1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 5 6 7 Contact Information: 8 Intel Linux Wireless <ilw@linux.intel.com> 9 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 10 11 Portions of this file are based on the sample_* files provided by Wireless 12 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes 13 <jt@hpl.hp.com> 14 15 Portions of this file are based on the Host AP project, 16 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen 17 <j@w1.fi> 18 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi> 19 20 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and 21 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c 22 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox 23 24 ******************************************************************************/ 25 /* 26 27 Initial driver on which this is based was developed by Janusz Gorycki, 28 Maciej Urbaniak, and Maciej Sosnowski. 29 30 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak. 31 32 Theory of Operation 33 34 Tx - Commands and Data 35 36 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs) 37 Each TBD contains a pointer to the physical (dma_addr_t) address of data being 38 sent to the firmware as well as the length of the data. 39 40 The host writes to the TBD queue at the WRITE index. The WRITE index points 41 to the _next_ packet to be written and is advanced when after the TBD has been 42 filled. 43 44 The firmware pulls from the TBD queue at the READ index. The READ index points 45 to the currently being read entry, and is advanced once the firmware is 46 done with a packet. 47 48 When data is sent to the firmware, the first TBD is used to indicate to the 49 firmware if a Command or Data is being sent. If it is Command, all of the 50 command information is contained within the physical address referred to by the 51 TBD. If it is Data, the first TBD indicates the type of data packet, number 52 of fragments, etc. The next TBD then refers to the actual packet location. 53 54 The Tx flow cycle is as follows: 55 56 1) ipw2100_tx() is called by kernel with SKB to transmit 57 2) Packet is move from the tx_free_list and appended to the transmit pending 58 list (tx_pend_list) 59 3) work is scheduled to move pending packets into the shared circular queue. 60 4) when placing packet in the circular queue, the incoming SKB is DMA mapped 61 to a physical address. That address is entered into a TBD. Two TBDs are 62 filled out. The first indicating a data packet, the second referring to the 63 actual payload data. 64 5) the packet is removed from tx_pend_list and placed on the end of the 65 firmware pending list (fw_pend_list) 66 6) firmware is notified that the WRITE index has 67 7) Once the firmware has processed the TBD, INTA is triggered. 68 8) For each Tx interrupt received from the firmware, the READ index is checked 69 to see which TBDs are done being processed. 70 9) For each TBD that has been processed, the ISR pulls the oldest packet 71 from the fw_pend_list. 72 10)The packet structure contained in the fw_pend_list is then used 73 to unmap the DMA address and to free the SKB originally passed to the driver 74 from the kernel. 75 11)The packet structure is placed onto the tx_free_list 76 77 The above steps are the same for commands, only the msg_free_list/msg_pend_list 78 are used instead of tx_free_list/tx_pend_list 79 80 ... 81 82 Critical Sections / Locking : 83 84 There are two locks utilized. The first is the low level lock (priv->low_lock) 85 that protects the following: 86 87 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows: 88 89 tx_free_list : Holds pre-allocated Tx buffers. 