1 /****************************************************************************** 2 3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 4 5 This program is free software; you can redistribute it and/or modify it 6 under the terms of version 2 of the GNU General Public License as 7 published by the Free Software Foundation. 8 9 This program is distributed in the hope that it will be useful, but WITHOUT 10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 more details. 13 14 You should have received a copy of the GNU General Public License along with 15 this program; if not, write to the Free Software Foundation, Inc., 59 16 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 18 The full GNU General Public License is included in this distribution in the 19 file called LICENSE. 20 21 Contact Information: 22 Intel Linux Wireless <ilw@linux.intel.com> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 Portions of this file are based on the sample_* files provided by Wireless 26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes 27 <jt@hpl.hp.com> 28 29 Portions of this file are based on the Host AP project, 30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen 31 <j@w1.fi> 32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi> 33 34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and 35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c 36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox 37 38 ******************************************************************************/ 39 /* 40 41 Initial driver on which this is based was developed by Janusz Gorycki, 42 Maciej Urbaniak, and Maciej Sosnowski. 43 44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak. 45 46 Theory of Operation 47 48 Tx - Commands and Data 49 50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs) 51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being 52 sent to the firmware as well as the length of the data. 53 54 The host writes to the TBD queue at the WRITE index. The WRITE index points 55 to the _next_ packet to be written and is advanced when after the TBD has been 56 filled. 57 58 The firmware pulls from the TBD queue at the READ index. The READ index points 59 to the currently being read entry, and is advanced once the firmware is 60 done with a packet. 61 62 When data is sent to the firmware, the first TBD is used to indicate to the 63 firmware if a Command or Data is being sent. If it is Command, all of the 64 command information is contained within the physical address referred to by the 65 TBD. If it is Data, the first TBD indicates the type of data packet, number 66 of fragments, etc. The next TBD then refers to the actual packet location. 67 68 The Tx flow cycle is as follows: 69 70 1) ipw2100_tx() is called by kernel with SKB to transmit 71 2) Packet is move from the tx_free_list and appended to the transmit pending 72 list (tx_pend_list) 73 3) work is scheduled to move pending packets into the shared circular queue. 74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped 75 to a physical address. That address is entered into a TBD. Two TBDs are 76 filled out. The first indicating a data packet, the second referring to the 77 actual payload data. 78 5) the packet is removed from tx_pend_list and placed on the end of the 79 firmware pending list (fw_pend_list) 80 6) firmware is notified that the WRITE index has 81 7) Once the firmware has processed the TBD, INTA is triggered. 82 8) For each Tx interrupt received from the firmware, the READ index is checked 83 to see which TBDs are done being processed. 84 9) For each TBD that has been processed, the ISR pulls the oldest packet 85 from the fw_pend_list. 86 10)The packet structure contained in the fw_pend_list is then used 87 to unmap the DMA address and to free the SKB originally passed to the driver 88 from the kernel. 89 11)The packet structure is placed onto the tx_free_list 90 91 The above steps are the same for commands, only the msg_free_list/msg_pend_list 92 are used instead of tx_free_list/tx_pend_list 93 94 ... 95 96 Critical Sections / Locking : 97 98 There are two locks utilized. The first is the low level lock (priv->low_lock) 99 that protects the following: 100 101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows: 102 103 tx_free_list : Holds pre-allocated Tx buffers. 104 TAIL modified in __ipw2100_tx_process() 105 HEAD modified in ipw2100_tx() 106 107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring 108 TAIL modified ipw2100_tx() 109 HEAD modified by ipw2100_tx_send_data() 110 111 msg_free_list : Holds pre-allocated Msg (Command) buffers 112 TAIL modified in __ipw2100_tx_process() 113 HEAD modified in ipw2100_hw_send_command() 114 115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring 116 TAIL modified in ipw2100_hw_send_command() 117 HEAD modified in ipw2100_tx_send_commands() 118 119 The flow of data on the TX side is as follows: 120 121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST 122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST 123 124 The methods that work on the TBD ring are protected via priv->low_lock. 125 126 - The internal data state of the device itself 127 - Access to the firmware read/write indexes for the BD queues 128 and associated logic 129 130 All external entry functions are locked with the priv->action_lock to ensure 131 that only one external action is invoked at a time. 132 133 134 */ 135 136 #include <linux/compiler.h> 137 #include <linux/errno.h> 138 #include <linux/if_arp.h> 139 #include <linux/in6.h> 140 #include <linux/in.h> 141 #include <linux/ip.h> 142 #include <linux/kernel.h> 143 #include <linux/kmod.h> 144 #include <linux/module.h> 145 #include <linux/netdevice.h> 146 #include <linux/ethtool.h> 147 #include <linux/pci.h> 148 #include <linux/dma-mapping.h> 149 #include <linux/proc_fs.h> 150 #include <linux/skbuff.h> 151 #include <linux/uaccess.h> 152 #include <asm/io.h> 153 #include <linux/fs.h> 154 #include <linux/mm.h> 155 #include <linux/slab.h> 156 #include <linux/unistd.h> 157 #include <linux/stringify.h> 158 #include <linux/tcp.h> 159 #include <linux/types.h> 160 #include <linux/time.h> 161 #include <linux/firmware.h> 162 #include <linux/acpi.h> 163 #include <linux/ctype.h> 164 #include <linux/pm_qos.h> 165 166 #include <net/lib80211.h> 167 168 #include "ipw2100.h" 169 #include "ipw.h" 170 171 #define IPW2100_VERSION "git-1.2.2" 172 173 #define DRV_NAME "ipw2100" 174 #define DRV_VERSION IPW2100_VERSION 175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver" 176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 177 178 static struct pm_qos_request ipw2100_pm_qos_req; 179 180 /* Debugging stuff */ 181 #ifdef CONFIG_IPW2100_DEBUG 182 #define IPW2100_RX_DEBUG /* Reception debugging */ 183 #endif 184 185 MODULE_DESCRIPTION(DRV_DESCRIPTION); 186 MODULE_VERSION(DRV_VERSION); 187 MODULE_AUTHOR(DRV_COPYRIGHT); 188 MODULE_LICENSE("GPL"); 189 190 static int debug = 0; 191 static int network_mode = 0; 192 static int channel = 0; 193 static int associate = 0; 194 static int disable = 0; 195 #ifdef CONFIG_PM 196 static struct ipw2100_fw ipw2100_firmware; 197 #endif 198 199 #include <linux/moduleparam.h> 200 module_param(debug, int, 0444); 201 module_param_named(mode, network_mode, int, 0444); 202 module_param(channel, int, 0444); 203 module_param(associate, int, 0444); 204 module_param(disable, int, 0444); 205 206 MODULE_PARM_DESC(debug, "debug level"); 207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); 208 MODULE_PARM_DESC(channel, "channel"); 209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); 210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); 211 212 static u32 ipw2100_debug_level = IPW_DL_NONE; 213 214 #ifdef CONFIG_IPW2100_DEBUG 215 #define IPW_DEBUG(level, message...) \ 216 do { \ 217 if (ipw2100_debug_level & (level)) { \ 218 printk(KERN_DEBUG "ipw2100: %c %s ", \ 219 in_interrupt() ? 'I' : 'U', __func__); \ 220 printk(message); \ 221 } \ 222 } while (0) 223 #else 224 #define IPW_DEBUG(level, message...) do {} while (0) 225 #endif /* CONFIG_IPW2100_DEBUG */ 226 227 #ifdef CONFIG_IPW2100_DEBUG 228 static const char *command_types[] = { 229 "undefined", 230 "unused", /* HOST_ATTENTION */ 231 "HOST_COMPLETE", 232 "unused", /* SLEEP */ 233 "unused", /* HOST_POWER_DOWN */ 234 "unused", 235 "SYSTEM_CONFIG", 236 "unused", /* SET_IMR */ 237 "SSID", 238 "MANDATORY_BSSID", 239 "AUTHENTICATION_TYPE", 240 "ADAPTER_ADDRESS", 241 "PORT_TYPE", 242 "INTERNATIONAL_MODE", 243 "CHANNEL", 244 "RTS_THRESHOLD", 245 "FRAG_THRESHOLD", 246 "POWER_MODE", 247 "TX_RATES", 248 "BASIC_TX_RATES", 249 "WEP_KEY_INFO", 250 "unused", 251 "unused", 252 "unused", 253 "unused", 254 "WEP_KEY_INDEX", 255 "WEP_FLAGS", 256 "ADD_MULTICAST", 257 "CLEAR_ALL_MULTICAST", 258 "BEACON_INTERVAL", 259 "ATIM_WINDOW", 260 "CLEAR_STATISTICS", 261 "undefined", 262 "undefined", 263 "undefined", 264 "undefined", 265 "TX_POWER_INDEX", 266 "undefined", 267 "undefined", 268 "undefined", 269 "undefined", 270 "undefined", 271 "undefined", 272 "BROADCAST_SCAN", 273 "CARD_DISABLE", 274 "PREFERRED_BSSID", 275 "SET_SCAN_OPTIONS", 276 "SCAN_DWELL_TIME", 277 "SWEEP_TABLE", 278 "AP_OR_STATION_TABLE", 279 "GROUP_ORDINALS", 280 "SHORT_RETRY_LIMIT", 281 "LONG_RETRY_LIMIT", 282 "unused", /* SAVE_CALIBRATION */ 283 "unused", /* RESTORE_CALIBRATION */ 284 "undefined", 285 "undefined", 286 "undefined", 287 "HOST_PRE_POWER_DOWN", 288 "unused", /* HOST_INTERRUPT_COALESCING */ 289 "undefined", 290 "CARD_DISABLE_PHY_OFF", 291 "MSDU_TX_RATES", 292 "undefined", 293 "SET_STATION_STAT_BITS", 294 "CLEAR_STATIONS_STAT_BITS", 295 "LEAP_ROGUE_MODE", 296 "SET_SECURITY_INFORMATION", 297 "DISASSOCIATION_BSSID", 298 "SET_WPA_ASS_IE" 299 }; 300 #endif 301 302 static const long ipw2100_frequencies[] = { 303 2412, 2417, 2422, 2427, 304 2432, 2437, 2442, 2447, 305 2452, 2457, 2462, 2467, 306 2472, 2484 307 }; 308 309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies) 310 311 static struct ieee80211_rate ipw2100_bg_rates[] = { 312 { .bitrate = 10 }, 313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 316 }; 317 318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates) 319 320 /* Pre-decl until we get the code solid and then we can clean it up */ 321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv); 322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv); 323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv); 324 325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv); 326 static void ipw2100_queues_free(struct ipw2100_priv *priv); 327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv); 328 329 static int ipw2100_fw_download(struct ipw2100_priv *priv, 330 struct ipw2100_fw *fw); 331 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 332 struct ipw2100_fw *fw); 333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 334 size_t max); 335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 336 size_t max); 337 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 338 struct ipw2100_fw *fw); 339 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 340 struct ipw2100_fw *fw); 341 static void ipw2100_wx_event_work(struct work_struct *work); 342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev); 343 static const struct iw_handler_def ipw2100_wx_handler_def; 344 345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val) 346 { 347 struct ipw2100_priv *priv = libipw_priv(dev); 348 349 *val = ioread32(priv->ioaddr + reg); 350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val); 351 } 352 353 static inline void write_register(struct net_device *dev, u32 reg, u32 val) 354 { 355 struct ipw2100_priv *priv = libipw_priv(dev); 356 357 iowrite32(val, priv->ioaddr + reg); 358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val); 359 } 360 361 static inline void read_register_word(struct net_device *dev, u32 reg, 362 u16 * val) 363 { 364 struct ipw2100_priv *priv = libipw_priv(dev); 365 366 *val = ioread16(priv->ioaddr + reg); 367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val); 368 } 369 370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val) 371 { 372 struct ipw2100_priv *priv = libipw_priv(dev); 373 374 *val = ioread8(priv->ioaddr + reg); 375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val); 376 } 377 378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val) 379 { 380 struct ipw2100_priv *priv = libipw_priv(dev); 381 382 iowrite16(val, priv->ioaddr + reg); 383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val); 384 } 385 386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val) 387 { 388 struct ipw2100_priv *priv = libipw_priv(dev); 389 390 iowrite8(val, priv->ioaddr + reg); 391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val); 392 } 393 394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val) 395 { 396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 397 addr & IPW_REG_INDIRECT_ADDR_MASK); 398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 399 } 400 401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val) 402 { 403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 404 addr & IPW_REG_INDIRECT_ADDR_MASK); 405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 406 } 407 408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val) 409 { 410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 411 addr & IPW_REG_INDIRECT_ADDR_MASK); 412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 413 } 414 415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val) 416 { 417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 418 addr & IPW_REG_INDIRECT_ADDR_MASK); 419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 420 } 421 422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val) 423 { 424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 425 addr & IPW_REG_INDIRECT_ADDR_MASK); 426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 427 } 428 429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val) 430 { 431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 432 addr & IPW_REG_INDIRECT_ADDR_MASK); 433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 434 } 435 436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr) 437 { 438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, 439 addr & IPW_REG_INDIRECT_ADDR_MASK); 440 } 441 442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val) 443 { 444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val); 445 } 446 447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len, 448 const u8 * buf) 449 { 450 u32 aligned_addr; 451 u32 aligned_len; 452 u32 dif_len; 453 u32 i; 454 455 /* read first nibble byte by byte */ 456 aligned_addr = addr & (~0x3); 457 dif_len = addr - aligned_addr; 458 if (dif_len) { 459 /* Start reading at aligned_addr + dif_len */ 460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 461 aligned_addr); 462 for (i = dif_len; i < 4; i++, buf++) 463 write_register_byte(dev, 464 IPW_REG_INDIRECT_ACCESS_DATA + i, 465 *buf); 466 467 len -= dif_len; 468 aligned_addr += 4; 469 } 470 471 /* read DWs through autoincrement registers */ 472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 473 aligned_len = len & (~0x3); 474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf); 476 477 /* copy the last nibble */ 478 dif_len = len - aligned_len; 479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 480 for (i = 0; i < dif_len; i++, buf++) 481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, 482 *buf); 483 } 484 485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len, 486 u8 * buf) 487 { 488 u32 aligned_addr; 489 u32 aligned_len; 490 u32 dif_len; 491 u32 i; 492 493 /* read first nibble byte by byte */ 494 aligned_addr = addr & (~0x3); 495 dif_len = addr - aligned_addr; 496 if (dif_len) { 497 /* Start reading at aligned_addr + dif_len */ 498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 499 aligned_addr); 500 for (i = dif_len; i < 4; i++, buf++) 501 read_register_byte(dev, 502 IPW_REG_INDIRECT_ACCESS_DATA + i, 503 buf); 504 505 len -= dif_len; 506 aligned_addr += 4; 507 } 508 509 /* read DWs through autoincrement registers */ 510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 511 aligned_len = len & (~0x3); 512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf); 514 515 /* copy the last nibble */ 516 dif_len = len - aligned_len; 517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 518 for (i = 0; i < dif_len; i++, buf++) 519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf); 520 } 521 522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev) 523 { 524 u32 dbg; 525 526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg); 527 528 return dbg == IPW_DATA_DOA_DEBUG_VALUE; 529 } 530 531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord, 532 void *val, u32 * len) 533 { 534 struct ipw2100_ordinals *ordinals = &priv->ordinals; 535 u32 addr; 536 u32 field_info; 537 u16 field_len; 538 u16 field_count; 539 u32 total_length; 540 541 if (ordinals->table1_addr == 0) { 542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals " 543 "before they have been loaded.\n"); 544 return -EINVAL; 545 } 546 547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) { 549 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 550 551 printk(KERN_WARNING DRV_NAME 552 ": ordinal buffer length too small, need %zd\n", 553 IPW_ORD_TAB_1_ENTRY_SIZE); 554 555 return -EINVAL; 556 } 557 558 read_nic_dword(priv->net_dev, 559 ordinals->table1_addr + (ord << 2), &addr); 560 read_nic_dword(priv->net_dev, addr, val); 561 562 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 563 564 return 0; 565 } 566 567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) { 568 569 ord -= IPW_START_ORD_TAB_2; 570 571 /* get the address of statistic */ 572 read_nic_dword(priv->net_dev, 573 ordinals->table2_addr + (ord << 3), &addr); 574 575 /* get the second DW of statistics ; 576 * two 16-bit words - first is length, second is count */ 577 read_nic_dword(priv->net_dev, 578 ordinals->table2_addr + (ord << 3) + sizeof(u32), 579 &field_info); 580 581 /* get each entry length */ 582 field_len = *((u16 *) & field_info); 583 584 /* get number of entries */ 585 field_count = *(((u16 *) & field_info) + 1); 586 587 /* abort if no enough memory */ 588 total_length = field_len * field_count; 589 if (total_length > *len) { 590 *len = total_length; 591 return -EINVAL; 592 } 593 594 *len = total_length; 595 if (!total_length) 596 return 0; 597 598 /* read the ordinal data from the SRAM */ 599 read_nic_memory(priv->net_dev, addr, total_length, val); 600 601 return 0; 602 } 603 604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor " 605 "in table 2\n", ord); 606 607 return -EINVAL; 608 } 609 610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val, 611 u32 * len) 612 { 613 struct ipw2100_ordinals *ordinals = &priv->ordinals; 614 u32 addr; 615 616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) { 618 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 619 IPW_DEBUG_INFO("wrong size\n"); 620 return -EINVAL; 621 } 622 623 read_nic_dword(priv->net_dev, 624 ordinals->table1_addr + (ord << 2), &addr); 625 626 write_nic_dword(priv->net_dev, addr, *val); 627 628 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 629 630 return 0; 631 } 632 633 IPW_DEBUG_INFO("wrong table\n"); 634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) 635 return -EINVAL; 636 637 return -EINVAL; 638 } 639 640 static char *snprint_line(char *buf, size_t count, 641 const u8 * data, u32 len, u32 ofs) 642 { 643 int out, i, j, l; 644 char c; 645 646 out = snprintf(buf, count, "%08X", ofs); 647 648 for (l = 0, i = 0; i < 2; i++) { 649 out += snprintf(buf + out, count - out, " "); 650 for (j = 0; j < 8 && l < len; j++, l++) 651 out += snprintf(buf + out, count - out, "%02X ", 652 data[(i * 8 + j)]); 653 for (; j < 8; j++) 654 out += snprintf(buf + out, count - out, " "); 655 } 656 657 out += snprintf(buf + out, count - out, " "); 658 for (l = 0, i = 0; i < 2; i++) { 659 out += snprintf(buf + out, count - out, " "); 660 for (j = 0; j < 8 && l < len; j++, l++) { 661 c = data[(i * 8 + j)]; 662 if (!isascii(c) || !isprint(c)) 663 c = '.'; 664 665 out += snprintf(buf + out, count - out, "%c", c); 666 } 667 668 for (; j < 8; j++) 669 out += snprintf(buf + out, count - out, " "); 670 } 671 672 return buf; 673 } 674 675 static void printk_buf(int level, const u8 * data, u32 len) 676 { 677 char line[81]; 678 u32 ofs = 0; 679 if (!(ipw2100_debug_level & level)) 680 return; 681 682 while (len) { 683 printk(KERN_DEBUG "%s\n", 684 snprint_line(line, sizeof(line), &data[ofs], 685 min(len, 16U), ofs)); 686 ofs += 16; 687 len -= min(len, 16U); 688 } 689 } 690 691 #define MAX_RESET_BACKOFF 10 692 693 static void schedule_reset(struct ipw2100_priv *priv) 694 { 695 unsigned long now = get_seconds(); 696 697 /* If we haven't received a reset request within the backoff period, 698 * then we can reset the backoff interval so this reset occurs 699 * immediately */ 700 if (priv->reset_backoff && 701 (now - priv->last_reset > priv->reset_backoff)) 702 priv->reset_backoff = 0; 703 704 priv->last_reset = get_seconds(); 705 706 if (!(priv->status & STATUS_RESET_PENDING)) { 707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n", 708 priv->net_dev->name, priv->reset_backoff); 709 netif_carrier_off(priv->net_dev); 710 netif_stop_queue(priv->net_dev); 711 priv->status |= STATUS_RESET_PENDING; 712 if (priv->reset_backoff) 713 schedule_delayed_work(&priv->reset_work, 714 priv->reset_backoff * HZ); 715 else 716 schedule_delayed_work(&priv->reset_work, 0); 717 718 if (priv->reset_backoff < MAX_RESET_BACKOFF) 719 priv->reset_backoff++; 720 721 wake_up_interruptible(&priv->wait_command_queue); 722 } else 723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n", 724 priv->net_dev->name); 725 726 } 727 728 #define HOST_COMPLETE_TIMEOUT (2 * HZ) 729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv, 730 struct host_command *cmd) 731 { 732 struct list_head *element; 733 struct ipw2100_tx_packet *packet; 734 unsigned long flags; 735 int err = 0; 736 737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n", 738 command_types[cmd->host_command], cmd->host_command, 739 cmd->host_command_length); 740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters, 741 cmd->host_command_length); 742 743 spin_lock_irqsave(&priv->low_lock, flags); 744 745 if (priv->fatal_error) { 746 IPW_DEBUG_INFO 747 ("Attempt to send command while hardware in fatal error condition.\n"); 748 err = -EIO; 749 goto fail_unlock; 750 } 751 752 if (!(priv->status & STATUS_RUNNING)) { 753 IPW_DEBUG_INFO 754 ("Attempt to send command while hardware is not running.\n"); 755 err = -EIO; 756 goto fail_unlock; 757 } 758 759 if (priv->status & STATUS_CMD_ACTIVE) { 760 IPW_DEBUG_INFO 761 ("Attempt to send command while another command is pending.\n"); 762 err = -EBUSY; 763 goto fail_unlock; 764 } 765 766 if (list_empty(&priv->msg_free_list)) { 767 IPW_DEBUG_INFO("no available msg buffers\n"); 768 goto fail_unlock; 769 } 770 771 priv->status |= STATUS_CMD_ACTIVE; 772 priv->messages_sent++; 773 774 element = priv->msg_free_list.next; 775 776 packet = list_entry(element, struct ipw2100_tx_packet, list); 777 packet->jiffy_start = jiffies; 778 779 /* initialize the firmware command packet */ 780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command; 781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1; 782 packet->info.c_struct.cmd->host_command_len_reg = 783 cmd->host_command_length; 784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence; 785 786 memcpy(packet->info.c_struct.cmd->host_command_params_reg, 787 cmd->host_command_parameters, 788 sizeof(packet->info.c_struct.cmd->host_command_params_reg)); 789 790 list_del(element); 791 DEC_STAT(&priv->msg_free_stat); 792 793 list_add_tail(element, &priv->msg_pend_list); 794 INC_STAT(&priv->msg_pend_stat); 795 796 ipw2100_tx_send_commands(priv); 797 ipw2100_tx_send_data(priv); 798 799 spin_unlock_irqrestore(&priv->low_lock, flags); 800 801 /* 802 * We must wait for this command to complete before another 803 * command can be sent... but if we wait more than 3 seconds 804 * then there is a problem. 805 */ 806 807 err = 808 wait_event_interruptible_timeout(priv->wait_command_queue, 809 !(priv-> 810 status & STATUS_CMD_ACTIVE), 811 HOST_COMPLETE_TIMEOUT); 812 813 if (err == 0) { 814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n", 815 1000 * (HOST_COMPLETE_TIMEOUT / HZ)); 816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT; 817 priv->status &= ~STATUS_CMD_ACTIVE; 818 schedule_reset(priv); 819 return -EIO; 820 } 821 822 if (priv->fatal_error) { 823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n", 824 priv->net_dev->name); 825 return -EIO; 826 } 827 828 /* !!!!! HACK TEST !!!!! 829 * When lots of debug trace statements are enabled, the driver 830 * doesn't seem to have as many firmware restart cycles... 831 * 832 * As a test, we're sticking in a 1/100s delay here */ 833 schedule_timeout_uninterruptible(msecs_to_jiffies(10)); 834 835 return 0; 836 837 fail_unlock: 838 spin_unlock_irqrestore(&priv->low_lock, flags); 839 840 return err; 841 } 842 843 /* 844 * Verify the values and data access of the hardware 845 * No locks needed or used. No functions called. 846 */ 847 static int ipw2100_verify(struct ipw2100_priv *priv) 848 { 849 u32 data1, data2; 850 u32 address; 851 852 u32 val1 = 0x76543210; 853 u32 val2 = 0xFEDCBA98; 854 855 /* Domain 0 check - all values should be DOA_DEBUG */ 856 for (address = IPW_REG_DOA_DEBUG_AREA_START; 857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) { 858 read_register(priv->net_dev, address, &data1); 859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE) 860 return -EIO; 861 } 862 863 /* Domain 1 check - use arbitrary read/write compare */ 864 for (address = 0; address < 5; address++) { 865 /* The memory area is not used now */ 866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 867 val1); 868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 869 val2); 870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 871 &data1); 872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 873 &data2); 874 if (val1 == data1 && val2 == data2) 875 return 0; 876 } 877 878 return -EIO; 879 } 880 881 /* 882 * 883 * Loop until the CARD_DISABLED bit is the same value as the 884 * supplied parameter 885 * 886 * TODO: See if it would be more efficient to do a wait/wake 887 * cycle and have the completion event trigger the wakeup 888 * 889 */ 890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli 891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state) 892 { 893 int i; 894 u32 card_state; 895 u32 len = sizeof(card_state); 896 int err; 897 898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) { 899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED, 900 &card_state, &len); 901 if (err) { 902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal " 903 "failed.\n"); 904 return 0; 905 } 906 907 /* We'll break out if either the HW state says it is 908 * in the state we want, or if HOST_COMPLETE command 909 * finishes */ 910 if ((card_state == state) || 911 ((priv->status & STATUS_ENABLED) ? 912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) { 913 if (state == IPW_HW_STATE_ENABLED) 914 priv->status |= STATUS_ENABLED; 915 else 916 priv->status &= ~STATUS_ENABLED; 917 918 return 0; 919 } 920 921 udelay(50); 922 } 923 924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n", 925 state ? "DISABLED" : "ENABLED"); 926 return -EIO; 927 } 928 929 /********************************************************************* 930 Procedure : sw_reset_and_clock 931 Purpose : Asserts s/w reset, asserts clock initialization 932 and waits for clock stabilization 933 ********************************************************************/ 934 static int sw_reset_and_clock(struct ipw2100_priv *priv) 935 { 936 int i; 937 u32 r; 938 939 // assert s/w reset 940 write_register(priv->net_dev, IPW_REG_RESET_REG, 941 IPW_AUX_HOST_RESET_REG_SW_RESET); 942 943 // wait for clock stabilization 944 for (i = 0; i < 1000; i++) { 945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY); 946 947 // check clock ready bit 948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r); 949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET) 950 break; 951 } 952 953 if (i == 1000) 954 return -EIO; // TODO: better error value 955 956 /* set "initialization complete" bit to move adapter to 957 * D0 state */ 958 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE); 960 961 /* wait for clock stabilization */ 962 for (i = 0; i < 10000; i++) { 963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4); 964 965 /* check clock ready bit */ 966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY) 968 break; 969 } 970 971 if (i == 10000) 972 return -EIO; /* TODO: better error value */ 973 974 /* set D0 standby bit */ 975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 976 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); 978 979 return 0; 980 } 981 982 /********************************************************************* 983 Procedure : ipw2100_download_firmware 984 Purpose : Initiaze adapter after power on. 985 The sequence is: 986 1. assert s/w reset first! 987 2. awake clocks & wait for clock stabilization 988 3. hold ARC (don't ask me why...) 989 4. load Dino ucode and reset/clock init again 990 5. zero-out shared mem 991 6. download f/w 992 *******************************************************************/ 993 static int ipw2100_download_firmware(struct ipw2100_priv *priv) 994 { 995 u32 address; 996 int err; 997 998 #ifndef CONFIG_PM 999 /* Fetch the firmware and microcode */ 1000 struct ipw2100_fw ipw2100_firmware; 1001 #endif 1002 1003 if (priv->fatal_error) { 1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after " 1005 "fatal error %d. Interface must be brought down.