 struct ipw_network_match match = { 7478 .network = priv->assoc_network 7479 }; 7480 7481 /* The roaming process is as follows: 7482 * 7483 * 1. Missed beacon threshold triggers the roaming process by 7484 * setting the status ROAM bit and requesting a scan. 7485 * 2. When the scan completes, it schedules the ROAM work 7486 * 3. The ROAM work looks at all of the known networks for one that 7487 * is a better network than the currently associated. If none 7488 * found, the ROAM process is over (ROAM bit cleared) 7489 * 4. If a better network is found, a disassociation request is 7490 * sent. 7491 * 5. When the disassociation completes, the roam work is again 7492 * scheduled. The second time through, the driver is no longer 7493 * associated, and the newly selected network is sent an 7494 * association request. 7495 * 6. At this point ,the roaming process is complete and the ROAM 7496 * status bit is cleared. 7497 */ 7498 7499 /* If we are no longer associated, and the roaming bit is no longer 7500 * set, then we are not actively roaming, so just return */ 7501 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING))) 7502 return; 7503 7504 if (priv->status & STATUS_ASSOCIATED) { 7505 /* First pass through ROAM process -- look for a better 7506 * network */ 7507 unsigned long flags; 7508 u8 rssi = priv->assoc_network->stats.rssi; 7509 priv->assoc_network->stats.rssi = -128; 7510 spin_lock_irqsave(&priv->ieee->lock, flags); 7511 list_for_each_entry(network, &priv->ieee->network_list, list) { 7512 if (network != priv->assoc_network) 7513 ipw_best_network(priv, &match, network, 1); 7514 } 7515 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7516 priv->assoc_network->stats.rssi = rssi; 7517 7518 if (match.network == priv->assoc_network) { 7519 IPW_DEBUG_ASSOC("No better APs in this network to " 7520 "roam to.\n"); 7521 priv->status &= ~STATUS_ROAMING; 7522 ipw_debug_config(priv); 7523 return; 7524 } 7525 7526 ipw_send_disassociate(priv, 1); 7527 priv->assoc_network = match.network; 7528 7529 return; 7530 } 7531 7532 /* Second pass through ROAM process -- request association */ 7533 ipw_compatible_rates(priv, priv->assoc_network, &match.rates); 7534 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1); 7535 priv->status &= ~STATUS_ROAMING; 7536 } 7537 7538 static void ipw_bg_roam(struct work_struct *work) 7539 { 7540 struct ipw_priv *priv = 7541 container_of(work, struct ipw_priv, roam); 7542 mutex_lock(&priv->mutex); 7543 ipw_roam(priv); 7544 mutex_unlock(&priv->mutex); 7545 } 7546 7547 static int ipw_associate(void *data) 7548 { 7549 struct ipw_priv *priv = data; 7550 7551 struct libipw_network *network = NULL; 7552 struct ipw_network_match match = { 7553 .network = NULL 7554 }; 7555 struct ipw_supported_rates *rates; 7556 struct list_head *element; 7557 unsigned long flags; 7558 7559 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 7560 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n"); 7561 return 0; 7562 } 7563 7564 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 7565 IPW_DEBUG_ASSOC("Not attempting association (already in " 7566 "progress)\n"); 7567 return 0; 7568 } 7569 7570 if (priv->status & STATUS_DISASSOCIATING) { 7571 IPW_DEBUG_ASSOC("Not attempting association (in " 7572 "disassociating)\n "); 7573 schedule_work(&priv->associate); 7574 return 0; 7575 } 7576 7577 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) { 7578 IPW_DEBUG_ASSOC("Not attempting association (scanning or not " 7579 "initialized)\n"); 7580 return 0; 7581 } 7582 7583 if (!(priv->config & CFG_ASSOCIATE) && 7584 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) { 7585 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n"); 7586 return 0; 7587 } 7588 7589 /* Protect our use of the network_list */ 7590 spin_lock_irqsave(&priv->ieee->lock, flags); 7591 list_for_each_entry(network, &priv->ieee->network_list, list) 7592 ipw_best_network(priv, &match, network, 0); 7593 7594 network = match.network; 7595 rates = &match.rates; 7596 7597 if (network == NULL && 7598 priv->ieee->iw_mode == IW_MODE_ADHOC && 7599 priv->config & CFG_ADHOC_CREATE && 7600 priv->config & CFG_STATIC_ESSID && 7601 priv->config & CFG_STATIC_CHANNEL) { 7602 /* Use oldest network if the free list is empty */ 7603 if (list_empty(&priv->ieee->network_free_list)) { 7604 struct libipw_network *oldest = NULL; 7605 struct libipw_network *target; 7606 7607 list_for_each_entry(target, &priv->ieee->network_list, list) { 7608 if ((oldest == NULL) || 7609 (target->last_scanned < oldest->last_scanned)) 7610 oldest = target; 7611 } 7612 7613 /* If there are no more slots, expire the oldest */ 7614 list_del(&oldest->list); 7615 target = oldest; 7616 IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n", 7617 target->ssid_len, target->ssid, 7618 target->bssid); 7619 list_add_tail(&target->list, 7620 &priv->ieee->network_free_list); 7621 } 7622 7623 element = priv->ieee->network_free_list.next; 7624 network = list_entry(element, struct libipw_network, list); 7625 ipw_adhoc_create(priv, network); 7626 rates = &priv->rates; 7627 list_del(element); 7628 list_add_tail(&network->list, &priv->ieee->network_list); 7629 } 7630 spin_unlock_irqrestore(&priv->ieee->lock, flags); 7631 7632 /* If we reached the end of the list, then we don't have any valid 7633 * matching APs */ 7634 if (!network) { 7635 ipw_debug_config(priv); 7636 7637 if (!(priv->status & STATUS_SCANNING)) { 7638 if (!(priv->config & CFG_SPEED_SCAN)) 7639 schedule_delayed_work(&priv->request_scan, 7640 SCAN_INTERVAL); 7641 else 7642 schedule_delayed_work(&priv->request_scan, 0); 7643 } 7644 7645 return 0; 7646 } 7647 7648 ipw_associate_network(priv, network, rates, 0); 7649 7650 return 1; 7651 } 7652 7653 static void ipw_bg_associate(struct work_struct *work) 7654 { 7655 struct ipw_priv *priv = 7656 container_of(work, struct ipw_priv, associate); 7657 mutex_lock(&priv->mutex); 7658 ipw_associate(priv); 7659 mutex_unlock(&priv->mutex); 7660 } 7661 7662 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv, 7663 struct sk_buff *skb) 7664 { 7665 struct ieee80211_hdr *hdr; 7666 u16 fc; 7667 7668 hdr = (struct ieee80211_hdr *)skb->data; 7669 fc = le16_to_cpu(hdr->frame_control); 7670 if (!(fc & IEEE80211_FCTL_PROTECTED)) 7671 return; 7672 7673 fc &= ~IEEE80211_FCTL_PROTECTED; 7674 hdr->frame_control = cpu_to_le16(fc); 7675 switch (priv->ieee->sec.level) { 7676 case SEC_LEVEL_3: 7677 /* Remove CCMP HDR */ 7678 memmove(skb->data + LIBIPW_3ADDR_LEN, 7679 skb->data + LIBIPW_3ADDR_LEN + 8, 7680 skb->len - LIBIPW_3ADDR_LEN - 8); 7681 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */ 7682 break; 7683 case SEC_LEVEL_2: 7684 break; 7685 case SEC_LEVEL_1: 7686 /* Remove IV */ 7687 memmove(skb->data + LIBIPW_3ADDR_LEN, 7688 skb->data + LIBIPW_3ADDR_LEN + 4, 7689 skb->len - LIBIPW_3ADDR_LEN - 4); 7690 skb_trim(skb, skb->len - 8); /* IV + ICV */ 7691 break; 7692 case SEC_LEVEL_0: 7693 break; 7694 default: 7695 printk(KERN_ERR "Unknown security level %d\n", 7696 priv->ieee->sec.level); 7697 break; 7698 } 7699 } 7700 7701 static void ipw_handle_data_packet(struct ipw_priv *priv, 7702 struct ipw_rx_mem_buffer *rxb, 7703 struct libipw_rx_stats *stats) 7704 { 7705 struct net_device *dev = priv->net_dev; 7706 struct libipw_hdr_4addr *hdr; 7707 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7708 7709 /* We received data from the HW, so stop the watchdog */ 7710 netif_trans_update(dev); 7711 7712 /* We only process data packets if the 7713 * interface is open */ 7714 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > 7715 skb_tailroom(rxb->skb))) { 7716 dev->stats.rx_errors++; 7717 priv->wstats.discard.misc++; 7718 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7719 return; 7720 } else if (unlikely(!netif_running(priv->net_dev))) { 7721 dev->stats.rx_dropped++; 7722 priv->wstats.discard.misc++; 7723 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7724 return; 7725 } 7726 7727 /* Advance skb->data to the start of the actual payload */ 7728 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data)); 7729 7730 /* Set the size of the skb to the size of the frame */ 7731 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length)); 7732 7733 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); 7734 7735 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */ 7736 hdr = (struct libipw_hdr_4addr *)rxb->skb->data; 7737 if (priv->ieee->iw_mode != IW_MODE_MONITOR && 7738 (is_multicast_ether_addr(hdr->addr1) ? 7739 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt)) 7740 ipw_rebuild_decrypted_skb(priv, rxb->skb); 7741 7742 if (!libipw_rx(priv->ieee, rxb->skb, stats)) 7743 dev->stats.rx_errors++; 7744 else { /* libipw_rx succeeded, so it now owns the SKB */ 7745 rxb->skb = NULL; 7746 __ipw_led_activity_on(priv); 7747 } 7748 } 7749 7750 #ifdef CONFIG_IPW2200_RADIOTAP 7751 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv, 7752 struct ipw_rx_mem_buffer *rxb, 7753 struct libipw_rx_stats *stats) 7754 { 7755 struct net_device *dev = priv->net_dev; 7756 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7757 struct ipw_rx_frame *frame = &pkt->u.frame; 7758 7759 /* initial pull of some data */ 7760 u16 received_channel = frame->received_channel; 7761 u8 antennaAndPhy = frame->antennaAndPhy; 7762 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */ 7763 u16 pktrate = frame->rate; 7764 7765 /* Magic struct that slots into the radiotap header -- no reason 7766 * to build this manually element by element, we can write it much 7767 * more efficiently than we can parse it. ORDER MATTERS HERE */ 7768 struct ipw_rt_hdr *ipw_rt; 7769 7770 unsigned short len = le16_to_cpu(pkt->u.frame.length); 7771 7772 /* We received data from the HW, so stop the watchdog */ 7773 netif_trans_update(dev); 7774 7775 /* We only process data packets if the 7776 * interface is open */ 7777 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > 7778 skb_tailroom(rxb->skb))) { 7779 dev->stats.rx_errors++; 7780 priv->wstats.discard.misc++; 7781 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7782 return; 7783 } else if (unlikely(!netif_running(priv->net_dev))) { 7784 dev->stats.rx_dropped++; 7785 priv->wstats.discard.misc++; 7786 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7787 return; 7788 } 7789 7790 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use 7791 * that now */ 7792 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { 7793 /* FIXME: Should alloc bigger skb instead */ 7794 dev->stats.rx_dropped++; 7795 priv->wstats.discard.misc++; 7796 IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); 7797 return; 7798 } 7799 7800 /* copy the frame itself */ 7801 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr), 7802 rxb->skb->data + IPW_RX_FRAME_SIZE, len); 7803 7804 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data; 7805 7806 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 7807 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 7808 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */ 7809 7810 /* Big bitfield of all the fields we provide in radiotap */ 7811 ipw_rt->rt_hdr.it_present = cpu_to_le32( 7812 (1 << IEEE80211_RADIOTAP_TSFT) | 7813 (1 << IEEE80211_RADIOTAP_FLAGS) | 7814 (1 << IEEE80211_RADIOTAP_RATE) | 7815 (1 << IEEE80211_RADIOTAP_CHANNEL) | 7816 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | 7817 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | 7818 (1 << IEEE80211_RADIOTAP_ANTENNA)); 7819 7820 /* Zero the flags, we'll add to them as we go */ 7821 ipw_rt->rt_flags = 0; 7822 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | 7823 frame->parent_tsf[2] << 16 | 7824 frame->parent_tsf[1] << 8 | 7825 frame->parent_tsf[0]); 7826 7827 /* Convert signal to DBM */ 7828 ipw_rt->rt_dbmsignal = antsignal; 7829 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise); 7830 7831 /* Convert the channel data and set the flags */ 7832 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel)); 7833 if (received_channel > 14) { /* 802.11a */ 7834 ipw_rt->rt_chbitmask = 7835 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); 7836 } else if (antennaAndPhy & 32) { /* 802.11b */ 7837 ipw_rt->rt_chbitmask = 7838 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); 7839 } else { /* 802.11g */ 7840 ipw_rt->rt_chbitmask = 7841 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); 7842 } 7843 7844 /* set the rate in multiples of 500k/s */ 7845 switch (pktrate) { 7846 case IPW_TX_RATE_1MB: 7847 ipw_rt->rt_rate = 2; 7848 break; 7849 case IPW_TX_RATE_2MB: 7850 ipw_rt->rt_rate = 4; 7851 break; 7852 case IPW_TX_RATE_5MB: 7853 ipw_rt->rt_rate = 10; 7854 break; 7855 case IPW_TX_RATE_6MB: 7856 ipw_rt->rt_rate = 12; 7857 break; 7858 case IPW_TX_RATE_9MB: 7859 ipw_rt->rt_rate = 18; 7860 break; 7861 case IPW_TX_RATE_11MB: 7862 ipw_rt->rt_rate = 22; 7863 break; 7864 case IPW_TX_RATE_12MB: 7865 ipw_rt->rt_rate = 24; 7866 break; 7867 case IPW_TX_RATE_18MB: 7868 ipw_rt->rt_rate = 36; 7869 break; 7870 case IPW_TX_RATE_24MB: 7871 ipw_rt->rt_rate = 48; 7872 break; 7873 case IPW_TX_RATE_36MB: 7874 ipw_rt->rt_rate = 72; 7875 break; 7876 case IPW_TX_RATE_48MB: 7877 ipw_rt->rt_rate = 96; 7878 break; 7879 case IPW_TX_RATE_54MB: 7880 ipw_rt->rt_rate = 108; 7881 break; 7882 default: 7883 ipw_rt->rt_rate = 0; 7884 break; 7885 } 7886 7887 /* antenna number */ 7888 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */ 7889 7890 /* set the preamble flag if we have it */ 7891 if ((antennaAndPhy & 64)) 7892 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 7893 7894 /* Set the size of the skb to the size of the frame */ 7895 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr)); 7896 7897 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); 7898 7899 if (!libipw_rx(priv->ieee, rxb->skb, stats)) 7900 dev->stats.rx_errors++; 7901 else { /* libipw_rx succeeded, so it now owns the SKB */ 7902 rxb->skb = NULL; 7903 /* no LED during capture */ 7904 } 7905 } 7906 #endif 7907 7908 #ifdef CONFIG_IPW2200_PROMISCUOUS 7909 #define libipw_is_probe_response(fc) \ 7910 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \ 7911 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP ) 7912 7913 #define libipw_is_management(fc) \ 7914 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) 7915 7916 #define libipw_is_control(fc) \ 7917 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) 7918 7919 #define libipw_is_data(fc) \ 7920 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) 7921 7922 #define libipw_is_assoc_request(fc) \ 7923 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ) 7924 7925 #define libipw_is_reassoc_request(fc) \ 7926 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ) 7927 7928 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv, 7929 struct ipw_rx_mem_buffer *rxb, 7930 struct libipw_rx_stats *stats) 7931 { 7932 struct net_device *dev = priv->prom_net_dev; 7933 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; 7934 struct ipw_rx_frame *frame = &pkt->u.frame; 7935 struct ipw_rt_hdr *ipw_rt; 7936 7937 /* First cache any information we need before we overwrite 7938 * the information provided in the skb from the hardware */ 7939 struct ieee80211_hdr *hdr; 7940 u16 channel = frame->received_channel; 7941 u8 phy_flags = frame->antennaAndPhy; 7942 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM; 7943 s8 noise = (s8) le16_to_cpu(frame->noise); 7944 u8 rate = frame->rate; 7945 unsigned short len = le16_to_cpu(pkt->u.frame.length); 7946 struct sk_buff *skb; 7947 int hdr_only = 0; 7948 u16 filter = priv->prom_priv->filter; 7949 7950 /* If the filter is set to not include Rx frames then return */ 7951 if (filter & IPW_PROM_NO_RX) 7952 return; 7953 7954 /* We received data from the HW, so stop the watchdog */ 7955 netif_trans_update(dev); 7956 7957 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) { 7958 dev->stats.rx_errors++; 7959 IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); 7960 return; 7961 } 7962 7963 /* We only process data packets if the interface is open */ 7964 if (unlikely(!netif_running(dev))) { 7965 dev->stats.rx_dropped++; 7966 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 7967 return; 7968 } 7969 7970 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use 7971 * that now */ 7972 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { 7973 /* FIXME: Should alloc bigger skb instead */ 7974 dev->stats.rx_dropped++; 7975 IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); 7976 return; 7977 } 7978 7979 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE; 7980 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { 7981 if (filter & IPW_PROM_NO_MGMT) 7982 return; 7983 if (filter & IPW_PROM_MGMT_HEADER_ONLY) 7984 hdr_only = 1; 7985 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { 7986 if (filter & IPW_PROM_NO_CTL) 7987 return; 7988 if (filter & IPW_PROM_CTL_HEADER_ONLY) 7989 hdr_only = 1; 7990 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { 7991 if (filter & IPW_PROM_NO_DATA) 7992 return; 7993 if (filter & IPW_PROM_DATA_HEADER_ONLY) 7994 hdr_only = 1; 7995 } 7996 7997 /* Copy the SKB since this is for the promiscuous side */ 7998 skb = skb_copy(rxb->skb, GFP_ATOMIC); 7999 if (skb == NULL) { 8000 IPW_ERROR("skb_clone failed for promiscuous copy.