90 TAIL modified in __ipw2100_tx_process() 91 HEAD modified in ipw2100_tx() 92 93 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring 94 TAIL modified ipw2100_tx() 95 HEAD modified by ipw2100_tx_send_data() 96 97 msg_free_list : Holds pre-allocated Msg (Command) buffers 98 TAIL modified in __ipw2100_tx_process() 99 HEAD modified in ipw2100_hw_send_command() 100 101 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring 102 TAIL modified in ipw2100_hw_send_command() 103 HEAD modified in ipw2100_tx_send_commands() 104 105 The flow of data on the TX side is as follows: 106 107 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST 108 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST 109 110 The methods that work on the TBD ring are protected via priv->low_lock. 111 112 - The internal data state of the device itself 113 - Access to the firmware read/write indexes for the BD queues 114 and associated logic 115 116 All external entry functions are locked with the priv->action_lock to ensure 117 that only one external action is invoked at a time. 118 119 120 */ 121 122 #include <linux/compiler.h> 123 #include <linux/errno.h> 124 #include <linux/if_arp.h> 125 #include <linux/in6.h> 126 #include <linux/in.h> 127 #include <linux/ip.h> 128 #include <linux/kernel.h> 129 #include <linux/kmod.h> 130 #include <linux/module.h> 131 #include <linux/netdevice.h> 132 #include <linux/ethtool.h> 133 #include <linux/pci.h> 134 #include <linux/dma-mapping.h> 135 #include <linux/proc_fs.h> 136 #include <linux/skbuff.h> 137 #include <linux/uaccess.h> 138 #include <asm/io.h> 139 #include <linux/fs.h> 140 #include <linux/mm.h> 141 #include <linux/slab.h> 142 #include <linux/unistd.h> 143 #include <linux/stringify.h> 144 #include <linux/tcp.h> 145 #include <linux/types.h> 146 #include <linux/time.h> 147 #include <linux/firmware.h> 148 #include <linux/acpi.h> 149 #include <linux/ctype.h> 150 #include <linux/pm_qos.h> 151 152 #include <net/lib80211.h> 153 154 #include "ipw2100.h" 155 #include "ipw.h" 156 157 #define IPW2100_VERSION "git-1.2.2" 158 159 #define DRV_NAME "ipw2100" 160 #define DRV_VERSION IPW2100_VERSION 161 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver" 162 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 163 164 static struct pm_qos_request ipw2100_pm_qos_req; 165 166 /* Debugging stuff */ 167 #ifdef CONFIG_IPW2100_DEBUG 168 #define IPW2100_RX_DEBUG /* Reception debugging */ 169 #endif 170 171 MODULE_DESCRIPTION(DRV_DESCRIPTION); 172 MODULE_VERSION(DRV_VERSION); 173 MODULE_AUTHOR(DRV_COPYRIGHT); 174 MODULE_LICENSE("GPL"); 175 176 static int debug = 0; 177 static int network_mode = 0; 178 static int channel = 0; 179 static int associate = 0; 180 static int disable = 0; 181 #ifdef CONFIG_PM 182 static struct ipw2100_fw ipw2100_firmware; 183 #endif 184 185 #include <linux/moduleparam.h> 186 module_param(debug, int, 0444); 187 module_param_named(mode, network_mode, int, 0444); 188 module_param(channel, int, 0444); 189 module_param(associate, int, 0444); 190 module_param(disable, int, 0444); 191 192 MODULE_PARM_DESC(debug, "debug level"); 193 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); 194 MODULE_PARM_DESC(channel, "channel"); 195 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); 196 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); 197 198 static u32 ipw2100_debug_level = IPW_DL_NONE; 199 200 #ifdef CONFIG_IPW2100_DEBUG 201 #define IPW_DEBUG(level, message...) \ 202 do { \ 203 if (ipw2100_debug_level & (level)) { \ 204 printk(KERN_DEBUG "ipw2100: %s ", __func__); \ 205 printk(message); \ 206 } \ 207 } while (0) 208 #else 209 #define IPW_DEBUG(level, message...) do {} while (0) 210 #endif /* CONFIG_IPW2100_DEBUG */ 211 212 #ifdef CONFIG_IPW2100_DEBUG 213 static const char *command_types[] = { 214 "undefined", 215 "unused", /* HOST_ATTENTION */ 216 "HOST_COMPLETE", 217 "unused", /* SLEEP */ 218 "unused", /* HOST_POWER_DOWN */ 219 "unused", 220 "SYSTEM_CONFIG", 221 "unused", /* SET_IMR */ 222 "SSID", 223 "MANDATORY_BSSID", 224 "AUTHENTICATION_TYPE", 225 "ADAPTER_ADDRESS", 226 "PORT_TYPE", 227 "INTERNATIONAL_MODE", 228 "CHANNEL", 229 "RTS_THRESHOLD", 230 "FRAG_THRESHOLD", 231 "POWER_MODE", 232 "TX_RATES", 233 "BASIC_TX_RATES", 234 "WEP_KEY_INFO", 235 "unused", 236 "unused", 237 "unused", 238 "unused", 239 "WEP_KEY_INDEX", 240 "WEP_FLAGS", 241 "ADD_MULTICAST", 242 "CLEAR_ALL_MULTICAST", 243 "BEACON_INTERVAL", 244 "ATIM_WINDOW", 245 "CLEAR_STATISTICS", 246 "undefined", 247 "undefined", 248 "undefined", 249 "undefined", 250 "TX_POWER_INDEX", 251 "undefined", 252 "undefined", 253 "undefined", 254 "undefined", 255 "undefined", 256 "undefined", 257 "BROADCAST_SCAN", 258 "CARD_DISABLE", 259 "PREFERRED_BSSID", 260 "SET_SCAN_OPTIONS", 261 "SCAN_DWELL_TIME", 262 "SWEEP_TABLE", 263 "AP_OR_STATION_TABLE", 264 "GROUP_ORDINALS", 265 "SHORT_RETRY_LIMIT", 266 "LONG_RETRY_LIMIT", 267 "unused", /* SAVE_CALIBRATION */ 268 "unused", /* RESTORE_CALIBRATION */ 269 "undefined", 270 "undefined", 271 "undefined", 272 "HOST_PRE_POWER_DOWN", 273 "unused", /* HOST_INTERRUPT_COALESCING */ 274 "undefined", 275 "CARD_DISABLE_PHY_OFF", 276 "MSDU_TX_RATES", 277 "undefined", 278 "SET_STATION_STAT_BITS", 279 "CLEAR_STATIONS_STAT_BITS", 280 "LEAP_ROGUE_MODE", 281 "SET_SECURITY_INFORMATION", 282 "DISASSOCIATION_BSSID", 283 "SET_WPA_ASS_IE" 284 }; 285 #endif 286 287 static const long ipw2100_frequencies[] = { 288 2412, 2417, 2422, 2427, 289 2432, 2437, 2442, 2447, 290 2452, 2457, 2462, 2467, 291 2472, 2484 292 }; 293 294 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies) 295 296 static struct ieee80211_rate ipw2100_bg_rates[] = { 297 { .bitrate = 10 }, 298 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 299 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 300 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 301 }; 302 303 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates) 304 305 /* Pre-decl until we get the code solid and then we can clean it up */ 306 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv); 307 static void ipw2100_tx_send_data(struct ipw2100_priv *priv); 308 static int ipw2100_adapter_setup(struct ipw2100_priv *priv); 309 310 static void ipw2100_queues_initialize(struct ipw2100_priv *priv); 311 static void ipw2100_queues_free(struct ipw2100_priv *priv); 312 static int ipw2100_queues_allocate(struct ipw2100_priv *priv); 313 314 static int ipw2100_fw_download(struct ipw2100_priv *priv, 315 struct ipw2100_fw *fw); 316 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 317 struct ipw2100_fw *fw); 318 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 319 size_t max); 320 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 321 struct ipw2100_fw *fw); 322 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 323 struct ipw2100_fw *fw); 324 static void ipw2100_wx_event_work(struct work_struct *work); 325 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev); 326 static const struct iw_handler_def ipw2100_wx_handler_def; 327 328 static inline void read_register(struct net_device *dev, u32 reg, u32 * val) 329 { 330 struct ipw2100_priv *priv = libipw_priv(dev); 331 332 *val = ioread32(priv->ioaddr + reg); 333 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val); 334 } 335 336 static inline void write_register(struct net_device *dev, u32 reg, u32 val) 337 { 338 struct ipw2100_priv *priv = libipw_priv(dev); 339 340 iowrite32(val, priv->ioaddr + reg); 341 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val); 342 } 343 344 static inline void read_register_word(struct net_device *dev, u32 reg, 345 u16 * val) 346 { 347 struct ipw2100_priv *priv = libipw_priv(dev); 348 349 *val = ioread16(priv->ioaddr + reg); 350 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val); 351 } 352 353 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val) 