\n", 1006 priv->net_dev->name, priv->fatal_error); 1007 return -EINVAL; 1008 } 1009 #ifdef CONFIG_PM 1010 if (!ipw2100_firmware.version) { 1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 1012 if (err) { 1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 1014 priv->net_dev->name, err); 1015 priv->fatal_error = IPW2100_ERR_FW_LOAD; 1016 goto fail; 1017 } 1018 } 1019 #else 1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 1021 if (err) { 1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 1023 priv->net_dev->name, err); 1024 priv->fatal_error = IPW2100_ERR_FW_LOAD; 1025 goto fail; 1026 } 1027 #endif 1028 priv->firmware_version = ipw2100_firmware.version; 1029 1030 /* s/w reset and clock stabilization */ 1031 err = sw_reset_and_clock(priv); 1032 if (err) { 1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n", 1034 priv->net_dev->name, err); 1035 goto fail; 1036 } 1037 1038 err = ipw2100_verify(priv); 1039 if (err) { 1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n", 1041 priv->net_dev->name, err); 1042 goto fail; 1043 } 1044 1045 /* Hold ARC */ 1046 write_nic_dword(priv->net_dev, 1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000); 1048 1049 /* allow ARC to run */ 1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1051 1052 /* load microcode */ 1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware); 1054 if (err) { 1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n", 1056 priv->net_dev->name, err); 1057 goto fail; 1058 } 1059 1060 /* release ARC */ 1061 write_nic_dword(priv->net_dev, 1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000); 1063 1064 /* s/w reset and clock stabilization (again!!!) */ 1065 err = sw_reset_and_clock(priv); 1066 if (err) { 1067 printk(KERN_ERR DRV_NAME 1068 ": %s: sw_reset_and_clock failed: %d\n", 1069 priv->net_dev->name, err); 1070 goto fail; 1071 } 1072 1073 /* load f/w */ 1074 err = ipw2100_fw_download(priv, &ipw2100_firmware); 1075 if (err) { 1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n", 1077 priv->net_dev->name, err); 1078 goto fail; 1079 } 1080 #ifndef CONFIG_PM 1081 /* 1082 * When the .resume method of the driver is called, the other 1083 * part of the system, i.e. the ide driver could still stay in 1084 * the suspend stage. This prevents us from loading the firmware 1085 * from the disk. --YZ 1086 */ 1087 1088 /* free any storage allocated for firmware image */ 1089 ipw2100_release_firmware(priv, &ipw2100_firmware); 1090 #endif 1091 1092 /* zero out Domain 1 area indirectly (Si requirement) */ 1093 for (address = IPW_HOST_FW_SHARED_AREA0; 1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4) 1095 write_nic_dword(priv->net_dev, address, 0); 1096 for (address = IPW_HOST_FW_SHARED_AREA1; 1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4) 1098 write_nic_dword(priv->net_dev, address, 0); 1099 for (address = IPW_HOST_FW_SHARED_AREA2; 1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4) 1101 write_nic_dword(priv->net_dev, address, 0); 1102 for (address = IPW_HOST_FW_SHARED_AREA3; 1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4) 1104 write_nic_dword(priv->net_dev, address, 0); 1105 for (address = IPW_HOST_FW_INTERRUPT_AREA; 1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4) 1107 write_nic_dword(priv->net_dev, address, 0); 1108 1109 return 0; 1110 1111 fail: 1112 ipw2100_release_firmware(priv, &ipw2100_firmware); 1113 return err; 1114 } 1115 1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv) 1117 { 1118 if (priv->status & STATUS_INT_ENABLED) 1119 return; 1120 priv->status |= STATUS_INT_ENABLED; 1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK); 1122 } 1123 1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv) 1125 { 1126 if (!(priv->status & STATUS_INT_ENABLED)) 1127 return; 1128 priv->status &= ~STATUS_INT_ENABLED; 1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0); 1130 } 1131 1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv) 1133 { 1134 struct ipw2100_ordinals *ord = &priv->ordinals; 1135 1136 IPW_DEBUG_INFO("enter\n"); 1137 1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1, 1139 &ord->table1_addr); 1140 1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2, 1142 &ord->table2_addr); 1143 1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size); 1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size); 1146 1147 ord->table2_size &= 0x0000FFFF; 1148 1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size); 1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size); 1151 IPW_DEBUG_INFO("exit\n"); 1152 } 1153 1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv) 1155 { 1156 u32 reg = 0; 1157 /* 1158 * Set GPIO 3 writable by FW; GPIO 1 writable 1159 * by driver and enable clock 1160 */ 1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE | 1162 IPW_BIT_GPIO_LED_OFF); 1163 write_register(priv->net_dev, IPW_REG_GPIO, reg); 1164 } 1165 1166 static int rf_kill_active(struct ipw2100_priv *priv) 1167 { 1168 #define MAX_RF_KILL_CHECKS 5 1169 #define RF_KILL_CHECK_DELAY 40 1170 1171 unsigned short value = 0; 1172 u32 reg = 0; 1173 int i; 1174 1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) { 1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1177 priv->status &= ~STATUS_RF_KILL_HW; 1178 return 0; 1179 } 1180 1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) { 1182 udelay(RF_KILL_CHECK_DELAY); 1183 read_register(priv->net_dev, IPW_REG_GPIO, ®); 1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1); 1185 } 1186 1187 if (value == 0) { 1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 1189 priv->status |= STATUS_RF_KILL_HW; 1190 } else { 1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1192 priv->status &= ~STATUS_RF_KILL_HW; 1193 } 1194 1195 return (value == 0); 1196 } 1197 1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv) 1199 { 1200 u32 addr, len; 1201 u32 val; 1202 1203 /* 1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1 1205 */ 1206 len = sizeof(addr); 1207 if (ipw2100_get_ordinal 1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) { 1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 1210 __LINE__); 1211 return -EIO; 1212 } 1213 1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr); 1215 1216 /* 1217 * EEPROM version is the byte at offset 0xfd in firmware 1218 * We read 4 bytes, then shift out the byte we actually want */ 1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val); 1220 priv->eeprom_version = (val >> 24) & 0xFF; 1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version); 1222 1223 /* 1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware 1225 * 1226 * notice that the EEPROM bit is reverse polarity, i.e. 1227 * bit = 0 signifies HW RF kill switch is supported 1228 * bit = 1 signifies HW RF kill switch is NOT supported 1229 */ 1230 read_nic_dword(priv->net_dev, addr + 0x20, &val); 1231 if (!((val >> 24) & 0x01)) 1232 priv->hw_features |= HW_FEATURE_RFKILL; 1233 1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n", 1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not "); 1236 1237 return 0; 1238 } 1239 1240 /* 1241 * Start firmware execution after power on and initialization 1242 * The sequence is: 1243 * 1. Release ARC 1244 * 2. Wait for f/w initialization completes; 1245 */ 1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv) 1247 { 1248 int i; 1249 u32 inta, inta_mask, gpio; 1250 1251 IPW_DEBUG_INFO("enter\n"); 1252 1253 if (priv->status & STATUS_RUNNING) 1254 return 0; 1255 1256 /* 1257 * Initialize the hw - drive adapter to DO state by setting 1258 * init_done bit. Wait for clk_ready bit and Download 1259 * fw & dino ucode 1260 */ 1261 if (ipw2100_download_firmware(priv)) { 1262 printk(KERN_ERR DRV_NAME 1263 ": %s: Failed to power on the adapter.\n", 1264 priv->net_dev->name); 1265 return -EIO; 1266 } 1267 1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes 1269 * in the firmware RBD and TBD ring queue */ 1270 ipw2100_queues_initialize(priv); 1271 1272 ipw2100_hw_set_gpio(priv); 1273 1274 /* TODO -- Look at disabling interrupts here to make sure none 1275 * get fired during FW initialization */ 1276 1277 /* Release ARC - clear reset bit */ 1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1279 1280 /* wait for f/w initialization complete */ 1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n"); 1282 i = 5000; 1283 do { 1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40)); 1285 /* Todo... wait for sync command ... */ 1286 1287 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1288 1289 /* check "init done" bit */ 1290 if (inta & IPW2100_INTA_FW_INIT_DONE) { 1291 /* reset "init done" bit */ 1292 write_register(priv->net_dev, IPW_REG_INTA, 1293 IPW2100_INTA_FW_INIT_DONE); 1294 break; 1295 } 1296 1297 /* check error conditions : we check these after the firmware 1298 * check so that if there is an error, the interrupt handler 1299 * will see it and the adapter will be reset */ 1300 if (inta & 1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) { 1302 /* clear error conditions */ 1303 write_register(priv->net_dev, IPW_REG_INTA, 1304 IPW2100_INTA_FATAL_ERROR | 1305 IPW2100_INTA_PARITY_ERROR); 1306 } 1307 } while (--i); 1308 1309 /* Clear out any pending INTAs since we aren't supposed to have 1310 * interrupts enabled at this point... */ 1311 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 1313 inta &= IPW_INTERRUPT_MASK; 1314 /* Clear out any pending interrupts */ 1315 if (inta & inta_mask) 1316 write_register(priv->net_dev, IPW_REG_INTA, inta); 1317 1318 IPW_DEBUG_FW("f/w initialization complete: %s\n", 1319 i ? "SUCCESS" : "FAILED"); 1320 1321 if (!i) { 1322 printk(KERN_WARNING DRV_NAME 1323 ": %s: Firmware did not initialize.\n", 1324 priv->net_dev->name); 1325 return -EIO; 1326 } 1327 1328 /* allow firmware to write to GPIO1 & GPIO3 */ 1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio); 1330 1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK); 1332 1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio); 1334 1335 /* Ready to receive commands */ 1336 priv->status |= STATUS_RUNNING; 1337 1338 /* The adapter has been reset; we are not associated */ 1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); 1340 1341 IPW_DEBUG_INFO("exit\n"); 1342 1343 return 0; 1344 } 1345 1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv) 1347 { 1348 if (!priv->fatal_error) 1349 return; 1350 1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error; 1352 priv->fatal_index %= IPW2100_ERROR_QUEUE; 1353 priv->fatal_error = 0; 1354 } 1355 1356 /* NOTE: Our interrupt is disabled when this method is called */ 1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv) 1358 { 1359 u32 reg; 1360 int i; 1361 1362 IPW_DEBUG_INFO("Power cycling the hardware.\n"); 1363 1364 ipw2100_hw_set_gpio(priv); 1365 1366 /* Step 1. Stop Master Assert */ 1367 write_register(priv->net_dev, IPW_REG_RESET_REG, 1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1369 1370 /* Step 2. Wait for stop Master Assert 1371 * (not more than 50us, otherwise ret error */ 1372 i = 5; 1373 do { 1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 1375 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1376 1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1378 break; 1379 } while (--i); 1380 1381 priv->status &= ~STATUS_RESET_PENDING; 1382 1383 if (!i) { 1384 IPW_DEBUG_INFO 1385 ("exit - waited too long for master assert stop\n"); 1386 return -EIO; 1387 } 1388 1389 write_register(priv->net_dev, IPW_REG_RESET_REG, 1390 IPW_AUX_HOST_RESET_REG_SW_RESET); 1391 1392 /* Reset any fatal_error conditions */ 1393 ipw2100_reset_fatalerror(priv); 1394 1395 /* At this point, the adapter is now stopped and disabled */ 1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING | 1397 STATUS_ASSOCIATED | STATUS_ENABLED); 1398 1399 return 0; 1400 } 1401 1402 /* 1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it 1404 * 1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent. 1406 * 1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of 1408 * if STATUS_ASSN_LOST is sent. 1409 */ 1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv) 1411 { 1412 1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50)) 1414 1415 struct host_command cmd = { 1416 .host_command = CARD_DISABLE_PHY_OFF, 1417 .host_command_sequence = 0, 1418 .host_command_length = 0, 1419 }; 1420 int err, i; 1421 u32 val1, val2; 1422 1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n"); 1424 1425 /* Turn off the radio */ 1426 err = ipw2100_hw_send_command(priv, &cmd); 1427 if (err) 1428 return err; 1429 1430 for (i = 0; i < 2500; i++) { 1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1); 1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2); 1433 1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) && 1435 (val2 & IPW2100_COMMAND_PHY_OFF)) 1436 return 0; 1437 1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY); 1439 } 1440 1441 return -EIO; 1442 } 1443 1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv) 1445 { 1446 struct host_command cmd = { 1447 .host_command = HOST_COMPLETE, 1448 .host_command_sequence = 0, 1449 .host_command_length = 0 1450 }; 1451 int err = 0; 1452 1453 IPW_DEBUG_HC("HOST_COMPLETE\n"); 1454 1455 if (priv->status & STATUS_ENABLED) 1456 return 0; 1457 1458 mutex_lock(&priv->adapter_mutex); 1459 1460 if (rf_kill_active(priv)) { 1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n"); 1462 goto fail_up; 1463 } 1464 1465 err = ipw2100_hw_send_command(priv, &cmd); 1466 if (err) { 1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n"); 1468 goto fail_up; 1469 } 1470 1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED); 1472 if (err) { 1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n", 1474 priv->net_dev->name); 1475 goto fail_up; 1476 } 1477 1478 if (priv->stop_hang_check) { 1479 priv->stop_hang_check = 0; 1480 schedule_delayed_work(&priv->hang_check, HZ / 2); 1481 } 1482 1483 fail_up: 1484 mutex_unlock(&priv->adapter_mutex); 1485 return err; 1486 } 1487 1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv) 1489 { 1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100)) 1491 1492 struct host_command cmd = { 1493 .host_command = HOST_PRE_POWER_DOWN, 1494 .host_command_sequence = 0, 1495 .host_command_length = 0, 1496 }; 1497 int err, i; 1498 u32 reg; 1499 1500 if (!(priv->status & STATUS_RUNNING)) 1501 return 0; 1502 1503 priv->status |= STATUS_STOPPING; 1504 1505 /* We can only shut down the card if the firmware is operational. So, 1506 * if we haven't reset since a fatal_error, then we can not send the 1507 * shutdown commands. */ 1508 if (!priv->fatal_error) { 1509 /* First, make sure the adapter is enabled so that the PHY_OFF 1510 * command can shut it down */ 1511 ipw2100_enable_adapter(priv); 1512 1513 err = ipw2100_hw_phy_off(priv); 1514 if (err) 1515 printk(KERN_WARNING DRV_NAME 1516 ": Error disabling radio %d\n", err); 1517 1518 /* 1519 * If in D0-standby mode going directly to D3 may cause a 1520 * PCI bus violation. Therefore we must change out of the D0 1521 * state. 1522 * 1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the 1524 * hardware from going into standby mode and will transition 1525 * out of D0-standby if it is already in that state. 1526 * 1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the 1528 * driver upon completion. Once received, the driver can 1529 * proceed to the D3 state. 1530 * 1531 * Prepare for power down command to fw. This command would 1532 * take HW out of D0-standby and prepare it for D3 state. 1533 * 1534 * Currently FW does not support event notification for this 1535 * event. Therefore, skip waiting for it. Just wait a fixed 1536 * 100ms 1537 */ 1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n"); 1539 1540 err = ipw2100_hw_send_command(priv, &cmd); 1541 if (err) 1542 printk(KERN_WARNING DRV_NAME ": " 1543 "%s: Power down command failed: Error %d\n", 1544 priv->net_dev->name, err); 1545 else 1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY); 1547 } 1548 1549 priv->status &= ~STATUS_ENABLED; 1550 1551 /* 1552 * Set GPIO 3 writable by FW; GPIO 1 writable 1553 * by driver and enable clock 1554 */ 1555 ipw2100_hw_set_gpio(priv); 1556 1557 /* 1558 * Power down adapter. Sequence: 1559 * 1. Stop master assert (RESET_REG[9]=1) 1560 * 2. Wait for stop master (RESET_REG[8]==1) 1561 * 3. S/w reset assert (RESET_REG[7] = 1) 1562 */ 1563 1564 /* Stop master assert */ 1565 write_register(priv->net_dev, IPW_REG_RESET_REG, 1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1567 1568 /* wait stop master not more than 50 usec. 1569 * Otherwise return error. */ 1570 for (i = 5; i > 0; i--) { 1571 udelay(10); 1572 1573 /* Check master stop bit */ 1574 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1575 1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1577 break; 1578 } 1579 1580 if (i == 0) 1581 printk(KERN_WARNING DRV_NAME 1582 ": %s: Could now power down adapter.\n", 1583 priv->net_dev->name); 1584 1585 /* assert s/w reset */ 1586 write_register(priv->net_dev, IPW_REG_RESET_REG, 1587 IPW_AUX_HOST_RESET_REG_SW_RESET); 1588 1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING); 1590 1591 return 0; 1592 } 1593 1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv) 1595 { 1596 struct host_command cmd = { 1597 .host_command = CARD_DISABLE, 1598 .host_command_sequence = 0, 1599 .host_command_length = 0 1600 }; 1601 int err = 0; 1602 1603 IPW_DEBUG_HC("CARD_DISABLE\n"); 1604 1605 if (!(priv->status & STATUS_ENABLED)) 1606 return 0; 1607 1608 /* Make sure we clear the associated state */ 1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1610 1611 if (!priv->stop_hang_check) { 1612 priv->stop_hang_check = 1; 1613 cancel_delayed_work(&priv->hang_check); 1614 } 1615 1616 mutex_lock(&priv->adapter_mutex); 1617 1618 err = ipw2100_hw_send_command(priv, &cmd); 1619 if (err) { 1620 printk(KERN_WARNING DRV_NAME 1621 ": exit - failed to send CARD_DISABLE command\n"); 1622 goto fail_up; 1623 } 1624 1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED); 1626 if (err) { 1627 printk(KERN_WARNING DRV_NAME 1628 ": exit - card failed to change to DISABLED\n"); 1629 goto fail_up; 1630 } 1631 1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n"); 1633 1634 fail_up: 1635 mutex_unlock(&priv->adapter_mutex); 1636 return err; 1637 } 1638 1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv) 1640 { 1641 struct host_command cmd = { 1642 .host_command = SET_SCAN_OPTIONS, 1643 .host_command_sequence = 0, 1644 .host_command_length = 8 1645 }; 1646 int err; 1647 1648 IPW_DEBUG_INFO("enter\n"); 1649 1650 IPW_DEBUG_SCAN("setting scan options\n"); 1651 1652 cmd.host_command_parameters[0] = 0; 1653 1654 if (!(priv->config & CFG_ASSOCIATE)) 1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE; 1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled) 1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL; 1658 if (priv->config & CFG_PASSIVE_SCAN) 1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE; 1660 1661 cmd.host_command_parameters[1] = priv->channel_mask; 1662 1663 err = ipw2100_hw_send_command(priv, &cmd); 1664 1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n", 1666 cmd.host_command_parameters[0]); 1667 1668 return err; 1669 } 1670 1671 static int ipw2100_start_scan(struct ipw2100_priv *priv) 1672 { 1673 struct host_command cmd = { 1674 .host_command = BROADCAST_SCAN, 1675 .host_command_sequence = 0, 1676 .host_command_length = 4 1677 }; 1678 int err; 1679 1680 IPW_DEBUG_HC("START_SCAN\n"); 1681 1682 cmd.host_command_parameters[0] = 0; 1683 1684 /* No scanning if in monitor mode */ 1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 1686 return 1; 1687 1688 if (priv->status & STATUS_SCANNING) { 1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n"); 1690 return 0; 1691 } 1692 1693 IPW_DEBUG_INFO("enter\n"); 1694 1695 /* Not clearing here; doing so makes iwlist always return nothing... 1696 * 1697 * We should modify the table logic to use aging tables vs. clearing 1698 * the table on each scan start. 1699 */ 1700 IPW_DEBUG_SCAN("starting scan\n"); 1701 1702 priv->status |= STATUS_SCANNING; 1703 err = ipw2100_hw_send_command(priv, &cmd); 1704 if (err) 1705 priv->status &= ~STATUS_SCANNING; 1706 1707 IPW_DEBUG_INFO("exit\n"); 1708 1709 return err; 1710 } 1711 1712 static const struct libipw_geo ipw_geos[] = { 1713 { /* Restricted */ 1714 "---", 1715 .bg_channels = 14, 1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 1717 {2427, 4}, {2432, 5}, {2437, 6}, 1718 {2442, 7}, {2447, 8}, {2452, 9}, 1719 {2457, 10}, {2462, 11}, {2467, 12}, 1720 {2472, 13}, {2484, 14}}, 1721 }, 1722 }; 1723 1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred) 1725 { 1726 unsigned long flags; 1727 int err = 0; 1728 u32 lock; 1729 u32 ord_len = sizeof(lock); 1730 1731 /* Age scan list entries found before suspend */ 1732 if (priv->suspend_time) { 1733 libipw_networks_age(priv->ieee, priv->suspend_time); 1734 priv->suspend_time = 0; 1735 } 1736 1737 /* Quiet if manually disabled. */ 1738 if (priv->status & STATUS_RF_KILL_SW) { 1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable " 1740 "switch\n", priv->net_dev->name); 1741 return 0; 1742 } 1743 1744 /* the ipw2100 hardware really doesn't want power management delays 1745 * longer than 175usec 1746 */ 1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175); 1748 1749 /* If the interrupt is enabled, turn it off... */ 1750 spin_lock_irqsave(&priv->low_lock, flags); 1751 ipw2100_disable_interrupts(priv); 1752 1753 /* Reset any fatal_error conditions */ 1754 ipw2100_reset_fatalerror(priv); 1755 spin_unlock_irqrestore(&priv->low_lock, flags); 1756 1757 if (priv->status & STATUS_POWERED || 1758 (priv->status & STATUS_RESET_PENDING)) { 1759 /* Power cycle the card ... */ 1760 err = ipw2100_power_cycle_adapter(priv); 1761 if (err) { 1762 printk(KERN_WARNING DRV_NAME 1763 ": %s: Could not cycle adapter.\n", 1764 priv->net_dev->name); 1765 goto exit; 1766 } 1767 } else 1768 priv->status |= STATUS_POWERED; 1769 1770 /* Load the firmware, start the clocks, etc. */ 1771 err = ipw2100_start_adapter(priv); 1772 if (err) { 1773 printk(KERN_ERR DRV_NAME 1774 ": %s: Failed to start the firmware.\n", 1775 priv->net_dev->name); 1776 goto exit; 1777 } 1778 1779 ipw2100_initialize_ordinals(priv); 1780 1781 /* Determine capabilities of this particular HW configuration */ 1782 err = ipw2100_get_hw_features(priv); 1783 if (err) { 1784 printk(KERN_ERR DRV_NAME 1785 ": %s: Failed to determine HW features.\n", 1786 priv->net_dev->name); 1787 goto exit; 1788 } 1789 1790 /* Initialize the geo */ 1791 libipw_set_geo(priv->ieee, &ipw_geos[0]); 1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND; 1793 1794 lock = LOCK_NONE; 1795 err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len); 1796 if (err) { 1797 printk(KERN_ERR DRV_NAME 1798 ": %s: Failed to clear ordinal lock.\n", 1799 priv->net_dev->name); 1800 goto exit; 1801 } 1802 1803 priv->status &= ~STATUS_SCANNING; 1804 1805 if (rf_kill_active(priv)) { 1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n", 1807 priv->net_dev->name); 1808 1809 if (priv->stop_rf_kill) { 1810 priv->stop_rf_kill = 0; 1811 schedule_delayed_work(&priv->rf_kill, 1812 round_jiffies_relative(HZ)); 1813 } 1814 1815 deferred = 1; 1816 } 1817 1818 /* Turn on the interrupt so that commands can be processed */ 1819 ipw2100_enable_interrupts(priv); 1820 1821 /* Send all of the commands that must be sent prior to 1822 * HOST_COMPLETE */ 1823 err = ipw2100_adapter_setup(priv); 1824 if (err) { 1825 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n", 1826 priv->net_dev->name); 1827 goto exit; 1828 } 1829 1830 if (!deferred) { 1831 /* Enable the adapter - sends HOST_COMPLETE */ 1832 err = ipw2100_enable_adapter(priv); 1833 if (err) { 1834 printk(KERN_ERR DRV_NAME ": " 1835 "%s: failed in call to enable adapter.\n", 1836 priv->net_dev->name); 1837 ipw2100_hw_stop_adapter(priv); 1838 goto exit; 1839 } 1840 1841 /* Start a scan . . . */ 1842 ipw2100_set_scan_options(priv); 1843 ipw2100_start_scan(priv); 1844 } 1845 1846 exit: 1847 return err; 1848 } 1849 1850 static void ipw2100_down(struct ipw2100_priv *priv) 1851 { 1852 unsigned long flags; 1853 union iwreq_data wrqu = { 1854 .ap_addr = { 1855 .sa_family = ARPHRD_ETHER} 1856 }; 1857 int associated = priv->status & STATUS_ASSOCIATED; 1858 1859 /* Kill the RF switch timer */ 1860 if (!priv->stop_rf_kill) { 1861 priv->stop_rf_kill = 1; 1862 cancel_delayed_work(&priv->rf_kill); 1863 } 1864 1865 /* Kill the firmware hang check timer */ 1866 if (!priv->stop_hang_check) { 1867 priv->stop_hang_check = 1; 1868 cancel_delayed_work(&priv->hang_check); 1869 } 1870 1871 /* Kill any pending resets */ 1872 if (priv->status & STATUS_RESET_PENDING) 1873 cancel_delayed_work(&priv->reset_work); 1874 1875 /* Make sure the interrupt is on so that FW commands will be 1876 * processed correctly */ 1877 spin_lock_irqsave(&priv->low_lock, flags); 1878 ipw2100_enable_interrupts(priv); 1879 spin_unlock_irqrestore(&priv->low_lock, flags); 1880 1881 if (ipw2100_hw_stop_adapter(priv)) 1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n", 1883 priv->net_dev->name); 1884 1885 /* Do not disable the interrupt until _after_ we disable 1886 * the adaptor. Otherwise the CARD_DISABLE command will never 1887 * be ack'd by the firmware */ 1888 spin_lock_irqsave(&priv->low_lock, flags); 1889 ipw2100_disable_interrupts(priv); 1890 spin_unlock_irqrestore(&priv->low_lock, flags); 1891 1892 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE); 1893 1894 /* We have to signal any supplicant if we are disassociating */ 1895 if (associated) 1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1897 1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1899 netif_carrier_off(priv->net_dev); 1900 netif_stop_queue(priv->net_dev); 1901 } 1902 1903 static int ipw2100_wdev_init(struct net_device *dev) 1904 { 1905 struct ipw2100_priv *priv = libipw_priv(dev); 1906 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 1907 struct wireless_dev *wdev = &priv->ieee->wdev; 1908 int i; 1909 1910 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); 1911 1912 /* fill-out priv->ieee->bg_band */ 1913 if (geo->bg_channels) { 1914 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; 1915 1916 bg_band->band = NL80211_BAND_2GHZ; 1917 bg_band->n_channels = geo->bg_channels; 1918 bg_band->channels = kcalloc(geo->bg_channels, 1919 sizeof(struct ieee80211_channel), 1920 GFP_KERNEL); 1921 if (!bg_band->channels) { 1922 ipw2100_down(priv); 1923 return -ENOMEM; 1924 } 1925 /* translate geo->bg to bg_band.channels */ 1926 for (i = 0; i < geo->bg_channels; i++) { 1927 bg_band->channels[i].band = NL80211_BAND_2GHZ; 1928 bg_band->channels[i].center_freq = geo->bg[i].freq; 1929 bg_band->channels[i].hw_value = geo->bg[i].channel; 1930 bg_band->channels[i].max_power = geo->bg[i].max_power; 1931 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) 1932 bg_band->channels[i].flags |= 1933 IEEE80211_CHAN_NO_IR; 1934 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) 1935 bg_band->channels[i].flags |= 1936 IEEE80211_CHAN_NO_IR; 1937 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) 1938 bg_band->channels[i].flags |= 1939 IEEE80211_CHAN_RADAR; 1940 /* No equivalent for LIBIPW_CH_80211H_RULES, 1941 LIBIPW_CH_UNIFORM_SPREADING, or 1942 LIBIPW_CH_B_ONLY... */ 1943 } 1944 /* point at bitrate info */ 1945 bg_band->bitrates = ipw2100_bg_rates; 1946 bg_band->n_bitrates = RATE_COUNT; 1947 1948 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; 1949 } 1950 1951 wdev->wiphy->cipher_suites = ipw_cipher_suites; 1952 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); 1953 1954 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); 1955 if (wiphy_register(wdev->wiphy)) 1956 return -EIO; 1957 return 0; 1958 } 1959 1960 static void ipw2100_reset_adapter(struct work_struct *work) 1961 { 1962 struct ipw2100_priv *priv = 1963 container_of(work, struct ipw2100_priv, reset_work.work); 1964 unsigned long flags; 1965 union iwreq_data wrqu = { 1966 .ap_addr = { 1967 .sa_family = ARPHRD_ETHER} 1968 }; 1969 int associated = priv->status & STATUS_ASSOCIATED; 1970 1971 spin_lock_irqsave(&priv->low_lock, flags); 1972 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name); 1973 priv->resets++; 1974 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1975 priv->status |= STATUS_SECURITY_UPDATED; 1976 1977 /* Force a power cycle even if interface hasn't been opened 1978 * yet */ 1979 cancel_delayed_work(&priv->reset_work); 1980 priv->status |= STATUS_RESET_PENDING; 1981 spin_unlock_irqrestore(&priv->low_lock, flags); 1982 1983 mutex_lock(&priv->action_mutex); 1984 /* stop timed checks so that they don't interfere with reset */ 1985 priv->stop_hang_check = 1; 1986 cancel_delayed_work(&priv->hang_check); 1987 1988 /* We have to signal any supplicant if we are disassociating */ 1989 if (associated) 1990 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1991 1992 ipw2100_up(priv, 0); 1993 mutex_unlock(&priv->action_mutex); 1994 1995 } 1996 1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status) 1998 { 1999 2000 #define MAC_ASSOCIATION_READ_DELAY (HZ) 2001 int ret; 2002 unsigned int len, essid_len; 2003 char essid[IW_ESSID_MAX_SIZE]; 2004 u32 txrate; 2005 u32 chan; 2006 char *txratename; 2007 u8 bssid[ETH_ALEN]; 2008 2009 /* 2010 * TBD: BSSID is usually 00:00:00:00:00:00 here and not 2011 * an actual MAC of the AP. Seems like FW sets this 2012 * address too late. Read it later and expose through 2013 * /proc or schedule a later task to query and update 2014 */ 2015 2016 essid_len = IW_ESSID_MAX_SIZE; 2017 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, 2018 essid, &essid_len); 2019 if (ret) { 2020 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2021 __LINE__); 2022 return; 2023 } 2024 2025 len = sizeof(u32); 2026 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len); 2027 if (ret) { 2028 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2029 __LINE__); 2030 return; 2031 } 2032 2033 len = sizeof(u32); 2034 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len); 2035 if (ret) { 2036 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2037 __LINE__); 2038 return; 2039 } 2040 len = ETH_ALEN; 2041 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid, 2042 &len); 2043 if (ret) { 2044 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2045 __LINE__); 2046 return; 2047 } 2048 memcpy(priv->ieee->bssid, bssid, ETH_ALEN); 2049 2050 switch (txrate) { 2051 case TX_RATE_1_MBIT: 2052 txratename = "1Mbps"; 2053 break; 2054 case TX_RATE_2_MBIT: 2055 txratename = "2Mbsp"; 2056 break; 2057 case TX_RATE_5_5_MBIT: 2058 txratename = "5.5Mbps"; 2059 break; 2060 case TX_RATE_11_MBIT: 2061 txratename = "11Mbps"; 2062 break; 2063 default: 2064 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate); 2065 txratename = "unknown rate"; 2066 break; 2067 } 2068 2069 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n", 2070 priv->net_dev->name, essid_len, essid, 2071 txratename, chan, bssid); 2072 2073 /* now we copy read ssid into dev */ 2074 if (!(priv->config & CFG_STATIC_ESSID)) { 2075 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE); 2076 memcpy(priv->essid, essid, priv->essid_len); 2077 } 2078 priv->channel = chan; 2079 memcpy(priv->bssid, bssid, ETH_ALEN); 2080 2081 priv->status |= STATUS_ASSOCIATING; 2082 priv->connect_start = get_seconds(); 2083 2084 schedule_delayed_work(&priv->wx_event_work, HZ / 10); 2085 } 2086 2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid, 2088 int length, int batch_mode) 2089 { 2090 int ssid_len = min(length, IW_ESSID_MAX_SIZE); 2091 struct host_command cmd = { 2092 .host_command = SSID, 2093 .host_command_sequence = 0, 2094 .host_command_length = ssid_len 2095 }; 2096 int err; 2097 2098 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid); 2099 2100 if (ssid_len) 2101 memcpy(cmd.host_command_parameters, essid, ssid_len); 2102 2103 if (!batch_mode) { 2104 err = ipw2100_disable_adapter(priv); 2105 if (err) 2106 return err; 2107 } 2108 2109 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to 2110 * disable auto association -- so we cheat by setting a bogus SSID */ 2111 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) { 2112 int i; 2113 u8 *bogus = (u8 *) cmd.host_command_parameters; 2114 for (i = 0; i < IW_ESSID_MAX_SIZE; i++) 2115 bogus[i] = 0x18 + i; 2116 cmd.host_command_length = IW_ESSID_MAX_SIZE; 2117 } 2118 2119 /* NOTE: We always send the SSID command even if the provided ESSID is 2120 * the same as what we currently think is set. */ 2121 2122 err = ipw2100_hw_send_command(priv, &cmd); 2123 if (!err) { 2124 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len); 2125 memcpy(priv->essid, essid, ssid_len); 2126 priv->essid_len = ssid_len; 2127 } 2128 2129 if (!batch_mode) { 2130 if (ipw2100_enable_adapter(priv)) 2131 err = -EIO; 2132 } 2133 2134 return err; 2135 } 2136 2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status) 2138 { 2139 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, 2140 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid, 2141 priv->bssid); 2142 2143 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 2144 2145 if (priv->status & STATUS_STOPPING) { 2146 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n"); 2147 return; 2148 } 2149 2150 eth_zero_addr(priv->bssid); 2151 eth_zero_addr(priv->ieee->bssid); 2152 2153 netif_carrier_off(priv->net_dev); 2154 netif_stop_queue(priv->net_dev); 2155 2156 if (!