\n"); 8001 return; 8002 } 8003 8004 /* copy the frame data to write after where the radiotap header goes */ 8005 ipw_rt = (void *)skb->data; 8006 8007 if (hdr_only) 8008 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); 8009 8010 memcpy(ipw_rt->payload, hdr, len); 8011 8012 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 8013 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 8014 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */ 8015 8016 /* Set the size of the skb to the size of the frame */ 8017 skb_put(skb, sizeof(*ipw_rt) + len); 8018 8019 /* Big bitfield of all the fields we provide in radiotap */ 8020 ipw_rt->rt_hdr.it_present = cpu_to_le32( 8021 (1 << IEEE80211_RADIOTAP_TSFT) | 8022 (1 << IEEE80211_RADIOTAP_FLAGS) | 8023 (1 << IEEE80211_RADIOTAP_RATE) | 8024 (1 << IEEE80211_RADIOTAP_CHANNEL) | 8025 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | 8026 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | 8027 (1 << IEEE80211_RADIOTAP_ANTENNA)); 8028 8029 /* Zero the flags, we'll add to them as we go */ 8030 ipw_rt->rt_flags = 0; 8031 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | 8032 frame->parent_tsf[2] << 16 | 8033 frame->parent_tsf[1] << 8 | 8034 frame->parent_tsf[0]); 8035 8036 /* Convert to DBM */ 8037 ipw_rt->rt_dbmsignal = signal; 8038 ipw_rt->rt_dbmnoise = noise; 8039 8040 /* Convert the channel data and set the flags */ 8041 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel)); 8042 if (channel > 14) { /* 802.11a */ 8043 ipw_rt->rt_chbitmask = 8044 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); 8045 } else if (phy_flags & (1 << 5)) { /* 802.11b */ 8046 ipw_rt->rt_chbitmask = 8047 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); 8048 } else { /* 802.11g */ 8049 ipw_rt->rt_chbitmask = 8050 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); 8051 } 8052 8053 /* set the rate in multiples of 500k/s */ 8054 switch (rate) { 8055 case IPW_TX_RATE_1MB: 8056 ipw_rt->rt_rate = 2; 8057 break; 8058 case IPW_TX_RATE_2MB: 8059 ipw_rt->rt_rate = 4; 8060 break; 8061 case IPW_TX_RATE_5MB: 8062 ipw_rt->rt_rate = 10; 8063 break; 8064 case IPW_TX_RATE_6MB: 8065 ipw_rt->rt_rate = 12; 8066 break; 8067 case IPW_TX_RATE_9MB: 8068 ipw_rt->rt_rate = 18; 8069 break; 8070 case IPW_TX_RATE_11MB: 8071 ipw_rt->rt_rate = 22; 8072 break; 8073 case IPW_TX_RATE_12MB: 8074 ipw_rt->rt_rate = 24; 8075 break; 8076 case IPW_TX_RATE_18MB: 8077 ipw_rt->rt_rate = 36; 8078 break; 8079 case IPW_TX_RATE_24MB: 8080 ipw_rt->rt_rate = 48; 8081 break; 8082 case IPW_TX_RATE_36MB: 8083 ipw_rt->rt_rate = 72; 8084 break; 8085 case IPW_TX_RATE_48MB: 8086 ipw_rt->rt_rate = 96; 8087 break; 8088 case IPW_TX_RATE_54MB: 8089 ipw_rt->rt_rate = 108; 8090 break; 8091 default: 8092 ipw_rt->rt_rate = 0; 8093 break; 8094 } 8095 8096 /* antenna number */ 8097 ipw_rt->rt_antenna = (phy_flags & 3); 8098 8099 /* set the preamble flag if we have it */ 8100 if (phy_flags & (1 << 6)) 8101 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 8102 8103 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len); 8104 8105 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) { 8106 dev->stats.rx_errors++; 8107 dev_kfree_skb_any(skb); 8108 } 8109 } 8110 #endif 8111 8112 static int is_network_packet(struct ipw_priv *priv, 8113 struct libipw_hdr_4addr *header) 8114 { 8115 /* Filter incoming packets to determine if they are targeted toward 8116 * this network, discarding packets coming from ourselves */ 8117 switch (priv->ieee->iw_mode) { 8118 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */ 8119 /* packets from our adapter are dropped (echo) */ 8120 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr)) 8121 return 0; 8122 8123 /* {broad,multi}cast packets to our BSSID go through */ 8124 if (is_multicast_ether_addr(header->addr1)) 8125 return ether_addr_equal(header->addr3, priv->bssid); 8126 8127 /* packets to our adapter go through */ 8128 return ether_addr_equal(header->addr1, 8129 priv->net_dev->dev_addr); 8130 8131 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */ 8132 /* packets from our adapter are dropped (echo) */ 8133 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr)) 8134 return 0; 8135 8136 /* {broad,multi}cast packets to our BSS go through */ 8137 if (is_multicast_ether_addr(header->addr1)) 8138 return ether_addr_equal(header->addr2, priv->bssid); 8139 8140 /* packets to our adapter go through */ 8141 return ether_addr_equal(header->addr1, 8142 priv->net_dev->dev_addr); 8143 } 8144 8145 return 1; 8146 } 8147 8148 #define IPW_PACKET_RETRY_TIME HZ 8149 8150 static int is_duplicate_packet(struct ipw_priv *priv, 8151 struct libipw_hdr_4addr *header) 8152 { 8153 u16 sc = le16_to_cpu(header->seq_ctl); 8154 u16 seq = WLAN_GET_SEQ_SEQ(sc); 8155 u16 frag = WLAN_GET_SEQ_FRAG(sc); 8156 u16 *last_seq, *last_frag; 8157 unsigned long *last_time; 8158 8159 switch (priv->ieee->iw_mode) { 8160 case IW_MODE_ADHOC: 8161 { 8162 struct list_head *p; 8163 struct ipw_ibss_seq *entry = NULL; 8164 u8 *mac = header->addr2; 8165 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE; 8166 8167 list_for_each(p, &priv->ibss_mac_hash[index]) { 8168 entry = 8169 list_entry(p, struct ipw_ibss_seq, list); 8170 if (ether_addr_equal(entry->mac, mac)) 8171 break; 8172 } 8173 if (p == &priv->ibss_mac_hash[index]) { 8174 entry = kmalloc(sizeof(*entry), GFP_ATOMIC); 8175 if (!entry) { 8176 IPW_ERROR 8177 ("Cannot malloc new mac entry\n"); 8178 return 0; 8179 } 8180 memcpy(entry->mac, mac, ETH_ALEN); 8181 entry->seq_num = seq; 8182 entry->frag_num = frag; 8183 entry->packet_time = jiffies; 8184 list_add(&entry->list, 8185 &priv->ibss_mac_hash[index]); 8186 return 0; 8187 } 8188 last_seq = &entry->seq_num; 8189 last_frag = &entry->frag_num; 8190 last_time = &entry->packet_time; 8191 break; 8192 } 8193 case IW_MODE_INFRA: 8194 last_seq = &priv->last_seq_num; 8195 last_frag = &priv->last_frag_num; 8196 last_time = &priv->last_packet_time; 8197 break; 8198 default: 8199 return 0; 8200 } 8201 if ((*last_seq == seq) && 8202 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) { 8203 if (*last_frag == frag) 8204 goto drop; 8205 if (*last_frag + 1 != frag) 8206 /* out-of-order fragment */ 8207 goto drop; 8208 } else 8209 *last_seq = seq; 8210 8211 *last_frag = frag; 8212 *last_time = jiffies; 8213 return 0; 8214 8215 drop: 8216 /* Comment this line now since we observed the card receives 8217 * duplicate packets but the FCTL_RETRY bit is not set in the 8218 * IBSS mode with fragmentation enabled. 8219 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */ 8220 return 1; 8221 } 8222 8223 static void ipw_handle_mgmt_packet(struct ipw_priv *priv, 8224 struct ipw_rx_mem_buffer *rxb, 8225 struct libipw_rx_stats *stats) 8226 { 8227 struct sk_buff *skb = rxb->skb; 8228 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data; 8229 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *) 8230 (skb->data + IPW_RX_FRAME_SIZE); 8231 8232 libipw_rx_mgt(priv->ieee, header, stats); 8233 8234 if (priv->ieee->iw_mode == IW_MODE_ADHOC && 8235 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == 8236 IEEE80211_STYPE_PROBE_RESP) || 8237 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == 8238 IEEE80211_STYPE_BEACON))) { 8239 if (ether_addr_equal(header->addr3, priv->bssid)) 8240 ipw_add_station(priv, header->addr2); 8241 } 8242 8243 if (priv->config & CFG_NET_STATS) { 8244 IPW_DEBUG_HC("sending stat packet\n"); 8245 8246 /* Set the size of the skb to the size of the full 8247 * ipw header and 802.11 frame */ 8248 skb_put(skb, le16_to_cpu(pkt->u.frame.length) + 8249 IPW_RX_FRAME_SIZE); 8250 8251 /* Advance past the ipw packet header to the 802.11 frame */ 8252 skb_pull(skb, IPW_RX_FRAME_SIZE); 8253 8254 /* Push the libipw_rx_stats before the 802.11 frame */ 8255 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats)); 8256 8257 skb->dev = priv->ieee->dev; 8258 8259 /* Point raw at the libipw_stats */ 8260 skb_reset_mac_header(skb); 8261 8262 skb->pkt_type = PACKET_OTHERHOST; 8263 skb->protocol = cpu_to_be16(ETH_P_80211_STATS); 8264 memset(skb->cb, 0, sizeof(rxb->skb->cb)); 8265 netif_rx(skb); 8266 rxb->skb = NULL; 8267 } 8268 } 8269 8270 /* 8271 * Main entry function for receiving a packet with 80211 headers. This 8272 * should be called when ever the FW has notified us that there is a new 8273 * skb in the receive queue. 8274 */ 8275 static void ipw_rx(struct ipw_priv *priv) 8276 { 8277 struct ipw_rx_mem_buffer *rxb; 8278 struct ipw_rx_packet *pkt; 8279 struct libipw_hdr_4addr *header; 8280 u32 r, w, i; 8281 u8 network_packet; 8282 u8 fill_rx = 0; 8283 8284 r = ipw_read32(priv, IPW_RX_READ_INDEX); 8285 w = ipw_read32(priv, IPW_RX_WRITE_INDEX); 8286 i = priv->rxq->read; 8287 8288 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2)) 8289 fill_rx = 1; 8290 8291 while (i != r) { 8292 rxb = priv->rxq->queue[i]; 8293 if (unlikely(rxb == NULL)) { 8294 printk(KERN_CRIT "Queue not allocated!\n"); 8295 break; 8296 } 8297 priv->rxq->queue[i] = NULL; 8298 8299 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr, 8300 IPW_RX_BUF_SIZE, 8301 PCI_DMA_FROMDEVICE); 8302 8303 pkt = (struct ipw_rx_packet *)rxb->skb->data; 8304 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n", 8305 pkt->header.message_type, 8306 pkt->header.rx_seq_num, pkt->header.control_bits); 8307 8308 switch (pkt->header.message_type) { 8309 case RX_FRAME_TYPE: /* 802.11 frame */ { 8310 struct libipw_rx_stats stats = { 8311 .rssi = pkt->u.frame.rssi_dbm - 8312 IPW_RSSI_TO_DBM, 8313 .signal = 8314 pkt->u.frame.rssi_dbm - 8315 IPW_RSSI_TO_DBM + 0x100, 8316 .noise = 8317 le16_to_cpu(pkt->u.frame.noise), 8318 .rate = pkt->u.frame.rate, 8319 .mac_time = jiffies, 8320 .received_channel = 8321 pkt->u.frame.received_channel, 8322 .freq = 8323 (pkt->u.frame. 8324 control & (1 << 0)) ? 8325 LIBIPW_24GHZ_BAND : 8326 LIBIPW_52GHZ_BAND, 8327 .len = le16_to_cpu(pkt->u.frame.length), 8328 }; 8329 8330 if (stats.rssi != 0) 8331 stats.mask |= LIBIPW_STATMASK_RSSI; 8332 if (stats.signal != 0) 8333 stats.mask |= LIBIPW_STATMASK_SIGNAL; 8334 if (stats.noise != 0) 8335 stats.mask |= LIBIPW_STATMASK_NOISE; 8336 if (stats.rate != 0) 8337 stats.mask |= LIBIPW_STATMASK_RATE; 8338 8339 priv->rx_packets++; 8340 8341 #ifdef CONFIG_IPW2200_PROMISCUOUS 8342 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) 8343 ipw_handle_promiscuous_rx(priv, rxb, &stats); 8344 #endif 8345 8346 #ifdef CONFIG_IPW2200_MONITOR 8347 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 8348 #ifdef CONFIG_IPW2200_RADIOTAP 8349 8350 ipw_handle_data_packet_monitor(priv, 8351 rxb, 8352 &stats); 8353 #else 8354 ipw_handle_data_packet(priv, rxb, 8355 &stats); 8356 #endif 8357 break; 8358 } 8359 #endif 8360 8361 header = 8362 (struct libipw_hdr_4addr *)(rxb->skb-> 8363 data + 8364 IPW_RX_FRAME_SIZE); 8365 /* TODO: Check Ad-Hoc dest/source and make sure 8366 * that we are actually parsing these packets 8367 * correctly -- we should probably use the 8368 * frame control of the packet and disregard 8369 * the current iw_mode */ 8370 8371 network_packet = 8372 is_network_packet(priv, header); 8373 if (network_packet && priv->assoc_network) { 8374 priv->assoc_network->stats.rssi = 8375 stats.rssi; 8376 priv->exp_avg_rssi = 8377 exponential_average(priv->exp_avg_rssi, 8378 stats.rssi, DEPTH_RSSI); 8379 } 8380 8381 IPW_DEBUG_RX("Frame: len=%u\n", 8382 le16_to_cpu(pkt->u.frame.length)); 8383 8384 if (le16_to_cpu(pkt->u.frame.length) < 8385 libipw_get_hdrlen(le16_to_cpu( 8386 header->frame_ctl))) { 8387 IPW_DEBUG_DROP 8388 ("Received packet is too small. " 8389 "Dropping.\n"); 8390 priv->net_dev->stats.rx_errors++; 8391 priv->wstats.discard.misc++; 8392 break; 8393 } 8394 8395 switch (WLAN_FC_GET_TYPE 8396 (le16_to_cpu(header->frame_ctl))) { 8397 8398 case IEEE80211_FTYPE_MGMT: 8399 ipw_handle_mgmt_packet(priv, rxb, 8400 &stats); 8401 break; 8402 8403 case IEEE80211_FTYPE_CTL: 8404 break; 8405 8406 case IEEE80211_FTYPE_DATA: 8407 if (unlikely(!network_packet || 8408 is_duplicate_packet(priv, 8409 header))) 8410 { 8411 IPW_DEBUG_DROP("Dropping: " 8412 "%pM, " 8413 "%pM, " 8414 "%pM\n", 8415 header->addr1, 8416 header->addr2, 8417 header->addr3); 8418 break; 8419 } 8420 8421 ipw_handle_data_packet(priv, rxb, 8422 &stats); 8423 8424 break; 8425 } 8426 break; 8427 } 8428 8429 case RX_HOST_NOTIFICATION_TYPE:{ 8430 IPW_DEBUG_RX 8431 ("Notification: subtype=%02X flags=%02X size=%d\n", 8432 pkt->u.notification.subtype, 8433 pkt->u.notification.flags, 8434 le16_to_cpu(pkt->u.notification.size)); 8435 ipw_rx_notification(priv, &pkt->u.notification); 8436 break; 8437 } 8438 8439 default: 8440 IPW_DEBUG_RX("Bad Rx packet of type %d\n", 8441 pkt->header.message_type); 8442 break; 8443 } 8444 8445 /* For now we just don't re-use anything. We can tweak this 8446 * later to try and re-use notification packets and SKBs that 8447 * fail to Rx correctly */ 8448 if (rxb->skb != NULL) { 8449 dev_kfree_skb_any(rxb->skb); 8450 rxb->skb = NULL; 8451 } 8452 8453 pci_unmap_single(priv->pci_dev, rxb->dma_addr, 8454 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 8455 list_add_tail(&rxb->list, &priv->rxq->rx_used); 8456 8457 i = (i + 1) % RX_QUEUE_SIZE; 8458 8459 /* If there are a lot of unsued frames, restock the Rx queue 8460 * so the ucode won't assert */ 8461 if (fill_rx) { 8462 priv->rxq->read = i; 8463 ipw_rx_queue_replenish(priv); 8464 } 8465 } 8466 8467 /* Backtrack one entry */ 8468 priv->rxq->read = i; 8469 ipw_rx_queue_restock(priv); 8470 } 8471 8472 #define DEFAULT_RTS_THRESHOLD 2304U 8473 #define MIN_RTS_THRESHOLD 1U 8474 #define MAX_RTS_THRESHOLD 2304U 8475 #define DEFAULT_BEACON_INTERVAL 100U 8476 #define DEFAULT_SHORT_RETRY_LIMIT 7U 8477 #define DEFAULT_LONG_RETRY_LIMIT 4U 8478 8479 /** 8480 * ipw_sw_reset 8481 * @option: options to control different reset behaviour 8482 * 0 = reset everything except the 'disable' module_param 8483 * 1 = reset everything and print out driver info (for probe only) 8484 * 2 = reset everything 8485 */ 8486 static int ipw_sw_reset(struct ipw_priv *priv, int option) 8487 { 8488 int band, modulation; 8489 int old_mode = priv->ieee->iw_mode; 8490 8491 /* Initialize module parameter values here */ 8492 priv->config = 0; 8493 8494 /* We default to disabling the LED code as right now it causes 8495 * too many systems to lock up... */ 8496 if (!led_support) 8497 priv->config |= CFG_NO_LED; 8498 8499 if (associate) 8500 priv->config |= CFG_ASSOCIATE; 8501 else 8502 IPW_DEBUG_INFO("Auto associate disabled.\n"); 8503 8504 if (auto_create) 8505 priv->config |= CFG_ADHOC_CREATE; 8506 else 8507 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n"); 8508 8509 priv->config &= ~CFG_STATIC_ESSID; 8510 priv->essid_len = 0; 8511 memset(priv->essid, 0, IW_ESSID_MAX_SIZE); 8512 8513 if (disable && option) { 8514 priv->status |= STATUS_RF_KILL_SW; 8515 IPW_DEBUG_INFO("Radio disabled.\n"); 8516 } 8517 8518 if (default_channel != 0) { 8519 priv->config |= CFG_STATIC_CHANNEL; 8520 priv->channel = default_channel; 8521 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel); 8522 /* TODO: Validate that provided channel is in range */ 8523 } 8524 #ifdef CONFIG_IPW2200_QOS 8525 ipw_qos_init(priv, qos_enable, qos_burst_enable, 8526 burst_duration_CCK, burst_duration_OFDM); 8527 #endif /* CONFIG_IPW2200_QOS */ 8528 8529 switch (network_mode) { 8530 case 1: 8531 priv->ieee->iw_mode = IW_MODE_ADHOC; 8532 priv->net_dev->type = ARPHRD_ETHER; 8533 8534 break; 8535 #ifdef CONFIG_IPW2200_MONITOR 8536 case 2: 8537 priv->ieee->iw_mode = IW_MODE_MONITOR; 8538 #ifdef CONFIG_IPW2200_RADIOTAP 8539 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 8540 #else 8541 priv->net_dev->type = ARPHRD_IEEE80211; 8542 #endif 8543 break; 8544 #endif 8545 default: 8546 case 0: 8547 priv->net_dev->type = ARPHRD_ETHER; 8548 priv->ieee->iw_mode = IW_MODE_INFRA; 8549 break; 8550 } 8551 8552 if (hwcrypto) { 8553 priv->ieee->host_encrypt = 0; 8554 priv->ieee->host_encrypt_msdu = 0; 8555 priv->ieee->host_decrypt = 0; 8556 priv->ieee->host_mc_decrypt = 0; 8557 } 8558 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off"); 8559 8560 /* IPW2200/2915 is abled to do hardware fragmentation. */ 8561 priv->ieee->host_open_frag = 0; 8562 8563 if ((priv->pci_dev->device == 0x4223) || 8564 (priv->pci_dev->device == 0x4224)) { 8565 if (option == 1) 8566 printk(KERN_INFO DRV_NAME 8567 ": Detected Intel PRO/Wireless 2915ABG Network " 8568 "Connection\n"); 8569 priv->ieee->abg_true = 1; 8570 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND; 8571 modulation = LIBIPW_OFDM_MODULATION | 8572 LIBIPW_CCK_MODULATION; 8573 priv->adapter = IPW_2915ABG; 8574 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B; 8575 } else { 8576 if (option == 1) 8577 printk(KERN_INFO DRV_NAME 8578 ": Detected Intel PRO/Wireless 2200BG Network " 8579 "Connection\n"); 8580 8581 priv->ieee->abg_true = 0; 8582 band = LIBIPW_24GHZ_BAND; 8583 modulation = LIBIPW_OFDM_MODULATION | 8584 LIBIPW_CCK_MODULATION; 8585 priv->adapter = IPW_2200BG; 8586 priv->ieee->mode = IEEE_G | IEEE_B; 8587 } 8588 8589 priv->ieee->freq_band = band; 8590 priv->ieee->modulation = modulation; 8591 8592 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK; 8593 8594 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; 8595 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; 8596 8597 priv->rts_threshold = DEFAULT_RTS_THRESHOLD; 8598 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; 8599 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; 8600 8601 /* If power management is turned on, default to AC mode */ 8602 priv->power_mode = IPW_POWER_AC; 8603 priv->tx_power = IPW_TX_POWER_DEFAULT; 8604 8605 return old_mode == priv->ieee->iw_mode; 8606 } 8607 8608 /* 8609 * This file defines the Wireless Extension handlers. It does not 8610 * define any methods of hardware manipulation and relies on the 8611 * functions defined in ipw_main to provide the HW interaction. 8612 * 8613 * The exception to this is the use of the ipw_get_ordinal() 8614 * function used to poll the hardware vs. making unnecessary calls. 8615 * 8616 */ 8617 8618 static int ipw_set_channel(struct ipw_priv *priv, u8 channel) 8619 { 8620 if (channel == 0) { 8621 IPW_DEBUG_INFO("Setting channel to ANY (0)\n"); 8622 priv->config &= ~CFG_STATIC_CHANNEL; 8623 IPW_DEBUG_ASSOC("Attempting to associate with new " 8624 "parameters.\n"); 8625 ipw_associate(priv); 8626 return 0; 8627 } 8628 8629 priv->config |= CFG_STATIC_CHANNEL; 8630 8631 if (priv->channel == channel) { 8632 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n", 8633 channel); 8634 return 0; 8635 } 8636 8637 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel); 8638 priv->channel = channel; 8639 8640 #ifdef CONFIG_IPW2200_MONITOR 8641 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 8642 int i; 8643 if (priv->status & STATUS_SCANNING) { 8644 IPW_DEBUG_SCAN("Scan abort triggered due to " 8645 "channel change.\n"); 8646 ipw_abort_scan(priv); 8647 } 8648 8649 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--) 8650 udelay(10); 8651 8652 if (priv->status & STATUS_SCANNING) 8653 IPW_DEBUG_SCAN("Still scanning...