354 { 355 struct ipw2100_priv *priv = libipw_priv(dev); 356 357 *val = ioread8(priv->ioaddr + reg); 358 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val); 359 } 360 361 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val) 362 { 363 struct ipw2100_priv *priv = libipw_priv(dev); 364 365 iowrite16(val, priv->ioaddr + reg); 366 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val); 367 } 368 369 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val) 370 { 371 struct ipw2100_priv *priv = libipw_priv(dev); 372 373 iowrite8(val, priv->ioaddr + reg); 374 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val); 375 } 376 377 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val) 378 { 379 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 380 addr & IPW_REG_INDIRECT_ADDR_MASK); 381 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 382 } 383 384 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val) 385 { 386 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 387 addr & IPW_REG_INDIRECT_ADDR_MASK); 388 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 389 } 390 391 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val) 392 { 393 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 394 addr & IPW_REG_INDIRECT_ADDR_MASK); 395 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 396 } 397 398 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val) 399 { 400 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 401 addr & IPW_REG_INDIRECT_ADDR_MASK); 402 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 403 } 404 405 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val) 406 { 407 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 408 addr & IPW_REG_INDIRECT_ADDR_MASK); 409 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 410 } 411 412 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val) 413 { 414 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 415 addr & IPW_REG_INDIRECT_ADDR_MASK); 416 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val); 417 } 418 419 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len, 420 const u8 * buf) 421 { 422 u32 aligned_addr; 423 u32 aligned_len; 424 u32 dif_len; 425 u32 i; 426 427 /* read first nibble byte by byte */ 428 aligned_addr = addr & (~0x3); 429 dif_len = addr - aligned_addr; 430 if (dif_len) { 431 /* Start reading at aligned_addr + dif_len */ 432 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 433 aligned_addr); 434 for (i = dif_len; i < 4; i++, buf++) 435 write_register_byte(dev, 436 IPW_REG_INDIRECT_ACCESS_DATA + i, 437 *buf); 438 439 len -= dif_len; 440 aligned_addr += 4; 441 } 442 443 /* read DWs through autoincrement registers */ 444 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 445 aligned_len = len & (~0x3); 446 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 447 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf); 448 449 /* copy the last nibble */ 450 dif_len = len - aligned_len; 451 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 452 for (i = 0; i < dif_len; i++, buf++) 453 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, 454 *buf); 455 } 456 457 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len, 458 u8 * buf) 459 { 460 u32 aligned_addr; 461 u32 aligned_len; 462 u32 dif_len; 463 u32 i; 464 465 /* read first nibble byte by byte */ 466 aligned_addr = addr & (~0x3); 467 dif_len = addr - aligned_addr; 468 if (dif_len) { 469 /* Start reading at aligned_addr + dif_len */ 470 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, 471 aligned_addr); 472 for (i = dif_len; i < 4; i++, buf++) 473 read_register_byte(dev, 474 IPW_REG_INDIRECT_ACCESS_DATA + i, 475 buf); 476 477 len -= dif_len; 478 aligned_addr += 4; 479 } 480 481 /* read DWs through autoincrement registers */ 482 