(priv->status & STATUS_RUNNING)) 2157 return; 2158 2159 if (priv->status & STATUS_SECURITY_UPDATED) 2160 schedule_delayed_work(&priv->security_work, 0); 2161 2162 schedule_delayed_work(&priv->wx_event_work, 0); 2163 } 2164 2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status) 2166 { 2167 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n", 2168 priv->net_dev->name); 2169 2170 /* RF_KILL is now enabled (else we wouldn't be here) */ 2171 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 2172 priv->status |= STATUS_RF_KILL_HW; 2173 2174 /* Make sure the RF Kill check timer is running */ 2175 priv->stop_rf_kill = 0; 2176 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ)); 2177 } 2178 2179 static void ipw2100_scan_event(struct work_struct *work) 2180 { 2181 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv, 2182 scan_event.work); 2183 union iwreq_data wrqu; 2184 2185 wrqu.data.length = 0; 2186 wrqu.data.flags = 0; 2187 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); 2188 } 2189 2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status) 2191 { 2192 IPW_DEBUG_SCAN("scan complete\n"); 2193 /* Age the scan results... */ 2194 priv->ieee->scans++; 2195 priv->status &= ~STATUS_SCANNING; 2196 2197 /* Only userspace-requested scan completion events go out immediately */ 2198 if (!priv->user_requested_scan) { 2199 schedule_delayed_work(&priv->scan_event, 2200 round_jiffies_relative(msecs_to_jiffies(4000))); 2201 } else { 2202 priv->user_requested_scan = 0; 2203 mod_delayed_work(system_wq, &priv->scan_event, 0); 2204 } 2205 } 2206 2207 #ifdef CONFIG_IPW2100_DEBUG 2208 #define IPW2100_HANDLER(v, f) { v, f, # v } 2209 struct ipw2100_status_indicator { 2210 int status; 2211 void (*cb) (struct ipw2100_priv * priv, u32 status); 2212 char *name; 2213 }; 2214 #else 2215 #define IPW2100_HANDLER(v, f) { v, f } 2216 struct ipw2100_status_indicator { 2217 int status; 2218 void (*cb) (struct ipw2100_priv * priv, u32 status); 2219 }; 2220 #endif /* CONFIG_IPW2100_DEBUG */ 2221 2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status) 2223 { 2224 IPW_DEBUG_SCAN("Scanning...\n"); 2225 priv->status |= STATUS_SCANNING; 2226 } 2227 2228 static const struct ipw2100_status_indicator status_handlers[] = { 2229 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL), 2230 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL), 2231 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated), 2232 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost), 2233 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL), 2234 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete), 2235 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL), 2236 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL), 2237 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill), 2238 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL), 2239 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL), 2240 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning), 2241 IPW2100_HANDLER(-1, NULL) 2242 }; 2243 2244 static void isr_status_change(struct ipw2100_priv *priv, int status) 2245 { 2246 int i; 2247 2248 if (status == IPW_STATE_SCANNING && 2249 priv->status & STATUS_ASSOCIATED && 2250 !(priv->status & STATUS_SCANNING)) { 2251 IPW_DEBUG_INFO("Scan detected while associated, with " 2252 "no scan request. Restarting firmware.\n"); 2253 2254 /* Wake up any sleeping jobs */ 2255 schedule_reset(priv); 2256 } 2257 2258 for (i = 0; status_handlers[i].status != -1; i++) { 2259 if (status == status_handlers[i].status) { 2260 IPW_DEBUG_NOTIF("Status change: %s\n", 2261 status_handlers[i].name); 2262 if (status_handlers[i].cb) 2263 status_handlers[i].cb(priv, status); 2264 priv->wstats.status = status; 2265 return; 2266 } 2267 } 2268 2269 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status); 2270 } 2271 2272 static void isr_rx_complete_command(struct ipw2100_priv *priv, 2273 struct ipw2100_cmd_header *cmd) 2274 { 2275 #ifdef CONFIG_IPW2100_DEBUG 2276 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) { 2277 IPW_DEBUG_HC("Command completed '%s (%d)'\n", 2278 command_types[cmd->host_command_reg], 2279 cmd->host_command_reg); 2280 } 2281 #endif 2282 if (cmd->host_command_reg == HOST_COMPLETE) 2283 priv->status |= STATUS_ENABLED; 2284 2285 if (cmd->host_command_reg == CARD_DISABLE) 2286 priv->status &= ~STATUS_ENABLED; 2287 2288 priv->status &= ~STATUS_CMD_ACTIVE; 2289 2290 wake_up_interruptible(&priv->wait_command_queue); 2291 } 2292 2293 #ifdef CONFIG_IPW2100_DEBUG 2294 static const char *frame_types[] = { 2295 "COMMAND_STATUS_VAL", 2296 "STATUS_CHANGE_VAL", 2297 "P80211_DATA_VAL", 2298 "P8023_DATA_VAL", 2299 "HOST_NOTIFICATION_VAL" 2300 }; 2301 #endif 2302 2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv, 2304 struct ipw2100_rx_packet *packet) 2305 { 2306 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx)); 2307 if (!packet->skb) 2308 return -ENOMEM; 2309 2310 packet->rxp = (struct ipw2100_rx *)packet->skb->data; 2311 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data, 2312 sizeof(struct ipw2100_rx), 2313 PCI_DMA_FROMDEVICE); 2314 if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) { 2315 dev_kfree_skb(packet->skb); 2316 return -ENOMEM; 2317 } 2318 2319 return 0; 2320 } 2321 2322 #define SEARCH_ERROR 0xffffffff 2323 #define SEARCH_FAIL 0xfffffffe 2324 #define SEARCH_SUCCESS 0xfffffff0 2325 #define SEARCH_DISCARD 0 2326 #define SEARCH_SNAPSHOT 1 2327 2328 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff)) 2329 static void ipw2100_snapshot_free(struct ipw2100_priv *priv) 2330 { 2331 int i; 2332 if (!priv->snapshot[0]) 2333 return; 2334 for (i = 0; i < 0x30; i++) 2335 kfree(priv->snapshot[i]); 2336 priv->snapshot[0] = NULL; 2337 } 2338 2339 #ifdef IPW2100_DEBUG_C3 2340 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv) 2341 { 2342 int i; 2343 if (priv->snapshot[0]) 2344 return 1; 2345 for (i = 0; i < 0x30; i++) { 2346 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC); 2347 if (!priv->snapshot[i]) { 2348 IPW_DEBUG_INFO("%s: Error allocating snapshot " 2349 "buffer %d\n", priv->net_dev->name, i); 2350 while (i > 0) 2351 kfree(priv->snapshot[--i]); 2352 priv->snapshot[0] = NULL; 2353 return 0; 2354 } 2355 } 2356 2357 return 1; 2358 } 2359 2360 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf, 2361 size_t len, int mode) 2362 { 2363 u32 i, j; 2364 u32 tmp; 2365 u8 *s, *d; 2366 u32 ret; 2367 2368 s = in_buf; 2369 if (mode == SEARCH_SNAPSHOT) { 2370 if (!ipw2100_snapshot_alloc(priv)) 2371 mode = SEARCH_DISCARD; 2372 } 2373 2374 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) { 2375 read_nic_dword(priv->net_dev, i, &tmp); 2376 if (mode == SEARCH_SNAPSHOT) 2377 *(u32 *) SNAPSHOT_ADDR(i) = tmp; 2378 if (ret == SEARCH_FAIL) { 2379 d = (u8 *) & tmp; 2380 for (j = 0; j < 4; j++) { 2381 if (*s != *d) { 2382 s = in_buf; 2383 continue; 2384 } 2385 2386 s++; 2387 d++; 2388 2389 if ((s - in_buf) == len) 2390 ret = (i + j) - len + 1; 2391 } 2392 } else if (mode == SEARCH_DISCARD) 2393 return ret; 2394 } 2395 2396 return ret; 2397 } 2398 #endif 2399 2400 /* 2401 * 2402 * 0) Disconnect the SKB from the firmware (just unmap) 2403 * 1) Pack the ETH header into the SKB 2404 * 2) Pass the SKB to the network stack 2405 * 2406 * When packet is provided by the firmware, it contains the following: 2407 * 2408 * . libipw_hdr 2409 * . libipw_snap_hdr 2410 * 2411 * The size of the constructed ethernet 2412 * 2413 */ 2414 #ifdef IPW2100_RX_DEBUG 2415 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH]; 2416 #endif 2417 2418 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i) 2419 { 2420 #ifdef IPW2100_DEBUG_C3 2421 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2422 u32 match, reg; 2423 int j; 2424 #endif 2425 2426 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n", 2427 i * sizeof(struct ipw2100_status)); 2428 2429 #ifdef IPW2100_DEBUG_C3 2430 /* Halt the firmware so we can get a good image */ 2431 write_register(priv->net_dev, IPW_REG_RESET_REG, 2432 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 2433 j = 5; 2434 do { 2435 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 2436 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 2437 2438 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 2439 break; 2440 } while (j--); 2441 2442 match = ipw2100_match_buf(priv, (u8 *) status, 2443 sizeof(struct ipw2100_status), 2444 SEARCH_SNAPSHOT); 2445 if (match < SEARCH_SUCCESS) 2446 IPW_DEBUG_INFO("%s: DMA status match in Firmware at " 2447 "offset 0x%06X, length %d:\n", 2448 priv->net_dev->name, match, 2449 sizeof(struct ipw2100_status)); 2450 else 2451 IPW_DEBUG_INFO("%s: No DMA status match in " 2452 "Firmware.\n", priv->net_dev->name); 2453 2454 printk_buf((u8 *) priv->status_queue.drv, 2455 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH); 2456 #endif 2457 2458 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION; 2459 priv->net_dev->stats.rx_errors++; 2460 schedule_reset(priv); 2461 } 2462 2463 static void isr_rx(struct ipw2100_priv *priv, int i, 2464 struct libipw_rx_stats *stats) 2465 { 2466 struct net_device *dev = priv->net_dev; 2467 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2468 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2469 2470 IPW_DEBUG_RX("Handler...\n"); 2471 2472 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) { 2473 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2474 " Dropping.\n", 2475 dev->name, 2476 status->frame_size, skb_tailroom(packet->skb)); 2477 dev->stats.rx_errors++; 2478 return; 2479 } 2480 2481 if (unlikely(!netif_running(dev))) { 2482 dev->stats.rx_errors++; 2483 priv->wstats.discard.misc++; 2484 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2485 return; 2486 } 2487 2488 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR && 2489 !(priv->status & STATUS_ASSOCIATED))) { 2490 IPW_DEBUG_DROP("Dropping packet while not associated.\n"); 2491 priv->wstats.discard.misc++; 2492 return; 2493 } 2494 2495 pci_unmap_single(priv->pci_dev, 2496 packet->dma_addr, 2497 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE); 2498 2499 skb_put(packet->skb, status->frame_size); 2500 2501 #ifdef IPW2100_RX_DEBUG 2502 /* Make a copy of the frame so we can dump it to the logs if 2503 * libipw_rx fails */ 2504 skb_copy_from_linear_data(packet->skb, packet_data, 2505 min_t(u32, status->frame_size, 2506 IPW_RX_NIC_BUFFER_LENGTH)); 2507 #endif 2508 2509 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2510 #ifdef IPW2100_RX_DEBUG 2511 IPW_DEBUG_DROP("%s: Non consumed packet:\n", 2512 dev->name); 2513 printk_buf(IPW_DL_DROP, packet_data, status->frame_size); 2514 #endif 2515 dev->stats.rx_errors++; 2516 2517 /* libipw_rx failed, so it didn't free the SKB */ 2518 dev_kfree_skb_any(packet->skb); 2519 packet->skb = NULL; 2520 } 2521 2522 /* We need to allocate a new SKB and attach it to the RDB. */ 2523 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2524 printk(KERN_WARNING DRV_NAME ": " 2525 "%s: Unable to allocate SKB onto RBD ring - disabling " 2526 "adapter.\n", dev->name); 2527 /* TODO: schedule adapter shutdown */ 2528 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2529 } 2530 2531 /* Update the RDB entry */ 2532 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2533 } 2534 2535 #ifdef CONFIG_IPW2100_MONITOR 2536 2537 static void isr_rx_monitor(struct ipw2100_priv *priv, int i, 2538 struct libipw_rx_stats *stats) 2539 { 2540 struct net_device *dev = priv->net_dev; 2541 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2542 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2543 2544 /* Magic struct that slots into the radiotap header -- no reason 2545 * to build this manually element by element, we can write it much 2546 * more efficiently than we can parse it. ORDER MATTERS HERE */ 2547 struct ipw_rt_hdr { 2548 struct ieee80211_radiotap_header rt_hdr; 2549 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */ 2550 } *ipw_rt; 2551 2552 IPW_DEBUG_RX("Handler...\n"); 2553 2554 if (unlikely(status->frame_size > skb_tailroom(packet->skb) - 2555 sizeof(struct ipw_rt_hdr))) { 2556 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2557 " Dropping.\n", 2558 dev->name, 2559 status->frame_size, 2560 skb_tailroom(packet->skb)); 2561 dev->stats.rx_errors++; 2562 return; 2563 } 2564 2565 if (unlikely(!netif_running(dev))) { 2566 dev->stats.rx_errors++; 2567 priv->wstats.discard.misc++; 2568 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2569 return; 2570 } 2571 2572 if (unlikely(priv->config & CFG_CRC_CHECK && 2573 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) { 2574 IPW_DEBUG_RX("CRC error in packet. Dropping.\n"); 2575 dev->stats.rx_errors++; 2576 return; 2577 } 2578 2579 pci_unmap_single(priv->pci_dev, packet->dma_addr, 2580 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE); 2581 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr), 2582 packet->skb->data, status->frame_size); 2583 2584 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data; 2585 2586 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 2587 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 2588 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */ 2589 2590 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 2591 2592 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM; 2593 2594 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr)); 2595 2596 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2597 dev->stats.rx_errors++; 2598 2599 /* libipw_rx failed, so it didn't free the SKB */ 2600 dev_kfree_skb_any(packet->skb); 2601 packet->skb = NULL; 2602 } 2603 2604 /* We need to allocate a new SKB and attach it to the RDB. */ 2605 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2606 IPW_DEBUG_WARNING( 2607 "%s: Unable to allocate SKB onto RBD ring - disabling " 2608 "adapter.\n", dev->name); 2609 /* TODO: schedule adapter shutdown */ 2610 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2611 } 2612 2613 /* Update the RDB entry */ 2614 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2615 } 2616 2617 #endif 2618 2619 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i) 2620 { 2621 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2622 struct ipw2100_rx *u = priv->rx_buffers[i].rxp; 2623 u16 frame_type = status->status_fields & STATUS_TYPE_MASK; 2624 2625 switch (frame_type) { 2626 case COMMAND_STATUS_VAL: 2627 return (status->frame_size != sizeof(u->rx_data.command)); 2628 case STATUS_CHANGE_VAL: 2629 return (status->frame_size != sizeof(u->rx_data.status)); 2630 case HOST_NOTIFICATION_VAL: 2631 return (status->frame_size < sizeof(u->rx_data.notification)); 2632 case P80211_DATA_VAL: 2633 case P8023_DATA_VAL: 2634 #ifdef CONFIG_IPW2100_MONITOR 2635 return 0; 2636 #else 2637 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2638 case IEEE80211_FTYPE_MGMT: 2639 case IEEE80211_FTYPE_CTL: 2640 return 0; 2641 case IEEE80211_FTYPE_DATA: 2642 return (status->frame_size > 2643 IPW_MAX_802_11_PAYLOAD_LENGTH); 2644 } 2645 #endif 2646 } 2647 2648 return 1; 2649 } 2650 2651 /* 2652 * ipw2100 interrupts are disabled at this point, and the ISR 2653 * is the only code that calls this method. So, we do not need 2654 * to play with any locks. 2655 * 2656 * RX Queue works as follows: 2657 * 2658 * Read index - firmware places packet in entry identified by the 2659 * Read index and advances Read index. In this manner, 2660 * Read index will always point to the next packet to 2661 * be filled--but not yet valid. 2662 * 2663 * Write index - driver fills this entry with an unused RBD entry. 2664 * This entry has not filled by the firmware yet. 2665 * 2666 * In between the W and R indexes are the RBDs that have been received 2667 * but not yet processed. 2668 * 2669 * The process of handling packets will start at WRITE + 1 and advance 2670 * until it reaches the READ index. 2671 * 2672 * The WRITE index is cached in the variable 'priv->rx_queue.next'. 2673 * 2674 */ 2675 static void __ipw2100_rx_process(struct ipw2100_priv *priv) 2676 { 2677 struct ipw2100_bd_queue *rxq = &priv->rx_queue; 2678 struct ipw2100_status_queue *sq = &priv->status_queue; 2679 struct ipw2100_rx_packet *packet; 2680 u16 frame_type; 2681 u32 r, w, i, s; 2682 struct ipw2100_rx *u; 2683 struct libipw_rx_stats stats = { 2684 .mac_time = jiffies, 2685 }; 2686 2687 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r); 2688 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w); 2689 2690 if (r >= rxq->entries) { 2691 IPW_DEBUG_RX("exit - bad read index\n"); 2692 return; 2693 } 2694 2695 i = (rxq->next + 1) % rxq->entries; 2696 s = i; 2697 while (i != r) { 2698 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n", 2699 r, rxq->next, i); */ 2700 2701 packet = &priv->rx_buffers[i]; 2702 2703 /* Sync the DMA for the RX buffer so CPU is sure to get 2704 * the correct values */ 2705 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr, 2706 sizeof(struct ipw2100_rx), 2707 PCI_DMA_FROMDEVICE); 2708 2709 if (unlikely(ipw2100_corruption_check(priv, i))) { 2710 ipw2100_corruption_detected(priv, i); 2711 goto increment; 2712 } 2713 2714 u = packet->rxp; 2715 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK; 2716 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM; 2717 stats.len = sq->drv[i].frame_size; 2718 2719 stats.mask = 0; 2720 if (stats.rssi != 0) 2721 stats.mask |= LIBIPW_STATMASK_RSSI; 2722 stats.freq = LIBIPW_24GHZ_BAND; 2723 2724 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n", 2725 priv->net_dev->name, frame_types[frame_type], 2726 stats.len); 2727 2728 switch (frame_type) { 2729 case COMMAND_STATUS_VAL: 2730 /* Reset Rx watchdog */ 2731 isr_rx_complete_command(priv, &u->rx_data.command); 2732 break; 2733 2734 case STATUS_CHANGE_VAL: 2735 isr_status_change(priv, u->rx_data.status); 2736 break; 2737 2738 case P80211_DATA_VAL: 2739 case P8023_DATA_VAL: 2740 #ifdef CONFIG_IPW2100_MONITOR 2741 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 2742 isr_rx_monitor(priv, i, &stats); 2743 break; 2744 } 2745 #endif 2746 if (stats.len < sizeof(struct libipw_hdr_3addr)) 2747 break; 2748 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2749 case IEEE80211_FTYPE_MGMT: 2750 libipw_rx_mgt(priv->ieee, 2751 &u->rx_data.header, &stats); 2752 break; 2753 2754 case IEEE80211_FTYPE_CTL: 2755 break; 2756 2757 case IEEE80211_FTYPE_DATA: 2758 isr_rx(priv, i, &stats); 2759 break; 2760 2761 } 2762 break; 2763 } 2764 2765 increment: 2766 /* clear status field associated with this RBD */ 2767 rxq->drv[i].status.info.field = 0; 2768 2769 i = (i + 1) % rxq->entries; 2770 } 2771 2772 if (i != s) { 2773 /* backtrack one entry, wrapping to end if at 0 */ 2774 rxq->next = (i ? i : rxq->entries) - 1; 2775 2776 write_register(priv->net_dev, 2777 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next); 2778 } 2779 } 2780 2781 /* 2782 * __ipw2100_tx_process 2783 * 2784 * This routine will determine whether the next packet on 2785 * the fw_pend_list has been processed by the firmware yet. 2786 * 2787 * If not, then it does nothing and returns. 2788 * 2789 * If so, then it removes the item from the fw_pend_list, frees 2790 * any associated storage, and places the item back on the 2791 * free list of its source (either msg_free_list or tx_free_list) 2792 * 2793 * TX Queue works as follows: 2794 * 2795 * Read index - points to the next TBD that the firmware will 2796 * process. The firmware will read the data, and once 2797 * done processing, it will advance the Read index. 2798 * 2799 * Write index - driver fills this entry with an constructed TBD 2800 * entry. The Write index is not advanced until the 2801 * packet has been configured. 2802 * 2803 * In between the W and R indexes are the TBDs that have NOT been 2804 * processed. Lagging behind the R index are packets that have 2805 * been processed but have not been freed by the driver. 2806 * 2807 * In order to free old storage, an internal index will be maintained 2808 * that points to the next packet to be freed. When all used 2809 * packets have been freed, the oldest index will be the same as the 2810 * firmware's read index. 2811 * 2812 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest' 2813 * 2814 * Because the TBD structure can not contain arbitrary data, the 2815 * driver must keep an internal queue of cached allocations such that 2816 * it can put that data back into the tx_free_list and msg_free_list 2817 * for use by future command and data packets. 2818 * 2819 */ 2820 static int __ipw2100_tx_process(struct ipw2100_priv *priv) 2821 { 2822 struct ipw2100_bd_queue *txq = &priv->tx_queue; 2823 struct ipw2100_bd *tbd; 2824 struct list_head *element; 2825 struct ipw2100_tx_packet *packet; 2826 int descriptors_used; 2827 int e, i; 2828 u32 r, w, frag_num = 0; 2829 2830 if (list_empty(&priv->fw_pend_list)) 2831 return 0; 2832 2833 element = priv->fw_pend_list.next; 2834 2835 packet = list_entry(element, struct ipw2100_tx_packet, list); 2836 tbd = &txq->drv[packet->index]; 2837 2838 /* Determine how many TBD entries must be finished... */ 2839 switch (packet->type) { 2840 case COMMAND: 2841 /* COMMAND uses only one slot; don't advance */ 2842 descriptors_used = 1; 2843 e = txq->oldest; 2844 break; 2845 2846 case DATA: 2847 /* DATA uses two slots; advance and loop position. */ 2848 descriptors_used = tbd->num_fragments; 2849 frag_num = tbd->num_fragments - 1; 2850 e = txq->oldest + frag_num; 2851 e %= txq->entries; 2852 break; 2853 2854 default: 2855 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n", 2856 priv->net_dev->name); 2857 return 0; 2858 } 2859 2860 /* if the last TBD is not done by NIC yet, then packet is 2861 * not ready to be released. 2862 * 2863 */ 2864 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 2865 &r); 2866 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 2867 &w); 2868 if (w != txq->next) 2869 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n", 2870 priv->net_dev->name); 2871 2872 /* 2873 * txq->next is the index of the last packet written txq->oldest is 2874 * the index of the r is the index of the next packet to be read by 2875 * firmware 2876 */ 2877 2878 /* 2879 * Quick graphic to help you visualize the following 2880 * if / else statement 2881 * 2882 * ===>| s---->|=============== 2883 * e>| 2884 * | a | b | c | d | e | f | g | h | i | j | k | l 2885 * r---->| 2886 * w 2887 * 2888 * w - updated by driver 2889 * r - updated by firmware 2890 * s - start of oldest BD entry (txq->oldest) 2891 * e - end of oldest BD entry 2892 * 2893 */ 2894 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) { 2895 IPW_DEBUG_TX("exit - no processed packets ready to release.\n"); 2896 return 0; 2897 } 2898 2899 list_del(element); 2900 DEC_STAT(&priv->fw_pend_stat); 2901 2902 #ifdef CONFIG_IPW2100_DEBUG 2903 { 2904 i = txq->oldest; 2905 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2906 &txq->drv[i], 2907 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)), 2908 txq->drv[i].host_addr, txq->drv[i].buf_length); 2909 2910 if (packet->type == DATA) { 2911 i = (i + 1) % txq->entries; 2912 2913 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2914 &txq->drv[i], 2915 (u32) (txq->nic + i * 2916 sizeof(struct ipw2100_bd)), 2917 (u32) txq->drv[i].host_addr, 2918 txq->drv[i].buf_length); 2919 } 2920 } 2921 #endif 2922 2923 switch (packet->type) { 2924 case DATA: 2925 if (txq->drv[txq->oldest].status.info.fields.txType != 0) 2926 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2927 "Expecting DATA TBD but pulled " 2928 "something else: ids %d=%d.\n", 2929 priv->net_dev->name, txq->oldest, packet->index); 2930 2931 /* DATA packet; we have to unmap and free the SKB */ 2932 for (i = 0; i < frag_num; i++) { 2933 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries]; 2934 2935 IPW_DEBUG_TX("TX%d P=%08x L=%d\n", 2936 (packet->index + 1 + i) % txq->entries, 2937 tbd->host_addr, tbd->buf_length); 2938 2939 pci_unmap_single(priv->pci_dev, 2940 tbd->host_addr, 2941 tbd->buf_length, PCI_DMA_TODEVICE); 2942 } 2943 2944 libipw_txb_free(packet->info.d_struct.txb); 2945 packet->info.d_struct.txb = NULL; 2946 2947 list_add_tail(element, &priv->tx_free_list); 2948 INC_STAT(&priv->tx_free_stat); 2949 2950 /* We have a free slot in the Tx queue, so wake up the 2951 * transmit layer if it is stopped. */ 2952 if (priv->status & STATUS_ASSOCIATED) 2953 netif_wake_queue(priv->net_dev); 2954 2955 /* A packet was processed by the hardware, so update the 2956 * watchdog */ 2957 netif_trans_update(priv->net_dev); 2958 2959 break; 2960 2961 case COMMAND: 2962 if (txq->drv[txq->oldest].status.info.fields.txType != 1) 2963 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2964 "Expecting COMMAND TBD but pulled " 2965 "something else: ids %d=%d.\n", 2966 priv->net_dev->name, txq->oldest, packet->index); 2967 2968 #ifdef CONFIG_IPW2100_DEBUG 2969 if (packet->info.c_struct.cmd->host_command_reg < 2970 ARRAY_SIZE(command_types)) 2971 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n", 2972 command_types[packet->info.c_struct.cmd-> 2973 host_command_reg], 2974 packet->info.c_struct.cmd-> 2975 host_command_reg, 2976 packet->info.c_struct.cmd->cmd_status_reg); 2977 #endif 2978 2979 list_add_tail(element, &priv->msg_free_list); 2980 INC_STAT(&priv->msg_free_stat); 2981 break; 2982 } 2983 2984 /* advance oldest used TBD pointer to start of next entry */ 2985 txq->oldest = (e + 1) % txq->entries; 2986 /* increase available TBDs number */ 2987 txq->available += descriptors_used; 2988 SET_STAT(&priv->txq_stat, txq->available); 2989 2990 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n", 2991 jiffies - packet->jiffy_start); 2992 2993 return (!list_empty(&priv->fw_pend_list)); 2994 } 2995 2996 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv) 2997 { 2998 int i = 0; 2999 3000 while (__ipw2100_tx_process(priv) && i < 200) 3001 i++; 3002 3003 if (i == 200) { 3004 printk(KERN_WARNING DRV_NAME ": " 3005 "%s: Driver is running slow (%d iters).\n", 3006 priv->net_dev->name, i); 3007 } 3008 } 3009 3010 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv) 3011 { 3012 struct list_head *element; 3013 struct ipw2100_tx_packet *packet; 3014 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3015 struct ipw2100_bd *tbd; 3016 int next = txq->next; 3017 3018 while (!list_empty(&priv->msg_pend_list)) { 3019 /* if there isn't enough space in TBD queue, then 3020 * don't stuff a new one in. 3021 * NOTE: 3 are needed as a command will take one, 3022 * and there is a minimum of 2 that must be 3023 * maintained between the r and w indexes 3024 */ 3025 if (txq->available <= 3) { 3026 IPW_DEBUG_TX("no room in tx_queue\n"); 3027 break; 3028 } 3029 3030 element = priv->msg_pend_list.next; 3031 list_del(element); 3032 DEC_STAT(&priv->msg_pend_stat); 3033 3034 packet = list_entry(element, struct ipw2100_tx_packet, list); 3035 3036 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n", 3037 &txq->drv[txq->next], 3038 (u32) (txq->nic + txq->next * 3039 sizeof(struct ipw2100_bd))); 3040 3041 packet->index = txq->next; 3042 3043 tbd = &txq->drv[txq->next]; 3044 3045 /* initialize TBD */ 3046 tbd->host_addr = packet->info.c_struct.cmd_phys; 3047 tbd->buf_length = sizeof(struct ipw2100_cmd_header); 3048 /* not marking number of fragments causes problems 3049 * with f/w debug version */ 3050 tbd->num_fragments = 1; 3051 tbd->status.info.field = 3052 IPW_BD_STATUS_TX_FRAME_COMMAND | 3053 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3054 3055 /* update TBD queue counters */ 3056 txq->next++; 3057 txq->next %= txq->entries; 3058 txq->available--; 3059 DEC_STAT(&priv->txq_stat); 3060 3061 list_add_tail(element, &priv->fw_pend_list); 3062 INC_STAT(&priv->fw_pend_stat); 3063 } 3064 3065 if (txq->next != next) { 3066 /* kick off the DMA by notifying firmware the 3067 * write index has moved; make sure TBD stores are sync'd */ 3068 wmb(); 3069 write_register(priv->net_dev, 3070 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3071 txq->next); 3072 } 3073 } 3074 3075 /* 3076 * ipw2100_tx_send_data 3077 * 3078 */ 3079 static void ipw2100_tx_send_data(struct ipw2100_priv *priv) 3080 { 3081 struct list_head *element; 3082 struct ipw2100_tx_packet *packet; 3083 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3084 struct ipw2100_bd *tbd; 3085 int next = txq->next; 3086 int i = 0; 3087 struct ipw2100_data_header *ipw_hdr; 3088 struct libipw_hdr_3addr *hdr; 3089 3090 while (!list_empty(&priv->tx_pend_list)) { 3091 /* if there isn't enough space in TBD queue, then 3092 * don't stuff a new one in. 3093 * NOTE: 4 are needed as a data will take two, 3094 * and there is a minimum of 2 that must be 3095 * maintained between the r and w indexes 3096 */ 3097 element = priv->tx_pend_list.next; 3098 packet = list_entry(element, struct ipw2100_tx_packet, list); 3099 3100 if (unlikely(1 + packet->info.d_struct.txb->nr_frags > 3101 IPW_MAX_BDS)) { 3102 /* TODO: Support merging buffers if more than 3103 * IPW_MAX_BDS are used */ 3104 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. " 3105 "Increase fragmentation level.\n", 3106 priv->net_dev->name); 3107 } 3108 3109 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) { 3110 IPW_DEBUG_TX("no room in tx_queue\n"); 3111 break; 3112 } 3113 3114 list_del(element); 3115 DEC_STAT(&priv->tx_pend_stat); 3116 3117 tbd = &txq->drv[txq->next]; 3118 3119 packet->index = txq->next; 3120 3121 ipw_hdr = packet->info.d_struct.data; 3122 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb-> 3123 fragments[0]->data; 3124 3125 if (priv->ieee->iw_mode == IW_MODE_INFRA) { 3126 /* To DS: Addr1 = BSSID, Addr2 = SA, 3127 Addr3 = DA */ 3128 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3129 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN); 3130 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 3131 /* not From/To DS: Addr1 = DA, Addr2 = SA, 3132 Addr3 = BSSID */ 3133 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3134 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN); 3135 } 3136 3137 ipw_hdr->host_command_reg = SEND; 3138 ipw_hdr->host_command_reg1 = 0; 3139 3140 /* For now we only support host based encryption */ 3141 ipw_hdr->needs_encryption = 0; 3142 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted; 3143 if (packet->info.d_struct.txb->nr_frags > 1) 3144 ipw_hdr->fragment_size = 3145 packet->info.d_struct.txb->frag_size - 3146 LIBIPW_3ADDR_LEN; 3147 else 3148 ipw_hdr->fragment_size = 0; 3149 3150 tbd->host_addr = packet->info.d_struct.data_phys; 3151 tbd->buf_length = sizeof(struct ipw2100_data_header); 3152 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags; 3153 tbd->status.info.field = 3154 IPW_BD_STATUS_TX_FRAME_802_3 | 3155 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3156 txq->next++; 3157 txq->next %= txq->entries; 3158 3159 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n", 3160 packet->index, tbd->host_addr, tbd->buf_length); 3161 #ifdef CONFIG_IPW2100_DEBUG 3162 if (packet->info.d_struct.txb->nr_frags > 1) 3163 IPW_DEBUG_FRAG("fragment Tx: %d frames\n", 3164 packet->info.d_struct.txb->nr_frags); 3165 #endif 3166 3167 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) { 3168 tbd = &txq->drv[txq->next]; 3169 if (i == packet->info.d_struct.txb->nr_frags - 1) 3170 tbd->status.info.field = 3171 IPW_BD_STATUS_TX_FRAME_802_3 | 3172 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3173 else 3174 tbd->status.info.field = 3175 IPW_BD_STATUS_TX_FRAME_802_3 | 3176 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3177 3178 tbd->buf_length = packet->info.d_struct.txb-> 3179 fragments[i]->len - LIBIPW_3ADDR_LEN; 3180 3181 tbd->host_addr = pci_map_single(priv->pci_dev, 3182 packet->info.d_struct. 