xref: /linux/drivers/net/wireless/intel/ipw2x00/ipw2100.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /******************************************************************************
2 
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4 
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8 
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13 
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17 
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20 
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28 
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33 
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37 
38 ******************************************************************************/
39 /*
40 
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43 
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45 
46 Theory of Operation
47 
48 Tx - Commands and Data
49 
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53 
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57 
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61 
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67 
68 The Tx flow cycle is as follows:
69 
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90 
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93 
94 ...
95 
96 Critical Sections / Locking :
97 
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100 
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102 
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106 
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110 
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114 
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118 
119   The flow of data on the TX side is as follows:
120 
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123 
124   The methods that work on the TBD ring are protected via priv->low_lock.
125 
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129 
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132 
133 
134 */
135 
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <linux/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165 
166 #include <net/lib80211.h>
167 
168 #include "ipw2100.h"
169 #include "ipw.h"
170 
171 #define IPW2100_VERSION "git-1.2.2"
172 
173 #define DRV_NAME	"ipw2100"
174 #define DRV_VERSION	IPW2100_VERSION
175 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
177 
178 static struct pm_qos_request ipw2100_pm_qos_req;
179 
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG	/* Reception debugging */
183 #endif
184 
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189 
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198 
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205 
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211 
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213 
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 	if (ipw2100_debug_level & (level)) { \
218 		printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220 		printk(message); \
221 	} \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif				/* CONFIG_IPW2100_DEBUG */
226 
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 	"undefined",
230 	"unused",		/* HOST_ATTENTION */
231 	"HOST_COMPLETE",
232 	"unused",		/* SLEEP */
233 	"unused",		/* HOST_POWER_DOWN */
234 	"unused",
235 	"SYSTEM_CONFIG",
236 	"unused",		/* SET_IMR */
237 	"SSID",
238 	"MANDATORY_BSSID",
239 	"AUTHENTICATION_TYPE",
240 	"ADAPTER_ADDRESS",
241 	"PORT_TYPE",
242 	"INTERNATIONAL_MODE",
243 	"CHANNEL",
244 	"RTS_THRESHOLD",
245 	"FRAG_THRESHOLD",
246 	"POWER_MODE",
247 	"TX_RATES",
248 	"BASIC_TX_RATES",
249 	"WEP_KEY_INFO",
250 	"unused",
251 	"unused",
252 	"unused",
253 	"unused",
254 	"WEP_KEY_INDEX",
255 	"WEP_FLAGS",
256 	"ADD_MULTICAST",
257 	"CLEAR_ALL_MULTICAST",
258 	"BEACON_INTERVAL",
259 	"ATIM_WINDOW",
260 	"CLEAR_STATISTICS",
261 	"undefined",
262 	"undefined",
263 	"undefined",
264 	"undefined",
265 	"TX_POWER_INDEX",
266 	"undefined",
267 	"undefined",
268 	"undefined",
269 	"undefined",
270 	"undefined",
271 	"undefined",
272 	"BROADCAST_SCAN",
273 	"CARD_DISABLE",
274 	"PREFERRED_BSSID",
275 	"SET_SCAN_OPTIONS",
276 	"SCAN_DWELL_TIME",
277 	"SWEEP_TABLE",
278 	"AP_OR_STATION_TABLE",
279 	"GROUP_ORDINALS",
280 	"SHORT_RETRY_LIMIT",
281 	"LONG_RETRY_LIMIT",
282 	"unused",		/* SAVE_CALIBRATION */
283 	"unused",		/* RESTORE_CALIBRATION */
284 	"undefined",
285 	"undefined",
286 	"undefined",
287 	"HOST_PRE_POWER_DOWN",
288 	"unused",		/* HOST_INTERRUPT_COALESCING */
289 	"undefined",
290 	"CARD_DISABLE_PHY_OFF",
291 	"MSDU_TX_RATES",
292 	"undefined",
293 	"SET_STATION_STAT_BITS",
294 	"CLEAR_STATIONS_STAT_BITS",
295 	"LEAP_ROGUE_MODE",
296 	"SET_SECURITY_INFORMATION",
297 	"DISASSOCIATION_BSSID",
298 	"SET_WPA_ASS_IE"
299 };
300 #endif
301 
302 static const long ipw2100_frequencies[] = {
303 	2412, 2417, 2422, 2427,
304 	2432, 2437, 2442, 2447,
305 	2452, 2457, 2462, 2467,
306 	2472, 2484
307 };
308 
309 #define FREQ_COUNT	ARRAY_SIZE(ipw2100_frequencies)
310 
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 	{ .bitrate = 10 },
313 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317 
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319 
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324 
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328 
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 			       struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 				struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 				 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 				    size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 				     struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 				  struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static const struct iw_handler_def ipw2100_wx_handler_def;
344 
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 	struct ipw2100_priv *priv = libipw_priv(dev);
348 
349 	*val = ioread32(priv->ioaddr + reg);
350 	IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352 
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 	struct ipw2100_priv *priv = libipw_priv(dev);
356 
357 	iowrite32(val, priv->ioaddr + reg);
358 	IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360 
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 				      u16 * val)
363 {
364 	struct ipw2100_priv *priv = libipw_priv(dev);
365 
366 	*val = ioread16(priv->ioaddr + reg);
367 	IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369 
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 	struct ipw2100_priv *priv = libipw_priv(dev);
373 
374 	*val = ioread8(priv->ioaddr + reg);
375 	IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377 
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 	struct ipw2100_priv *priv = libipw_priv(dev);
381 
382 	iowrite16(val, priv->ioaddr + reg);
383 	IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385 
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 	struct ipw2100_priv *priv = libipw_priv(dev);
389 
390 	iowrite8(val, priv->ioaddr + reg);
391 	IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393 
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
398 	read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400 
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
405 	write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407 
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
412 	read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414 
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
419 	write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421 
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
426 	read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428 
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
433 	write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435 
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441 
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 	write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446 
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 				    const u8 * buf)
449 {
450 	u32 aligned_addr;
451 	u32 aligned_len;
452 	u32 dif_len;
453 	u32 i;
454 
455 	/* read first nibble byte by byte */
456 	aligned_addr = addr & (~0x3);
457 	dif_len = addr - aligned_addr;
458 	if (dif_len) {
459 		/* Start reading at aligned_addr + dif_len */
460 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 			       aligned_addr);
462 		for (i = dif_len; i < 4; i++, buf++)
463 			write_register_byte(dev,
464 					    IPW_REG_INDIRECT_ACCESS_DATA + i,
465 					    *buf);
466 
467 		len -= dif_len;
468 		aligned_addr += 4;
469 	}
470 
471 	/* read DWs through autoincrement registers */
472 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 	aligned_len = len & (~0x3);
474 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 		write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476 
477 	/* copy the last nibble */
478 	dif_len = len - aligned_len;
479 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 	for (i = 0; i < dif_len; i++, buf++)
481 		write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 				    *buf);
483 }
484 
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 				   u8 * buf)
487 {
488 	u32 aligned_addr;
489 	u32 aligned_len;
490 	u32 dif_len;
491 	u32 i;
492 
493 	/* read first nibble byte by byte */
494 	aligned_addr = addr & (~0x3);
495 	dif_len = addr - aligned_addr;
496 	if (dif_len) {
497 		/* Start reading at aligned_addr + dif_len */
498 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 			       aligned_addr);
500 		for (i = dif_len; i < 4; i++, buf++)
501 			read_register_byte(dev,
502 					   IPW_REG_INDIRECT_ACCESS_DATA + i,
503 					   buf);
504 
505 		len -= dif_len;
506 		aligned_addr += 4;
507 	}
508 
509 	/* read DWs through autoincrement registers */
510 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 	aligned_len = len & (~0x3);
512 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 		read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514 
515 	/* copy the last nibble */
516 	dif_len = len - aligned_len;
517 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 	for (i = 0; i < dif_len; i++, buf++)
519 		read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521 
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 	u32 dbg;
525 
526 	read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527 
528 	return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530 
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 			       void *val, u32 * len)
533 {
534 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 	u32 addr;
536 	u32 field_info;
537 	u16 field_len;
538 	u16 field_count;
539 	u32 total_length;
540 
541 	if (ordinals->table1_addr == 0) {
542 		printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 		       "before they have been loaded.\n");
544 		return -EINVAL;
545 	}
546 
547 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 		if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
550 
551 			printk(KERN_WARNING DRV_NAME
552 			       ": ordinal buffer length too small, need %zd\n",
553 			       IPW_ORD_TAB_1_ENTRY_SIZE);
554 
555 			return -EINVAL;
556 		}
557 
558 		read_nic_dword(priv->net_dev,
559 			       ordinals->table1_addr + (ord << 2), &addr);
560 		read_nic_dword(priv->net_dev, addr, val);
561 
562 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
563 
564 		return 0;
565 	}
566 
567 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568 
569 		ord -= IPW_START_ORD_TAB_2;
570 
571 		/* get the address of statistic */
572 		read_nic_dword(priv->net_dev,
573 			       ordinals->table2_addr + (ord << 3), &addr);
574 
575 		/* get the second DW of statistics ;
576 		 * two 16-bit words - first is length, second is count */
577 		read_nic_dword(priv->net_dev,
578 			       ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 			       &field_info);
580 
581 		/* get each entry length */
582 		field_len = *((u16 *) & field_info);
583 
584 		/* get number of entries */
585 		field_count = *(((u16 *) & field_info) + 1);
586 
587 		/* abort if no enough memory */
588 		total_length = field_len * field_count;
589 		if (total_length > *len) {
590 			*len = total_length;
591 			return -EINVAL;
592 		}
593 
594 		*len = total_length;
595 		if (!total_length)
596 			return 0;
597 
598 		/* read the ordinal data from the SRAM */
599 		read_nic_memory(priv->net_dev, addr, total_length, val);
600 
601 		return 0;
602 	}
603 
604 	printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 	       "in table 2\n", ord);
606 
607 	return -EINVAL;
608 }
609 
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 			       u32 * len)
612 {
613 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 	u32 addr;
615 
616 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 		if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 			IPW_DEBUG_INFO("wrong size\n");
620 			return -EINVAL;
621 		}
622 
623 		read_nic_dword(priv->net_dev,
624 			       ordinals->table1_addr + (ord << 2), &addr);
625 
626 		write_nic_dword(priv->net_dev, addr, *val);
627 
628 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
629 
630 		return 0;
631 	}
632 
633 	IPW_DEBUG_INFO("wrong table\n");
634 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 		return -EINVAL;
636 
637 	return -EINVAL;
638 }
639 
640 static char *snprint_line(char *buf, size_t count,
641 			  const u8 * data, u32 len, u32 ofs)
642 {
643 	int out, i, j, l;
644 	char c;
645 
646 	out = snprintf(buf, count, "%08X", ofs);
647 
648 	for (l = 0, i = 0; i < 2; i++) {
649 		out += snprintf(buf + out, count - out, " ");
650 		for (j = 0; j < 8 && l < len; j++, l++)
651 			out += snprintf(buf + out, count - out, "%02X ",
652 					data[(i * 8 + j)]);
653 		for (; j < 8; j++)
654 			out += snprintf(buf + out, count - out, "   ");
655 	}
656 
657 	out += snprintf(buf + out, count - out, " ");
658 	for (l = 0, i = 0; i < 2; i++) {
659 		out += snprintf(buf + out, count - out, " ");
660 		for (j = 0; j < 8 && l < len; j++, l++) {
661 			c = data[(i * 8 + j)];
662 			if (!isascii(c) || !isprint(c))
663 				c = '.';
664 
665 			out += snprintf(buf + out, count - out, "%c", c);
666 		}
667 
668 		for (; j < 8; j++)
669 			out += snprintf(buf + out, count - out, " ");
670 	}
671 
672 	return buf;
673 }
674 
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 	char line[81];
678 	u32 ofs = 0;
679 	if (!(ipw2100_debug_level & level))
680 		return;
681 
682 	while (len) {
683 		printk(KERN_DEBUG "%s\n",
684 		       snprint_line(line, sizeof(line), &data[ofs],
685 				    min(len, 16U), ofs));
686 		ofs += 16;
687 		len -= min(len, 16U);
688 	}
689 }
690 
691 #define MAX_RESET_BACKOFF 10
692 
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 	time64_t now = ktime_get_boottime_seconds();
696 
697 	/* If we haven't received a reset request within the backoff period,
698 	 * then we can reset the backoff interval so this reset occurs
699 	 * immediately */
700 	if (priv->reset_backoff &&
701 	    (now - priv->last_reset > priv->reset_backoff))
702 		priv->reset_backoff = 0;
703 
704 	priv->last_reset = now;
705 
706 	if (!(priv->status & STATUS_RESET_PENDING)) {
707 		IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n",
708 			       priv->net_dev->name, priv->reset_backoff);
709 		netif_carrier_off(priv->net_dev);
710 		netif_stop_queue(priv->net_dev);
711 		priv->status |= STATUS_RESET_PENDING;
712 		if (priv->reset_backoff)
713 			schedule_delayed_work(&priv->reset_work,
714 					      priv->reset_backoff * HZ);
715 		else
716 			schedule_delayed_work(&priv->reset_work, 0);
717 
718 		if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 			priv->reset_backoff++;
720 
721 		wake_up_interruptible(&priv->wait_command_queue);
722 	} else
723 		IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 			       priv->net_dev->name);
725 
726 }
727 
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 				   struct host_command *cmd)
731 {
732 	struct list_head *element;
733 	struct ipw2100_tx_packet *packet;
734 	unsigned long flags;
735 	int err = 0;
736 
737 	IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 		     command_types[cmd->host_command], cmd->host_command,
739 		     cmd->host_command_length);
740 	printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 		   cmd->host_command_length);
742 
743 	spin_lock_irqsave(&priv->low_lock, flags);
744 
745 	if (priv->fatal_error) {
746 		IPW_DEBUG_INFO
747 		    ("Attempt to send command while hardware in fatal error condition.\n");
748 		err = -EIO;
749 		goto fail_unlock;
750 	}
751 
752 	if (!(priv->status & STATUS_RUNNING)) {
753 		IPW_DEBUG_INFO
754 		    ("Attempt to send command while hardware is not running.\n");
755 		err = -EIO;
756 		goto fail_unlock;
757 	}
758 
759 	if (priv->status & STATUS_CMD_ACTIVE) {
760 		IPW_DEBUG_INFO
761 		    ("Attempt to send command while another command is pending.\n");
762 		err = -EBUSY;
763 		goto fail_unlock;
764 	}
765 
766 	if (list_empty(&priv->msg_free_list)) {
767 		IPW_DEBUG_INFO("no available msg buffers\n");
768 		goto fail_unlock;
769 	}
770 
771 	priv->status |= STATUS_CMD_ACTIVE;
772 	priv->messages_sent++;
773 
774 	element = priv->msg_free_list.next;
775 
776 	packet = list_entry(element, struct ipw2100_tx_packet, list);
777 	packet->jiffy_start = jiffies;
778 
779 	/* initialize the firmware command packet */
780 	packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 	packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 	packet->info.c_struct.cmd->host_command_len_reg =
783 	    cmd->host_command_length;
784 	packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785 
786 	memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 	       cmd->host_command_parameters,
788 	       sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789 
790 	list_del(element);
791 	DEC_STAT(&priv->msg_free_stat);
792 
793 	list_add_tail(element, &priv->msg_pend_list);
794 	INC_STAT(&priv->msg_pend_stat);
795 
796 	ipw2100_tx_send_commands(priv);
797 	ipw2100_tx_send_data(priv);
798 
799 	spin_unlock_irqrestore(&priv->low_lock, flags);
800 
801 	/*
802 	 * We must wait for this command to complete before another
803 	 * command can be sent...  but if we wait more than 3 seconds
804 	 * then there is a problem.
805 	 */
806 
807 	err =
808 	    wait_event_interruptible_timeout(priv->wait_command_queue,
809 					     !(priv->
810 					       status & STATUS_CMD_ACTIVE),
811 					     HOST_COMPLETE_TIMEOUT);
812 
813 	if (err == 0) {
814 		IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 			       1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 		priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 		priv->status &= ~STATUS_CMD_ACTIVE;
818 		schedule_reset(priv);
819 		return -EIO;
820 	}
821 
822 	if (priv->fatal_error) {
823 		printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 		       priv->net_dev->name);
825 		return -EIO;
826 	}
827 
828 	/* !!!!! HACK TEST !!!!!
829 	 * When lots of debug trace statements are enabled, the driver
830 	 * doesn't seem to have as many firmware restart cycles...
831 	 *
832 	 * As a test, we're sticking in a 1/100s delay here */
833 	schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834 
835 	return 0;
836 
837       fail_unlock:
838 	spin_unlock_irqrestore(&priv->low_lock, flags);
839 
840 	return err;
841 }
842 
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 	u32 data1, data2;
850 	u32 address;
851 
852 	u32 val1 = 0x76543210;
853 	u32 val2 = 0xFEDCBA98;
854 
855 	/* Domain 0 check - all values should be DOA_DEBUG */
856 	for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 	     address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 		read_register(priv->net_dev, address, &data1);
859 		if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 			return -EIO;
861 	}
862 
863 	/* Domain 1 check - use arbitrary read/write compare  */
864 	for (address = 0; address < 5; address++) {
865 		/* The memory area is not used now */
866 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 			       val1);
868 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 			       val2);
870 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 			      &data1);
872 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 			      &data2);
874 		if (val1 == data1 && val2 == data2)
875 			return 0;
876 	}
877 
878 	return -EIO;
879 }
880 
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT		    100	// 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 	int i;
894 	u32 card_state;
895 	u32 len = sizeof(card_state);
896 	int err;
897 
898 	for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 		err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 					  &card_state, &len);
901 		if (err) {
902 			IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 				       "failed.\n");
904 			return 0;
905 		}
906 
907 		/* We'll break out if either the HW state says it is
908 		 * in the state we want, or if HOST_COMPLETE command
909 		 * finishes */
910 		if ((card_state == state) ||
911 		    ((priv->status & STATUS_ENABLED) ?
912 		     IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 			if (state == IPW_HW_STATE_ENABLED)
914 				priv->status |= STATUS_ENABLED;
915 			else
916 				priv->status &= ~STATUS_ENABLED;
917 
918 			return 0;
919 		}
920 
921 		udelay(50);
922 	}
923 
924 	IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 		       state ? "DISABLED" : "ENABLED");
926 	return -EIO;
927 }
928 
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 	int i;
937 	u32 r;
938 
939 	// assert s/w reset
940 	write_register(priv->net_dev, IPW_REG_RESET_REG,
941 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
942 
943 	// wait for clock stabilization
944 	for (i = 0; i < 1000; i++) {
945 		udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946 
947 		// check clock ready bit
948 		read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 		if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 			break;
951 	}
952 
953 	if (i == 1000)
954 		return -EIO;	// TODO: better error value
955 
956 	/* set "initialization complete" bit to move adapter to
957 	 * D0 state */
958 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 		       IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960 
961 	/* wait for clock stabilization */
962 	for (i = 0; i < 10000; i++) {
963 		udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964 
965 		/* check clock ready bit */
966 		read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 		if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 			break;
969 	}
970 
971 	if (i == 10000)
972 		return -EIO;	/* TODO: better error value */
973 
974 	/* set D0 standby bit */
975 	read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 		       r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978 
979 	return 0;
980 }
981 
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 	u32 address;
996 	int err;
997 
998 #ifndef CONFIG_PM
999 	/* Fetch the firmware and microcode */
1000 	struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002 
1003 	if (priv->fatal_error) {
1004 		IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 				"fatal error %d.  Interface must be brought down.\n",
1006 				priv->net_dev->name, priv->fatal_error);
1007 		return -EINVAL;
1008 	}
1009 #ifdef CONFIG_PM
1010 	if (!ipw2100_firmware.version) {
1011 		err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 		if (err) {
1013 			IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 					priv->net_dev->name, err);
1015 			priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 			goto fail;
1017 		}
1018 	}
1019 #else
1020 	err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 	if (err) {
1022 		IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 				priv->net_dev->name, err);
1024 		priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 		goto fail;
1026 	}
1027 #endif
1028 	priv->firmware_version = ipw2100_firmware.version;
1029 
1030 	/* s/w reset and clock stabilization */
1031 	err = sw_reset_and_clock(priv);
1032 	if (err) {
1033 		IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 				priv->net_dev->name, err);
1035 		goto fail;
1036 	}
1037 
1038 	err = ipw2100_verify(priv);
1039 	if (err) {
1040 		IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 				priv->net_dev->name, err);
1042 		goto fail;
1043 	}
1044 
1045 	/* Hold ARC */
1046 	write_nic_dword(priv->net_dev,
1047 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048 
1049 	/* allow ARC to run */
1050 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051 
1052 	/* load microcode */
1053 	err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 	if (err) {
1055 		printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 		       priv->net_dev->name, err);
1057 		goto fail;
1058 	}
1059 
1060 	/* release ARC */
1061 	write_nic_dword(priv->net_dev,
1062 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063 
1064 	/* s/w reset and clock stabilization (again!!!) */
1065 	err = sw_reset_and_clock(priv);
1066 	if (err) {
1067 		printk(KERN_ERR DRV_NAME
1068 		       ": %s: sw_reset_and_clock failed: %d\n",
1069 		       priv->net_dev->name, err);
1070 		goto fail;
1071 	}
1072 
1073 	/* load f/w */
1074 	err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 	if (err) {
1076 		IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 				priv->net_dev->name, err);
1078 		goto fail;
1079 	}
1080 #ifndef CONFIG_PM
1081 	/*
1082 	 * When the .resume method of the driver is called, the other
1083 	 * part of the system, i.e. the ide driver could still stay in
1084 	 * the suspend stage. This prevents us from loading the firmware
1085 	 * from the disk.  --YZ
1086 	 */
1087 
1088 	/* free any storage allocated for firmware image */
1089 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091 
1092 	/* zero out Domain 1 area indirectly (Si requirement) */
1093 	for (address = IPW_HOST_FW_SHARED_AREA0;
1094 	     address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 		write_nic_dword(priv->net_dev, address, 0);
1096 	for (address = IPW_HOST_FW_SHARED_AREA1;
1097 	     address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 		write_nic_dword(priv->net_dev, address, 0);
1099 	for (address = IPW_HOST_FW_SHARED_AREA2;
1100 	     address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 		write_nic_dword(priv->net_dev, address, 0);
1102 	for (address = IPW_HOST_FW_SHARED_AREA3;
1103 	     address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 		write_nic_dword(priv->net_dev, address, 0);
1105 	for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 	     address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 		write_nic_dword(priv->net_dev, address, 0);
1108 
1109 	return 0;
1110 
1111       fail:
1112 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 	return err;
1114 }
1115 
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 	if (priv->status & STATUS_INT_ENABLED)
1119 		return;
1120 	priv->status |= STATUS_INT_ENABLED;
1121 	write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123 
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 	if (!(priv->status & STATUS_INT_ENABLED))
1127 		return;
1128 	priv->status &= ~STATUS_INT_ENABLED;
1129 	write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131 
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 	struct ipw2100_ordinals *ord = &priv->ordinals;
1135 
1136 	IPW_DEBUG_INFO("enter\n");
1137 
1138 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 		      &ord->table1_addr);
1140 
1141 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 		      &ord->table2_addr);
1143 
1144 	read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 	read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146 
1147 	ord->table2_size &= 0x0000FFFF;
1148 
1149 	IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 	IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 	IPW_DEBUG_INFO("exit\n");
1152 }
1153 
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 	u32 reg = 0;
1157 	/*
1158 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 	 * by driver and enable clock
1160 	 */
1161 	reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 	       IPW_BIT_GPIO_LED_OFF);
1163 	write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165 
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170 
1171 	unsigned short value = 0;
1172 	u32 reg = 0;
1173 	int i;
1174 
1175 	if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 		priv->status &= ~STATUS_RF_KILL_HW;
1178 		return 0;
1179 	}
1180 
1181 	for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 		udelay(RF_KILL_CHECK_DELAY);
1183 		read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 		value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 	}
1186 
1187 	if (value == 0) {
1188 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 		priv->status |= STATUS_RF_KILL_HW;
1190 	} else {
1191 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 		priv->status &= ~STATUS_RF_KILL_HW;
1193 	}
1194 
1195 	return (value == 0);
1196 }
1197 
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 	u32 addr, len;
1201 	u32 val;
1202 
1203 	/*
1204 	 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 	 */
1206 	len = sizeof(addr);
1207 	if (ipw2100_get_ordinal
1208 	    (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 			       __LINE__);
1211 		return -EIO;
1212 	}
1213 
1214 	IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215 
1216 	/*
1217 	 * EEPROM version is the byte at offset 0xfd in firmware
1218 	 * We read 4 bytes, then shift out the byte we actually want */
1219 	read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 	priv->eeprom_version = (val >> 24) & 0xFF;
1221 	IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222 
1223 	/*
1224 	 *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 	 *
1226 	 *  notice that the EEPROM bit is reverse polarity, i.e.
1227 	 *     bit = 0  signifies HW RF kill switch is supported
1228 	 *     bit = 1  signifies HW RF kill switch is NOT supported
1229 	 */
1230 	read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 	if (!((val >> 24) & 0x01))
1232 		priv->hw_features |= HW_FEATURE_RFKILL;
1233 
1234 	IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 		       (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236 
1237 	return 0;
1238 }
1239 
1240 /*
1241  * Start firmware execution after power on and initialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 	int i;
1249 	u32 inta, inta_mask, gpio;
1250 
1251 	IPW_DEBUG_INFO("enter\n");
1252 
1253 	if (priv->status & STATUS_RUNNING)
1254 		return 0;
1255 
1256 	/*
1257 	 * Initialize the hw - drive adapter to DO state by setting
1258 	 * init_done bit. Wait for clk_ready bit and Download
1259 	 * fw & dino ucode
1260 	 */
1261 	if (ipw2100_download_firmware(priv)) {
1262 		printk(KERN_ERR DRV_NAME
1263 		       ": %s: Failed to power on the adapter.\n",
1264 		       priv->net_dev->name);
1265 		return -EIO;
1266 	}
1267 
1268 	/* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 	 * in the firmware RBD and TBD ring queue */
1270 	ipw2100_queues_initialize(priv);
1271 
1272 	ipw2100_hw_set_gpio(priv);
1273 
1274 	/* TODO -- Look at disabling interrupts here to make sure none
1275 	 * get fired during FW initialization */
1276 
1277 	/* Release ARC - clear reset bit */
1278 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279 
1280 	/* wait for f/w initialization complete */
1281 	IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 	i = 5000;
1283 	do {
1284 		schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 		/* Todo... wait for sync command ... */
1286 
1287 		read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288 
1289 		/* check "init done" bit */
1290 		if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 			/* reset "init done" bit */
1292 			write_register(priv->net_dev, IPW_REG_INTA,
1293 				       IPW2100_INTA_FW_INIT_DONE);
1294 			break;
1295 		}
1296 
1297 		/* check error conditions : we check these after the firmware
1298 		 * check so that if there is an error, the interrupt handler
1299 		 * will see it and the adapter will be reset */
1300 		if (inta &
1301 		    (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 			/* clear error conditions */
1303 			write_register(priv->net_dev, IPW_REG_INTA,
1304 				       IPW2100_INTA_FATAL_ERROR |
1305 				       IPW2100_INTA_PARITY_ERROR);
1306 		}
1307 	} while (--i);
1308 
1309 	/* Clear out any pending INTAs since we aren't supposed to have
1310 	 * interrupts enabled at this point... */
1311 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 	inta &= IPW_INTERRUPT_MASK;
1314 	/* Clear out any pending interrupts */
1315 	if (inta & inta_mask)
1316 		write_register(priv->net_dev, IPW_REG_INTA, inta);
1317 
1318 	IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 		     i ? "SUCCESS" : "FAILED");
1320 
1321 	if (!i) {
1322 		printk(KERN_WARNING DRV_NAME
1323 		       ": %s: Firmware did not initialize.\n",
1324 		       priv->net_dev->name);
1325 		return -EIO;
1326 	}
1327 
1328 	/* allow firmware to write to GPIO1 & GPIO3 */
1329 	read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330 
1331 	gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332 
1333 	write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334 
1335 	/* Ready to receive commands */
1336 	priv->status |= STATUS_RUNNING;
1337 
1338 	/* The adapter has been reset; we are not associated */
1339 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340 
1341 	IPW_DEBUG_INFO("exit\n");
1342 
1343 	return 0;
1344 }
1345 
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 	if (!priv->fatal_error)
1349 		return;
1350 
1351 	priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 	priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 	priv->fatal_error = 0;
1354 }
1355 
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 	u32 reg;
1360 	int i;
1361 
1362 	IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363 
1364 	ipw2100_hw_set_gpio(priv);
1365 
1366 	/* Step 1. Stop Master Assert */
1367 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369 
1370 	/* Step 2. Wait for stop Master Assert
1371 	 *         (not more than 50us, otherwise ret error */
1372 	i = 5;
1373 	do {
1374 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376 
1377 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 			break;
1379 	} while (--i);
1380 
1381 	priv->status &= ~STATUS_RESET_PENDING;
1382 
1383 	if (!i) {
1384 		IPW_DEBUG_INFO
1385 		    ("exit - waited too long for master assert stop\n");
1386 		return -EIO;
1387 	}
1388 
1389 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1391 
1392 	/* Reset any fatal_error conditions */
1393 	ipw2100_reset_fatalerror(priv);
1394 
1395 	/* At this point, the adapter is now stopped and disabled */
1396 	priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 			  STATUS_ASSOCIATED | STATUS_ENABLED);
1398 
1399 	return 0;
1400 }
1401 
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412 
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414 
1415 	struct host_command cmd = {
1416 		.host_command = CARD_DISABLE_PHY_OFF,
1417 		.host_command_sequence = 0,
1418 		.host_command_length = 0,
1419 	};
1420 	int err, i;
1421 	u32 val1, val2;
1422 
1423 	IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424 
1425 	/* Turn off the radio */
1426 	err = ipw2100_hw_send_command(priv, &cmd);
1427 	if (err)
1428 		return err;
1429 
1430 	for (i = 0; i < 2500; i++) {
1431 		read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 		read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433 
1434 		if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 		    (val2 & IPW2100_COMMAND_PHY_OFF))
1436 			return 0;
1437 
1438 		schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 	}
1440 
1441 	return -EIO;
1442 }
1443 
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 	struct host_command cmd = {
1447 		.host_command = HOST_COMPLETE,
1448 		.host_command_sequence = 0,
1449 		.host_command_length = 0
1450 	};
1451 	int err = 0;
1452 
1453 	IPW_DEBUG_HC("HOST_COMPLETE\n");
1454 
1455 	if (priv->status & STATUS_ENABLED)
1456 		return 0;
1457 
1458 	mutex_lock(&priv->adapter_mutex);
1459 
1460 	if (rf_kill_active(priv)) {
1461 		IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 		goto fail_up;
1463 	}
1464 
1465 	err = ipw2100_hw_send_command(priv, &cmd);
1466 	if (err) {
1467 		IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 		goto fail_up;
1469 	}
1470 
1471 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 	if (err) {
1473 		IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 			       priv->net_dev->name);
1475 		goto fail_up;
1476 	}
1477 
1478 	if (priv->stop_hang_check) {
1479 		priv->stop_hang_check = 0;
1480 		schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 	}
1482 
1483       fail_up:
1484 	mutex_unlock(&priv->adapter_mutex);
1485 	return err;
1486 }
1487 
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491 
1492 	struct host_command cmd = {
1493 		.host_command = HOST_PRE_POWER_DOWN,
1494 		.host_command_sequence = 0,
1495 		.host_command_length = 0,
1496 	};
1497 	int err, i;
1498 	u32 reg;
1499 
1500 	if (!(priv->status & STATUS_RUNNING))
1501 		return 0;
1502 
1503 	priv->status |= STATUS_STOPPING;
1504 
1505 	/* We can only shut down the card if the firmware is operational.  So,
1506 	 * if we haven't reset since a fatal_error, then we can not send the
1507 	 * shutdown commands. */
1508 	if (!priv->fatal_error) {
1509 		/* First, make sure the adapter is enabled so that the PHY_OFF
1510 		 * command can shut it down */
1511 		ipw2100_enable_adapter(priv);
1512 
1513 		err = ipw2100_hw_phy_off(priv);
1514 		if (err)
1515 			printk(KERN_WARNING DRV_NAME
1516 			       ": Error disabling radio %d\n", err);
1517 
1518 		/*
1519 		 * If in D0-standby mode going directly to D3 may cause a
1520 		 * PCI bus violation.  Therefore we must change out of the D0
1521 		 * state.