\n"); 8654 else 8655 IPW_DEBUG_SCAN("Took %dms to abort current scan\n", 8656 1000 - i); 8657 8658 return 0; 8659 } 8660 #endif /* CONFIG_IPW2200_MONITOR */ 8661 8662 /* Network configuration changed -- force [re]association */ 8663 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n"); 8664 if (!ipw_disassociate(priv)) 8665 ipw_associate(priv); 8666 8667 return 0; 8668 } 8669 8670 static int ipw_wx_set_freq(struct net_device *dev, 8671 struct iw_request_info *info, 8672 union iwreq_data *wrqu, char *extra) 8673 { 8674 struct ipw_priv *priv = libipw_priv(dev); 8675 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 8676 struct iw_freq *fwrq = &wrqu->freq; 8677 int ret = 0, i; 8678 u8 channel, flags; 8679 int band; 8680 8681 if (fwrq->m == 0) { 8682 IPW_DEBUG_WX("SET Freq/Channel -> any\n"); 8683 mutex_lock(&priv->mutex); 8684 ret = ipw_set_channel(priv, 0); 8685 mutex_unlock(&priv->mutex); 8686 return ret; 8687 } 8688 /* if setting by freq convert to channel */ 8689 if (fwrq->e == 1) { 8690 channel = libipw_freq_to_channel(priv->ieee, fwrq->m); 8691 if (channel == 0) 8692 return -EINVAL; 8693 } else 8694 channel = fwrq->m; 8695 8696 if (!(band = libipw_is_valid_channel(priv->ieee, channel))) 8697 return -EINVAL; 8698 8699 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 8700 i = libipw_channel_to_index(priv->ieee, channel); 8701 if (i == -1) 8702 return -EINVAL; 8703 8704 flags = (band == LIBIPW_24GHZ_BAND) ? 8705 geo->bg[i].flags : geo->a[i].flags; 8706 if (flags & LIBIPW_CH_PASSIVE_ONLY) { 8707 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n"); 8708 return -EINVAL; 8709 } 8710 } 8711 8712 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); 8713 mutex_lock(&priv->mutex); 8714 ret = ipw_set_channel(priv, channel); 8715 mutex_unlock(&priv->mutex); 8716 return ret; 8717 } 8718 8719 static int ipw_wx_get_freq(struct net_device *dev, 8720 struct iw_request_info *info, 8721 union iwreq_data *wrqu, char *extra) 8722 { 8723 struct ipw_priv *priv = libipw_priv(dev); 8724 8725 wrqu->freq.e = 0; 8726 8727 /* If we are associated, trying to associate, or have a statically 8728 * configured CHANNEL then return that; otherwise return ANY */ 8729 mutex_lock(&priv->mutex); 8730 if (priv->config & CFG_STATIC_CHANNEL || 8731 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) { 8732 int i; 8733 8734 i = libipw_channel_to_index(priv->ieee, priv->channel); 8735 BUG_ON(i == -1); 8736 wrqu->freq.e = 1; 8737 8738 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { 8739 case LIBIPW_52GHZ_BAND: 8740 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000; 8741 break; 8742 8743 case LIBIPW_24GHZ_BAND: 8744 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000; 8745 break; 8746 8747 default: 8748 BUG(); 8749 } 8750 } else 8751 wrqu->freq.m = 0; 8752 8753 mutex_unlock(&priv->mutex); 8754 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); 8755 return 0; 8756 } 8757 8758 static int ipw_wx_set_mode(struct net_device *dev, 8759 struct iw_request_info *info, 8760 union iwreq_data *wrqu, char *extra) 8761 { 8762 struct ipw_priv *priv = libipw_priv(dev); 8763 int err = 0; 8764 8765 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode); 8766 8767 switch (wrqu->mode) { 8768 #ifdef CONFIG_IPW2200_MONITOR 8769 case IW_MODE_MONITOR: 8770 #endif 8771 case IW_MODE_ADHOC: 8772 case IW_MODE_INFRA: 8773 break; 8774 case IW_MODE_AUTO: 8775 wrqu->mode = IW_MODE_INFRA; 8776 break; 8777 default: 8778 return -EINVAL; 8779 } 8780 if (wrqu->mode == priv->ieee->iw_mode) 8781 return 0; 8782 8783 mutex_lock(&priv->mutex); 8784 8785 ipw_sw_reset(priv, 0); 8786 8787 #ifdef CONFIG_IPW2200_MONITOR 8788 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 8789 priv->net_dev->type = ARPHRD_ETHER; 8790 8791 if (wrqu->mode == IW_MODE_MONITOR) 8792 #ifdef CONFIG_IPW2200_RADIOTAP 8793 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 8794 #else 8795 priv->net_dev->type = ARPHRD_IEEE80211; 8796 #endif 8797 #endif /* CONFIG_IPW2200_MONITOR */ 8798 8799 /* Free the existing firmware and reset the fw_loaded 8800 * flag so ipw_load() will bring in the new firmware */ 8801 free_firmware(); 8802 8803 priv->ieee->iw_mode = wrqu->mode; 8804 8805 schedule_work(&priv->adapter_restart); 8806 mutex_unlock(&priv->mutex); 8807 return err; 8808 } 8809 8810 static int ipw_wx_get_mode(struct net_device *dev, 8811 struct iw_request_info *info, 8812 union iwreq_data *wrqu, char *extra) 8813 { 8814 struct ipw_priv *priv = libipw_priv(dev); 8815 mutex_lock(&priv->mutex); 8816 wrqu->mode = priv->ieee->iw_mode; 8817 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode); 8818 mutex_unlock(&priv->mutex); 8819 return 0; 8820 } 8821 8822 /* Values are in microsecond */ 8823 static const s32 timeout_duration[] = { 8824 350000, 8825 250000, 8826 75000, 8827 37000, 8828 25000, 8829 }; 8830 8831 static const s32 period_duration[] = { 8832 400000, 8833 700000, 8834 1000000, 8835 1000000, 8836 1000000 8837 }; 8838 8839 static int ipw_wx_get_range(struct net_device *dev, 8840 struct iw_request_info *info, 8841 union iwreq_data *wrqu, char *extra) 8842 { 8843 struct ipw_priv *priv = libipw_priv(dev); 8844 struct iw_range *range = (struct iw_range *)extra; 8845 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 8846 int i = 0, j; 8847 8848 wrqu->data.length = sizeof(*range); 8849 memset(range, 0, sizeof(*range)); 8850 8851 /* 54Mbs == ~27 Mb/s real (802.11g) */ 8852 range->throughput = 27 * 1000 * 1000; 8853 8854 range->max_qual.qual = 100; 8855 /* TODO: Find real max RSSI and stick here */ 8856 range->max_qual.level = 0; 8857 range->max_qual.noise = 0; 8858 range->max_qual.updated = 7; /* Updated all three */ 8859 8860 range->avg_qual.qual = 70; 8861 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ 8862 range->avg_qual.level = 0; /* FIXME to real average level */ 8863 range->avg_qual.noise = 0; 8864 range->avg_qual.updated = 7; /* Updated all three */ 8865 mutex_lock(&priv->mutex); 8866 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES); 8867 8868 for (i = 0; i < range->num_bitrates; i++) 8869 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) * 8870 500000; 8871 8872 range->max_rts = DEFAULT_RTS_THRESHOLD; 8873 range->min_frag = MIN_FRAG_THRESHOLD; 8874 range->max_frag = MAX_FRAG_THRESHOLD; 8875 8876 range->encoding_size[0] = 5; 8877 range->encoding_size[1] = 13; 8878 range->num_encoding_sizes = 2; 8879 range->max_encoding_tokens = WEP_KEYS; 8880 8881 /* Set the Wireless Extension versions */ 8882 range->we_version_compiled = WIRELESS_EXT; 8883 range->we_version_source = 18; 8884 8885 i = 0; 8886 if (priv->ieee->mode & (IEEE_B | IEEE_G)) { 8887 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) { 8888 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 8889 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY)) 8890 continue; 8891 8892 range->freq[i].i = geo->bg[j].channel; 8893 range->freq[i].m = geo->bg[j].freq * 100000; 8894 range->freq[i].e = 1; 8895 i++; 8896 } 8897 } 8898 8899 if (priv->ieee->mode & IEEE_A) { 8900 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) { 8901 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && 8902 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY)) 8903 continue; 8904 8905 range->freq[i].i = geo->a[j].channel; 8906 range->freq[i].m = geo->a[j].freq * 100000; 8907 range->freq[i].e = 1; 8908 i++; 8909 } 8910 } 8911 8912 range->num_channels = i; 8913 range->num_frequency = i; 8914 8915 mutex_unlock(&priv->mutex); 8916 8917 /* Event capability (kernel + driver) */ 8918 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 8919 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) | 8920 IW_EVENT_CAPA_MASK(SIOCGIWAP) | 8921 IW_EVENT_CAPA_MASK(SIOCGIWSCAN)); 8922 range->event_capa[1] = IW_EVENT_CAPA_K_1; 8923 8924 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 8925 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; 8926 8927 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE; 8928 8929 IPW_DEBUG_WX("GET Range\n"); 8930 return 0; 8931 } 8932 8933 static int ipw_wx_set_wap(struct net_device *dev, 8934 struct iw_request_info *info, 8935 union iwreq_data *wrqu, char *extra) 8936 { 8937 struct ipw_priv *priv = libipw_priv(dev); 8938 8939 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 8940 return -EINVAL; 8941 mutex_lock(&priv->mutex); 8942 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || 8943 is_zero_ether_addr(wrqu->ap_addr.sa_data)) { 8944 /* we disable mandatory BSSID association */ 8945 IPW_DEBUG_WX("Setting AP BSSID to ANY\n"); 8946 priv->config &= ~CFG_STATIC_BSSID; 8947 IPW_DEBUG_ASSOC("Attempting to associate with new " 8948 "parameters.\n"); 8949 ipw_associate(priv); 8950 mutex_unlock(&priv->mutex); 8951 return 0; 8952 } 8953 8954 priv->config |= CFG_STATIC_BSSID; 8955 if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) { 8956 IPW_DEBUG_WX("BSSID set to current BSSID.\n"); 8957 mutex_unlock(&priv->mutex); 8958 return 0; 8959 } 8960 8961 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n", 8962 wrqu->ap_addr.sa_data); 8963 8964 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN); 8965 8966 /* Network configuration changed -- force [re]association */ 8967 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n"); 8968 if (!ipw_disassociate(priv)) 8969 ipw_associate(priv); 8970 8971 mutex_unlock(&priv->mutex); 8972 return 0; 8973 } 8974 8975 static int ipw_wx_get_wap(struct net_device *dev, 8976 struct iw_request_info *info, 8977 union iwreq_data *wrqu, char *extra) 8978 { 8979 struct ipw_priv *priv = libipw_priv(dev); 8980 8981 /* If we are associated, trying to associate, or have a statically 8982 * configured BSSID then return that; otherwise return ANY */ 8983 mutex_lock(&priv->mutex); 8984 if (priv->config & CFG_STATIC_BSSID || 8985 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 8986 wrqu->ap_addr.sa_family = ARPHRD_ETHER; 8987 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); 8988 } else 8989 eth_zero_addr(wrqu->ap_addr.sa_data); 8990 8991 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", 8992 wrqu->ap_addr.sa_data); 8993 mutex_unlock(&priv->mutex); 8994 return 0; 8995 } 8996 8997 static int ipw_wx_set_essid(struct net_device *dev, 8998 struct iw_request_info *info, 8999 union iwreq_data *wrqu, char *extra) 9000 { 9001 struct ipw_priv *priv = libipw_priv(dev); 9002 int length; 9003 9004 mutex_lock(&priv->mutex); 9005 9006 if (!wrqu->essid.flags) 9007 { 9008 IPW_DEBUG_WX("Setting ESSID to ANY\n"); 9009 ipw_disassociate(priv); 9010 priv->config &= ~CFG_STATIC_ESSID; 9011 ipw_associate(priv); 9012 mutex_unlock(&priv->mutex); 9013 return 0; 9014 } 9015 9016 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE); 9017 9018 priv->config |= CFG_STATIC_ESSID; 9019 9020 if (priv->essid_len == length && !memcmp(priv->essid, extra, length) 9021 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) { 9022 IPW_DEBUG_WX("ESSID set to current ESSID.\n"); 9023 mutex_unlock(&priv->mutex); 9024 return 0; 9025 } 9026 9027 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length); 9028 9029 priv->essid_len = length; 9030 memcpy(priv->essid, extra, priv->essid_len); 9031 9032 /* Network configuration changed -- force [re]association */ 9033 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n"); 9034 if (!ipw_disassociate(priv)) 9035 ipw_associate(priv); 9036 9037 mutex_unlock(&priv->mutex); 9038 return 0; 9039 } 9040 9041 static int ipw_wx_get_essid(struct net_device *dev, 9042 struct iw_request_info *info, 9043 union iwreq_data *wrqu, char *extra) 9044 { 9045 struct ipw_priv *priv = libipw_priv(dev); 9046 9047 /* If we are associated, trying to associate, or have a statically 9048 * configured ESSID then return that; otherwise return ANY */ 9049 mutex_lock(&priv->mutex); 9050 if (priv->config & CFG_STATIC_ESSID || 9051 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 9052 IPW_DEBUG_WX("Getting essid: '%*pE'\n", 9053 priv->essid_len, priv->essid); 9054 memcpy(extra, priv->essid, priv->essid_len); 9055 wrqu->essid.length = priv->essid_len; 9056 wrqu->essid.flags = 1; /* active */ 9057 } else { 9058 IPW_DEBUG_WX("Getting essid: ANY\n"); 9059 wrqu->essid.length = 0; 9060 wrqu->essid.flags = 0; /* active */ 9061 } 9062 mutex_unlock(&priv->mutex); 9063 return 0; 9064 } 9065 9066 static int ipw_wx_set_nick(struct net_device *dev, 9067 struct iw_request_info *info, 9068 union iwreq_data *wrqu, char *extra) 9069 { 9070 struct ipw_priv *priv = libipw_priv(dev); 9071 9072 IPW_DEBUG_WX("Setting nick to '%s'\n", extra); 9073 if (wrqu->data.length > IW_ESSID_MAX_SIZE) 9074 return -E2BIG; 9075 mutex_lock(&priv->mutex); 9076 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); 9077 memset(priv->nick, 0, sizeof(priv->nick)); 9078 memcpy(priv->nick, extra, wrqu->data.length); 9079 IPW_DEBUG_TRACE("<<\n"); 9080 mutex_unlock(&priv->mutex); 9081 return 0; 9082 9083 } 9084 9085 static int ipw_wx_get_nick(struct net_device *dev, 9086 struct iw_request_info *info, 9087 union iwreq_data *wrqu, char *extra) 9088 { 9089 struct ipw_priv *priv = libipw_priv(dev); 9090 IPW_DEBUG_WX("Getting nick\n"); 9091 mutex_lock(&priv->mutex); 9092 wrqu->data.length = strlen(priv->nick); 9093 memcpy(extra, priv->nick, wrqu->data.length); 9094 wrqu->data.flags = 1; /* active */ 9095 mutex_unlock(&priv->mutex); 9096 return 0; 9097 } 9098 9099 static int ipw_wx_set_sens(struct net_device *dev, 9100 struct iw_request_info *info, 9101 union iwreq_data *wrqu, char *extra) 9102 { 9103 struct ipw_priv *priv = libipw_priv(dev); 9104 int err = 0; 9105 9106 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value); 9107 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value); 9108 mutex_lock(&priv->mutex); 9109 9110 if (wrqu->sens.fixed == 0) 9111 { 9112 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; 9113 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; 9114 goto out; 9115 } 9116 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) || 9117 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) { 9118 err = -EINVAL; 9119 goto out; 9120 } 9121 9122 priv->roaming_threshold = wrqu->sens.value; 9123 priv->disassociate_threshold = 3*wrqu->sens.value; 9124 out: 9125 mutex_unlock(&priv->mutex); 9126 return err; 9127 } 9128 9129 static int ipw_wx_get_sens(struct net_device *dev, 9130 struct iw_request_info *info, 9131 union iwreq_data *wrqu, char *extra) 9132 { 9133 struct ipw_priv *priv = libipw_priv(dev); 9134 mutex_lock(&priv->mutex); 9135 wrqu->sens.fixed = 1; 9136 wrqu->sens.value = priv->roaming_threshold; 9137 mutex_unlock(&priv->mutex); 9138 9139 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n", 9140 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); 9141 9142 return 0; 9143 } 9144 9145 static int ipw_wx_set_rate(struct net_device *dev, 9146 struct iw_request_info *info, 9147 union iwreq_data *wrqu, char *extra) 9148 { 9149 /* TODO: We should use semaphores or locks for access to priv */ 9150 struct ipw_priv *priv = libipw_priv(dev); 9151 u32 target_rate = wrqu->bitrate.value; 9152 u32 fixed, mask; 9153 9154 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */ 9155 /* value = X, fixed = 1 means only rate X */ 9156 /* value = X, fixed = 0 means all rates lower equal X */ 9157 9158 if (target_rate == -1) { 9159 fixed = 0; 9160 mask = LIBIPW_DEFAULT_RATES_MASK; 9161 /* Now we should reassociate */ 9162 goto apply; 9163 } 9164 9165 mask = 0; 9166 fixed = wrqu->bitrate.fixed; 9167 9168 if (target_rate == 1000000 || !fixed) 9169 mask |= LIBIPW_CCK_RATE_1MB_MASK; 9170 if (target_rate == 1000000) 9171 goto apply; 9172 9173 if (target_rate == 2000000 || !fixed) 9174 mask |= LIBIPW_CCK_RATE_2MB_MASK; 9175 if (target_rate == 2000000) 9176 goto apply; 9177 9178 if (target_rate == 5500000 || !fixed) 9179 mask |= LIBIPW_CCK_RATE_5MB_MASK; 9180 if (target_rate == 5500000) 9181 goto apply; 9182 9183 if (target_rate == 6000000 || !fixed) 9184 mask |= LIBIPW_OFDM_RATE_6MB_MASK; 9185 if (target_rate == 6000000) 9186 goto apply; 9187 9188 if (target_rate == 9000000 || !fixed) 9189 mask |= LIBIPW_OFDM_RATE_9MB_MASK; 9190 if (target_rate == 9000000) 9191 goto apply; 9192 9193 if (target_rate == 11000000 || !fixed) 9194 mask |= LIBIPW_CCK_RATE_11MB_MASK; 9195 if (target_rate == 11000000) 9196 goto apply; 9197 9198 if (target_rate == 12000000 || !fixed) 9199 mask |= LIBIPW_OFDM_RATE_12MB_MASK; 9200 if (target_rate == 12000000) 9201 goto apply; 9202 9203 if (target_rate == 18000000 || !fixed) 9204 mask |= LIBIPW_OFDM_RATE_18MB_MASK; 9205 if (target_rate == 18000000) 9206 goto apply; 9207 9208 if (target_rate == 24000000 || !fixed) 9209 mask |= LIBIPW_OFDM_RATE_24MB_MASK; 9210 if (target_rate == 24000000) 9211 goto apply; 9212 9213 if (target_rate == 36000000 || !fixed) 9214 mask |= LIBIPW_OFDM_RATE_36MB_MASK; 9215 if (target_rate == 36000000) 9216 goto apply; 9217 9218 if (target_rate == 48000000 || !fixed) 9219 mask |= LIBIPW_OFDM_RATE_48MB_MASK; 9220 if (target_rate == 48000000) 9221 goto apply; 9222 9223 if (target_rate == 54000000 || !fixed) 9224 mask |= LIBIPW_OFDM_RATE_54MB_MASK; 9225 if (target_rate == 54000000) 9226 goto apply; 9227 9228 IPW_DEBUG_WX("invalid rate specified, returning error\n"); 9229 return -EINVAL; 9230 9231 apply: 9232 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n", 9233 mask, fixed ? "fixed" : "sub-rates"); 9234 mutex_lock(&priv->mutex); 9235 if (mask == LIBIPW_DEFAULT_RATES_MASK) { 9236 priv->config &= ~CFG_FIXED_RATE; 9237 ipw_set_fixed_rate(priv, priv->ieee->mode); 9238 } else 9239 priv->config |= CFG_FIXED_RATE; 9240 9241 if (priv->rates_mask == mask) { 9242 IPW_DEBUG_WX("Mask set to current mask.