3183 txb->fragments[i]-> 3184 data + 3185 LIBIPW_3ADDR_LEN, 3186 tbd->buf_length, 3187 PCI_DMA_TODEVICE); 3188 if (pci_dma_mapping_error(priv->pci_dev, 3189 tbd->host_addr)) { 3190 IPW_DEBUG_TX("dma mapping error\n"); 3191 break; 3192 } 3193 3194 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n", 3195 txq->next, tbd->host_addr, 3196 tbd->buf_length); 3197 3198 pci_dma_sync_single_for_device(priv->pci_dev, 3199 tbd->host_addr, 3200 tbd->buf_length, 3201 PCI_DMA_TODEVICE); 3202 3203 txq->next++; 3204 txq->next %= txq->entries; 3205 } 3206 3207 txq->available -= 1 + packet->info.d_struct.txb->nr_frags; 3208 SET_STAT(&priv->txq_stat, txq->available); 3209 3210 list_add_tail(element, &priv->fw_pend_list); 3211 INC_STAT(&priv->fw_pend_stat); 3212 } 3213 3214 if (txq->next != next) { 3215 /* kick off the DMA by notifying firmware the 3216 * write index has moved; make sure TBD stores are sync'd */ 3217 write_register(priv->net_dev, 3218 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3219 txq->next); 3220 } 3221 } 3222 3223 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv) 3224 { 3225 struct net_device *dev = priv->net_dev; 3226 unsigned long flags; 3227 u32 inta, tmp; 3228 3229 spin_lock_irqsave(&priv->low_lock, flags); 3230 ipw2100_disable_interrupts(priv); 3231 3232 read_register(dev, IPW_REG_INTA, &inta); 3233 3234 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n", 3235 (unsigned long)inta & IPW_INTERRUPT_MASK); 3236 3237 priv->in_isr++; 3238 priv->interrupts++; 3239 3240 /* We do not loop and keep polling for more interrupts as this 3241 * is frowned upon and doesn't play nicely with other potentially 3242 * chained IRQs */ 3243 IPW_DEBUG_ISR("INTA: 0x%08lX\n", 3244 (unsigned long)inta & IPW_INTERRUPT_MASK); 3245 3246 if (inta & IPW2100_INTA_FATAL_ERROR) { 3247 printk(KERN_WARNING DRV_NAME 3248 ": Fatal interrupt. Scheduling firmware restart.\n"); 3249 priv->inta_other++; 3250 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR); 3251 3252 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error); 3253 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n", 3254 priv->net_dev->name, priv->fatal_error); 3255 3256 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp); 3257 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n", 3258 priv->net_dev->name, tmp); 3259 3260 /* Wake up any sleeping jobs */ 3261 schedule_reset(priv); 3262 } 3263 3264 if (inta & IPW2100_INTA_PARITY_ERROR) { 3265 printk(KERN_ERR DRV_NAME 3266 ": ***** PARITY ERROR INTERRUPT !!!!\n"); 3267 priv->inta_other++; 3268 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR); 3269 } 3270 3271 if (inta & IPW2100_INTA_RX_TRANSFER) { 3272 IPW_DEBUG_ISR("RX interrupt\n"); 3273 3274 priv->rx_interrupts++; 3275 3276 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER); 3277 3278 __ipw2100_rx_process(priv); 3279 __ipw2100_tx_complete(priv); 3280 } 3281 3282 if (inta & IPW2100_INTA_TX_TRANSFER) { 3283 IPW_DEBUG_ISR("TX interrupt\n"); 3284 3285 priv->tx_interrupts++; 3286 3287 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER); 3288 3289 __ipw2100_tx_complete(priv); 3290 ipw2100_tx_send_commands(priv); 3291 ipw2100_tx_send_data(priv); 3292 } 3293 3294 if (inta & IPW2100_INTA_TX_COMPLETE) { 3295 IPW_DEBUG_ISR("TX complete\n"); 3296 priv->inta_other++; 3297 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE); 3298 3299 __ipw2100_tx_complete(priv); 3300 } 3301 3302 if (inta & IPW2100_INTA_EVENT_INTERRUPT) { 3303 /* ipw2100_handle_event(dev); */ 3304 priv->inta_other++; 3305 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT); 3306 } 3307 3308 if (inta & IPW2100_INTA_FW_INIT_DONE) { 3309 IPW_DEBUG_ISR("FW init done interrupt\n"); 3310 priv->inta_other++; 3311 3312 read_register(dev, IPW_REG_INTA, &tmp); 3313 if (tmp & (IPW2100_INTA_FATAL_ERROR | 3314 IPW2100_INTA_PARITY_ERROR)) { 3315 write_register(dev, IPW_REG_INTA, 3316 IPW2100_INTA_FATAL_ERROR | 3317 IPW2100_INTA_PARITY_ERROR); 3318 } 3319 3320 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE); 3321 } 3322 3323 if (inta & IPW2100_INTA_STATUS_CHANGE) { 3324 IPW_DEBUG_ISR("Status change interrupt\n"); 3325 priv->inta_other++; 3326 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE); 3327 } 3328 3329 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) { 3330 IPW_DEBUG_ISR("slave host mode interrupt\n"); 3331 priv->inta_other++; 3332 write_register(dev, IPW_REG_INTA, 3333 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE); 3334 } 3335 3336 priv->in_isr--; 3337 ipw2100_enable_interrupts(priv); 3338 3339 spin_unlock_irqrestore(&priv->low_lock, flags); 3340 3341 IPW_DEBUG_ISR("exit\n"); 3342 } 3343 3344 static irqreturn_t ipw2100_interrupt(int irq, void *data) 3345 { 3346 struct ipw2100_priv *priv = data; 3347 u32 inta, inta_mask; 3348 3349 if (!data) 3350 return IRQ_NONE; 3351 3352 spin_lock(&priv->low_lock); 3353 3354 /* We check to see if we should be ignoring interrupts before 3355 * we touch the hardware. During ucode load if we try and handle 3356 * an interrupt we can cause keyboard problems as well as cause 3357 * the ucode to fail to initialize */ 3358 if (!(priv->status & STATUS_INT_ENABLED)) { 3359 /* Shared IRQ */ 3360 goto none; 3361 } 3362 3363 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 3364 read_register(priv->net_dev, IPW_REG_INTA, &inta); 3365 3366 if (inta == 0xFFFFFFFF) { 3367 /* Hardware disappeared */ 3368 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n"); 3369 goto none; 3370 } 3371 3372 inta &= IPW_INTERRUPT_MASK; 3373 3374 if (!(inta & inta_mask)) { 3375 /* Shared interrupt */ 3376 goto none; 3377 } 3378 3379 /* We disable the hardware interrupt here just to prevent unneeded 3380 * calls to be made. We disable this again within the actual 3381 * work tasklet, so if another part of the code re-enables the 3382 * interrupt, that is fine */ 3383 ipw2100_disable_interrupts(priv); 3384 3385 tasklet_schedule(&priv->irq_tasklet); 3386 spin_unlock(&priv->low_lock); 3387 3388 return IRQ_HANDLED; 3389 none: 3390 spin_unlock(&priv->low_lock); 3391 return IRQ_NONE; 3392 } 3393 3394 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb, 3395 struct net_device *dev, int pri) 3396 { 3397 struct ipw2100_priv *priv = libipw_priv(dev); 3398 struct list_head *element; 3399 struct ipw2100_tx_packet *packet; 3400 unsigned long flags; 3401 3402 spin_lock_irqsave(&priv->low_lock, flags); 3403 3404 if (!(priv->status & STATUS_ASSOCIATED)) { 3405 IPW_DEBUG_INFO("Can not transmit when not connected.\n"); 3406 priv->net_dev->stats.tx_carrier_errors++; 3407 netif_stop_queue(dev); 3408 goto fail_unlock; 3409 } 3410 3411 if (list_empty(&priv->tx_free_list)) 3412 goto fail_unlock; 3413 3414 element = priv->tx_free_list.next; 3415 packet = list_entry(element, struct ipw2100_tx_packet, list); 3416 3417 packet->info.d_struct.txb = txb; 3418 3419 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len); 3420 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len); 3421 3422 packet->jiffy_start = jiffies; 3423 3424 list_del(element); 3425 DEC_STAT(&priv->tx_free_stat); 3426 3427 list_add_tail(element, &priv->tx_pend_list); 3428 INC_STAT(&priv->tx_pend_stat); 3429 3430 ipw2100_tx_send_data(priv); 3431 3432 spin_unlock_irqrestore(&priv->low_lock, flags); 3433 return NETDEV_TX_OK; 3434 3435 fail_unlock: 3436 netif_stop_queue(dev); 3437 spin_unlock_irqrestore(&priv->low_lock, flags); 3438 return NETDEV_TX_BUSY; 3439 } 3440 3441 static int ipw2100_msg_allocate(struct ipw2100_priv *priv) 3442 { 3443 int i, j, err = -EINVAL; 3444 void *v; 3445 dma_addr_t p; 3446 3447 priv->msg_buffers = 3448 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet), 3449 GFP_KERNEL); 3450 if (!priv->msg_buffers) 3451 return -ENOMEM; 3452 3453 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3454 v = pci_zalloc_consistent(priv->pci_dev, 3455 sizeof(struct ipw2100_cmd_header), 3456 &p); 3457 if (!v) { 3458 printk(KERN_ERR DRV_NAME ": " 3459 "%s: PCI alloc failed for msg " 3460 "buffers.\n", priv->net_dev->name); 3461 err = -ENOMEM; 3462 break; 3463 } 3464 3465 priv->msg_buffers[i].type = COMMAND; 3466 priv->msg_buffers[i].info.c_struct.cmd = 3467 (struct ipw2100_cmd_header *)v; 3468 priv->msg_buffers[i].info.c_struct.cmd_phys = p; 3469 } 3470 3471 if (i == IPW_COMMAND_POOL_SIZE) 3472 return 0; 3473 3474 for (j = 0; j < i; j++) { 3475 pci_free_consistent(priv->pci_dev, 3476 sizeof(struct ipw2100_cmd_header), 3477 priv->msg_buffers[j].info.c_struct.cmd, 3478 priv->msg_buffers[j].info.c_struct. 3479 cmd_phys); 3480 } 3481 3482 kfree(priv->msg_buffers); 3483 priv->msg_buffers = NULL; 3484 3485 return err; 3486 } 3487 3488 static int ipw2100_msg_initialize(struct ipw2100_priv *priv) 3489 { 3490 int i; 3491 3492 INIT_LIST_HEAD(&priv->msg_free_list); 3493 INIT_LIST_HEAD(&priv->msg_pend_list); 3494 3495 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) 3496 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list); 3497 SET_STAT(&priv->msg_free_stat, i); 3498 3499 return 0; 3500 } 3501 3502 static void ipw2100_msg_free(struct ipw2100_priv *priv) 3503 { 3504 int i; 3505 3506 if (!priv->msg_buffers) 3507 return; 3508 3509 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3510 pci_free_consistent(priv->pci_dev, 3511 sizeof(struct ipw2100_cmd_header), 3512 priv->msg_buffers[i].info.c_struct.cmd, 3513 priv->msg_buffers[i].info.c_struct. 3514 cmd_phys); 3515 } 3516 3517 kfree(priv->msg_buffers); 3518 priv->msg_buffers = NULL; 3519 } 3520 3521 static ssize_t show_pci(struct device *d, struct device_attribute *attr, 3522 char *buf) 3523 { 3524 struct pci_dev *pci_dev = to_pci_dev(d); 3525 char *out = buf; 3526 int i, j; 3527 u32 val; 3528 3529 for (i = 0; i < 16; i++) { 3530 out += sprintf(out, "[%08X] ", i * 16); 3531 for (j = 0; j < 16; j += 4) { 3532 pci_read_config_dword(pci_dev, i * 16 + j, &val); 3533 out += sprintf(out, "%08X ", val); 3534 } 3535 out += sprintf(out, "\n"); 3536 } 3537 3538 return out - buf; 3539 } 3540 3541 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL); 3542 3543 static ssize_t show_cfg(struct device *d, struct device_attribute *attr, 3544 char *buf) 3545 { 3546 struct ipw2100_priv *p = dev_get_drvdata(d); 3547 return sprintf(buf, "0x%08x\n", (int)p->config); 3548 } 3549 3550 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL); 3551 3552 static ssize_t show_status(struct device *d, struct device_attribute *attr, 3553 char *buf) 3554 { 3555 struct ipw2100_priv *p = dev_get_drvdata(d); 3556 return sprintf(buf, "0x%08x\n", (int)p->status); 3557 } 3558 3559 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL); 3560 3561 static ssize_t show_capability(struct device *d, struct device_attribute *attr, 3562 char *buf) 3563 { 3564 struct ipw2100_priv *p = dev_get_drvdata(d); 3565 return sprintf(buf, "0x%08x\n", (int)p->capability); 3566 } 3567 3568 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL); 3569 3570 #define IPW2100_REG(x) { IPW_ ##x, #x } 3571 static const struct { 3572 u32 addr; 3573 const char *name; 3574 } hw_data[] = { 3575 IPW2100_REG(REG_GP_CNTRL), 3576 IPW2100_REG(REG_GPIO), 3577 IPW2100_REG(REG_INTA), 3578 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),}; 3579 #define IPW2100_NIC(x, s) { x, #x, s } 3580 static const struct { 3581 u32 addr; 3582 const char *name; 3583 size_t size; 3584 } nic_data[] = { 3585 IPW2100_NIC(IPW2100_CONTROL_REG, 2), 3586 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),}; 3587 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d } 3588 static const struct { 3589 u8 index; 3590 const char *name; 3591 const char *desc; 3592 } ord_data[] = { 3593 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"), 3594 IPW2100_ORD(STAT_TX_HOST_COMPLETE, 3595 "successful Host Tx's (MSDU)"), 3596 IPW2100_ORD(STAT_TX_DIR_DATA, 3597 "successful Directed Tx's (MSDU)"), 3598 IPW2100_ORD(STAT_TX_DIR_DATA1, 3599 "successful Directed Tx's (MSDU) @ 1MB"), 3600 IPW2100_ORD(STAT_TX_DIR_DATA2, 3601 "successful Directed Tx's (MSDU) @ 2MB"), 3602 IPW2100_ORD(STAT_TX_DIR_DATA5_5, 3603 "successful Directed Tx's (MSDU) @ 5_5MB"), 3604 IPW2100_ORD(STAT_TX_DIR_DATA11, 3605 "successful Directed Tx's (MSDU) @ 11MB"), 3606 IPW2100_ORD(STAT_TX_NODIR_DATA1, 3607 "successful Non_Directed Tx's (MSDU) @ 1MB"), 3608 IPW2100_ORD(STAT_TX_NODIR_DATA2, 3609 "successful Non_Directed Tx's (MSDU) @ 2MB"), 3610 IPW2100_ORD(STAT_TX_NODIR_DATA5_5, 3611 "successful Non_Directed Tx's (MSDU) @ 5.5MB"), 3612 IPW2100_ORD(STAT_TX_NODIR_DATA11, 3613 "successful Non_Directed Tx's (MSDU) @ 11MB"), 3614 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"), 3615 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"), 3616 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"), 3617 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"), 3618 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"), 3619 IPW2100_ORD(STAT_TX_ASSN_RESP, 3620 "successful Association response Tx's"), 3621 IPW2100_ORD(STAT_TX_REASSN, 3622 "successful Reassociation Tx's"), 3623 IPW2100_ORD(STAT_TX_REASSN_RESP, 3624 "successful Reassociation response Tx's"), 3625 IPW2100_ORD(STAT_TX_PROBE, 3626 "probes successfully transmitted"), 3627 IPW2100_ORD(STAT_TX_PROBE_RESP, 3628 "probe responses successfully transmitted"), 3629 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"), 3630 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"), 3631 IPW2100_ORD(STAT_TX_DISASSN, 3632 "successful Disassociation TX"), 3633 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"), 3634 IPW2100_ORD(STAT_TX_DEAUTH, 3635 "successful Deauthentication TX"), 3636 IPW2100_ORD(STAT_TX_TOTAL_BYTES, 3637 "Total successful Tx data bytes"), 3638 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"), 3639 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"), 3640 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"), 3641 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"), 3642 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"), 3643 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"), 3644 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP, 3645 "times max tries in a hop failed"), 3646 IPW2100_ORD(STAT_TX_DISASSN_FAIL, 3647 "times disassociation failed"), 3648 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"), 3649 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"), 3650 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"), 3651 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"), 3652 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"), 3653 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"), 3654 IPW2100_ORD(STAT_RX_DIR_DATA5_5, 3655 "directed packets at 5.5MB"), 3656 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"), 3657 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"), 3658 IPW2100_ORD(STAT_RX_NODIR_DATA1, 3659 "nondirected packets at 1MB"), 3660 IPW2100_ORD(STAT_RX_NODIR_DATA2, 3661 "nondirected packets at 2MB"), 3662 IPW2100_ORD(STAT_RX_NODIR_DATA5_5, 3663 "nondirected packets at 5.5MB"), 3664 IPW2100_ORD(STAT_RX_NODIR_DATA11, 3665 "nondirected packets at 11MB"), 3666 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"), 3667 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS, 3668 "Rx CTS"), 3669 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"), 3670 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"), 3671 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"), 3672 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"), 3673 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"), 3674 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"), 3675 IPW2100_ORD(STAT_RX_REASSN_RESP, 3676 "Reassociation response Rx's"), 3677 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"), 3678 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"), 3679 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"), 3680 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"), 3681 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"), 3682 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"), 3683 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"), 3684 IPW2100_ORD(STAT_RX_TOTAL_BYTES, 3685 "Total rx data bytes received"), 3686 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"), 3687 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"), 3688 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"), 3689 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"), 3690 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"), 3691 IPW2100_ORD(STAT_RX_DUPLICATE1, 3692 "duplicate rx packets at 1MB"), 3693 IPW2100_ORD(STAT_RX_DUPLICATE2, 3694 "duplicate rx packets at 2MB"), 3695 IPW2100_ORD(STAT_RX_DUPLICATE5_5, 3696 "duplicate rx packets at 5.5MB"), 3697 IPW2100_ORD(STAT_RX_DUPLICATE11, 3698 "duplicate rx packets at 11MB"), 3699 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"), 3700 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"), 3701 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"), 3702 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"), 3703 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL, 3704 "rx frames with invalid protocol"), 3705 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"), 3706 IPW2100_ORD(STAT_RX_NO_BUFFER, 3707 "rx frames rejected due to no buffer"), 3708 IPW2100_ORD(STAT_RX_MISSING_FRAG, 3709 "rx frames dropped due to missing fragment"), 3710 IPW2100_ORD(STAT_RX_ORPHAN_FRAG, 3711 "rx frames dropped due to non-sequential fragment"), 3712 IPW2100_ORD(STAT_RX_ORPHAN_FRAME, 3713 "rx frames dropped due to unmatched 1st frame"), 3714 IPW2100_ORD(STAT_RX_FRAG_AGEOUT, 3715 "rx frames dropped due to uncompleted frame"), 3716 IPW2100_ORD(STAT_RX_ICV_ERRORS, 3717 "ICV errors during decryption"), 3718 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"), 3719 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"), 3720 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT, 3721 "poll response timeouts"), 3722 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT, 3723 "timeouts waiting for last {broad,multi}cast pkt"), 3724 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"), 3725 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"), 3726 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"), 3727 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"), 3728 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS, 3729 "current calculation of % missed beacons"), 3730 IPW2100_ORD(STAT_PERCENT_RETRIES, 3731 "current calculation of % missed tx retries"), 3732 IPW2100_ORD(ASSOCIATED_AP_PTR, 3733 "0 if not associated, else pointer to AP table entry"), 3734 IPW2100_ORD(AVAILABLE_AP_CNT, 3735 "AP's decsribed in the AP table"), 3736 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"), 3737 IPW2100_ORD(STAT_AP_ASSNS, "associations"), 3738 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"), 3739 IPW2100_ORD(STAT_ASSN_RESP_FAIL, 3740 "failures due to response fail"), 3741 IPW2100_ORD(STAT_FULL_SCANS, "full scans"), 3742 IPW2100_ORD(CARD_DISABLED, "Card Disabled"), 3743 IPW2100_ORD(STAT_ROAM_INHIBIT, 3744 "times roaming was inhibited due to activity"), 3745 IPW2100_ORD(RSSI_AT_ASSN, 3746 "RSSI of associated AP at time of association"), 3747 IPW2100_ORD(STAT_ASSN_CAUSE1, 3748 "reassociation: no probe response or TX on hop"), 3749 IPW2100_ORD(STAT_ASSN_CAUSE2, 3750 "reassociation: poor tx/rx quality"), 3751 IPW2100_ORD(STAT_ASSN_CAUSE3, 3752 "reassociation: tx/rx quality (excessive AP load"), 3753 IPW2100_ORD(STAT_ASSN_CAUSE4, 3754 "reassociation: AP RSSI level"), 3755 IPW2100_ORD(STAT_ASSN_CAUSE5, 3756 "reassociations due to load leveling"), 3757 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"), 3758 IPW2100_ORD(STAT_AUTH_RESP_FAIL, 3759 "times authentication response failed"), 3760 IPW2100_ORD(STATION_TABLE_CNT, 3761 "entries in association table"), 3762 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"), 3763 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"), 3764 IPW2100_ORD(COUNTRY_CODE, 3765 "IEEE country code as recv'd from beacon"), 3766 IPW2100_ORD(COUNTRY_CHANNELS, 3767 "channels supported by country"), 3768 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"), 3769 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"), 3770 IPW2100_ORD(ANTENNA_DIVERSITY, 3771 "TRUE if antenna diversity is disabled"), 3772 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"), 3773 IPW2100_ORD(OUR_FREQ, 3774 "current radio freq lower digits - channel ID"), 3775 IPW2100_ORD(RTC_TIME, "current RTC time"), 3776 IPW2100_ORD(PORT_TYPE, "operating mode"), 3777 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"), 3778 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"), 3779 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"), 3780 IPW2100_ORD(BASIC_RATES, "basic tx rates"), 3781 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"), 3782 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"), 3783 IPW2100_ORD(CAPABILITIES, 3784 "Management frame capability field"), 3785 IPW2100_ORD(AUTH_TYPE, "Type of authentication"), 3786 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"), 3787 IPW2100_ORD(RTS_THRESHOLD, 3788 "Min packet length for RTS handshaking"), 3789 IPW2100_ORD(INT_MODE, "International mode"), 3790 IPW2100_ORD(FRAGMENTATION_THRESHOLD, 3791 "protocol frag threshold"), 3792 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS, 3793 "EEPROM offset in SRAM"), 3794 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE, 3795 "EEPROM size in SRAM"), 3796 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"), 3797 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS, 3798 "EEPROM IBSS 11b channel set"), 3799 IPW2100_ORD(MAC_VERSION, "MAC Version"), 3800 IPW2100_ORD(MAC_REVISION, "MAC Revision"), 3801 IPW2100_ORD(RADIO_VERSION, "Radio Version"), 3802 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"), 3803 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),}; 3804 3805 static ssize_t show_registers(struct device *d, struct device_attribute *attr, 3806 char *buf) 3807 { 3808 int i; 3809 struct ipw2100_priv *priv = dev_get_drvdata(d); 3810 struct net_device *dev = priv->net_dev; 3811 char *out = buf; 3812 u32 val = 0; 3813 3814 out += sprintf(out, "%30s [Address ] : Hex\n", "Register"); 3815 3816 for (i = 0; i < ARRAY_SIZE(hw_data); i++) { 3817 read_register(dev, hw_data[i].addr, &val); 3818 out += sprintf(out, "%30s [%08X] : %08X\n", 3819 hw_data[i].name, hw_data[i].addr, val); 3820 } 3821 3822 return out - buf; 3823 } 3824 3825 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL); 3826 3827 static ssize_t show_hardware(struct device *d, struct device_attribute *attr, 3828 char *buf) 3829 { 3830 struct ipw2100_priv *priv = dev_get_drvdata(d); 3831 struct net_device *dev = priv->net_dev; 3832 char *out = buf; 3833 int i; 3834 3835 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry"); 3836 3837 for (i = 0; i < ARRAY_SIZE(nic_data); i++) { 3838 u8 tmp8; 3839 u16 tmp16; 3840 u32 tmp32; 3841 3842 switch (nic_data[i].size) { 3843 case 1: 3844 read_nic_byte(dev, nic_data[i].addr, &tmp8); 3845 out += sprintf(out, "%30s [%08X] : %02X\n", 3846 nic_data[i].name, nic_data[i].addr, 3847 tmp8); 3848 break; 3849 case 2: 3850 read_nic_word(dev, nic_data[i].addr, &tmp16); 3851 out += sprintf(out, "%30s [%08X] : %04X\n", 3852 nic_data[i].name, nic_data[i].addr, 3853 tmp16); 3854 break; 3855 case 4: 3856 read_nic_dword(dev, nic_data[i].addr, &tmp32); 3857 out += sprintf(out, "%30s [%08X] : %08X\n", 3858 nic_data[i].name, nic_data[i].addr, 3859 tmp32); 3860 break; 3861 } 3862 } 3863 return out - buf; 3864 } 3865 3866 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL); 3867 3868 static ssize_t show_memory(struct device *d, struct device_attribute *attr, 3869 char *buf) 3870 { 3871 struct ipw2100_priv *priv = dev_get_drvdata(d); 3872 struct net_device *dev = priv->net_dev; 3873 static unsigned long loop = 0; 3874 int len = 0; 3875 u32 buffer[4]; 3876 int i; 3877 char line[81]; 3878 3879 if (loop >= 0x30000) 3880 loop = 0; 3881 3882 /* sysfs provides us PAGE_SIZE buffer */ 3883 while (len < PAGE_SIZE - 128 && loop < 0x30000) { 3884 3885 if (priv->snapshot[0]) 3886 for (i = 0; i < 4; i++) 3887 buffer[i] = 3888 *(u32 *) SNAPSHOT_ADDR(loop + i * 4); 3889 else 3890 for (i = 0; i < 4; i++) 3891 read_nic_dword(dev, loop + i * 4, &buffer[i]); 3892 3893 if (priv->dump_raw) 3894 len += sprintf(buf + len, 3895 "%c%c%c%c" 3896 "%c%c%c%c" 3897 "%c%c%c%c" 3898 "%c%c%c%c", 3899 ((u8 *) buffer)[0x0], 3900 ((u8 *) buffer)[0x1], 3901 ((u8 *) buffer)[0x2], 3902 ((u8 *) buffer)[0x3], 3903 ((u8 *) buffer)[0x4], 3904 ((u8 *) buffer)[0x5], 3905 ((u8 *) buffer)[0x6], 3906 ((u8 *) buffer)[0x7], 3907 ((u8 *) buffer)[0x8], 3908 ((u8 *) buffer)[0x9], 3909 ((u8 *) buffer)[0xa], 3910 ((u8 *) buffer)[0xb], 3911 ((u8 *) buffer)[0xc], 3912 ((u8 *) buffer)[0xd], 3913 ((u8 *) buffer)[0xe], 3914 ((u8 *) buffer)[0xf]); 3915 else 3916 len += sprintf(buf + len, "%s\n", 3917 snprint_line(line, sizeof(line), 3918 (u8 *) buffer, 16, loop)); 3919 loop += 16; 3920 } 3921 3922 return len; 3923 } 3924 3925 static ssize_t store_memory(struct device *d, struct device_attribute *attr, 3926 const char *buf, size_t count) 3927 { 3928 struct ipw2100_priv *priv = dev_get_drvdata(d); 3929 struct net_device *dev = priv->net_dev; 3930 const char *p = buf; 3931 3932 (void)dev; /* kill unused-var warning for debug-only code */ 3933 3934 if (count < 1) 3935 return count; 3936 3937 if (p[0] == '1' || 3938 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) { 3939 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n", 3940 dev->name); 3941 priv->dump_raw = 1; 3942 3943 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' && 3944 tolower(p[1]) == 'f')) { 3945 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n", 3946 dev->name); 3947 priv->dump_raw = 0; 3948 3949 } else if (tolower(p[0]) == 'r') { 3950 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name); 3951 ipw2100_snapshot_free(priv); 3952 3953 } else 3954 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, " 3955 "reset = clear memory snapshot\n", dev->name); 3956 3957 return count; 3958 } 3959 3960 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory); 3961 3962 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr, 3963 char *buf) 3964 { 3965 struct ipw2100_priv *priv = dev_get_drvdata(d); 3966 u32 val = 0; 3967 int len = 0; 3968 u32 val_len; 3969 static int loop = 0; 3970 3971 if (priv->status & STATUS_RF_KILL_MASK) 3972 return 0; 3973 3974 if (loop >= ARRAY_SIZE(ord_data)) 3975 loop = 0; 3976 3977 /* sysfs provides us PAGE_SIZE buffer */ 3978 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) { 3979 val_len = sizeof(u32); 3980 3981 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val, 3982 &val_len)) 3983 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n", 3984 ord_data[loop].index, 3985 ord_data[loop].desc); 3986 else 3987 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n", 3988 ord_data[loop].index, val, 3989 ord_data[loop].desc); 3990 loop++; 3991 } 3992 3993 return len; 3994 } 3995 3996 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL); 3997 3998 static ssize_t show_stats(struct device *d, struct device_attribute *attr, 3999 char *buf) 4000 { 4001 struct ipw2100_priv *priv = dev_get_drvdata(d); 4002 char *out = buf; 4003 4004 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n", 4005 priv->interrupts, priv->tx_interrupts, 4006 priv->rx_interrupts, priv->inta_other); 4007 out += sprintf(out, "firmware resets: %d\n", priv->resets); 4008 out += sprintf(out, "firmware hangs: %d\n", priv->hangs); 4009 #ifdef CONFIG_IPW2100_DEBUG 4010 out += sprintf(out, "packet mismatch image: %s\n", 4011 priv->snapshot[0] ? "YES" : "NO"); 4012 #endif 4013 4014 return out - buf; 4015 } 4016 4017 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL); 4018 4019 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode) 4020 { 4021 int err; 4022 4023 if (mode == priv->ieee->iw_mode) 4024 return 0; 4025 4026 err = ipw2100_disable_adapter(priv); 4027 if (err) { 4028 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n", 4029 priv->net_dev->name, err); 4030 return err; 4031 } 4032 4033 switch (mode) { 4034 case IW_MODE_INFRA: 4035 priv->net_dev->type = ARPHRD_ETHER; 4036 break; 4037 case IW_MODE_ADHOC: 4038 priv->net_dev->type = ARPHRD_ETHER; 4039 break; 4040 #ifdef CONFIG_IPW2100_MONITOR 4041 case IW_MODE_MONITOR: 4042 priv->last_mode = priv->ieee->iw_mode; 4043 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 4044 break; 4045 #endif /* CONFIG_IPW2100_MONITOR */ 4046 } 4047 4048 priv->ieee->iw_mode = mode; 4049 4050 #ifdef CONFIG_PM 4051 /* Indicate ipw2100_download_firmware download firmware 4052 * from disk instead of memory. */ 4053 ipw2100_firmware.version = 0; 4054 #endif 4055 4056 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name); 4057 priv->reset_backoff = 0; 4058 schedule_reset(priv); 4059 4060 return 0; 4061 } 4062 4063 static ssize_t show_internals(struct device *d, struct device_attribute *attr, 4064 char *buf) 4065 { 4066 struct ipw2100_priv *priv = dev_get_drvdata(d); 4067 int len = 0; 4068 4069 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x) 4070 4071 if (priv->status & STATUS_ASSOCIATED) 4072 len += sprintf(buf + len, "connected: %lu\n", 4073 get_seconds() - priv->connect_start); 4074 else 4075 len += sprintf(buf + len, "not connected\n"); 4076 4077 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p"); 4078 DUMP_VAR(status, "08lx"); 4079 DUMP_VAR(config, "08lx"); 4080 DUMP_VAR(capability, "08lx"); 4081 4082 len += 4083 sprintf(buf + len, "last_rtc: %lu\n", 4084 (unsigned long)priv->last_rtc); 4085 4086 DUMP_VAR(fatal_error, "d"); 4087 DUMP_VAR(stop_hang_check, "d"); 4088 DUMP_VAR(stop_rf_kill, "d"); 4089 DUMP_VAR(messages_sent, "d"); 4090 4091 DUMP_VAR(tx_pend_stat.value, "d"); 4092 DUMP_VAR(tx_pend_stat.hi, "d"); 4093 4094 DUMP_VAR(tx_free_stat.value, "d"); 4095 DUMP_VAR(tx_free_stat.lo, "d"); 4096 4097 DUMP_VAR(msg_free_stat.value, "d"); 4098 DUMP_VAR(msg_free_stat.lo, "d"); 4099 4100 DUMP_VAR(msg_pend_stat.value, "d"); 4101 DUMP_VAR(msg_pend_stat.hi, "d"); 4102 4103 DUMP_VAR(fw_pend_stat.value, "d"); 4104 DUMP_VAR(fw_pend_stat.hi, "d"); 4105 4106 DUMP_VAR(txq_stat.value, "d"); 4107 DUMP_VAR(txq_stat.lo, "d"); 4108 4109 DUMP_VAR(ieee->scans, "d"); 4110 DUMP_VAR(reset_backoff, "d"); 4111 4112 return len; 4113 } 4114 4115 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL); 4116 4117 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr, 4118 char *buf) 4119 { 4120 struct ipw2100_priv *priv = dev_get_drvdata(d); 4121 char essid[IW_ESSID_MAX_SIZE + 1]; 4122 u8 bssid[ETH_ALEN]; 4123 u32 chan = 0; 4124 char *out = buf; 4125 unsigned int length; 4126 int ret; 4127 4128 if (priv->status & STATUS_RF_KILL_MASK) 4129 return 0; 4130 4131 memset(essid, 0, sizeof(essid)); 4132 memset(bssid, 0, sizeof(bssid)); 4133 4134 length = IW_ESSID_MAX_SIZE; 4135 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length); 4136 if (ret) 4137 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4138 __LINE__); 4139 4140 length = sizeof(bssid); 4141 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 4142 bssid, &length); 4143 if (ret) 4144 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4145 __LINE__); 4146 4147 length = sizeof(u32); 4148 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length); 4149 if (ret) 4150 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4151 __LINE__); 4152 4153 out += sprintf(out, "ESSID: %s\n", essid); 4154 out += sprintf(out, "BSSID: %pM\n", bssid); 4155 out += sprintf(out, "Channel: %d\n", chan); 4156 4157 return out - buf; 4158 } 4159 4160 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL); 4161 4162 #ifdef CONFIG_IPW2100_DEBUG 4163 static ssize_t debug_level_show(struct device_driver *d, char *buf) 4164 { 4165 return sprintf(buf, "0x%08X\n", ipw2100_debug_level); 4166 } 4167 4168 static ssize_t debug_level_store(struct device_driver *d, 4169 const char *buf, size_t count) 4170 { 4171 u32 val; 4172 int ret; 4173 4174 ret = kstrtou32(buf, 0, &val); 4175 if (ret) 4176 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf); 4177 else 4178 ipw2100_debug_level = val; 4179 4180 return strnlen(buf, count); 4181 } 4182 static DRIVER_ATTR_RW(debug_level); 4183 #endif /* CONFIG_IPW2100_DEBUG */ 4184 4185 static ssize_t show_fatal_error(struct device *d, 4186 struct device_attribute *attr, char *buf) 4187 { 4188 struct ipw2100_priv *priv = dev_get_drvdata(d); 4189 char *out = buf; 4190 int i; 4191 4192 if (priv->fatal_error) 4193 out += sprintf(out, "0x%08X\n", priv->fatal_error); 4194 else 4195 out += sprintf(out, "0\n"); 4196 4197 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) { 4198 if (!priv->fatal_errors[(priv->fatal_index - i) % 4199 IPW2100_ERROR_QUEUE]) 4200 continue; 4201 4202 out += sprintf(out, "%d. 0x%08X\n", i, 4203 priv->fatal_errors[(priv->fatal_index - i) % 4204 IPW2100_ERROR_QUEUE]); 4205 } 4206 4207 return out - buf; 4208 } 4209 4210 static ssize_t store_fatal_error(struct device *d, 4211 struct device_attribute *attr, const char *buf, 4212 size_t count) 4213 { 4214 struct ipw2100_priv *priv = dev_get_drvdata(d); 4215 schedule_reset(priv); 4216 return count; 4217 } 4218 4219 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error, 4220 store_fatal_error); 4221 4222 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr, 4223 char *buf) 4224 { 4225 struct ipw2100_priv *priv = dev_get_drvdata(d); 4226 return sprintf(buf, "%d\n", priv->ieee->scan_age); 4227 } 4228 4229 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr, 4230 const char *buf, size_t count) 4231 { 4232 struct ipw2100_priv *priv = dev_get_drvdata(d); 4233 struct net_device *dev = priv->net_dev; 4234 unsigned long val; 4235 int ret; 4236 4237 (void)dev; /* kill unused-var warning for debug-only code */ 4238 4239 IPW_DEBUG_INFO("enter\n"); 4240 4241 ret = kstrtoul(buf, 0, &val); 4242 if (ret) { 4243 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); 4244 } else { 4245 priv->ieee->scan_age = val; 4246 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); 4247 } 4248 4249 IPW_DEBUG_INFO("exit\n"); 4250 return strnlen(buf, count); 4251 } 4252 4253 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age); 4254 4255 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, 4256 char *buf) 4257 { 4258 /* 0 - RF kill not enabled 4259 1 - SW based RF kill active (sysfs) 4260 2 - HW based RF kill active 4261 3 - Both HW and SW baed RF kill active */ 4262 struct ipw2100_priv *priv = dev_get_drvdata(d); 4263 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | 4264 (rf_kill_active(priv) ? 