1522 		 *
1523 		 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 		 * hardware from going into standby mode and will transition
1525 		 * out of D0-standby if it is already in that state.
1526 		 *
1527 		 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 		 * driver upon completion.  Once received, the driver can
1529 		 * proceed to the D3 state.
1530 		 *
1531 		 * Prepare for power down command to fw.  This command would
1532 		 * take HW out of D0-standby and prepare it for D3 state.
1533 		 *
1534 		 * Currently FW does not support event notification for this
1535 		 * event. Therefore, skip waiting for it.  Just wait a fixed
1536 		 * 100ms
1537 		 */
1538 		IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539 
1540 		err = ipw2100_hw_send_command(priv, &cmd);
1541 		if (err)
1542 			printk(KERN_WARNING DRV_NAME ": "
1543 			       "%s: Power down command failed: Error %d\n",
1544 			       priv->net_dev->name, err);
1545 		else
1546 			schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 	}
1548 
1549 	priv->status &= ~STATUS_ENABLED;
1550 
1551 	/*
1552 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 	 * by driver and enable clock
1554 	 */
1555 	ipw2100_hw_set_gpio(priv);
1556 
1557 	/*
1558 	 * Power down adapter.  Sequence:
1559 	 * 1. Stop master assert (RESET_REG[9]=1)
1560 	 * 2. Wait for stop master (RESET_REG[8]==1)
1561 	 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 	 */
1563 
1564 	/* Stop master assert */
1565 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567 
1568 	/* wait stop master not more than 50 usec.
1569 	 * Otherwise return error. */
1570 	for (i = 5; i > 0; i--) {
1571 		udelay(10);
1572 
1573 		/* Check master stop bit */
1574 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575 
1576 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 			break;
1578 	}
1579 
1580 	if (i == 0)
1581 		printk(KERN_WARNING DRV_NAME
1582 		       ": %s: Could now power down adapter.\n",
1583 		       priv->net_dev->name);
1584 
1585 	/* assert s/w reset */
1586 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1588 
1589 	priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590 
1591 	return 0;
1592 }
1593 
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 	struct host_command cmd = {
1597 		.host_command = CARD_DISABLE,
1598 		.host_command_sequence = 0,
1599 		.host_command_length = 0
1600 	};
1601 	int err = 0;
1602 
1603 	IPW_DEBUG_HC("CARD_DISABLE\n");
1604 
1605 	if (!(priv->status & STATUS_ENABLED))
1606 		return 0;
1607 
1608 	/* Make sure we clear the associated state */
1609 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610 
1611 	if (!priv->stop_hang_check) {
1612 		priv->stop_hang_check = 1;
1613 		cancel_delayed_work(&priv->hang_check);
1614 	}
1615 
1616 	mutex_lock(&priv->adapter_mutex);
1617 
1618 	err = ipw2100_hw_send_command(priv, &cmd);
1619 	if (err) {
1620 		printk(KERN_WARNING DRV_NAME
1621 		       ": exit - failed to send CARD_DISABLE command\n");
1622 		goto fail_up;
1623 	}
1624 
1625 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 	if (err) {
1627 		printk(KERN_WARNING DRV_NAME
1628 		       ": exit - card failed to change to DISABLED\n");
1629 		goto fail_up;
1630 	}
1631 
1632 	IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633 
1634       fail_up:
1635 	mutex_unlock(&priv->adapter_mutex);
1636 	return err;
1637 }
1638 
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 	struct host_command cmd = {
1642 		.host_command = SET_SCAN_OPTIONS,
1643 		.host_command_sequence = 0,
1644 		.host_command_length = 8
1645 	};
1646 	int err;
1647 
1648 	IPW_DEBUG_INFO("enter\n");
1649 
1650 	IPW_DEBUG_SCAN("setting scan options\n");
1651 
1652 	cmd.host_command_parameters[0] = 0;
1653 
1654 	if (!(priv->config & CFG_ASSOCIATE))
1655 		cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 	if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 		cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 	if (priv->config & CFG_PASSIVE_SCAN)
1659 		cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660 
1661 	cmd.host_command_parameters[1] = priv->channel_mask;
1662 
1663 	err = ipw2100_hw_send_command(priv, &cmd);
1664 
1665 	IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 		     cmd.host_command_parameters[0]);
1667 
1668 	return err;
1669 }
1670 
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 	struct host_command cmd = {
1674 		.host_command = BROADCAST_SCAN,
1675 		.host_command_sequence = 0,
1676 		.host_command_length = 4
1677 	};
1678 	int err;
1679 
1680 	IPW_DEBUG_HC("START_SCAN\n");
1681 
1682 	cmd.host_command_parameters[0] = 0;
1683 
1684 	/* No scanning if in monitor mode */
1685 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 		return 1;
1687 
1688 	if (priv->status & STATUS_SCANNING) {
1689 		IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 		return 0;
1691 	}
1692 
1693 	IPW_DEBUG_INFO("enter\n");
1694 
1695 	/* Not clearing here; doing so makes iwlist always return nothing...
1696 	 *
1697 	 * We should modify the table logic to use aging tables vs. clearing
1698 	 * the table on each scan start.
1699 	 */
1700 	IPW_DEBUG_SCAN("starting scan\n");
1701 
1702 	priv->status |= STATUS_SCANNING;
1703 	err = ipw2100_hw_send_command(priv, &cmd);
1704 	if (err)
1705 		priv->status &= ~STATUS_SCANNING;
1706 
1707 	IPW_DEBUG_INFO("exit\n");
1708 
1709 	return err;
1710 }
1711 
1712 static const struct libipw_geo ipw_geos[] = {
1713 	{			/* Restricted */
1714 	 "---",
1715 	 .bg_channels = 14,
1716 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 		{2427, 4}, {2432, 5}, {2437, 6},
1718 		{2442, 7}, {2447, 8}, {2452, 9},
1719 		{2457, 10}, {2462, 11}, {2467, 12},
1720 		{2472, 13}, {2484, 14}},
1721 	 },
1722 };
1723 
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 	unsigned long flags;
1727 	int err = 0;
1728 	u32 lock;
1729 	u32 ord_len = sizeof(lock);
1730 
1731 	/* Age scan list entries found before suspend */
1732 	if (priv->suspend_time) {
1733 		libipw_networks_age(priv->ieee, priv->suspend_time);
1734 		priv->suspend_time = 0;
1735 	}
1736 
1737 	/* Quiet if manually disabled. */
1738 	if (priv->status & STATUS_RF_KILL_SW) {
1739 		IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 			       "switch\n", priv->net_dev->name);
1741 		return 0;
1742 	}
1743 
1744 	/* the ipw2100 hardware really doesn't want power management delays
1745 	 * longer than 175usec
1746 	 */
1747 	pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748 
1749 	/* If the interrupt is enabled, turn it off... */
1750 	spin_lock_irqsave(&priv->low_lock, flags);
1751 	ipw2100_disable_interrupts(priv);
1752 
1753 	/* Reset any fatal_error conditions */
1754 	ipw2100_reset_fatalerror(priv);
1755 	spin_unlock_irqrestore(&priv->low_lock, flags);
1756 
1757 	if (priv->status & STATUS_POWERED ||
1758 	    (priv->status & STATUS_RESET_PENDING)) {
1759 		/* Power cycle the card ... */
1760 		err = ipw2100_power_cycle_adapter(priv);
1761 		if (err) {
1762 			printk(KERN_WARNING DRV_NAME
1763 			       ": %s: Could not cycle adapter.\n",
1764 			       priv->net_dev->name);
1765 			goto exit;
1766 		}
1767 	} else
1768 		priv->status |= STATUS_POWERED;
1769 
1770 	/* Load the firmware, start the clocks, etc. */
1771 	err = ipw2100_start_adapter(priv);
1772 	if (err) {
1773 		printk(KERN_ERR DRV_NAME
1774 		       ": %s: Failed to start the firmware.\n",
1775 		       priv->net_dev->name);
1776 		goto exit;
1777 	}
1778 
1779 	ipw2100_initialize_ordinals(priv);
1780 
1781 	/* Determine capabilities of this particular HW configuration */
1782 	err = ipw2100_get_hw_features(priv);
1783 	if (err) {
1784 		printk(KERN_ERR DRV_NAME
1785 		       ": %s: Failed to determine HW features.\n",
1786 		       priv->net_dev->name);
1787 		goto exit;
1788 	}
1789 
1790 	/* Initialize the geo */
1791 	libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792 	priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793 
1794 	lock = LOCK_NONE;
1795 	err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1796 	if (err) {
1797 		printk(KERN_ERR DRV_NAME
1798 		       ": %s: Failed to clear ordinal lock.\n",
1799 		       priv->net_dev->name);
1800 		goto exit;
1801 	}
1802 
1803 	priv->status &= ~STATUS_SCANNING;
1804 
1805 	if (rf_kill_active(priv)) {
1806 		printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 		       priv->net_dev->name);
1808 
1809 		if (priv->stop_rf_kill) {
1810 			priv->stop_rf_kill = 0;
1811 			schedule_delayed_work(&priv->rf_kill,
1812 					      round_jiffies_relative(HZ));
1813 		}
1814 
1815 		deferred = 1;
1816 	}
1817 
1818 	/* Turn on the interrupt so that commands can be processed */
1819 	ipw2100_enable_interrupts(priv);
1820 
1821 	/* Send all of the commands that must be sent prior to
1822 	 * HOST_COMPLETE */
1823 	err = ipw2100_adapter_setup(priv);
1824 	if (err) {
1825 		printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1826 		       priv->net_dev->name);
1827 		goto exit;
1828 	}
1829 
1830 	if (!deferred) {
1831 		/* Enable the adapter - sends HOST_COMPLETE */
1832 		err = ipw2100_enable_adapter(priv);
1833 		if (err) {
1834 			printk(KERN_ERR DRV_NAME ": "
1835 			       "%s: failed in call to enable adapter.\n",
1836 			       priv->net_dev->name);
1837 			ipw2100_hw_stop_adapter(priv);
1838 			goto exit;
1839 		}
1840 
1841 		/* Start a scan . . . */
1842 		ipw2100_set_scan_options(priv);
1843 		ipw2100_start_scan(priv);
1844 	}
1845 
1846       exit:
1847 	return err;
1848 }
1849 
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852 	unsigned long flags;
1853 	union iwreq_data wrqu = {
1854 		.ap_addr = {
1855 			    .sa_family = ARPHRD_ETHER}
1856 	};
1857 	int associated = priv->status & STATUS_ASSOCIATED;
1858 
1859 	/* Kill the RF switch timer */
1860 	if (!priv->stop_rf_kill) {
1861 		priv->stop_rf_kill = 1;
1862 		cancel_delayed_work(&priv->rf_kill);
1863 	}
1864 
1865 	/* Kill the firmware hang check timer */
1866 	if (!priv->stop_hang_check) {
1867 		priv->stop_hang_check = 1;
1868 		cancel_delayed_work(&priv->hang_check);
1869 	}
1870 
1871 	/* Kill any pending resets */
1872 	if (priv->status & STATUS_RESET_PENDING)
1873 		cancel_delayed_work(&priv->reset_work);
1874 
1875 	/* Make sure the interrupt is on so that FW commands will be
1876 	 * processed correctly */
1877 	spin_lock_irqsave(&priv->low_lock, flags);
1878 	ipw2100_enable_interrupts(priv);
1879 	spin_unlock_irqrestore(&priv->low_lock, flags);
1880 
1881 	if (ipw2100_hw_stop_adapter(priv))
1882 		printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 		       priv->net_dev->name);
1884 
1885 	/* Do not disable the interrupt until _after_ we disable
1886 	 * the adaptor.  Otherwise the CARD_DISABLE command will never
1887 	 * be ack'd by the firmware */
1888 	spin_lock_irqsave(&priv->low_lock, flags);
1889 	ipw2100_disable_interrupts(priv);
1890 	spin_unlock_irqrestore(&priv->low_lock, flags);
1891 
1892 	pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893 
1894 	/* We have to signal any supplicant if we are disassociating */
1895 	if (associated)
1896 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897 
1898 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 	netif_carrier_off(priv->net_dev);
1900 	netif_stop_queue(priv->net_dev);
1901 }
1902 
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905 	struct ipw2100_priv *priv = libipw_priv(dev);
1906 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907 	struct wireless_dev *wdev = &priv->ieee->wdev;
1908 	int i;
1909 
1910 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911 
1912 	/* fill-out priv->ieee->bg_band */
1913 	if (geo->bg_channels) {
1914 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915 
1916 		bg_band->band = NL80211_BAND_2GHZ;
1917 		bg_band->n_channels = geo->bg_channels;
1918 		bg_band->channels = kcalloc(geo->bg_channels,
1919 					    sizeof(struct ieee80211_channel),
1920 					    GFP_KERNEL);
1921 		if (!bg_band->channels) {
1922 			ipw2100_down(priv);
1923 			return -ENOMEM;
1924 		}
1925 		/* translate geo->bg to bg_band.channels */
1926 		for (i = 0; i < geo->bg_channels; i++) {
1927 			bg_band->channels[i].band = NL80211_BAND_2GHZ;
1928 			bg_band->channels[i].center_freq = geo->bg[i].freq;
1929 			bg_band->channels[i].hw_value = geo->bg[i].channel;
1930 			bg_band->channels[i].max_power = geo->bg[i].max_power;
1931 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932 				bg_band->channels[i].flags |=
1933 					IEEE80211_CHAN_NO_IR;
1934 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935 				bg_band->channels[i].flags |=
1936 					IEEE80211_CHAN_NO_IR;
1937 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938 				bg_band->channels[i].flags |=
1939 					IEEE80211_CHAN_RADAR;
1940 			/* No equivalent for LIBIPW_CH_80211H_RULES,
1941 			   LIBIPW_CH_UNIFORM_SPREADING, or
1942 			   LIBIPW_CH_B_ONLY... */
1943 		}
1944 		/* point at bitrate info */
1945 		bg_band->bitrates = ipw2100_bg_rates;
1946 		bg_band->n_bitrates = RATE_COUNT;
1947 
1948 		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1949 	}
1950 
1951 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953 
1954 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955 	if (wiphy_register(wdev->wiphy))
1956 		return -EIO;
1957 	return 0;
1958 }
1959 
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962 	struct ipw2100_priv *priv =
1963 		container_of(work, struct ipw2100_priv, reset_work.work);
1964 	unsigned long flags;
1965 	union iwreq_data wrqu = {
1966 		.ap_addr = {
1967 			    .sa_family = ARPHRD_ETHER}
1968 	};
1969 	int associated = priv->status & STATUS_ASSOCIATED;
1970 
1971 	spin_lock_irqsave(&priv->low_lock, flags);
1972 	IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973 	priv->resets++;
1974 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975 	priv->status |= STATUS_SECURITY_UPDATED;
1976 
1977 	/* Force a power cycle even if interface hasn't been opened
1978 	 * yet */
1979 	cancel_delayed_work(&priv->reset_work);
1980 	priv->status |= STATUS_RESET_PENDING;
1981 	spin_unlock_irqrestore(&priv->low_lock, flags);
1982 
1983 	mutex_lock(&priv->action_mutex);
1984 	/* stop timed checks so that they don't interfere with reset */
1985 	priv->stop_hang_check = 1;
1986 	cancel_delayed_work(&priv->hang_check);
1987 
1988 	/* We have to signal any supplicant if we are disassociating */
1989 	if (associated)
1990 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991 
1992 	ipw2100_up(priv, 0);
1993 	mutex_unlock(&priv->action_mutex);
1994 
1995 }
1996 
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999 
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001 	int ret;
2002 	unsigned int len, essid_len;
2003 	char essid[IW_ESSID_MAX_SIZE];
2004 	u32 txrate;
2005 	u32 chan;
2006 	char *txratename;
2007 	u8 bssid[ETH_ALEN];
2008 
2009 	/*
2010 	 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011 	 *      an actual MAC of the AP. Seems like FW sets this
2012 	 *      address too late. Read it later and expose through
2013 	 *      /proc or schedule a later task to query and update
2014 	 */
2015 
2016 	essid_len = IW_ESSID_MAX_SIZE;
2017 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018 				  essid, &essid_len);
2019 	if (ret) {
2020 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021 			       __LINE__);
2022 		return;
2023 	}
2024 
2025 	len = sizeof(u32);
2026 	ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027 	if (ret) {
2028 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029 			       __LINE__);
2030 		return;
2031 	}
2032 
2033 	len = sizeof(u32);
2034 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035 	if (ret) {
2036 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037 			       __LINE__);
2038 		return;
2039 	}
2040 	len = ETH_ALEN;
2041 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042 				  &len);
2043 	if (ret) {
2044 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045 			       __LINE__);
2046 		return;
2047 	}
2048 	memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049 
2050 	switch (txrate) {
2051 	case TX_RATE_1_MBIT:
2052 		txratename = "1Mbps";
2053 		break;
2054 	case TX_RATE_2_MBIT:
2055 		txratename = "2Mbsp";
2056 		break;
2057 	case TX_RATE_5_5_MBIT:
2058 		txratename = "5.5Mbps";
2059 		break;
2060 	case TX_RATE_11_MBIT:
2061 		txratename = "11Mbps";
2062 		break;
2063 	default:
2064 		IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065 		txratename = "unknown rate";
2066 		break;
2067 	}
2068 
2069 	IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070 		       priv->net_dev->name, essid_len, essid,
2071 		       txratename, chan, bssid);
2072 
2073 	/* now we copy read ssid into dev */
2074 	if (!(priv->config & CFG_STATIC_ESSID)) {
2075 		priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076 		memcpy(priv->essid, essid, priv->essid_len);
2077 	}
2078 	priv->channel = chan;
2079 	memcpy(priv->bssid, bssid, ETH_ALEN);
2080 
2081 	priv->status |= STATUS_ASSOCIATING;
2082 	priv->connect_start = ktime_get_boottime_seconds();
2083 
2084 	schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086 
2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088 			     int length, int batch_mode)
2089 {
2090 	int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091 	struct host_command cmd = {
2092 		.host_command = SSID,
2093 		.host_command_sequence = 0,
2094 		.host_command_length = ssid_len
2095 	};
2096 	int err;
2097 
2098 	IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099 
2100 	if (ssid_len)
2101 		memcpy(cmd.host_command_parameters, essid, ssid_len);
2102 
2103 	if (!batch_mode) {
2104 		err = ipw2100_disable_adapter(priv);
2105 		if (err)
2106 			return err;
2107 	}
2108 
2109 	/* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110 	 * disable auto association -- so we cheat by setting a bogus SSID */
2111 	if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112 		int i;
2113 		u8 *bogus = (u8 *) cmd.host_command_parameters;
2114 		for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115 			bogus[i] = 0x18 + i;
2116 		cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117 	}
2118 
2119 	/* NOTE:  We always send the SSID command even if the provided ESSID is
2120 	 * the same as what we currently think is set. */
2121 
2122 	err = ipw2100_hw_send_command(priv, &cmd);
2123 	if (!err) {
2124 		memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125 		memcpy(priv->essid, essid, ssid_len);
2126 		priv->essid_len = ssid_len;
2127 	}
2128 
2129 	if (!batch_mode) {
2130 		if (ipw2100_enable_adapter(priv))
2131 			err = -EIO;
2132 	}
2133 
2134 	return err;
2135 }
2136 
2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139 	IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140 		  "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141 		  priv->bssid);
2142 
2143 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144 
2145 	if (priv->status & STATUS_STOPPING) {
2146 		IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147 		return;
2148 	}
2149 
2150 	eth_zero_addr(priv->bssid);
2151 	eth_zero_addr(priv->ieee->bssid);
2152 
2153 	netif_carrier_off(priv->net_dev);
2154 	netif_stop_queue(priv->net_dev);
2155 
2156 	if (!(priv->status & STATUS_RUNNING))
2157 		return;
2158 
2159 	if (priv->status & STATUS_SECURITY_UPDATED)
2160 		schedule_delayed_work(&priv->security_work, 0);
2161 
2162 	schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164 
2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167 	IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168 		       priv->net_dev->name);
2169 
2170 	/* RF_KILL is now enabled (else we wouldn't be here) */
2171 	wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172 	priv->status |= STATUS_RF_KILL_HW;
2173 
2174 	/* Make sure the RF Kill check timer is running */
2175 	priv->stop_rf_kill = 0;
2176 	mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178 
2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181 	struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182 						 scan_event.work);
2183 	union iwreq_data wrqu;
2184 
2185 	wrqu.data.length = 0;
2186 	wrqu.data.flags = 0;
2187 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189 
2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192 	IPW_DEBUG_SCAN("scan complete\n");
2193 	/* Age the scan results... */
2194 	priv->ieee->scans++;
2195 	priv->status &= ~STATUS_SCANNING;
2196 
2197 	/* Only userspace-requested scan completion events go out immediately */
2198 	if (!priv->user_requested_scan) {
2199 		schedule_delayed_work(&priv->scan_event,
2200 				      round_jiffies_relative(msecs_to_jiffies(4000)));
2201 	} else {
2202 		priv->user_requested_scan = 0;
2203 		mod_delayed_work(system_wq, &priv->scan_event, 0);
2204 	}
2205 }
2206 
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210 	int status;
2211 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2212 	char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217 	int status;
2218 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif				/* CONFIG_IPW2100_DEBUG */
2221 
2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224 	IPW_DEBUG_SCAN("Scanning...\n");
2225 	priv->status |= STATUS_SCANNING;
2226 }
2227 
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229 	IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230 	IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231 	IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232 	IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233 	IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234 	IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235 	IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236 	IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237 	IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238 	IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239 	IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240 	IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241 	IPW2100_HANDLER(-1, NULL)
2242 };
2243 
2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246 	int i;
2247 
2248 	if (status == IPW_STATE_SCANNING &&
2249 	    priv->status & STATUS_ASSOCIATED &&
2250 	    !(priv->status & STATUS_SCANNING)) {
2251 		IPW_DEBUG_INFO("Scan detected while associated, with "
2252 			       "no scan request.  Restarting firmware.\n");
2253 
2254 		/* Wake up any sleeping jobs */
2255 		schedule_reset(priv);
2256 	}
2257 
2258 	for (i = 0; status_handlers[i].status != -1; i++) {
2259 		if (status == status_handlers[i].status) {
2260 			IPW_DEBUG_NOTIF("Status change: %s\n",
2261 					status_handlers[i].name);
2262 			if (status_handlers[i].cb)
2263 				status_handlers[i].cb(priv, status);
2264 			priv->wstats.status = status;
2265 			return;
2266 		}
2267 	}
2268 
2269 	IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271 
2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273 				    struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276 	if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277 		IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278 			     command_types[cmd->host_command_reg],
2279 			     cmd->host_command_reg);
2280 	}
2281 #endif
2282 	if (cmd->host_command_reg == HOST_COMPLETE)
2283 		priv->status |= STATUS_ENABLED;
2284 
2285 	if (cmd->host_command_reg == CARD_DISABLE)
2286 		priv->status &= ~STATUS_ENABLED;
2287 
2288 	priv->status &= ~STATUS_CMD_ACTIVE;
2289 
2290 	wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292 
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295 	"COMMAND_STATUS_VAL",
2296 	"STATUS_CHANGE_VAL",
2297 	"P80211_DATA_VAL",
2298 	"P8023_DATA_VAL",
2299 	"HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302 
2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304 				    struct ipw2100_rx_packet *packet)
2305 {
2306 	packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307 	if (!packet->skb)
2308 		return -ENOMEM;
2309 
2310 	packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311 	packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312 					  sizeof(struct ipw2100_rx),
2313 					  PCI_DMA_FROMDEVICE);
2314 	if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) {
2315 		dev_kfree_skb(packet->skb);
2316 		return -ENOMEM;
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 #define SEARCH_ERROR   0xffffffff
2323 #define SEARCH_FAIL    0xfffffffe
2324 #define SEARCH_SUCCESS 0xfffffff0
2325 #define SEARCH_DISCARD 0
2326 #define SEARCH_SNAPSHOT 1
2327 
2328 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2329 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2330 {
2331 	int i;
2332 	if (!priv->snapshot[0])
2333 		return;
2334 	for (i = 0; i < 0x30; i++)
2335 		kfree(priv->snapshot[i]);
2336 	priv->snapshot[0] = NULL;
2337 }
2338 
2339 #ifdef IPW2100_DEBUG_C3
2340 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2341 {
2342 	int i;
2343 	if (priv->snapshot[0])
2344 		return 1;
2345 	for (i = 0; i < 0x30; i++) {
2346 		priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2347 		if (!priv->snapshot[i]) {
2348 			IPW_DEBUG_INFO("%s: Error allocating snapshot "
2349 				       "buffer %d\n", priv->net_dev->name, i);
2350 			while (i > 0)
2351 				kfree(priv->snapshot[--i]);
2352 			priv->snapshot[0] = NULL;
2353 			return 0;
2354 		}
2355 	}
2356 
2357 	return 1;
2358 }
2359 
2360 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2361 				    size_t len, int mode)
2362 {
2363 	u32 i, j;
2364 	u32 tmp;
2365 	u8 *s, *d;
2366 	u32 ret;
2367 
2368 	s = in_buf;
2369 	if (mode == SEARCH_SNAPSHOT) {
2370 		if (!ipw2100_snapshot_alloc(priv))
2371 			mode = SEARCH_DISCARD;
2372 	}
2373 
2374 	for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2375 		read_nic_dword(priv->net_dev, i, &tmp);
2376 		if (mode == SEARCH_SNAPSHOT)
2377 			*(u32 *) SNAPSHOT_ADDR(i) = tmp;
2378 		if (ret == SEARCH_FAIL) {
2379 			d = (u8 *) & tmp;
2380 			for (j = 0; j < 4; j++) {
2381 				if (*s != *d) {
2382 					s = in_buf;
2383 					continue;
2384 				}
2385 
2386 				s++;
2387 				d++;
2388 
2389 				if ((s - in_buf) == len)
2390 					ret = (i + j) - len + 1;
2391 			}
2392 		} else if (mode == SEARCH_DISCARD)
2393 			return ret;
2394 	}
2395 
2396 	return ret;
2397 }
2398 #endif
2399 
2400 /*
2401  *
2402  * 0) Disconnect the SKB from the firmware (just unmap)
2403  * 1) Pack the ETH header into the SKB
2404  * 2) Pass the SKB to the network stack
2405  *
2406  * When packet is provided by the firmware, it contains the following:
2407  *
2408  * .  libipw_hdr
2409  * .  libipw_snap_hdr
2410  *
2411  * The size of the constructed ethernet
2412  *
2413  */
2414 #ifdef IPW2100_RX_DEBUG
2415 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2416 #endif
2417 
2418 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2419 {
2420 #ifdef IPW2100_DEBUG_C3
2421 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2422 	u32 match, reg;
2423 	int j;
2424 #endif
2425 
2426 	IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2427 		       i * sizeof(struct ipw2100_status));
2428 
2429 #ifdef IPW2100_DEBUG_C3
2430 	/* Halt the firmware so we can get a good image */
2431 	write_register(priv->net_dev, IPW_REG_RESET_REG,
2432 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2433 	j = 5;
2434 	do {
2435 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2436 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2437 
2438 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2439 			break;
2440 	} while (j--);
2441 
2442 	match = ipw2100_match_buf(priv, (u8 *) status,
2443 				  sizeof(struct ipw2100_status),
2444 				  SEARCH_SNAPSHOT);
2445 	if (match < SEARCH_SUCCESS)
2446 		IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2447 			       "offset 0x%06X, length %d:\n",
2448 			       priv->net_dev->name, match,
2449 			       sizeof(struct ipw2100_status));
2450 	else
2451 		IPW_DEBUG_INFO("%s: No DMA status match in "
2452 			       "Firmware.\n", priv->net_dev->name);
2453 
2454 	printk_buf((u8 *) priv->status_queue.drv,
2455 		   sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2456 #endif
2457 
2458 	priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2459 	priv->net_dev->stats.rx_errors++;
2460 	schedule_reset(priv);
2461 }
2462 
2463 static void isr_rx(struct ipw2100_priv *priv, int i,
2464 			  struct libipw_rx_stats *stats)
2465 {
2466 	struct net_device *dev = priv->net_dev;
2467 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2468 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2469 
2470 	IPW_DEBUG_RX("Handler...\n");
2471 
2472 	if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2473 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2474 			       "  Dropping.\n",
2475 			       dev->name,
2476 			       status->frame_size, skb_tailroom(packet->skb));
2477 		dev->stats.rx_errors++;
2478 		return;
2479 	}
2480 
2481 	if (unlikely(!netif_running(dev))) {
2482 		dev->stats.rx_errors++;
2483 		priv->wstats.discard.misc++;
2484 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2485 		return;
2486 	}
2487 
2488 	if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2489 		     !(priv->status & STATUS_ASSOCIATED))) {
2490 		IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2491 		priv->wstats.discard.misc++;
2492 		return;
2493 	}
2494 
2495 	pci_unmap_single(priv->pci_dev,
2496 			 packet->dma_addr,
2497 			 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2498 
2499 	skb_put(packet->skb, status->frame_size);
2500 
2501 #ifdef IPW2100_RX_DEBUG
2502 	/* Make a copy of the frame so we can dump it to the logs if
2503 	 * libipw_rx fails */
2504 	skb_copy_from_linear_data(packet->skb, packet_data,
2505 				  min_t(u32, status->frame_size,
2506 					     IPW_RX_NIC_BUFFER_LENGTH));
2507 #endif
2508 
2509 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2510 #ifdef IPW2100_RX_DEBUG
2511 		IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2512 			       dev->name);
2513 		printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2514 #endif
2515 		dev->stats.rx_errors++;
2516 
2517 		/* libipw_rx failed, so it didn't free the SKB */
2518 		dev_kfree_skb_any(packet->skb);
2519 		packet->skb = NULL;
2520 	}
2521 
2522 	/* We need to allocate a new SKB and attach it to the RDB. */
2523 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2524 		printk(KERN_WARNING DRV_NAME ": "
2525 		       "%s: Unable to allocate SKB onto RBD ring - disabling "
2526 		       "adapter.\n", dev->name);
2527 		/* TODO: schedule adapter shutdown */
2528 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2529 	}
2530 
2531 	/* Update the RDB entry */
2532 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2533 }
2534 
2535 #ifdef CONFIG_IPW2100_MONITOR
2536 
2537 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2538 		   struct libipw_rx_stats *stats)
2539 {
2540 	struct net_device *dev = priv->net_dev;
2541 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2542 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2543 
2544 	/* Magic struct that slots into the radiotap header -- no reason
2545 	 * to build this manually element by element, we can write it much
2546 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
2547 	struct ipw_rt_hdr {
2548 		struct ieee80211_radiotap_header rt_hdr;
2549 		s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2550 	} *ipw_rt;
2551 
2552 	IPW_DEBUG_RX("Handler...\n");
2553 
2554 	if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2555 				sizeof(struct ipw_rt_hdr))) {
2556 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2557 			       "  Dropping.\n",
2558 			       dev->name,
2559 			       status->frame_size,
2560 			       skb_tailroom(packet->skb));
2561 		dev->stats.rx_errors++;
2562 		return;
2563 	}
2564 
2565 	if (unlikely(!netif_running(dev))) {
2566 		dev->stats.rx_errors++;
2567 		priv->wstats.discard.misc++;
2568 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2569 		return;
2570 	}
2571 
2572 	if (unlikely(priv->config & CFG_CRC_CHECK &&
2573 		     status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2574 		IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2575 		dev->stats.rx_errors++;
2576 		return;
2577 	}
2578 
2579 	pci_unmap_single(priv->pci_dev, packet->dma_addr,
2580 			 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2581 	memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2582 		packet->skb->data, status->frame_size);
2583 
2584 	ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2585 
2586 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2587 	ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2588 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2589 
2590 	ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2591 
2592 	ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2593 
2594 	skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2595 
2596 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2597 		dev->stats.rx_errors++;
2598 
2599 		/* libipw_rx failed, so it didn't free the SKB */
2600 		dev_kfree_skb_any(packet->skb);
2601 		packet->skb = NULL;
2602 	}
2603 
2604 	/* We need to allocate a new SKB and attach it to the RDB. */
2605 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2606 		IPW_DEBUG_WARNING(
2607 			"%s: Unable to allocate SKB onto RBD ring - disabling "
2608 			"adapter.\n", dev->name);
2609 		/* TODO: schedule adapter shutdown */
2610 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2611 	}
2612 
2613 	/* Update the RDB entry */
2614 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2615 }
2616 
2617 #endif
2618 
2619 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2620 {
2621 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2622 	struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2623 	u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2624 
2625 	switch (frame_type) {
2626 	case COMMAND_STATUS_VAL:
2627 		return (status->frame_size != sizeof(u->rx_data.command));
2628 	case STATUS_CHANGE_VAL:
2629 		return (status->frame_size != sizeof(u->rx_data.status));
2630 	case HOST_NOTIFICATION_VAL:
2631 		return (status->frame_size < sizeof(u->rx_data.notification));
2632 	case P80211_DATA_VAL:
2633 	case P8023_DATA_VAL:
2634 #ifdef CONFIG_IPW2100_MONITOR
2635 		return 0;
2636 #else
2637 		switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2638 		case IEEE80211_FTYPE_MGMT:
2639 		case IEEE80211_FTYPE_CTL:
2640 			return 0;
2641 		case IEEE80211_FTYPE_DATA:
2642 			return (status->frame_size >
2643 				IPW_MAX_802_11_PAYLOAD_LENGTH);
2644 		}
2645 #endif
2646 	}
2647 
2648 	return 1;
2649 }
2650 
2651 /*
2652  * ipw2100 interrupts are disabled at this point, and the ISR
2653  * is the only code that calls this method.  So, we do not need
2654  * to play with any locks.