\n"); 9243 mutex_unlock(&priv->mutex); 9244 return 0; 9245 } 9246 9247 priv->rates_mask = mask; 9248 9249 /* Network configuration changed -- force [re]association */ 9250 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n"); 9251 if (!ipw_disassociate(priv)) 9252 ipw_associate(priv); 9253 9254 mutex_unlock(&priv->mutex); 9255 return 0; 9256 } 9257 9258 static int ipw_wx_get_rate(struct net_device *dev, 9259 struct iw_request_info *info, 9260 union iwreq_data *wrqu, char *extra) 9261 { 9262 struct ipw_priv *priv = libipw_priv(dev); 9263 mutex_lock(&priv->mutex); 9264 wrqu->bitrate.value = priv->last_rate; 9265 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0; 9266 mutex_unlock(&priv->mutex); 9267 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); 9268 return 0; 9269 } 9270 9271 static int ipw_wx_set_rts(struct net_device *dev, 9272 struct iw_request_info *info, 9273 union iwreq_data *wrqu, char *extra) 9274 { 9275 struct ipw_priv *priv = libipw_priv(dev); 9276 mutex_lock(&priv->mutex); 9277 if (wrqu->rts.disabled || !wrqu->rts.fixed) 9278 priv->rts_threshold = DEFAULT_RTS_THRESHOLD; 9279 else { 9280 if (wrqu->rts.value < MIN_RTS_THRESHOLD || 9281 wrqu->rts.value > MAX_RTS_THRESHOLD) { 9282 mutex_unlock(&priv->mutex); 9283 return -EINVAL; 9284 } 9285 priv->rts_threshold = wrqu->rts.value; 9286 } 9287 9288 ipw_send_rts_threshold(priv, priv->rts_threshold); 9289 mutex_unlock(&priv->mutex); 9290 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold); 9291 return 0; 9292 } 9293 9294 static int ipw_wx_get_rts(struct net_device *dev, 9295 struct iw_request_info *info, 9296 union iwreq_data *wrqu, char *extra) 9297 { 9298 struct ipw_priv *priv = libipw_priv(dev); 9299 mutex_lock(&priv->mutex); 9300 wrqu->rts.value = priv->rts_threshold; 9301 wrqu->rts.fixed = 0; /* no auto select */ 9302 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD); 9303 mutex_unlock(&priv->mutex); 9304 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value); 9305 return 0; 9306 } 9307 9308 static int ipw_wx_set_txpow(struct net_device *dev, 9309 struct iw_request_info *info, 9310 union iwreq_data *wrqu, char *extra) 9311 { 9312 struct ipw_priv *priv = libipw_priv(dev); 9313 int err = 0; 9314 9315 mutex_lock(&priv->mutex); 9316 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) { 9317 err = -EINPROGRESS; 9318 goto out; 9319 } 9320 9321 if (!wrqu->power.fixed) 9322 wrqu->power.value = IPW_TX_POWER_DEFAULT; 9323 9324 if (wrqu->power.flags != IW_TXPOW_DBM) { 9325 err = -EINVAL; 9326 goto out; 9327 } 9328 9329 if ((wrqu->power.value > IPW_TX_POWER_MAX) || 9330 (wrqu->power.value < IPW_TX_POWER_MIN)) { 9331 err = -EINVAL; 9332 goto out; 9333 } 9334 9335 priv->tx_power = wrqu->power.value; 9336 err = ipw_set_tx_power(priv); 9337 out: 9338 mutex_unlock(&priv->mutex); 9339 return err; 9340 } 9341 9342 static int ipw_wx_get_txpow(struct net_device *dev, 9343 struct iw_request_info *info, 9344 union iwreq_data *wrqu, char *extra) 9345 { 9346 struct ipw_priv *priv = libipw_priv(dev); 9347 mutex_lock(&priv->mutex); 9348 wrqu->power.value = priv->tx_power; 9349 wrqu->power.fixed = 1; 9350 wrqu->power.flags = IW_TXPOW_DBM; 9351 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; 9352 mutex_unlock(&priv->mutex); 9353 9354 IPW_DEBUG_WX("GET TX Power -> %s %d\n", 9355 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); 9356 9357 return 0; 9358 } 9359 9360 static int ipw_wx_set_frag(struct net_device *dev, 9361 struct iw_request_info *info, 9362 union iwreq_data *wrqu, char *extra) 9363 { 9364 struct ipw_priv *priv = libipw_priv(dev); 9365 mutex_lock(&priv->mutex); 9366 if (wrqu->frag.disabled || !wrqu->frag.fixed) 9367 priv->ieee->fts = DEFAULT_FTS; 9368 else { 9369 if (wrqu->frag.value < MIN_FRAG_THRESHOLD || 9370 wrqu->frag.value > MAX_FRAG_THRESHOLD) { 9371 mutex_unlock(&priv->mutex); 9372 return -EINVAL; 9373 } 9374 9375 priv->ieee->fts = wrqu->frag.value & ~0x1; 9376 } 9377 9378 ipw_send_frag_threshold(priv, wrqu->frag.value); 9379 mutex_unlock(&priv->mutex); 9380 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value); 9381 return 0; 9382 } 9383 9384 static int ipw_wx_get_frag(struct net_device *dev, 9385 struct iw_request_info *info, 9386 union iwreq_data *wrqu, char *extra) 9387 { 9388 struct ipw_priv *priv = libipw_priv(dev); 9389 mutex_lock(&priv->mutex); 9390 wrqu->frag.value = priv->ieee->fts; 9391 wrqu->frag.fixed = 0; /* no auto select */ 9392 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS); 9393 mutex_unlock(&priv->mutex); 9394 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); 9395 9396 return 0; 9397 } 9398 9399 static int ipw_wx_set_retry(struct net_device *dev, 9400 struct iw_request_info *info, 9401 union iwreq_data *wrqu, char *extra) 9402 { 9403 struct ipw_priv *priv = libipw_priv(dev); 9404 9405 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) 9406 return -EINVAL; 9407 9408 if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) 9409 return 0; 9410 9411 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255) 9412 return -EINVAL; 9413 9414 mutex_lock(&priv->mutex); 9415 if (wrqu->retry.flags & IW_RETRY_SHORT) 9416 priv->short_retry_limit = (u8) wrqu->retry.value; 9417 else if (wrqu->retry.flags & IW_RETRY_LONG) 9418 priv->long_retry_limit = (u8) wrqu->retry.value; 9419 else { 9420 priv->short_retry_limit = (u8) wrqu->retry.value; 9421 priv->long_retry_limit = (u8) wrqu->retry.value; 9422 } 9423 9424 ipw_send_retry_limit(priv, priv->short_retry_limit, 9425 priv->long_retry_limit); 9426 mutex_unlock(&priv->mutex); 9427 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n", 9428 priv->short_retry_limit, priv->long_retry_limit); 9429 return 0; 9430 } 9431 9432 static int ipw_wx_get_retry(struct net_device *dev, 9433 struct iw_request_info *info, 9434 union iwreq_data *wrqu, char *extra) 9435 { 9436 struct ipw_priv *priv = libipw_priv(dev); 9437 9438 mutex_lock(&priv->mutex); 9439 wrqu->retry.disabled = 0; 9440 9441 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) { 9442 mutex_unlock(&priv->mutex); 9443 return -EINVAL; 9444 } 9445 9446 if (wrqu->retry.flags & IW_RETRY_LONG) { 9447 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; 9448 wrqu->retry.value = priv->long_retry_limit; 9449 } else if (wrqu->retry.flags & IW_RETRY_SHORT) { 9450 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT; 9451 wrqu->retry.value = priv->short_retry_limit; 9452 } else { 9453 wrqu->retry.flags = IW_RETRY_LIMIT; 9454 wrqu->retry.value = priv->short_retry_limit; 9455 } 9456 mutex_unlock(&priv->mutex); 9457 9458 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value); 9459 9460 return 0; 9461 } 9462 9463 static int ipw_wx_set_scan(struct net_device *dev, 9464 struct iw_request_info *info, 9465 union iwreq_data *wrqu, char *extra) 9466 { 9467 struct ipw_priv *priv = libipw_priv(dev); 9468 struct iw_scan_req *req = (struct iw_scan_req *)extra; 9469 struct delayed_work *work = NULL; 9470 9471 mutex_lock(&priv->mutex); 9472 9473 priv->user_requested_scan = 1; 9474 9475 if (wrqu->data.length == sizeof(struct iw_scan_req)) { 9476 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 9477 int len = min((int)req->essid_len, 9478 (int)sizeof(priv->direct_scan_ssid)); 9479 memcpy(priv->direct_scan_ssid, req->essid, len); 9480 priv->direct_scan_ssid_len = len; 9481 work = &priv->request_direct_scan; 9482 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) { 9483 work = &priv->request_passive_scan; 9484 } 9485 } else { 9486 /* Normal active broadcast scan */ 9487 work = &priv->request_scan; 9488 } 9489 9490 mutex_unlock(&priv->mutex); 9491 9492 IPW_DEBUG_WX("Start scan\n"); 9493 9494 schedule_delayed_work(work, 0); 9495 9496 return 0; 9497 } 9498 9499 static int ipw_wx_get_scan(struct net_device *dev, 9500 struct iw_request_info *info, 9501 union iwreq_data *wrqu, char *extra) 9502 { 9503 struct ipw_priv *priv = libipw_priv(dev); 9504 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); 9505 } 9506 9507 static int ipw_wx_set_encode(struct net_device *dev, 9508 struct iw_request_info *info, 9509 union iwreq_data *wrqu, char *key) 9510 { 9511 struct ipw_priv *priv = libipw_priv(dev); 9512 int ret; 9513 u32 cap = priv->capability; 9514 9515 mutex_lock(&priv->mutex); 9516 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key); 9517 9518 /* In IBSS mode, we need to notify the firmware to update 9519 * the beacon info after we changed the capability. */ 9520 if (cap != priv->capability && 9521 priv->ieee->iw_mode == IW_MODE_ADHOC && 9522 priv->status & STATUS_ASSOCIATED) 9523 ipw_disassociate(priv); 9524 9525 mutex_unlock(&priv->mutex); 9526 return ret; 9527 } 9528 9529 static int ipw_wx_get_encode(struct net_device *dev, 9530 struct iw_request_info *info, 9531 union iwreq_data *wrqu, char *key) 9532 { 9533 struct ipw_priv *priv = libipw_priv(dev); 9534 return libipw_wx_get_encode(priv->ieee, info, wrqu, key); 9535 } 9536 9537 static int ipw_wx_set_power(struct net_device *dev, 9538 struct iw_request_info *info, 9539 union iwreq_data *wrqu, char *extra) 9540 { 9541 struct ipw_priv *priv = libipw_priv(dev); 9542 int err; 9543 mutex_lock(&priv->mutex); 9544 if (wrqu->power.disabled) { 9545 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 9546 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM); 9547 if (err) { 9548 IPW_DEBUG_WX("failed setting power mode.\n"); 9549 mutex_unlock(&priv->mutex); 9550 return err; 9551 } 9552 IPW_DEBUG_WX("SET Power Management Mode -> off\n"); 9553 mutex_unlock(&priv->mutex); 9554 return 0; 9555 } 9556 9557 switch (wrqu->power.flags & IW_POWER_MODE) { 9558 case IW_POWER_ON: /* If not specified */ 9559 case IW_POWER_MODE: /* If set all mask */ 9560 case IW_POWER_ALL_R: /* If explicitly state all */ 9561 break; 9562 default: /* Otherwise we don't support it */ 9563 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", 9564 wrqu->power.flags); 9565 mutex_unlock(&priv->mutex); 9566 return -EOPNOTSUPP; 9567 } 9568 9569 /* If the user hasn't specified a power management mode yet, default 9570 * to BATTERY */ 9571 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC) 9572 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY; 9573 else 9574 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; 9575 9576 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); 9577 if (err) { 9578 IPW_DEBUG_WX("failed setting power mode.\n"); 9579 mutex_unlock(&priv->mutex); 9580 return err; 9581 } 9582 9583 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); 9584 mutex_unlock(&priv->mutex); 9585 return 0; 9586 } 9587 9588 static int ipw_wx_get_power(struct net_device *dev, 9589 struct iw_request_info *info, 9590 union iwreq_data *wrqu, char *extra) 9591 { 9592 struct ipw_priv *priv = libipw_priv(dev); 9593 mutex_lock(&priv->mutex); 9594 if (!(priv->power_mode & IPW_POWER_ENABLED)) 9595 wrqu->power.disabled = 1; 9596 else 9597 wrqu->power.disabled = 0; 9598 9599 mutex_unlock(&priv->mutex); 9600 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); 9601 9602 return 0; 9603 } 9604 9605 static int ipw_wx_set_powermode(struct net_device *dev, 9606 struct iw_request_info *info, 9607 union iwreq_data *wrqu, char *extra) 9608 { 9609 struct ipw_priv *priv = libipw_priv(dev); 9610 int mode = *(int *)extra; 9611 int err; 9612 9613 mutex_lock(&priv->mutex); 9614 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) 9615 mode = IPW_POWER_AC; 9616 9617 if (IPW_POWER_LEVEL(priv->power_mode) != mode) { 9618 err = ipw_send_power_mode(priv, mode); 9619 if (err) { 9620 IPW_DEBUG_WX("failed setting power mode.\n"); 9621 mutex_unlock(&priv->mutex); 9622 return err; 9623 } 9624 priv->power_mode = IPW_POWER_ENABLED | mode; 9625 } 9626 mutex_unlock(&priv->mutex); 9627 return 0; 9628 } 9629 9630 #define MAX_WX_STRING 80 9631 static int ipw_wx_get_powermode(struct net_device *dev, 9632 struct iw_request_info *info, 9633 union iwreq_data *wrqu, char *extra) 9634 { 9635 struct ipw_priv *priv = libipw_priv(dev); 9636 int level = IPW_POWER_LEVEL(priv->power_mode); 9637 char *p = extra; 9638 9639 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level); 9640 9641 switch (level) { 9642 case IPW_POWER_AC: 9643 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)"); 9644 break; 9645 case IPW_POWER_BATTERY: 9646 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)"); 9647 break; 9648 default: 9649 p += snprintf(p, MAX_WX_STRING - (p - extra), 9650 "(Timeout %dms, Period %dms)", 9651 timeout_duration[level - 1] / 1000, 9652 period_duration[level - 1] / 1000); 9653 } 9654 9655 if (!(priv->power_mode & IPW_POWER_ENABLED)) 9656 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF"); 9657 9658 wrqu->data.length = p - extra + 1; 9659 9660 return 0; 9661 } 9662 9663 static int ipw_wx_set_wireless_mode(struct net_device *dev, 9664 struct iw_request_info *info, 9665 union iwreq_data *wrqu, char *extra) 9666 { 9667 struct ipw_priv *priv = libipw_priv(dev); 9668 int mode = *(int *)extra; 9669 u8 band = 0, modulation = 0; 9670 9671 if (mode == 0 || mode & ~IEEE_MODE_MASK) { 9672 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode); 9673 return -EINVAL; 9674 } 9675 mutex_lock(&priv->mutex); 9676 if (priv->adapter == IPW_2915ABG) { 9677 priv->ieee->abg_true = 1; 9678 if (mode & IEEE_A) { 9679 band |= LIBIPW_52GHZ_BAND; 9680 modulation |= LIBIPW_OFDM_MODULATION; 9681 } else 9682 priv->ieee->abg_true = 0; 9683 } else { 9684 if (mode & IEEE_A) { 9685 IPW_WARNING("Attempt to set 2200BG into " 9686 "802.11a mode\n"); 9687 mutex_unlock(&priv->mutex); 9688 return -EINVAL; 9689 } 9690 9691 priv->ieee->abg_true = 0; 9692 } 9693 9694 if (mode & IEEE_B) { 9695 band |= LIBIPW_24GHZ_BAND; 9696 modulation |= LIBIPW_CCK_MODULATION; 9697 } else 9698 priv->ieee->abg_true = 0; 9699 9700 if (mode & IEEE_G) { 9701 band |= LIBIPW_24GHZ_BAND; 9702 modulation |= LIBIPW_OFDM_MODULATION; 9703 } else 9704 priv->ieee->abg_true = 0; 9705 9706 priv->ieee->mode = mode; 9707 priv->ieee->freq_band = band; 9708 priv->ieee->modulation = modulation; 9709 init_supported_rates(priv, &priv->rates); 9710 9711 /* Network configuration changed -- force [re]association */ 9712 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n"); 9713 if (!ipw_disassociate(priv)) { 9714 ipw_send_supported_rates(priv, &priv->rates); 9715 ipw_associate(priv); 9716 } 9717 9718 /* Update the band LEDs */ 9719 ipw_led_band_on(priv); 9720 9721 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n", 9722 mode & IEEE_A ? 'a' : '.', 9723 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.'); 9724 mutex_unlock(&priv->mutex); 9725 return 0; 9726 } 9727 9728 static int ipw_wx_get_wireless_mode(struct net_device *dev, 9729 struct iw_request_info *info, 9730 union iwreq_data *wrqu, char *extra) 9731 { 9732 struct ipw_priv *priv = libipw_priv(dev); 9733 mutex_lock(&priv->mutex); 9734 switch (priv->ieee->mode) { 9735 case IEEE_A: 9736 strncpy(extra, "802.11a (1)", MAX_WX_STRING); 9737 break; 9738 case IEEE_B: 9739 strncpy(extra, "802.11b (2)", MAX_WX_STRING); 9740 break; 9741 case IEEE_A | IEEE_B: 9742 strncpy(extra, "802.11ab (3)", MAX_WX_STRING); 9743 break; 9744 case IEEE_G: 9745 strncpy(extra, "802.11g (4)", MAX_WX_STRING); 9746 break; 9747 case IEEE_A | IEEE_G: 9748 strncpy(extra, "802.11ag (5)", MAX_WX_STRING); 9749 break; 9750 case IEEE_B | IEEE_G: 9751 strncpy(extra, "802.11bg (6)", MAX_WX_STRING); 9752 break; 9753 case IEEE_A | IEEE_B | IEEE_G: 9754 strncpy(extra, "802.11abg (7)", MAX_WX_STRING); 9755 break; 9756 default: 9757 strncpy(extra, "unknown", MAX_WX_STRING); 9758 break; 9759 } 9760 extra[MAX_WX_STRING - 1] = '\0'; 9761 9762 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra); 9763 9764 wrqu->data.length = strlen(extra) + 1; 9765 mutex_unlock(&priv->mutex); 9766 9767 return 0; 9768 } 9769 9770 static int ipw_wx_set_preamble(struct net_device *dev, 9771 struct iw_request_info *info, 9772 union iwreq_data *wrqu, char *extra) 9773 { 9774 struct ipw_priv *priv = libipw_priv(dev); 9775 int mode = *(int *)extra; 9776 mutex_lock(&priv->mutex); 9777 /* Switching from SHORT -> LONG requires a disassociation */ 9778 if (mode == 1) { 9779 if (!(priv->config & CFG_PREAMBLE_LONG)) { 9780 priv->config |= CFG_PREAMBLE_LONG; 9781 9782 /* Network configuration changed -- force [re]association */ 9783 IPW_DEBUG_ASSOC 9784 ("[re]association triggered due to preamble change.\n"); 9785 if (!ipw_disassociate(priv)) 9786 ipw_associate(priv); 9787 } 9788 goto done; 9789 } 9790 9791 if (mode == 0) { 9792 priv->config &= ~CFG_PREAMBLE_LONG; 9793 goto done; 9794 } 9795 mutex_unlock(&priv->mutex); 9796 return -EINVAL; 9797 9798 done: 9799 mutex_unlock(&priv->mutex); 9800 return 0; 9801 } 9802 9803 static int ipw_wx_get_preamble(struct net_device *dev, 9804 struct iw_request_info *info, 9805 union iwreq_data *wrqu, char *extra) 9806 { 9807 struct ipw_priv *priv = libipw_priv(dev); 9808 mutex_lock(&priv->mutex); 9809 if (priv->config & CFG_PREAMBLE_LONG) 9810 snprintf(wrqu->name, IFNAMSIZ, "long (1)"); 9811 else 9812 snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); 9813 mutex_unlock(&priv->mutex); 9814 return 0; 9815 } 9816 9817 #ifdef CONFIG_IPW2200_MONITOR 9818 static int ipw_wx_set_monitor(struct net_device *dev, 9819 struct iw_request_info *info, 9820 union iwreq_data *wrqu, char *extra) 9821 { 9822 struct ipw_priv *priv = libipw_priv(dev); 9823 int *parms = (int *)extra; 9824 int enable = (parms[0] > 0); 9825 mutex_lock(&priv->mutex); 9826 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]); 9827 if (enable) { 9828 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 9829 #ifdef CONFIG_IPW2200_RADIOTAP 9830 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 9831 #else 9832 priv->net_dev->type = ARPHRD_IEEE80211; 9833 #endif 9834 schedule_work(&priv->adapter_restart); 9835 } 9836 9837 ipw_set_channel(priv, parms[1]); 9838 } else { 9839 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 9840 mutex_unlock(&priv->mutex); 9841 return 0; 9842 } 9843 priv->net_dev->type = ARPHRD_ETHER; 9844 schedule_work(&priv->adapter_restart); 9845 } 9846 mutex_unlock(&priv->mutex); 9847 return 0; 9848 } 9849 9850 #endif /* CONFIG_IPW2200_MONITOR */ 9851 9852 static int ipw_wx_reset(struct net_device *dev, 9853 struct iw_request_info *info, 9854 union iwreq_data *wrqu, char *extra) 9855 { 9856 struct ipw_priv *priv = libipw_priv(dev); 9857 IPW_DEBUG_WX("RESET\n"); 9858 schedule_work(&priv->adapter_restart); 9859 return 0; 9860 } 9861 9862 static int ipw_wx_sw_reset(struct net_device *dev, 9863 struct iw_request_info *info, 9864 union iwreq_data *wrqu, char *extra) 9865 { 9866 struct ipw_priv *priv = libipw_priv(dev); 9867 union iwreq_data wrqu_sec = { 9868 .encoding = { 9869 .flags = IW_ENCODE_DISABLED, 9870 }, 9871 }; 9872 int ret; 9873 9874 IPW_DEBUG_WX("SW_RESET\n"); 9875 9876 mutex_lock(&priv->mutex); 9877 9878 ret = ipw_sw_reset(priv, 2); 9879 if (!ret) { 9880 free_firmware(); 9881 ipw_adapter_restart(priv); 9882 } 9883 9884 /* The SW reset bit might have been toggled on by the 'disable' 9885 * module parameter, so take appropriate action */ 9886 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW); 9887 9888 mutex_unlock(&priv->mutex); 9889 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL); 9890 mutex_lock(&priv->mutex); 9891 9892 if (!