0x2 : 0x0); 4265 return sprintf(buf, "%i\n", val); 4266 } 4267 4268 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio) 4269 { 4270 if ((disable_radio ? 1 : 0) == 4271 (priv->status & STATUS_RF_KILL_SW ? 1 : 0)) 4272 return 0; 4273 4274 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", 4275 disable_radio ? "OFF" : "ON"); 4276 4277 mutex_lock(&priv->action_mutex); 4278 4279 if (disable_radio) { 4280 priv->status |= STATUS_RF_KILL_SW; 4281 ipw2100_down(priv); 4282 } else { 4283 priv->status &= ~STATUS_RF_KILL_SW; 4284 if (rf_kill_active(priv)) { 4285 IPW_DEBUG_RF_KILL("Can not turn radio back on - " 4286 "disabled by HW switch\n"); 4287 /* Make sure the RF_KILL check timer is running */ 4288 priv->stop_rf_kill = 0; 4289 mod_delayed_work(system_wq, &priv->rf_kill, 4290 round_jiffies_relative(HZ)); 4291 } else 4292 schedule_reset(priv); 4293 } 4294 4295 mutex_unlock(&priv->action_mutex); 4296 return 1; 4297 } 4298 4299 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, 4300 const char *buf, size_t count) 4301 { 4302 struct ipw2100_priv *priv = dev_get_drvdata(d); 4303 ipw_radio_kill_sw(priv, buf[0] == '1'); 4304 return count; 4305 } 4306 4307 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill); 4308 4309 static struct attribute *ipw2100_sysfs_entries[] = { 4310 &dev_attr_hardware.attr, 4311 &dev_attr_registers.attr, 4312 &dev_attr_ordinals.attr, 4313 &dev_attr_pci.attr, 4314 &dev_attr_stats.attr, 4315 &dev_attr_internals.attr, 4316 &dev_attr_bssinfo.attr, 4317 &dev_attr_memory.attr, 4318 &dev_attr_scan_age.attr, 4319 &dev_attr_fatal_error.attr, 4320 &dev_attr_rf_kill.attr, 4321 &dev_attr_cfg.attr, 4322 &dev_attr_status.attr, 4323 &dev_attr_capability.attr, 4324 NULL, 4325 }; 4326 4327 static const struct attribute_group ipw2100_attribute_group = { 4328 .attrs = ipw2100_sysfs_entries, 4329 }; 4330 4331 static int status_queue_allocate(struct ipw2100_priv *priv, int entries) 4332 { 4333 struct ipw2100_status_queue *q = &priv->status_queue; 4334 4335 IPW_DEBUG_INFO("enter\n"); 4336 4337 q->size = entries * sizeof(struct ipw2100_status); 4338 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic); 4339 if (!q->drv) { 4340 IPW_DEBUG_WARNING("Can not allocate status queue.\n"); 4341 return -ENOMEM; 4342 } 4343 4344 IPW_DEBUG_INFO("exit\n"); 4345 4346 return 0; 4347 } 4348 4349 static void status_queue_free(struct ipw2100_priv *priv) 4350 { 4351 IPW_DEBUG_INFO("enter\n"); 4352 4353 if (priv->status_queue.drv) { 4354 pci_free_consistent(priv->pci_dev, priv->status_queue.size, 4355 priv->status_queue.drv, 4356 priv->status_queue.nic); 4357 priv->status_queue.drv = NULL; 4358 } 4359 4360 IPW_DEBUG_INFO("exit\n"); 4361 } 4362 4363 static int bd_queue_allocate(struct ipw2100_priv *priv, 4364 struct ipw2100_bd_queue *q, int entries) 4365 { 4366 IPW_DEBUG_INFO("enter\n"); 4367 4368 memset(q, 0, sizeof(struct ipw2100_bd_queue)); 4369 4370 q->entries = entries; 4371 q->size = entries * sizeof(struct ipw2100_bd); 4372 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic); 4373 if (!q->drv) { 4374 IPW_DEBUG_INFO 4375 ("can't allocate shared memory for buffer descriptors\n"); 4376 return -ENOMEM; 4377 } 4378 4379 IPW_DEBUG_INFO("exit\n"); 4380 4381 return 0; 4382 } 4383 4384 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q) 4385 { 4386 IPW_DEBUG_INFO("enter\n"); 4387 4388 if (!q) 4389 return; 4390 4391 if (q->drv) { 4392 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic); 4393 q->drv = NULL; 4394 } 4395 4396 IPW_DEBUG_INFO("exit\n"); 4397 } 4398 4399 static void bd_queue_initialize(struct ipw2100_priv *priv, 4400 struct ipw2100_bd_queue *q, u32 base, u32 size, 4401 u32 r, u32 w) 4402 { 4403 IPW_DEBUG_INFO("enter\n"); 4404 4405 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv, 4406 (u32) q->nic); 4407 4408 write_register(priv->net_dev, base, q->nic); 4409 write_register(priv->net_dev, size, q->entries); 4410 write_register(priv->net_dev, r, q->oldest); 4411 write_register(priv->net_dev, w, q->next); 4412 4413 IPW_DEBUG_INFO("exit\n"); 4414 } 4415 4416 static void ipw2100_kill_works(struct ipw2100_priv *priv) 4417 { 4418 priv->stop_rf_kill = 1; 4419 priv->stop_hang_check = 1; 4420 cancel_delayed_work_sync(&priv->reset_work); 4421 cancel_delayed_work_sync(&priv->security_work); 4422 cancel_delayed_work_sync(&priv->wx_event_work); 4423 cancel_delayed_work_sync(&priv->hang_check); 4424 cancel_delayed_work_sync(&priv->rf_kill); 4425 cancel_delayed_work_sync(&priv->scan_event); 4426 } 4427 4428 static int ipw2100_tx_allocate(struct ipw2100_priv *priv) 4429 { 4430 int i, j, err = -EINVAL; 4431 void *v; 4432 dma_addr_t p; 4433 4434 IPW_DEBUG_INFO("enter\n"); 4435 4436 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH); 4437 if (err) { 4438 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n", 4439 priv->net_dev->name); 4440 return err; 4441 } 4442 4443 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH, 4444 sizeof(struct ipw2100_tx_packet), 4445 GFP_ATOMIC); 4446 if (!priv->tx_buffers) { 4447 bd_queue_free(priv, &priv->tx_queue); 4448 return -ENOMEM; 4449 } 4450 4451 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4452 v = pci_alloc_consistent(priv->pci_dev, 4453 sizeof(struct ipw2100_data_header), 4454 &p); 4455 if (!v) { 4456 printk(KERN_ERR DRV_NAME 4457 ": %s: PCI alloc failed for tx " "buffers.\n", 4458 priv->net_dev->name); 4459 err = -ENOMEM; 4460 break; 4461 } 4462 4463 priv->tx_buffers[i].type = DATA; 4464 priv->tx_buffers[i].info.d_struct.data = 4465 (struct ipw2100_data_header *)v; 4466 priv->tx_buffers[i].info.d_struct.data_phys = p; 4467 priv->tx_buffers[i].info.d_struct.txb = NULL; 4468 } 4469 4470 if (i == TX_PENDED_QUEUE_LENGTH) 4471 return 0; 4472 4473 for (j = 0; j < i; j++) { 4474 pci_free_consistent(priv->pci_dev, 4475 sizeof(struct ipw2100_data_header), 4476 priv->tx_buffers[j].info.d_struct.data, 4477 priv->tx_buffers[j].info.d_struct. 4478 data_phys); 4479 } 4480 4481 kfree(priv->tx_buffers); 4482 priv->tx_buffers = NULL; 4483 4484 return err; 4485 } 4486 4487 static void ipw2100_tx_initialize(struct ipw2100_priv *priv) 4488 { 4489 int i; 4490 4491 IPW_DEBUG_INFO("enter\n"); 4492 4493 /* 4494 * reinitialize packet info lists 4495 */ 4496 INIT_LIST_HEAD(&priv->fw_pend_list); 4497 INIT_STAT(&priv->fw_pend_stat); 4498 4499 /* 4500 * reinitialize lists 4501 */ 4502 INIT_LIST_HEAD(&priv->tx_pend_list); 4503 INIT_LIST_HEAD(&priv->tx_free_list); 4504 INIT_STAT(&priv->tx_pend_stat); 4505 INIT_STAT(&priv->tx_free_stat); 4506 4507 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4508 /* We simply drop any SKBs that have been queued for 4509 * transmit */ 4510 if (priv->tx_buffers[i].info.d_struct.txb) { 4511 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4512 txb); 4513 priv->tx_buffers[i].info.d_struct.txb = NULL; 4514 } 4515 4516 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list); 4517 } 4518 4519 SET_STAT(&priv->tx_free_stat, i); 4520 4521 priv->tx_queue.oldest = 0; 4522 priv->tx_queue.available = priv->tx_queue.entries; 4523 priv->tx_queue.next = 0; 4524 INIT_STAT(&priv->txq_stat); 4525 SET_STAT(&priv->txq_stat, priv->tx_queue.available); 4526 4527 bd_queue_initialize(priv, &priv->tx_queue, 4528 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE, 4529 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE, 4530 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 4531 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX); 4532 4533 IPW_DEBUG_INFO("exit\n"); 4534 4535 } 4536 4537 static void ipw2100_tx_free(struct ipw2100_priv *priv) 4538 { 4539 int i; 4540 4541 IPW_DEBUG_INFO("enter\n"); 4542 4543 bd_queue_free(priv, &priv->tx_queue); 4544 4545 if (!priv->tx_buffers) 4546 return; 4547 4548 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4549 if (priv->tx_buffers[i].info.d_struct.txb) { 4550 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4551 txb); 4552 priv->tx_buffers[i].info.d_struct.txb = NULL; 4553 } 4554 if (priv->tx_buffers[i].info.d_struct.data) 4555 pci_free_consistent(priv->pci_dev, 4556 sizeof(struct ipw2100_data_header), 4557 priv->tx_buffers[i].info.d_struct. 4558 data, 4559 priv->tx_buffers[i].info.d_struct. 4560 data_phys); 4561 } 4562 4563 kfree(priv->tx_buffers); 4564 priv->tx_buffers = NULL; 4565 4566 IPW_DEBUG_INFO("exit\n"); 4567 } 4568 4569 static int ipw2100_rx_allocate(struct ipw2100_priv *priv) 4570 { 4571 int i, j, err = -EINVAL; 4572 4573 IPW_DEBUG_INFO("enter\n"); 4574 4575 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH); 4576 if (err) { 4577 IPW_DEBUG_INFO("failed bd_queue_allocate\n"); 4578 return err; 4579 } 4580 4581 err = status_queue_allocate(priv, RX_QUEUE_LENGTH); 4582 if (err) { 4583 IPW_DEBUG_INFO("failed status_queue_allocate\n"); 4584 bd_queue_free(priv, &priv->rx_queue); 4585 return err; 4586 } 4587 4588 /* 4589 * allocate packets 4590 */ 4591 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH * 4592 sizeof(struct ipw2100_rx_packet), 4593 GFP_KERNEL); 4594 if (!priv->rx_buffers) { 4595 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n"); 4596 4597 bd_queue_free(priv, &priv->rx_queue); 4598 4599 status_queue_free(priv); 4600 4601 return -ENOMEM; 4602 } 4603 4604 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4605 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 4606 4607 err = ipw2100_alloc_skb(priv, packet); 4608 if (unlikely(err)) { 4609 err = -ENOMEM; 4610 break; 4611 } 4612 4613 /* The BD holds the cache aligned address */ 4614 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 4615 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH; 4616 priv->status_queue.drv[i].status_fields = 0; 4617 } 4618 4619 if (i == RX_QUEUE_LENGTH) 4620 return 0; 4621 4622 for (j = 0; j < i; j++) { 4623 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr, 4624 sizeof(struct ipw2100_rx_packet), 4625 PCI_DMA_FROMDEVICE); 4626 dev_kfree_skb(priv->rx_buffers[j].skb); 4627 } 4628 4629 kfree(priv->rx_buffers); 4630 priv->rx_buffers = NULL; 4631 4632 bd_queue_free(priv, &priv->rx_queue); 4633 4634 status_queue_free(priv); 4635 4636 return err; 4637 } 4638 4639 static void ipw2100_rx_initialize(struct ipw2100_priv *priv) 4640 { 4641 IPW_DEBUG_INFO("enter\n"); 4642 4643 priv->rx_queue.oldest = 0; 4644 priv->rx_queue.available = priv->rx_queue.entries - 1; 4645 priv->rx_queue.next = priv->rx_queue.entries - 1; 4646 4647 INIT_STAT(&priv->rxq_stat); 4648 SET_STAT(&priv->rxq_stat, priv->rx_queue.available); 4649 4650 bd_queue_initialize(priv, &priv->rx_queue, 4651 IPW_MEM_HOST_SHARED_RX_BD_BASE, 4652 IPW_MEM_HOST_SHARED_RX_BD_SIZE, 4653 IPW_MEM_HOST_SHARED_RX_READ_INDEX, 4654 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX); 4655 4656 /* set up the status queue */ 4657 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE, 4658 priv->status_queue.nic); 4659 4660 IPW_DEBUG_INFO("exit\n"); 4661 } 4662 4663 static void ipw2100_rx_free(struct ipw2100_priv *priv) 4664 { 4665 int i; 4666 4667 IPW_DEBUG_INFO("enter\n"); 4668 4669 bd_queue_free(priv, &priv->rx_queue); 4670 status_queue_free(priv); 4671 4672 if (!priv->rx_buffers) 4673 return; 4674 4675 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4676 if (priv->rx_buffers[i].rxp) { 4677 pci_unmap_single(priv->pci_dev, 4678 priv->rx_buffers[i].dma_addr, 4679 sizeof(struct ipw2100_rx), 4680 PCI_DMA_FROMDEVICE); 4681 dev_kfree_skb(priv->rx_buffers[i].skb); 4682 } 4683 } 4684 4685 kfree(priv->rx_buffers); 4686 priv->rx_buffers = NULL; 4687 4688 IPW_DEBUG_INFO("exit\n"); 4689 } 4690 4691 static int ipw2100_read_mac_address(struct ipw2100_priv *priv) 4692 { 4693 u32 length = ETH_ALEN; 4694 u8 addr[ETH_ALEN]; 4695 4696 int err; 4697 4698 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length); 4699 if (err) { 4700 IPW_DEBUG_INFO("MAC address read failed\n"); 4701 return -EIO; 4702 } 4703 4704 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN); 4705 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr); 4706 4707 return 0; 4708 } 4709 4710 /******************************************************************** 4711 * 4712 * Firmware Commands 4713 * 4714 ********************************************************************/ 4715 4716 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode) 4717 { 4718 struct host_command cmd = { 4719 .host_command = ADAPTER_ADDRESS, 4720 .host_command_sequence = 0, 4721 .host_command_length = ETH_ALEN 4722 }; 4723 int err; 4724 4725 IPW_DEBUG_HC("SET_MAC_ADDRESS\n"); 4726 4727 IPW_DEBUG_INFO("enter\n"); 4728 4729 if (priv->config & CFG_CUSTOM_MAC) { 4730 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN); 4731 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN); 4732 } else 4733 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr, 4734 ETH_ALEN); 4735 4736 err = ipw2100_hw_send_command(priv, &cmd); 4737 4738 IPW_DEBUG_INFO("exit\n"); 4739 return err; 4740 } 4741 4742 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type, 4743 int batch_mode) 4744 { 4745 struct host_command cmd = { 4746 .host_command = PORT_TYPE, 4747 .host_command_sequence = 0, 4748 .host_command_length = sizeof(u32) 4749 }; 4750 int err; 4751 4752 switch (port_type) { 4753 case IW_MODE_INFRA: 4754 cmd.host_command_parameters[0] = IPW_BSS; 4755 break; 4756 case IW_MODE_ADHOC: 4757 cmd.host_command_parameters[0] = IPW_IBSS; 4758 break; 4759 } 4760 4761 IPW_DEBUG_HC("PORT_TYPE: %s\n", 4762 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed"); 4763 4764 if (!batch_mode) { 4765 err = ipw2100_disable_adapter(priv); 4766 if (err) { 4767 printk(KERN_ERR DRV_NAME 4768 ": %s: Could not disable adapter %d\n", 4769 priv->net_dev->name, err); 4770 return err; 4771 } 4772 } 4773 4774 /* send cmd to firmware */ 4775 err = ipw2100_hw_send_command(priv, &cmd); 4776 4777 if (!batch_mode) 4778 ipw2100_enable_adapter(priv); 4779 4780 return err; 4781 } 4782 4783 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel, 4784 int batch_mode) 4785 { 4786 struct host_command cmd = { 4787 .host_command = CHANNEL, 4788 .host_command_sequence = 0, 4789 .host_command_length = sizeof(u32) 4790 }; 4791 int err; 4792 4793 cmd.host_command_parameters[0] = channel; 4794 4795 IPW_DEBUG_HC("CHANNEL: %d\n", channel); 4796 4797 /* If BSS then we don't support channel selection */ 4798 if (priv->ieee->iw_mode == IW_MODE_INFRA) 4799 return 0; 4800 4801 if ((channel != 0) && 4802 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL))) 4803 return -EINVAL; 4804 4805 if (!batch_mode) { 4806 err = ipw2100_disable_adapter(priv); 4807 if (err) 4808 return err; 4809 } 4810 4811 err = ipw2100_hw_send_command(priv, &cmd); 4812 if (err) { 4813 IPW_DEBUG_INFO("Failed to set channel to %d", channel); 4814 return err; 4815 } 4816 4817 if (channel) 4818 priv->config |= CFG_STATIC_CHANNEL; 4819 else 4820 priv->config &= ~CFG_STATIC_CHANNEL; 4821 4822 priv->channel = channel; 4823 4824 if (!batch_mode) { 4825 err = ipw2100_enable_adapter(priv); 4826 if (err) 4827 return err; 4828 } 4829 4830 return 0; 4831 } 4832 4833 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode) 4834 { 4835 struct host_command cmd = { 4836 .host_command = SYSTEM_CONFIG, 4837 .host_command_sequence = 0, 4838 .host_command_length = 12, 4839 }; 4840 u32 ibss_mask, len = sizeof(u32); 4841 int err; 4842 4843 /* Set system configuration */ 4844 4845 if (!batch_mode) { 4846 err = ipw2100_disable_adapter(priv); 4847 if (err) 4848 return err; 4849 } 4850 4851 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 4852 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START; 4853 4854 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK | 4855 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE; 4856 4857 if (!(priv->config & CFG_LONG_PREAMBLE)) 4858 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO; 4859 4860 err = ipw2100_get_ordinal(priv, 4861 IPW_ORD_EEPROM_IBSS_11B_CHANNELS, 4862 &ibss_mask, &len); 4863 if (err) 4864 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK; 4865 4866 cmd.host_command_parameters[1] = REG_CHANNEL_MASK; 4867 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask; 4868 4869 /* 11b only */ 4870 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */ 4871 4872 err = ipw2100_hw_send_command(priv, &cmd); 4873 if (err) 4874 return err; 4875 4876 /* If IPv6 is configured in the kernel then we don't want to filter out all 4877 * of the multicast packets as IPv6 needs some. */ 4878 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE) 4879 cmd.host_command = ADD_MULTICAST; 4880 cmd.host_command_sequence = 0; 4881 cmd.host_command_length = 0; 4882 4883 ipw2100_hw_send_command(priv, &cmd); 4884 #endif 4885 if (!batch_mode) { 4886 err = ipw2100_enable_adapter(priv); 4887 if (err) 4888 return err; 4889 } 4890 4891 return 0; 4892 } 4893 4894 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate, 4895 int batch_mode) 4896 { 4897 struct host_command cmd = { 4898 .host_command = BASIC_TX_RATES, 4899 .host_command_sequence = 0, 4900 .host_command_length = 4 4901 }; 4902 int err; 4903 4904 cmd.host_command_parameters[0] = rate & TX_RATE_MASK; 4905 4906 if (!batch_mode) { 4907 err = ipw2100_disable_adapter(priv); 4908 if (err) 4909 return err; 4910 } 4911 4912 /* Set BASIC TX Rate first */ 4913 ipw2100_hw_send_command(priv, &cmd); 4914 4915 /* Set TX Rate */ 4916 cmd.host_command = TX_RATES; 4917 ipw2100_hw_send_command(priv, &cmd); 4918 4919 /* Set MSDU TX Rate */ 4920 cmd.host_command = MSDU_TX_RATES; 4921 ipw2100_hw_send_command(priv, &cmd); 4922 4923 if (!batch_mode) { 4924 err = ipw2100_enable_adapter(priv); 4925 if (err) 4926 return err; 4927 } 4928 4929 priv->tx_rates = rate; 4930 4931 return 0; 4932 } 4933 4934 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level) 4935 { 4936 struct host_command cmd = { 4937 .host_command = POWER_MODE, 4938 .host_command_sequence = 0, 4939 .host_command_length = 4 4940 }; 4941 int err; 4942 4943 cmd.host_command_parameters[0] = power_level; 4944 4945 err = ipw2100_hw_send_command(priv, &cmd); 4946 if (err) 4947 return err; 4948 4949 if (power_level == IPW_POWER_MODE_CAM) 4950 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 4951 else 4952 priv->power_mode = IPW_POWER_ENABLED | power_level; 4953 4954 #ifdef IPW2100_TX_POWER 4955 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) { 4956 /* Set beacon interval */ 4957 cmd.host_command = TX_POWER_INDEX; 4958 cmd.host_command_parameters[0] = (u32) priv->adhoc_power; 4959 4960 err = ipw2100_hw_send_command(priv, &cmd); 4961 if (err) 4962 return err; 4963 } 4964 #endif 4965 4966 return 0; 4967 } 4968 4969 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold) 4970 { 4971 struct host_command cmd = { 4972 .host_command = RTS_THRESHOLD, 4973 .host_command_sequence = 0, 4974 .host_command_length = 4 4975 }; 4976 int err; 4977 4978 if (threshold & RTS_DISABLED) 4979 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD; 4980 else 4981 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED; 4982 4983 err = ipw2100_hw_send_command(priv, &cmd); 4984 if (err) 4985 return err; 4986 4987 priv->rts_threshold = threshold; 4988 4989 return 0; 4990 } 4991 4992 #if 0 4993 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv, 4994 u32 threshold, int batch_mode) 4995 { 4996 struct host_command cmd = { 4997 .host_command = FRAG_THRESHOLD, 4998 .host_command_sequence = 0, 4999 .host_command_length = 4, 5000 .host_command_parameters[0] = 0, 5001 }; 5002 int err; 5003 5004 if (!batch_mode) { 5005 err = ipw2100_disable_adapter(priv); 5006 if (err) 5007 return err; 5008 } 5009 5010 if (threshold == 0) 5011 threshold = DEFAULT_FRAG_THRESHOLD; 5012 else { 5013 threshold = max(threshold, MIN_FRAG_THRESHOLD); 5014 threshold = min(threshold, MAX_FRAG_THRESHOLD); 5015 } 5016 5017 cmd.host_command_parameters[0] = threshold; 5018 5019 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold); 5020 5021 err = ipw2100_hw_send_command(priv, &cmd); 5022 5023 if (!batch_mode) 5024 ipw2100_enable_adapter(priv); 5025 5026 if (!err) 5027 priv->frag_threshold = threshold; 5028 5029 return err; 5030 } 5031 #endif 5032 5033 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry) 5034 { 5035 struct host_command cmd = { 5036 .host_command = SHORT_RETRY_LIMIT, 5037 .host_command_sequence = 0, 5038 .host_command_length = 4 5039 }; 5040 int err; 5041 5042 cmd.host_command_parameters[0] = retry; 5043 5044 err = ipw2100_hw_send_command(priv, &cmd); 5045 if (err) 5046 return err; 5047 5048 priv->short_retry_limit = retry; 5049 5050 return 0; 5051 } 5052 5053 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry) 5054 { 5055 struct host_command cmd = { 5056 .host_command = LONG_RETRY_LIMIT, 5057 .host_command_sequence = 0, 5058 .host_command_length = 4 5059 }; 5060 int err; 5061 5062 cmd.host_command_parameters[0] = retry; 5063 5064 err = ipw2100_hw_send_command(priv, &cmd); 5065 if (err) 5066 return err; 5067 5068 priv->long_retry_limit = retry; 5069 5070 return 0; 5071 } 5072 5073 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid, 5074 int batch_mode) 5075 { 5076 struct host_command cmd = { 5077 .host_command = MANDATORY_BSSID, 5078 .host_command_sequence = 0, 5079 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN 5080 }; 5081 int err; 5082 5083 #ifdef CONFIG_IPW2100_DEBUG 5084 if (bssid != NULL) 5085 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid); 5086 else 5087 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n"); 5088 #endif 5089 /* if BSSID is empty then we disable mandatory bssid mode */ 5090 if (bssid != NULL) 5091 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN); 5092 5093 if (!batch_mode) { 5094 err = ipw2100_disable_adapter(priv); 5095 if (err) 5096 return err; 5097 } 5098 5099 err = ipw2100_hw_send_command(priv, &cmd); 5100 5101 if (!batch_mode) 5102 ipw2100_enable_adapter(priv); 5103 5104 return err; 5105 } 5106 5107 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv) 5108 { 5109 struct host_command cmd = { 5110 .host_command = DISASSOCIATION_BSSID, 5111 .host_command_sequence = 0, 5112 .host_command_length = ETH_ALEN 5113 }; 5114 int err; 5115 int len; 5116 5117 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n"); 5118 5119 len = ETH_ALEN; 5120 /* The Firmware currently ignores the BSSID and just disassociates from 5121 * the currently associated AP -- but in the off chance that a future 5122 * firmware does use the BSSID provided here, we go ahead and try and 5123 * set it to the currently associated AP's BSSID */ 5124 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN); 5125 5126 err = ipw2100_hw_send_command(priv, &cmd); 5127 5128 return err; 5129 } 5130 5131 static int ipw2100_set_wpa_ie(struct ipw2100_priv *, 5132 struct ipw2100_wpa_assoc_frame *, int) 5133 __attribute__ ((unused)); 5134 5135 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv, 5136 struct ipw2100_wpa_assoc_frame *wpa_frame, 5137 int batch_mode) 5138 { 5139 struct host_command cmd = { 5140 .host_command = SET_WPA_IE, 5141 .host_command_sequence = 0, 5142 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame), 5143 }; 5144 int err; 5145 5146 IPW_DEBUG_HC("SET_WPA_IE\n"); 5147 5148 if (!batch_mode) { 5149 err = ipw2100_disable_adapter(priv); 5150 if (err) 5151 return err; 5152 } 5153 5154 memcpy(cmd.host_command_parameters, wpa_frame, 5155 sizeof(struct ipw2100_wpa_assoc_frame)); 5156 5157 err = ipw2100_hw_send_command(priv, &cmd); 5158 5159 if (!batch_mode) { 5160 if (ipw2100_enable_adapter(priv)) 5161 err = -EIO; 5162 } 5163 5164 return err; 5165 } 5166 5167 struct security_info_params { 5168 u32 allowed_ciphers; 5169 u16 version; 5170 u8 auth_mode; 5171 u8 replay_counters_number; 5172 u8 unicast_using_group; 5173 } __packed; 5174 5175 static int ipw2100_set_security_information(struct ipw2100_priv *priv, 5176 int auth_mode, 5177 int security_level, 5178 int unicast_using_group, 5179 int batch_mode) 5180 { 5181 struct host_command cmd = { 5182 .host_command = SET_SECURITY_INFORMATION, 5183 .host_command_sequence = 0, 5184 .host_command_length = sizeof(struct security_info_params) 5185 }; 5186 struct security_info_params *security = 5187 (struct security_info_params *)&cmd.host_command_parameters; 5188 int err; 5189 memset(security, 0, sizeof(*security)); 5190 5191 /* If shared key AP authentication is turned on, then we need to 5192 * configure the firmware to try and use it. 5193 * 5194 * Actual data encryption/decryption is handled by the host. */ 5195 security->auth_mode = auth_mode; 5196 security->unicast_using_group = unicast_using_group; 5197 5198 switch (security_level) { 5199 default: 5200 case SEC_LEVEL_0: 5201 security->allowed_ciphers = IPW_NONE_CIPHER; 5202 break; 5203 case SEC_LEVEL_1: 5204 security->allowed_ciphers = IPW_WEP40_CIPHER | 5205 IPW_WEP104_CIPHER; 5206 break; 5207 case SEC_LEVEL_2: 5208 security->allowed_ciphers = IPW_WEP40_CIPHER | 5209 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER; 5210 break; 5211 case SEC_LEVEL_2_CKIP: 5212 security->allowed_ciphers = IPW_WEP40_CIPHER | 5213 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER; 5214 break; 5215 case SEC_LEVEL_3: 5216 security->allowed_ciphers = IPW_WEP40_CIPHER | 5217 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER; 5218 break; 5219 } 5220 5221 IPW_DEBUG_HC 5222 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n", 5223 security->auth_mode, security->allowed_ciphers, security_level); 5224 5225 security->replay_counters_number = 0; 5226 5227 if (!batch_mode) { 5228 err = ipw2100_disable_adapter(priv); 5229 if (err) 5230 return err; 5231 } 5232 5233 err = ipw2100_hw_send_command(priv, &cmd); 5234 5235 if (!batch_mode) 5236 ipw2100_enable_adapter(priv); 5237 5238 return err; 5239 } 5240 5241 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power) 5242 { 5243 struct host_command cmd = { 5244 .host_command = TX_POWER_INDEX, 5245 .host_command_sequence = 0, 5246 .host_command_length = 4 5247 }; 5248 int err = 0; 5249 u32 tmp = tx_power; 5250 5251 if (tx_power != IPW_TX_POWER_DEFAULT) 5252 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 / 5253 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM); 5254 5255 cmd.host_command_parameters[0] = tmp; 5256 5257 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 5258 err = ipw2100_hw_send_command(priv, &cmd); 5259 if (!err) 5260 priv->tx_power = tx_power; 5261 5262 return 0; 5263 } 5264 5265 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv, 5266 u32 interval, int batch_mode) 5267 { 5268 struct host_command cmd = { 5269 .host_command = BEACON_INTERVAL, 5270 .host_command_sequence = 0, 5271 .host_command_length = 4 5272 }; 5273 int err; 5274 5275 cmd.host_command_parameters[0] = interval; 5276 5277 IPW_DEBUG_INFO("enter\n"); 5278 5279 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5280 if (!batch_mode) { 5281 err = ipw2100_disable_adapter(priv); 5282 if (err) 5283 return err; 5284 } 5285 5286 ipw2100_hw_send_command(priv, &cmd); 5287 5288 if (!batch_mode) { 5289 err = ipw2100_enable_adapter(priv); 5290 if (err) 5291 return err; 5292 } 5293 } 5294 5295 IPW_DEBUG_INFO("exit\n"); 5296 5297 return 0; 5298 } 5299 5300 static void ipw2100_queues_initialize(struct ipw2100_priv *priv) 5301 { 5302 ipw2100_tx_initialize(priv); 5303 ipw2100_rx_initialize(priv); 5304 ipw2100_msg_initialize(priv); 5305 } 5306 5307 static void ipw2100_queues_free(struct ipw2100_priv *priv) 5308 { 5309 ipw2100_tx_free(priv); 5310 ipw2100_rx_free(priv); 5311 ipw2100_msg_free(priv); 5312 } 5313 5314 static int ipw2100_queues_allocate(struct ipw2100_priv *priv) 5315 { 5316 if (ipw2100_tx_allocate(priv) || 5317 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv)) 5318 goto fail; 5319 5320 return 0; 5321 5322 fail: 5323 ipw2100_tx_free(priv); 5324 ipw2100_rx_free(priv); 5325 ipw2100_msg_free(priv); 5326 return -ENOMEM; 5327 } 5328 5329 #define IPW_PRIVACY_CAPABLE 0x0008 5330 5331 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags, 5332 int batch_mode) 5333 { 5334 struct host_command cmd = { 5335 .host_command = WEP_FLAGS, 5336 .host_command_sequence = 0, 5337 .host_command_length = 4 5338 }; 5339 int err; 5340 5341 cmd.host_command_parameters[0] = flags; 5342 5343 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags); 5344 5345 if (!batch_mode) { 5346 err = ipw2100_disable_adapter(priv); 5347 if (err) { 5348 printk(KERN_ERR DRV_NAME 5349 ": %s: Could not disable adapter %d\n", 5350 priv->net_dev->name, err); 5351 return err; 5352 } 5353 } 5354 5355 /* send cmd to firmware */ 5356 err = ipw2100_hw_send_command(priv, &cmd); 5357 5358 if (!batch_mode) 5359 ipw2100_enable_adapter(priv); 5360 5361 return err; 5362 } 5363 5364 struct ipw2100_wep_key { 5365 u8 idx; 5366 u8 len; 5367 u8 key[13]; 5368 }; 5369 5370 /* Macros to ease up priting WEP keys */ 5371 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X" 5372 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X" 5373 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4] 5374 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10] 5375 5376 /** 5377 * Set a the wep key 5378 * 5379 * @priv: struct to work on 5380 * @idx: index of the key we want to set 5381 * @key: ptr to the key data to set 5382 * @len: length of the buffer at @key 5383 * @batch_mode: FIXME perform the operation in batch mode, not 5384 * disabling the device. 