2655  *
2656  * RX Queue works as follows:
2657  *
2658  * Read index - firmware places packet in entry identified by the
2659  *              Read index and advances Read index.  In this manner,
2660  *              Read index will always point to the next packet to
2661  *              be filled--but not yet valid.
2662  *
2663  * Write index - driver fills this entry with an unused RBD entry.
2664  *               This entry has not filled by the firmware yet.
2665  *
2666  * In between the W and R indexes are the RBDs that have been received
2667  * but not yet processed.
2668  *
2669  * The process of handling packets will start at WRITE + 1 and advance
2670  * until it reaches the READ index.
2671  *
2672  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2673  *
2674  */
2675 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2676 {
2677 	struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2678 	struct ipw2100_status_queue *sq = &priv->status_queue;
2679 	struct ipw2100_rx_packet *packet;
2680 	u16 frame_type;
2681 	u32 r, w, i, s;
2682 	struct ipw2100_rx *u;
2683 	struct libipw_rx_stats stats = {
2684 		.mac_time = jiffies,
2685 	};
2686 
2687 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2688 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2689 
2690 	if (r >= rxq->entries) {
2691 		IPW_DEBUG_RX("exit - bad read index\n");
2692 		return;
2693 	}
2694 
2695 	i = (rxq->next + 1) % rxq->entries;
2696 	s = i;
2697 	while (i != r) {
2698 		/* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2699 		   r, rxq->next, i); */
2700 
2701 		packet = &priv->rx_buffers[i];
2702 
2703 		/* Sync the DMA for the RX buffer so CPU is sure to get
2704 		 * the correct values */
2705 		pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2706 					    sizeof(struct ipw2100_rx),
2707 					    PCI_DMA_FROMDEVICE);
2708 
2709 		if (unlikely(ipw2100_corruption_check(priv, i))) {
2710 			ipw2100_corruption_detected(priv, i);
2711 			goto increment;
2712 		}
2713 
2714 		u = packet->rxp;
2715 		frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2716 		stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2717 		stats.len = sq->drv[i].frame_size;
2718 
2719 		stats.mask = 0;
2720 		if (stats.rssi != 0)
2721 			stats.mask |= LIBIPW_STATMASK_RSSI;
2722 		stats.freq = LIBIPW_24GHZ_BAND;
2723 
2724 		IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2725 			     priv->net_dev->name, frame_types[frame_type],
2726 			     stats.len);
2727 
2728 		switch (frame_type) {
2729 		case COMMAND_STATUS_VAL:
2730 			/* Reset Rx watchdog */
2731 			isr_rx_complete_command(priv, &u->rx_data.command);
2732 			break;
2733 
2734 		case STATUS_CHANGE_VAL:
2735 			isr_status_change(priv, u->rx_data.status);
2736 			break;
2737 
2738 		case P80211_DATA_VAL:
2739 		case P8023_DATA_VAL:
2740 #ifdef CONFIG_IPW2100_MONITOR
2741 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2742 				isr_rx_monitor(priv, i, &stats);
2743 				break;
2744 			}
2745 #endif
2746 			if (stats.len < sizeof(struct libipw_hdr_3addr))
2747 				break;
2748 			switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2749 			case IEEE80211_FTYPE_MGMT:
2750 				libipw_rx_mgt(priv->ieee,
2751 						 &u->rx_data.header, &stats);
2752 				break;
2753 
2754 			case IEEE80211_FTYPE_CTL:
2755 				break;
2756 
2757 			case IEEE80211_FTYPE_DATA:
2758 				isr_rx(priv, i, &stats);
2759 				break;
2760 
2761 			}
2762 			break;
2763 		}
2764 
2765 	      increment:
2766 		/* clear status field associated with this RBD */
2767 		rxq->drv[i].status.info.field = 0;
2768 
2769 		i = (i + 1) % rxq->entries;
2770 	}
2771 
2772 	if (i != s) {
2773 		/* backtrack one entry, wrapping to end if at 0 */
2774 		rxq->next = (i ? i : rxq->entries) - 1;
2775 
2776 		write_register(priv->net_dev,
2777 			       IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2778 	}
2779 }
2780 
2781 /*
2782  * __ipw2100_tx_process
2783  *
2784  * This routine will determine whether the next packet on
2785  * the fw_pend_list has been processed by the firmware yet.
2786  *
2787  * If not, then it does nothing and returns.
2788  *
2789  * If so, then it removes the item from the fw_pend_list, frees
2790  * any associated storage, and places the item back on the
2791  * free list of its source (either msg_free_list or tx_free_list)
2792  *
2793  * TX Queue works as follows:
2794  *
2795  * Read index - points to the next TBD that the firmware will
2796  *              process.  The firmware will read the data, and once
2797  *              done processing, it will advance the Read index.
2798  *
2799  * Write index - driver fills this entry with an constructed TBD
2800  *               entry.  The Write index is not advanced until the
2801  *               packet has been configured.
2802  *
2803  * In between the W and R indexes are the TBDs that have NOT been
2804  * processed.  Lagging behind the R index are packets that have
2805  * been processed but have not been freed by the driver.
2806  *
2807  * In order to free old storage, an internal index will be maintained
2808  * that points to the next packet to be freed.  When all used
2809  * packets have been freed, the oldest index will be the same as the
2810  * firmware's read index.
2811  *
2812  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2813  *
2814  * Because the TBD structure can not contain arbitrary data, the
2815  * driver must keep an internal queue of cached allocations such that
2816  * it can put that data back into the tx_free_list and msg_free_list
2817  * for use by future command and data packets.
2818  *
2819  */
2820 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2821 {
2822 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
2823 	struct ipw2100_bd *tbd;
2824 	struct list_head *element;
2825 	struct ipw2100_tx_packet *packet;
2826 	int descriptors_used;
2827 	int e, i;
2828 	u32 r, w, frag_num = 0;
2829 
2830 	if (list_empty(&priv->fw_pend_list))
2831 		return 0;
2832 
2833 	element = priv->fw_pend_list.next;
2834 
2835 	packet = list_entry(element, struct ipw2100_tx_packet, list);
2836 	tbd = &txq->drv[packet->index];
2837 
2838 	/* Determine how many TBD entries must be finished... */
2839 	switch (packet->type) {
2840 	case COMMAND:
2841 		/* COMMAND uses only one slot; don't advance */
2842 		descriptors_used = 1;
2843 		e = txq->oldest;
2844 		break;
2845 
2846 	case DATA:
2847 		/* DATA uses two slots; advance and loop position. */
2848 		descriptors_used = tbd->num_fragments;
2849 		frag_num = tbd->num_fragments - 1;
2850 		e = txq->oldest + frag_num;
2851 		e %= txq->entries;
2852 		break;
2853 
2854 	default:
2855 		printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2856 		       priv->net_dev->name);
2857 		return 0;
2858 	}
2859 
2860 	/* if the last TBD is not done by NIC yet, then packet is
2861 	 * not ready to be released.
2862 	 *
2863 	 */
2864 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2865 		      &r);
2866 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2867 		      &w);
2868 	if (w != txq->next)
2869 		printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2870 		       priv->net_dev->name);
2871 
2872 	/*
2873 	 * txq->next is the index of the last packet written txq->oldest is
2874 	 * the index of the r is the index of the next packet to be read by
2875 	 * firmware
2876 	 */
2877 
2878 	/*
2879 	 * Quick graphic to help you visualize the following
2880 	 * if / else statement
2881 	 *
2882 	 * ===>|                     s---->|===============
2883 	 *                               e>|
2884 	 * | a | b | c | d | e | f | g | h | i | j | k | l
2885 	 *       r---->|
2886 	 *               w
2887 	 *
2888 	 * w - updated by driver
2889 	 * r - updated by firmware
2890 	 * s - start of oldest BD entry (txq->oldest)
2891 	 * e - end of oldest BD entry
2892 	 *
2893 	 */
2894 	if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2895 		IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2896 		return 0;
2897 	}
2898 
2899 	list_del(element);
2900 	DEC_STAT(&priv->fw_pend_stat);
2901 
2902 #ifdef CONFIG_IPW2100_DEBUG
2903 	{
2904 		i = txq->oldest;
2905 		IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2906 			     &txq->drv[i],
2907 			     (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2908 			     txq->drv[i].host_addr, txq->drv[i].buf_length);
2909 
2910 		if (packet->type == DATA) {
2911 			i = (i + 1) % txq->entries;
2912 
2913 			IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2914 				     &txq->drv[i],
2915 				     (u32) (txq->nic + i *
2916 					    sizeof(struct ipw2100_bd)),
2917 				     (u32) txq->drv[i].host_addr,
2918 				     txq->drv[i].buf_length);
2919 		}
2920 	}
2921 #endif
2922 
2923 	switch (packet->type) {
2924 	case DATA:
2925 		if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2926 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2927 			       "Expecting DATA TBD but pulled "
2928 			       "something else: ids %d=%d.\n",
2929 			       priv->net_dev->name, txq->oldest, packet->index);
2930 
2931 		/* DATA packet; we have to unmap and free the SKB */
2932 		for (i = 0; i < frag_num; i++) {
2933 			tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2934 
2935 			IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2936 				     (packet->index + 1 + i) % txq->entries,
2937 				     tbd->host_addr, tbd->buf_length);
2938 
2939 			pci_unmap_single(priv->pci_dev,
2940 					 tbd->host_addr,
2941 					 tbd->buf_length, PCI_DMA_TODEVICE);
2942 		}
2943 
2944 		libipw_txb_free(packet->info.d_struct.txb);
2945 		packet->info.d_struct.txb = NULL;
2946 
2947 		list_add_tail(element, &priv->tx_free_list);
2948 		INC_STAT(&priv->tx_free_stat);
2949 
2950 		/* We have a free slot in the Tx queue, so wake up the
2951 		 * transmit layer if it is stopped. */
2952 		if (priv->status & STATUS_ASSOCIATED)
2953 			netif_wake_queue(priv->net_dev);
2954 
2955 		/* A packet was processed by the hardware, so update the
2956 		 * watchdog */
2957 		netif_trans_update(priv->net_dev);
2958 
2959 		break;
2960 
2961 	case COMMAND:
2962 		if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2963 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2964 			       "Expecting COMMAND TBD but pulled "
2965 			       "something else: ids %d=%d.\n",
2966 			       priv->net_dev->name, txq->oldest, packet->index);
2967 
2968 #ifdef CONFIG_IPW2100_DEBUG
2969 		if (packet->info.c_struct.cmd->host_command_reg <
2970 		    ARRAY_SIZE(command_types))
2971 			IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2972 				     command_types[packet->info.c_struct.cmd->
2973 						   host_command_reg],
2974 				     packet->info.c_struct.cmd->
2975 				     host_command_reg,
2976 				     packet->info.c_struct.cmd->cmd_status_reg);
2977 #endif
2978 
2979 		list_add_tail(element, &priv->msg_free_list);
2980 		INC_STAT(&priv->msg_free_stat);
2981 		break;
2982 	}
2983 
2984 	/* advance oldest used TBD pointer to start of next entry */
2985 	txq->oldest = (e + 1) % txq->entries;
2986 	/* increase available TBDs number */
2987 	txq->available += descriptors_used;
2988 	SET_STAT(&priv->txq_stat, txq->available);
2989 
2990 	IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2991 		     jiffies - packet->jiffy_start);
2992 
2993 	return (!list_empty(&priv->fw_pend_list));
2994 }
2995 
2996 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2997 {
2998 	int i = 0;
2999 
3000 	while (__ipw2100_tx_process(priv) && i < 200)
3001 		i++;
3002 
3003 	if (i == 200) {
3004 		printk(KERN_WARNING DRV_NAME ": "
3005 		       "%s: Driver is running slow (%d iters).\n",
3006 		       priv->net_dev->name, i);
3007 	}
3008 }
3009 
3010 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3011 {
3012 	struct list_head *element;
3013 	struct ipw2100_tx_packet *packet;
3014 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3015 	struct ipw2100_bd *tbd;
3016 	int next = txq->next;
3017 
3018 	while (!list_empty(&priv->msg_pend_list)) {
3019 		/* if there isn't enough space in TBD queue, then
3020 		 * don't stuff a new one in.
3021 		 * NOTE: 3 are needed as a command will take one,
3022 		 *       and there is a minimum of 2 that must be
3023 		 *       maintained between the r and w indexes
3024 		 */
3025 		if (txq->available <= 3) {
3026 			IPW_DEBUG_TX("no room in tx_queue\n");
3027 			break;
3028 		}
3029 
3030 		element = priv->msg_pend_list.next;
3031 		list_del(element);
3032 		DEC_STAT(&priv->msg_pend_stat);
3033 
3034 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3035 
3036 		IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3037 			     &txq->drv[txq->next],
3038 			     (u32) (txq->nic + txq->next *
3039 				      sizeof(struct ipw2100_bd)));
3040 
3041 		packet->index = txq->next;
3042 
3043 		tbd = &txq->drv[txq->next];
3044 
3045 		/* initialize TBD */
3046 		tbd->host_addr = packet->info.c_struct.cmd_phys;
3047 		tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3048 		/* not marking number of fragments causes problems
3049 		 * with f/w debug version */
3050 		tbd->num_fragments = 1;
3051 		tbd->status.info.field =
3052 		    IPW_BD_STATUS_TX_FRAME_COMMAND |
3053 		    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3054 
3055 		/* update TBD queue counters */
3056 		txq->next++;
3057 		txq->next %= txq->entries;
3058 		txq->available--;
3059 		DEC_STAT(&priv->txq_stat);
3060 
3061 		list_add_tail(element, &priv->fw_pend_list);
3062 		INC_STAT(&priv->fw_pend_stat);
3063 	}
3064 
3065 	if (txq->next != next) {
3066 		/* kick off the DMA by notifying firmware the
3067 		 * write index has moved; make sure TBD stores are sync'd */
3068 		wmb();
3069 		write_register(priv->net_dev,
3070 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3071 			       txq->next);
3072 	}
3073 }
3074 
3075 /*
3076  * ipw2100_tx_send_data
3077  *
3078  */
3079 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3080 {
3081 	struct list_head *element;
3082 	struct ipw2100_tx_packet *packet;
3083 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3084 	struct ipw2100_bd *tbd;
3085 	int next = txq->next;
3086 	int i = 0;
3087 	struct ipw2100_data_header *ipw_hdr;
3088 	struct libipw_hdr_3addr *hdr;
3089 
3090 	while (!list_empty(&priv->tx_pend_list)) {
3091 		/* if there isn't enough space in TBD queue, then
3092 		 * don't stuff a new one in.
3093 		 * NOTE: 4 are needed as a data will take two,
3094 		 *       and there is a minimum of 2 that must be
3095 		 *       maintained between the r and w indexes
3096 		 */
3097 		element = priv->tx_pend_list.next;
3098 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3099 
3100 		if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3101 			     IPW_MAX_BDS)) {
3102 			/* TODO: Support merging buffers if more than
3103 			 * IPW_MAX_BDS are used */
3104 			IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3105 				       "Increase fragmentation level.\n",
3106 				       priv->net_dev->name);
3107 		}
3108 
3109 		if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3110 			IPW_DEBUG_TX("no room in tx_queue\n");
3111 			break;
3112 		}
3113 
3114 		list_del(element);
3115 		DEC_STAT(&priv->tx_pend_stat);
3116 
3117 		tbd = &txq->drv[txq->next];
3118 
3119 		packet->index = txq->next;
3120 
3121 		ipw_hdr = packet->info.d_struct.data;
3122 		hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3123 		    fragments[0]->data;
3124 
3125 		if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3126 			/* To DS: Addr1 = BSSID, Addr2 = SA,
3127 			   Addr3 = DA */
3128 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3129 			memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3130 		} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3131 			/* not From/To DS: Addr1 = DA, Addr2 = SA,
3132 			   Addr3 = BSSID */
3133 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3134 			memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3135 		}
3136 
3137 		ipw_hdr->host_command_reg = SEND;
3138 		ipw_hdr->host_command_reg1 = 0;
3139 
3140 		/* For now we only support host based encryption */
3141 		ipw_hdr->needs_encryption = 0;
3142 		ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3143 		if (packet->info.d_struct.txb->nr_frags > 1)
3144 			ipw_hdr->fragment_size =
3145 			    packet->info.d_struct.txb->frag_size -
3146 			    LIBIPW_3ADDR_LEN;
3147 		else
3148 			ipw_hdr->fragment_size = 0;
3149 
3150 		tbd->host_addr = packet->info.d_struct.data_phys;
3151 		tbd->buf_length = sizeof(struct ipw2100_data_header);
3152 		tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3153 		tbd->status.info.field =
3154 		    IPW_BD_STATUS_TX_FRAME_802_3 |
3155 		    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3156 		txq->next++;
3157 		txq->next %= txq->entries;
3158 
3159 		IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3160 			     packet->index, tbd->host_addr, tbd->buf_length);
3161 #ifdef CONFIG_IPW2100_DEBUG
3162 		if (packet->info.d_struct.txb->nr_frags > 1)
3163 			IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3164 				       packet->info.d_struct.txb->nr_frags);
3165 #endif
3166 
3167 		for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3168 			tbd = &txq->drv[txq->next];
3169 			if (i == packet->info.d_struct.txb->nr_frags - 1)
3170 				tbd->status.info.field =
3171 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3172 				    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3173 			else
3174 				tbd->status.info.field =
3175 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3176 				    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3177 
3178 			tbd->buf_length = packet->info.d_struct.txb->
3179 			    fragments[i]->len - LIBIPW_3ADDR_LEN;
3180 
3181 			tbd->host_addr = pci_map_single(priv->pci_dev,
3182 							packet->info.d_struct.
3183 							txb->fragments[i]->
3184 							data +
3185 							LIBIPW_3ADDR_LEN,
3186 							tbd->buf_length,
3187 							PCI_DMA_TODEVICE);
3188 			if (pci_dma_mapping_error(priv->pci_dev,
3189 						  tbd->host_addr)) {
3190 				IPW_DEBUG_TX("dma mapping error\n");
3191 				break;
3192 			}
3193 
3194 			IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3195 				     txq->next, tbd->host_addr,
3196 				     tbd->buf_length);
3197 
3198 			pci_dma_sync_single_for_device(priv->pci_dev,
3199 						       tbd->host_addr,
3200 						       tbd->buf_length,
3201 						       PCI_DMA_TODEVICE);
3202 
3203 			txq->next++;
3204 			txq->next %= txq->entries;
3205 		}
3206 
3207 		txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3208 		SET_STAT(&priv->txq_stat, txq->available);
3209 
3210 		list_add_tail(element, &priv->fw_pend_list);
3211 		INC_STAT(&priv->fw_pend_stat);
3212 	}
3213 
3214 	if (txq->next != next) {
3215 		/* kick off the DMA by notifying firmware the
3216 		 * write index has moved; make sure TBD stores are sync'd */
3217 		write_register(priv->net_dev,
3218 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3219 			       txq->next);
3220 	}
3221 }
3222 
3223 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3224 {
3225 	struct net_device *dev = priv->net_dev;
3226 	unsigned long flags;
3227 	u32 inta, tmp;
3228 
3229 	spin_lock_irqsave(&priv->low_lock, flags);
3230 	ipw2100_disable_interrupts(priv);
3231 
3232 	read_register(dev, IPW_REG_INTA, &inta);
3233 
3234 	IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3235 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3236 
3237 	priv->in_isr++;
3238 	priv->interrupts++;
3239 
3240 	/* We do not loop and keep polling for more interrupts as this
3241 	 * is frowned upon and doesn't play nicely with other potentially
3242 	 * chained IRQs */
3243 	IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3244 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3245 
3246 	if (inta & IPW2100_INTA_FATAL_ERROR) {
3247 		printk(KERN_WARNING DRV_NAME
3248 		       ": Fatal interrupt. Scheduling firmware restart.\n");
3249 		priv->inta_other++;
3250 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3251 
3252 		read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3253 		IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3254 			       priv->net_dev->name, priv->fatal_error);
3255 
3256 		read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3257 		IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3258 			       priv->net_dev->name, tmp);
3259 
3260 		/* Wake up any sleeping jobs */
3261 		schedule_reset(priv);
3262 	}
3263 
3264 	if (inta & IPW2100_INTA_PARITY_ERROR) {
3265 		printk(KERN_ERR DRV_NAME
3266 		       ": ***** PARITY ERROR INTERRUPT !!!!\n");
3267 		priv->inta_other++;
3268 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3269 	}
3270 
3271 	if (inta & IPW2100_INTA_RX_TRANSFER) {
3272 		IPW_DEBUG_ISR("RX interrupt\n");
3273 
3274 		priv->rx_interrupts++;
3275 
3276 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3277 
3278 		__ipw2100_rx_process(priv);
3279 		__ipw2100_tx_complete(priv);
3280 	}
3281 
3282 	if (inta & IPW2100_INTA_TX_TRANSFER) {
3283 		IPW_DEBUG_ISR("TX interrupt\n");
3284 
3285 		priv->tx_interrupts++;
3286 
3287 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3288 
3289 		__ipw2100_tx_complete(priv);
3290 		ipw2100_tx_send_commands(priv);
3291 		ipw2100_tx_send_data(priv);
3292 	}
3293 
3294 	if (inta & IPW2100_INTA_TX_COMPLETE) {
3295 		IPW_DEBUG_ISR("TX complete\n");
3296 		priv->inta_other++;
3297 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3298 
3299 		__ipw2100_tx_complete(priv);
3300 	}
3301 
3302 	if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3303 		/* ipw2100_handle_event(dev); */
3304 		priv->inta_other++;
3305 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3306 	}
3307 
3308 	if (inta & IPW2100_INTA_FW_INIT_DONE) {
3309 		IPW_DEBUG_ISR("FW init done interrupt\n");
3310 		priv->inta_other++;
3311 
3312 		read_register(dev, IPW_REG_INTA, &tmp);
3313 		if (tmp & (IPW2100_INTA_FATAL_ERROR |
3314 			   IPW2100_INTA_PARITY_ERROR)) {
3315 			write_register(dev, IPW_REG_INTA,
3316 				       IPW2100_INTA_FATAL_ERROR |
3317 				       IPW2100_INTA_PARITY_ERROR);
3318 		}
3319 
3320 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3321 	}
3322 
3323 	if (inta & IPW2100_INTA_STATUS_CHANGE) {
3324 		IPW_DEBUG_ISR("Status change interrupt\n");
3325 		priv->inta_other++;
3326 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3327 	}
3328 
3329 	if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3330 		IPW_DEBUG_ISR("slave host mode interrupt\n");
3331 		priv->inta_other++;
3332 		write_register(dev, IPW_REG_INTA,
3333 			       IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3334 	}
3335 
3336 	priv->in_isr--;
3337 	ipw2100_enable_interrupts(priv);
3338 
3339 	spin_unlock_irqrestore(&priv->low_lock, flags);
3340 
3341 	IPW_DEBUG_ISR("exit\n");
3342 }
3343 
3344 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3345 {
3346 	struct ipw2100_priv *priv = data;
3347 	u32 inta, inta_mask;
3348 
3349 	if (!data)
3350 		return IRQ_NONE;
3351 
3352 	spin_lock(&priv->low_lock);
3353 
3354 	/* We check to see if we should be ignoring interrupts before
3355 	 * we touch the hardware.  During ucode load if we try and handle
3356 	 * an interrupt we can cause keyboard problems as well as cause
3357 	 * the ucode to fail to initialize */
3358 	if (!(priv->status & STATUS_INT_ENABLED)) {
3359 		/* Shared IRQ */
3360 		goto none;
3361 	}
3362 
3363 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3364 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
3365 
3366 	if (inta == 0xFFFFFFFF) {
3367 		/* Hardware disappeared */
3368 		printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3369 		goto none;
3370 	}
3371 
3372 	inta &= IPW_INTERRUPT_MASK;
3373 
3374 	if (!(inta & inta_mask)) {
3375 		/* Shared interrupt */
3376 		goto none;
3377 	}
3378 
3379 	/* We disable the hardware interrupt here just to prevent unneeded
3380 	 * calls to be made.  We disable this again within the actual
3381 	 * work tasklet, so if another part of the code re-enables the
3382 	 * interrupt, that is fine */
3383 	ipw2100_disable_interrupts(priv);
3384 
3385 	tasklet_schedule(&priv->irq_tasklet);
3386 	spin_unlock(&priv->low_lock);
3387 
3388 	return IRQ_HANDLED;
3389       none:
3390 	spin_unlock(&priv->low_lock);
3391 	return IRQ_NONE;
3392 }
3393 
3394 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3395 			      struct net_device *dev, int pri)
3396 {
3397 	struct ipw2100_priv *priv = libipw_priv(dev);
3398 	struct list_head *element;
3399 	struct ipw2100_tx_packet *packet;
3400 	unsigned long flags;
3401 
3402 	spin_lock_irqsave(&priv->low_lock, flags);
3403 
3404 	if (!(priv->status & STATUS_ASSOCIATED)) {
3405 		IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3406 		priv->net_dev->stats.tx_carrier_errors++;
3407 		netif_stop_queue(dev);
3408 		goto fail_unlock;
3409 	}
3410 
3411 	if (list_empty(&priv->tx_free_list))
3412 		goto fail_unlock;
3413 
3414 	element = priv->tx_free_list.next;
3415 	packet = list_entry(element, struct ipw2100_tx_packet, list);
3416 
3417 	packet->info.d_struct.txb = txb;
3418 
3419 	IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3420 	printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3421 
3422 	packet->jiffy_start = jiffies;
3423 
3424 	list_del(element);
3425 	DEC_STAT(&priv->tx_free_stat);
3426 
3427 	list_add_tail(element, &priv->tx_pend_list);
3428 	INC_STAT(&priv->tx_pend_stat);
3429 
3430 	ipw2100_tx_send_data(priv);
3431 
3432 	spin_unlock_irqrestore(&priv->low_lock, flags);
3433 	return NETDEV_TX_OK;
3434 
3435 fail_unlock:
3436 	netif_stop_queue(dev);
3437 	spin_unlock_irqrestore(&priv->low_lock, flags);
3438 	return NETDEV_TX_BUSY;
3439 }
3440 
3441 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3442 {
3443 	int i, j, err = -EINVAL;
3444 	void *v;
3445 	dma_addr_t p;
3446 
3447 	priv->msg_buffers =
3448 	    kmalloc_array(IPW_COMMAND_POOL_SIZE,
3449 			  sizeof(struct ipw2100_tx_packet),
3450 			  GFP_KERNEL);
3451 	if (!priv->msg_buffers)
3452 		return -ENOMEM;
3453 
3454 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3455 		v = pci_zalloc_consistent(priv->pci_dev,
3456 					  sizeof(struct ipw2100_cmd_header),
3457 					  &p);
3458 		if (!v) {
3459 			printk(KERN_ERR DRV_NAME ": "
3460 			       "%s: PCI alloc failed for msg "
3461 			       "buffers.\n", priv->net_dev->name);
3462 			err = -ENOMEM;
3463 			break;
3464 		}
3465 
3466 		priv->msg_buffers[i].type = COMMAND;
3467 		priv->msg_buffers[i].info.c_struct.cmd =
3468 		    (struct ipw2100_cmd_header *)v;
3469 		priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3470 	}
3471 
3472 	if (i == IPW_COMMAND_POOL_SIZE)
3473 		return 0;
3474 
3475 	for (j = 0; j < i; j++) {
3476 		pci_free_consistent(priv->pci_dev,
3477 				    sizeof(struct ipw2100_cmd_header),
3478 				    priv->msg_buffers[j].info.c_struct.cmd,
3479 				    priv->msg_buffers[j].info.c_struct.
3480 				    cmd_phys);
3481 	}
3482 
3483 	kfree(priv->msg_buffers);
3484 	priv->msg_buffers = NULL;
3485 
3486 	return err;
3487 }
3488 
3489 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3490 {
3491 	int i;
3492 
3493 	INIT_LIST_HEAD(&priv->msg_free_list);
3494 	INIT_LIST_HEAD(&priv->msg_pend_list);
3495 
3496 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3497 		list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3498 	SET_STAT(&priv->msg_free_stat, i);
3499 
3500 	return 0;
3501 }
3502 
3503 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3504 {
3505 	int i;
3506 
3507 	if (!priv->msg_buffers)
3508 		return;
3509 
3510 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3511 		pci_free_consistent(priv->pci_dev,
3512 				    sizeof(struct ipw2100_cmd_header),
3513 				    priv->msg_buffers[i].info.c_struct.cmd,
3514 				    priv->msg_buffers[i].info.c_struct.