(priv->status & STATUS_RF_KILL_MASK)) { 9893 /* Configuration likely changed -- force [re]association */ 9894 IPW_DEBUG_ASSOC("[re]association triggered due to sw " 9895 "reset.\n"); 9896 if (!ipw_disassociate(priv)) 9897 ipw_associate(priv); 9898 } 9899 9900 mutex_unlock(&priv->mutex); 9901 9902 return 0; 9903 } 9904 9905 /* Rebase the WE IOCTLs to zero for the handler array */ 9906 static iw_handler ipw_wx_handlers[] = { 9907 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname), 9908 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq), 9909 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq), 9910 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode), 9911 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode), 9912 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens), 9913 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens), 9914 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range), 9915 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap), 9916 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap), 9917 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan), 9918 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan), 9919 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid), 9920 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid), 9921 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick), 9922 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick), 9923 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate), 9924 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate), 9925 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts), 9926 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts), 9927 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag), 9928 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag), 9929 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow), 9930 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow), 9931 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry), 9932 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry), 9933 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode), 9934 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode), 9935 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power), 9936 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power), 9937 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy), 9938 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy), 9939 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy), 9940 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy), 9941 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie), 9942 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie), 9943 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme), 9944 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth), 9945 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth), 9946 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext), 9947 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext), 9948 }; 9949 9950 enum { 9951 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV, 9952 IPW_PRIV_GET_POWER, 9953 IPW_PRIV_SET_MODE, 9954 IPW_PRIV_GET_MODE, 9955 IPW_PRIV_SET_PREAMBLE, 9956 IPW_PRIV_GET_PREAMBLE, 9957 IPW_PRIV_RESET, 9958 IPW_PRIV_SW_RESET, 9959 #ifdef CONFIG_IPW2200_MONITOR 9960 IPW_PRIV_SET_MONITOR, 9961 #endif 9962 }; 9963 9964 static struct iw_priv_args ipw_priv_args[] = { 9965 { 9966 .cmd = IPW_PRIV_SET_POWER, 9967 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9968 .name = "set_power"}, 9969 { 9970 .cmd = IPW_PRIV_GET_POWER, 9971 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, 9972 .name = "get_power"}, 9973 { 9974 .cmd = IPW_PRIV_SET_MODE, 9975 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9976 .name = "set_mode"}, 9977 { 9978 .cmd = IPW_PRIV_GET_MODE, 9979 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, 9980 .name = "get_mode"}, 9981 { 9982 .cmd = IPW_PRIV_SET_PREAMBLE, 9983 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 9984 .name = "set_preamble"}, 9985 { 9986 .cmd = IPW_PRIV_GET_PREAMBLE, 9987 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, 9988 .name = "get_preamble"}, 9989 { 9990 IPW_PRIV_RESET, 9991 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, 9992 { 9993 IPW_PRIV_SW_RESET, 9994 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"}, 9995 #ifdef CONFIG_IPW2200_MONITOR 9996 { 9997 IPW_PRIV_SET_MONITOR, 9998 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, 9999 #endif /* CONFIG_IPW2200_MONITOR */ 10000 }; 10001 10002 static iw_handler ipw_priv_handler[] = { 10003 ipw_wx_set_powermode, 10004 ipw_wx_get_powermode, 10005 ipw_wx_set_wireless_mode, 10006 ipw_wx_get_wireless_mode, 10007 ipw_wx_set_preamble, 10008 ipw_wx_get_preamble, 10009 ipw_wx_reset, 10010 ipw_wx_sw_reset, 10011 #ifdef CONFIG_IPW2200_MONITOR 10012 ipw_wx_set_monitor, 10013 #endif 10014 }; 10015 10016 static struct iw_handler_def ipw_wx_handler_def = { 10017 .standard = ipw_wx_handlers, 10018 .num_standard = ARRAY_SIZE(ipw_wx_handlers), 10019 .num_private = ARRAY_SIZE(ipw_priv_handler), 10020 .num_private_args = ARRAY_SIZE(ipw_priv_args), 10021 .private = ipw_priv_handler, 10022 .private_args = ipw_priv_args, 10023 .get_wireless_stats = ipw_get_wireless_stats, 10024 }; 10025 10026 /* 10027 * Get wireless statistics. 10028 * Called by /proc/net/wireless 10029 * Also called by SIOCGIWSTATS 10030 */ 10031 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev) 10032 { 10033 struct ipw_priv *priv = libipw_priv(dev); 10034 struct iw_statistics *wstats; 10035 10036 wstats = &priv->wstats; 10037 10038 /* if hw is disabled, then ipw_get_ordinal() can't be called. 10039 * netdev->get_wireless_stats seems to be called before fw is 10040 * initialized. STATUS_ASSOCIATED will only be set if the hw is up 10041 * and associated; if not associcated, the values are all meaningless 10042 * anyway, so set them all to NULL and INVALID */ 10043 if (!(priv->status & STATUS_ASSOCIATED)) { 10044 wstats->miss.beacon = 0; 10045 wstats->discard.retries = 0; 10046 wstats->qual.qual = 0; 10047 wstats->qual.level = 0; 10048 wstats->qual.noise = 0; 10049 wstats->qual.updated = 7; 10050 wstats->qual.updated |= IW_QUAL_NOISE_INVALID | 10051 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; 10052 return wstats; 10053 } 10054 10055 wstats->qual.qual = priv->quality; 10056 wstats->qual.level = priv->exp_avg_rssi; 10057 wstats->qual.noise = priv->exp_avg_noise; 10058 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED | 10059 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM; 10060 10061 wstats->miss.beacon = average_value(&priv->average_missed_beacons); 10062 wstats->discard.retries = priv->last_tx_failures; 10063 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable; 10064 10065 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len)) 10066 goto fail_get_ordinal; 10067 wstats->discard.retries += tx_retry; */ 10068 10069 return wstats; 10070 } 10071 10072 /* net device stuff */ 10073 10074 static void init_sys_config(struct ipw_sys_config *sys_config) 10075 { 10076 memset(sys_config, 0, sizeof(struct ipw_sys_config)); 10077 sys_config->bt_coexistence = 0; 10078 sys_config->answer_broadcast_ssid_probe = 0; 10079 sys_config->accept_all_data_frames = 0; 10080 sys_config->accept_non_directed_frames = 1; 10081 sys_config->exclude_unicast_unencrypted = 0; 10082 sys_config->disable_unicast_decryption = 1; 10083 sys_config->exclude_multicast_unencrypted = 0; 10084 sys_config->disable_multicast_decryption = 1; 10085 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B) 10086 antenna = CFG_SYS_ANTENNA_BOTH; 10087 sys_config->antenna_diversity = antenna; 10088 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */ 10089 sys_config->dot11g_auto_detection = 0; 10090 sys_config->enable_cts_to_self = 0; 10091 sys_config->bt_coexist_collision_thr = 0; 10092 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */ 10093 sys_config->silence_threshold = 0x1e; 10094 } 10095 10096 static int ipw_net_open(struct net_device *dev) 10097 { 10098 IPW_DEBUG_INFO("dev->open\n"); 10099 netif_start_queue(dev); 10100 return 0; 10101 } 10102 10103 static int ipw_net_stop(struct net_device *dev) 10104 { 10105 IPW_DEBUG_INFO("dev->close\n"); 10106 netif_stop_queue(dev); 10107 return 0; 10108 } 10109 10110 /* 10111 todo: 10112 10113 modify to send one tfd per fragment instead of using chunking. otherwise 10114 we need to heavily modify the libipw_skb_to_txb. 10115 */ 10116 10117 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb, 10118 int pri) 10119 { 10120 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *) 10121 txb->fragments[0]->data; 10122 int i = 0; 10123 struct tfd_frame *tfd; 10124 #ifdef CONFIG_IPW2200_QOS 10125 int tx_id = ipw_get_tx_queue_number(priv, pri); 10126 struct clx2_tx_queue *txq = &priv->txq[tx_id]; 10127 #else 10128 struct clx2_tx_queue *txq = &priv->txq[0]; 10129 #endif 10130 struct clx2_queue *q = &txq->q; 10131 u8 id, hdr_len, unicast; 10132 int fc; 10133 10134 if (!(priv->status & STATUS_ASSOCIATED)) 10135 goto drop; 10136 10137 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl)); 10138 switch (priv->ieee->iw_mode) { 10139 case IW_MODE_ADHOC: 10140 unicast = !is_multicast_ether_addr(hdr->addr1); 10141 id = ipw_find_station(priv, hdr->addr1); 10142 if (id == IPW_INVALID_STATION) { 10143 id = ipw_add_station(priv, hdr->addr1); 10144 if (id == IPW_INVALID_STATION) { 10145 IPW_WARNING("Attempt to send data to " 10146 "invalid cell: %pM\n", 10147 hdr->addr1); 10148 goto drop; 10149 } 10150 } 10151 break; 10152 10153 case IW_MODE_INFRA: 10154 default: 10155 unicast = !is_multicast_ether_addr(hdr->addr3); 10156 id = 0; 10157 break; 10158 } 10159 10160 tfd = &txq->bd[q->first_empty]; 10161 txq->txb[q->first_empty] = txb; 10162 memset(tfd, 0, sizeof(*tfd)); 10163 tfd->u.data.station_number = id; 10164 10165 tfd->control_flags.message_type = TX_FRAME_TYPE; 10166 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; 10167 10168 tfd->u.data.cmd_id = DINO_CMD_TX; 10169 tfd->u.data.len = cpu_to_le16(txb->payload_size); 10170 10171 if (priv->assoc_request.ieee_mode == IPW_B_MODE) 10172 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK; 10173 else 10174 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM; 10175 10176 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE) 10177 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE; 10178 10179 fc = le16_to_cpu(hdr->frame_ctl); 10180 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS); 10181 10182 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len); 10183 10184 if (likely(unicast)) 10185 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; 10186 10187 if (txb->encrypted && !priv->ieee->host_encrypt) { 10188 switch (priv->ieee->sec.level) { 10189 case SEC_LEVEL_3: 10190 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10191 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10192 /* XXX: ACK flag must be set for CCMP even if it 10193 * is a multicast/broadcast packet, because CCMP 10194 * group communication encrypted by GTK is 10195 * actually done by the AP. */ 10196 if (!unicast) 10197 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; 10198 10199 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; 10200 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM; 10201 tfd->u.data.key_index = 0; 10202 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE; 10203 break; 10204 case SEC_LEVEL_2: 10205 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10206 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10207 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; 10208 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP; 10209 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE; 10210 break; 10211 case SEC_LEVEL_1: 10212 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= 10213 cpu_to_le16(IEEE80211_FCTL_PROTECTED); 10214 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx; 10215 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <= 10216 40) 10217 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit; 10218 else 10219 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit; 10220 break; 10221 case SEC_LEVEL_0: 10222 break; 10223 default: 10224 printk(KERN_ERR "Unknown security level %d\n", 10225 priv->ieee->sec.level); 10226 break; 10227 } 10228 } else 10229 /* No hardware encryption */ 10230 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP; 10231 10232 #ifdef CONFIG_IPW2200_QOS 10233 if (fc & IEEE80211_STYPE_QOS_DATA) 10234 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data)); 10235 #endif /* CONFIG_IPW2200_QOS */ 10236 10237 /* payload */ 10238 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2), 10239 txb->nr_frags)); 10240 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n", 10241 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks)); 10242 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) { 10243 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n", 10244 i, le32_to_cpu(tfd->u.data.num_chunks), 10245 txb->fragments[i]->len - hdr_len); 10246 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n", 10247 i, tfd->u.data.num_chunks, 10248 txb->fragments[i]->len - hdr_len); 10249 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len, 10250 txb->fragments[i]->len - hdr_len); 10251 10252 tfd->u.data.chunk_ptr[i] = 10253 cpu_to_le32(pci_map_single 10254 (priv->pci_dev, 10255 txb->fragments[i]->data + hdr_len, 10256 txb->fragments[i]->len - hdr_len, 10257 PCI_DMA_TODEVICE)); 10258 tfd->u.data.chunk_len[i] = 10259 cpu_to_le16(txb->fragments[i]->len - hdr_len); 10260 } 10261 10262 if (i != txb->nr_frags) { 10263 struct sk_buff *skb; 10264 u16 remaining_bytes = 0; 10265 int j; 10266 10267 for (j = i; j < txb->nr_frags; j++) 10268 remaining_bytes += txb->fragments[j]->len - hdr_len; 10269 10270 printk(KERN_INFO "Trying to reallocate for %d bytes\n", 10271 remaining_bytes); 10272 skb = alloc_skb(remaining_bytes, GFP_ATOMIC); 10273 if (skb != NULL) { 10274 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes); 10275 for (j = i; j < txb->nr_frags; j++) { 10276 int size = txb->fragments[j]->len - hdr_len; 10277 10278 printk(KERN_INFO "Adding frag %d %d...\n", 10279 j, size); 10280 memcpy(skb_put(skb, size), 10281 txb->fragments[j]->data + hdr_len, size); 10282 } 10283 dev_kfree_skb_any(txb->fragments[i]); 10284 txb->fragments[i] = skb; 10285 tfd->u.data.chunk_ptr[i] = 10286 cpu_to_le32(pci_map_single 10287 (priv->pci_dev, skb->data, 10288 remaining_bytes, 10289 PCI_DMA_TODEVICE)); 10290 10291 le32_add_cpu(&tfd->u.data.num_chunks, 1); 10292 } 10293 } 10294 10295 /* kick DMA */ 10296 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); 10297 ipw_write32(priv, q->reg_w, q->first_empty); 10298 10299 if (ipw_tx_queue_space(q) < q->high_mark) 10300 netif_stop_queue(priv->net_dev); 10301 10302 return NETDEV_TX_OK; 10303 10304 drop: 10305 IPW_DEBUG_DROP("Silently dropping Tx packet.\n"); 10306 libipw_txb_free(txb); 10307 return NETDEV_TX_OK; 10308 } 10309 10310 static int ipw_net_is_queue_full(struct net_device *dev, int pri) 10311 { 10312 struct ipw_priv *priv = libipw_priv(dev); 10313 #ifdef CONFIG_IPW2200_QOS 10314 int tx_id = ipw_get_tx_queue_number(priv, pri); 10315 struct clx2_tx_queue *txq = &priv->txq[tx_id]; 10316 #else 10317 struct clx2_tx_queue *txq = &priv->txq[0]; 10318 #endif /* CONFIG_IPW2200_QOS */ 10319 10320 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark) 10321 return 1; 10322 10323 return 0; 10324 } 10325 10326 #ifdef CONFIG_IPW2200_PROMISCUOUS 10327 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv, 10328 struct libipw_txb *txb) 10329 { 10330 struct libipw_rx_stats dummystats; 10331 struct ieee80211_hdr *hdr; 10332 u8 n; 10333 u16 filter = priv->prom_priv->filter; 10334 int hdr_only = 0; 10335 10336 if (filter & IPW_PROM_NO_TX) 10337 return; 10338 10339 memset(&dummystats, 0, sizeof(dummystats)); 10340 10341 /* Filtering of fragment chains is done against the first fragment */ 10342 hdr = (void *)txb->fragments[0]->data; 10343 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { 10344 if (filter & IPW_PROM_NO_MGMT) 10345 return; 10346 if (filter & IPW_PROM_MGMT_HEADER_ONLY) 10347 hdr_only = 1; 10348 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { 10349 if (filter & IPW_PROM_NO_CTL) 10350 return; 10351 if (filter & IPW_PROM_CTL_HEADER_ONLY) 10352 hdr_only = 1; 10353 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { 10354 if (filter & IPW_PROM_NO_DATA) 10355 return; 10356 if (filter & IPW_PROM_DATA_HEADER_ONLY) 10357 hdr_only = 1; 10358 } 10359 10360 for(n=0; n<txb->nr_frags; ++n) { 10361 struct sk_buff *src = txb->fragments[n]; 10362 struct sk_buff *dst; 10363 struct ieee80211_radiotap_header *rt_hdr; 10364 int len; 10365 10366 if (hdr_only) { 10367 hdr = (void *)src->data; 10368 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); 10369 } else 10370 len = src->len; 10371 10372 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC); 10373 if (!dst) 10374 continue; 10375 10376 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr)); 10377 10378 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION; 10379 rt_hdr->it_pad = 0; 10380 rt_hdr->it_present = 0; /* after all, it's just an idea */ 10381 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL); 10382 10383 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16( 10384 ieee80211chan2mhz(priv->channel)); 10385 if (priv->channel > 14) /* 802.11a */ 10386 *(__le16*)skb_put(dst, sizeof(u16)) = 10387 cpu_to_le16(IEEE80211_CHAN_OFDM | 10388 IEEE80211_CHAN_5GHZ); 10389 else if (priv->ieee->mode == IEEE_B) /* 802.11b */ 10390 *(__le16*)skb_put(dst, sizeof(u16)) = 10391 cpu_to_le16(IEEE80211_CHAN_CCK | 10392 IEEE80211_CHAN_2GHZ); 10393 else /* 802.11g */ 10394 *(__le16*)skb_put(dst, sizeof(u16)) = 10395 