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr); 483 aligned_len = len & (~0x3); 484 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) 485 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf); 486 487 /* copy the last nibble */ 488 dif_len = len - aligned_len; 489 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr); 490 for (i = 0; i < dif_len; i++, buf++) 491 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf); 492 } 493 494 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev) 495 { 496 u32 dbg; 497 498 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg); 499 500 return dbg == IPW_DATA_DOA_DEBUG_VALUE; 501 } 502 503 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord, 504 void *val, u32 * len) 505 { 506 struct ipw2100_ordinals *ordinals = &priv->ordinals; 507 u32 addr; 508 u32 field_info; 509 u16 field_len; 510 u16 field_count; 511 u32 total_length; 512 513 if (ordinals->table1_addr == 0) { 514 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals " 515 "before they have been loaded.\n"); 516 return -EINVAL; 517 } 518 519 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 520 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) { 521 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 522 523 printk(KERN_WARNING DRV_NAME 524 ": ordinal buffer length too small, need %zd\n", 525 IPW_ORD_TAB_1_ENTRY_SIZE); 526 527 return -EINVAL; 528 } 529 530 read_nic_dword(priv->net_dev, 531 ordinals->table1_addr + (ord << 2), &addr); 532 read_nic_dword(priv->net_dev, addr, val); 533 534 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 535 536 return 0; 537 } 538 539 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) { 540 541 ord -= IPW_START_ORD_TAB_2; 542 543 /* get the address of statistic */ 544 read_nic_dword(priv->net_dev, 545 ordinals->table2_addr + (ord << 3), &addr); 546 547 /* get the second DW of statistics ; 548 * two 16-bit words - first is length, second is count */ 549 read_nic_dword(priv->net_dev, 550 ordinals->table2_addr + (ord << 3) + sizeof(u32), 551 &field_info); 552 553 /* get each entry length */ 554 field_len = *((u16 *) & field_info); 555 556 /* get number of entries */ 557 field_count = *(((u16 *) & field_info) + 1); 558 559 /* abort if no enough memory */ 560 total_length = field_len * field_count; 561 if (total_length > *len) { 562 *len = total_length; 563 return -EINVAL; 564 } 565 566 *len = total_length; 567 if (!total_length) 568 return 0; 569 570 /* read the ordinal data from the SRAM */ 571 read_nic_memory(priv->net_dev, addr, total_length, val); 572 573 return 0; 574 } 575 576 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor " 577 "in table 2\n", ord); 578 579 return -EINVAL; 580 } 581 582 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val, 583 u32 * len) 584 { 585 struct ipw2100_ordinals *ordinals = &priv->ordinals; 586 u32 addr; 587 588 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) { 589 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) { 590 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 591 IPW_DEBUG_INFO("wrong size\n"); 592 return -EINVAL; 593 } 594 595 read_nic_dword(priv->net_dev, 596 ordinals->table1_addr + (ord << 2), &addr); 597 598 write_nic_dword(priv->net_dev, addr, *val); 599 600 *len = IPW_ORD_TAB_1_ENTRY_SIZE; 601 602 return 0; 603 } 604 605 IPW_DEBUG_INFO("wrong table\n"); 606 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) 607 return -EINVAL; 608 609 return -EINVAL; 610 } 611 612 static char *snprint_line(char *buf, size_t count, 613 const u8 * data, u32 len, u32 ofs) 614 { 615 int out, i, j, l; 616 char c; 617 618 out = scnprintf(buf, count, "%08X", ofs); 619 620 for (l = 0, i = 0; i < 2; i++) { 621 out += scnprintf(buf + out, count - out, " "); 622 for (j = 0; j < 8 && l < len; j++, l++) 623 out += scnprintf(buf + out, count - out, "%02X ", 624 data[(i * 8 + j)]); 625 for (; j < 8; j++) 626 out += scnprintf(buf + out, count - out, " "); 627 } 628 629 out += scnprintf(buf + out, count - out, " "); 630 for (l = 0, i = 0; i < 2; i++) { 631 out += scnprintf(buf + out, count - out, " "); 632 for (j = 0; j < 8 && l < len; j++, l++) { 633 c = data[(i * 8 + j)]; 634 if (!isascii(c) || !isprint(c)) 635 c = '.'; 636 637 out += scnprintf(buf + out, count - out, "%c", c); 638 } 639 640 for (; j < 8; j++) 641 out += scnprintf(buf + out, count - out, " "); 642 } 643 644 return buf; 645 } 646 647 static void printk_buf(int level, const u8 * data, u32 len) 648 { 649 char line[81]; 650 u32 ofs = 0; 651 if (!(ipw2100_debug_level & level)) 652 return; 653 654 while (len) { 655 printk(KERN_DEBUG "%s\n", 656 snprint_line(line, sizeof(line), &data[ofs], 657 min(len, 16U), ofs)); 658 ofs += 16; 659 len -= min(len, 16U); 660 } 661 } 662 663 #define MAX_RESET_BACKOFF 10 664 665 static void schedule_reset(struct ipw2100_priv *priv) 666 { 667 time64_t now = ktime_get_boottime_seconds(); 668 669 /* If we haven't received a reset request within the backoff period, 670 * then we can reset the backoff interval so this reset occurs 671 * immediately */ 672 if (priv->reset_backoff && 673 (now - priv->last_reset > priv->reset_backoff)) 674 priv->reset_backoff = 0; 675 676 priv->last_reset = now; 677 678 if (!(priv->status & STATUS_RESET_PENDING)) { 679 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n", 680 priv->net_dev->name, priv->reset_backoff); 681 netif_carrier_off(priv->net_dev); 682 netif_stop_queue(priv->net_dev); 683 priv->status |= STATUS_RESET_PENDING; 684 if (priv->reset_backoff) 685 schedule_delayed_work(&priv->reset_work, 686 priv->reset_backoff * HZ); 687 else 688 schedule_delayed_work(&priv->reset_work, 0); 689 690 if (priv->reset_backoff < MAX_RESET_BACKOFF) 691 priv->reset_backoff++; 692 693 wake_up_interruptible(&priv->wait_command_queue); 694 } else 695 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n", 696 priv->net_dev->name); 697 698 } 699 700 #define HOST_COMPLETE_TIMEOUT (2 * HZ) 701 static int ipw2100_hw_send_command(struct ipw2100_priv *priv, 702 struct host_command *cmd) 703 { 704 struct list_head *element; 705 struct ipw2100_tx_packet *packet; 706 unsigned long flags; 707 int err = 0; 708 709 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n", 710 command_types[cmd->host_command], cmd->host_command, 711 cmd->host_command_length); 712 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters, 713 cmd->host_command_length); 714 715 spin_lock_irqsave(&priv->low_lock, flags); 716 717 if (priv->fatal_error) { 718 IPW_DEBUG_INFO 719 ("Attempt to send command while hardware in fatal error condition.\n"); 720 err = -EIO; 721 goto fail_unlock; 722 } 723 724 if (!(priv->status & STATUS_RUNNING)) { 725 IPW_DEBUG_INFO 726 ("Attempt to send command while hardware is not running.\n"); 727 err = -EIO; 728 goto fail_unlock; 729 } 730 731 if (priv->status & STATUS_CMD_ACTIVE) { 732 IPW_DEBUG_INFO 733 ("Attempt to send command while another command is pending.\n"); 734 err = -EBUSY; 735 goto fail_unlock; 736 } 737 738 if (list_empty(&priv->msg_free_list)) { 739 IPW_DEBUG_INFO("no available msg buffers\n"); 740 goto fail_unlock; 741 } 742 743 priv->status |= STATUS_CMD_ACTIVE; 744 priv->messages_sent++; 745 746 element = priv->msg_free_list.next; 747 748 packet = list_entry(element, struct ipw2100_tx_packet, list); 749 packet->jiffy_start = jiffies; 750 751 /* initialize the firmware command packet */ 752 packet->info.c_struct.cmd->host_command_reg = cmd->host_command; 753 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1; 754 packet->info.c_struct.cmd->host_command_len_reg = 755 cmd->host_command_length; 756 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence; 757 758 