3515 				    cmd_phys);
3516 	}
3517 
3518 	kfree(priv->msg_buffers);
3519 	priv->msg_buffers = NULL;
3520 }
3521 
3522 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3523 			char *buf)
3524 {
3525 	struct pci_dev *pci_dev = to_pci_dev(d);
3526 	char *out = buf;
3527 	int i, j;
3528 	u32 val;
3529 
3530 	for (i = 0; i < 16; i++) {
3531 		out += sprintf(out, "[%08X] ", i * 16);
3532 		for (j = 0; j < 16; j += 4) {
3533 			pci_read_config_dword(pci_dev, i * 16 + j, &val);
3534 			out += sprintf(out, "%08X ", val);
3535 		}
3536 		out += sprintf(out, "\n");
3537 	}
3538 
3539 	return out - buf;
3540 }
3541 
3542 static DEVICE_ATTR(pci, 0444, show_pci, NULL);
3543 
3544 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3545 			char *buf)
3546 {
3547 	struct ipw2100_priv *p = dev_get_drvdata(d);
3548 	return sprintf(buf, "0x%08x\n", (int)p->config);
3549 }
3550 
3551 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
3552 
3553 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3554 			   char *buf)
3555 {
3556 	struct ipw2100_priv *p = dev_get_drvdata(d);
3557 	return sprintf(buf, "0x%08x\n", (int)p->status);
3558 }
3559 
3560 static DEVICE_ATTR(status, 0444, show_status, NULL);
3561 
3562 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3563 			       char *buf)
3564 {
3565 	struct ipw2100_priv *p = dev_get_drvdata(d);
3566 	return sprintf(buf, "0x%08x\n", (int)p->capability);
3567 }
3568 
3569 static DEVICE_ATTR(capability, 0444, show_capability, NULL);
3570 
3571 #define IPW2100_REG(x) { IPW_ ##x, #x }
3572 static const struct {
3573 	u32 addr;
3574 	const char *name;
3575 } hw_data[] = {
3576 IPW2100_REG(REG_GP_CNTRL),
3577 	    IPW2100_REG(REG_GPIO),
3578 	    IPW2100_REG(REG_INTA),
3579 	    IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3580 #define IPW2100_NIC(x, s) { x, #x, s }
3581 static const struct {
3582 	u32 addr;
3583 	const char *name;
3584 	size_t size;
3585 } nic_data[] = {
3586 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3587 	    IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3588 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3589 static const struct {
3590 	u8 index;
3591 	const char *name;
3592 	const char *desc;
3593 } ord_data[] = {
3594 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3595 	    IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3596 				"successful Host Tx's (MSDU)"),
3597 	    IPW2100_ORD(STAT_TX_DIR_DATA,
3598 				"successful Directed Tx's (MSDU)"),
3599 	    IPW2100_ORD(STAT_TX_DIR_DATA1,
3600 				"successful Directed Tx's (MSDU) @ 1MB"),
3601 	    IPW2100_ORD(STAT_TX_DIR_DATA2,
3602 				"successful Directed Tx's (MSDU) @ 2MB"),
3603 	    IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3604 				"successful Directed Tx's (MSDU) @ 5_5MB"),
3605 	    IPW2100_ORD(STAT_TX_DIR_DATA11,
3606 				"successful Directed Tx's (MSDU) @ 11MB"),
3607 	    IPW2100_ORD(STAT_TX_NODIR_DATA1,
3608 				"successful Non_Directed Tx's (MSDU) @ 1MB"),
3609 	    IPW2100_ORD(STAT_TX_NODIR_DATA2,
3610 				"successful Non_Directed Tx's (MSDU) @ 2MB"),
3611 	    IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3612 				"successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3613 	    IPW2100_ORD(STAT_TX_NODIR_DATA11,
3614 				"successful Non_Directed Tx's (MSDU) @ 11MB"),
3615 	    IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3616 	    IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3617 	    IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3618 	    IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3619 	    IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3620 	    IPW2100_ORD(STAT_TX_ASSN_RESP,
3621 				"successful Association response Tx's"),
3622 	    IPW2100_ORD(STAT_TX_REASSN,
3623 				"successful Reassociation Tx's"),
3624 	    IPW2100_ORD(STAT_TX_REASSN_RESP,
3625 				"successful Reassociation response Tx's"),
3626 	    IPW2100_ORD(STAT_TX_PROBE,
3627 				"probes successfully transmitted"),
3628 	    IPW2100_ORD(STAT_TX_PROBE_RESP,
3629 				"probe responses successfully transmitted"),
3630 	    IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3631 	    IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3632 	    IPW2100_ORD(STAT_TX_DISASSN,
3633 				"successful Disassociation TX"),
3634 	    IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3635 	    IPW2100_ORD(STAT_TX_DEAUTH,
3636 				"successful Deauthentication TX"),
3637 	    IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3638 				"Total successful Tx data bytes"),
3639 	    IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3640 	    IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3641 	    IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3642 	    IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3643 	    IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3644 	    IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3645 	    IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3646 				"times max tries in a hop failed"),
3647 	    IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3648 				"times disassociation failed"),
3649 	    IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3650 	    IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3651 	    IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3652 	    IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3653 	    IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3654 	    IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3655 	    IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3656 				"directed packets at 5.5MB"),
3657 	    IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3658 	    IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3659 	    IPW2100_ORD(STAT_RX_NODIR_DATA1,
3660 				"nondirected packets at 1MB"),
3661 	    IPW2100_ORD(STAT_RX_NODIR_DATA2,
3662 				"nondirected packets at 2MB"),
3663 	    IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3664 				"nondirected packets at 5.5MB"),
3665 	    IPW2100_ORD(STAT_RX_NODIR_DATA11,
3666 				"nondirected packets at 11MB"),
3667 	    IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3668 	    IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3669 								    "Rx CTS"),
3670 	    IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3671 	    IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3672 	    IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3673 	    IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3674 	    IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3675 	    IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3676 	    IPW2100_ORD(STAT_RX_REASSN_RESP,
3677 				"Reassociation response Rx's"),
3678 	    IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3679 	    IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3680 	    IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3681 	    IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3682 	    IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3683 	    IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3684 	    IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3685 	    IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3686 				"Total rx data bytes received"),
3687 	    IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3688 	    IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3689 	    IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3690 	    IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3691 	    IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3692 	    IPW2100_ORD(STAT_RX_DUPLICATE1,
3693 				"duplicate rx packets at 1MB"),
3694 	    IPW2100_ORD(STAT_RX_DUPLICATE2,
3695 				"duplicate rx packets at 2MB"),
3696 	    IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3697 				"duplicate rx packets at 5.5MB"),
3698 	    IPW2100_ORD(STAT_RX_DUPLICATE11,
3699 				"duplicate rx packets at 11MB"),
3700 	    IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3701 	    IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3702 	    IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3703 	    IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3704 	    IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3705 				"rx frames with invalid protocol"),
3706 	    IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3707 	    IPW2100_ORD(STAT_RX_NO_BUFFER,
3708 				"rx frames rejected due to no buffer"),
3709 	    IPW2100_ORD(STAT_RX_MISSING_FRAG,
3710 				"rx frames dropped due to missing fragment"),
3711 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3712 				"rx frames dropped due to non-sequential fragment"),
3713 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3714 				"rx frames dropped due to unmatched 1st frame"),
3715 	    IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3716 				"rx frames dropped due to uncompleted frame"),
3717 	    IPW2100_ORD(STAT_RX_ICV_ERRORS,
3718 				"ICV errors during decryption"),
3719 	    IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3720 	    IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3721 	    IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3722 				"poll response timeouts"),
3723 	    IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3724 				"timeouts waiting for last {broad,multi}cast pkt"),
3725 	    IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3726 	    IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3727 	    IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3728 	    IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3729 	    IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3730 				"current calculation of % missed beacons"),
3731 	    IPW2100_ORD(STAT_PERCENT_RETRIES,
3732 				"current calculation of % missed tx retries"),
3733 	    IPW2100_ORD(ASSOCIATED_AP_PTR,
3734 				"0 if not associated, else pointer to AP table entry"),
3735 	    IPW2100_ORD(AVAILABLE_AP_CNT,
3736 				"AP's described in the AP table"),
3737 	    IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3738 	    IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3739 	    IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3740 	    IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3741 				"failures due to response fail"),
3742 	    IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3743 	    IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3744 	    IPW2100_ORD(STAT_ROAM_INHIBIT,
3745 				"times roaming was inhibited due to activity"),
3746 	    IPW2100_ORD(RSSI_AT_ASSN,
3747 				"RSSI of associated AP at time of association"),
3748 	    IPW2100_ORD(STAT_ASSN_CAUSE1,
3749 				"reassociation: no probe response or TX on hop"),
3750 	    IPW2100_ORD(STAT_ASSN_CAUSE2,
3751 				"reassociation: poor tx/rx quality"),
3752 	    IPW2100_ORD(STAT_ASSN_CAUSE3,
3753 				"reassociation: tx/rx quality (excessive AP load"),
3754 	    IPW2100_ORD(STAT_ASSN_CAUSE4,
3755 				"reassociation: AP RSSI level"),
3756 	    IPW2100_ORD(STAT_ASSN_CAUSE5,
3757 				"reassociations due to load leveling"),
3758 	    IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3759 	    IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3760 				"times authentication response failed"),
3761 	    IPW2100_ORD(STATION_TABLE_CNT,
3762 				"entries in association table"),
3763 	    IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3764 	    IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3765 	    IPW2100_ORD(COUNTRY_CODE,
3766 				"IEEE country code as recv'd from beacon"),
3767 	    IPW2100_ORD(COUNTRY_CHANNELS,
3768 				"channels supported by country"),
3769 	    IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3770 	    IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3771 	    IPW2100_ORD(ANTENNA_DIVERSITY,
3772 				"TRUE if antenna diversity is disabled"),
3773 	    IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3774 	    IPW2100_ORD(OUR_FREQ,
3775 				"current radio freq lower digits - channel ID"),
3776 	    IPW2100_ORD(RTC_TIME, "current RTC time"),
3777 	    IPW2100_ORD(PORT_TYPE, "operating mode"),
3778 	    IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3779 	    IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3780 	    IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3781 	    IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3782 	    IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3783 	    IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3784 	    IPW2100_ORD(CAPABILITIES,
3785 				"Management frame capability field"),
3786 	    IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3787 	    IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3788 	    IPW2100_ORD(RTS_THRESHOLD,
3789 				"Min packet length for RTS handshaking"),
3790 	    IPW2100_ORD(INT_MODE, "International mode"),
3791 	    IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3792 				"protocol frag threshold"),
3793 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3794 				"EEPROM offset in SRAM"),
3795 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3796 				"EEPROM size in SRAM"),
3797 	    IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3798 	    IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3799 				"EEPROM IBSS 11b channel set"),
3800 	    IPW2100_ORD(MAC_VERSION, "MAC Version"),
3801 	    IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3802 	    IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3803 	    IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3804 	    IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3805 
3806 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3807 			      char *buf)
3808 {
3809 	int i;
3810 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3811 	struct net_device *dev = priv->net_dev;
3812 	char *out = buf;
3813 	u32 val = 0;
3814 
3815 	out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3816 
3817 	for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3818 		read_register(dev, hw_data[i].addr, &val);
3819 		out += sprintf(out, "%30s [%08X] : %08X\n",
3820 			       hw_data[i].name, hw_data[i].addr, val);
3821 	}
3822 
3823 	return out - buf;
3824 }
3825 
3826 static DEVICE_ATTR(registers, 0444, show_registers, NULL);
3827 
3828 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3829 			     char *buf)
3830 {
3831 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3832 	struct net_device *dev = priv->net_dev;
3833 	char *out = buf;
3834 	int i;
3835 
3836 	out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3837 
3838 	for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3839 		u8 tmp8;
3840 		u16 tmp16;
3841 		u32 tmp32;
3842 
3843 		switch (nic_data[i].size) {
3844 		case 1:
3845 			read_nic_byte(dev, nic_data[i].addr, &tmp8);
3846 			out += sprintf(out, "%30s [%08X] : %02X\n",
3847 				       nic_data[i].name, nic_data[i].addr,
3848 				       tmp8);
3849 			break;
3850 		case 2:
3851 			read_nic_word(dev, nic_data[i].addr, &tmp16);
3852 			out += sprintf(out, "%30s [%08X] : %04X\n",
3853 				       nic_data[i].name, nic_data[i].addr,
3854 				       tmp16);
3855 			break;
3856 		case 4:
3857 			read_nic_dword(dev, nic_data[i].addr, &tmp32);
3858 			out += sprintf(out, "%30s [%08X] : %08X\n",
3859 				       nic_data[i].name, nic_data[i].addr,
3860 				       tmp32);
3861 			break;
3862 		}
3863 	}
3864 	return out - buf;
3865 }
3866 
3867 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL);
3868 
3869 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3870 			   char *buf)
3871 {
3872 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3873 	struct net_device *dev = priv->net_dev;
3874 	static unsigned long loop = 0;
3875 	int len = 0;
3876 	u32 buffer[4];
3877 	int i;
3878 	char line[81];
3879 
3880 	if (loop >= 0x30000)
3881 		loop = 0;
3882 
3883 	/* sysfs provides us PAGE_SIZE buffer */
3884 	while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3885 
3886 		if (priv->snapshot[0])
3887 			for (i = 0; i < 4; i++)
3888 				buffer[i] =
3889 				    *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3890 		else
3891 			for (i = 0; i < 4; i++)
3892 				read_nic_dword(dev, loop + i * 4, &buffer[i]);
3893 
3894 		if (priv->dump_raw)
3895 			len += sprintf(buf + len,
3896 				       "%c%c%c%c"
3897 				       "%c%c%c%c"
3898 				       "%c%c%c%c"
3899 				       "%c%c%c%c",
3900 				       ((u8 *) buffer)[0x0],
3901 				       ((u8 *) buffer)[0x1],
3902 				       ((u8 *) buffer)[0x2],
3903 				       ((u8 *) buffer)[0x3],
3904 				       ((u8 *) buffer)[0x4],
3905 				       ((u8 *) buffer)[0x5],
3906 				       ((u8 *) buffer)[0x6],
3907 				       ((u8 *) buffer)[0x7],
3908 				       ((u8 *) buffer)[0x8],
3909 				       ((u8 *) buffer)[0x9],
3910 				       ((u8 *) buffer)[0xa],
3911 				       ((u8 *) buffer)[0xb],
3912 				       ((u8 *) buffer)[0xc],
3913 				       ((u8 *) buffer)[0xd],
3914 				       ((u8 *) buffer)[0xe],
3915 				       ((u8 *) buffer)[0xf]);
3916 		else
3917 			len += sprintf(buf + len, "%s\n",
3918 				       snprint_line(line, sizeof(line),
3919 						    (u8 *) buffer, 16, loop));
3920 		loop += 16;
3921 	}
3922 
3923 	return len;
3924 }
3925 
3926 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3927 			    const char *buf, size_t count)
3928 {
3929 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3930 	struct net_device *dev = priv->net_dev;
3931 	const char *p = buf;
3932 
3933 	(void)dev;		/* kill unused-var warning for debug-only code */
3934 
3935 	if (count < 1)
3936 		return count;
3937 
3938 	if (p[0] == '1' ||
3939 	    (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3940 		IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3941 			       dev->name);
3942 		priv->dump_raw = 1;
3943 
3944 	} else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3945 				   tolower(p[1]) == 'f')) {
3946 		IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3947 			       dev->name);
3948 		priv->dump_raw = 0;
3949 
3950 	} else if (tolower(p[0]) == 'r') {
3951 		IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3952 		ipw2100_snapshot_free(priv);
3953 
3954 	} else
3955 		IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3956 			       "reset = clear memory snapshot\n", dev->name);
3957 
3958 	return count;
3959 }
3960 
3961 static DEVICE_ATTR(memory, 0644, show_memory, store_memory);
3962 
3963 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3964 			     char *buf)
3965 {
3966 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3967 	u32 val = 0;
3968 	int len = 0;
3969 	u32 val_len;
3970 	static int loop = 0;
3971 
3972 	if (priv->status & STATUS_RF_KILL_MASK)
3973 		return 0;
3974 
3975 	if (loop >= ARRAY_SIZE(ord_data))
3976 		loop = 0;
3977 
3978 	/* sysfs provides us PAGE_SIZE buffer */
3979 	while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3980 		val_len = sizeof(u32);
3981 
3982 		if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3983 					&val_len))
3984 			len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3985 				       ord_data[loop].index,
3986 				       ord_data[loop].desc);
3987 		else
3988 			len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3989 				       ord_data[loop].index, val,
3990 				       ord_data[loop].desc);
3991 		loop++;
3992 	}
3993 
3994 	return len;
3995 }
3996 
3997 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL);
3998 
3999 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4000 			  char *buf)
4001 {
4002 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4003 	char *out = buf;
4004 
4005 	out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4006 		       priv->interrupts, priv->tx_interrupts,
4007 		       priv->rx_interrupts, priv->inta_other);
4008 	out += sprintf(out, "firmware resets: %d\n", priv->resets);
4009 	out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4010 #ifdef CONFIG_IPW2100_DEBUG
4011 	out += sprintf(out, "packet mismatch image: %s\n",
4012 		       priv->snapshot[0] ? "YES" : "NO");
4013 #endif
4014 
4015 	return out - buf;
4016 }
4017 
4018 static DEVICE_ATTR(stats, 0444, show_stats, NULL);
4019 
4020 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4021 {
4022 	int err;
4023 
4024 	if (mode == priv->ieee->iw_mode)
4025 		return 0;
4026 
4027 	err = ipw2100_disable_adapter(priv);
4028 	if (err) {
4029 		printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4030 		       priv->net_dev->name, err);
4031 		return err;
4032 	}
4033 
4034 	switch (mode) {
4035 	case IW_MODE_INFRA:
4036 		priv->net_dev->type = ARPHRD_ETHER;
4037 		break;
4038 	case IW_MODE_ADHOC:
4039 		priv->net_dev->type = ARPHRD_ETHER;
4040 		break;
4041 #ifdef CONFIG_IPW2100_MONITOR
4042 	case IW_MODE_MONITOR:
4043 		priv->last_mode = priv->ieee->iw_mode;
4044 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4045 		break;
4046 #endif				/* CONFIG_IPW2100_MONITOR */
4047 	}
4048 
4049 	priv->ieee->iw_mode = mode;
4050 
4051 #ifdef CONFIG_PM
4052 	/* Indicate ipw2100_download_firmware download firmware
4053 	 * from disk instead of memory. */
4054 	ipw2100_firmware.version = 0;
4055 #endif
4056 
4057 	printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4058 	priv->reset_backoff = 0;
4059 	schedule_reset(priv);
4060 
4061 	return 0;
4062 }
4063 
4064 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4065 			      char *buf)
4066 {
4067 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4068 	int len = 0;
4069 
4070 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4071 
4072 	if (priv->status & STATUS_ASSOCIATED)
4073 		len += sprintf(buf + len, "connected: %llu\n",
4074 			       ktime_get_boottime_seconds() - priv->connect_start);
4075 	else
4076 		len += sprintf(buf + len, "not connected\n");
4077 
4078 	DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4079 	DUMP_VAR(status, "08lx");
4080 	DUMP_VAR(config, "08lx");
4081 	DUMP_VAR(capability, "08lx");
4082 
4083 	len +=
4084 	    sprintf(buf + len, "last_rtc: %lu\n",
4085 		    (unsigned long)priv->last_rtc);
4086 
4087 	DUMP_VAR(fatal_error, "d");
4088 	DUMP_VAR(stop_hang_check, "d");
4089 	DUMP_VAR(stop_rf_kill, "d");
4090 	DUMP_VAR(messages_sent, "d");
4091 
4092 	DUMP_VAR(tx_pend_stat.value, "d");
4093 	DUMP_VAR(tx_pend_stat.hi, "d");
4094 
4095 	DUMP_VAR(tx_free_stat.value, "d");
4096 	DUMP_VAR(tx_free_stat.lo, "d");
4097 
4098 	DUMP_VAR(msg_free_stat.value, "d");
4099 	DUMP_VAR(msg_free_stat.lo, "d");
4100 
4101 	DUMP_VAR(msg_pend_stat.value, "d");
4102 	DUMP_VAR(msg_pend_stat.hi, "d");
4103 
4104 	DUMP_VAR(fw_pend_stat.value, "d");
4105 	DUMP_VAR(fw_pend_stat.hi, "d");
4106 
4107 	DUMP_VAR(txq_stat.value, "d");
4108 	DUMP_VAR(txq_stat.lo, "d");
4109 
4110 	DUMP_VAR(ieee->scans, "d");
4111 	DUMP_VAR(reset_backoff, "lld");
4112 
4113 	return len;
4114 }
4115 
4116 static DEVICE_ATTR(internals, 0444, show_internals, NULL);
4117 
4118 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4119 			    char *buf)
4120 {
4121 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4122 	char essid[IW_ESSID_MAX_SIZE + 1];
4123 	u8 bssid[ETH_ALEN];
4124 	u32 chan = 0;
4125 	char *out = buf;
4126 	unsigned int length;
4127 	int ret;
4128 
4129 	if (priv->status & STATUS_RF_KILL_MASK)
4130 		return 0;
4131 
4132 	memset(essid, 0, sizeof(essid));
4133 	memset(bssid, 0, sizeof(bssid));
4134 
4135 	length = IW_ESSID_MAX_SIZE;
4136 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4137 	if (ret)
4138 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4139 			       __LINE__);
4140 
4141 	length = sizeof(bssid);
4142 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4143 				  bssid, &length);
4144 	if (ret)
4145 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4146 			       __LINE__);
4147 
4148 	length = sizeof(u32);
4149 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4150 	if (ret)
4151 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4152 			       __LINE__);
4153 
4154 	out += sprintf(out, "ESSID: %s\n", essid);
4155 	out += sprintf(out, "BSSID:   %pM\n", bssid);
4156 	out += sprintf(out, "Channel: %d\n", chan);
4157 
4158 	return out - buf;
4159 }
4160 
4161 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL);
4162 
4163 #ifdef CONFIG_IPW2100_DEBUG
4164 static ssize_t debug_level_show(struct device_driver *d, char *buf)
4165 {
4166 	return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4167 }
4168 
4169 static ssize_t debug_level_store(struct device_driver *d,
4170 				 const char *buf, size_t count)
4171 {
4172 	u32 val;
4173 	int ret;
4174 
4175 	ret = kstrtou32(buf, 0, &val);
4176 	if (ret)
4177 		IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4178 	else
4179 		ipw2100_debug_level = val;
4180 
4181 	return strnlen(buf, count);
4182 }
4183 static DRIVER_ATTR_RW(debug_level);
4184 #endif				/* CONFIG_IPW2100_DEBUG */
4185 
4186 static ssize_t show_fatal_error(struct device *d,
4187 				struct device_attribute *attr, char *buf)
4188 {
4189 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4190 	char *out = buf;
4191 	int i;
4192 
4193 	if (priv->fatal_error)
4194 		out += sprintf(out, "0x%08X\n", priv->fatal_error);
4195 	else
4196 		out += sprintf(out, "0\n");
4197 
4198 	for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4199 		if (!priv->fatal_errors[(priv->fatal_index - i) %
4200 					IPW2100_ERROR_QUEUE])
4201 			continue;
4202 
4203 		out += sprintf(out, "%d. 0x%08X\n", i,
4204 			       priv->fatal_errors[(priv->fatal_index - i) %
4205 						  IPW2100_ERROR_QUEUE]);
4206 	}
4207 
4208 	return out - buf;
4209 }
4210 
4211 static ssize_t store_fatal_error(struct device *d,
4212 				 struct device_attribute *attr, const char *buf,
4213 				 size_t count)
4214 {
4215 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4216 	schedule_reset(priv);
4217 	return count;
4218 }
4219 
4220 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error);
4221 
4222 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4223 			     char *buf)
4224 {
4225 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4226 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
4227 }
4228 
4229 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4230 			      const char *buf, size_t count)
4231 {
4232 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4233 	struct net_device *dev = priv->net_dev;
4234 	unsigned long val;
4235 	int ret;
4236 
4237 	(void)dev;		/* kill unused-var warning for debug-only code */
4238 
4239 	IPW_DEBUG_INFO("enter\n");
4240 
4241 	ret = kstrtoul(buf, 0, &val);
4242 	if (ret) {
4243 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4244 	} else {
4245 		priv->ieee->scan_age = val;
4246 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4247 	}
4248 
4249 	IPW_DEBUG_INFO("exit\n");
4250 	return strnlen(buf, count);
4251 }
4252 
4253 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
4254 
4255 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4256 			    char *buf)
4257 {
4258 	/* 0 - RF kill not enabled
4259 	   1 - SW based RF kill active (sysfs)
4260 	   2 - HW based RF kill active
4261 	   3 - Both HW and SW baed RF kill active */
4262 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4263 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4264 	    (rf_kill_active(priv) ? 0x2 : 0x0);
4265 	return sprintf(buf, "%i\n", val);
4266 }
4267 
4268 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4269 {
4270 	if ((disable_radio ? 1 : 0) ==
4271 	    (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4272 		return 0;
4273 
4274 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4275 			  disable_radio ? "OFF" : "ON");
4276 
4277 	mutex_lock(&priv->action_mutex);
4278 
4279 	if (disable_radio) {
4280 		priv->status |= STATUS_RF_KILL_SW;
4281 		ipw2100_down(priv);
4282 	} else {
4283 		priv->status &= ~STATUS_RF_KILL_SW;
4284 		if (rf_kill_active(priv)) {
4285 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4286 					  "disabled by HW switch\n");
4287 			/* Make sure the RF_KILL check timer is running */
4288 			priv->stop_rf_kill = 0;
4289 			mod_delayed_work(system_wq, &priv->rf_kill,
4290 					 round_jiffies_relative(HZ));
4291 		} else
4292 			schedule_reset(priv);
4293 	}
4294 
4295 	mutex_unlock(&priv->action_mutex);
4296 	return 1;
4297 }
4298 
4299 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4300 			     const char *buf, size_t count)
4301 {
4302 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4303 	ipw_radio_kill_sw(priv, buf[0] == '1');
4304 	return count;
4305 }
4306 
4307 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
4308 
4309 static struct attribute *ipw2100_sysfs_entries[] = {
4310 	&dev_attr_hardware.attr,
4311 	&dev_attr_registers.attr,
4312 	&dev_attr_ordinals.attr,
4313 	&dev_attr_pci.attr,
4314 	&dev_attr_stats.attr,
4315 	&dev_attr_internals.attr,
4316 	&dev_attr_bssinfo.attr,
4317 	&dev_attr_memory.attr,
4318 	&dev_attr_scan_age.attr,
4319 	&dev_attr_fatal_error.attr,
4320 	&dev_attr_rf_kill.attr,
4321 	&dev_attr_cfg.attr,
4322 	&dev_attr_status.attr,
4323 	&dev_attr_capability.attr,
4324 	NULL,
4325 };
4326 
4327 static const struct attribute_group ipw2100_attribute_group = {
4328 	.attrs = ipw2100_sysfs_entries,
4329 };
4330 
4331 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4332 {
4333 	struct ipw2100_status_queue *q = &priv->status_queue;
4334 
4335 	IPW_DEBUG_INFO("enter\n");
4336 
4337 	q->size = entries * sizeof(struct ipw2100_status);
4338 	q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4339 	if (!q->drv) {
4340 		IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4341 		return -ENOMEM;
4342 	}
4343 
4344 	IPW_DEBUG_INFO("exit\n");
4345 
4346 	return 0;
4347 }
4348 
4349 static void status_queue_free(struct ipw2100_priv *priv)
4350 {
4351 	IPW_DEBUG_INFO("enter\n");
4352 
4353 	if (priv->status_queue.drv) {
4354 		pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4355 				    priv->status_queue.drv,
4356 				    priv->status_queue.nic);
4357 		priv->status_queue.drv = NULL;
4358 	}
4359 
4360 	IPW_DEBUG_INFO("exit\n");
4361 }
4362 
4363 static int bd_queue_allocate(struct ipw2100_priv *priv,
4364 			     struct ipw2100_bd_queue *q, int entries)
4365 {
4366 	IPW_DEBUG_INFO("enter\n");
4367 
4368 	memset(q, 0, sizeof(struct ipw2100_bd_queue));
4369 
4370 	q->entries = entries;
4371 	q->size = entries * sizeof(struct ipw2100_bd);
4372 	q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4373 	if (!q->drv) {
4374 		IPW_DEBUG_INFO
4375 		    ("can't allocate shared memory for buffer descriptors\n");
4376 		return -ENOMEM;
4377 	}
4378 
4379 	IPW_DEBUG_INFO("exit\n");
4380 
4381 	return 0;
4382 }
4383 
4384 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4385 {
4386 	IPW_DEBUG_INFO("enter\n");
4387 
4388 	if (!q)
4389 		return;
4390 
4391 	if (q->drv) {
4392 		pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4393 		q->drv = NULL;
4394 	}
4395 
4396 	IPW_DEBUG_INFO("exit\n");
4397 }
4398 
4399 static void bd_queue_initialize(struct ipw2100_priv *priv,
4400 				struct ipw2100_bd_queue *q, u32 base, u32 size,
4401 				u32 r, u32 w)
4402 {
4403 	IPW_DEBUG_INFO("enter\n");
4404 
4405 	IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4406 		       (u32) q->nic);
4407 
4408 	write_register(priv->net_dev, base, q->nic);
4409 	write_register(priv->net_dev, size, q->entries);
4410 	write_register(priv->net_dev, r, q->oldest);
4411 	write_register(priv->net_dev, w, q->next);
4412 
4413 	IPW_DEBUG_INFO("exit\n");
4414 }
4415 
4416 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4417 {
4418 	priv->stop_rf_kill = 1;
4419 	priv->stop_hang_check = 1;
4420 	cancel_delayed_work_sync(&priv->reset_work);
4421 	cancel_delayed_work_sync(&priv->security_work);
4422 	cancel_delayed_work_sync(&priv->wx_event_work);
4423 	cancel_delayed_work_sync(&priv->hang_check);
4424 	cancel_delayed_work_sync(&priv->rf_kill);
4425 	cancel_delayed_work_sync(&priv->scan_event);
4426 }
4427 
4428 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4429 {
4430 	int i, j, err = -EINVAL;
4431 	void *v;
4432 	dma_addr_t p;
4433 
4434 	IPW_DEBUG_INFO("enter\n");
4435 
4436 	err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4437 	if (err) {
4438 		IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4439 				priv->net_dev->name);
4440 		return err;
4441 	}
4442 
4443 	priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4444 					 sizeof(struct ipw2100_tx_packet),
4445 					 GFP_ATOMIC);
4446 	if (!priv->tx_buffers) {
4447 		bd_queue_free(priv, &priv->tx_queue);
4448 		return -ENOMEM;
4449 	}
4450 
4451 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4452 		v = pci_alloc_consistent(priv->pci_dev,
4453 					 sizeof(struct ipw2100_data_header),
4454 					 &p);
4455 		if (!v) {
4456 			printk(KERN_ERR DRV_NAME
4457 			       ": %s: PCI alloc failed for tx " "buffers.\n",
4458 			       priv->net_dev->name);
4459 			err = -ENOMEM;
4460 			break;
4461 		}
4462 
4463 		priv->tx_buffers[i].type = DATA;
4464 		priv->tx_buffers[i].info.d_struct.data =
4465 		    (struct ipw2100_data_header *)v;
4466 		priv->tx_buffers[i].info.d_struct.data_phys = p;
4467 		priv->tx_buffers[i].info.d_struct.txb = NULL;
4468 	}
4469 
4470 	if (i == TX_PENDED_QUEUE_LENGTH)
4471 		return 0;
4472 
4473 	for (j = 0; j < i; j++) {
4474 		pci_free_consistent(priv->pci_dev,
4475 				    sizeof(struct ipw2100_data_header),
4476 				    priv->tx_buffers[j].info.d_struct.data,
4477 				    priv->tx_buffers[j].info.d_struct.
4478 				    data_phys);
4479 	}
4480 
4481 	kfree(priv->tx_buffers);
4482 	priv->tx_buffers = NULL;
4483 
4484 	return err;
4485 }
4486 
4487 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4488 {
4489 	int i;
4490 
4491 	IPW_DEBUG_INFO("enter\n");
4492 
4493 	/*
4494 	 * reinitialize packet info lists
4495 	 */
4496 	INIT_LIST_HEAD(&priv->fw_pend_list);
4497 	INIT_STAT(&priv->fw_pend_stat);
4498 
4499 	/*
4500 	 * reinitialize lists
4501 	 */
4502 	INIT_LIST_HEAD(&priv->tx_pend_list);
4503 	INIT_LIST_HEAD(&priv->tx_free_list);
4504 	INIT_STAT(&priv->tx_pend_stat);
4505 	INIT_STAT(&priv->tx_free_stat);
4506 
4507 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4508 		/* We simply drop any SKBs that have been queued for
4509 		 * transmit */
4510 		if (priv->tx_buffers[i].info.d_struct.txb) {
4511 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4512 					   txb);
4513 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4514 		}
4515 
4516 		list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4517 	}
4518 
4519 	SET_STAT(&priv->tx_free_stat, i);
4520 
4521 	priv->tx_queue.oldest = 0;
4522 	priv->tx_queue.available = priv->tx_queue.entries;
4523 	priv->tx_queue.next = 0;
4524 	INIT_STAT(&priv->txq_stat);
4525 	SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4526 
4527 	bd_queue_initialize(priv, &priv->tx_queue,
4528 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4529 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4530 			    IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4531 			    IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4532 
4533 	IPW_DEBUG_INFO("exit\n");
4534 
4535 }
4536 
4537 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4538 {
4539 	int i;
4540 
4541 	IPW_DEBUG_INFO("enter\n");
4542 
4543 	bd_queue_free(priv, &priv->tx_queue);
4544 
4545 	if (!priv->tx_buffers)
4546 		return;
4547 
4548 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4549 		if (priv->tx_buffers[i].info.d_struct.txb) {
4550 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4551 					   txb);
4552 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4553 		}
4554 		if (priv->tx_buffers[i].info.d_struct.data)
4555 			pci_free_consistent(priv->pci_dev,
4556 					    sizeof(struct ipw2100_data_header),
4557 					    priv->tx_buffers[i].info.d_struct.
4558 					    data,
4559 					    priv->tx_buffers[i].info.d_struct.