cpu_to_le16(IEEE80211_CHAN_OFDM | 10396 IEEE80211_CHAN_2GHZ); 10397 10398 rt_hdr->it_len = cpu_to_le16(dst->len); 10399 10400 skb_copy_from_linear_data(src, skb_put(dst, len), len); 10401 10402 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats)) 10403 dev_kfree_skb_any(dst); 10404 } 10405 } 10406 #endif 10407 10408 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb, 10409 struct net_device *dev, int pri) 10410 { 10411 struct ipw_priv *priv = libipw_priv(dev); 10412 unsigned long flags; 10413 netdev_tx_t ret; 10414 10415 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size); 10416 spin_lock_irqsave(&priv->lock, flags); 10417 10418 #ifdef CONFIG_IPW2200_PROMISCUOUS 10419 if (rtap_iface && netif_running(priv->prom_net_dev)) 10420 ipw_handle_promiscuous_tx(priv, txb); 10421 #endif 10422 10423 ret = ipw_tx_skb(priv, txb, pri); 10424 if (ret == NETDEV_TX_OK) 10425 __ipw_led_activity_on(priv); 10426 spin_unlock_irqrestore(&priv->lock, flags); 10427 10428 return ret; 10429 } 10430 10431 static void ipw_net_set_multicast_list(struct net_device *dev) 10432 { 10433 10434 } 10435 10436 static int ipw_net_set_mac_address(struct net_device *dev, void *p) 10437 { 10438 struct ipw_priv *priv = libipw_priv(dev); 10439 struct sockaddr *addr = p; 10440 10441 if (!is_valid_ether_addr(addr->sa_data)) 10442 return -EADDRNOTAVAIL; 10443 mutex_lock(&priv->mutex); 10444 priv->config |= CFG_CUSTOM_MAC; 10445 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 10446 printk(KERN_INFO "%s: Setting MAC to %pM\n", 10447 priv->net_dev->name, priv->mac_addr); 10448 schedule_work(&priv->adapter_restart); 10449 mutex_unlock(&priv->mutex); 10450 return 0; 10451 } 10452 10453 static void ipw_ethtool_get_drvinfo(struct net_device *dev, 10454 struct ethtool_drvinfo *info) 10455 { 10456 struct ipw_priv *p = libipw_priv(dev); 10457 char vers[64]; 10458 char date[32]; 10459 u32 len; 10460 10461 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 10462 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 10463 10464 len = sizeof(vers); 10465 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len); 10466 len = sizeof(date); 10467 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len); 10468 10469 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)", 10470 vers, date); 10471 strlcpy(info->bus_info, pci_name(p->pci_dev), 10472 sizeof(info->bus_info)); 10473 } 10474 10475 static u32 ipw_ethtool_get_link(struct net_device *dev) 10476 { 10477 struct ipw_priv *priv = libipw_priv(dev); 10478 return (priv->status & STATUS_ASSOCIATED) != 0; 10479 } 10480 10481 static int ipw_ethtool_get_eeprom_len(struct net_device *dev) 10482 { 10483 return IPW_EEPROM_IMAGE_SIZE; 10484 } 10485 10486 static int ipw_ethtool_get_eeprom(struct net_device *dev, 10487 struct ethtool_eeprom *eeprom, u8 * bytes) 10488 { 10489 struct ipw_priv *p = libipw_priv(dev); 10490 10491 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) 10492 return -EINVAL; 10493 mutex_lock(&p->mutex); 10494 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len); 10495 mutex_unlock(&p->mutex); 10496 return 0; 10497 } 10498 10499 static int ipw_ethtool_set_eeprom(struct net_device *dev, 10500 struct ethtool_eeprom *eeprom, u8 * bytes) 10501 { 10502 struct ipw_priv *p = libipw_priv(dev); 10503 int i; 10504 10505 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) 10506 return -EINVAL; 10507 mutex_lock(&p->mutex); 10508 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len); 10509 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) 10510 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]); 10511 mutex_unlock(&p->mutex); 10512 return 0; 10513 } 10514 10515 static const struct ethtool_ops ipw_ethtool_ops = { 10516 .get_link = ipw_ethtool_get_link, 10517 .get_drvinfo = ipw_ethtool_get_drvinfo, 10518 .get_eeprom_len = ipw_ethtool_get_eeprom_len, 10519 .get_eeprom = ipw_ethtool_get_eeprom, 10520 .set_eeprom = ipw_ethtool_set_eeprom, 10521 }; 10522 10523 static irqreturn_t ipw_isr(int irq, void *data) 10524 { 10525 struct ipw_priv *priv = data; 10526 u32 inta, inta_mask; 10527 10528 if (!priv) 10529 return IRQ_NONE; 10530 10531 spin_lock(&priv->irq_lock); 10532 10533 if (!(priv->status & STATUS_INT_ENABLED)) { 10534 /* IRQ is disabled */ 10535 goto none; 10536 } 10537 10538 inta = ipw_read32(priv, IPW_INTA_RW); 10539 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); 10540 10541 if (inta == 0xFFFFFFFF) { 10542 /* Hardware disappeared */ 10543 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n"); 10544 goto none; 10545 } 10546 10547 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) { 10548 /* Shared interrupt */ 10549 goto none; 10550 } 10551 10552 /* tell the device to stop sending interrupts */ 10553 __ipw_disable_interrupts(priv); 10554 10555 /* ack current interrupts */ 10556 inta &= (IPW_INTA_MASK_ALL & inta_mask); 10557 ipw_write32(priv, IPW_INTA_RW, inta); 10558 10559 /* Cache INTA value for our tasklet */ 10560 priv->isr_inta = inta; 10561 10562 tasklet_schedule(&priv->irq_tasklet); 10563 10564 spin_unlock(&priv->irq_lock); 10565 10566 return IRQ_HANDLED; 10567 none: 10568 spin_unlock(&priv->irq_lock); 10569 return IRQ_NONE; 10570 } 10571 10572 static void ipw_rf_kill(void *adapter) 10573 { 10574 struct ipw_priv *priv = adapter; 10575 unsigned long flags; 10576 10577 spin_lock_irqsave(&priv->lock, flags); 10578 10579 if (rf_kill_active(priv)) { 10580 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); 10581 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 10582 goto exit_unlock; 10583 } 10584 10585 /* RF Kill is now disabled, so bring the device back up */ 10586 10587 if (!(priv->status & STATUS_RF_KILL_MASK)) { 10588 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " 10589 "device\n"); 10590 10591 /* we can not do an adapter restart while inside an irq lock */ 10592 schedule_work(&priv->adapter_restart); 10593 } else 10594 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " 10595 "enabled\n"); 10596 10597 exit_unlock: 10598 spin_unlock_irqrestore(&priv->lock, flags); 10599 } 10600 10601 static void ipw_bg_rf_kill(struct work_struct *work) 10602 { 10603 struct ipw_priv *priv = 10604 container_of(work, struct ipw_priv, rf_kill.work); 10605 mutex_lock(&priv->mutex); 10606 ipw_rf_kill(priv); 10607 mutex_unlock(&priv->mutex); 10608 } 10609 10610 static void ipw_link_up(struct ipw_priv *priv) 10611 { 10612 priv->last_seq_num = -1; 10613 priv->last_frag_num = -1; 10614 priv->last_packet_time = 0; 10615 10616 netif_carrier_on(priv->net_dev); 10617 10618 cancel_delayed_work(&priv->request_scan); 10619 cancel_delayed_work(&priv->request_direct_scan); 10620 cancel_delayed_work(&priv->request_passive_scan); 10621 cancel_delayed_work(&priv->scan_event); 10622 ipw_reset_stats(priv); 10623 /* Ensure the rate is updated immediately */ 10624 priv->last_rate = ipw_get_current_rate(priv); 10625 ipw_gather_stats(priv); 10626 ipw_led_link_up(priv); 10627 notify_wx_assoc_event(priv); 10628 10629 if (priv->config & CFG_BACKGROUND_SCAN) 10630 schedule_delayed_work(&priv->request_scan, HZ); 10631 } 10632 10633 static void ipw_bg_link_up(struct work_struct *work) 10634 { 10635 struct ipw_priv *priv = 10636 container_of(work, struct ipw_priv, link_up); 10637 mutex_lock(&priv->mutex); 10638 ipw_link_up(priv); 10639 mutex_unlock(&priv->mutex); 10640 } 10641 10642 static void ipw_link_down(struct ipw_priv *priv) 10643 { 10644 ipw_led_link_down(priv); 10645 netif_carrier_off(priv->net_dev); 10646 notify_wx_assoc_event(priv); 10647 10648 /* Cancel any queued work ... */ 10649 cancel_delayed_work(&priv->request_scan); 10650 cancel_delayed_work(&priv->request_direct_scan); 10651 cancel_delayed_work(&priv->request_passive_scan); 10652 cancel_delayed_work(&priv->adhoc_check); 10653 cancel_delayed_work(&priv->gather_stats); 10654 10655 ipw_reset_stats(priv); 10656 10657 if (!(priv->status & STATUS_EXIT_PENDING)) { 10658 /* Queue up another scan... */ 10659 schedule_delayed_work(&priv->request_scan, 0); 10660 } else 10661 cancel_delayed_work(&priv->scan_event); 10662 } 10663 10664 static void ipw_bg_link_down(struct work_struct *work) 10665 { 10666 struct ipw_priv *priv = 10667 container_of(work, struct ipw_priv, link_down); 10668 mutex_lock(&priv->mutex); 10669 ipw_link_down(priv); 10670 mutex_unlock(&priv->mutex); 10671 } 10672 10673 static int ipw_setup_deferred_work(struct ipw_priv *priv) 10674 { 10675 int ret = 0; 10676 10677 init_waitqueue_head(&priv->wait_command_queue); 10678 init_waitqueue_head(&priv->wait_state); 10679 10680 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check); 10681 INIT_WORK(&priv->associate, ipw_bg_associate); 10682 INIT_WORK(&priv->disassociate, ipw_bg_disassociate); 10683 INIT_WORK(&priv->system_config, ipw_system_config); 10684 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish); 10685 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart); 10686 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill); 10687 INIT_WORK(&priv->up, ipw_bg_up); 10688 INIT_WORK(&priv->down, ipw_bg_down); 10689 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan); 10690 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan); 10691 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan); 10692 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event); 10693 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats); 10694 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan); 10695 INIT_WORK(&priv->roam, ipw_bg_roam); 10696 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check); 10697 INIT_WORK(&priv->link_up, ipw_bg_link_up); 10698 INIT_WORK(&priv->link_down, ipw_bg_link_down); 10699 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on); 10700 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off); 10701 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off); 10702 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network); 10703 10704 #ifdef CONFIG_IPW2200_QOS 10705 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate); 10706 #endif /* CONFIG_IPW2200_QOS */ 10707 10708 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long)) 10709 ipw_irq_tasklet, (unsigned long)priv); 10710 10711 return ret; 10712 } 10713 10714 static void shim__set_security(struct net_device *dev, 10715 struct libipw_security *sec) 10716 { 10717 struct ipw_priv *priv = libipw_priv(dev); 10718 int i; 10719 for (i = 0; i < 4; i++) { 10720 if (sec->flags & (1 << i)) { 10721 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i]; 10722 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; 10723 if (sec->key_sizes[i] == 0) 10724 priv->ieee->sec.flags &= ~(1 << i); 10725 else { 10726 memcpy(priv->ieee->sec.keys[i], sec->keys[i], 10727 sec->key_sizes[i]); 10728 priv->ieee->sec.flags |= (1 << i); 10729 } 10730 priv->status |= STATUS_SECURITY_UPDATED; 10731 } else if (sec->level != SEC_LEVEL_1) 10732 priv->ieee->sec.flags &= ~(1 << i); 10733 } 10734 10735 if (sec->flags & SEC_ACTIVE_KEY) { 10736 if (sec->active_key <= 3) { 10737 priv->ieee->sec.active_key = sec->active_key; 10738 priv->ieee->sec.flags |= SEC_ACTIVE_KEY; 10739 } else 10740 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY; 10741 priv->status |= STATUS_SECURITY_UPDATED; 10742 } else 10743 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY; 10744 10745 if ((sec->flags & SEC_AUTH_MODE) && 10746 (priv->ieee->sec.auth_mode != sec->auth_mode)) { 10747 priv->ieee->sec.auth_mode = sec->auth_mode; 10748 priv->ieee->sec.flags |= SEC_AUTH_MODE; 10749 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY) 10750 priv->capability |= CAP_SHARED_KEY; 10751 else 10752 priv->capability &= ~CAP_SHARED_KEY; 10753 priv->status |= STATUS_SECURITY_UPDATED; 10754 } 10755 10756 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { 10757 priv->ieee->sec.flags |= SEC_ENABLED; 10758 priv->ieee->sec.enabled = sec->enabled; 10759 priv->status |= STATUS_SECURITY_UPDATED; 10760 if (sec->enabled) 10761 priv->capability |= CAP_PRIVACY_ON; 10762 else 10763 priv->capability &= ~CAP_PRIVACY_ON; 10764 } 10765 10766 if (sec->flags & SEC_ENCRYPT) 10767 priv->ieee->sec.encrypt = sec->encrypt; 10768 10769 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { 10770 priv->ieee->sec.level = sec->level; 10771 priv->ieee->sec.flags |= SEC_LEVEL; 10772 priv->status |= STATUS_SECURITY_UPDATED; 10773 } 10774 10775 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT)) 10776 ipw_set_hwcrypto_keys(priv); 10777 10778 /* To match current functionality of ipw2100 (which works well w/ 10779 * various supplicants, we don't force a disassociate if the 10780 * privacy capability changes ... */ 10781 #if 0 10782 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) && 10783 (((priv->assoc_request.capability & 10784 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) || 10785 (!(priv->assoc_request.capability & 10786 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) { 10787 IPW_DEBUG_ASSOC("Disassociating due to capability " 10788 "change.\n"); 10789 ipw_disassociate(priv); 10790 } 10791 #endif 10792 } 10793 10794 static int init_supported_rates(struct ipw_priv *priv, 10795 struct ipw_supported_rates *rates) 10796 { 10797 /* TODO: Mask out rates based on priv->rates_mask */ 10798 10799 memset(rates, 0, sizeof(*rates)); 10800 /* configure supported rates */ 10801 switch (priv->ieee->freq_band) { 10802 case LIBIPW_52GHZ_BAND: 10803 rates->ieee_mode = IPW_A_MODE; 10804 rates->purpose = IPW_RATE_CAPABILITIES; 10805 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, 10806 LIBIPW_OFDM_DEFAULT_RATES_MASK); 10807 break; 10808 10809 default: /* Mixed or 2.4Ghz */ 10810 rates->ieee_mode = IPW_G_MODE; 10811 rates->purpose = IPW_RATE_CAPABILITIES; 10812 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION, 10813 LIBIPW_CCK_DEFAULT_RATES_MASK); 10814 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) { 10815 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, 10816 LIBIPW_OFDM_DEFAULT_RATES_MASK); 10817 } 10818 break; 10819 } 10820 10821 return 0; 10822 } 10823 10824 static int ipw_config(struct ipw_priv *priv) 10825 { 10826 /* This is only called from ipw_up, which resets/reloads the firmware 10827 so, we don't need to first disable the card before we configure 10828 it */ 10829 if (ipw_set_tx_power(priv)) 10830 goto error; 10831 10832 /* initialize adapter address */ 10833 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr)) 10834 goto error; 10835 10836 /* set basic system config settings */ 10837 init_sys_config(&priv->sys_config); 10838 10839 /* Support Bluetooth if we have BT h/w on board, and user wants to. 10840 * Does not support BT priority yet (don't abort or defer our Tx) */ 10841 if (bt_coexist) { 10842 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY]; 10843 10844 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG) 10845 priv->sys_config.bt_coexistence 10846 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL; 10847 if (bt_caps & EEPROM_SKU_CAP_BT_OOB) 10848 priv->sys_config.bt_coexistence 10849 |= CFG_BT_COEXISTENCE_OOB; 10850 } 10851 10852 #ifdef CONFIG_IPW2200_PROMISCUOUS 10853 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { 10854 priv->sys_config.accept_all_data_frames = 1; 10855 priv->sys_config.accept_non_directed_frames = 1; 10856 priv->sys_config.accept_all_mgmt_bcpr = 1; 10857 priv->sys_config.accept_all_mgmt_frames = 1; 10858 } 10859 #endif 10860 10861 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 10862 priv->sys_config.answer_broadcast_ssid_probe = 1; 10863 else 10864 priv->sys_config.answer_broadcast_ssid_probe = 0; 10865 10866 if (ipw_send_system_config(priv)) 10867 goto error; 10868 10869 init_supported_rates(priv, &priv->rates); 10870 if (ipw_send_supported_rates(priv, &priv->rates)) 10871 goto error; 10872 10873 /* Set request-to-send threshold */ 10874 if (priv->rts_threshold) { 10875 if (ipw_send_rts_threshold(priv, priv->rts_threshold)) 10876 goto error; 10877 } 10878 #ifdef CONFIG_IPW2200_QOS 10879 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n"); 10880 ipw_qos_activate(priv, NULL); 10881 #endif /* CONFIG_IPW2200_QOS */ 10882 10883 if (ipw_set_random_seed(priv)) 10884 goto error; 10885 10886 /* final state transition to the RUN state */ 10887 if (ipw_send_host_complete(priv)) 10888 goto error; 10889 10890 priv->status |= STATUS_INIT; 10891 10892 ipw_led_init(priv); 10893 ipw_led_radio_on(priv); 10894 priv->notif_missed_beacons = 0; 10895 10896 /* Set hardware WEP key if it is configured. */ 10897 if ((priv->capability & CAP_PRIVACY_ON) && 10898 (priv->ieee->sec.level == SEC_LEVEL_1) && 10899 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt)) 10900 ipw_set_hwcrypto_keys(priv); 10901 10902 return 0; 10903 10904 error: 10905 return -EIO; 10906 } 10907 10908 /* 10909 * NOTE: 10910 * 10911 * These tables have been tested in conjunction with the 10912 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters. 10913 * 10914 * Altering this values, using it on other hardware, or in geographies 10915 * not intended for resale of the above mentioned Intel adapters has 10916 * not been tested. 10917 * 10918 * Remember to update the table in README.ipw2200 when changing this 10919 * table. 