5385 * 5386 * @returns 0 if OK, < 0 errno code on error. 5387 * 5388 * Fill out a command structure with the new wep key, length an 5389 * index and send it down the wire. 5390 */ 5391 static int ipw2100_set_key(struct ipw2100_priv *priv, 5392 int idx, char *key, int len, int batch_mode) 5393 { 5394 int keylen = len ? (len <= 5 ? 5 : 13) : 0; 5395 struct host_command cmd = { 5396 .host_command = WEP_KEY_INFO, 5397 .host_command_sequence = 0, 5398 .host_command_length = sizeof(struct ipw2100_wep_key), 5399 }; 5400 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters; 5401 int err; 5402 5403 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n", 5404 idx, keylen, len); 5405 5406 /* NOTE: We don't check cached values in case the firmware was reset 5407 * or some other problem is occurring. If the user is setting the key, 5408 * then we push the change */ 5409 5410 wep_key->idx = idx; 5411 wep_key->len = keylen; 5412 5413 if (keylen) { 5414 memcpy(wep_key->key, key, len); 5415 memset(wep_key->key + len, 0, keylen - len); 5416 } 5417 5418 /* Will be optimized out on debug not being configured in */ 5419 if (keylen == 0) 5420 IPW_DEBUG_WEP("%s: Clearing key %d\n", 5421 priv->net_dev->name, wep_key->idx); 5422 else if (keylen == 5) 5423 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n", 5424 priv->net_dev->name, wep_key->idx, wep_key->len, 5425 WEP_STR_64(wep_key->key)); 5426 else 5427 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128 5428 "\n", 5429 priv->net_dev->name, wep_key->idx, wep_key->len, 5430 WEP_STR_128(wep_key->key)); 5431 5432 if (!batch_mode) { 5433 err = ipw2100_disable_adapter(priv); 5434 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */ 5435 if (err) { 5436 printk(KERN_ERR DRV_NAME 5437 ": %s: Could not disable adapter %d\n", 5438 priv->net_dev->name, err); 5439 return err; 5440 } 5441 } 5442 5443 /* send cmd to firmware */ 5444 err = ipw2100_hw_send_command(priv, &cmd); 5445 5446 if (!batch_mode) { 5447 int err2 = ipw2100_enable_adapter(priv); 5448 if (err == 0) 5449 err = err2; 5450 } 5451 return err; 5452 } 5453 5454 static int ipw2100_set_key_index(struct ipw2100_priv *priv, 5455 int idx, int batch_mode) 5456 { 5457 struct host_command cmd = { 5458 .host_command = WEP_KEY_INDEX, 5459 .host_command_sequence = 0, 5460 .host_command_length = 4, 5461 .host_command_parameters = {idx}, 5462 }; 5463 int err; 5464 5465 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx); 5466 5467 if (idx < 0 || idx > 3) 5468 return -EINVAL; 5469 5470 if (!batch_mode) { 5471 err = ipw2100_disable_adapter(priv); 5472 if (err) { 5473 printk(KERN_ERR DRV_NAME 5474 ": %s: Could not disable adapter %d\n", 5475 priv->net_dev->name, err); 5476 return err; 5477 } 5478 } 5479 5480 /* send cmd to firmware */ 5481 err = ipw2100_hw_send_command(priv, &cmd); 5482 5483 if (!batch_mode) 5484 ipw2100_enable_adapter(priv); 5485 5486 return err; 5487 } 5488 5489 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode) 5490 { 5491 int i, err, auth_mode, sec_level, use_group; 5492 5493 if (!(priv->status & STATUS_RUNNING)) 5494 return 0; 5495 5496 if (!batch_mode) { 5497 err = ipw2100_disable_adapter(priv); 5498 if (err) 5499 return err; 5500 } 5501 5502 if (!priv->ieee->sec.enabled) { 5503 err = 5504 ipw2100_set_security_information(priv, IPW_AUTH_OPEN, 5505 SEC_LEVEL_0, 0, 1); 5506 } else { 5507 auth_mode = IPW_AUTH_OPEN; 5508 if (priv->ieee->sec.flags & SEC_AUTH_MODE) { 5509 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY) 5510 auth_mode = IPW_AUTH_SHARED; 5511 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP) 5512 auth_mode = IPW_AUTH_LEAP_CISCO_ID; 5513 } 5514 5515 sec_level = SEC_LEVEL_0; 5516 if (priv->ieee->sec.flags & SEC_LEVEL) 5517 sec_level = priv->ieee->sec.level; 5518 5519 use_group = 0; 5520 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP) 5521 use_group = priv->ieee->sec.unicast_uses_group; 5522 5523 err = 5524 ipw2100_set_security_information(priv, auth_mode, sec_level, 5525 use_group, 1); 5526 } 5527 5528 if (err) 5529 goto exit; 5530 5531 if (priv->ieee->sec.enabled) { 5532 for (i = 0; i < 4; i++) { 5533 if (!(priv->ieee->sec.flags & (1 << i))) { 5534 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN); 5535 priv->ieee->sec.key_sizes[i] = 0; 5536 } else { 5537 err = ipw2100_set_key(priv, i, 5538 priv->ieee->sec.keys[i], 5539 priv->ieee->sec. 5540 key_sizes[i], 1); 5541 if (err) 5542 goto exit; 5543 } 5544 } 5545 5546 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1); 5547 } 5548 5549 /* Always enable privacy so the Host can filter WEP packets if 5550 * encrypted data is sent up */ 5551 err = 5552 ipw2100_set_wep_flags(priv, 5553 priv->ieee->sec. 5554 enabled ? IPW_PRIVACY_CAPABLE : 0, 1); 5555 if (err) 5556 goto exit; 5557 5558 priv->status &= ~STATUS_SECURITY_UPDATED; 5559 5560 exit: 5561 if (!batch_mode) 5562 ipw2100_enable_adapter(priv); 5563 5564 return err; 5565 } 5566 5567 static void ipw2100_security_work(struct work_struct *work) 5568 { 5569 struct ipw2100_priv *priv = 5570 container_of(work, struct ipw2100_priv, security_work.work); 5571 5572 /* If we happen to have reconnected before we get a chance to 5573 * process this, then update the security settings--which causes 5574 * a disassociation to occur */ 5575 if (!(priv->status & STATUS_ASSOCIATED) && 5576 priv->status & STATUS_SECURITY_UPDATED) 5577 ipw2100_configure_security(priv, 0); 5578 } 5579 5580 static void shim__set_security(struct net_device *dev, 5581 struct libipw_security *sec) 5582 { 5583 struct ipw2100_priv *priv = libipw_priv(dev); 5584 int i, force_update = 0; 5585 5586 mutex_lock(&priv->action_mutex); 5587 if (!(priv->status & STATUS_INITIALIZED)) 5588 goto done; 5589 5590 for (i = 0; i < 4; i++) { 5591 if (sec->flags & (1 << i)) { 5592 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; 5593 if (sec->key_sizes[i] == 0) 5594 priv->ieee->sec.flags &= ~(1 << i); 5595 else 5596 memcpy(priv->ieee->sec.keys[i], sec->keys[i], 5597 sec->key_sizes[i]); 5598 if (sec->level == SEC_LEVEL_1) { 5599 priv->ieee->sec.flags |= (1 << i); 5600 priv->status |= STATUS_SECURITY_UPDATED; 5601 } else 5602 priv->ieee->sec.flags &= ~(1 << i); 5603 } 5604 } 5605 5606 if ((sec->flags & SEC_ACTIVE_KEY) && 5607 priv->ieee->sec.active_key != sec->active_key) { 5608 if (sec->active_key <= 3) { 5609 priv->ieee->sec.active_key = sec->active_key; 5610 priv->ieee->sec.flags |= SEC_ACTIVE_KEY; 5611 } else 5612 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY; 5613 5614 priv->status |= STATUS_SECURITY_UPDATED; 5615 } 5616 5617 if ((sec->flags & SEC_AUTH_MODE) && 5618 (priv->ieee->sec.auth_mode != sec->auth_mode)) { 5619 priv->ieee->sec.auth_mode = sec->auth_mode; 5620 priv->ieee->sec.flags |= SEC_AUTH_MODE; 5621 priv->status |= STATUS_SECURITY_UPDATED; 5622 } 5623 5624 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { 5625 priv->ieee->sec.flags |= SEC_ENABLED; 5626 priv->ieee->sec.enabled = sec->enabled; 5627 priv->status |= STATUS_SECURITY_UPDATED; 5628 force_update = 1; 5629 } 5630 5631 if (sec->flags & SEC_ENCRYPT) 5632 priv->ieee->sec.encrypt = sec->encrypt; 5633 5634 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { 5635 priv->ieee->sec.level = sec->level; 5636 priv->ieee->sec.flags |= SEC_LEVEL; 5637 priv->status |= STATUS_SECURITY_UPDATED; 5638 } 5639 5640 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n", 5641 priv->ieee->sec.flags & (1 << 8) ? '1' : '0', 5642 priv->ieee->sec.flags & (1 << 7) ? '1' : '0', 5643 priv->ieee->sec.flags & (1 << 6) ? '1' : '0', 5644 priv->ieee->sec.flags & (1 << 5) ? '1' : '0', 5645 priv->ieee->sec.flags & (1 << 4) ? '1' : '0', 5646 priv->ieee->sec.flags & (1 << 3) ? '1' : '0', 5647 priv->ieee->sec.flags & (1 << 2) ? '1' : '0', 5648 priv->ieee->sec.flags & (1 << 1) ? '1' : '0', 5649 priv->ieee->sec.flags & (1 << 0) ? '1' : '0'); 5650 5651 /* As a temporary work around to enable WPA until we figure out why 5652 * wpa_supplicant toggles the security capability of the driver, which 5653 * forces a disassociation with force_update... 5654 * 5655 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/ 5656 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) 5657 ipw2100_configure_security(priv, 0); 5658 done: 5659 mutex_unlock(&priv->action_mutex); 5660 } 5661 5662 static int ipw2100_adapter_setup(struct ipw2100_priv *priv) 5663 { 5664 int err; 5665 int batch_mode = 1; 5666 u8 *bssid; 5667 5668 IPW_DEBUG_INFO("enter\n"); 5669 5670 err = ipw2100_disable_adapter(priv); 5671 if (err) 5672 return err; 5673 #ifdef CONFIG_IPW2100_MONITOR 5674 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 5675 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5676 if (err) 5677 return err; 5678 5679 IPW_DEBUG_INFO("exit\n"); 5680 5681 return 0; 5682 } 5683 #endif /* CONFIG_IPW2100_MONITOR */ 5684 5685 err = ipw2100_read_mac_address(priv); 5686 if (err) 5687 return -EIO; 5688 5689 err = ipw2100_set_mac_address(priv, batch_mode); 5690 if (err) 5691 return err; 5692 5693 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode); 5694 if (err) 5695 return err; 5696 5697 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5698 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5699 if (err) 5700 return err; 5701 } 5702 5703 err = ipw2100_system_config(priv, batch_mode); 5704 if (err) 5705 return err; 5706 5707 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode); 5708 if (err) 5709 return err; 5710 5711 /* Default to power mode OFF */ 5712 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 5713 if (err) 5714 return err; 5715 5716 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold); 5717 if (err) 5718 return err; 5719 5720 if (priv->config & CFG_STATIC_BSSID) 5721 bssid = priv->bssid; 5722 else 5723 bssid = NULL; 5724 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode); 5725 if (err) 5726 return err; 5727 5728 if (priv->config & CFG_STATIC_ESSID) 5729 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len, 5730 batch_mode); 5731 else 5732 err = ipw2100_set_essid(priv, NULL, 0, batch_mode); 5733 if (err) 5734 return err; 5735 5736 err = ipw2100_configure_security(priv, batch_mode); 5737 if (err) 5738 return err; 5739 5740 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5741 err = 5742 ipw2100_set_ibss_beacon_interval(priv, 5743 priv->beacon_interval, 5744 batch_mode); 5745 if (err) 5746 return err; 5747 5748 err = ipw2100_set_tx_power(priv, priv->tx_power); 5749 if (err) 5750 return err; 5751 } 5752 5753 /* 5754 err = ipw2100_set_fragmentation_threshold( 5755 priv, priv->frag_threshold, batch_mode); 5756 if (err) 5757 return err; 5758 */ 5759 5760 IPW_DEBUG_INFO("exit\n"); 5761 5762 return 0; 5763 } 5764 5765 /************************************************************************* 5766 * 5767 * EXTERNALLY CALLED METHODS 5768 * 5769 *************************************************************************/ 5770 5771 /* This method is called by the network layer -- not to be confused with 5772 * ipw2100_set_mac_address() declared above called by this driver (and this 5773 * method as well) to talk to the firmware */ 5774 static int ipw2100_set_address(struct net_device *dev, void *p) 5775 { 5776 struct ipw2100_priv *priv = libipw_priv(dev); 5777 struct sockaddr *addr = p; 5778 int err = 0; 5779 5780 if (!is_valid_ether_addr(addr->sa_data)) 5781 return -EADDRNOTAVAIL; 5782 5783 mutex_lock(&priv->action_mutex); 5784 5785 priv->config |= CFG_CUSTOM_MAC; 5786 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 5787 5788 err = ipw2100_set_mac_address(priv, 0); 5789 if (err) 5790 goto done; 5791 5792 priv->reset_backoff = 0; 5793 mutex_unlock(&priv->action_mutex); 5794 ipw2100_reset_adapter(&priv->reset_work.work); 5795 return 0; 5796 5797 done: 5798 mutex_unlock(&priv->action_mutex); 5799 return err; 5800 } 5801 5802 static int ipw2100_open(struct net_device *dev) 5803 { 5804 struct ipw2100_priv *priv = libipw_priv(dev); 5805 unsigned long flags; 5806 IPW_DEBUG_INFO("dev->open\n"); 5807 5808 spin_lock_irqsave(&priv->low_lock, flags); 5809 if (priv->status & STATUS_ASSOCIATED) { 5810 netif_carrier_on(dev); 5811 netif_start_queue(dev); 5812 } 5813 spin_unlock_irqrestore(&priv->low_lock, flags); 5814 5815 return 0; 5816 } 5817 5818 static int ipw2100_close(struct net_device *dev) 5819 { 5820 struct ipw2100_priv *priv = libipw_priv(dev); 5821 unsigned long flags; 5822 struct list_head *element; 5823 struct ipw2100_tx_packet *packet; 5824 5825 IPW_DEBUG_INFO("enter\n"); 5826 5827 spin_lock_irqsave(&priv->low_lock, flags); 5828 5829 if (priv->status & STATUS_ASSOCIATED) 5830 netif_carrier_off(dev); 5831 netif_stop_queue(dev); 5832 5833 /* Flush the TX queue ... */ 5834 while (!list_empty(&priv->tx_pend_list)) { 5835 element = priv->tx_pend_list.next; 5836 packet = list_entry(element, struct ipw2100_tx_packet, list); 5837 5838 list_del(element); 5839 DEC_STAT(&priv->tx_pend_stat); 5840 5841 libipw_txb_free(packet->info.d_struct.txb); 5842 packet->info.d_struct.txb = NULL; 5843 5844 list_add_tail(element, &priv->tx_free_list); 5845 INC_STAT(&priv->tx_free_stat); 5846 } 5847 spin_unlock_irqrestore(&priv->low_lock, flags); 5848 5849 IPW_DEBUG_INFO("exit\n"); 5850 5851 return 0; 5852 } 5853 5854 /* 5855 * TODO: Fix this function... its just wrong 5856 */ 5857 static void ipw2100_tx_timeout(struct net_device *dev) 5858 { 5859 struct ipw2100_priv *priv = libipw_priv(dev); 5860 5861 dev->stats.tx_errors++; 5862 5863 #ifdef CONFIG_IPW2100_MONITOR 5864 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 5865 return; 5866 #endif 5867 5868 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n", 5869 dev->name); 5870 schedule_reset(priv); 5871 } 5872 5873 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value) 5874 { 5875 /* This is called when wpa_supplicant loads and closes the driver 5876 * interface. */ 5877 priv->ieee->wpa_enabled = value; 5878 return 0; 5879 } 5880 5881 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value) 5882 { 5883 5884 struct libipw_device *ieee = priv->ieee; 5885 struct libipw_security sec = { 5886 .flags = SEC_AUTH_MODE, 5887 }; 5888 int ret = 0; 5889 5890 if (value & IW_AUTH_ALG_SHARED_KEY) { 5891 sec.auth_mode = WLAN_AUTH_SHARED_KEY; 5892 ieee->open_wep = 0; 5893 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { 5894 sec.auth_mode = WLAN_AUTH_OPEN; 5895 ieee->open_wep = 1; 5896 } else if (value & IW_AUTH_ALG_LEAP) { 5897 sec.auth_mode = WLAN_AUTH_LEAP; 5898 ieee->open_wep = 1; 5899 } else 5900 return -EINVAL; 5901 5902 if (ieee->set_security) 5903 ieee->set_security(ieee->dev, &sec); 5904 else 5905 ret = -EOPNOTSUPP; 5906 5907 return ret; 5908 } 5909 5910 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv, 5911 char *wpa_ie, int wpa_ie_len) 5912 { 5913 5914 struct ipw2100_wpa_assoc_frame frame; 5915 5916 frame.fixed_ie_mask = 0; 5917 5918 /* copy WPA IE */ 5919 memcpy(frame.var_ie, wpa_ie, wpa_ie_len); 5920 frame.var_ie_len = wpa_ie_len; 5921 5922 /* make sure WPA is enabled */ 5923 ipw2100_wpa_enable(priv, 1); 5924 ipw2100_set_wpa_ie(priv, &frame, 0); 5925 } 5926 5927 static void ipw_ethtool_get_drvinfo(struct net_device *dev, 5928 struct ethtool_drvinfo *info) 5929 { 5930 struct ipw2100_priv *priv = libipw_priv(dev); 5931 char fw_ver[64], ucode_ver[64]; 5932 5933 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 5934 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 5935 5936 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver)); 5937 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver)); 5938 5939 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s", 5940 fw_ver, priv->eeprom_version, ucode_ver); 5941 5942 strlcpy(info->bus_info, pci_name(priv->pci_dev), 5943 sizeof(info->bus_info)); 5944 } 5945 5946 static u32 ipw2100_ethtool_get_link(struct net_device *dev) 5947 { 5948 struct ipw2100_priv *priv = libipw_priv(dev); 5949 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0; 5950 } 5951 5952 static const struct ethtool_ops ipw2100_ethtool_ops = { 5953 .get_link = ipw2100_ethtool_get_link, 5954 .get_drvinfo = ipw_ethtool_get_drvinfo, 5955 }; 5956 5957 static void ipw2100_hang_check(struct work_struct *work) 5958 { 5959 struct ipw2100_priv *priv = 5960 container_of(work, struct ipw2100_priv, hang_check.work); 5961 unsigned long flags; 5962 u32 rtc = 0xa5a5a5a5; 5963 u32 len = sizeof(rtc); 5964 int restart = 0; 5965 5966 spin_lock_irqsave(&priv->low_lock, flags); 5967 5968 if (priv->fatal_error != 0) { 5969 /* If fatal_error is set then we need to restart */ 5970 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n", 5971 priv->net_dev->name); 5972 5973 restart = 1; 5974 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) || 5975 (rtc == priv->last_rtc)) { 5976 /* Check if firmware is hung */ 5977 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n", 5978 priv->net_dev->name); 5979 5980 restart = 1; 5981 } 5982 5983 if (restart) { 5984 /* Kill timer */ 5985 priv->stop_hang_check = 1; 5986 priv->hangs++; 5987 5988 /* Restart the NIC */ 5989 schedule_reset(priv); 5990 } 5991 5992 priv->last_rtc = rtc; 5993 5994 if (!priv->stop_hang_check) 5995 schedule_delayed_work(&priv->hang_check, HZ / 2); 5996 5997 spin_unlock_irqrestore(&priv->low_lock, flags); 5998 } 5999 6000 static void ipw2100_rf_kill(struct work_struct *work) 6001 { 6002 struct ipw2100_priv *priv = 6003 container_of(work, struct ipw2100_priv, rf_kill.work); 6004 unsigned long flags; 6005 6006 spin_lock_irqsave(&priv->low_lock, flags); 6007 6008 if (rf_kill_active(priv)) { 6009 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); 6010 if (!priv->stop_rf_kill) 6011 schedule_delayed_work(&priv->rf_kill, 6012 round_jiffies_relative(HZ)); 6013 goto exit_unlock; 6014 } 6015 6016 /* RF Kill is now disabled, so bring the device back up */ 6017 6018 if (!(priv->status & STATUS_RF_KILL_MASK)) { 6019 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " 6020 "device\n"); 6021 schedule_reset(priv); 6022 } else 6023 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " 6024 "enabled\n"); 6025 6026 exit_unlock: 6027 spin_unlock_irqrestore(&priv->low_lock, flags); 6028 } 6029 6030 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv); 6031 6032 static const struct net_device_ops ipw2100_netdev_ops = { 6033 .ndo_open = ipw2100_open, 6034 .ndo_stop = ipw2100_close, 6035 .ndo_start_xmit = libipw_xmit, 6036 .ndo_tx_timeout = ipw2100_tx_timeout, 6037 .ndo_set_mac_address = ipw2100_set_address, 6038 .ndo_validate_addr = eth_validate_addr, 6039 }; 6040 6041 /* Look into using netdev destructor to shutdown libipw? */ 6042 6043 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev, 6044 void __iomem * ioaddr) 6045 { 6046 struct ipw2100_priv *priv; 6047 struct net_device *dev; 6048 6049 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0); 6050 if (!dev) 6051 return NULL; 6052 priv = libipw_priv(dev); 6053 priv->ieee = netdev_priv(dev); 6054 priv->pci_dev = pci_dev; 6055 priv->net_dev = dev; 6056 priv->ioaddr = ioaddr; 6057 6058 priv->ieee->hard_start_xmit = ipw2100_tx; 6059 priv->ieee->set_security = shim__set_security; 6060 6061 priv->ieee->perfect_rssi = -20; 6062 priv->ieee->worst_rssi = -85; 6063 6064 dev->netdev_ops = &ipw2100_netdev_ops; 6065 dev->ethtool_ops = &ipw2100_ethtool_ops; 6066 dev->wireless_handlers = &ipw2100_wx_handler_def; 6067 priv->wireless_data.libipw = priv->ieee; 6068 dev->wireless_data = &priv->wireless_data; 6069 dev->watchdog_timeo = 3 * HZ; 6070 dev->irq = 0; 6071 dev->min_mtu = 68; 6072 dev->max_mtu = LIBIPW_DATA_LEN; 6073 6074 /* NOTE: We don't use the wireless_handlers hook 6075 * in dev as the system will start throwing WX requests 6076 * to us before we're actually initialized and it just 6077 * ends up causing problems. So, we just handle 6078 * the WX extensions through the ipw2100_ioctl interface */ 6079 6080 /* memset() puts everything to 0, so we only have explicitly set 6081 * those values that need to be something else */ 6082 6083 /* If power management is turned on, default to AUTO mode */ 6084 priv->power_mode = IPW_POWER_AUTO; 6085 6086 #ifdef CONFIG_IPW2100_MONITOR 6087 priv->config |= CFG_CRC_CHECK; 6088 #endif 6089 priv->ieee->wpa_enabled = 0; 6090 priv->ieee->drop_unencrypted = 0; 6091 priv->ieee->privacy_invoked = 0; 6092 priv->ieee->ieee802_1x = 1; 6093 6094 /* Set module parameters */ 6095 switch (network_mode) { 6096 case 1: 6097 priv->ieee->iw_mode = IW_MODE_ADHOC; 6098 break; 6099 #ifdef CONFIG_IPW2100_MONITOR 6100 case 2: 6101 priv->ieee->iw_mode = IW_MODE_MONITOR; 6102 break; 6103 #endif 6104 default: 6105 case 0: 6106 priv->ieee->iw_mode = IW_MODE_INFRA; 6107 break; 6108 } 6109 6110 if (disable == 1) 6111 priv->status |= STATUS_RF_KILL_SW; 6112 6113 if (channel != 0 && 6114 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) { 6115 priv->config |= CFG_STATIC_CHANNEL; 6116 priv->channel = channel; 6117 } 6118 6119 if (associate) 6120 priv->config |= CFG_ASSOCIATE; 6121 6122 priv->beacon_interval = DEFAULT_BEACON_INTERVAL; 6123 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; 6124 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; 6125 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED; 6126 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED; 6127 priv->tx_power = IPW_TX_POWER_DEFAULT; 6128 priv->tx_rates = DEFAULT_TX_RATES; 6129 6130 strcpy(priv->nick, "ipw2100"); 6131 6132 spin_lock_init(&priv->low_lock); 6133 mutex_init(&priv->action_mutex); 6134 mutex_init(&priv->adapter_mutex); 6135 6136 init_waitqueue_head(&priv->wait_command_queue); 6137 6138 netif_carrier_off(dev); 6139 6140 INIT_LIST_HEAD(&priv->msg_free_list); 6141 INIT_LIST_HEAD(&priv->msg_pend_list); 6142 INIT_STAT(&priv->msg_free_stat); 6143 INIT_STAT(&priv->msg_pend_stat); 6144 6145 INIT_LIST_HEAD(&priv->tx_free_list); 6146 INIT_LIST_HEAD(&priv->tx_pend_list); 6147 INIT_STAT(&priv->tx_free_stat); 6148 INIT_STAT(&priv->tx_pend_stat); 6149 6150 INIT_LIST_HEAD(&priv->fw_pend_list); 6151 INIT_STAT(&priv->fw_pend_stat); 6152 6153 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter); 6154 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work); 6155 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work); 6156 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check); 6157 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill); 6158 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event); 6159 6160 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long)) 6161 ipw2100_irq_tasklet, (unsigned long)priv); 6162 6163 /* NOTE: We do not start the deferred work for status checks yet */ 6164 priv->stop_rf_kill = 1; 6165 priv->stop_hang_check = 1; 6166 6167 return dev; 6168 } 6169 6170 static int ipw2100_pci_init_one(struct pci_dev *pci_dev, 6171 const struct pci_device_id *ent) 6172 { 6173 void __iomem *ioaddr; 6174 struct net_device *dev = NULL; 6175 struct ipw2100_priv *priv = NULL; 6176 int err = 0; 6177 int registered = 0; 6178 u32 val; 6179 6180 IPW_DEBUG_INFO("enter\n"); 6181 6182 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) { 6183 IPW_DEBUG_INFO("weird - resource type is not memory\n"); 6184 err = -ENODEV; 6185 goto out; 6186 } 6187 6188 ioaddr = pci_iomap(pci_dev, 0, 0); 6189 if (!ioaddr) { 6190 printk(KERN_WARNING DRV_NAME 6191 "Error calling ioremap_nocache.\n"); 6192 err = -EIO; 6193 goto fail; 6194 } 6195 6196 /* allocate and initialize our net_device */ 6197 dev = ipw2100_alloc_device(pci_dev, ioaddr); 6198 if (!dev) { 6199 printk(KERN_WARNING DRV_NAME 6200 "Error calling ipw2100_alloc_device.\n"); 6201 err = -ENOMEM; 6202 goto fail; 6203 } 6204 6205 /* set up PCI mappings for device */ 6206 err = pci_enable_device(pci_dev); 6207 if (err) { 6208 printk(KERN_WARNING DRV_NAME 6209 "Error calling pci_enable_device.\n"); 6210 return err; 6211 } 6212 6213 priv = libipw_priv(dev); 6214 6215 pci_set_master(pci_dev); 6216 pci_set_drvdata(pci_dev, priv); 6217 6218 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)); 6219 if (err) { 6220 printk(KERN_WARNING DRV_NAME 6221 "Error calling pci_set_dma_mask.\n"); 6222 pci_disable_device(pci_dev); 6223 return err; 6224 } 6225 6226 err = pci_request_regions(pci_dev, DRV_NAME); 6227 if (err) { 6228 printk(KERN_WARNING DRV_NAME 6229 "Error calling pci_request_regions.\n"); 6230 pci_disable_device(pci_dev); 6231 return err; 6232 } 6233 6234 /* We disable the RETRY_TIMEOUT register (0x41) to keep 6235 * PCI Tx retries from interfering with C3 CPU state */ 6236 pci_read_config_dword(pci_dev, 0x40, &val); 6237 if ((val & 0x0000ff00) != 0) 6238 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6239 6240 if (!ipw2100_hw_is_adapter_in_system(dev)) { 6241 printk(KERN_WARNING DRV_NAME 6242 "Device not found via register read.\n"); 6243 err = -ENODEV; 6244 goto fail; 6245 } 6246 6247 SET_NETDEV_DEV(dev, &pci_dev->dev); 6248 6249 /* Force interrupts to be shut off on the device */ 6250 priv->status |= STATUS_INT_ENABLED; 6251 ipw2100_disable_interrupts(priv); 6252 6253 /* Allocate and initialize the Tx/Rx queues and lists */ 6254 if (ipw2100_queues_allocate(priv)) { 6255 printk(KERN_WARNING DRV_NAME 6256 "Error calling ipw2100_queues_allocate.\n"); 6257 err = -ENOMEM; 6258 goto fail; 6259 } 6260 ipw2100_queues_initialize(priv); 6261 6262 err = request_irq(pci_dev->irq, 6263 ipw2100_interrupt, IRQF_SHARED, dev->name, priv); 6264 if (err) { 6265 printk(KERN_WARNING DRV_NAME 6266 "Error calling request_irq: %d.\n", pci_dev->irq); 6267 goto fail; 6268 } 6269 dev->irq = pci_dev->irq; 6270 6271 IPW_DEBUG_INFO("Attempting to register device...\n"); 6272 6273 printk(KERN_INFO DRV_NAME 6274 ": Detected Intel PRO/Wireless 2100 Network Connection\n"); 6275 6276 err = ipw2100_up(priv, 1); 6277 if (err) 6278 goto fail; 6279 6280 err = ipw2100_wdev_init(dev); 6281 if (err) 6282 goto fail; 6283 registered = 1; 6284 6285 /* Bring up the interface. Pre 0.46, after we registered the 6286 * network device we would call ipw2100_up. This introduced a race 6287 * condition with newer hotplug configurations (network was coming 6288 * up and making calls before the device was initialized). 6289 */ 6290 err = register_netdev(dev); 6291 if (err) { 6292 printk(KERN_WARNING DRV_NAME 6293 "Error calling register_netdev.\n"); 6294 goto fail; 6295 } 6296 registered = 2; 6297 6298 mutex_lock(&priv->action_mutex); 6299 6300 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev)); 6301 6302 /* perform this after register_netdev so that dev->name is set */ 6303 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6304 if (err) 6305 goto fail_unlock; 6306 6307 /* If the RF Kill switch is disabled, go ahead and complete the 6308 * startup sequence */ 6309 if (!(priv->status & STATUS_RF_KILL_MASK)) { 6310 /* Enable the adapter - sends HOST_COMPLETE */ 6311 if (ipw2100_enable_adapter(priv)) { 6312 printk(KERN_WARNING DRV_NAME 6313 ": %s: failed in call to enable adapter.\n", 6314 priv->net_dev->name); 6315 ipw2100_hw_stop_adapter(priv); 6316 err = -EIO; 6317 goto fail_unlock; 6318 } 6319 6320 /* Start a scan . . . */ 6321 ipw2100_set_scan_options(priv); 6322 ipw2100_start_scan(priv); 6323 } 6324 6325 IPW_DEBUG_INFO("exit\n"); 6326 6327 priv->status |= STATUS_INITIALIZED; 6328 6329 mutex_unlock(&priv->action_mutex); 6330 out: 6331 return err; 6332 6333 fail_unlock: 6334 mutex_unlock(&priv->action_mutex); 6335 fail: 6336 if (dev) { 6337 if (registered >= 2) 6338 unregister_netdev(dev); 6339 6340 if (registered) { 6341 wiphy_unregister(priv->ieee->wdev.wiphy); 6342 kfree(priv->ieee->bg_band.channels); 6343 } 6344 6345 ipw2100_hw_stop_adapter(priv); 6346 6347 ipw2100_disable_interrupts(priv); 6348 6349 if (dev->irq) 6350 free_irq(dev->irq, priv); 6351 6352 ipw2100_kill_works(priv); 6353 6354 /* These are safe to call even if they weren't allocated */ 6355 ipw2100_queues_free(priv); 6356 sysfs_remove_group(&pci_dev->dev.kobj, 6357 &ipw2100_attribute_group); 6358 6359 free_libipw(dev, 0); 6360 } 6361 6362 pci_iounmap(pci_dev, ioaddr); 6363 6364 pci_release_regions(pci_dev); 6365 pci_disable_device(pci_dev); 6366 goto out; 6367 } 6368 6369 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev) 6370 { 6371 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6372 struct net_device *dev = priv->net_dev; 6373 6374 mutex_lock(&priv->action_mutex); 6375 6376 priv->status &= ~STATUS_INITIALIZED; 6377 6378 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6379 6380 #ifdef CONFIG_PM 6381 if (ipw2100_firmware.version) 6382 ipw2100_release_firmware(priv, &ipw2100_firmware); 6383 #endif 6384 /* Take down the hardware */ 6385 ipw2100_down(priv); 6386 6387 /* Release the mutex so that the network subsystem can 6388 * complete any needed calls into the driver... */ 6389 mutex_unlock(&priv->action_mutex); 6390 6391 /* Unregister the device first - this results in close() 6392 * being called if the device is open. If we free storage 6393 * first, then close() will crash. 6394 * FIXME: remove the comment above. */ 6395 unregister_netdev(dev); 6396 6397 ipw2100_kill_works(priv); 6398 6399 ipw2100_queues_free(priv); 6400 6401 /* Free potential debugging firmware snapshot */ 6402 ipw2100_snapshot_free(priv); 6403 6404 free_irq(dev->irq, priv); 6405 6406 pci_iounmap(pci_dev, priv->ioaddr); 6407 6408 /* wiphy_unregister needs to be here, before free_libipw */ 6409 wiphy_unregister(priv->ieee->wdev.wiphy); 6410 kfree(priv->ieee->bg_band.channels); 6411 free_libipw(dev, 0); 6412 6413 pci_release_regions(pci_dev); 6414 pci_disable_device(pci_dev); 6415 6416 IPW_DEBUG_INFO("exit\n"); 6417 } 6418 6419 #ifdef CONFIG_PM 6420 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state) 6421 { 6422 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6423 struct net_device *dev = priv->net_dev; 6424 6425 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name); 6426 6427 mutex_lock(&priv->action_mutex); 6428 if (priv->status & STATUS_INITIALIZED) { 6429 /* Take down the device; powers it off, etc. */ 6430 ipw2100_down(priv); 6431 } 6432 6433 /* Remove the PRESENT state of the device */ 6434 netif_device_detach(dev); 6435 6436 pci_save_state(pci_dev); 6437 pci_disable_device(pci_dev); 6438 pci_set_power_state(pci_dev, PCI_D3hot); 6439 6440 priv->suspend_at = get_seconds(); 6441 6442 mutex_unlock(&priv->action_mutex); 6443 6444 return 0; 6445 } 6446 6447 static int ipw2100_resume(struct pci_dev *pci_dev) 6448 { 6449 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6450 struct net_device *dev = priv->net_dev; 6451 int err; 6452 u32 val; 6453 6454 if (IPW2100_PM_DISABLED) 6455 return 0; 6456 6457 mutex_lock(&priv->action_mutex); 6458 6459 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name); 6460 6461 pci_set_power_state(pci_dev, PCI_D0); 6462 err = pci_enable_device(pci_dev); 6463 if (err) { 6464 printk(KERN_ERR "%s: pci_enable_device failed on resume\n", 6465 dev->name); 6466 mutex_unlock(&priv->action_mutex); 6467 return err; 6468 } 6469 pci_restore_state(pci_dev); 6470 6471 /* 6472 * Suspend/Resume resets the PCI configuration space, so we have to 6473 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 6474 * from interfering with C3 CPU state. pci_restore_state won't help 6475 * here since it only restores the first 64 bytes pci config header. 6476 */ 6477 pci_read_config_dword(pci_dev, 0x40, &val); 6478 if ((val & 0x0000ff00) != 0) 6479 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6480 6481 /* Set the device back into the PRESENT state; this will also wake 6482 * the queue of needed */ 6483 netif_device_attach(dev); 6484 6485 priv->suspend_time = get_seconds() - priv->suspend_at; 6486 6487 /* Bring the device back up */ 6488 if (!