4560 					    data_phys);
4561 	}
4562 
4563 	kfree(priv->tx_buffers);
4564 	priv->tx_buffers = NULL;
4565 
4566 	IPW_DEBUG_INFO("exit\n");
4567 }
4568 
4569 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4570 {
4571 	int i, j, err = -EINVAL;
4572 
4573 	IPW_DEBUG_INFO("enter\n");
4574 
4575 	err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4576 	if (err) {
4577 		IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4578 		return err;
4579 	}
4580 
4581 	err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4582 	if (err) {
4583 		IPW_DEBUG_INFO("failed status_queue_allocate\n");
4584 		bd_queue_free(priv, &priv->rx_queue);
4585 		return err;
4586 	}
4587 
4588 	/*
4589 	 * allocate packets
4590 	 */
4591 	priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH,
4592 					 sizeof(struct ipw2100_rx_packet),
4593 					 GFP_KERNEL);
4594 	if (!priv->rx_buffers) {
4595 		IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4596 
4597 		bd_queue_free(priv, &priv->rx_queue);
4598 
4599 		status_queue_free(priv);
4600 
4601 		return -ENOMEM;
4602 	}
4603 
4604 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4605 		struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4606 
4607 		err = ipw2100_alloc_skb(priv, packet);
4608 		if (unlikely(err)) {
4609 			err = -ENOMEM;
4610 			break;
4611 		}
4612 
4613 		/* The BD holds the cache aligned address */
4614 		priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4615 		priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4616 		priv->status_queue.drv[i].status_fields = 0;
4617 	}
4618 
4619 	if (i == RX_QUEUE_LENGTH)
4620 		return 0;
4621 
4622 	for (j = 0; j < i; j++) {
4623 		pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4624 				 sizeof(struct ipw2100_rx_packet),
4625 				 PCI_DMA_FROMDEVICE);
4626 		dev_kfree_skb(priv->rx_buffers[j].skb);
4627 	}
4628 
4629 	kfree(priv->rx_buffers);
4630 	priv->rx_buffers = NULL;
4631 
4632 	bd_queue_free(priv, &priv->rx_queue);
4633 
4634 	status_queue_free(priv);
4635 
4636 	return err;
4637 }
4638 
4639 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4640 {
4641 	IPW_DEBUG_INFO("enter\n");
4642 
4643 	priv->rx_queue.oldest = 0;
4644 	priv->rx_queue.available = priv->rx_queue.entries - 1;
4645 	priv->rx_queue.next = priv->rx_queue.entries - 1;
4646 
4647 	INIT_STAT(&priv->rxq_stat);
4648 	SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4649 
4650 	bd_queue_initialize(priv, &priv->rx_queue,
4651 			    IPW_MEM_HOST_SHARED_RX_BD_BASE,
4652 			    IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4653 			    IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4654 			    IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4655 
4656 	/* set up the status queue */
4657 	write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4658 		       priv->status_queue.nic);
4659 
4660 	IPW_DEBUG_INFO("exit\n");
4661 }
4662 
4663 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4664 {
4665 	int i;
4666 
4667 	IPW_DEBUG_INFO("enter\n");
4668 
4669 	bd_queue_free(priv, &priv->rx_queue);
4670 	status_queue_free(priv);
4671 
4672 	if (!priv->rx_buffers)
4673 		return;
4674 
4675 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4676 		if (priv->rx_buffers[i].rxp) {
4677 			pci_unmap_single(priv->pci_dev,
4678 					 priv->rx_buffers[i].dma_addr,
4679 					 sizeof(struct ipw2100_rx),
4680 					 PCI_DMA_FROMDEVICE);
4681 			dev_kfree_skb(priv->rx_buffers[i].skb);
4682 		}
4683 	}
4684 
4685 	kfree(priv->rx_buffers);
4686 	priv->rx_buffers = NULL;
4687 
4688 	IPW_DEBUG_INFO("exit\n");
4689 }
4690 
4691 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4692 {
4693 	u32 length = ETH_ALEN;
4694 	u8 addr[ETH_ALEN];
4695 
4696 	int err;
4697 
4698 	err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4699 	if (err) {
4700 		IPW_DEBUG_INFO("MAC address read failed\n");
4701 		return -EIO;
4702 	}
4703 
4704 	memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4705 	IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4706 
4707 	return 0;
4708 }
4709 
4710 /********************************************************************
4711  *
4712  * Firmware Commands
4713  *
4714  ********************************************************************/
4715 
4716 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4717 {
4718 	struct host_command cmd = {
4719 		.host_command = ADAPTER_ADDRESS,
4720 		.host_command_sequence = 0,
4721 		.host_command_length = ETH_ALEN
4722 	};
4723 	int err;
4724 
4725 	IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4726 
4727 	IPW_DEBUG_INFO("enter\n");
4728 
4729 	if (priv->config & CFG_CUSTOM_MAC) {
4730 		memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4731 		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4732 	} else
4733 		memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4734 		       ETH_ALEN);
4735 
4736 	err = ipw2100_hw_send_command(priv, &cmd);
4737 
4738 	IPW_DEBUG_INFO("exit\n");
4739 	return err;
4740 }
4741 
4742 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4743 				 int batch_mode)
4744 {
4745 	struct host_command cmd = {
4746 		.host_command = PORT_TYPE,
4747 		.host_command_sequence = 0,
4748 		.host_command_length = sizeof(u32)
4749 	};
4750 	int err;
4751 
4752 	switch (port_type) {
4753 	case IW_MODE_INFRA:
4754 		cmd.host_command_parameters[0] = IPW_BSS;
4755 		break;
4756 	case IW_MODE_ADHOC:
4757 		cmd.host_command_parameters[0] = IPW_IBSS;
4758 		break;
4759 	}
4760 
4761 	IPW_DEBUG_HC("PORT_TYPE: %s\n",
4762 		     port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4763 
4764 	if (!batch_mode) {
4765 		err = ipw2100_disable_adapter(priv);
4766 		if (err) {
4767 			printk(KERN_ERR DRV_NAME
4768 			       ": %s: Could not disable adapter %d\n",
4769 			       priv->net_dev->name, err);
4770 			return err;
4771 		}
4772 	}
4773 
4774 	/* send cmd to firmware */
4775 	err = ipw2100_hw_send_command(priv, &cmd);
4776 
4777 	if (!batch_mode)
4778 		ipw2100_enable_adapter(priv);
4779 
4780 	return err;
4781 }
4782 
4783 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4784 			       int batch_mode)
4785 {
4786 	struct host_command cmd = {
4787 		.host_command = CHANNEL,
4788 		.host_command_sequence = 0,
4789 		.host_command_length = sizeof(u32)
4790 	};
4791 	int err;
4792 
4793 	cmd.host_command_parameters[0] = channel;
4794 
4795 	IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4796 
4797 	/* If BSS then we don't support channel selection */
4798 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
4799 		return 0;
4800 
4801 	if ((channel != 0) &&
4802 	    ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4803 		return -EINVAL;
4804 
4805 	if (!batch_mode) {
4806 		err = ipw2100_disable_adapter(priv);
4807 		if (err)
4808 			return err;
4809 	}
4810 
4811 	err = ipw2100_hw_send_command(priv, &cmd);
4812 	if (err) {
4813 		IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4814 		return err;
4815 	}
4816 
4817 	if (channel)
4818 		priv->config |= CFG_STATIC_CHANNEL;
4819 	else
4820 		priv->config &= ~CFG_STATIC_CHANNEL;
4821 
4822 	priv->channel = channel;
4823 
4824 	if (!batch_mode) {
4825 		err = ipw2100_enable_adapter(priv);
4826 		if (err)
4827 			return err;
4828 	}
4829 
4830 	return 0;
4831 }
4832 
4833 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4834 {
4835 	struct host_command cmd = {
4836 		.host_command = SYSTEM_CONFIG,
4837 		.host_command_sequence = 0,
4838 		.host_command_length = 12,
4839 	};
4840 	u32 ibss_mask, len = sizeof(u32);
4841 	int err;
4842 
4843 	/* Set system configuration */
4844 
4845 	if (!batch_mode) {
4846 		err = ipw2100_disable_adapter(priv);
4847 		if (err)
4848 			return err;
4849 	}
4850 
4851 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4852 		cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4853 
4854 	cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4855 	    IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4856 
4857 	if (!(priv->config & CFG_LONG_PREAMBLE))
4858 		cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4859 
4860 	err = ipw2100_get_ordinal(priv,
4861 				  IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4862 				  &ibss_mask, &len);
4863 	if (err)
4864 		ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4865 
4866 	cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4867 	cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4868 
4869 	/* 11b only */
4870 	/*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4871 
4872 	err = ipw2100_hw_send_command(priv, &cmd);
4873 	if (err)
4874 		return err;
4875 
4876 /* If IPv6 is configured in the kernel then we don't want to filter out all
4877  * of the multicast packets as IPv6 needs some. */
4878 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4879 	cmd.host_command = ADD_MULTICAST;
4880 	cmd.host_command_sequence = 0;
4881 	cmd.host_command_length = 0;
4882 
4883 	ipw2100_hw_send_command(priv, &cmd);
4884 #endif
4885 	if (!batch_mode) {
4886 		err = ipw2100_enable_adapter(priv);
4887 		if (err)
4888 			return err;
4889 	}
4890 
4891 	return 0;
4892 }
4893 
4894 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4895 				int batch_mode)
4896 {
4897 	struct host_command cmd = {
4898 		.host_command = BASIC_TX_RATES,
4899 		.host_command_sequence = 0,
4900 		.host_command_length = 4
4901 	};
4902 	int err;
4903 
4904 	cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4905 
4906 	if (!batch_mode) {
4907 		err = ipw2100_disable_adapter(priv);
4908 		if (err)
4909 			return err;
4910 	}
4911 
4912 	/* Set BASIC TX Rate first */
4913 	ipw2100_hw_send_command(priv, &cmd);
4914 
4915 	/* Set TX Rate */
4916 	cmd.host_command = TX_RATES;
4917 	ipw2100_hw_send_command(priv, &cmd);
4918 
4919 	/* Set MSDU TX Rate */
4920 	cmd.host_command = MSDU_TX_RATES;
4921 	ipw2100_hw_send_command(priv, &cmd);
4922 
4923 	if (!batch_mode) {
4924 		err = ipw2100_enable_adapter(priv);
4925 		if (err)
4926 			return err;
4927 	}
4928 
4929 	priv->tx_rates = rate;
4930 
4931 	return 0;
4932 }
4933 
4934 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4935 {
4936 	struct host_command cmd = {
4937 		.host_command = POWER_MODE,
4938 		.host_command_sequence = 0,
4939 		.host_command_length = 4
4940 	};
4941 	int err;
4942 
4943 	cmd.host_command_parameters[0] = power_level;
4944 
4945 	err = ipw2100_hw_send_command(priv, &cmd);
4946 	if (err)
4947 		return err;
4948 
4949 	if (power_level == IPW_POWER_MODE_CAM)
4950 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4951 	else
4952 		priv->power_mode = IPW_POWER_ENABLED | power_level;
4953 
4954 #ifdef IPW2100_TX_POWER
4955 	if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4956 		/* Set beacon interval */
4957 		cmd.host_command = TX_POWER_INDEX;
4958 		cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4959 
4960 		err = ipw2100_hw_send_command(priv, &cmd);
4961 		if (err)
4962 			return err;
4963 	}
4964 #endif
4965 
4966 	return 0;
4967 }
4968 
4969 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4970 {
4971 	struct host_command cmd = {
4972 		.host_command = RTS_THRESHOLD,
4973 		.host_command_sequence = 0,
4974 		.host_command_length = 4
4975 	};
4976 	int err;
4977 
4978 	if (threshold & RTS_DISABLED)
4979 		cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4980 	else
4981 		cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4982 
4983 	err = ipw2100_hw_send_command(priv, &cmd);
4984 	if (err)
4985 		return err;
4986 
4987 	priv->rts_threshold = threshold;
4988 
4989 	return 0;
4990 }
4991 
4992 #if 0
4993 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4994 					u32 threshold, int batch_mode)
4995 {
4996 	struct host_command cmd = {
4997 		.host_command = FRAG_THRESHOLD,
4998 		.host_command_sequence = 0,
4999 		.host_command_length = 4,
5000 		.host_command_parameters[0] = 0,
5001 	};
5002 	int err;
5003 
5004 	if (!batch_mode) {
5005 		err = ipw2100_disable_adapter(priv);
5006 		if (err)
5007 			return err;
5008 	}
5009 
5010 	if (threshold == 0)
5011 		threshold = DEFAULT_FRAG_THRESHOLD;
5012 	else {
5013 		threshold = max(threshold, MIN_FRAG_THRESHOLD);
5014 		threshold = min(threshold, MAX_FRAG_THRESHOLD);
5015 	}
5016 
5017 	cmd.host_command_parameters[0] = threshold;
5018 
5019 	IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5020 
5021 	err = ipw2100_hw_send_command(priv, &cmd);
5022 
5023 	if (!batch_mode)
5024 		ipw2100_enable_adapter(priv);
5025 
5026 	if (!err)
5027 		priv->frag_threshold = threshold;
5028 
5029 	return err;
5030 }
5031 #endif
5032 
5033 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5034 {
5035 	struct host_command cmd = {
5036 		.host_command = SHORT_RETRY_LIMIT,
5037 		.host_command_sequence = 0,
5038 		.host_command_length = 4
5039 	};
5040 	int err;
5041 
5042 	cmd.host_command_parameters[0] = retry;
5043 
5044 	err = ipw2100_hw_send_command(priv, &cmd);
5045 	if (err)
5046 		return err;
5047 
5048 	priv->short_retry_limit = retry;
5049 
5050 	return 0;
5051 }
5052 
5053 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5054 {
5055 	struct host_command cmd = {
5056 		.host_command = LONG_RETRY_LIMIT,
5057 		.host_command_sequence = 0,
5058 		.host_command_length = 4
5059 	};
5060 	int err;
5061 
5062 	cmd.host_command_parameters[0] = retry;
5063 
5064 	err = ipw2100_hw_send_command(priv, &cmd);
5065 	if (err)
5066 		return err;
5067 
5068 	priv->long_retry_limit = retry;
5069 
5070 	return 0;
5071 }
5072 
5073 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5074 				       int batch_mode)
5075 {
5076 	struct host_command cmd = {
5077 		.host_command = MANDATORY_BSSID,
5078 		.host_command_sequence = 0,
5079 		.host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5080 	};
5081 	int err;
5082 
5083 #ifdef CONFIG_IPW2100_DEBUG
5084 	if (bssid != NULL)
5085 		IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5086 	else
5087 		IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5088 #endif
5089 	/* if BSSID is empty then we disable mandatory bssid mode */
5090 	if (bssid != NULL)
5091 		memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5092 
5093 	if (!batch_mode) {
5094 		err = ipw2100_disable_adapter(priv);
5095 		if (err)
5096 			return err;
5097 	}
5098 
5099 	err = ipw2100_hw_send_command(priv, &cmd);
5100 
5101 	if (!batch_mode)
5102 		ipw2100_enable_adapter(priv);
5103 
5104 	return err;
5105 }
5106 
5107 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5108 {
5109 	struct host_command cmd = {
5110 		.host_command = DISASSOCIATION_BSSID,
5111 		.host_command_sequence = 0,
5112 		.host_command_length = ETH_ALEN
5113 	};
5114 	int err;
5115 
5116 	IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5117 
5118 	/* The Firmware currently ignores the BSSID and just disassociates from
5119 	 * the currently associated AP -- but in the off chance that a future
5120 	 * firmware does use the BSSID provided here, we go ahead and try and
5121 	 * set it to the currently associated AP's BSSID */
5122 	memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5123 
5124 	err = ipw2100_hw_send_command(priv, &cmd);
5125 
5126 	return err;
5127 }
5128 
5129 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5130 			      struct ipw2100_wpa_assoc_frame *, int)
5131     __attribute__ ((unused));
5132 
5133 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5134 			      struct ipw2100_wpa_assoc_frame *wpa_frame,
5135 			      int batch_mode)
5136 {
5137 	struct host_command cmd = {
5138 		.host_command = SET_WPA_IE,
5139 		.host_command_sequence = 0,
5140 		.host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5141 	};
5142 	int err;
5143 
5144 	IPW_DEBUG_HC("SET_WPA_IE\n");
5145 
5146 	if (!batch_mode) {
5147 		err = ipw2100_disable_adapter(priv);
5148 		if (err)
5149 			return err;
5150 	}
5151 
5152 	memcpy(cmd.host_command_parameters, wpa_frame,
5153 	       sizeof(struct ipw2100_wpa_assoc_frame));
5154 
5155 	err = ipw2100_hw_send_command(priv, &cmd);
5156 
5157 	if (!batch_mode) {
5158 		if (ipw2100_enable_adapter(priv))
5159 			err = -EIO;
5160 	}
5161 
5162 	return err;
5163 }
5164 
5165 struct security_info_params {
5166 	u32 allowed_ciphers;
5167 	u16 version;
5168 	u8 auth_mode;
5169 	u8 replay_counters_number;
5170 	u8 unicast_using_group;
5171 } __packed;
5172 
5173 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5174 					    int auth_mode,
5175 					    int security_level,
5176 					    int unicast_using_group,
5177 					    int batch_mode)
5178 {
5179 	struct host_command cmd = {
5180 		.host_command = SET_SECURITY_INFORMATION,
5181 		.host_command_sequence = 0,
5182 		.host_command_length = sizeof(struct security_info_params)
5183 	};
5184 	struct security_info_params *security =
5185 	    (struct security_info_params *)&cmd.host_command_parameters;
5186 	int err;
5187 	memset(security, 0, sizeof(*security));
5188 
5189 	/* If shared key AP authentication is turned on, then we need to
5190 	 * configure the firmware to try and use it.
5191 	 *
5192 	 * Actual data encryption/decryption is handled by the host. */
5193 	security->auth_mode = auth_mode;
5194 	security->unicast_using_group = unicast_using_group;
5195 
5196 	switch (security_level) {
5197 	default:
5198 	case SEC_LEVEL_0:
5199 		security->allowed_ciphers = IPW_NONE_CIPHER;
5200 		break;
5201 	case SEC_LEVEL_1:
5202 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5203 		    IPW_WEP104_CIPHER;
5204 		break;
5205 	case SEC_LEVEL_2:
5206 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5207 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5208 		break;
5209 	case SEC_LEVEL_2_CKIP:
5210 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5211 		    IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5212 		break;
5213 	case SEC_LEVEL_3:
5214 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5215 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5216 		break;
5217 	}
5218 
5219 	IPW_DEBUG_HC
5220 	    ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5221 	     security->auth_mode, security->allowed_ciphers, security_level);
5222 
5223 	security->replay_counters_number = 0;
5224 
5225 	if (!batch_mode) {
5226 		err = ipw2100_disable_adapter(priv);
5227 		if (err)
5228 			return err;
5229 	}
5230 
5231 	err = ipw2100_hw_send_command(priv, &cmd);
5232 
5233 	if (!batch_mode)
5234 		ipw2100_enable_adapter(priv);
5235 
5236 	return err;
5237 }
5238 
5239 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5240 {
5241 	struct host_command cmd = {
5242 		.host_command = TX_POWER_INDEX,
5243 		.host_command_sequence = 0,
5244 		.host_command_length = 4
5245 	};
5246 	int err = 0;
5247 	u32 tmp = tx_power;
5248 
5249 	if (tx_power != IPW_TX_POWER_DEFAULT)
5250 		tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5251 		      (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5252 
5253 	cmd.host_command_parameters[0] = tmp;
5254 
5255 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5256 		err = ipw2100_hw_send_command(priv, &cmd);
5257 	if (!err)
5258 		priv->tx_power = tx_power;
5259 
5260 	return 0;
5261 }
5262 
5263 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5264 					    u32 interval, int batch_mode)
5265 {
5266 	struct host_command cmd = {
5267 		.host_command = BEACON_INTERVAL,
5268 		.host_command_sequence = 0,
5269 		.host_command_length = 4
5270 	};
5271 	int err;
5272 
5273 	cmd.host_command_parameters[0] = interval;
5274 
5275 	IPW_DEBUG_INFO("enter\n");
5276 
5277 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5278 		if (!batch_mode) {
5279 			err = ipw2100_disable_adapter(priv);
5280 			if (err)
5281 				return err;
5282 		}
5283 
5284 		ipw2100_hw_send_command(priv, &cmd);
5285 
5286 		if (!batch_mode) {
5287 			err = ipw2100_enable_adapter(priv);
5288 			if (err)
5289 				return err;
5290 		}
5291 	}
5292 
5293 	IPW_DEBUG_INFO("exit\n");
5294 
5295 	return 0;
5296 }
5297 
5298 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5299 {
5300 	ipw2100_tx_initialize(priv);
5301 	ipw2100_rx_initialize(priv);
5302 	ipw2100_msg_initialize(priv);
5303 }
5304 
5305 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5306 {
5307 	ipw2100_tx_free(priv);
5308 	ipw2100_rx_free(priv);
5309 	ipw2100_msg_free(priv);
5310 }
5311 
5312 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5313 {
5314 	if (ipw2100_tx_allocate(priv) ||
5315 	    ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5316 		goto fail;
5317 
5318 	return 0;
5319 
5320       fail:
5321 	ipw2100_tx_free(priv);
5322 	ipw2100_rx_free(priv);
5323 	ipw2100_msg_free(priv);
5324 	return -ENOMEM;
5325 }
5326 
5327 #define IPW_PRIVACY_CAPABLE 0x0008
5328 
5329 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5330 				 int batch_mode)
5331 {
5332 	struct host_command cmd = {
5333 		.host_command = WEP_FLAGS,
5334 		.host_command_sequence = 0,
5335 		.host_command_length = 4
5336 	};
5337 	int err;
5338 
5339 	cmd.host_command_parameters[0] = flags;
5340 
5341 	IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5342 
5343 	if (!batch_mode) {
5344 		err = ipw2100_disable_adapter(priv);
5345 		if (err) {
5346 			printk(KERN_ERR DRV_NAME
5347 			       ": %s: Could not disable adapter %d\n",
5348 			       priv->net_dev->name, err);
5349 			return err;
5350 		}
5351 	}
5352 
5353 	/* send cmd to firmware */
5354 	err = ipw2100_hw_send_command(priv, &cmd);
5355 
5356 	if (!batch_mode)
5357 		ipw2100_enable_adapter(priv);
5358 
5359 	return err;
5360 }
5361 
5362 struct ipw2100_wep_key {
5363 	u8 idx;
5364 	u8 len;
5365 	u8 key[13];
5366 };
5367 
5368 /* Macros to ease up priting WEP keys */
5369 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5370 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5371 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5372 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5373 
5374 /**
5375  * Set a the wep key
5376  *
5377  * @priv: struct to work on
5378  * @idx: index of the key we want to set
5379  * @key: ptr to the key data to set
5380  * @len: length of the buffer at @key
5381  * @batch_mode: FIXME perform the operation in batch mode, not
5382  *              disabling the device.
5383  *
5384  * @returns 0 if OK, < 0 errno code on error.
5385  *
5386  * Fill out a command structure with the new wep key, length an
5387  * index and send it down the wire.
5388  */
5389 static int ipw2100_set_key(struct ipw2100_priv *priv,
5390 			   int idx, char *key, int len, int batch_mode)
5391 {
5392 	int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5393 	struct host_command cmd = {
5394 		.host_command = WEP_KEY_INFO,
5395 		.host_command_sequence = 0,
5396 		.host_command_length = sizeof(struct ipw2100_wep_key),
5397 	};
5398 	struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5399 	int err;
5400 
5401 	IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5402 		     idx, keylen, len);
5403 
5404 	/* NOTE: We don't check cached values in case the firmware was reset
5405 	 * or some other problem is occurring.  If the user is setting the key,
5406 	 * then we push the change */
5407 
5408 	wep_key->idx = idx;
5409 	wep_key->len = keylen;
5410 
5411 	if (keylen) {
5412 		memcpy(wep_key->key, key, len);
5413 		memset(wep_key->key + len, 0, keylen - len);
5414 	}
5415 
5416 	/* Will be optimized out on debug not being configured in */
5417 	if (keylen == 0)
5418 		IPW_DEBUG_WEP("%s: Clearing key %d\n",
5419 			      priv->net_dev->name, wep_key->idx);
5420 	else if (keylen == 5)
5421 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5422 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5423 			      WEP_STR_64(wep_key->key));
5424 	else
5425 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5426 			      "\n",
5427 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5428 			      WEP_STR_128(wep_key->key));
5429 
5430 	if (!batch_mode) {
5431 		err = ipw2100_disable_adapter(priv);
5432 		/* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5433 		if (err) {
5434 			printk(KERN_ERR DRV_NAME
5435 			       ": %s: Could not disable adapter %d\n",
5436 			       priv->net_dev->name, err);
5437 			return err;
5438 		}
5439 	}
5440 
5441 	/* send cmd to firmware */
5442 	err = ipw2100_hw_send_command(priv, &cmd);
5443 
5444 	if (!batch_mode) {
5445 		int err2 = ipw2100_enable_adapter(priv);
5446 		if (err == 0)
5447 			err = err2;
5448 	}
5449 	return err;
5450 }
5451 
5452 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5453 				 int idx, int batch_mode)
5454 {
5455 	struct host_command cmd = {
5456 		.host_command = WEP_KEY_INDEX,
5457 		.host_command_sequence = 0,
5458 		.host_command_length = 4,
5459 		.host_command_parameters = {idx},
5460 	};
5461 	int err;
5462 
5463 	IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5464 
5465 	if (idx < 0 || idx > 3)
5466 		return -EINVAL;
5467 
5468 	if (!batch_mode) {
5469 		err = ipw2100_disable_adapter(priv);
5470 		if (err) {
5471 			printk(KERN_ERR DRV_NAME
5472 			       ": %s: Could not disable adapter %d\n",
5473 			       priv->net_dev->name, err);
5474 			return err;
5475 		}
5476 	}
5477 
5478 	/* send cmd to firmware */
5479 	err = ipw2100_hw_send_command(priv, &cmd);
5480 
5481 	if (!batch_mode)
5482 		ipw2100_enable_adapter(priv);
5483 
5484 	return err;
5485 }
5486 
5487 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5488 {
5489 	int i, err, auth_mode, sec_level, use_group;
5490 
5491 	if (!(priv->status & STATUS_RUNNING))
5492 		return 0;
5493 
5494 	if (!batch_mode) {
5495 		err = ipw2100_disable_adapter(priv);
5496 		if (err)
5497 			return err;
5498 	}
5499 
5500 	if (!priv->ieee->sec.enabled) {
5501 		err =
5502 		    ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5503 						     SEC_LEVEL_0, 0, 1);
5504 	} else {
5505 		auth_mode = IPW_AUTH_OPEN;
5506 		if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5507 			if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5508 				auth_mode = IPW_AUTH_SHARED;
5509 			else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5510 				auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5511 		}
5512 
5513 		sec_level = SEC_LEVEL_0;
5514 		if (priv->ieee->sec.flags & SEC_LEVEL)
5515 			sec_level = priv->ieee->sec.level;
5516 
5517 		use_group = 0;
5518 		if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5519 			use_group = priv->ieee->sec.unicast_uses_group;
5520 
5521 		err =
5522 		    ipw2100_set_security_information(priv, auth_mode, sec_level,
5523 						     use_group, 1);
5524 	}
5525 
5526 	if (err)
5527 		goto exit;
5528 
5529 	if (priv->ieee->sec.enabled) {
5530 		for (i = 0; i < 4; i++) {
5531 			if (!(priv->ieee->sec.flags & (1 << i))) {
5532 				memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5533 				priv->ieee->sec.key_sizes[i] = 0;
5534 			} else {
5535 				err = ipw2100_set_key(priv, i,
5536 						      priv->ieee->sec.keys[i],
5537 						      priv->ieee->sec.
5538 						      key_sizes[i], 1);
5539 				if (err)
5540 					goto exit;
5541 			}
5542 		}
5543 
5544 		ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5545 	}
5546 
5547 	/* Always enable privacy so the Host can filter WEP packets if
5548 	 * encrypted data is sent up */
5549 	err =
5550 	    ipw2100_set_wep_flags(priv,
5551 				  priv->ieee->sec.
5552 				  enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5553 	if (err)
5554 		goto exit;
5555 
5556 	priv->status &= ~STATUS_SECURITY_UPDATED;
5557 
5558       exit:
5559 	if (!batch_mode)
5560 		ipw2100_enable_adapter(priv);
5561 
5562 	return err;
5563 }
5564 
5565 static void ipw2100_security_work(struct work_struct *work)
5566 {
5567 	struct ipw2100_priv *priv =
5568 		container_of(work, struct ipw2100_priv, security_work.work);
5569 
5570 	/* If we happen to have reconnected before we get a chance to
5571 	 * process this, then update the security settings--which causes
5572 	 * a disassociation to occur */
5573 	if (!(priv->status & STATUS_ASSOCIATED) &&
5574 	    priv->status & STATUS_SECURITY_UPDATED)
5575 		ipw2100_configure_security(priv, 0);
5576 }
5577 
5578 static void shim__set_security(struct net_device *dev,
5579 			       struct libipw_security *sec)
5580 {
5581 	struct ipw2100_priv *priv = libipw_priv(dev);
5582 	int i, force_update = 0;
5583 
5584 	mutex_lock(&priv->action_mutex);
5585 	if (!(priv->status & STATUS_INITIALIZED))
5586 		goto done;
5587 
5588 	for (i = 0; i < 4; i++) {
5589 		if (sec->flags & (1 << i)) {
5590 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5591 			if (sec->key_sizes[i] == 0)
5592 				priv->ieee->sec.flags &= ~(1 << i);
5593 			else
5594 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5595 				       sec->key_sizes[i]);
5596 			if (sec->level == SEC_LEVEL_1) {
5597 				priv->ieee->sec.flags |= (1 << i);
5598 				priv->status |= STATUS_SECURITY_UPDATED;
5599 			} else
5600 				priv->ieee->sec.flags &= ~(1 << i);
5601 		}
5602 	}
5603 
5604 	if ((sec->flags & SEC_ACTIVE_KEY) &&
5605 	    priv->ieee->sec.active_key != sec->active_key) {
5606 		if (sec->active_key <= 3) {
5607 			priv->ieee->sec.active_key = sec->active_key;
5608 			priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5609 		} else
5610 			priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5611 
5612 		priv->status |= STATUS_SECURITY_UPDATED;
5613 	}
5614 
5615 	if ((sec->flags & SEC_AUTH_MODE) &&
5616 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5617 		priv->ieee->sec.auth_mode = sec->auth_mode;
5618 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
5619 		priv->status |= STATUS_SECURITY_UPDATED;
5620 	}
5621 
5622 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5623 		priv->ieee->sec.flags |= SEC_ENABLED;
5624 		priv->ieee->sec.enabled = sec->enabled;
5625 		priv->status |= STATUS_SECURITY_UPDATED;
5626 		force_update = 1;
5627 	}
5628 
5629 	if (sec->flags & SEC_ENCRYPT)
5630 		priv->ieee->sec.encrypt = sec->encrypt;
5631 
5632 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5633 		priv->ieee->sec.level = sec->level;
5634 		priv->ieee->sec.flags |= SEC_LEVEL;
5635 		priv->status |= STATUS_SECURITY_UPDATED;
5636 	}
5637 
5638 	IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5639 		      priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5640 		      priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5641 		      priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5642 		      priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5643 		      priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5644 		      priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5645 		      priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5646 		      priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5647 		      priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5648 
5649 /* As a temporary work around to enable WPA until we figure out why
5650  * wpa_supplicant toggles the security capability of the driver, which
5651  * forces a disassociation with force_update...