10920 * 10921 */ 10922 static const struct libipw_geo ipw_geos[] = { 10923 { /* Restricted */ 10924 "---", 10925 .bg_channels = 11, 10926 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10927 {2427, 4}, {2432, 5}, {2437, 6}, 10928 {2442, 7}, {2447, 8}, {2452, 9}, 10929 {2457, 10}, {2462, 11}}, 10930 }, 10931 10932 { /* Custom US/Canada */ 10933 "ZZF", 10934 .bg_channels = 11, 10935 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10936 {2427, 4}, {2432, 5}, {2437, 6}, 10937 {2442, 7}, {2447, 8}, {2452, 9}, 10938 {2457, 10}, {2462, 11}}, 10939 .a_channels = 8, 10940 .a = {{5180, 36}, 10941 {5200, 40}, 10942 {5220, 44}, 10943 {5240, 48}, 10944 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10945 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10946 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10947 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}}, 10948 }, 10949 10950 { /* Rest of World */ 10951 "ZZD", 10952 .bg_channels = 13, 10953 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10954 {2427, 4}, {2432, 5}, {2437, 6}, 10955 {2442, 7}, {2447, 8}, {2452, 9}, 10956 {2457, 10}, {2462, 11}, {2467, 12}, 10957 {2472, 13}}, 10958 }, 10959 10960 { /* Custom USA & Europe & High */ 10961 "ZZA", 10962 .bg_channels = 11, 10963 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10964 {2427, 4}, {2432, 5}, {2437, 6}, 10965 {2442, 7}, {2447, 8}, {2452, 9}, 10966 {2457, 10}, {2462, 11}}, 10967 .a_channels = 13, 10968 .a = {{5180, 36}, 10969 {5200, 40}, 10970 {5220, 44}, 10971 {5240, 48}, 10972 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10973 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10974 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10975 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 10976 {5745, 149}, 10977 {5765, 153}, 10978 {5785, 157}, 10979 {5805, 161}, 10980 {5825, 165}}, 10981 }, 10982 10983 { /* Custom NA & Europe */ 10984 "ZZB", 10985 .bg_channels = 11, 10986 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 10987 {2427, 4}, {2432, 5}, {2437, 6}, 10988 {2442, 7}, {2447, 8}, {2452, 9}, 10989 {2457, 10}, {2462, 11}}, 10990 .a_channels = 13, 10991 .a = {{5180, 36}, 10992 {5200, 40}, 10993 {5220, 44}, 10994 {5240, 48}, 10995 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 10996 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 10997 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 10998 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 10999 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 11000 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 11001 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 11002 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 11003 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 11004 }, 11005 11006 { /* Custom Japan */ 11007 "ZZC", 11008 .bg_channels = 11, 11009 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11010 {2427, 4}, {2432, 5}, {2437, 6}, 11011 {2442, 7}, {2447, 8}, {2452, 9}, 11012 {2457, 10}, {2462, 11}}, 11013 .a_channels = 4, 11014 .a = {{5170, 34}, {5190, 38}, 11015 {5210, 42}, {5230, 46}}, 11016 }, 11017 11018 { /* Custom */ 11019 "ZZM", 11020 .bg_channels = 11, 11021 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11022 {2427, 4}, {2432, 5}, {2437, 6}, 11023 {2442, 7}, {2447, 8}, {2452, 9}, 11024 {2457, 10}, {2462, 11}}, 11025 }, 11026 11027 { /* Europe */ 11028 "ZZE", 11029 .bg_channels = 13, 11030 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11031 {2427, 4}, {2432, 5}, {2437, 6}, 11032 {2442, 7}, {2447, 8}, {2452, 9}, 11033 {2457, 10}, {2462, 11}, {2467, 12}, 11034 {2472, 13}}, 11035 .a_channels = 19, 11036 .a = {{5180, 36}, 11037 {5200, 40}, 11038 {5220, 44}, 11039 {5240, 48}, 11040 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11041 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11042 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11043 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11044 {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, 11045 {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, 11046 {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, 11047 {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, 11048 {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, 11049 {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, 11050 {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, 11051 {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, 11052 {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, 11053 {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, 11054 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}}, 11055 }, 11056 11057 { /* Custom Japan */ 11058 "ZZJ", 11059 .bg_channels = 14, 11060 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11061 {2427, 4}, {2432, 5}, {2437, 6}, 11062 {2442, 7}, {2447, 8}, {2452, 9}, 11063 {2457, 10}, {2462, 11}, {2467, 12}, 11064 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}}, 11065 .a_channels = 4, 11066 .a = {{5170, 34}, {5190, 38}, 11067 {5210, 42}, {5230, 46}}, 11068 }, 11069 11070 { /* Rest of World */ 11071 "ZZR", 11072 .bg_channels = 14, 11073 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11074 {2427, 4}, {2432, 5}, {2437, 6}, 11075 {2442, 7}, {2447, 8}, {2452, 9}, 11076 {2457, 10}, {2462, 11}, {2467, 12}, 11077 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY | 11078 LIBIPW_CH_PASSIVE_ONLY}}, 11079 }, 11080 11081 { /* High Band */ 11082 "ZZH", 11083 .bg_channels = 13, 11084 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11085 {2427, 4}, {2432, 5}, {2437, 6}, 11086 {2442, 7}, {2447, 8}, {2452, 9}, 11087 {2457, 10}, {2462, 11}, 11088 {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, 11089 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, 11090 .a_channels = 4, 11091 .a = {{5745, 149}, {5765, 153}, 11092 {5785, 157}, {5805, 161}}, 11093 }, 11094 11095 { /* Custom Europe */ 11096 "ZZG", 11097 .bg_channels = 13, 11098 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11099 {2427, 4}, {2432, 5}, {2437, 6}, 11100 {2442, 7}, {2447, 8}, {2452, 9}, 11101 {2457, 10}, {2462, 11}, 11102 {2467, 12}, {2472, 13}}, 11103 .a_channels = 4, 11104 .a = {{5180, 36}, {5200, 40}, 11105 {5220, 44}, {5240, 48}}, 11106 }, 11107 11108 { /* Europe */ 11109 "ZZK", 11110 .bg_channels = 13, 11111 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11112 {2427, 4}, {2432, 5}, {2437, 6}, 11113 {2442, 7}, {2447, 8}, {2452, 9}, 11114 {2457, 10}, {2462, 11}, 11115 {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, 11116 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, 11117 .a_channels = 24, 11118 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, 11119 {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, 11120 {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, 11121 {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, 11122 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11123 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11124 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11125 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11126 {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, 11127 {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, 11128 {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, 11129 {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, 11130 {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, 11131 {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, 11132 {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, 11133 {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, 11134 {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, 11135 {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, 11136 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}, 11137 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 11138 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 11139 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 11140 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 11141 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 11142 }, 11143 11144 { /* Europe */ 11145 "ZZL", 11146 .bg_channels = 11, 11147 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 11148 {2427, 4}, {2432, 5}, {2437, 6}, 11149 {2442, 7}, {2447, 8}, {2452, 9}, 11150 {2457, 10}, {2462, 11}}, 11151 .a_channels = 13, 11152 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, 11153 {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, 11154 {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, 11155 {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, 11156 {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, 11157 {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, 11158 {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, 11159 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, 11160 {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, 11161 {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, 11162 {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, 11163 {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, 11164 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, 11165 } 11166 }; 11167 11168 static void ipw_set_geo(struct ipw_priv *priv) 11169 { 11170 int j; 11171 11172 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) { 11173 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE], 11174 ipw_geos[j].name, 3)) 11175 break; 11176 } 11177 11178 if (j == ARRAY_SIZE(ipw_geos)) { 11179 IPW_WARNING("SKU [%c%c%c] not recognized.\n", 11180 priv->eeprom[EEPROM_COUNTRY_CODE + 0], 11181 priv->eeprom[EEPROM_COUNTRY_CODE + 1], 11182 priv->eeprom[EEPROM_COUNTRY_CODE + 2]); 11183 j = 0; 11184 } 11185 11186 libipw_set_geo(priv->ieee, &ipw_geos[j]); 11187 } 11188 11189 #define MAX_HW_RESTARTS 5 11190 static int ipw_up(struct ipw_priv *priv) 11191 { 11192 int rc, i; 11193 11194 /* Age scan list entries found before suspend */ 11195 if (priv->suspend_time) { 11196 libipw_networks_age(priv->ieee, priv->suspend_time); 11197 priv->suspend_time = 0; 11198 } 11199 11200 if (priv->status & STATUS_EXIT_PENDING) 11201 return -EIO; 11202 11203 if (cmdlog && !priv->cmdlog) { 11204 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog), 11205 GFP_KERNEL); 11206 if (priv->cmdlog == NULL) { 11207 IPW_ERROR("Error allocating %d command log entries.\n", 11208 cmdlog); 11209 return -ENOMEM; 11210 } else { 11211 priv->cmdlog_len = cmdlog; 11212 } 11213 } 11214 11215 for (i = 0; i < MAX_HW_RESTARTS; i++) { 11216 /* Load the microcode, firmware, and eeprom. 11217 * Also start the clocks. */ 11218 rc = ipw_load(priv); 11219 if (rc) { 11220 IPW_ERROR("Unable to load firmware: %d\n", rc); 11221 return rc; 11222 } 11223 11224 ipw_init_ordinals(priv); 11225 if (!(priv->config & CFG_CUSTOM_MAC)) 11226 eeprom_parse_mac(priv, priv->mac_addr); 11227 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN); 11228 11229 ipw_set_geo(priv); 11230 11231 if (priv->status & STATUS_RF_KILL_SW) { 11232 IPW_WARNING("Radio disabled by module parameter.\n"); 11233 return 0; 11234 } else if (rf_kill_active(priv)) { 11235 IPW_WARNING("Radio Frequency Kill Switch is On:\n" 11236 "Kill switch must be turned off for " 11237 "wireless networking to work.\n"); 11238 schedule_delayed_work(&priv->rf_kill, 2 * HZ); 11239 return 0; 11240 } 11241 11242 rc = ipw_config(priv); 11243 if (!rc) { 11244 IPW_DEBUG_INFO("Configured device on count %i\n", i); 11245 11246 /* If configure to try and auto-associate, kick 11247 * off a scan. */ 11248 schedule_delayed_work(&priv->request_scan, 0); 11249 11250 return 0; 11251 } 11252 11253 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc); 11254 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n", 11255 i, MAX_HW_RESTARTS); 11256 11257 /* We had an error bringing up the hardware, so take it 11258 * all the way back down so we can try again */ 11259 ipw_down(priv); 11260 } 11261 11262 /* tried to restart and config the device for as long as our 11263 * patience could withstand */ 11264 IPW_ERROR("Unable to initialize device after %d attempts.\n", i); 11265 11266 return -EIO; 11267 } 11268 11269 static void ipw_bg_up(struct work_struct *work) 11270 { 11271 struct ipw_priv *priv = 11272 container_of(work, struct ipw_priv, up); 11273 mutex_lock(&priv->mutex); 11274 ipw_up(priv); 11275 mutex_unlock(&priv->mutex); 11276 } 11277 11278 static void ipw_deinit(struct ipw_priv *priv) 11279 { 11280 int i; 11281 11282 if (priv->status & STATUS_SCANNING) { 11283 IPW_DEBUG_INFO("Aborting scan during shutdown.\n"); 11284 ipw_abort_scan(priv); 11285 } 11286 11287 if (priv->status & STATUS_ASSOCIATED) { 11288 IPW_DEBUG_INFO("Disassociating during shutdown.\n"); 11289 ipw_disassociate(priv); 11290 } 11291 11292 ipw_led_shutdown(priv); 11293 11294 /* Wait up to 1s for status to change to not scanning and not 11295 * associated (disassociation can take a while for a ful 802.11 11296 * exchange */ 11297 for (i = 1000; i && (priv->status & 11298 (STATUS_DISASSOCIATING | 11299 STATUS_ASSOCIATED | STATUS_SCANNING)); i--) 11300 udelay(10); 11301 11302 if (priv->status & (STATUS_DISASSOCIATING | 11303 STATUS_ASSOCIATED | STATUS_SCANNING)) 11304 IPW_DEBUG_INFO("Still associated or scanning...\n"); 11305 else 11306 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i); 11307 11308 /* Attempt to disable the card */ 11309 ipw_send_card_disable(priv, 0); 11310 11311 priv->status &= ~STATUS_INIT; 11312 } 11313 11314 static void ipw_down(struct ipw_priv *priv) 11315 { 11316 int exit_pending = priv->status & STATUS_EXIT_PENDING; 11317 11318 priv->status |= STATUS_EXIT_PENDING; 11319 11320 if (ipw_is_init(priv)) 11321 ipw_deinit(priv); 11322 11323 /* Wipe out the EXIT_PENDING status bit if we are not actually 11324 * exiting the module */ 11325 if (!exit_pending) 11326 priv->status &= ~STATUS_EXIT_PENDING; 11327 11328 /* tell the device to stop sending interrupts */ 11329 ipw_disable_interrupts(priv); 11330 11331 /* Clear all bits but the RF Kill */ 11332 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING; 11333 netif_carrier_off(priv->net_dev); 11334 11335 ipw_stop_nic(priv); 11336 11337 ipw_led_radio_off(priv); 11338 } 11339 11340 static void ipw_bg_down(struct work_struct *work) 11341 { 11342 struct ipw_priv *priv = 11343 container_of(work, struct ipw_priv, down); 11344 mutex_lock(&priv->mutex); 11345 ipw_down(priv); 11346 mutex_unlock(&priv->mutex); 11347 } 11348 11349 static int ipw_wdev_init(struct net_device *dev) 11350 { 11351 int i, rc = 0; 11352 struct ipw_priv *priv = libipw_priv(dev); 11353 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 11354 struct wireless_dev *wdev = &priv->ieee->wdev; 11355 11356 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); 11357 11358 /* fill-out priv->ieee->bg_band */ 11359 if (geo->bg_channels) { 11360 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; 11361 11362 bg_band->band = NL80211_BAND_2GHZ; 11363 bg_band->n_channels = geo->bg_channels; 11364 bg_band->channels = kcalloc(geo->bg_channels, 11365 sizeof(struct ieee80211_channel), 11366 GFP_KERNEL); 11367 if (!bg_band->channels) { 11368 rc = -ENOMEM; 11369 goto out; 11370 } 11371 /* translate geo->bg to bg_band.channels */ 11372 for (i = 0; i < geo->bg_channels; i++) { 11373 bg_band->channels[i].band = NL80211_BAND_2GHZ; 11374 bg_band->channels[i].center_freq = geo->bg[i].freq; 11375 bg_band->channels[i].hw_value = geo->bg[i].channel; 11376 bg_band->channels[i].max_power = geo->bg[i].max_power; 11377 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) 11378 bg_band->channels[i].flags |= 11379 IEEE80211_CHAN_NO_IR; 11380 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) 11381 bg_band->channels[i].flags |= 11382 IEEE80211_CHAN_NO_IR; 11383 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) 11384 bg_band->channels[i].flags |= 11385 IEEE80211_CHAN_RADAR; 11386 /* No equivalent for LIBIPW_CH_80211H_RULES, 11387 LIBIPW_CH_UNIFORM_SPREADING, or 11388 LIBIPW_CH_B_ONLY... */ 11389 } 11390 /* point at bitrate info */ 11391 bg_band->bitrates = ipw2200_bg_rates; 11392 bg_band->n_bitrates = ipw2200_num_bg_rates; 11393 11394 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; 11395 } 11396 11397 /* fill-out priv->ieee->a_band */ 11398 if (geo->a_channels) { 11399 struct ieee80211_supported_band *a_band = &priv->ieee->a_band; 11400 11401 a_band->band = NL80211_BAND_5GHZ; 11402 a_band->n_channels = geo->a_channels; 11403 a_band->channels = kcalloc(geo->a_channels, 11404 sizeof(struct ieee80211_channel), 11405 GFP_KERNEL); 11406 if (!a_band->channels) { 11407 rc = -ENOMEM; 11408 goto out; 11409 } 11410 /* translate geo->a to a_band.channels */ 11411 for (i = 0; i < geo->a_channels; i++) { 11412 a_band->channels[i].band = NL80211_BAND_5GHZ; 11413 a_band->channels[i].center_freq = geo->a[i].freq; 11414 a_band->channels[i].hw_value = geo->a[i].channel; 11415 a_band->channels[i].max_power = geo->a[i].max_power; 11416 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) 11417 a_band->channels[i].flags |= 11418 IEEE80211_CHAN_NO_IR; 11419 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS) 11420 a_band->channels[i].flags |= 11421 IEEE80211_CHAN_NO_IR; 11422 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT) 11423 a_band->channels[i].flags |= 11424 IEEE80211_CHAN_RADAR; 11425 /* No equivalent for LIBIPW_CH_80211H_RULES, 11426 LIBIPW_CH_UNIFORM_SPREADING, or 11427 LIBIPW_CH_B_ONLY... */ 11428 } 11429 /* point at bitrate info */ 11430 a_band->bitrates = ipw2200_a_rates; 11431 a_band->n_bitrates = ipw2200_num_a_rates; 11432 11433 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band; 11434 } 11435 11436 wdev->wiphy->cipher_suites = ipw_cipher_suites; 11437 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); 11438 11439 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); 11440 11441 /* With that information in place, we can now register the wiphy... */ 11442 if (wiphy_register(wdev->wiphy)) 11443 rc = -EIO; 11444 out: 11445 return rc; 11446 } 11447 11448 /* PCI driver stuff */ 11449 static const struct pci_device_id card_ids[] = { 11450 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0}, 11451 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0}, 11452 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0}, 11453 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0}, 11454 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0}, 11455 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0}, 11456 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0}, 11457 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0}, 11458 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0}, 11459 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0}, 11460 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0}, 11461 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0}, 11462 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0}, 11463 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0}, 11464 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0}, 11465 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0}, 11466 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0}, 11467 {PCI_VDEVICE(INTEL, 0x104f), 0}, 11468 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */ 11469 