(priv->status & STATUS_RF_KILL_SW)) 6489 ipw2100_up(priv, 0); 6490 6491 mutex_unlock(&priv->action_mutex); 6492 6493 return 0; 6494 } 6495 #endif 6496 6497 static void ipw2100_shutdown(struct pci_dev *pci_dev) 6498 { 6499 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6500 6501 /* Take down the device; powers it off, etc. */ 6502 ipw2100_down(priv); 6503 6504 pci_disable_device(pci_dev); 6505 } 6506 6507 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x } 6508 6509 static const struct pci_device_id ipw2100_pci_id_table[] = { 6510 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */ 6511 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */ 6512 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */ 6513 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */ 6514 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */ 6515 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */ 6516 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */ 6517 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */ 6518 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */ 6519 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */ 6520 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */ 6521 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */ 6522 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */ 6523 6524 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */ 6525 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */ 6526 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */ 6527 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */ 6528 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */ 6529 6530 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */ 6531 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */ 6532 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */ 6533 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */ 6534 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */ 6535 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */ 6536 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */ 6537 6538 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */ 6539 6540 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */ 6541 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */ 6542 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */ 6543 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */ 6544 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */ 6545 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */ 6546 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */ 6547 6548 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */ 6549 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */ 6550 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */ 6551 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */ 6552 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */ 6553 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */ 6554 6555 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */ 6556 {0,}, 6557 }; 6558 6559 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table); 6560 6561 static struct pci_driver ipw2100_pci_driver = { 6562 .name = DRV_NAME, 6563 .id_table = ipw2100_pci_id_table, 6564 .probe = ipw2100_pci_init_one, 6565 .remove = ipw2100_pci_remove_one, 6566 #ifdef CONFIG_PM 6567 .suspend = ipw2100_suspend, 6568 .resume = ipw2100_resume, 6569 #endif 6570 .shutdown = ipw2100_shutdown, 6571 }; 6572 6573 /** 6574 * Initialize the ipw2100 driver/module 6575 * 6576 * @returns 0 if ok, < 0 errno node con error. 6577 * 6578 * Note: we cannot init the /proc stuff until the PCI driver is there, 6579 * or we risk an unlikely race condition on someone accessing 6580 * uninitialized data in the PCI dev struct through /proc. 6581 */ 6582 static int __init ipw2100_init(void) 6583 { 6584 int ret; 6585 6586 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 6587 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT); 6588 6589 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 6590 PM_QOS_DEFAULT_VALUE); 6591 6592 ret = pci_register_driver(&ipw2100_pci_driver); 6593 if (ret) 6594 goto out; 6595 6596 #ifdef CONFIG_IPW2100_DEBUG 6597 ipw2100_debug_level = debug; 6598 ret = driver_create_file(&ipw2100_pci_driver.driver, 6599 &driver_attr_debug_level); 6600 #endif 6601 6602 out: 6603 return ret; 6604 } 6605 6606 /** 6607 * Cleanup ipw2100 driver registration 6608 */ 6609 static void __exit ipw2100_exit(void) 6610 { 6611 /* FIXME: IPG: check that we have no instances of the devices open */ 6612 #ifdef CONFIG_IPW2100_DEBUG 6613 driver_remove_file(&ipw2100_pci_driver.driver, 6614 &driver_attr_debug_level); 6615 #endif 6616 pci_unregister_driver(&ipw2100_pci_driver); 6617 pm_qos_remove_request(&ipw2100_pm_qos_req); 6618 } 6619 6620 module_init(ipw2100_init); 6621 module_exit(ipw2100_exit); 6622 6623 static int ipw2100_wx_get_name(struct net_device *dev, 6624 struct iw_request_info *info, 6625 union iwreq_data *wrqu, char *extra) 6626 { 6627 /* 6628 * This can be called at any time. No action lock required 6629 */ 6630 6631 struct ipw2100_priv *priv = libipw_priv(dev); 6632 if (!(priv->status & STATUS_ASSOCIATED)) 6633 strcpy(wrqu->name, "unassociated"); 6634 else 6635 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b"); 6636 6637 IPW_DEBUG_WX("Name: %s\n", wrqu->name); 6638 return 0; 6639 } 6640 6641 static int ipw2100_wx_set_freq(struct net_device *dev, 6642 struct iw_request_info *info, 6643 union iwreq_data *wrqu, char *extra) 6644 { 6645 struct ipw2100_priv *priv = libipw_priv(dev); 6646 struct iw_freq *fwrq = &wrqu->freq; 6647 int err = 0; 6648 6649 if (priv->ieee->iw_mode == IW_MODE_INFRA) 6650 return -EOPNOTSUPP; 6651 6652 mutex_lock(&priv->action_mutex); 6653 if (!(priv->status & STATUS_INITIALIZED)) { 6654 err = -EIO; 6655 goto done; 6656 } 6657 6658 /* if setting by freq convert to channel */ 6659 if (fwrq->e == 1) { 6660 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) { 6661 int f = fwrq->m / 100000; 6662 int c = 0; 6663 6664 while ((c < REG_MAX_CHANNEL) && 6665 (f != ipw2100_frequencies[c])) 6666 c++; 6667 6668 /* hack to fall through */ 6669 fwrq->e = 0; 6670 fwrq->m = c + 1; 6671 } 6672 } 6673 6674 if (fwrq->e > 0 || fwrq->m > 1000) { 6675 err = -EOPNOTSUPP; 6676 goto done; 6677 } else { /* Set the channel */ 6678 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); 6679 err = ipw2100_set_channel(priv, fwrq->m, 0); 6680 } 6681 6682 done: 6683 mutex_unlock(&priv->action_mutex); 6684 return err; 6685 } 6686 6687 static int ipw2100_wx_get_freq(struct net_device *dev, 6688 struct iw_request_info *info, 6689 union iwreq_data *wrqu, char *extra) 6690 { 6691 /* 6692 * This can be called at any time. No action lock required 6693 */ 6694 6695 struct ipw2100_priv *priv = libipw_priv(dev); 6696 6697 wrqu->freq.e = 0; 6698 6699 /* If we are associated, trying to associate, or have a statically 6700 * configured CHANNEL then return that; otherwise return ANY */ 6701 if (priv->config & CFG_STATIC_CHANNEL || 6702 priv->status & STATUS_ASSOCIATED) 6703 wrqu->freq.m = priv->channel; 6704 else 6705 wrqu->freq.m = 0; 6706 6707 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); 6708 return 0; 6709 6710 } 6711 6712 static int ipw2100_wx_set_mode(struct net_device *dev, 6713 struct iw_request_info *info, 6714 union iwreq_data *wrqu, char *extra) 6715 { 6716 struct ipw2100_priv *priv = libipw_priv(dev); 6717 int err = 0; 6718 6719 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode); 6720 6721 if (wrqu->mode == priv->ieee->iw_mode) 6722 return 0; 6723 6724 mutex_lock(&priv->action_mutex); 6725 if (!(priv->status & STATUS_INITIALIZED)) { 6726 err = -EIO; 6727 goto done; 6728 } 6729 6730 switch (wrqu->mode) { 6731 #ifdef CONFIG_IPW2100_MONITOR 6732 case IW_MODE_MONITOR: 6733 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 6734 break; 6735 #endif /* CONFIG_IPW2100_MONITOR */ 6736 case IW_MODE_ADHOC: 6737 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC); 6738 break; 6739 case IW_MODE_INFRA: 6740 case IW_MODE_AUTO: 6741 default: 6742 err = ipw2100_switch_mode(priv, IW_MODE_INFRA); 6743 break; 6744 } 6745 6746 done: 6747 mutex_unlock(&priv->action_mutex); 6748 return err; 6749 } 6750 6751 static int ipw2100_wx_get_mode(struct net_device *dev, 6752 struct iw_request_info *info, 6753 union iwreq_data *wrqu, char *extra) 6754 { 6755 /* 6756 * This can be called at any time. No action lock required 6757 */ 6758 6759 struct ipw2100_priv *priv = libipw_priv(dev); 6760 6761 wrqu->mode = priv->ieee->iw_mode; 6762 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode); 6763 6764 return 0; 6765 } 6766 6767 #define POWER_MODES 5 6768 6769 /* Values are in microsecond */ 6770 static const s32 timeout_duration[POWER_MODES] = { 6771 350000, 6772 250000, 6773 75000, 6774 37000, 6775 25000, 6776 }; 6777 6778 static const s32 period_duration[POWER_MODES] = { 6779 400000, 6780 700000, 6781 1000000, 6782 1000000, 6783 1000000 6784 }; 6785 6786 static int ipw2100_wx_get_range(struct net_device *dev, 6787 struct iw_request_info *info, 6788 union iwreq_data *wrqu, char *extra) 6789 { 6790 /* 6791 * This can be called at any time. No action lock required 6792 */ 6793 6794 struct ipw2100_priv *priv = libipw_priv(dev); 6795 struct iw_range *range = (struct iw_range *)extra; 6796 u16 val; 6797 int i, level; 6798 6799 wrqu->data.length = sizeof(*range); 6800 memset(range, 0, sizeof(*range)); 6801 6802 /* Let's try to keep this struct in the same order as in 6803 * linux/include/wireless.h 6804 */ 6805 6806 /* TODO: See what values we can set, and remove the ones we can't 6807 * set, or fill them with some default data. 6808 */ 6809 6810 /* ~5 Mb/s real (802.11b) */ 6811 range->throughput = 5 * 1000 * 1000; 6812 6813 // range->sensitivity; /* signal level threshold range */ 6814 6815 range->max_qual.qual = 100; 6816 /* TODO: Find real max RSSI and stick here */ 6817 range->max_qual.level = 0; 6818 range->max_qual.noise = 0; 6819 range->max_qual.updated = 7; /* Updated all three */ 6820 6821 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */ 6822 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ 6823 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM; 6824 range->avg_qual.noise = 0; 6825 range->avg_qual.updated = 7; /* Updated all three */ 6826 6827 range->num_bitrates = RATE_COUNT; 6828 6829 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) { 6830 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000; 6831 } 6832 6833 range->min_rts = MIN_RTS_THRESHOLD; 6834 range->max_rts = MAX_RTS_THRESHOLD; 6835 range->min_frag = MIN_FRAG_THRESHOLD; 6836 range->max_frag = MAX_FRAG_THRESHOLD; 6837 6838 range->min_pmp = period_duration[0]; /* Minimal PM period */ 6839 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */ 6840 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */ 6841 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */ 6842 6843 /* How to decode max/min PM period */ 6844 range->pmp_flags = IW_POWER_PERIOD; 6845 /* How to decode max/min PM period */ 6846 range->pmt_flags = IW_POWER_TIMEOUT; 6847 /* What PM options are supported */ 6848 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD; 6849 6850 range->encoding_size[0] = 5; 6851 range->encoding_size[1] = 13; /* Different token sizes */ 6852 range->num_encoding_sizes = 2; /* Number of entry in the list */ 6853 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */ 6854 // range->encoding_login_index; /* token index for login token */ 6855 6856 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 6857 range->txpower_capa = IW_TXPOW_DBM; 6858 range->num_txpower = IW_MAX_TXPOWER; 6859 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16); 6860 i < IW_MAX_TXPOWER; 6861 i++, level -= 6862 ((IPW_TX_POWER_MAX_DBM - 6863 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1)) 6864 range->txpower[i] = level / 16; 6865 } else { 6866 range->txpower_capa = 0; 6867 range->num_txpower = 0; 6868 } 6869 6870 /* Set the Wireless Extension versions */ 6871 range->we_version_compiled = WIRELESS_EXT; 6872 range->we_version_source = 18; 6873 6874 // range->retry_capa; /* What retry options are supported */ 6875 // range->retry_flags; /* How to decode max/min retry limit */ 6876 // range->r_time_flags; /* How to decode max/min retry life */ 6877 // range->min_retry; /* Minimal number of retries */ 6878 // range->max_retry; /* Maximal number of retries */ 6879 // range->min_r_time; /* Minimal retry lifetime */ 6880 // range->max_r_time; /* Maximal retry lifetime */ 6881 6882 range->num_channels = FREQ_COUNT; 6883 6884 val = 0; 6885 for (i = 0; i < FREQ_COUNT; i++) { 6886 // TODO: Include only legal frequencies for some countries 6887 // if (local->channel_mask & (1 << i)) { 6888 range->freq[val].i = i + 1; 6889 range->freq[val].m = ipw2100_frequencies[i] * 100000; 6890 range->freq[val].e = 1; 6891 val++; 6892 // } 6893 if (val == IW_MAX_FREQUENCIES) 6894 break; 6895 } 6896 range->num_frequency = val; 6897 6898 /* Event capability (kernel + driver) */ 6899 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 6900 IW_EVENT_CAPA_MASK(SIOCGIWAP)); 6901 range->event_capa[1] = IW_EVENT_CAPA_K_1; 6902 6903 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 6904 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; 6905 6906 IPW_DEBUG_WX("GET Range\n"); 6907 6908 return 0; 6909 } 6910 6911 static int ipw2100_wx_set_wap(struct net_device *dev, 6912 struct iw_request_info *info, 6913 union iwreq_data *wrqu, char *extra) 6914 { 6915 struct ipw2100_priv *priv = libipw_priv(dev); 6916 int err = 0; 6917 6918 // sanity checks 6919 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 6920 return -EINVAL; 6921 6922 mutex_lock(&priv->action_mutex); 6923 if (!(priv->status & STATUS_INITIALIZED)) { 6924 err = -EIO; 6925 goto done; 6926 } 6927 6928 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || 6929 is_zero_ether_addr(wrqu->ap_addr.sa_data)) { 6930 /* we disable mandatory BSSID association */ 6931 IPW_DEBUG_WX("exit - disable mandatory BSSID\n"); 6932 priv->config &= ~CFG_STATIC_BSSID; 6933 err = ipw2100_set_mandatory_bssid(priv, NULL, 0); 6934 goto done; 6935 } 6936 6937 priv->config |= CFG_STATIC_BSSID; 6938 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN); 6939 6940 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0); 6941 6942 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data); 6943 6944 done: 6945 mutex_unlock(&priv->action_mutex); 6946 return err; 6947 } 6948 6949 static int ipw2100_wx_get_wap(struct net_device *dev, 6950 struct iw_request_info *info, 6951 union iwreq_data *wrqu, char *extra) 6952 { 6953 /* 6954 * This can be called at any time. No action lock required 6955 */ 6956 6957 struct ipw2100_priv *priv = libipw_priv(dev); 6958 6959 /* If we are associated, trying to associate, or have a statically 6960 * configured BSSID then return that; otherwise return ANY */ 6961 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) { 6962 wrqu->ap_addr.sa_family = ARPHRD_ETHER; 6963 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); 6964 } else 6965 eth_zero_addr(wrqu->ap_addr.sa_data); 6966 6967 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data); 6968 return 0; 6969 } 6970 6971 static int ipw2100_wx_set_essid(struct net_device *dev, 6972 struct iw_request_info *info, 6973 union iwreq_data *wrqu, char *extra) 6974 { 6975 struct ipw2100_priv *priv = libipw_priv(dev); 6976 char *essid = ""; /* ANY */ 6977 int length = 0; 6978 int err = 0; 6979 6980 mutex_lock(&priv->action_mutex); 6981 if (!(priv->status & STATUS_INITIALIZED)) { 6982 err = -EIO; 6983 goto done; 6984 } 6985 6986 if (wrqu->essid.flags && wrqu->essid.length) { 6987 length = wrqu->essid.length; 6988 essid = extra; 6989 } 6990 6991 if (length == 0) { 6992 IPW_DEBUG_WX("Setting ESSID to ANY\n"); 6993 priv->config &= ~CFG_STATIC_ESSID; 6994 err = ipw2100_set_essid(priv, NULL, 0, 0); 6995 goto done; 6996 } 6997 6998 length = min(length, IW_ESSID_MAX_SIZE); 6999 7000 priv->config |= CFG_STATIC_ESSID; 7001 7002 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) { 7003 IPW_DEBUG_WX("ESSID set to current ESSID.\n"); 7004 err = 0; 7005 goto done; 7006 } 7007 7008 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length); 7009 7010 priv->essid_len = length; 7011 memcpy(priv->essid, essid, priv->essid_len); 7012 7013 err = ipw2100_set_essid(priv, essid, length, 0); 7014 7015 done: 7016 mutex_unlock(&priv->action_mutex); 7017 return err; 7018 } 7019 7020 static int ipw2100_wx_get_essid(struct net_device *dev, 7021 struct iw_request_info *info, 7022 union iwreq_data *wrqu, char *extra) 7023 { 7024 /* 7025 * This can be called at any time. No action lock required 7026 */ 7027 7028 struct ipw2100_priv *priv = libipw_priv(dev); 7029 7030 /* If we are associated, trying to associate, or have a statically 7031 * configured ESSID then return that; otherwise return ANY */ 7032 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) { 7033 IPW_DEBUG_WX("Getting essid: '%*pE'\n", 7034 priv->essid_len, priv->essid); 7035 memcpy(extra, priv->essid, priv->essid_len); 7036 wrqu->essid.length = priv->essid_len; 7037 wrqu->essid.flags = 1; /* active */ 7038 } else { 7039 IPW_DEBUG_WX("Getting essid: ANY\n"); 7040 wrqu->essid.length = 0; 7041 wrqu->essid.flags = 0; /* active */ 7042 } 7043 7044 return 0; 7045 } 7046 7047 static int ipw2100_wx_set_nick(struct net_device *dev, 7048 struct iw_request_info *info, 7049 union iwreq_data *wrqu, char *extra) 7050 { 7051 /* 7052 * This can be called at any time. No action lock required 7053 */ 7054 7055 struct ipw2100_priv *priv = libipw_priv(dev); 7056 7057 if (wrqu->data.length > IW_ESSID_MAX_SIZE) 7058 return -E2BIG; 7059 7060 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); 7061 memset(priv->nick, 0, sizeof(priv->nick)); 7062 memcpy(priv->nick, extra, wrqu->data.length); 7063 7064 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick); 7065 7066 return 0; 7067 } 7068 7069 static int ipw2100_wx_get_nick(struct net_device *dev, 7070 struct iw_request_info *info, 7071 union iwreq_data *wrqu, char *extra) 7072 { 7073 /* 7074 * This can be called at any time. No action lock required 7075 */ 7076 7077 struct ipw2100_priv *priv = libipw_priv(dev); 7078 7079 wrqu->data.length = strlen(priv->nick); 7080 memcpy(extra, priv->nick, wrqu->data.length); 7081 wrqu->data.flags = 1; /* active */ 7082 7083 IPW_DEBUG_WX("GET Nickname -> %s\n", extra); 7084 7085 return 0; 7086 } 7087 7088 static int ipw2100_wx_set_rate(struct net_device *dev, 7089 struct iw_request_info *info, 7090 union iwreq_data *wrqu, char *extra) 7091 { 7092 struct ipw2100_priv *priv = libipw_priv(dev); 7093 u32 target_rate = wrqu->bitrate.value; 7094 u32 rate; 7095 int err = 0; 7096 7097 mutex_lock(&priv->action_mutex); 7098 if (!(priv->status & STATUS_INITIALIZED)) { 7099 err = -EIO; 7100 goto done; 7101 } 7102 7103 rate = 0; 7104 7105 if (target_rate == 1000000 || 7106 (!wrqu->bitrate.fixed && target_rate > 1000000)) 7107 rate |= TX_RATE_1_MBIT; 7108 if (target_rate == 2000000 || 7109 (!wrqu->bitrate.fixed && target_rate > 2000000)) 7110 rate |= TX_RATE_2_MBIT; 7111 if (target_rate == 5500000 || 7112 (!wrqu->bitrate.fixed && target_rate > 5500000)) 7113 rate |= TX_RATE_5_5_MBIT; 7114 if (target_rate == 11000000 || 7115 (!wrqu->bitrate.fixed && target_rate > 11000000)) 7116 rate |= TX_RATE_11_MBIT; 7117 if (rate == 0) 7118 rate = DEFAULT_TX_RATES; 7119 7120 err = ipw2100_set_tx_rates(priv, rate, 0); 7121 7122 IPW_DEBUG_WX("SET Rate -> %04X\n", rate); 7123 done: 7124 mutex_unlock(&priv->action_mutex); 7125 return err; 7126 } 7127 7128 static int ipw2100_wx_get_rate(struct net_device *dev, 7129 struct iw_request_info *info, 7130 union iwreq_data *wrqu, char *extra) 7131 { 7132 struct ipw2100_priv *priv = libipw_priv(dev); 7133 int val; 7134 unsigned int len = sizeof(val); 7135 int err = 0; 7136 7137 if (!(priv->status & STATUS_ENABLED) || 7138 priv->status & STATUS_RF_KILL_MASK || 7139 !(priv->status & STATUS_ASSOCIATED)) { 7140 wrqu->bitrate.value = 0; 7141 return 0; 7142 } 7143 7144 mutex_lock(&priv->action_mutex); 7145 if (!(priv->status & STATUS_INITIALIZED)) { 7146 err = -EIO; 7147 goto done; 7148 } 7149 7150 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len); 7151 if (err) { 7152 IPW_DEBUG_WX("failed querying ordinals.\n"); 7153 goto done; 7154 } 7155 7156 switch (val & TX_RATE_MASK) { 7157 case TX_RATE_1_MBIT: 7158 wrqu->bitrate.value = 1000000; 7159 break; 7160 case TX_RATE_2_MBIT: 7161 wrqu->bitrate.value = 2000000; 7162 break; 7163 case TX_RATE_5_5_MBIT: 7164 wrqu->bitrate.value = 5500000; 7165 break; 7166 case TX_RATE_11_MBIT: 7167 wrqu->bitrate.value = 11000000; 7168 break; 7169 default: 7170 wrqu->bitrate.value = 0; 7171 } 7172 7173 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); 7174 7175 done: 7176 mutex_unlock(&priv->action_mutex); 7177 return err; 7178 } 7179 7180 static int ipw2100_wx_set_rts(struct net_device *dev, 7181 struct iw_request_info *info, 7182 union iwreq_data *wrqu, char *extra) 7183 { 7184 struct ipw2100_priv *priv = libipw_priv(dev); 7185 int value, err; 7186 7187 /* Auto RTS not yet supported */ 7188 if (wrqu->rts.fixed == 0) 7189 return -EINVAL; 7190 7191 mutex_lock(&priv->action_mutex); 7192 if (!(priv->status & STATUS_INITIALIZED)) { 7193 err = -EIO; 7194 goto done; 7195 } 7196 7197 if (wrqu->rts.disabled) 7198 value = priv->rts_threshold | RTS_DISABLED; 7199 else { 7200 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) { 7201 err = -EINVAL; 7202 goto done; 7203 } 7204 value = wrqu->rts.value; 7205 } 7206 7207 err = ipw2100_set_rts_threshold(priv, value); 7208 7209 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value); 7210 done: 7211 mutex_unlock(&priv->action_mutex); 7212 return err; 7213 } 7214 7215 static int ipw2100_wx_get_rts(struct net_device *dev, 7216 struct iw_request_info *info, 7217 union iwreq_data *wrqu, char *extra) 7218 { 7219 /* 7220 * This can be called at any time. No action lock required 7221 */ 7222 7223 struct ipw2100_priv *priv = libipw_priv(dev); 7224 7225 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED; 7226 wrqu->rts.fixed = 1; /* no auto select */ 7227 7228 /* If RTS is set to the default value, then it is disabled */ 7229 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0; 7230 7231 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value); 7232 7233 return 0; 7234 } 7235 7236 static int ipw2100_wx_set_txpow(struct net_device *dev, 7237 struct iw_request_info *info, 7238 union iwreq_data *wrqu, char *extra) 7239 { 7240 struct ipw2100_priv *priv = libipw_priv(dev); 7241 int err = 0, value; 7242 7243 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled)) 7244 return -EINPROGRESS; 7245 7246 if (priv->ieee->iw_mode != IW_MODE_ADHOC) 7247 return 0; 7248 7249 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM) 7250 return -EINVAL; 7251 7252 if (wrqu->txpower.fixed == 0) 7253 value = IPW_TX_POWER_DEFAULT; 7254 else { 7255 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM || 7256 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM) 7257 return -EINVAL; 7258 7259 value = wrqu->txpower.value; 7260 } 7261 7262 mutex_lock(&priv->action_mutex); 7263 if (!(priv->status & STATUS_INITIALIZED)) { 7264 err = -EIO; 7265 goto done; 7266 } 7267 7268 err = ipw2100_set_tx_power(priv, value); 7269 7270 IPW_DEBUG_WX("SET TX Power -> %d\n", value); 7271 7272 done: 7273 mutex_unlock(&priv->action_mutex); 7274 return err; 7275 } 7276 7277 static int ipw2100_wx_get_txpow(struct net_device *dev, 7278 struct iw_request_info *info, 7279 union iwreq_data *wrqu, char *extra) 7280 { 7281 /* 7282 * This can be called at any time. No action lock required 7283 */ 7284 7285 struct ipw2100_priv *priv = libipw_priv(dev); 7286 7287 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; 7288 7289 if (priv->tx_power == IPW_TX_POWER_DEFAULT) { 7290 wrqu->txpower.fixed = 0; 7291 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM; 7292 } else { 7293 wrqu->txpower.fixed = 1; 7294 wrqu->txpower.value = priv->tx_power; 7295 } 7296 7297 wrqu->txpower.flags = IW_TXPOW_DBM; 7298 7299 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value); 7300 7301 return 0; 7302 } 7303 7304 static int ipw2100_wx_set_frag(struct net_device *dev, 7305 struct iw_request_info *info, 7306 union iwreq_data *wrqu, char *extra) 7307 { 7308 /* 7309 * This can be called at any time. No action lock required 7310 */ 7311 7312 struct ipw2100_priv *priv = libipw_priv(dev); 7313 7314 if (!wrqu->frag.fixed) 7315 return -EINVAL; 7316 7317 if (wrqu->frag.disabled) { 7318 priv->frag_threshold |= FRAG_DISABLED; 7319 priv->ieee->fts = DEFAULT_FTS; 7320 } else { 7321 if (wrqu->frag.value < MIN_FRAG_THRESHOLD || 7322 wrqu->frag.value > MAX_FRAG_THRESHOLD) 7323 return -EINVAL; 7324 7325 priv->ieee->fts = wrqu->frag.value & ~0x1; 7326 priv->frag_threshold = priv->ieee->fts; 7327 } 7328 7329 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts); 7330 7331 return 0; 7332 } 7333 7334 static int ipw2100_wx_get_frag(struct net_device *dev, 7335 struct iw_request_info *info, 7336 union iwreq_data *wrqu, char *extra) 7337 { 7338 /* 7339 * This can be called at any time. No action lock required 7340 */ 7341 7342 struct ipw2100_priv *priv = libipw_priv(dev); 7343 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED; 7344 wrqu->frag.fixed = 0; /* no auto select */ 7345 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0; 7346 7347 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); 7348 7349 return 0; 7350 } 7351 7352 static int ipw2100_wx_set_retry(struct net_device *dev, 7353 struct iw_request_info *info, 7354 union iwreq_data *wrqu, char *extra) 7355 { 7356 struct ipw2100_priv *priv = libipw_priv(dev); 7357 int err = 0; 7358 7359 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) 7360 return -EINVAL; 7361 7362 if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) 7363 return 0; 7364 7365 mutex_lock(&priv->action_mutex); 7366 if (!(priv->status & STATUS_INITIALIZED)) { 7367 err = -EIO; 7368 goto done; 7369 } 7370 7371 if (wrqu->retry.flags & IW_RETRY_SHORT) { 7372 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7373 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n", 7374 wrqu->retry.value); 7375 goto done; 7376 } 7377 7378 if (wrqu->retry.flags & IW_RETRY_LONG) { 7379 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7380 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n", 7381 wrqu->retry.value); 7382 goto done; 7383 } 7384 7385 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7386 if (!err) 7387 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7388 7389 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value); 7390 7391 done: 7392 mutex_unlock(&priv->action_mutex); 7393 return err; 7394 } 7395 7396 static int ipw2100_wx_get_retry(struct net_device *dev, 7397 struct iw_request_info *info, 7398 union iwreq_data *wrqu, char *extra) 7399 { 7400 /* 7401 * This can be called at any time. No action lock required 7402 */ 7403 7404 struct ipw2100_priv *priv = libipw_priv(dev); 7405 7406 wrqu->retry.disabled = 0; /* can't be disabled */ 7407 7408 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) 7409 return -EINVAL; 7410 7411 if (wrqu->retry.flags & IW_RETRY_LONG) { 7412 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; 7413 wrqu->retry.value = priv->long_retry_limit; 7414 } else { 7415 wrqu->retry.flags = 7416 (priv->short_retry_limit != 7417 priv->long_retry_limit) ? 7418 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT; 7419 7420 wrqu->retry.value = priv->short_retry_limit; 7421 } 7422 7423 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value); 7424 7425 return 0; 7426 } 7427 7428 static int ipw2100_wx_set_scan(struct net_device *dev, 7429 struct iw_request_info *info, 7430 union iwreq_data *wrqu, char *extra) 7431 { 7432 struct ipw2100_priv *priv = libipw_priv(dev); 7433 int err = 0; 7434 7435 mutex_lock(&priv->action_mutex); 7436 if (!(priv->status & STATUS_INITIALIZED)) { 7437 err = -EIO; 7438 goto done; 7439 } 7440 7441 IPW_DEBUG_WX("Initiating scan...\n"); 7442 7443 priv->user_requested_scan = 1; 7444 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) { 7445 IPW_DEBUG_WX("Start scan failed.\n"); 7446 7447 /* TODO: Mark a scan as pending so when hardware initialized 7448 * a scan starts */ 7449 } 7450 7451 done: 7452 mutex_unlock(&priv->action_mutex); 7453 return err; 7454 } 7455 7456 static int ipw2100_wx_get_scan(struct net_device *dev, 7457 struct iw_request_info *info, 7458 union iwreq_data *wrqu, char *extra) 7459 { 7460 /* 7461 * This can be called at any time. No action lock required 7462 */ 7463 7464 struct ipw2100_priv *priv = libipw_priv(dev); 7465 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); 7466 } 7467 7468 /* 7469 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c 7470 */ 7471 static int ipw2100_wx_set_encode(struct net_device *dev, 7472 struct iw_request_info *info, 7473 union iwreq_data *wrqu, char *key) 7474 { 7475 /* 7476 * No check of STATUS_INITIALIZED required 7477 */ 7478 7479 struct ipw2100_priv *priv = libipw_priv(dev); 7480 return libipw_wx_set_encode(priv->ieee, info, wrqu, key); 7481 } 7482 7483 static int ipw2100_wx_get_encode(struct net_device *dev, 7484 struct iw_request_info *info, 7485 union iwreq_data *wrqu, char *key) 7486 { 7487 /* 7488 * This can be called at any time. No action lock required 7489 */ 7490 7491 struct ipw2100_priv *priv = libipw_priv(dev); 7492 return libipw_wx_get_encode(priv->ieee, info, wrqu, key); 7493 } 7494 7495 static int ipw2100_wx_set_power(struct net_device *dev, 7496 struct iw_request_info *info, 7497 union iwreq_data *wrqu, char *extra) 7498 { 7499 struct ipw2100_priv *priv = libipw_priv(dev); 7500 int err = 0; 7501 7502 mutex_lock(&priv->action_mutex); 7503 if (!(priv->status & STATUS_INITIALIZED)) { 7504 err = -EIO; 7505 goto done; 7506 } 7507 7508 if (wrqu->power.disabled) { 7509 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 7510 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 7511 IPW_DEBUG_WX("SET Power Management Mode -> off\n"); 7512 goto done; 7513 } 7514 7515 switch (wrqu->power.flags & IW_POWER_MODE) { 7516 case IW_POWER_ON: /* If not specified */ 7517 case IW_POWER_MODE: /* If set all mask */ 7518 case IW_POWER_ALL_R: /* If explicitly state all */ 7519 break; 7520 default: /* Otherwise we don't support it */ 7521 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", 7522 wrqu->power.flags); 7523 err = -EOPNOTSUPP; 7524 goto done; 7525 } 7526 7527 /* If the user hasn't specified a power management mode yet, default 7528 * to BATTERY */ 7529 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; 7530 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); 7531 7532 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); 7533 7534 done: 7535 mutex_unlock(&priv->action_mutex); 7536 return err; 7537 7538 } 7539 7540 static int ipw2100_wx_get_power(struct net_device *dev, 7541 struct iw_request_info *info, 7542 union iwreq_data *wrqu, char *extra) 7543 { 7544 /* 7545 * This can be called at any time. No action lock required 7546 */ 7547 7548 struct ipw2100_priv *priv = libipw_priv(dev); 7549 7550 if (!