5652  *
5653  *	if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5654 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5655 		ipw2100_configure_security(priv, 0);
5656       done:
5657 	mutex_unlock(&priv->action_mutex);
5658 }
5659 
5660 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5661 {
5662 	int err;
5663 	int batch_mode = 1;
5664 	u8 *bssid;
5665 
5666 	IPW_DEBUG_INFO("enter\n");
5667 
5668 	err = ipw2100_disable_adapter(priv);
5669 	if (err)
5670 		return err;
5671 #ifdef CONFIG_IPW2100_MONITOR
5672 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5673 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5674 		if (err)
5675 			return err;
5676 
5677 		IPW_DEBUG_INFO("exit\n");
5678 
5679 		return 0;
5680 	}
5681 #endif				/* CONFIG_IPW2100_MONITOR */
5682 
5683 	err = ipw2100_read_mac_address(priv);
5684 	if (err)
5685 		return -EIO;
5686 
5687 	err = ipw2100_set_mac_address(priv, batch_mode);
5688 	if (err)
5689 		return err;
5690 
5691 	err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5692 	if (err)
5693 		return err;
5694 
5695 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5696 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5697 		if (err)
5698 			return err;
5699 	}
5700 
5701 	err = ipw2100_system_config(priv, batch_mode);
5702 	if (err)
5703 		return err;
5704 
5705 	err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5706 	if (err)
5707 		return err;
5708 
5709 	/* Default to power mode OFF */
5710 	err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5711 	if (err)
5712 		return err;
5713 
5714 	err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5715 	if (err)
5716 		return err;
5717 
5718 	if (priv->config & CFG_STATIC_BSSID)
5719 		bssid = priv->bssid;
5720 	else
5721 		bssid = NULL;
5722 	err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5723 	if (err)
5724 		return err;
5725 
5726 	if (priv->config & CFG_STATIC_ESSID)
5727 		err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5728 					batch_mode);
5729 	else
5730 		err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5731 	if (err)
5732 		return err;
5733 
5734 	err = ipw2100_configure_security(priv, batch_mode);
5735 	if (err)
5736 		return err;
5737 
5738 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5739 		err =
5740 		    ipw2100_set_ibss_beacon_interval(priv,
5741 						     priv->beacon_interval,
5742 						     batch_mode);
5743 		if (err)
5744 			return err;
5745 
5746 		err = ipw2100_set_tx_power(priv, priv->tx_power);
5747 		if (err)
5748 			return err;
5749 	}
5750 
5751 	/*
5752 	   err = ipw2100_set_fragmentation_threshold(
5753 	   priv, priv->frag_threshold, batch_mode);
5754 	   if (err)
5755 	   return err;
5756 	 */
5757 
5758 	IPW_DEBUG_INFO("exit\n");
5759 
5760 	return 0;
5761 }
5762 
5763 /*************************************************************************
5764  *
5765  * EXTERNALLY CALLED METHODS
5766  *
5767  *************************************************************************/
5768 
5769 /* This method is called by the network layer -- not to be confused with
5770  * ipw2100_set_mac_address() declared above called by this driver (and this
5771  * method as well) to talk to the firmware */
5772 static int ipw2100_set_address(struct net_device *dev, void *p)
5773 {
5774 	struct ipw2100_priv *priv = libipw_priv(dev);
5775 	struct sockaddr *addr = p;
5776 	int err = 0;
5777 
5778 	if (!is_valid_ether_addr(addr->sa_data))
5779 		return -EADDRNOTAVAIL;
5780 
5781 	mutex_lock(&priv->action_mutex);
5782 
5783 	priv->config |= CFG_CUSTOM_MAC;
5784 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5785 
5786 	err = ipw2100_set_mac_address(priv, 0);
5787 	if (err)
5788 		goto done;
5789 
5790 	priv->reset_backoff = 0;
5791 	mutex_unlock(&priv->action_mutex);
5792 	ipw2100_reset_adapter(&priv->reset_work.work);
5793 	return 0;
5794 
5795       done:
5796 	mutex_unlock(&priv->action_mutex);
5797 	return err;
5798 }
5799 
5800 static int ipw2100_open(struct net_device *dev)
5801 {
5802 	struct ipw2100_priv *priv = libipw_priv(dev);
5803 	unsigned long flags;
5804 	IPW_DEBUG_INFO("dev->open\n");
5805 
5806 	spin_lock_irqsave(&priv->low_lock, flags);
5807 	if (priv->status & STATUS_ASSOCIATED) {
5808 		netif_carrier_on(dev);
5809 		netif_start_queue(dev);
5810 	}
5811 	spin_unlock_irqrestore(&priv->low_lock, flags);
5812 
5813 	return 0;
5814 }
5815 
5816 static int ipw2100_close(struct net_device *dev)
5817 {
5818 	struct ipw2100_priv *priv = libipw_priv(dev);
5819 	unsigned long flags;
5820 	struct list_head *element;
5821 	struct ipw2100_tx_packet *packet;
5822 
5823 	IPW_DEBUG_INFO("enter\n");
5824 
5825 	spin_lock_irqsave(&priv->low_lock, flags);
5826 
5827 	if (priv->status & STATUS_ASSOCIATED)
5828 		netif_carrier_off(dev);
5829 	netif_stop_queue(dev);
5830 
5831 	/* Flush the TX queue ... */
5832 	while (!list_empty(&priv->tx_pend_list)) {
5833 		element = priv->tx_pend_list.next;
5834 		packet = list_entry(element, struct ipw2100_tx_packet, list);
5835 
5836 		list_del(element);
5837 		DEC_STAT(&priv->tx_pend_stat);
5838 
5839 		libipw_txb_free(packet->info.d_struct.txb);
5840 		packet->info.d_struct.txb = NULL;
5841 
5842 		list_add_tail(element, &priv->tx_free_list);
5843 		INC_STAT(&priv->tx_free_stat);
5844 	}
5845 	spin_unlock_irqrestore(&priv->low_lock, flags);
5846 
5847 	IPW_DEBUG_INFO("exit\n");
5848 
5849 	return 0;
5850 }
5851 
5852 /*
5853  * TODO:  Fix this function... its just wrong
5854  */
5855 static void ipw2100_tx_timeout(struct net_device *dev)
5856 {
5857 	struct ipw2100_priv *priv = libipw_priv(dev);
5858 
5859 	dev->stats.tx_errors++;
5860 
5861 #ifdef CONFIG_IPW2100_MONITOR
5862 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5863 		return;
5864 #endif
5865 
5866 	IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5867 		       dev->name);
5868 	schedule_reset(priv);
5869 }
5870 
5871 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5872 {
5873 	/* This is called when wpa_supplicant loads and closes the driver
5874 	 * interface. */
5875 	priv->ieee->wpa_enabled = value;
5876 	return 0;
5877 }
5878 
5879 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5880 {
5881 
5882 	struct libipw_device *ieee = priv->ieee;
5883 	struct libipw_security sec = {
5884 		.flags = SEC_AUTH_MODE,
5885 	};
5886 	int ret = 0;
5887 
5888 	if (value & IW_AUTH_ALG_SHARED_KEY) {
5889 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5890 		ieee->open_wep = 0;
5891 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5892 		sec.auth_mode = WLAN_AUTH_OPEN;
5893 		ieee->open_wep = 1;
5894 	} else if (value & IW_AUTH_ALG_LEAP) {
5895 		sec.auth_mode = WLAN_AUTH_LEAP;
5896 		ieee->open_wep = 1;
5897 	} else
5898 		return -EINVAL;
5899 
5900 	if (ieee->set_security)
5901 		ieee->set_security(ieee->dev, &sec);
5902 	else
5903 		ret = -EOPNOTSUPP;
5904 
5905 	return ret;
5906 }
5907 
5908 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5909 				    char *wpa_ie, int wpa_ie_len)
5910 {
5911 
5912 	struct ipw2100_wpa_assoc_frame frame;
5913 
5914 	frame.fixed_ie_mask = 0;
5915 
5916 	/* copy WPA IE */
5917 	memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5918 	frame.var_ie_len = wpa_ie_len;
5919 
5920 	/* make sure WPA is enabled */
5921 	ipw2100_wpa_enable(priv, 1);
5922 	ipw2100_set_wpa_ie(priv, &frame, 0);
5923 }
5924 
5925 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5926 				    struct ethtool_drvinfo *info)
5927 {
5928 	struct ipw2100_priv *priv = libipw_priv(dev);
5929 	char fw_ver[64], ucode_ver[64];
5930 
5931 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5932 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5933 
5934 	ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5935 	ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5936 
5937 	snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5938 		 fw_ver, priv->eeprom_version, ucode_ver);
5939 
5940 	strlcpy(info->bus_info, pci_name(priv->pci_dev),
5941 		sizeof(info->bus_info));
5942 }
5943 
5944 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5945 {
5946 	struct ipw2100_priv *priv = libipw_priv(dev);
5947 	return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5948 }
5949 
5950 static const struct ethtool_ops ipw2100_ethtool_ops = {
5951 	.get_link = ipw2100_ethtool_get_link,
5952 	.get_drvinfo = ipw_ethtool_get_drvinfo,
5953 };
5954 
5955 static void ipw2100_hang_check(struct work_struct *work)
5956 {
5957 	struct ipw2100_priv *priv =
5958 		container_of(work, struct ipw2100_priv, hang_check.work);
5959 	unsigned long flags;
5960 	u32 rtc = 0xa5a5a5a5;
5961 	u32 len = sizeof(rtc);
5962 	int restart = 0;
5963 
5964 	spin_lock_irqsave(&priv->low_lock, flags);
5965 
5966 	if (priv->fatal_error != 0) {
5967 		/* If fatal_error is set then we need to restart */
5968 		IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5969 			       priv->net_dev->name);
5970 
5971 		restart = 1;
5972 	} else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5973 		   (rtc == priv->last_rtc)) {
5974 		/* Check if firmware is hung */
5975 		IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5976 			       priv->net_dev->name);
5977 
5978 		restart = 1;
5979 	}
5980 
5981 	if (restart) {
5982 		/* Kill timer */
5983 		priv->stop_hang_check = 1;
5984 		priv->hangs++;
5985 
5986 		/* Restart the NIC */
5987 		schedule_reset(priv);
5988 	}
5989 
5990 	priv->last_rtc = rtc;
5991 
5992 	if (!priv->stop_hang_check)
5993 		schedule_delayed_work(&priv->hang_check, HZ / 2);
5994 
5995 	spin_unlock_irqrestore(&priv->low_lock, flags);
5996 }
5997 
5998 static void ipw2100_rf_kill(struct work_struct *work)
5999 {
6000 	struct ipw2100_priv *priv =
6001 		container_of(work, struct ipw2100_priv, rf_kill.work);
6002 	unsigned long flags;
6003 
6004 	spin_lock_irqsave(&priv->low_lock, flags);
6005 
6006 	if (rf_kill_active(priv)) {
6007 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6008 		if (!priv->stop_rf_kill)
6009 			schedule_delayed_work(&priv->rf_kill,
6010 					      round_jiffies_relative(HZ));
6011 		goto exit_unlock;
6012 	}
6013 
6014 	/* RF Kill is now disabled, so bring the device back up */
6015 
6016 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
6017 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6018 				  "device\n");
6019 		schedule_reset(priv);
6020 	} else
6021 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6022 				  "enabled\n");
6023 
6024       exit_unlock:
6025 	spin_unlock_irqrestore(&priv->low_lock, flags);
6026 }
6027 
6028 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6029 
6030 static const struct net_device_ops ipw2100_netdev_ops = {
6031 	.ndo_open		= ipw2100_open,
6032 	.ndo_stop		= ipw2100_close,
6033 	.ndo_start_xmit		= libipw_xmit,
6034 	.ndo_tx_timeout		= ipw2100_tx_timeout,
6035 	.ndo_set_mac_address	= ipw2100_set_address,
6036 	.ndo_validate_addr	= eth_validate_addr,
6037 };
6038 
6039 /* Look into using netdev destructor to shutdown libipw? */
6040 
6041 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6042 					       void __iomem * ioaddr)
6043 {
6044 	struct ipw2100_priv *priv;
6045 	struct net_device *dev;
6046 
6047 	dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6048 	if (!dev)
6049 		return NULL;
6050 	priv = libipw_priv(dev);
6051 	priv->ieee = netdev_priv(dev);
6052 	priv->pci_dev = pci_dev;
6053 	priv->net_dev = dev;
6054 	priv->ioaddr = ioaddr;
6055 
6056 	priv->ieee->hard_start_xmit = ipw2100_tx;
6057 	priv->ieee->set_security = shim__set_security;
6058 
6059 	priv->ieee->perfect_rssi = -20;
6060 	priv->ieee->worst_rssi = -85;
6061 
6062 	dev->netdev_ops = &ipw2100_netdev_ops;
6063 	dev->ethtool_ops = &ipw2100_ethtool_ops;
6064 	dev->wireless_handlers = &ipw2100_wx_handler_def;
6065 	priv->wireless_data.libipw = priv->ieee;
6066 	dev->wireless_data = &priv->wireless_data;
6067 	dev->watchdog_timeo = 3 * HZ;
6068 	dev->irq = 0;
6069 	dev->min_mtu = 68;
6070 	dev->max_mtu = LIBIPW_DATA_LEN;
6071 
6072 	/* NOTE: We don't use the wireless_handlers hook
6073 	 * in dev as the system will start throwing WX requests
6074 	 * to us before we're actually initialized and it just
6075 	 * ends up causing problems.  So, we just handle
6076 	 * the WX extensions through the ipw2100_ioctl interface */
6077 
6078 	/* memset() puts everything to 0, so we only have explicitly set
6079 	 * those values that need to be something else */
6080 
6081 	/* If power management is turned on, default to AUTO mode */
6082 	priv->power_mode = IPW_POWER_AUTO;
6083 
6084 #ifdef CONFIG_IPW2100_MONITOR
6085 	priv->config |= CFG_CRC_CHECK;
6086 #endif
6087 	priv->ieee->wpa_enabled = 0;
6088 	priv->ieee->drop_unencrypted = 0;
6089 	priv->ieee->privacy_invoked = 0;
6090 	priv->ieee->ieee802_1x = 1;
6091 
6092 	/* Set module parameters */
6093 	switch (network_mode) {
6094 	case 1:
6095 		priv->ieee->iw_mode = IW_MODE_ADHOC;
6096 		break;
6097 #ifdef CONFIG_IPW2100_MONITOR
6098 	case 2:
6099 		priv->ieee->iw_mode = IW_MODE_MONITOR;
6100 		break;
6101 #endif
6102 	default:
6103 	case 0:
6104 		priv->ieee->iw_mode = IW_MODE_INFRA;
6105 		break;
6106 	}
6107 
6108 	if (disable == 1)
6109 		priv->status |= STATUS_RF_KILL_SW;
6110 
6111 	if (channel != 0 &&
6112 	    ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6113 		priv->config |= CFG_STATIC_CHANNEL;
6114 		priv->channel = channel;
6115 	}
6116 
6117 	if (associate)
6118 		priv->config |= CFG_ASSOCIATE;
6119 
6120 	priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6121 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6122 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6123 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6124 	priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6125 	priv->tx_power = IPW_TX_POWER_DEFAULT;
6126 	priv->tx_rates = DEFAULT_TX_RATES;
6127 
6128 	strcpy(priv->nick, "ipw2100");
6129 
6130 	spin_lock_init(&priv->low_lock);
6131 	mutex_init(&priv->action_mutex);
6132 	mutex_init(&priv->adapter_mutex);
6133 
6134 	init_waitqueue_head(&priv->wait_command_queue);
6135 
6136 	netif_carrier_off(dev);
6137 
6138 	INIT_LIST_HEAD(&priv->msg_free_list);
6139 	INIT_LIST_HEAD(&priv->msg_pend_list);
6140 	INIT_STAT(&priv->msg_free_stat);
6141 	INIT_STAT(&priv->msg_pend_stat);
6142 
6143 	INIT_LIST_HEAD(&priv->tx_free_list);
6144 	INIT_LIST_HEAD(&priv->tx_pend_list);
6145 	INIT_STAT(&priv->tx_free_stat);
6146 	INIT_STAT(&priv->tx_pend_stat);
6147 
6148 	INIT_LIST_HEAD(&priv->fw_pend_list);
6149 	INIT_STAT(&priv->fw_pend_stat);
6150 
6151 	INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6152 	INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6153 	INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6154 	INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6155 	INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6156 	INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6157 
6158 	tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6159 		     ipw2100_irq_tasklet, (unsigned long)priv);
6160 
6161 	/* NOTE:  We do not start the deferred work for status checks yet */
6162 	priv->stop_rf_kill = 1;
6163 	priv->stop_hang_check = 1;
6164 
6165 	return dev;
6166 }
6167 
6168 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6169 				const struct pci_device_id *ent)
6170 {
6171 	void __iomem *ioaddr;
6172 	struct net_device *dev = NULL;
6173 	struct ipw2100_priv *priv = NULL;
6174 	int err = 0;
6175 	int registered = 0;
6176 	u32 val;
6177 
6178 	IPW_DEBUG_INFO("enter\n");
6179 
6180 	if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6181 		IPW_DEBUG_INFO("weird - resource type is not memory\n");
6182 		err = -ENODEV;
6183 		goto out;
6184 	}
6185 
6186 	ioaddr = pci_iomap(pci_dev, 0, 0);
6187 	if (!ioaddr) {
6188 		printk(KERN_WARNING DRV_NAME
6189 		       "Error calling ioremap_nocache.\n");
6190 		err = -EIO;
6191 		goto fail;
6192 	}
6193 
6194 	/* allocate and initialize our net_device */
6195 	dev = ipw2100_alloc_device(pci_dev, ioaddr);
6196 	if (!dev) {
6197 		printk(KERN_WARNING DRV_NAME
6198 		       "Error calling ipw2100_alloc_device.\n");
6199 		err = -ENOMEM;
6200 		goto fail;
6201 	}
6202 
6203 	/* set up PCI mappings for device */
6204 	err = pci_enable_device(pci_dev);
6205 	if (err) {
6206 		printk(KERN_WARNING DRV_NAME
6207 		       "Error calling pci_enable_device.\n");
6208 		return err;
6209 	}
6210 
6211 	priv = libipw_priv(dev);
6212 
6213 	pci_set_master(pci_dev);
6214 	pci_set_drvdata(pci_dev, priv);
6215 
6216 	err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6217 	if (err) {
6218 		printk(KERN_WARNING DRV_NAME
6219 		       "Error calling pci_set_dma_mask.\n");
6220 		pci_disable_device(pci_dev);
6221 		return err;
6222 	}
6223 
6224 	err = pci_request_regions(pci_dev, DRV_NAME);
6225 	if (err) {
6226 		printk(KERN_WARNING DRV_NAME
6227 		       "Error calling pci_request_regions.\n");
6228 		pci_disable_device(pci_dev);
6229 		return err;
6230 	}
6231 
6232 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
6233 	 * PCI Tx retries from interfering with C3 CPU state */
6234 	pci_read_config_dword(pci_dev, 0x40, &val);
6235 	if ((val & 0x0000ff00) != 0)
6236 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6237 
6238 	if (!ipw2100_hw_is_adapter_in_system(dev)) {
6239 		printk(KERN_WARNING DRV_NAME
6240 		       "Device not found via register read.\n");
6241 		err = -ENODEV;
6242 		goto fail;
6243 	}
6244 
6245 	SET_NETDEV_DEV(dev, &pci_dev->dev);
6246 
6247 	/* Force interrupts to be shut off on the device */
6248 	priv->status |= STATUS_INT_ENABLED;
6249 	ipw2100_disable_interrupts(priv);
6250 
6251 	/* Allocate and initialize the Tx/Rx queues and lists */
6252 	if (ipw2100_queues_allocate(priv)) {
6253 		printk(KERN_WARNING DRV_NAME
6254 		       "Error calling ipw2100_queues_allocate.\n");
6255 		err = -ENOMEM;
6256 		goto fail;
6257 	}
6258 	ipw2100_queues_initialize(priv);
6259 
6260 	err = request_irq(pci_dev->irq,
6261 			  ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6262 	if (err) {
6263 		printk(KERN_WARNING DRV_NAME
6264 		       "Error calling request_irq: %d.\n", pci_dev->irq);
6265 		goto fail;
6266 	}
6267 	dev->irq = pci_dev->irq;
6268 
6269 	IPW_DEBUG_INFO("Attempting to register device...\n");
6270 
6271 	printk(KERN_INFO DRV_NAME
6272 	       ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6273 
6274 	err = ipw2100_up(priv, 1);
6275 	if (err)
6276 		goto fail;
6277 
6278 	err = ipw2100_wdev_init(dev);
6279 	if (err)
6280 		goto fail;
6281 	registered = 1;
6282 
6283 	/* Bring up the interface.  Pre 0.46, after we registered the
6284 	 * network device we would call ipw2100_up.  This introduced a race
6285 	 * condition with newer hotplug configurations (network was coming
6286 	 * up and making calls before the device was initialized).
6287 	 */
6288 	err = register_netdev(dev);
6289 	if (err) {
6290 		printk(KERN_WARNING DRV_NAME
6291 		       "Error calling register_netdev.\n");
6292 		goto fail;
6293 	}
6294 	registered = 2;
6295 
6296 	mutex_lock(&priv->action_mutex);
6297 
6298 	IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6299 
6300 	/* perform this after register_netdev so that dev->name is set */
6301 	err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6302 	if (err)
6303 		goto fail_unlock;
6304 
6305 	/* If the RF Kill switch is disabled, go ahead and complete the
6306 	 * startup sequence */
6307 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
6308 		/* Enable the adapter - sends HOST_COMPLETE */
6309 		if (ipw2100_enable_adapter(priv)) {
6310 			printk(KERN_WARNING DRV_NAME
6311 			       ": %s: failed in call to enable adapter.\n",
6312 			       priv->net_dev->name);
6313 			ipw2100_hw_stop_adapter(priv);
6314 			err = -EIO;
6315 			goto fail_unlock;
6316 		}
6317 
6318 		/* Start a scan . . . */
6319 		ipw2100_set_scan_options(priv);
6320 		ipw2100_start_scan(priv);
6321 	}
6322 
6323 	IPW_DEBUG_INFO("exit\n");
6324 
6325 	priv->status |= STATUS_INITIALIZED;
6326 
6327 	mutex_unlock(&priv->action_mutex);
6328 out:
6329 	return err;
6330 
6331       fail_unlock:
6332 	mutex_unlock(&priv->action_mutex);
6333       fail:
6334 	if (dev) {
6335 		if (registered >= 2)
6336 			unregister_netdev(dev);
6337 
6338 		if (registered) {
6339 			wiphy_unregister(priv->ieee->wdev.wiphy);
6340 			kfree(priv->ieee->bg_band.channels);
6341 		}
6342 
6343 		ipw2100_hw_stop_adapter(priv);
6344 
6345 		ipw2100_disable_interrupts(priv);
6346 
6347 		if (dev->irq)
6348 			free_irq(dev->irq, priv);
6349 
6350 		ipw2100_kill_works(priv);
6351 
6352 		/* These are safe to call even if they weren't allocated */
6353 		ipw2100_queues_free(priv);
6354 		sysfs_remove_group(&pci_dev->dev.kobj,
6355 				   &ipw2100_attribute_group);
6356 
6357 		free_libipw(dev, 0);
6358 	}
6359 
6360 	pci_iounmap(pci_dev, ioaddr);
6361 
6362 	pci_release_regions(pci_dev);
6363 	pci_disable_device(pci_dev);
6364 	goto out;
6365 }
6366 
6367 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6368 {
6369 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6370 	struct net_device *dev = priv->net_dev;
6371 
6372 	mutex_lock(&priv->action_mutex);
6373 
6374 	priv->status &= ~STATUS_INITIALIZED;
6375 
6376 	sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6377 
6378 #ifdef CONFIG_PM
6379 	if (ipw2100_firmware.version)
6380 		ipw2100_release_firmware(priv, &ipw2100_firmware);
6381 #endif
6382 	/* Take down the hardware */
6383 	ipw2100_down(priv);
6384 
6385 	/* Release the mutex so that the network subsystem can
6386 	 * complete any needed calls into the driver... */
6387 	mutex_unlock(&priv->action_mutex);
6388 
6389 	/* Unregister the device first - this results in close()
6390 	 * being called if the device is open.  If we free storage
6391 	 * first, then close() will crash.
6392 	 * FIXME: remove the comment above. */
6393 	unregister_netdev(dev);
6394 
6395 	ipw2100_kill_works(priv);
6396 
6397 	ipw2100_queues_free(priv);
6398 
6399 	/* Free potential debugging firmware snapshot */
6400 	ipw2100_snapshot_free(priv);
6401 
6402 	free_irq(dev->irq, priv);
6403 
6404 	pci_iounmap(pci_dev, priv->ioaddr);
6405 
6406 	/* wiphy_unregister needs to be here, before free_libipw */
6407 	wiphy_unregister(priv->ieee->wdev.wiphy);
6408 	kfree(priv->ieee->bg_band.channels);
6409 	free_libipw(dev, 0);
6410 
6411 	pci_release_regions(pci_dev);
6412 	pci_disable_device(pci_dev);
6413 
6414 	IPW_DEBUG_INFO("exit\n");
6415 }
6416 
6417 #ifdef CONFIG_PM
6418 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6419 {
6420 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6421 	struct net_device *dev = priv->net_dev;
6422 
6423 	IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6424 
6425 	mutex_lock(&priv->action_mutex);
6426 	if (priv->status & STATUS_INITIALIZED) {
6427 		/* Take down the device; powers it off, etc. */
6428 		ipw2100_down(priv);
6429 	}
6430 
6431 	/* Remove the PRESENT state of the device */
6432 	netif_device_detach(dev);
6433 
6434 	pci_save_state(pci_dev);
6435 	pci_disable_device(pci_dev);
6436 	pci_set_power_state(pci_dev, PCI_D3hot);
6437 
6438 	priv->suspend_at = ktime_get_boottime_seconds();
6439 
6440 	mutex_unlock(&priv->action_mutex);
6441 
6442 	return 0;
6443 }
6444 
6445 static int ipw2100_resume(struct pci_dev *pci_dev)
6446 {
6447 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6448 	struct net_device *dev = priv->net_dev;
6449 	int err;
6450 	u32 val;
6451 
6452 	if (IPW2100_PM_DISABLED)
6453 		return 0;
6454 
6455 	mutex_lock(&priv->action_mutex);
6456 
6457 	IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6458 
6459 	pci_set_power_state(pci_dev, PCI_D0);
6460 	err = pci_enable_device(pci_dev);
6461 	if (err) {
6462 		printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6463 		       dev->name);
6464 		mutex_unlock(&priv->action_mutex);
6465 		return err;
6466 	}
6467 	pci_restore_state(pci_dev);
6468 
6469 	/*
6470 	 * Suspend/Resume resets the PCI configuration space, so we have to
6471 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6472 	 * from interfering with C3 CPU state. pci_restore_state won't help
6473 	 * here since it only restores the first 64 bytes pci config header.
6474 	 */
6475 	pci_read_config_dword(pci_dev, 0x40, &val);
6476 	if ((val & 0x0000ff00) != 0)
6477 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6478 
6479 	/* Set the device back into the PRESENT state; this will also wake
6480 	 * the queue of needed */
6481 	netif_device_attach(dev);
6482 
6483 	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
6484 
6485 	/* Bring the device back up */
6486 	if (!(priv->status & STATUS_RF_KILL_SW))
6487 		ipw2100_up(priv, 0);
6488 
6489 	mutex_unlock(&priv->action_mutex);
6490 
6491 	return 0;
6492 }
6493 #endif
6494 
6495 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6496 {
6497 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6498 
6499 	/* Take down the device; powers it off, etc. */
6500 	ipw2100_down(priv);
6501 
6502 	pci_disable_device(pci_dev);
6503 }
6504 
6505 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6506 
6507 static const struct pci_device_id ipw2100_pci_id_table[] = {
6508 	IPW2100_DEV_ID(0x2520),	/* IN 2100A mPCI 3A */
6509 	IPW2100_DEV_ID(0x2521),	/* IN 2100A mPCI 3B */
6510 	IPW2100_DEV_ID(0x2524),	/* IN 2100A mPCI 3B */
6511 	IPW2100_DEV_ID(0x2525),	/* IN 2100A mPCI 3B */
6512 	IPW2100_DEV_ID(0x2526),	/* IN 2100A mPCI Gen A3 */
6513 	IPW2100_DEV_ID(0x2522),	/* IN 2100 mPCI 3B */
6514 	IPW2100_DEV_ID(0x2523),	/* IN 2100 mPCI 3A */
6515 	IPW2100_DEV_ID(0x2527),	/* IN 2100 mPCI 3B */
6516 	IPW2100_DEV_ID(0x2528),	/* IN 2100 mPCI 3B */
6517 	IPW2100_DEV_ID(0x2529),	/* IN 2100 mPCI 3B */
6518 	IPW2100_DEV_ID(0x252B),	/* IN 2100 mPCI 3A */
6519 	IPW2100_DEV_ID(0x252C),	/* IN 2100 mPCI 3A */
6520 	IPW2100_DEV_ID(0x252D),	/* IN 2100 mPCI 3A */
6521 
6522 	IPW2100_DEV_ID(0x2550),	/* IB 2100A mPCI 3B */
6523 	IPW2100_DEV_ID(0x2551),	/* IB 2100 mPCI 3B */
6524 	IPW2100_DEV_ID(0x2553),	/* IB 2100 mPCI 3B */
6525 	IPW2100_DEV_ID(0x2554),	/* IB 2100 mPCI 3B */
6526 	IPW2100_DEV_ID(0x2555),	/* IB 2100 mPCI 3B */
6527 
6528 	IPW2100_DEV_ID(0x2560),	/* DE 2100A mPCI 3A */
6529 	IPW2100_DEV_ID(0x2562),	/* DE 2100A mPCI 3A */
6530 	IPW2100_DEV_ID(0x2563),	/* DE 2100A mPCI 3A */
6531 	IPW2100_DEV_ID(0x2561),	/* DE 2100 mPCI 3A */
6532 	IPW2100_DEV_ID(0x2565),	/* DE 2100 mPCI 3A */
6533 	IPW2100_DEV_ID(0x2566),	/* DE 2100 mPCI 3A */
6534 	IPW2100_DEV_ID(0x2567),	/* DE 2100 mPCI 3A */
6535 
6536 	IPW2100_DEV_ID(0x2570),	/* GA 2100 mPCI 3B */
6537 
6538 	IPW2100_DEV_ID(0x2580),	/* TO 2100A mPCI 3B */
6539 	IPW2100_DEV_ID(0x2582),	/* TO 2100A mPCI 3B */
6540 	IPW2100_DEV_ID(0x2583),	/* TO 2100A mPCI 3B */
6541 	IPW2100_DEV_ID(0x2581),	/* TO 2100 mPCI 3B */
6542 	IPW2100_DEV_ID(0x2585),	/* TO 2100 mPCI 3B */
6543 	IPW2100_DEV_ID(0x2586),	/* TO 2100 mPCI 3B */
6544 	IPW2100_DEV_ID(0x2587),	/* TO 2100 mPCI 3B */
6545 
6546 	IPW2100_DEV_ID(0x2590),	/* SO 2100A mPCI 3B */
6547 	IPW2100_DEV_ID(0x2592),	/* SO 2100A mPCI 3B */
6548 	IPW2100_DEV_ID(0x2591),	/* SO 2100 mPCI 3B */
6549 	IPW2100_DEV_ID(0x2593),	/* SO 2100 mPCI 3B */
6550 	IPW2100_DEV_ID(0x2596),	/* SO 2100 mPCI 3B */
6551 	IPW2100_DEV_ID(0x2598),	/* SO 2100 mPCI 3B */
6552 
6553 	IPW2100_DEV_ID(0x25A0),	/* HP 2100 mPCI 3B */
6554 	{0,},
6555 };
6556 
6557 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6558 
6559 static struct pci_driver ipw2100_pci_driver = {
6560 	.name = DRV_NAME,
6561 	.id_table = ipw2100_pci_id_table,
6562 	.probe = ipw2100_pci_init_one,
6563 	.remove = ipw2100_pci_remove_one,
6564 #ifdef CONFIG_PM
6565 	.suspend = ipw2100_suspend,
6566 	.resume = ipw2100_resume,
6567 #endif
6568 	.shutdown = ipw2100_shutdown,
6569 };
6570 
6571 /**
6572  * Initialize the ipw2100 driver/module
6573  *
6574  * @returns 0 if ok, < 0 errno node con error.
6575  *
6576  * Note: we cannot init the /proc stuff until the PCI driver is there,
6577  * or we risk an unlikely race condition on someone accessing
6578  * uninitialized data in the PCI dev struct through /proc.