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */ 11470 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */ 11471 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */ 11472 11473 /* required last entry */ 11474 {0,} 11475 }; 11476 11477 MODULE_DEVICE_TABLE(pci, card_ids); 11478 11479 static struct attribute *ipw_sysfs_entries[] = { 11480 &dev_attr_rf_kill.attr, 11481 &dev_attr_direct_dword.attr, 11482 &dev_attr_indirect_byte.attr, 11483 &dev_attr_indirect_dword.attr, 11484 &dev_attr_mem_gpio_reg.attr, 11485 &dev_attr_command_event_reg.attr, 11486 &dev_attr_nic_type.attr, 11487 &dev_attr_status.attr, 11488 &dev_attr_cfg.attr, 11489 &dev_attr_error.attr, 11490 &dev_attr_event_log.attr, 11491 &dev_attr_cmd_log.attr, 11492 &dev_attr_eeprom_delay.attr, 11493 &dev_attr_ucode_version.attr, 11494 &dev_attr_rtc.attr, 11495 &dev_attr_scan_age.attr, 11496 &dev_attr_led.attr, 11497 &dev_attr_speed_scan.attr, 11498 &dev_attr_net_stats.attr, 11499 &dev_attr_channels.attr, 11500 #ifdef CONFIG_IPW2200_PROMISCUOUS 11501 &dev_attr_rtap_iface.attr, 11502 &dev_attr_rtap_filter.attr, 11503 #endif 11504 NULL 11505 }; 11506 11507 static struct attribute_group ipw_attribute_group = { 11508 .name = NULL, /* put in device directory */ 11509 .attrs = ipw_sysfs_entries, 11510 }; 11511 11512 #ifdef CONFIG_IPW2200_PROMISCUOUS 11513 static int ipw_prom_open(struct net_device *dev) 11514 { 11515 struct ipw_prom_priv *prom_priv = libipw_priv(dev); 11516 struct ipw_priv *priv = prom_priv->priv; 11517 11518 IPW_DEBUG_INFO("prom dev->open\n"); 11519 netif_carrier_off(dev); 11520 11521 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 11522 priv->sys_config.accept_all_data_frames = 1; 11523 priv->sys_config.accept_non_directed_frames = 1; 11524 priv->sys_config.accept_all_mgmt_bcpr = 1; 11525 priv->sys_config.accept_all_mgmt_frames = 1; 11526 11527 ipw_send_system_config(priv); 11528 } 11529 11530 return 0; 11531 } 11532 11533 static int ipw_prom_stop(struct net_device *dev) 11534 { 11535 struct ipw_prom_priv *prom_priv = libipw_priv(dev); 11536 struct ipw_priv *priv = prom_priv->priv; 11537 11538 IPW_DEBUG_INFO("prom dev->stop\n"); 11539 11540 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 11541 priv->sys_config.accept_all_data_frames = 0; 11542 priv->sys_config.accept_non_directed_frames = 0; 11543 priv->sys_config.accept_all_mgmt_bcpr = 0; 11544 priv->sys_config.accept_all_mgmt_frames = 0; 11545 11546 ipw_send_system_config(priv); 11547 } 11548 11549 return 0; 11550 } 11551 11552 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb, 11553 struct net_device *dev) 11554 { 11555 IPW_DEBUG_INFO("prom dev->xmit\n"); 11556 dev_kfree_skb(skb); 11557 return NETDEV_TX_OK; 11558 } 11559 11560 static const struct net_device_ops ipw_prom_netdev_ops = { 11561 .ndo_open = ipw_prom_open, 11562 .ndo_stop = ipw_prom_stop, 11563 .ndo_start_xmit = ipw_prom_hard_start_xmit, 11564 .ndo_change_mtu = libipw_change_mtu, 11565 .ndo_set_mac_address = eth_mac_addr, 11566 .ndo_validate_addr = eth_validate_addr, 11567 }; 11568 11569 static int ipw_prom_alloc(struct ipw_priv *priv) 11570 { 11571 int rc = 0; 11572 11573 if (priv->prom_net_dev) 11574 return -EPERM; 11575 11576 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1); 11577 if (priv->prom_net_dev == NULL) 11578 return -ENOMEM; 11579 11580 priv->prom_priv = libipw_priv(priv->prom_net_dev); 11581 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev); 11582 priv->prom_priv->priv = priv; 11583 11584 strcpy(priv->prom_net_dev->name, "rtap%d"); 11585 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN); 11586 11587 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 11588 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops; 11589 11590 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR; 11591 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev); 11592 11593 rc = register_netdev(priv->prom_net_dev); 11594 if (rc) { 11595 free_libipw(priv->prom_net_dev, 1); 11596 priv->prom_net_dev = NULL; 11597 return rc; 11598 } 11599 11600 return 0; 11601 } 11602 11603 static void ipw_prom_free(struct ipw_priv *priv) 11604 { 11605 if (!priv->prom_net_dev) 11606 return; 11607 11608 unregister_netdev(priv->prom_net_dev); 11609 free_libipw(priv->prom_net_dev, 1); 11610 11611 priv->prom_net_dev = NULL; 11612 } 11613 11614 #endif 11615 11616 static const struct net_device_ops ipw_netdev_ops = { 11617 .ndo_open = ipw_net_open, 11618 .ndo_stop = ipw_net_stop, 11619 .ndo_set_rx_mode = ipw_net_set_multicast_list, 11620 .ndo_set_mac_address = ipw_net_set_mac_address, 11621 .ndo_start_xmit = libipw_xmit, 11622 .ndo_change_mtu = libipw_change_mtu, 11623 .ndo_validate_addr = eth_validate_addr, 11624 }; 11625 11626 static int ipw_pci_probe(struct pci_dev *pdev, 11627 const struct pci_device_id *ent) 11628 { 11629 int err = 0; 11630 struct net_device *net_dev; 11631 void __iomem *base; 11632 u32 length, val; 11633 struct ipw_priv *priv; 11634 int i; 11635 11636 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0); 11637 if (net_dev == NULL) { 11638 err = -ENOMEM; 11639 goto out; 11640 } 11641 11642 priv = libipw_priv(net_dev); 11643 priv->ieee = netdev_priv(net_dev); 11644 11645 priv->net_dev = net_dev; 11646 priv->pci_dev = pdev; 11647 ipw_debug_level = debug; 11648 spin_lock_init(&priv->irq_lock); 11649 spin_lock_init(&priv->lock); 11650 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) 11651 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]); 11652 11653 mutex_init(&priv->mutex); 11654 if (pci_enable_device(pdev)) { 11655 err = -ENODEV; 11656 goto out_free_libipw; 11657 } 11658 11659 pci_set_master(pdev); 11660 11661 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 11662 if (!err) 11663 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 11664 if (err) { 11665 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n"); 11666 goto out_pci_disable_device; 11667 } 11668 11669 pci_set_drvdata(pdev, priv); 11670 11671 err = pci_request_regions(pdev, DRV_NAME); 11672 if (err) 11673 goto out_pci_disable_device; 11674 11675 /* We disable the RETRY_TIMEOUT register (0x41) to keep 11676 * PCI Tx retries from interfering with C3 CPU state */ 11677 pci_read_config_dword(pdev, 0x40, &val); 11678 if ((val & 0x0000ff00) != 0) 11679 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); 11680 11681 length = pci_resource_len(pdev, 0); 11682 priv->hw_len = length; 11683 11684 base = pci_ioremap_bar(pdev, 0); 11685 if (!base) { 11686 err = -ENODEV; 11687 goto out_pci_release_regions; 11688 } 11689 11690 priv->hw_base = base; 11691 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length); 11692 IPW_DEBUG_INFO("pci_resource_base = %p\n", base); 11693 11694 err = ipw_setup_deferred_work(priv); 11695 if (err) { 11696 IPW_ERROR("Unable to setup deferred work\n"); 11697 goto out_iounmap; 11698 } 11699 11700 ipw_sw_reset(priv, 1); 11701 11702 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv); 11703 if (err) { 11704 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq); 11705 goto out_iounmap; 11706 } 11707 11708 SET_NETDEV_DEV(net_dev, &pdev->dev); 11709 11710 mutex_lock(&priv->mutex); 11711 11712 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit; 11713 priv->ieee->set_security = shim__set_security; 11714 priv->ieee->is_queue_full = ipw_net_is_queue_full; 11715 11716 #ifdef CONFIG_IPW2200_QOS 11717 priv->ieee->is_qos_active = ipw_is_qos_active; 11718 priv->ieee->handle_probe_response = ipw_handle_beacon; 11719 priv->ieee->handle_beacon = ipw_handle_probe_response; 11720 priv->ieee->handle_assoc_response = ipw_handle_assoc_response; 11721 #endif /* CONFIG_IPW2200_QOS */ 11722 11723 priv->ieee->perfect_rssi = -20; 11724 priv->ieee->worst_rssi = -85; 11725 11726 net_dev->netdev_ops = &ipw_netdev_ops; 11727 priv->wireless_data.spy_data = &priv->ieee->spy_data; 11728 net_dev->wireless_data = &priv->wireless_data; 11729 net_dev->wireless_handlers = &ipw_wx_handler_def; 11730 net_dev->ethtool_ops = &ipw_ethtool_ops; 11731 11732 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group); 11733 if (err) { 11734 IPW_ERROR("failed to create sysfs device attributes\n"); 11735 mutex_unlock(&priv->mutex); 11736 goto out_release_irq; 11737 } 11738 11739 if (ipw_up(priv)) { 11740 mutex_unlock(&priv->mutex); 11741 err = -EIO; 11742 goto out_remove_sysfs; 11743 } 11744 11745 mutex_unlock(&priv->mutex); 11746 11747 err = ipw_wdev_init(net_dev); 11748 if (err) { 11749 IPW_ERROR("failed to register wireless device\n"); 11750 goto out_remove_sysfs; 11751 } 11752 11753 err = register_netdev(net_dev); 11754 if (err) { 11755 IPW_ERROR("failed to register network device\n"); 11756 goto out_unregister_wiphy; 11757 } 11758 11759 #ifdef CONFIG_IPW2200_PROMISCUOUS 11760 if (rtap_iface) { 11761 err = ipw_prom_alloc(priv); 11762 if (err) { 11763 IPW_ERROR("Failed to register promiscuous network " 11764 "device (error %d).\n", err); 11765 unregister_netdev(priv->net_dev); 11766 goto out_unregister_wiphy; 11767 } 11768 } 11769 #endif 11770 11771 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg " 11772 "channels, %d 802.11a channels)\n", 11773 priv->ieee->geo.name, priv->ieee->geo.bg_channels, 11774 priv->ieee->geo.a_channels); 11775 11776 return 0; 11777 11778 out_unregister_wiphy: 11779 wiphy_unregister(priv->ieee->wdev.wiphy); 11780 kfree(priv->ieee->a_band.channels); 11781 kfree(priv->ieee->bg_band.channels); 11782 out_remove_sysfs: 11783 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); 11784 out_release_irq: 11785 free_irq(pdev->irq, priv); 11786 out_iounmap: 11787 iounmap(priv->hw_base); 11788 out_pci_release_regions: 11789 pci_release_regions(pdev); 11790 out_pci_disable_device: 11791 pci_disable_device(pdev); 11792 out_free_libipw: 11793 free_libipw(priv->net_dev, 0); 11794 out: 11795 return err; 11796 } 11797 11798 static void ipw_pci_remove(struct pci_dev *pdev) 11799 { 11800 struct ipw_priv *priv = pci_get_drvdata(pdev); 11801 struct list_head *p, *q; 11802 int i; 11803 11804 if (!priv) 11805 return; 11806 11807 mutex_lock(&priv->mutex); 11808 11809 priv->status |= STATUS_EXIT_PENDING; 11810 ipw_down(priv); 11811 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); 11812 11813 mutex_unlock(&priv->mutex); 11814 11815 unregister_netdev(priv->net_dev); 11816 11817 if (priv->rxq) { 11818 ipw_rx_queue_free(priv, priv->rxq); 11819 priv->rxq = NULL; 11820 } 11821 ipw_tx_queue_free(priv); 11822 11823 if (priv->cmdlog) { 11824 kfree(priv->cmdlog); 11825 priv->cmdlog = NULL; 11826 } 11827 11828 /* make sure all works are inactive */ 11829 cancel_delayed_work_sync(&priv->adhoc_check); 11830 cancel_work_sync(&priv->associate); 11831 cancel_work_sync(&priv->disassociate); 11832 cancel_work_sync(&priv->system_config); 11833 cancel_work_sync(&priv->rx_replenish); 11834 cancel_work_sync(&priv->adapter_restart); 11835 cancel_delayed_work_sync(&priv->rf_kill); 11836 cancel_work_sync(&priv->up); 11837 cancel_work_sync(&priv->down); 11838 cancel_delayed_work_sync(&priv->request_scan); 11839 cancel_delayed_work_sync(&priv->request_direct_scan); 11840 cancel_delayed_work_sync(&priv->request_passive_scan); 11841 cancel_delayed_work_sync(&priv->scan_event); 11842 cancel_delayed_work_sync(&priv->gather_stats); 11843 cancel_work_sync(&priv->abort_scan); 11844 cancel_work_sync(&priv->roam); 11845 cancel_delayed_work_sync(&priv->scan_check); 11846 cancel_work_sync(&priv->link_up); 11847 cancel_work_sync(&priv->link_down); 11848 cancel_delayed_work_sync(&priv->led_link_on); 11849 cancel_delayed_work_sync(&priv->led_link_off); 11850 cancel_delayed_work_sync(&priv->led_act_off); 11851 cancel_work_sync(&priv->merge_networks); 11852 11853 /* Free MAC hash list for ADHOC */ 11854 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) { 11855 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) { 11856 list_del(p); 11857 kfree(list_entry(p, struct ipw_ibss_seq, list)); 11858 } 11859 } 11860 11861 kfree(priv->error); 11862 priv->error = NULL; 11863 11864 #ifdef CONFIG_IPW2200_PROMISCUOUS 11865 ipw_prom_free(priv); 11866 #endif 11867 11868 free_irq(pdev->irq, priv); 11869 iounmap(priv->hw_base); 11870 pci_release_regions(pdev); 11871 pci_disable_device(pdev); 11872 /* wiphy_unregister needs to be here, before free_libipw */ 11873 wiphy_unregister(priv->ieee->wdev.wiphy); 11874 kfree(priv->ieee->a_band.channels); 11875 kfree(priv->ieee->bg_band.channels); 11876 free_libipw(priv->net_dev, 0); 11877 free_firmware(); 11878 } 11879 11880 #ifdef CONFIG_PM 11881 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state) 11882 { 11883 struct ipw_priv *priv = pci_get_drvdata(pdev); 11884 struct net_device *dev = priv->net_dev; 11885 11886 printk(KERN_INFO "%s: Going into suspend...\n", dev->name); 11887 11888 /* Take down the device; powers it off, etc. */ 11889 ipw_down(priv); 11890 11891 /* Remove the PRESENT state of the device */ 11892 netif_device_detach(dev); 11893 11894 pci_save_state(pdev); 11895 pci_disable_device(pdev); 11896 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 11897 11898 priv->suspend_at = get_seconds(); 11899 11900 return 0; 11901 } 11902 11903 static int ipw_pci_resume(struct pci_dev *pdev) 11904 { 11905 struct ipw_priv *priv = pci_get_drvdata(pdev); 11906 struct net_device *dev = priv->net_dev; 11907 int err; 11908 u32 val; 11909 11910 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name); 11911 11912 pci_set_power_state(pdev, PCI_D0); 11913 err = pci_enable_device(pdev); 11914 if (err) { 11915 printk(KERN_ERR "%s: pci_enable_device failed on resume\n", 11916 dev->name); 11917 return err; 11918 } 11919 pci_restore_state(pdev); 11920 11921 /* 11922 * Suspend/Resume resets the PCI configuration space, so we have to 11923 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 11924 * from interfering with C3 CPU state. pci_restore_state won't help 11925 * here since it only restores the first 64 bytes pci config header. 11926 */ 11927 pci_read_config_dword(pdev, 0x40, &val); 11928 if ((val & 0x0000ff00) != 0) 11929 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); 11930 11931 /* Set the device back into the PRESENT state; this will also wake 11932 * the queue of needed */ 11933 netif_device_attach(dev); 11934 11935 priv->suspend_time = get_seconds() - priv->suspend_at; 11936 11937 /* Bring the device back up */ 11938 schedule_work(&priv->up); 11939 11940 return 0; 11941 } 11942 #endif 11943 11944 static void ipw_pci_shutdown(struct pci_dev *pdev) 11945 { 11946 struct ipw_priv *priv = pci_get_drvdata(pdev); 11947 11948 /* Take down the device; powers it off, etc. */ 11949 ipw_down(priv); 11950 11951 pci_disable_device(pdev); 11952 } 11953 11954 /* driver initialization stuff */ 11955 static struct pci_driver ipw_driver = { 11956 .name = DRV_NAME, 11957 .id_table = card_ids, 11958 .probe = ipw_pci_probe, 11959 .remove = ipw_pci_remove, 11960 #ifdef CONFIG_PM 11961 .suspend = ipw_pci_suspend, 11962 .resume = ipw_pci_resume, 11963 #endif 11964 .shutdown = ipw_pci_shutdown, 11965 }; 11966 11967 static int __init ipw_init(void) 11968 { 11969 int ret; 11970 11971 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n"); 11972 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n"); 11973 11974 ret = pci_register_driver(&ipw_driver); 11975 if (ret) { 11976 IPW_ERROR("Unable to initialize PCI module\n"); 11977 return ret; 11978 } 11979 11980 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level); 11981 if (ret) { 11982 IPW_ERROR("Unable to create driver sysfs file\n"); 11983 pci_unregister_driver(&ipw_driver); 11984 return ret; 11985 } 11986 11987 return ret; 11988 } 11989 11990 static void __exit ipw_exit(void) 11991 { 11992 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level); 11993 pci_unregister_driver(&ipw_driver); 11994 } 11995 11996 module_param(disable, int, 0444); 11997 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); 11998 11999 module_param(associate, int, 0444); 12000 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); 12001 12002 module_param(auto_create, int, 0444); 12003 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)"); 12004 12005 module_param_named(led, led_support, int, 0444); 12006 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)"); 12007 12008 module_param(debug, int, 0444); 12009 MODULE_PARM_DESC(debug, "debug output mask"); 12010 12011 module_param_named(channel, default_channel, int, 0444); 12012 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])"); 12013 12014 #ifdef CONFIG_IPW2200_PROMISCUOUS 12015 module_param(rtap_iface, int, 0444); 12016 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)"); 12017 #endif 12018 12019 #ifdef CONFIG_IPW2200_QOS 12020 module_param(qos_enable, int, 0444); 12021 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis"); 12022 12023 module_param(qos_burst_enable, int, 0444); 12024 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode"); 12025 12026 module_param(qos_no_ack_mask, int, 0444); 12027 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack"); 12028 12029 module_param(burst_duration_CCK, int, 0444); 12030 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value"); 12031 12032 module_param(burst_duration_OFDM, int, 0444); 12033 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value"); 12034 #endif /* CONFIG_IPW2200_QOS */ 12035 12036 #ifdef CONFIG_IPW2200_MONITOR 12037 module_param_named(mode, network_mode, int, 0444); 12038 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); 12039 #else 12040 module_param_named(mode, network_mode, int, 0444); 12041 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)"); 12042 #endif 12043 12044 module_param(bt_coexist, int, 0444); 12045 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)"); 12046 12047 module_param(hwcrypto, int, 0444); 12048 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)"); 12049 12050 module_param(cmdlog, int, 0444); 12051 MODULE_PARM_DESC(cmdlog, 12052 "allocate a ring buffer for logging firmware commands"); 12053 12054 module_param(roaming, int, 0444); 12055 MODULE_PARM_DESC(roaming, "enable roaming support (default on)"); 12056 12057 module_param(antenna, int, 0444); 12058 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)"); 12059 12060 module_exit(ipw_exit); 12061 module_init(ipw_init); 12062