(priv->power_mode & IPW_POWER_ENABLED)) 7551 wrqu->power.disabled = 1; 7552 else { 7553 wrqu->power.disabled = 0; 7554 wrqu->power.flags = 0; 7555 } 7556 7557 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); 7558 7559 return 0; 7560 } 7561 7562 /* 7563 * WE-18 WPA support 7564 */ 7565 7566 /* SIOCSIWGENIE */ 7567 static int ipw2100_wx_set_genie(struct net_device *dev, 7568 struct iw_request_info *info, 7569 union iwreq_data *wrqu, char *extra) 7570 { 7571 7572 struct ipw2100_priv *priv = libipw_priv(dev); 7573 struct libipw_device *ieee = priv->ieee; 7574 u8 *buf; 7575 7576 if (!ieee->wpa_enabled) 7577 return -EOPNOTSUPP; 7578 7579 if (wrqu->data.length > MAX_WPA_IE_LEN || 7580 (wrqu->data.length && extra == NULL)) 7581 return -EINVAL; 7582 7583 if (wrqu->data.length) { 7584 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); 7585 if (buf == NULL) 7586 return -ENOMEM; 7587 7588 kfree(ieee->wpa_ie); 7589 ieee->wpa_ie = buf; 7590 ieee->wpa_ie_len = wrqu->data.length; 7591 } else { 7592 kfree(ieee->wpa_ie); 7593 ieee->wpa_ie = NULL; 7594 ieee->wpa_ie_len = 0; 7595 } 7596 7597 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); 7598 7599 return 0; 7600 } 7601 7602 /* SIOCGIWGENIE */ 7603 static int ipw2100_wx_get_genie(struct net_device *dev, 7604 struct iw_request_info *info, 7605 union iwreq_data *wrqu, char *extra) 7606 { 7607 struct ipw2100_priv *priv = libipw_priv(dev); 7608 struct libipw_device *ieee = priv->ieee; 7609 7610 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { 7611 wrqu->data.length = 0; 7612 return 0; 7613 } 7614 7615 if (wrqu->data.length < ieee->wpa_ie_len) 7616 return -E2BIG; 7617 7618 wrqu->data.length = ieee->wpa_ie_len; 7619 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); 7620 7621 return 0; 7622 } 7623 7624 /* SIOCSIWAUTH */ 7625 static int ipw2100_wx_set_auth(struct net_device *dev, 7626 struct iw_request_info *info, 7627 union iwreq_data *wrqu, char *extra) 7628 { 7629 struct ipw2100_priv *priv = libipw_priv(dev); 7630 struct libipw_device *ieee = priv->ieee; 7631 struct iw_param *param = &wrqu->param; 7632 struct lib80211_crypt_data *crypt; 7633 unsigned long flags; 7634 int ret = 0; 7635 7636 switch (param->flags & IW_AUTH_INDEX) { 7637 case IW_AUTH_WPA_VERSION: 7638 case IW_AUTH_CIPHER_PAIRWISE: 7639 case IW_AUTH_CIPHER_GROUP: 7640 case IW_AUTH_KEY_MGMT: 7641 /* 7642 * ipw2200 does not use these parameters 7643 */ 7644 break; 7645 7646 case IW_AUTH_TKIP_COUNTERMEASURES: 7647 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7648 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) 7649 break; 7650 7651 flags = crypt->ops->get_flags(crypt->priv); 7652 7653 if (param->value) 7654 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7655 else 7656 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7657 7658 crypt->ops->set_flags(flags, crypt->priv); 7659 7660 break; 7661 7662 case IW_AUTH_DROP_UNENCRYPTED:{ 7663 /* HACK: 7664 * 7665 * wpa_supplicant calls set_wpa_enabled when the driver 7666 * is loaded and unloaded, regardless of if WPA is being 7667 * used. No other calls are made which can be used to 7668 * determine if encryption will be used or not prior to 7669 * association being expected. If encryption is not being 7670 * used, drop_unencrypted is set to false, else true -- we 7671 * can use this to determine if the CAP_PRIVACY_ON bit should 7672 * be set. 7673 */ 7674 struct libipw_security sec = { 7675 .flags = SEC_ENABLED, 7676 .enabled = param->value, 7677 }; 7678 priv->ieee->drop_unencrypted = param->value; 7679 /* We only change SEC_LEVEL for open mode. Others 7680 * are set by ipw_wpa_set_encryption. 7681 */ 7682 if (!param->value) { 7683 sec.flags |= SEC_LEVEL; 7684 sec.level = SEC_LEVEL_0; 7685 } else { 7686 sec.flags |= SEC_LEVEL; 7687 sec.level = SEC_LEVEL_1; 7688 } 7689 if (priv->ieee->set_security) 7690 priv->ieee->set_security(priv->ieee->dev, &sec); 7691 break; 7692 } 7693 7694 case IW_AUTH_80211_AUTH_ALG: 7695 ret = ipw2100_wpa_set_auth_algs(priv, param->value); 7696 break; 7697 7698 case IW_AUTH_WPA_ENABLED: 7699 ret = ipw2100_wpa_enable(priv, param->value); 7700 break; 7701 7702 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7703 ieee->ieee802_1x = param->value; 7704 break; 7705 7706 //case IW_AUTH_ROAMING_CONTROL: 7707 case IW_AUTH_PRIVACY_INVOKED: 7708 ieee->privacy_invoked = param->value; 7709 break; 7710 7711 default: 7712 return -EOPNOTSUPP; 7713 } 7714 return ret; 7715 } 7716 7717 /* SIOCGIWAUTH */ 7718 static int ipw2100_wx_get_auth(struct net_device *dev, 7719 struct iw_request_info *info, 7720 union iwreq_data *wrqu, char *extra) 7721 { 7722 struct ipw2100_priv *priv = libipw_priv(dev); 7723 struct libipw_device *ieee = priv->ieee; 7724 struct lib80211_crypt_data *crypt; 7725 struct iw_param *param = &wrqu->param; 7726 int ret = 0; 7727 7728 switch (param->flags & IW_AUTH_INDEX) { 7729 case IW_AUTH_WPA_VERSION: 7730 case IW_AUTH_CIPHER_PAIRWISE: 7731 case IW_AUTH_CIPHER_GROUP: 7732 case IW_AUTH_KEY_MGMT: 7733 /* 7734 * wpa_supplicant will control these internally 7735 */ 7736 ret = -EOPNOTSUPP; 7737 break; 7738 7739 case IW_AUTH_TKIP_COUNTERMEASURES: 7740 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7741 if (!crypt || !crypt->ops->get_flags) { 7742 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: " 7743 "crypt not set!\n"); 7744 break; 7745 } 7746 7747 param->value = (crypt->ops->get_flags(crypt->priv) & 7748 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; 7749 7750 break; 7751 7752 case IW_AUTH_DROP_UNENCRYPTED: 7753 param->value = ieee->drop_unencrypted; 7754 break; 7755 7756 case IW_AUTH_80211_AUTH_ALG: 7757 param->value = priv->ieee->sec.auth_mode; 7758 break; 7759 7760 case IW_AUTH_WPA_ENABLED: 7761 param->value = ieee->wpa_enabled; 7762 break; 7763 7764 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7765 param->value = ieee->ieee802_1x; 7766 break; 7767 7768 case IW_AUTH_ROAMING_CONTROL: 7769 case IW_AUTH_PRIVACY_INVOKED: 7770 param->value = ieee->privacy_invoked; 7771 break; 7772 7773 default: 7774 return -EOPNOTSUPP; 7775 } 7776 return 0; 7777 } 7778 7779 /* SIOCSIWENCODEEXT */ 7780 static int ipw2100_wx_set_encodeext(struct net_device *dev, 7781 struct iw_request_info *info, 7782 union iwreq_data *wrqu, char *extra) 7783 { 7784 struct ipw2100_priv *priv = libipw_priv(dev); 7785 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); 7786 } 7787 7788 /* SIOCGIWENCODEEXT */ 7789 static int ipw2100_wx_get_encodeext(struct net_device *dev, 7790 struct iw_request_info *info, 7791 union iwreq_data *wrqu, char *extra) 7792 { 7793 struct ipw2100_priv *priv = libipw_priv(dev); 7794 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); 7795 } 7796 7797 /* SIOCSIWMLME */ 7798 static int ipw2100_wx_set_mlme(struct net_device *dev, 7799 struct iw_request_info *info, 7800 union iwreq_data *wrqu, char *extra) 7801 { 7802 struct ipw2100_priv *priv = libipw_priv(dev); 7803 struct iw_mlme *mlme = (struct iw_mlme *)extra; 7804 __le16 reason; 7805 7806 reason = cpu_to_le16(mlme->reason_code); 7807 7808 switch (mlme->cmd) { 7809 case IW_MLME_DEAUTH: 7810 // silently ignore 7811 break; 7812 7813 case IW_MLME_DISASSOC: 7814 ipw2100_disassociate_bssid(priv); 7815 break; 7816 7817 default: 7818 return -EOPNOTSUPP; 7819 } 7820 return 0; 7821 } 7822 7823 /* 7824 * 7825 * IWPRIV handlers 7826 * 7827 */ 7828 #ifdef CONFIG_IPW2100_MONITOR 7829 static int ipw2100_wx_set_promisc(struct net_device *dev, 7830 struct iw_request_info *info, 7831 union iwreq_data *wrqu, char *extra) 7832 { 7833 struct ipw2100_priv *priv = libipw_priv(dev); 7834 int *parms = (int *)extra; 7835 int enable = (parms[0] > 0); 7836 int err = 0; 7837 7838 mutex_lock(&priv->action_mutex); 7839 if (!(priv->status & STATUS_INITIALIZED)) { 7840 err = -EIO; 7841 goto done; 7842 } 7843 7844 if (enable) { 7845 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 7846 err = ipw2100_set_channel(priv, parms[1], 0); 7847 goto done; 7848 } 7849 priv->channel = parms[1]; 7850 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 7851 } else { 7852 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 7853 err = ipw2100_switch_mode(priv, priv->last_mode); 7854 } 7855 done: 7856 mutex_unlock(&priv->action_mutex); 7857 return err; 7858 } 7859 7860 static int ipw2100_wx_reset(struct net_device *dev, 7861 struct iw_request_info *info, 7862 union iwreq_data *wrqu, char *extra) 7863 { 7864 struct ipw2100_priv *priv = libipw_priv(dev); 7865 if (priv->status & STATUS_INITIALIZED) 7866 schedule_reset(priv); 7867 return 0; 7868 } 7869 7870 #endif 7871 7872 static int ipw2100_wx_set_powermode(struct net_device *dev, 7873 struct iw_request_info *info, 7874 union iwreq_data *wrqu, char *extra) 7875 { 7876 struct ipw2100_priv *priv = libipw_priv(dev); 7877 int err = 0, mode = *(int *)extra; 7878 7879 mutex_lock(&priv->action_mutex); 7880 if (!(priv->status & STATUS_INITIALIZED)) { 7881 err = -EIO; 7882 goto done; 7883 } 7884 7885 if ((mode < 0) || (mode > POWER_MODES)) 7886 mode = IPW_POWER_AUTO; 7887 7888 if (IPW_POWER_LEVEL(priv->power_mode) != mode) 7889 err = ipw2100_set_power_mode(priv, mode); 7890 done: 7891 mutex_unlock(&priv->action_mutex); 7892 return err; 7893 } 7894 7895 #define MAX_POWER_STRING 80 7896 static int ipw2100_wx_get_powermode(struct net_device *dev, 7897 struct iw_request_info *info, 7898 union iwreq_data *wrqu, char *extra) 7899 { 7900 /* 7901 * This can be called at any time. No action lock required 7902 */ 7903 7904 struct ipw2100_priv *priv = libipw_priv(dev); 7905 int level = IPW_POWER_LEVEL(priv->power_mode); 7906 s32 timeout, period; 7907 7908 if (!(priv->power_mode & IPW_POWER_ENABLED)) { 7909 snprintf(extra, MAX_POWER_STRING, 7910 "Power save level: %d (Off)", level); 7911 } else { 7912 switch (level) { 7913 case IPW_POWER_MODE_CAM: 7914 snprintf(extra, MAX_POWER_STRING, 7915 "Power save level: %d (None)", level); 7916 break; 7917 case IPW_POWER_AUTO: 7918 snprintf(extra, MAX_POWER_STRING, 7919 "Power save level: %d (Auto)", level); 7920 break; 7921 default: 7922 timeout = timeout_duration[level - 1] / 1000; 7923 period = period_duration[level - 1] / 1000; 7924 snprintf(extra, MAX_POWER_STRING, 7925 "Power save level: %d " 7926 "(Timeout %dms, Period %dms)", 7927 level, timeout, period); 7928 } 7929 } 7930 7931 wrqu->data.length = strlen(extra) + 1; 7932 7933 return 0; 7934 } 7935 7936 static int ipw2100_wx_set_preamble(struct net_device *dev, 7937 struct iw_request_info *info, 7938 union iwreq_data *wrqu, char *extra) 7939 { 7940 struct ipw2100_priv *priv = libipw_priv(dev); 7941 int err, mode = *(int *)extra; 7942 7943 mutex_lock(&priv->action_mutex); 7944 if (!(priv->status & STATUS_INITIALIZED)) { 7945 err = -EIO; 7946 goto done; 7947 } 7948 7949 if (mode == 1) 7950 priv->config |= CFG_LONG_PREAMBLE; 7951 else if (mode == 0) 7952 priv->config &= ~CFG_LONG_PREAMBLE; 7953 else { 7954 err = -EINVAL; 7955 goto done; 7956 } 7957 7958 err = ipw2100_system_config(priv, 0); 7959 7960 done: 7961 mutex_unlock(&priv->action_mutex); 7962 return err; 7963 } 7964 7965 static int ipw2100_wx_get_preamble(struct net_device *dev, 7966 struct iw_request_info *info, 7967 union iwreq_data *wrqu, char *extra) 7968 { 7969 /* 7970 * This can be called at any time. No action lock required 7971 */ 7972 7973 struct ipw2100_priv *priv = libipw_priv(dev); 7974 7975 if (priv->config & CFG_LONG_PREAMBLE) 7976 snprintf(wrqu->name, IFNAMSIZ, "long (1)"); 7977 else 7978 snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); 7979 7980 return 0; 7981 } 7982 7983 #ifdef CONFIG_IPW2100_MONITOR 7984 static int ipw2100_wx_set_crc_check(struct net_device *dev, 7985 struct iw_request_info *info, 7986 union iwreq_data *wrqu, char *extra) 7987 { 7988 struct ipw2100_priv *priv = libipw_priv(dev); 7989 int err, mode = *(int *)extra; 7990 7991 mutex_lock(&priv->action_mutex); 7992 if (!(priv->status & STATUS_INITIALIZED)) { 7993 err = -EIO; 7994 goto done; 7995 } 7996 7997 if (mode == 1) 7998 priv->config |= CFG_CRC_CHECK; 7999 else if (mode == 0) 8000 priv->config &= ~CFG_CRC_CHECK; 8001 else { 8002 err = -EINVAL; 8003 goto done; 8004 } 8005 err = 0; 8006 8007 done: 8008 mutex_unlock(&priv->action_mutex); 8009 return err; 8010 } 8011 8012 static int ipw2100_wx_get_crc_check(struct net_device *dev, 8013 struct iw_request_info *info, 8014 union iwreq_data *wrqu, char *extra) 8015 { 8016 /* 8017 * This can be called at any time. No action lock required 8018 */ 8019 8020 struct ipw2100_priv *priv = libipw_priv(dev); 8021 8022 if (priv->config & CFG_CRC_CHECK) 8023 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)"); 8024 else 8025 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)"); 8026 8027 return 0; 8028 } 8029 #endif /* CONFIG_IPW2100_MONITOR */ 8030 8031 static iw_handler ipw2100_wx_handlers[] = { 8032 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name), 8033 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq), 8034 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq), 8035 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode), 8036 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode), 8037 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range), 8038 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap), 8039 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap), 8040 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme), 8041 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan), 8042 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan), 8043 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid), 8044 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid), 8045 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick), 8046 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick), 8047 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate), 8048 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate), 8049 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts), 8050 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts), 8051 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag), 8052 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag), 8053 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow), 8054 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow), 8055 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry), 8056 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry), 8057 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode), 8058 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode), 8059 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power), 8060 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power), 8061 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie), 8062 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie), 8063 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth), 8064 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth), 8065 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext), 8066 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext), 8067 }; 8068 8069 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV 8070 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1 8071 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2 8072 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3 8073 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4 8074 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5 8075 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6 8076 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7 8077 8078 static const struct iw_priv_args ipw2100_private_args[] = { 8079 8080 #ifdef CONFIG_IPW2100_MONITOR 8081 { 8082 IPW2100_PRIV_SET_MONITOR, 8083 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, 8084 { 8085 IPW2100_PRIV_RESET, 8086 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, 8087 #endif /* CONFIG_IPW2100_MONITOR */ 8088 8089 { 8090 IPW2100_PRIV_SET_POWER, 8091 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"}, 8092 { 8093 IPW2100_PRIV_GET_POWER, 8094 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING, 8095 "get_power"}, 8096 { 8097 IPW2100_PRIV_SET_LONGPREAMBLE, 8098 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"}, 8099 { 8100 IPW2100_PRIV_GET_LONGPREAMBLE, 8101 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"}, 8102 #ifdef CONFIG_IPW2100_MONITOR 8103 { 8104 IPW2100_PRIV_SET_CRC_CHECK, 8105 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"}, 8106 { 8107 IPW2100_PRIV_GET_CRC_CHECK, 8108 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"}, 8109 #endif /* CONFIG_IPW2100_MONITOR */ 8110 }; 8111 8112 static iw_handler ipw2100_private_handler[] = { 8113 #ifdef CONFIG_IPW2100_MONITOR 8114 ipw2100_wx_set_promisc, 8115 ipw2100_wx_reset, 8116 #else /* CONFIG_IPW2100_MONITOR */ 8117 NULL, 8118 NULL, 8119 #endif /* CONFIG_IPW2100_MONITOR */ 8120 ipw2100_wx_set_powermode, 8121 ipw2100_wx_get_powermode, 8122 ipw2100_wx_set_preamble, 8123 ipw2100_wx_get_preamble, 8124 #ifdef CONFIG_IPW2100_MONITOR 8125 ipw2100_wx_set_crc_check, 8126 ipw2100_wx_get_crc_check, 8127 #else /* CONFIG_IPW2100_MONITOR */ 8128 NULL, 8129 NULL, 8130 #endif /* CONFIG_IPW2100_MONITOR */ 8131 }; 8132 8133 /* 8134 * Get wireless statistics. 8135 * Called by /proc/net/wireless 8136 * Also called by SIOCGIWSTATS 8137 */ 8138 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev) 8139 { 8140 enum { 8141 POOR = 30, 8142 FAIR = 60, 8143 GOOD = 80, 8144 VERY_GOOD = 90, 8145 EXCELLENT = 95, 8146 PERFECT = 100 8147 }; 8148 int rssi_qual; 8149 int tx_qual; 8150 int beacon_qual; 8151 int quality; 8152 8153 struct ipw2100_priv *priv = libipw_priv(dev); 8154 struct iw_statistics *wstats; 8155 u32 rssi, tx_retries, missed_beacons, tx_failures; 8156 u32 ord_len = sizeof(u32); 8157 8158 if (!priv) 8159 return (struct iw_statistics *)NULL; 8160 8161 wstats = &priv->wstats; 8162 8163 /* if hw is disabled, then ipw2100_get_ordinal() can't be called. 8164 * ipw2100_wx_wireless_stats seems to be called before fw is 8165 * initialized. STATUS_ASSOCIATED will only be set if the hw is up 8166 * and associated; if not associcated, the values are all meaningless 8167 * anyway, so set them all to NULL and INVALID */ 8168 if (!(priv->status & STATUS_ASSOCIATED)) { 8169 wstats->miss.beacon = 0; 8170 wstats->discard.retries = 0; 8171 wstats->qual.qual = 0; 8172 wstats->qual.level = 0; 8173 wstats->qual.noise = 0; 8174 wstats->qual.updated = 7; 8175 wstats->qual.updated |= IW_QUAL_NOISE_INVALID | 8176 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; 8177 return wstats; 8178 } 8179 8180 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS, 8181 &missed_beacons, &ord_len)) 8182 goto fail_get_ordinal; 8183 8184 /* If we don't have a connection the quality and level is 0 */ 8185 if (!(priv->status & STATUS_ASSOCIATED)) { 8186 wstats->qual.qual = 0; 8187 wstats->qual.level = 0; 8188 } else { 8189 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR, 8190 &rssi, &ord_len)) 8191 goto fail_get_ordinal; 8192 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8193 if (rssi < 10) 8194 rssi_qual = rssi * POOR / 10; 8195 else if (rssi < 15) 8196 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR; 8197 else if (rssi < 20) 8198 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR; 8199 else if (rssi < 30) 8200 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) / 8201 10 + GOOD; 8202 else 8203 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) / 8204 10 + VERY_GOOD; 8205 8206 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES, 8207 &tx_retries, &ord_len)) 8208 goto fail_get_ordinal; 8209 8210 if (tx_retries > 75) 8211 tx_qual = (90 - tx_retries) * POOR / 15; 8212 else if (tx_retries > 70) 8213 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR; 8214 else if (tx_retries > 65) 8215 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR; 8216 else if (tx_retries > 50) 8217 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) / 8218 15 + GOOD; 8219 else 8220 tx_qual = (50 - tx_retries) * 8221 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD; 8222 8223 if (missed_beacons > 50) 8224 beacon_qual = (60 - missed_beacons) * POOR / 10; 8225 else if (missed_beacons > 40) 8226 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) / 8227 10 + POOR; 8228 else if (missed_beacons > 32) 8229 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) / 8230 18 + FAIR; 8231 else if (missed_beacons > 20) 8232 beacon_qual = (32 - missed_beacons) * 8233 (VERY_GOOD - GOOD) / 20 + GOOD; 8234 else 8235 beacon_qual = (20 - missed_beacons) * 8236 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD; 8237 8238 quality = min(tx_qual, rssi_qual); 8239 quality = min(beacon_qual, quality); 8240 8241 #ifdef CONFIG_IPW2100_DEBUG 8242 if (beacon_qual == quality) 8243 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n"); 8244 else if (tx_qual == quality) 8245 IPW_DEBUG_WX("Quality clamped by Tx Retries\n"); 8246 else if (quality != 100) 8247 IPW_DEBUG_WX("Quality clamped by Signal Strength\n"); 8248 else 8249 IPW_DEBUG_WX("Quality not clamped.\n"); 8250 #endif 8251 8252 wstats->qual.qual = quality; 8253 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8254 } 8255 8256 wstats->qual.noise = 0; 8257 wstats->qual.updated = 7; 8258 wstats->qual.updated |= IW_QUAL_NOISE_INVALID; 8259 8260 /* FIXME: this is percent and not a # */ 8261 wstats->miss.beacon = missed_beacons; 8262 8263 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES, 8264 &tx_failures, &ord_len)) 8265 goto fail_get_ordinal; 8266 wstats->discard.retries = tx_failures; 8267 8268 return wstats; 8269 8270 fail_get_ordinal: 8271 IPW_DEBUG_WX("failed querying ordinals.\n"); 8272 8273 return (struct iw_statistics *)NULL; 8274 } 8275 8276 static const struct iw_handler_def ipw2100_wx_handler_def = { 8277 .standard = ipw2100_wx_handlers, 8278 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers), 8279 .num_private = ARRAY_SIZE(ipw2100_private_handler), 8280 .num_private_args = ARRAY_SIZE(ipw2100_private_args), 8281 .private = (iw_handler *) ipw2100_private_handler, 8282 .private_args = (struct iw_priv_args *)ipw2100_private_args, 8283 .get_wireless_stats = ipw2100_wx_wireless_stats, 8284 }; 8285 8286 static void ipw2100_wx_event_work(struct work_struct *work) 8287 { 8288 struct ipw2100_priv *priv = 8289 container_of(work, struct ipw2100_priv, wx_event_work.work); 8290 union iwreq_data wrqu; 8291 unsigned int len = ETH_ALEN; 8292 8293 if (priv->status & STATUS_STOPPING) 8294 return; 8295 8296 mutex_lock(&priv->action_mutex); 8297 8298 IPW_DEBUG_WX("enter\n"); 8299 8300 mutex_unlock(&priv->action_mutex); 8301 8302 wrqu.ap_addr.sa_family = ARPHRD_ETHER; 8303 8304 /* Fetch BSSID from the hardware */ 8305 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) || 8306 priv->status & STATUS_RF_KILL_MASK || 8307 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 8308 &priv->bssid, &len)) { 8309 eth_zero_addr(wrqu.ap_addr.sa_data); 8310 } else { 8311 /* We now have the BSSID, so can finish setting to the full 8312 * associated state */ 8313 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); 8314 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN); 8315 priv->status &= ~STATUS_ASSOCIATING; 8316 priv->status |= STATUS_ASSOCIATED; 8317 netif_carrier_on(priv->net_dev); 8318 netif_wake_queue(priv->net_dev); 8319 } 8320 8321 if (!(priv->status & STATUS_ASSOCIATED)) { 8322 IPW_DEBUG_WX("Configuring ESSID\n"); 8323 mutex_lock(&priv->action_mutex); 8324 /* This is a disassociation event, so kick the firmware to 8325 * look for another AP */ 8326 if (priv->config & CFG_STATIC_ESSID) 8327 ipw2100_set_essid(priv, priv->essid, priv->essid_len, 8328 0); 8329 else 8330 ipw2100_set_essid(priv, NULL, 0, 0); 8331 mutex_unlock(&priv->action_mutex); 8332 } 8333 8334 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 8335 } 8336 8337 #define IPW2100_FW_MAJOR_VERSION 1 8338 #define IPW2100_FW_MINOR_VERSION 3 8339 8340 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8) 8341 #define IPW2100_FW_MAJOR(x) (x & 0xff) 8342 8343 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \ 8344 IPW2100_FW_MAJOR_VERSION) 8345 8346 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \ 8347 "." __stringify(IPW2100_FW_MINOR_VERSION) 8348 8349 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw" 8350 8351 /* 8352 8353 BINARY FIRMWARE HEADER FORMAT 8354 8355 offset length desc 8356 0 2 version 8357 2 2 mode == 0:BSS,1:IBSS,2:MONITOR 8358 4 4 fw_len 8359 8 4 uc_len 8360 C fw_len firmware data 8361 12 + fw_len uc_len microcode data 8362 8363 */ 8364 8365 struct ipw2100_fw_header { 8366 short version; 8367 short mode; 8368 unsigned int fw_size; 8369 unsigned int uc_size; 8370 } __packed; 8371 8372 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw) 8373 { 8374 struct ipw2100_fw_header *h = 8375 (struct ipw2100_fw_header *)fw->fw_entry->data; 8376 8377 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) { 8378 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible " 8379 "(detected version id of %u). " 8380 "See Documentation/networking/README.ipw2100\n", 8381 h->version); 8382 return 1; 8383 } 8384 8385 fw->version = h->version; 8386 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header); 8387 fw->fw.size = h->fw_size; 8388 fw->uc.data = fw->fw.data + h->fw_size; 8389 fw->uc.size = h->uc_size; 8390 8391 return 0; 8392 } 8393 8394 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 8395 struct ipw2100_fw *fw) 8396 { 8397 char *fw_name; 8398 int rc; 8399 8400 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n", 8401 priv->net_dev->name); 8402 8403 switch (priv->ieee->iw_mode) { 8404 case IW_MODE_ADHOC: 8405 fw_name = IPW2100_FW_NAME("-i"); 8406 break; 8407 #ifdef CONFIG_IPW2100_MONITOR 8408 case IW_MODE_MONITOR: 8409 fw_name = IPW2100_FW_NAME("-p"); 8410 break; 8411 #endif 8412 case IW_MODE_INFRA: 8413 default: 8414 fw_name = IPW2100_FW_NAME(""); 8415 break; 8416 } 8417 8418 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev); 8419 8420 if (rc < 0) { 8421 printk(KERN_ERR DRV_NAME ": " 8422 "%s: Firmware '%s' not available or load failed.\n", 8423 priv->net_dev->name, fw_name); 8424 return rc; 8425 } 8426 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data, 8427 fw->fw_entry->size); 8428 8429 ipw2100_mod_firmware_load(fw); 8430 8431 return 0; 8432 } 8433 8434 MODULE_FIRMWARE(IPW2100_FW_NAME("-i")); 8435 #ifdef CONFIG_IPW2100_MONITOR 8436 MODULE_FIRMWARE(IPW2100_FW_NAME("-p")); 8437 #endif 8438 MODULE_FIRMWARE(IPW2100_FW_NAME("")); 8439 8440 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 8441 struct ipw2100_fw *fw) 8442 { 8443 fw->version = 0; 8444 release_firmware(fw->fw_entry); 8445 fw->fw_entry = NULL; 8446 } 8447 8448 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 8449 size_t max) 8450 { 8451 char ver[MAX_FW_VERSION_LEN]; 8452 u32 len = MAX_FW_VERSION_LEN; 8453 u32 tmp; 8454 int i; 8455 /* firmware version is an ascii string (max len of 14) */ 8456 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len)) 8457 return -EIO; 8458 tmp = max; 8459 if (len >= max) 8460 len = max - 1; 8461 for (i = 0; i < len; i++) 8462 buf[i] = ver[i]; 8463 buf[i] = '\0'; 8464 return tmp; 8465 } 8466 8467 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf, 8468 size_t max) 8469 { 8470 u32 ver; 8471 u32 len = sizeof(ver); 8472 /* microcode version is a 32 bit integer */ 8473 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len)) 8474 return -EIO; 8475 return snprintf(buf, max, "%08X", ver); 8476 } 8477 8478 /* 8479 * On exit, the firmware will have been freed from the fw list 8480 */ 8481 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw) 8482 { 8483 /* firmware is constructed of N contiguous entries, each entry is 8484 * structured as: 8485 * 8486 * offset sie desc 8487 * 0 4 address to write to 8488 * 4 2 length of data run 8489 * 6 length data 8490 */ 8491 unsigned int addr; 8492 unsigned short len; 8493 8494 const unsigned char *firmware_data = fw->fw.data; 8495 unsigned int firmware_data_left = fw->fw.size; 8496 8497 while (firmware_data_left > 0) { 8498 addr = *(u32 *) (firmware_data); 8499 firmware_data += 4; 8500 firmware_data_left -= 4; 8501 8502 len = *(u16 *) (firmware_data); 8503 firmware_data += 2; 8504 firmware_data_left -= 2; 8505 8506 if (len > 32) { 8507 printk(KERN_ERR DRV_NAME ": " 8508 "Invalid firmware run-length of %d bytes\n", 8509 len); 8510 return -EINVAL; 8511 } 8512 8513 write_nic_memory(priv->net_dev, addr, len, firmware_data); 8514 firmware_data += len; 8515 firmware_data_left -= len; 8516 } 8517 8518 return 0; 8519 } 8520 8521 struct symbol_alive_response { 8522 u8 cmd_id; 8523 u8 seq_num; 8524 u8 ucode_rev; 8525 u8 eeprom_valid; 8526 u16 valid_flags; 8527 u8 IEEE_addr[6]; 8528 u16 flags; 8529 u16 pcb_rev; 8530 u16 clock_settle_time; // 1us LSB 8531 u16 powerup_settle_time; // 1us LSB 8532 u16 hop_settle_time; // 1us LSB 8533 u8 date[3]; // month, day, year 8534 u8 time[2]; // hours, minutes 8535 u8 ucode_valid; 8536 }; 8537 8538 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 8539 struct ipw2100_fw *fw) 8540 { 8541 struct net_device *dev = priv->net_dev; 8542 const unsigned char *microcode_data = fw->uc.data; 8543 unsigned int microcode_data_left = fw->uc.size; 8544 void __iomem *reg = priv->ioaddr; 8545 8546 struct symbol_alive_response response; 8547 int i, j; 8548 u8 data; 8549 8550 /* Symbol control */ 8551 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8552 readl(reg); 8553 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8554 readl(reg); 8555 8556 /* HW config */ 8557 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8558 readl(reg); 8559 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8560 readl(reg); 8561 8562 /* EN_CS_ACCESS bit to reset control store pointer */ 8563 write_nic_byte(dev, 0x210000, 0x40); 8564 readl(reg); 8565 write_nic_byte(dev, 0x210000, 0x0); 8566 readl(reg); 8567 write_nic_byte(dev, 0x210000, 0x40); 8568 readl(reg); 8569 8570 /* copy microcode from buffer into Symbol */ 8571 8572 while (microcode_data_left > 0) { 8573 write_nic_byte(dev, 0x210010, *microcode_data++); 8574 write_nic_byte(dev, 0x210010, *microcode_data++); 8575 microcode_data_left -= 2; 8576 } 8577 8578 /* EN_CS_ACCESS bit to reset the control store pointer */ 8579 write_nic_byte(dev, 0x210000, 0x0); 8580 readl(reg); 8581 8582 /* Enable System (Reg 0) 8583 * first enable causes garbage in RX FIFO */ 8584 write_nic_byte(dev, 0x210000, 0x0); 8585 readl(reg); 8586 write_nic_byte(dev, 0x210000, 0x80); 8587 readl(reg); 8588 8589 /* Reset External Baseband Reg */ 8590 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8591 readl(reg); 8592 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8593 readl(reg); 8594 8595 /* HW Config (Reg 5) */ 8596 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8597 readl(reg); 8598 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8599 readl(reg); 8600 8601 /* Enable System (Reg 0) 8602 * second enable should be OK */ 8603 write_nic_byte(dev, 0x210000, 0x00); // clear enable system 8604 readl(reg); 8605 write_nic_byte(dev, 0x210000, 0x80); // set enable system 8606 8607 /* check Symbol is enabled - upped this from 5 as it wasn't always 8608 * catching the update */ 8609 for (i = 0; i < 10; i++) { 8610 udelay(10); 8611 8612 /* check Dino is enabled bit */ 8613 read_nic_byte(dev, 0x210000, &data); 8614 if (data & 0x1) 8615 break; 8616 } 8617 8618 if (i == 10) { 8619 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n", 8620 dev->name); 8621 return -EIO; 8622 } 8623 8624 /* Get Symbol alive response */ 8625 for (i = 0; i < 30; i++) { 8626 /* Read alive response structure */ 8627 for (j = 0; 8628 j < (sizeof(struct symbol_alive_response) >> 1); j++) 8629 read_nic_word(dev, 0x210004, ((u16 *) & response) + j); 8630 8631 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1)) 8632 break; 8633 udelay(10); 8634 } 8635 8636 if (i == 30) { 8637 printk(KERN_ERR DRV_NAME 8638 ": %s: No response from Symbol - hw not alive\n", 8639 dev->name); 8640 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response)); 8641 return -EIO; 8642 } 8643 8644 return 0; 8645 } 8646