6579  */
6580 static int __init ipw2100_init(void)
6581 {
6582 	int ret;
6583 
6584 	printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6585 	printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6586 
6587 	pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6588 			   PM_QOS_DEFAULT_VALUE);
6589 
6590 	ret = pci_register_driver(&ipw2100_pci_driver);
6591 	if (ret)
6592 		goto out;
6593 
6594 #ifdef CONFIG_IPW2100_DEBUG
6595 	ipw2100_debug_level = debug;
6596 	ret = driver_create_file(&ipw2100_pci_driver.driver,
6597 				 &driver_attr_debug_level);
6598 #endif
6599 
6600 out:
6601 	return ret;
6602 }
6603 
6604 /**
6605  * Cleanup ipw2100 driver registration
6606  */
6607 static void __exit ipw2100_exit(void)
6608 {
6609 	/* FIXME: IPG: check that we have no instances of the devices open */
6610 #ifdef CONFIG_IPW2100_DEBUG
6611 	driver_remove_file(&ipw2100_pci_driver.driver,
6612 			   &driver_attr_debug_level);
6613 #endif
6614 	pci_unregister_driver(&ipw2100_pci_driver);
6615 	pm_qos_remove_request(&ipw2100_pm_qos_req);
6616 }
6617 
6618 module_init(ipw2100_init);
6619 module_exit(ipw2100_exit);
6620 
6621 static int ipw2100_wx_get_name(struct net_device *dev,
6622 			       struct iw_request_info *info,
6623 			       union iwreq_data *wrqu, char *extra)
6624 {
6625 	/*
6626 	 * This can be called at any time.  No action lock required
6627 	 */
6628 
6629 	struct ipw2100_priv *priv = libipw_priv(dev);
6630 	if (!(priv->status & STATUS_ASSOCIATED))
6631 		strcpy(wrqu->name, "unassociated");
6632 	else
6633 		snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6634 
6635 	IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6636 	return 0;
6637 }
6638 
6639 static int ipw2100_wx_set_freq(struct net_device *dev,
6640 			       struct iw_request_info *info,
6641 			       union iwreq_data *wrqu, char *extra)
6642 {
6643 	struct ipw2100_priv *priv = libipw_priv(dev);
6644 	struct iw_freq *fwrq = &wrqu->freq;
6645 	int err = 0;
6646 
6647 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
6648 		return -EOPNOTSUPP;
6649 
6650 	mutex_lock(&priv->action_mutex);
6651 	if (!(priv->status & STATUS_INITIALIZED)) {
6652 		err = -EIO;
6653 		goto done;
6654 	}
6655 
6656 	/* if setting by freq convert to channel */
6657 	if (fwrq->e == 1) {
6658 		if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6659 			int f = fwrq->m / 100000;
6660 			int c = 0;
6661 
6662 			while ((c < REG_MAX_CHANNEL) &&
6663 			       (f != ipw2100_frequencies[c]))
6664 				c++;
6665 
6666 			/* hack to fall through */
6667 			fwrq->e = 0;
6668 			fwrq->m = c + 1;
6669 		}
6670 	}
6671 
6672 	if (fwrq->e > 0 || fwrq->m > 1000) {
6673 		err = -EOPNOTSUPP;
6674 		goto done;
6675 	} else {		/* Set the channel */
6676 		IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6677 		err = ipw2100_set_channel(priv, fwrq->m, 0);
6678 	}
6679 
6680       done:
6681 	mutex_unlock(&priv->action_mutex);
6682 	return err;
6683 }
6684 
6685 static int ipw2100_wx_get_freq(struct net_device *dev,
6686 			       struct iw_request_info *info,
6687 			       union iwreq_data *wrqu, char *extra)
6688 {
6689 	/*
6690 	 * This can be called at any time.  No action lock required
6691 	 */
6692 
6693 	struct ipw2100_priv *priv = libipw_priv(dev);
6694 
6695 	wrqu->freq.e = 0;
6696 
6697 	/* If we are associated, trying to associate, or have a statically
6698 	 * configured CHANNEL then return that; otherwise return ANY */
6699 	if (priv->config & CFG_STATIC_CHANNEL ||
6700 	    priv->status & STATUS_ASSOCIATED)
6701 		wrqu->freq.m = priv->channel;
6702 	else
6703 		wrqu->freq.m = 0;
6704 
6705 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6706 	return 0;
6707 
6708 }
6709 
6710 static int ipw2100_wx_set_mode(struct net_device *dev,
6711 			       struct iw_request_info *info,
6712 			       union iwreq_data *wrqu, char *extra)
6713 {
6714 	struct ipw2100_priv *priv = libipw_priv(dev);
6715 	int err = 0;
6716 
6717 	IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6718 
6719 	if (wrqu->mode == priv->ieee->iw_mode)
6720 		return 0;
6721 
6722 	mutex_lock(&priv->action_mutex);
6723 	if (!(priv->status & STATUS_INITIALIZED)) {
6724 		err = -EIO;
6725 		goto done;
6726 	}
6727 
6728 	switch (wrqu->mode) {
6729 #ifdef CONFIG_IPW2100_MONITOR
6730 	case IW_MODE_MONITOR:
6731 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6732 		break;
6733 #endif				/* CONFIG_IPW2100_MONITOR */
6734 	case IW_MODE_ADHOC:
6735 		err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6736 		break;
6737 	case IW_MODE_INFRA:
6738 	case IW_MODE_AUTO:
6739 	default:
6740 		err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6741 		break;
6742 	}
6743 
6744       done:
6745 	mutex_unlock(&priv->action_mutex);
6746 	return err;
6747 }
6748 
6749 static int ipw2100_wx_get_mode(struct net_device *dev,
6750 			       struct iw_request_info *info,
6751 			       union iwreq_data *wrqu, char *extra)
6752 {
6753 	/*
6754 	 * This can be called at any time.  No action lock required
6755 	 */
6756 
6757 	struct ipw2100_priv *priv = libipw_priv(dev);
6758 
6759 	wrqu->mode = priv->ieee->iw_mode;
6760 	IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6761 
6762 	return 0;
6763 }
6764 
6765 #define POWER_MODES 5
6766 
6767 /* Values are in microsecond */
6768 static const s32 timeout_duration[POWER_MODES] = {
6769 	350000,
6770 	250000,
6771 	75000,
6772 	37000,
6773 	25000,
6774 };
6775 
6776 static const s32 period_duration[POWER_MODES] = {
6777 	400000,
6778 	700000,
6779 	1000000,
6780 	1000000,
6781 	1000000
6782 };
6783 
6784 static int ipw2100_wx_get_range(struct net_device *dev,
6785 				struct iw_request_info *info,
6786 				union iwreq_data *wrqu, char *extra)
6787 {
6788 	/*
6789 	 * This can be called at any time.  No action lock required
6790 	 */
6791 
6792 	struct ipw2100_priv *priv = libipw_priv(dev);
6793 	struct iw_range *range = (struct iw_range *)extra;
6794 	u16 val;
6795 	int i, level;
6796 
6797 	wrqu->data.length = sizeof(*range);
6798 	memset(range, 0, sizeof(*range));
6799 
6800 	/* Let's try to keep this struct in the same order as in
6801 	 * linux/include/wireless.h
6802 	 */
6803 
6804 	/* TODO: See what values we can set, and remove the ones we can't
6805 	 * set, or fill them with some default data.
6806 	 */
6807 
6808 	/* ~5 Mb/s real (802.11b) */
6809 	range->throughput = 5 * 1000 * 1000;
6810 
6811 //      range->sensitivity;     /* signal level threshold range */
6812 
6813 	range->max_qual.qual = 100;
6814 	/* TODO: Find real max RSSI and stick here */
6815 	range->max_qual.level = 0;
6816 	range->max_qual.noise = 0;
6817 	range->max_qual.updated = 7;	/* Updated all three */
6818 
6819 	range->avg_qual.qual = 70;	/* > 8% missed beacons is 'bad' */
6820 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6821 	range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6822 	range->avg_qual.noise = 0;
6823 	range->avg_qual.updated = 7;	/* Updated all three */
6824 
6825 	range->num_bitrates = RATE_COUNT;
6826 
6827 	for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6828 		range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6829 	}
6830 
6831 	range->min_rts = MIN_RTS_THRESHOLD;
6832 	range->max_rts = MAX_RTS_THRESHOLD;
6833 	range->min_frag = MIN_FRAG_THRESHOLD;
6834 	range->max_frag = MAX_FRAG_THRESHOLD;
6835 
6836 	range->min_pmp = period_duration[0];	/* Minimal PM period */
6837 	range->max_pmp = period_duration[POWER_MODES - 1];	/* Maximal PM period */
6838 	range->min_pmt = timeout_duration[POWER_MODES - 1];	/* Minimal PM timeout */
6839 	range->max_pmt = timeout_duration[0];	/* Maximal PM timeout */
6840 
6841 	/* How to decode max/min PM period */
6842 	range->pmp_flags = IW_POWER_PERIOD;
6843 	/* How to decode max/min PM period */
6844 	range->pmt_flags = IW_POWER_TIMEOUT;
6845 	/* What PM options are supported */
6846 	range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6847 
6848 	range->encoding_size[0] = 5;
6849 	range->encoding_size[1] = 13;	/* Different token sizes */
6850 	range->num_encoding_sizes = 2;	/* Number of entry in the list */
6851 	range->max_encoding_tokens = WEP_KEYS;	/* Max number of tokens */
6852 //      range->encoding_login_index;            /* token index for login token */
6853 
6854 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6855 		range->txpower_capa = IW_TXPOW_DBM;
6856 		range->num_txpower = IW_MAX_TXPOWER;
6857 		for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6858 		     i < IW_MAX_TXPOWER;
6859 		     i++, level -=
6860 		     ((IPW_TX_POWER_MAX_DBM -
6861 		       IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6862 			range->txpower[i] = level / 16;
6863 	} else {
6864 		range->txpower_capa = 0;
6865 		range->num_txpower = 0;
6866 	}
6867 
6868 	/* Set the Wireless Extension versions */
6869 	range->we_version_compiled = WIRELESS_EXT;
6870 	range->we_version_source = 18;
6871 
6872 //      range->retry_capa;      /* What retry options are supported */
6873 //      range->retry_flags;     /* How to decode max/min retry limit */
6874 //      range->r_time_flags;    /* How to decode max/min retry life */
6875 //      range->min_retry;       /* Minimal number of retries */
6876 //      range->max_retry;       /* Maximal number of retries */
6877 //      range->min_r_time;      /* Minimal retry lifetime */
6878 //      range->max_r_time;      /* Maximal retry lifetime */
6879 
6880 	range->num_channels = FREQ_COUNT;
6881 
6882 	val = 0;
6883 	for (i = 0; i < FREQ_COUNT; i++) {
6884 		// TODO: Include only legal frequencies for some countries
6885 //              if (local->channel_mask & (1 << i)) {
6886 		range->freq[val].i = i + 1;
6887 		range->freq[val].m = ipw2100_frequencies[i] * 100000;
6888 		range->freq[val].e = 1;
6889 		val++;
6890 //              }
6891 		if (val == IW_MAX_FREQUENCIES)
6892 			break;
6893 	}
6894 	range->num_frequency = val;
6895 
6896 	/* Event capability (kernel + driver) */
6897 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6898 				IW_EVENT_CAPA_MASK(SIOCGIWAP));
6899 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
6900 
6901 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6902 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6903 
6904 	IPW_DEBUG_WX("GET Range\n");
6905 
6906 	return 0;
6907 }
6908 
6909 static int ipw2100_wx_set_wap(struct net_device *dev,
6910 			      struct iw_request_info *info,
6911 			      union iwreq_data *wrqu, char *extra)
6912 {
6913 	struct ipw2100_priv *priv = libipw_priv(dev);
6914 	int err = 0;
6915 
6916 	// sanity checks
6917 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6918 		return -EINVAL;
6919 
6920 	mutex_lock(&priv->action_mutex);
6921 	if (!(priv->status & STATUS_INITIALIZED)) {
6922 		err = -EIO;
6923 		goto done;
6924 	}
6925 
6926 	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6927 	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6928 		/* we disable mandatory BSSID association */
6929 		IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6930 		priv->config &= ~CFG_STATIC_BSSID;
6931 		err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6932 		goto done;
6933 	}
6934 
6935 	priv->config |= CFG_STATIC_BSSID;
6936 	memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6937 
6938 	err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6939 
6940 	IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6941 
6942       done:
6943 	mutex_unlock(&priv->action_mutex);
6944 	return err;
6945 }
6946 
6947 static int ipw2100_wx_get_wap(struct net_device *dev,
6948 			      struct iw_request_info *info,
6949 			      union iwreq_data *wrqu, char *extra)
6950 {
6951 	/*
6952 	 * This can be called at any time.  No action lock required
6953 	 */
6954 
6955 	struct ipw2100_priv *priv = libipw_priv(dev);
6956 
6957 	/* If we are associated, trying to associate, or have a statically
6958 	 * configured BSSID then return that; otherwise return ANY */
6959 	if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6960 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6961 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6962 	} else
6963 		eth_zero_addr(wrqu->ap_addr.sa_data);
6964 
6965 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6966 	return 0;
6967 }
6968 
6969 static int ipw2100_wx_set_essid(struct net_device *dev,
6970 				struct iw_request_info *info,
6971 				union iwreq_data *wrqu, char *extra)
6972 {
6973 	struct ipw2100_priv *priv = libipw_priv(dev);
6974 	char *essid = "";	/* ANY */
6975 	int length = 0;
6976 	int err = 0;
6977 
6978 	mutex_lock(&priv->action_mutex);
6979 	if (!(priv->status & STATUS_INITIALIZED)) {
6980 		err = -EIO;
6981 		goto done;
6982 	}
6983 
6984 	if (wrqu->essid.flags && wrqu->essid.length) {
6985 		length = wrqu->essid.length;
6986 		essid = extra;
6987 	}
6988 
6989 	if (length == 0) {
6990 		IPW_DEBUG_WX("Setting ESSID to ANY\n");
6991 		priv->config &= ~CFG_STATIC_ESSID;
6992 		err = ipw2100_set_essid(priv, NULL, 0, 0);
6993 		goto done;
6994 	}
6995 
6996 	length = min(length, IW_ESSID_MAX_SIZE);
6997 
6998 	priv->config |= CFG_STATIC_ESSID;
6999 
7000 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7001 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7002 		err = 0;
7003 		goto done;
7004 	}
7005 
7006 	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7007 
7008 	priv->essid_len = length;
7009 	memcpy(priv->essid, essid, priv->essid_len);
7010 
7011 	err = ipw2100_set_essid(priv, essid, length, 0);
7012 
7013       done:
7014 	mutex_unlock(&priv->action_mutex);
7015 	return err;
7016 }
7017 
7018 static int ipw2100_wx_get_essid(struct net_device *dev,
7019 				struct iw_request_info *info,
7020 				union iwreq_data *wrqu, char *extra)
7021 {
7022 	/*
7023 	 * This can be called at any time.  No action lock required
7024 	 */
7025 
7026 	struct ipw2100_priv *priv = libipw_priv(dev);
7027 
7028 	/* If we are associated, trying to associate, or have a statically
7029 	 * configured ESSID then return that; otherwise return ANY */
7030 	if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7031 		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7032 			     priv->essid_len, priv->essid);
7033 		memcpy(extra, priv->essid, priv->essid_len);
7034 		wrqu->essid.length = priv->essid_len;
7035 		wrqu->essid.flags = 1;	/* active */
7036 	} else {
7037 		IPW_DEBUG_WX("Getting essid: ANY\n");
7038 		wrqu->essid.length = 0;
7039 		wrqu->essid.flags = 0;	/* active */
7040 	}
7041 
7042 	return 0;
7043 }
7044 
7045 static int ipw2100_wx_set_nick(struct net_device *dev,
7046 			       struct iw_request_info *info,
7047 			       union iwreq_data *wrqu, char *extra)
7048 {
7049 	/*
7050 	 * This can be called at any time.  No action lock required
7051 	 */
7052 
7053 	struct ipw2100_priv *priv = libipw_priv(dev);
7054 
7055 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7056 		return -E2BIG;
7057 
7058 	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7059 	memset(priv->nick, 0, sizeof(priv->nick));
7060 	memcpy(priv->nick, extra, wrqu->data.length);
7061 
7062 	IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7063 
7064 	return 0;
7065 }
7066 
7067 static int ipw2100_wx_get_nick(struct net_device *dev,
7068 			       struct iw_request_info *info,
7069 			       union iwreq_data *wrqu, char *extra)
7070 {
7071 	/*
7072 	 * This can be called at any time.  No action lock required
7073 	 */
7074 
7075 	struct ipw2100_priv *priv = libipw_priv(dev);
7076 
7077 	wrqu->data.length = strlen(priv->nick);
7078 	memcpy(extra, priv->nick, wrqu->data.length);
7079 	wrqu->data.flags = 1;	/* active */
7080 
7081 	IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7082 
7083 	return 0;
7084 }
7085 
7086 static int ipw2100_wx_set_rate(struct net_device *dev,
7087 			       struct iw_request_info *info,
7088 			       union iwreq_data *wrqu, char *extra)
7089 {
7090 	struct ipw2100_priv *priv = libipw_priv(dev);
7091 	u32 target_rate = wrqu->bitrate.value;
7092 	u32 rate;
7093 	int err = 0;
7094 
7095 	mutex_lock(&priv->action_mutex);
7096 	if (!(priv->status & STATUS_INITIALIZED)) {
7097 		err = -EIO;
7098 		goto done;
7099 	}
7100 
7101 	rate = 0;
7102 
7103 	if (target_rate == 1000000 ||
7104 	    (!wrqu->bitrate.fixed && target_rate > 1000000))
7105 		rate |= TX_RATE_1_MBIT;
7106 	if (target_rate == 2000000 ||
7107 	    (!wrqu->bitrate.fixed && target_rate > 2000000))
7108 		rate |= TX_RATE_2_MBIT;
7109 	if (target_rate == 5500000 ||
7110 	    (!wrqu->bitrate.fixed && target_rate > 5500000))
7111 		rate |= TX_RATE_5_5_MBIT;
7112 	if (target_rate == 11000000 ||
7113 	    (!wrqu->bitrate.fixed && target_rate > 11000000))
7114 		rate |= TX_RATE_11_MBIT;
7115 	if (rate == 0)
7116 		rate = DEFAULT_TX_RATES;
7117 
7118 	err = ipw2100_set_tx_rates(priv, rate, 0);
7119 
7120 	IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7121       done:
7122 	mutex_unlock(&priv->action_mutex);
7123 	return err;
7124 }
7125 
7126 static int ipw2100_wx_get_rate(struct net_device *dev,
7127 			       struct iw_request_info *info,
7128 			       union iwreq_data *wrqu, char *extra)
7129 {
7130 	struct ipw2100_priv *priv = libipw_priv(dev);
7131 	int val;
7132 	unsigned int len = sizeof(val);
7133 	int err = 0;
7134 
7135 	if (!(priv->status & STATUS_ENABLED) ||
7136 	    priv->status & STATUS_RF_KILL_MASK ||
7137 	    !(priv->status & STATUS_ASSOCIATED)) {
7138 		wrqu->bitrate.value = 0;
7139 		return 0;
7140 	}
7141 
7142 	mutex_lock(&priv->action_mutex);
7143 	if (!(priv->status & STATUS_INITIALIZED)) {
7144 		err = -EIO;
7145 		goto done;
7146 	}
7147 
7148 	err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7149 	if (err) {
7150 		IPW_DEBUG_WX("failed querying ordinals.\n");
7151 		goto done;
7152 	}
7153 
7154 	switch (val & TX_RATE_MASK) {
7155 	case TX_RATE_1_MBIT:
7156 		wrqu->bitrate.value = 1000000;
7157 		break;
7158 	case TX_RATE_2_MBIT:
7159 		wrqu->bitrate.value = 2000000;
7160 		break;
7161 	case TX_RATE_5_5_MBIT:
7162 		wrqu->bitrate.value = 5500000;
7163 		break;
7164 	case TX_RATE_11_MBIT:
7165 		wrqu->bitrate.value = 11000000;
7166 		break;
7167 	default:
7168 		wrqu->bitrate.value = 0;
7169 	}
7170 
7171 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7172 
7173       done:
7174 	mutex_unlock(&priv->action_mutex);
7175 	return err;
7176 }
7177 
7178 static int ipw2100_wx_set_rts(struct net_device *dev,
7179 			      struct iw_request_info *info,
7180 			      union iwreq_data *wrqu, char *extra)
7181 {
7182 	struct ipw2100_priv *priv = libipw_priv(dev);
7183 	int value, err;
7184 
7185 	/* Auto RTS not yet supported */
7186 	if (wrqu->rts.fixed == 0)
7187 		return -EINVAL;
7188 
7189 	mutex_lock(&priv->action_mutex);
7190 	if (!(priv->status & STATUS_INITIALIZED)) {
7191 		err = -EIO;
7192 		goto done;
7193 	}
7194 
7195 	if (wrqu->rts.disabled)
7196 		value = priv->rts_threshold | RTS_DISABLED;
7197 	else {
7198 		if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7199 			err = -EINVAL;
7200 			goto done;
7201 		}
7202 		value = wrqu->rts.value;
7203 	}
7204 
7205 	err = ipw2100_set_rts_threshold(priv, value);
7206 
7207 	IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7208       done:
7209 	mutex_unlock(&priv->action_mutex);
7210 	return err;
7211 }
7212 
7213 static int ipw2100_wx_get_rts(struct net_device *dev,
7214 			      struct iw_request_info *info,
7215 			      union iwreq_data *wrqu, char *extra)
7216 {
7217 	/*
7218 	 * This can be called at any time.  No action lock required
7219 	 */
7220 
7221 	struct ipw2100_priv *priv = libipw_priv(dev);
7222 
7223 	wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7224 	wrqu->rts.fixed = 1;	/* no auto select */
7225 
7226 	/* If RTS is set to the default value, then it is disabled */
7227 	wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7228 
7229 	IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7230 
7231 	return 0;
7232 }
7233 
7234 static int ipw2100_wx_set_txpow(struct net_device *dev,
7235 				struct iw_request_info *info,
7236 				union iwreq_data *wrqu, char *extra)
7237 {
7238 	struct ipw2100_priv *priv = libipw_priv(dev);
7239 	int err = 0, value;
7240 
7241 	if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7242 		return -EINPROGRESS;
7243 
7244 	if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7245 		return 0;
7246 
7247 	if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7248 		return -EINVAL;
7249 
7250 	if (wrqu->txpower.fixed == 0)
7251 		value = IPW_TX_POWER_DEFAULT;
7252 	else {
7253 		if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7254 		    wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7255 			return -EINVAL;
7256 
7257 		value = wrqu->txpower.value;
7258 	}
7259 
7260 	mutex_lock(&priv->action_mutex);
7261 	if (!(priv->status & STATUS_INITIALIZED)) {
7262 		err = -EIO;
7263 		goto done;
7264 	}
7265 
7266 	err = ipw2100_set_tx_power(priv, value);
7267 
7268 	IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7269 
7270       done:
7271 	mutex_unlock(&priv->action_mutex);
7272 	return err;
7273 }
7274 
7275 static int ipw2100_wx_get_txpow(struct net_device *dev,
7276 				struct iw_request_info *info,
7277 				union iwreq_data *wrqu, char *extra)
7278 {
7279 	/*
7280 	 * This can be called at any time.  No action lock required
7281 	 */
7282 
7283 	struct ipw2100_priv *priv = libipw_priv(dev);
7284 
7285 	wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7286 
7287 	if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7288 		wrqu->txpower.fixed = 0;
7289 		wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7290 	} else {
7291 		wrqu->txpower.fixed = 1;
7292 		wrqu->txpower.value = priv->tx_power;
7293 	}
7294 
7295 	wrqu->txpower.flags = IW_TXPOW_DBM;
7296 
7297 	IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7298 
7299 	return 0;
7300 }
7301 
7302 static int ipw2100_wx_set_frag(struct net_device *dev,
7303 			       struct iw_request_info *info,
7304 			       union iwreq_data *wrqu, char *extra)
7305 {
7306 	/*
7307 	 * This can be called at any time.  No action lock required
7308 	 */
7309 
7310 	struct ipw2100_priv *priv = libipw_priv(dev);
7311 
7312 	if (!wrqu->frag.fixed)
7313 		return -EINVAL;
7314 
7315 	if (wrqu->frag.disabled) {
7316 		priv->frag_threshold |= FRAG_DISABLED;
7317 		priv->ieee->fts = DEFAULT_FTS;
7318 	} else {
7319 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7320 		    wrqu->frag.value > MAX_FRAG_THRESHOLD)
7321 			return -EINVAL;
7322 
7323 		priv->ieee->fts = wrqu->frag.value & ~0x1;
7324 		priv->frag_threshold = priv->ieee->fts;
7325 	}
7326 
7327 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7328 
7329 	return 0;
7330 }
7331 
7332 static int ipw2100_wx_get_frag(struct net_device *dev,
7333 			       struct iw_request_info *info,
7334 			       union iwreq_data *wrqu, char *extra)
7335 {
7336 	/*
7337 	 * This can be called at any time.  No action lock required
7338 	 */
7339 
7340 	struct ipw2100_priv *priv = libipw_priv(dev);
7341 	wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7342 	wrqu->frag.fixed = 0;	/* no auto select */
7343 	wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7344 
7345 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7346 
7347 	return 0;
7348 }
7349 
7350 static int ipw2100_wx_set_retry(struct net_device *dev,
7351 				struct iw_request_info *info,
7352 				union iwreq_data *wrqu, char *extra)
7353 {
7354 	struct ipw2100_priv *priv = libipw_priv(dev);
7355 	int err = 0;
7356 
7357 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7358 		return -EINVAL;
7359 
7360 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7361 		return 0;
7362 
7363 	mutex_lock(&priv->action_mutex);
7364 	if (!(priv->status & STATUS_INITIALIZED)) {
7365 		err = -EIO;
7366 		goto done;
7367 	}
7368 
7369 	if (wrqu->retry.flags & IW_RETRY_SHORT) {
7370 		err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7371 		IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7372 			     wrqu->retry.value);
7373 		goto done;
7374 	}
7375 
7376 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7377 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7378 		IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7379 			     wrqu->retry.value);
7380 		goto done;
7381 	}
7382 
7383 	err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7384 	if (!err)
7385 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7386 
7387 	IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7388 
7389       done:
7390 	mutex_unlock(&priv->action_mutex);
7391 	return err;
7392 }
7393 
7394 static int ipw2100_wx_get_retry(struct net_device *dev,
7395 				struct iw_request_info *info,
7396 				union iwreq_data *wrqu, char *extra)
7397 {
7398 	/*
7399 	 * This can be called at any time.  No action lock required
7400 	 */
7401 
7402 	struct ipw2100_priv *priv = libipw_priv(dev);
7403 
7404 	wrqu->retry.disabled = 0;	/* can't be disabled */
7405 
7406 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7407 		return -EINVAL;
7408 
7409 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7410 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7411 		wrqu->retry.value = priv->long_retry_limit;
7412 	} else {
7413 		wrqu->retry.flags =
7414 		    (priv->short_retry_limit !=
7415 		     priv->long_retry_limit) ?
7416 		    IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7417 
7418 		wrqu->retry.value = priv->short_retry_limit;
7419 	}
7420 
7421 	IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7422 
7423 	return 0;
7424 }
7425 
7426 static int ipw2100_wx_set_scan(struct net_device *dev,
7427 			       struct iw_request_info *info,
7428 			       union iwreq_data *wrqu, char *extra)
7429 {
7430 	struct ipw2100_priv *priv = libipw_priv(dev);
7431 	int err = 0;
7432 
7433 	mutex_lock(&priv->action_mutex);
7434 	if (!(priv->status & STATUS_INITIALIZED)) {
7435 		err = -EIO;
7436 		goto done;
7437 	}
7438 
7439 	IPW_DEBUG_WX("Initiating scan...\n");
7440 
7441 	priv->user_requested_scan = 1;
7442 	if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7443 		IPW_DEBUG_WX("Start scan failed.\n");
7444 
7445 		/* TODO: Mark a scan as pending so when hardware initialized
7446 		 *       a scan starts */
7447 	}
7448 
7449       done:
7450 	mutex_unlock(&priv->action_mutex);
7451 	return err;
7452 }
7453 
7454 static int ipw2100_wx_get_scan(struct net_device *dev,
7455 			       struct iw_request_info *info,
7456 			       union iwreq_data *wrqu, char *extra)
7457 {
7458 	/*
7459 	 * This can be called at any time.  No action lock required
7460 	 */
7461 
7462 	struct ipw2100_priv *priv = libipw_priv(dev);
7463 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7464 }
7465 
7466 /*
7467  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7468  */
7469 static int ipw2100_wx_set_encode(struct net_device *dev,
7470 				 struct iw_request_info *info,
7471 				 union iwreq_data *wrqu, char *key)
7472 {
7473 	/*
7474 	 * No check of STATUS_INITIALIZED required
7475 	 */
7476 
7477 	struct ipw2100_priv *priv = libipw_priv(dev);
7478 	return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7479 }
7480 
7481 static int ipw2100_wx_get_encode(struct net_device *dev,
7482 				 struct iw_request_info *info,
7483 				 union iwreq_data *wrqu, char *key)
7484 {
7485 	/*
7486 	 * This can be called at any time.  No action lock required
7487 	 */
7488 
7489 	struct ipw2100_priv *priv = libipw_priv(dev);
7490 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7491 }
7492 
7493 static int ipw2100_wx_set_power(struct net_device *dev,
7494 				struct iw_request_info *info,
7495 				union iwreq_data *wrqu, char *extra)
7496 {
7497 	struct ipw2100_priv *priv = libipw_priv(dev);
7498 	int err = 0;
7499 
7500 	mutex_lock(&priv->action_mutex);
7501 	if (!(priv->status & STATUS_INITIALIZED)) {
7502 		err = -EIO;
7503 		goto done;
7504 	}
7505 
7506 	if (wrqu->power.disabled) {
7507 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7508 		err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7509 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7510 		goto done;
7511 	}
7512 
7513 	switch (wrqu->power.flags & IW_POWER_MODE) {
7514 	case IW_POWER_ON:	/* If not specified */
7515 	case IW_POWER_MODE:	/* If set all mask */
7516 	case IW_POWER_ALL_R:	/* If explicitly state all */
7517 		break;
7518 	default:		/* Otherwise we don't support it */
7519 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7520 			     wrqu->power.flags);
7521 		err = -EOPNOTSUPP;
7522 		goto done;
7523 	}
7524 
7525 	/* If the user hasn't specified a power management mode yet, default
7526 	 * to BATTERY */
7527 	priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7528 	err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7529 
7530 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7531 
7532       done:
7533 	mutex_unlock(&priv->action_mutex);
7534 	return err;
7535 
7536 }
7537 
7538 static int ipw2100_wx_get_power(struct net_device *dev,
7539 				struct iw_request_info *info,
7540 				union iwreq_data *wrqu, char *extra)
7541 {
7542 	/*
7543 	 * This can be called at any time.  No action lock required
7544 	 */
7545 
7546 	struct ipw2100_priv *priv = libipw_priv(dev);
7547 
7548 	if (!(priv->power_mode & IPW_POWER_ENABLED))
7549 		wrqu->power.disabled = 1;
7550 	else {
7551 		wrqu->power.disabled = 0;
7552 		wrqu->power.flags = 0;
7553 	}
7554 
7555 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7556 
7557 	return 0;
7558 }
7559 
7560 /*
7561  * WE-18 WPA support
7562  */
7563 
7564 /* SIOCSIWGENIE */
7565 static int ipw2100_wx_set_genie(struct net_device *dev,
7566 				struct iw_request_info *info,
7567 				union iwreq_data *wrqu, char *extra)
7568 {
7569 
7570 	struct ipw2100_priv *priv = libipw_priv(dev);
7571 	struct libipw_device *ieee = priv->ieee;
7572 	u8 *buf;
7573 
7574 	if (!ieee->wpa_enabled)
7575 		return -EOPNOTSUPP;
7576 
7577 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
7578 	    (wrqu->data.length && extra == NULL))
7579 		return -EINVAL;
7580 
7581 	if (wrqu->data.length) {
7582 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7583 		if (buf == NULL)
7584 			return -ENOMEM;
7585 
7586 		kfree(ieee->wpa_ie);
7587 		ieee->wpa_ie = buf;
7588 		ieee->wpa_ie_len = wrqu->data.length;
7589 	} else {
7590 		kfree(ieee->wpa_ie);
7591 		ieee->wpa_ie = NULL;
7592 		ieee->wpa_ie_len = 0;
7593 	}
7594 
7595 	ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7596 
7597 	return 0;
7598 }
7599 
7600 /* SIOCGIWGENIE */
7601 static int ipw2100_wx_get_genie(struct net_device *dev,
7602 				struct iw_request_info *info,
7603 				union iwreq_data *wrqu, char *extra)
7604 {
7605 	struct ipw2100_priv *priv = libipw_priv(dev);
7606 	struct libipw_device *ieee = priv->ieee;
7607 
7608 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7609 		wrqu->data.length = 0;
7610 		return 0;
7611 	}
7612 
7613 	if (wrqu->data.length < ieee->wpa_ie_len)
7614 		return -E2BIG;
7615 
7616 	wrqu->data.length = ieee->wpa_ie_len;
7617 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7618 
7619 	return 0;
7620 }
7621 
7622 /* SIOCSIWAUTH */
7623 static int ipw2100_wx_set_auth(struct net_device *dev,
7624 			       struct iw_request_info *info,
7625 			       union iwreq_data *wrqu, char *extra)
7626 {
7627 	struct ipw2100_priv *priv = libipw_priv(dev);
7628 	struct libipw_device *ieee = priv->ieee;
7629 	struct iw_param *param = &wrqu->param;
7630 	struct lib80211_crypt_data *crypt;
7631 	unsigned long flags;
7632 	int ret = 0;
7633 
7634 	switch (param->flags & IW_AUTH_INDEX) {
7635 	case IW_AUTH_WPA_VERSION:
7636 	case IW_AUTH_CIPHER_PAIRWISE:
7637 	case IW_AUTH_CIPHER_GROUP:
7638 	case IW_AUTH_KEY_MGMT:
7639 		/*
7640 		 * ipw2200 does not use these parameters
7641 		 */
7642 		break;
7643 
7644 	case IW_AUTH_TKIP_COUNTERMEASURES:
7645 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7646 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7647 			break;
7648 
7649 		flags = crypt->ops->get_flags(crypt->priv);
7650 
7651 		if (param->value)
7652 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7653 		else
7654 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7655 
7656 		crypt->ops->set_flags(flags, crypt->priv);
7657 
7658 		break;
7659 
7660 	case IW_AUTH_DROP_UNENCRYPTED:{
7661 			/* HACK:
7662 			 *
7663 			 * wpa_supplicant calls set_wpa_enabled when the driver
7664 			 * is loaded and unloaded, regardless of if WPA is being
7665 			 * used.  No other calls are made which can be used to
7666 			 * determine if encryption will be used or not prior to
7667 			 * association being expected.  If encryption is not being
7668 			 * used, drop_unencrypted is set to false, else true -- we
7669 			 * can use this to determine if the CAP_PRIVACY_ON bit should
7670 			 * be set.
7671 			 */
7672 			struct libipw_security sec = {
7673 				.flags = SEC_ENABLED,
7674 				.enabled = param->value,
7675 			};
7676 			priv->ieee->drop_unencrypted = param->value;
7677 			/* We only change SEC_LEVEL for open mode. Others
7678 			 * are set by ipw_wpa_set_encryption.
7679 			 */
7680 			if (!param->value) {
7681 				sec.flags |= SEC_LEVEL;
7682 				sec.level = SEC_LEVEL_0;
7683 			} else {
7684 				sec.flags |= SEC_LEVEL;
7685 				sec.level = SEC_LEVEL_1;
7686 			}
7687 			if (priv->ieee->set_security)
7688 				priv->ieee->set_security(priv->ieee->dev, &sec);
7689 			break;
7690 		}
7691 
7692 	case IW_AUTH_80211_AUTH_ALG:
7693 		ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7694 		break;
7695 
7696 	case IW_AUTH_WPA_ENABLED:
7697 		ret = ipw2100_wpa_enable(priv, param->value);
7698 		break;
7699 
7700 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7701 		ieee->ieee802_1x = param->value;
7702 		break;
7703 
7704 		//case IW_AUTH_ROAMING_CONTROL:
7705 	case IW_AUTH_PRIVACY_INVOKED:
7706 		ieee->privacy_invoked = param->value;
7707 		break;
7708 
7709 	default:
7710 		return -EOPNOTSUPP;
7711 	}
7712 	return ret;
7713 }
7714 
7715 /* SIOCGIWAUTH */
7716 static int ipw2100_wx_get_auth(struct net_device *dev,
7717 			       struct iw_request_info *info,
7718 			       union iwreq_data *wrqu, char *extra)
7719 {
7720 	struct ipw2100_priv *priv = libipw_priv(dev);
7721 	struct libipw_device *ieee = priv->ieee;
7722 	struct lib80211_crypt_data *crypt;
7723 	struct iw_param *param = &wrqu->param;
7724 
7725 	switch (param->flags & IW_AUTH_INDEX) {
7726 	case IW_AUTH_WPA_VERSION:
7727 	case IW_AUTH_CIPHER_PAIRWISE:
7728 	case IW_AUTH_CIPHER_GROUP:
7729 	case IW_AUTH_KEY_MGMT:
7730 		/*
7731 		 * wpa_supplicant will control these internally
7732 		 */
7733 		break;
7734 
7735 	case IW_AUTH_TKIP_COUNTERMEASURES:
7736 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7737 		if (!crypt || !crypt->ops->get_flags) {
7738 			IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7739 					  "crypt not set!\n");
7740 			break;
7741 		}
7742 
7743 		param->value = (crypt->ops->get_flags(crypt->priv) &
7744 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7745 
7746 		break;
7747 
7748 	case IW_AUTH_DROP_UNENCRYPTED:
7749 		param->value = ieee->drop_unencrypted;
7750 		break;
7751 
7752 	case IW_AUTH_80211_AUTH_ALG:
7753 		param->value = priv->ieee->sec.auth_mode;
7754 		break;
7755 
7756 	case IW_AUTH_WPA_ENABLED:
7757 		param->value = ieee->wpa_enabled;
7758 		break;
7759 
7760 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7761 		param->value = ieee->ieee802_1x;
7762 		break;
7763 
7764 	case IW_AUTH_ROAMING_CONTROL:
7765 	case IW_AUTH_PRIVACY_INVOKED:
7766 		param->value = ieee->privacy_invoked;
7767 		break;
7768 
7769 	default:
7770 		return -EOPNOTSUPP;
7771 	}
7772 	return 0;
7773 }
7774 
7775 /* SIOCSIWENCODEEXT */
7776 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7777 				    struct iw_request_info *info,
7778 				    union iwreq_data *wrqu, char *extra)
7779 {
7780 	struct ipw2100_priv *priv = libipw_priv(dev);
7781 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7782 }
7783 
7784 /* SIOCGIWENCODEEXT */
7785 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7786 				    struct iw_request_info *info,
7787 				    union iwreq_data *wrqu, char *extra)
7788 {
7789 	struct ipw2100_priv *priv = libipw_priv(dev);
7790 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7791 }
7792 
7793 /* SIOCSIWMLME */
7794 static int ipw2100_wx_set_mlme(struct net_device *dev,
7795 			       struct iw_request_info *info,
7796 			       union iwreq_data *wrqu, char *extra)
7797 {
7798 	struct ipw2100_priv *priv = libipw_priv(dev);
7799 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
7800 
7801 	switch (mlme->cmd) {
7802 	case IW_MLME_DEAUTH:
7803 		// silently ignore
7804 		break;
7805 
7806 	case IW_MLME_DISASSOC:
7807 		ipw2100_disassociate_bssid(priv);
7808 		break;
7809 
7810 	default:
7811 		return -EOPNOTSUPP;
7812 	}
7813 	return 0;
7814 }
7815 
7816 /*
7817  *
7818  * IWPRIV handlers
7819  *
7820  */
7821 #ifdef CONFIG_IPW2100_MONITOR
7822 static int ipw2100_wx_set_promisc(struct net_device *dev,
7823 				  struct iw_request_info *info,
7824 				  union iwreq_data *wrqu, char *extra)
7825 {
7826 	struct ipw2100_priv *priv = libipw_priv(dev);
7827 	int *parms = (int *)extra;
7828 	int enable = (parms[0] > 0);
7829 	int err = 0;
7830 
7831 	mutex_lock(&priv->action_mutex);
7832 	if (!(priv->status & STATUS_INITIALIZED)) {
7833 		err = -EIO;
7834 		goto done;
7835 	}
7836 
7837 	if (enable) {
7838 		if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7839 			err = ipw2100_set_channel(priv, parms[1], 0);
7840 			goto done;
7841 		}
7842 		priv->channel = parms[1];
7843 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7844 	} else {
7845 		if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7846 			err = ipw2100_switch_mode(priv, priv->last_mode);
7847 	}
7848       done:
7849 	mutex_unlock(&priv->action_mutex);
7850 	return err;
7851 }
7852 
7853 static int ipw2100_wx_reset(struct net_device *dev,
7854 			    struct iw_request_info *info,
7855 			    union iwreq_data *wrqu, char *extra)
7856 {
7857 	struct ipw2100_priv *priv = libipw_priv(dev);
7858 	if (priv->status & STATUS_INITIALIZED)
7859 		schedule_reset(priv);
7860 	return 0;
7861 }
7862 
7863 #endif
7864 
7865 static int ipw2100_wx_set_powermode(struct net_device *dev,
7866 				    struct iw_request_info *info,
7867 				    union iwreq_data *wrqu, char *extra)
7868 {
7869 	struct ipw2100_priv *priv = libipw_priv(dev);
7870 	int err = 0, mode = *(int *)extra;
7871 
7872 	mutex_lock(&priv->action_mutex);
7873 	if (!(priv->status & STATUS_INITIALIZED)) {
7874 		err = -EIO;
7875 		goto done;
7876 	}
7877 
7878 	if ((mode < 0) || (mode > POWER_MODES))
7879 		mode = IPW_POWER_AUTO;
7880 
7881 	if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7882 		err = ipw2100_set_power_mode(priv, mode);
7883       done:
7884 	mutex_unlock(&priv->action_mutex);
7885 	return err;
7886 }
7887 
7888 #define MAX_POWER_STRING 80
7889 static int ipw2100_wx_get_powermode(struct net_device *dev,
7890 				    struct iw_request_info *info,
7891 				    union iwreq_data *wrqu, char *extra)
7892 {
7893 	/*
7894 	 * This can be called at any time.  No action lock required
7895 	 */
7896 
7897 	struct ipw2100_priv *priv = libipw_priv(dev);
7898 	int level = IPW_POWER_LEVEL(priv->power_mode);
7899 	s32 timeout, period;
7900 
7901 	if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7902 		snprintf(extra, MAX_POWER_STRING,
7903 			 "Power save level: %d (Off)", level);
7904 	} else {
7905 		switch (level) {
7906 		case IPW_POWER_MODE_CAM:
7907 			snprintf(extra, MAX_POWER_STRING,
7908 				 "Power save level: %d (None)", level);
7909 			break;
7910 		case IPW_POWER_AUTO:
7911 			snprintf(extra, MAX_POWER_STRING,
7912 				 "Power save level: %d (Auto)", level);
7913 			break;
7914 		default:
7915 			timeout = timeout_duration[level - 1] / 1000;
7916 			period = period_duration[level - 1] / 1000;
7917 			snprintf(extra, MAX_POWER_STRING,
7918 				 "Power save level: %d "
7919 				 "(Timeout %dms, Period %dms)",
7920 				 level, timeout, period);
7921 		}
7922 	}
7923 
7924 	wrqu->data.length = strlen(extra) + 1;
7925 
7926 	return 0;
7927 }
7928 
7929 static int ipw2100_wx_set_preamble(struct net_device *dev,
7930 				   struct iw_request_info *info,
7931 				   union iwreq_data *wrqu, char *extra)
7932 {
7933 	struct ipw2100_priv *priv = libipw_priv(dev);
7934 	int err, mode = *(int *)extra;
7935 
7936 	mutex_lock(&priv->action_mutex);
7937 	if (!(priv->status & STATUS_INITIALIZED)) {
7938 		err = -EIO;
7939 		goto done;
7940 	}
7941 
7942 	if (mode == 1)
7943 		priv->config |= CFG_LONG_PREAMBLE;
7944 	else if (mode == 0)
7945 		priv->config &= ~CFG_LONG_PREAMBLE;
7946 	else {
7947 		err = -EINVAL;
7948 		goto done;
7949 	}
7950 
7951 	err = ipw2100_system_config(priv, 0);
7952 
7953       done:
7954 	mutex_unlock(&priv->action_mutex);
7955 	return err;
7956 }
7957 
7958 static int ipw2100_wx_get_preamble(struct net_device *dev,
7959 				   struct iw_request_info *info,
7960 				   union iwreq_data *wrqu, char *extra)
7961 {
7962 	/*
7963 	 * This can be called at any time.  No action lock required
7964 	 */
7965 
7966 	struct ipw2100_priv *priv = libipw_priv(dev);
7967 
7968 	if (priv->config & CFG_LONG_PREAMBLE)
7969 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7970 	else
7971 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7972 
7973 	return 0;
7974 }
7975 
7976 #ifdef CONFIG_IPW2100_MONITOR
7977 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7978 				    struct iw_request_info *info,
7979 				    union iwreq_data *wrqu, char *extra)
7980 {
7981 	struct ipw2100_priv *priv = libipw_priv(dev);
7982 	int err, mode = *(int *)extra;
7983 
7984 	mutex_lock(&priv->action_mutex);
7985 	if (!(priv->status & STATUS_INITIALIZED)) {
7986 		err = -EIO;
7987 		goto done;
7988 	}
7989 
7990 	if (mode == 1)
7991 		priv->config |= CFG_CRC_CHECK;
7992 	else if (mode == 0)
7993 		priv->config &= ~CFG_CRC_CHECK;
7994 	else {
7995 		err = -EINVAL;
7996 		goto done;
7997 	}
7998 	err = 0;
7999 
8000       done:
8001 	mutex_unlock(&priv->action_mutex);
8002 	return err;
8003 }
8004 
8005 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8006 				    struct iw_request_info *info,
8007 				    union iwreq_data *wrqu, char *extra)
8008 {
8009 	/*
8010 	 * This can be called at any time.  No action lock required
8011 	 */
8012 
8013 	struct ipw2100_priv *priv = libipw_priv(dev);
8014 
8015 	if (priv->config & CFG_CRC_CHECK)
8016 		snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8017 	else
8018 		snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8019 
8020 	return 0;
8021 }
8022 #endif				/* CONFIG_IPW2100_MONITOR */
8023 
8024 static iw_handler ipw2100_wx_handlers[] = {
8025 	IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8026 	IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8027 	IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8028 	IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8029 	IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8030 	IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8031 	IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8032 	IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8033 	IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8034 	IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8035 	IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8036 	IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8037 	IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8038 	IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8039 	IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8040 	IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8041 	IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8042 	IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8043 	IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8044 	IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8045 	IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8046 	IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8047 	IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8048 	IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8049 	IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8050 	IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8051 	IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8052 	IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8053 	IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8054 	IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8055 	IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8056 	IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8057 	IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8058 	IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8059 	IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8060 };
8061 
8062 #define IPW2100_PRIV_SET_MONITOR	SIOCIWFIRSTPRIV
8063 #define IPW2100_PRIV_RESET		SIOCIWFIRSTPRIV+1
8064 #define IPW2100_PRIV_SET_POWER		SIOCIWFIRSTPRIV+2
8065 #define IPW2100_PRIV_GET_POWER		SIOCIWFIRSTPRIV+3
8066 #define IPW2100_PRIV_SET_LONGPREAMBLE	SIOCIWFIRSTPRIV+4
8067 #define IPW2100_PRIV_GET_LONGPREAMBLE	SIOCIWFIRSTPRIV+5
8068 #define IPW2100_PRIV_SET_CRC_CHECK	SIOCIWFIRSTPRIV+6
8069 #define IPW2100_PRIV_GET_CRC_CHECK	SIOCIWFIRSTPRIV+7
8070 
8071 static const struct iw_priv_args ipw2100_private_args[] = {
8072 
8073 #ifdef CONFIG_IPW2100_MONITOR
8074 	{
8075 	 IPW2100_PRIV_SET_MONITOR,
8076 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8077 	{
8078 	 IPW2100_PRIV_RESET,
8079 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8080 #endif				/* CONFIG_IPW2100_MONITOR */
8081 
8082 	{
8083 	 IPW2100_PRIV_SET_POWER,
8084 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8085 	{
8086 	 IPW2100_PRIV_GET_POWER,
8087 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8088 	 "get_power"},
8089 	{
8090 	 IPW2100_PRIV_SET_LONGPREAMBLE,
8091 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8092 	{
8093 	 IPW2100_PRIV_GET_LONGPREAMBLE,
8094 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8095 #ifdef CONFIG_IPW2100_MONITOR
8096 	{
8097 	 IPW2100_PRIV_SET_CRC_CHECK,
8098 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8099 	{
8100 	 IPW2100_PRIV_GET_CRC_CHECK,
8101 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8102 #endif				/* CONFIG_IPW2100_MONITOR */
8103 };
8104 
8105 static iw_handler ipw2100_private_handler[] = {
8106 #ifdef CONFIG_IPW2100_MONITOR
8107 	ipw2100_wx_set_promisc,
8108 	ipw2100_wx_reset,
8109 #else				/* CONFIG_IPW2100_MONITOR */
8110 	NULL,
8111 	NULL,
8112 #endif				/* CONFIG_IPW2100_MONITOR */
8113 	ipw2100_wx_set_powermode,
8114 	ipw2100_wx_get_powermode,
8115 	ipw2100_wx_set_preamble,
8116 	ipw2100_wx_get_preamble,
8117 #ifdef CONFIG_IPW2100_MONITOR
8118 	ipw2100_wx_set_crc_check,
8119 	ipw2100_wx_get_crc_check,
8120 #else				/* CONFIG_IPW2100_MONITOR */
8121 	NULL,
8122 	NULL,
8123 #endif				/* CONFIG_IPW2100_MONITOR */
8124 };
8125 
8126 /*
8127  * Get wireless statistics.
8128  * Called by /proc/net/wireless
8129  * Also called by SIOCGIWSTATS
8130  */
8131 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8132 {
8133 	enum {
8134 		POOR = 30,
8135 		FAIR = 60,
8136 		GOOD = 80,
8137 		VERY_GOOD = 90,
8138 		EXCELLENT = 95,
8139 		PERFECT = 100
8140 	};
8141 	int rssi_qual;
8142 	int tx_qual;
8143 	int beacon_qual;
8144 	int quality;
8145 
8146 	struct ipw2100_priv *priv = libipw_priv(dev);
8147 	struct iw_statistics *wstats;
8148 	u32 rssi, tx_retries, missed_beacons, tx_failures;
8149 	u32 ord_len = sizeof(u32);
8150 
8151 	if (!priv)
8152 		return (struct iw_statistics *)NULL;
8153 
8154 	wstats = &priv->wstats;
8155 
8156 	/* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8157 	 * ipw2100_wx_wireless_stats seems to be called before fw is
8158 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8159 	 * and associated; if not associcated, the values are all meaningless
8160 	 * anyway, so set them all to NULL and INVALID */
8161 	if (!(priv->status & STATUS_ASSOCIATED)) {
8162 		wstats->miss.beacon = 0;
8163 		wstats->discard.retries = 0;
8164 		wstats->qual.qual = 0;
8165 		wstats->qual.level = 0;
8166 		wstats->qual.noise = 0;
8167 		wstats->qual.updated = 7;
8168 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8169 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8170 		return wstats;
8171 	}
8172 
8173 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8174 				&missed_beacons, &ord_len))
8175 		goto fail_get_ordinal;
8176 
8177 	/* If we don't have a connection the quality and level is 0 */
8178 	if (!(priv->status & STATUS_ASSOCIATED)) {
8179 		wstats->qual.qual = 0;
8180 		wstats->qual.level = 0;
8181 	} else {
8182 		if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8183 					&rssi, &ord_len))
8184 			goto fail_get_ordinal;
8185 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8186 		if (rssi < 10)
8187 			rssi_qual = rssi * POOR / 10;
8188 		else if (rssi < 15)
8189 			rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8190 		else if (rssi < 20)
8191 			rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8192 		else if (rssi < 30)
8193 			rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8194 			    10 + GOOD;
8195 		else
8196 			rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8197 			    10 + VERY_GOOD;
8198 
8199 		if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8200 					&tx_retries, &ord_len))
8201 			goto fail_get_ordinal;
8202 
8203 		if (tx_retries > 75)
8204 			tx_qual = (90 - tx_retries) * POOR / 15;
8205 		else if (tx_retries > 70)
8206 			tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8207 		else if (tx_retries > 65)
8208 			tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8209 		else if (tx_retries > 50)
8210 			tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8211 			    15 + GOOD;
8212 		else
8213 			tx_qual = (50 - tx_retries) *
8214 			    (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8215 
8216 		if (missed_beacons > 50)
8217 			beacon_qual = (60 - missed_beacons) * POOR / 10;
8218 		else if (missed_beacons > 40)
8219 			beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8220 			    10 + POOR;
8221 		else if (missed_beacons > 32)
8222 			beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8223 			    18 + FAIR;
8224 		else if (missed_beacons > 20)
8225 			beacon_qual = (32 - missed_beacons) *
8226 			    (VERY_GOOD - GOOD) / 20 + GOOD;
8227 		else
8228 			beacon_qual = (20 - missed_beacons) *
8229 			    (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8230 
8231 		quality = min(tx_qual, rssi_qual);
8232 		quality = min(beacon_qual, quality);
8233 
8234 #ifdef CONFIG_IPW2100_DEBUG
8235 		if (beacon_qual == quality)
8236 			IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8237 		else if (tx_qual == quality)
8238 			IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8239 		else if (quality != 100)
8240 			IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8241 		else
8242 			IPW_DEBUG_WX("Quality not clamped.\n");
8243 #endif
8244 
8245 		wstats->qual.qual = quality;
8246 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8247 	}
8248 
8249 	wstats->qual.noise = 0;
8250 	wstats->qual.updated = 7;
8251 	wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8252 
8253 	/* FIXME: this is percent and not a # */
8254 	wstats->miss.beacon = missed_beacons;
8255 
8256 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8257 				&tx_failures, &ord_len))
8258 		goto fail_get_ordinal;
8259 	wstats->discard.retries = tx_failures;
8260 
8261 	return wstats;
8262 
8263       fail_get_ordinal:
8264 	IPW_DEBUG_WX("failed querying ordinals.\n");
8265 
8266 	return (struct iw_statistics *)NULL;
8267 }
8268 
8269 static const struct iw_handler_def ipw2100_wx_handler_def = {
8270 	.standard = ipw2100_wx_handlers,
8271 	.num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8272 	.num_private = ARRAY_SIZE(ipw2100_private_handler),
8273 	.num_private_args = ARRAY_SIZE(ipw2100_private_args),
8274 	.private = (iw_handler *) ipw2100_private_handler,
8275 	.private_args = (struct iw_priv_args *)ipw2100_private_args,
8276 	.get_wireless_stats = ipw2100_wx_wireless_stats,
8277 };
8278 
8279 static void ipw2100_wx_event_work(struct work_struct *work)
8280 {
8281 	struct ipw2100_priv *priv =
8282 		container_of(work, struct ipw2100_priv, wx_event_work.work);
8283 	union iwreq_data wrqu;
8284 	unsigned int len = ETH_ALEN;
8285 
8286 	if (priv->status & STATUS_STOPPING)
8287 		return;
8288 
8289 	mutex_lock(&priv->action_mutex);
8290 
8291 	IPW_DEBUG_WX("enter\n");
8292 
8293 	mutex_unlock(&priv->action_mutex);
8294 
8295 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8296 
8297 	/* Fetch BSSID from the hardware */
8298 	if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8299 	    priv->status & STATUS_RF_KILL_MASK ||
8300 	    ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8301 				&priv->bssid, &len)) {
8302 		eth_zero_addr(wrqu.ap_addr.sa_data);
8303 	} else {
8304 		/* We now have the BSSID, so can finish setting to the full
8305 		 * associated state */
8306 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8307 		memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8308 		priv->status &= ~STATUS_ASSOCIATING;
8309 		priv->status |= STATUS_ASSOCIATED;
8310 		netif_carrier_on(priv->net_dev);
8311 		netif_wake_queue(priv->net_dev);
8312 	}
8313 
8314 	if (!(priv->status & STATUS_ASSOCIATED)) {
8315 		IPW_DEBUG_WX("Configuring ESSID\n");
8316 		mutex_lock(&priv->action_mutex);
8317 		/* This is a disassociation event, so kick the firmware to
8318 		 * look for another AP */
8319 		if (priv->config & CFG_STATIC_ESSID)
8320 			ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8321 					  0);
8322 		else
8323 			ipw2100_set_essid(priv, NULL, 0, 0);
8324 		mutex_unlock(&priv->action_mutex);
8325 	}
8326 
8327 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8328 }
8329 
8330 #define IPW2100_FW_MAJOR_VERSION 1
8331 #define IPW2100_FW_MINOR_VERSION 3
8332 
8333 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8334 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8335 
8336 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8337                              IPW2100_FW_MAJOR_VERSION)
8338 
8339 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8340 "." __stringify(IPW2100_FW_MINOR_VERSION)
8341 
8342 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8343 
8344 /*
8345 
8346 BINARY FIRMWARE HEADER FORMAT
8347 
8348 offset      length   desc
8349 0           2        version
8350 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8351 4           4        fw_len
8352 8           4        uc_len
8353 C           fw_len   firmware data
8354 12 + fw_len uc_len   microcode data
8355 
8356 */
8357 
8358 struct ipw2100_fw_header {
8359 	short version;
8360 	short mode;
8361 	unsigned int fw_size;
8362 	unsigned int uc_size;
8363 } __packed;
8364 
8365 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8366 {
8367 	struct ipw2100_fw_header *h =
8368 	    (struct ipw2100_fw_header *)fw->fw_entry->data;
8369 
8370 	if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8371 		printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8372 		       "(detected version id of %u). "
8373 		       "See Documentation/networking/README.ipw2100\n",
8374 		       h->version);
8375 		return 1;
8376 	}
8377 
8378 	fw->version = h->version;
8379 	fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8380 	fw->fw.size = h->fw_size;
8381 	fw->uc.data = fw->fw.data + h->fw_size;
8382 	fw->uc.size = h->uc_size;
8383 
8384 	return 0;
8385 }
8386 
8387 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8388 				struct ipw2100_fw *fw)
8389 {
8390 	char *fw_name;
8391 	int rc;
8392 
8393 	IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8394 		       priv->net_dev->name);
8395 
8396 	switch (priv->ieee->iw_mode) {
8397 	case IW_MODE_ADHOC:
8398 		fw_name = IPW2100_FW_NAME("-i");
8399 		break;
8400 #ifdef CONFIG_IPW2100_MONITOR
8401 	case IW_MODE_MONITOR:
8402 		fw_name = IPW2100_FW_NAME("-p");
8403 		break;
8404 #endif
8405 	case IW_MODE_INFRA:
8406 	default:
8407 		fw_name = IPW2100_FW_NAME("");
8408 		break;
8409 	}
8410 
8411 	rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8412 
8413 	if (rc < 0) {
8414 		printk(KERN_ERR DRV_NAME ": "
8415 		       "%s: Firmware '%s' not available or load failed.\n",
8416 		       priv->net_dev->name, fw_name);
8417 		return rc;
8418 	}
8419 	IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8420 		       fw->fw_entry->size);
8421 
8422 	ipw2100_mod_firmware_load(fw);
8423 
8424 	return 0;
8425 }
8426 
8427 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8428 #ifdef CONFIG_IPW2100_MONITOR
8429 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8430 #endif
8431 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8432 
8433 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8434 				     struct ipw2100_fw *fw)
8435 {
8436 	fw->version = 0;
8437 	release_firmware(fw->fw_entry);
8438 	fw->fw_entry = NULL;
8439 }
8440 
8441 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8442 				 size_t max)
8443 {
8444 	char ver[MAX_FW_VERSION_LEN];
8445 	u32 len = MAX_FW_VERSION_LEN;
8446 	u32 tmp;
8447 	int i;
8448 	/* firmware version is an ascii string (max len of 14) */
8449 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8450 		return -EIO;
8451 	tmp = max;
8452 	if (len >= max)
8453 		len = max - 1;
8454 	for (i = 0; i < len; i++)
8455 		buf[i] = ver[i];
8456 	buf[i] = '\0';
8457 	return tmp;
8458 }
8459 
8460 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8461 				    size_t max)
8462 {
8463 	u32 ver;
8464 	u32 len = sizeof(ver);
8465 	/* microcode version is a 32 bit integer */
8466 	if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8467 		return -EIO;
8468 	return snprintf(buf, max, "%08X", ver);
8469 }
8470 
8471 /*
8472  * On exit, the firmware will have been freed from the fw list
8473  */
8474 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8475 {
8476 	/* firmware is constructed of N contiguous entries, each entry is
8477 	 * structured as:
8478 	 *
8479 	 * offset    sie         desc
8480 	 * 0         4           address to write to
8481 	 * 4         2           length of data run
8482 	 * 6         length      data
8483 	 */
8484 	unsigned int addr;
8485 	unsigned short len;
8486 
8487 	const unsigned char *firmware_data = fw->fw.data;
8488 	unsigned int firmware_data_left = fw->fw.size;
8489 
8490 	while (firmware_data_left > 0) {
8491 		addr = *(u32 *) (firmware_data);
8492 		firmware_data += 4;
8493 		firmware_data_left -= 4;
8494 
8495 		len = *(u16 *) (firmware_data);
8496 		firmware_data += 2;
8497 		firmware_data_left -= 2;
8498 
8499 		if (len > 32) {
8500 			printk(KERN_ERR DRV_NAME ": "
8501 			       "Invalid firmware run-length of %d bytes\n",
8502 			       len);
8503 			return -EINVAL;
8504 		}
8505 
8506 		write_nic_memory(priv->net_dev, addr, len, firmware_data);
8507 		firmware_data += len;
8508 		firmware_data_left -= len;
8509 	}
8510 
8511 	return 0;
8512 }
8513 
8514 struct symbol_alive_response {
8515 	u8 cmd_id;
8516 	u8 seq_num;
8517 	u8 ucode_rev;
8518 	u8 eeprom_valid;
8519 	u16 valid_flags;
8520 	u8 IEEE_addr[6];
8521 	u16 flags;
8522 	u16 pcb_rev;
8523 	u16 clock_settle_time;	// 1us LSB
8524 	u16 powerup_settle_time;	// 1us LSB
8525 	u16 hop_settle_time;	// 1us LSB
8526 	u8 date[3];		// month, day, year
8527 	u8 time[2];		// hours, minutes
8528 	u8 ucode_valid;
8529 };
8530 
8531 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8532 				  struct ipw2100_fw *fw)
8533 {
8534 	struct net_device *dev = priv->net_dev;
8535 	const unsigned char *microcode_data = fw->uc.data;
8536 	unsigned int microcode_data_left = fw->uc.size;
8537 	void __iomem *reg = priv->ioaddr;
8538 
8539 	struct symbol_alive_response response;
8540 	int i, j;
8541 	u8 data;
8542 
8543 	/* Symbol control */
8544 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8545 	readl(reg);
8546 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8547 	readl(reg);
8548 
8549 	/* HW config */
8550 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8551 	readl(reg);
8552 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8553 	readl(reg);
8554 
8555 	/* EN_CS_ACCESS bit to reset control store pointer */
8556 	write_nic_byte(dev, 0x210000, 0x40);
8557 	readl(reg);
8558 	write_nic_byte(dev, 0x210000, 0x0);
8559 	readl(reg);
8560 	write_nic_byte(dev, 0x210000, 0x40);
8561 	readl(reg);
8562 
8563 	/* copy microcode from buffer into Symbol */
8564 
8565 	while (microcode_data_left > 0) {
8566 		write_nic_byte(dev, 0x210010, *microcode_data++);
8567 		write_nic_byte(dev, 0x210010, *microcode_data++);
8568 		microcode_data_left -= 2;
8569 	}
8570 
8571 	/* EN_CS_ACCESS bit to reset the control store pointer */
8572 	write_nic_byte(dev, 0x210000, 0x0);
8573 	readl(reg);
8574 
8575 	/* Enable System (Reg 0)
8576 	 * first enable causes garbage in RX FIFO */
8577 	write_nic_byte(dev, 0x210000, 0x0);
8578 	readl(reg);
8579 	write_nic_byte(dev, 0x210000, 0x80);
8580 	readl(reg);
8581 
8582 	/* Reset External Baseband Reg */
8583 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8584 	readl(reg);
8585 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8586 	readl(reg);
8587 
8588 	/* HW Config (Reg 5) */
8589 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8590 	readl(reg);
8591 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8592 	readl(reg);
8593 
8594 	/* Enable System (Reg 0)
8595 	 * second enable should be OK */
8596 	write_nic_byte(dev, 0x210000, 0x00);	// clear enable system
8597 	readl(reg);
8598 	write_nic_byte(dev, 0x210000, 0x80);	// set enable system
8599 
8600 	/* check Symbol is enabled - upped this from 5 as it wasn't always
8601 	 * catching the update */
8602 	for (i = 0; i < 10; i++) {
8603 		udelay(10);
8604 
8605 		/* check Dino is enabled bit */
8606 		read_nic_byte(dev, 0x210000, &data);
8607 		if (data & 0x1)
8608 			break;
8609 	}
8610 
8611 	if (i == 10) {
8612 		printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8613 		       dev->name);
8614 		return -EIO;
8615 	}
8616 
8617 	/* Get Symbol alive response */
8618 	for (i = 0; i < 30; i++) {
8619 		/* Read alive response structure */
8620 		for (j = 0;
8621 		     j < (sizeof(struct symbol_alive_response) >> 1); j++)
8622 			read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8623 
8624 		if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8625 			break;
8626 		udelay(10);
8627 	}
8628 
8629 	if (i == 30) {
8630 		printk(KERN_ERR DRV_NAME
8631 		       ": %s: No response from Symbol - hw not alive\n",
8632 		       dev->name);
8633 		printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8634 		return -EIO;
8635 	}
8636 
8637 	return 0;
8638 }
8639