memcpy(packet->info.c_struct.cmd->host_command_params_reg, 759 cmd->host_command_parameters, 760 sizeof(packet->info.c_struct.cmd->host_command_params_reg)); 761 762 list_del(element); 763 DEC_STAT(&priv->msg_free_stat); 764 765 list_add_tail(element, &priv->msg_pend_list); 766 INC_STAT(&priv->msg_pend_stat); 767 768 ipw2100_tx_send_commands(priv); 769 ipw2100_tx_send_data(priv); 770 771 spin_unlock_irqrestore(&priv->low_lock, flags); 772 773 /* 774 * We must wait for this command to complete before another 775 * command can be sent... but if we wait more than 3 seconds 776 * then there is a problem. 777 */ 778 779 err = 780 wait_event_interruptible_timeout(priv->wait_command_queue, 781 !(priv-> 782 status & STATUS_CMD_ACTIVE), 783 HOST_COMPLETE_TIMEOUT); 784 785 if (err == 0) { 786 IPW_DEBUG_INFO("Command completion failed out after %dms.\n", 787 1000 * (HOST_COMPLETE_TIMEOUT / HZ)); 788 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT; 789 priv->status &= ~STATUS_CMD_ACTIVE; 790 schedule_reset(priv); 791 return -EIO; 792 } 793 794 if (priv->fatal_error) { 795 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n", 796 priv->net_dev->name); 797 return -EIO; 798 } 799 800 /* !!!!! HACK TEST !!!!! 801 * When lots of debug trace statements are enabled, the driver 802 * doesn't seem to have as many firmware restart cycles... 803 * 804 * As a test, we're sticking in a 1/100s delay here */ 805 schedule_timeout_uninterruptible(msecs_to_jiffies(10)); 806 807 return 0; 808 809 fail_unlock: 810 spin_unlock_irqrestore(&priv->low_lock, flags); 811 812 return err; 813 } 814 815 /* 816 * Verify the values and data access of the hardware 817 * No locks needed or used. No functions called. 818 */ 819 static int ipw2100_verify(struct ipw2100_priv *priv) 820 { 821 u32 data1, data2; 822 u32 address; 823 824 u32 val1 = 0x76543210; 825 u32 val2 = 0xFEDCBA98; 826 827 /* Domain 0 check - all values should be DOA_DEBUG */ 828 for (address = IPW_REG_DOA_DEBUG_AREA_START; 829 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) { 830 read_register(priv->net_dev, address, &data1); 831 if (data1 != IPW_DATA_DOA_DEBUG_VALUE) 832 return -EIO; 833 } 834 835 /* Domain 1 check - use arbitrary read/write compare */ 836 for (address = 0; address < 5; address++) { 837 /* The memory area is not used now */ 838 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 839 val1); 840 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 841 val2); 842 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32, 843 &data1); 844 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36, 845 &data2); 846 if (val1 == data1 && val2 == data2) 847 return 0; 848 } 849 850 return -EIO; 851 } 852 853 /* 854 * 855 * Loop until the CARD_DISABLED bit is the same value as the 856 * supplied parameter 857 * 858 * TODO: See if it would be more efficient to do a wait/wake 859 * cycle and have the completion event trigger the wakeup 860 * 861 */ 862 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli 863 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state) 864 { 865 int i; 866 u32 card_state; 867 u32 len = sizeof(card_state); 868 int err; 869 870 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) { 871 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED, 872 &card_state, &len); 873 if (err) { 874 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal " 875 "failed.\n"); 876 return 0; 877 } 878 879 /* We'll break out if either the HW state says it is 880 * in the state we want, or if HOST_COMPLETE command 881 * finishes */ 882 if ((card_state == state) || 883 ((priv->status & STATUS_ENABLED) ? 884 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) { 885 if (state == IPW_HW_STATE_ENABLED) 886 priv->status |= STATUS_ENABLED; 887 else 888 priv->status &= ~STATUS_ENABLED; 889 890 return 0; 891 } 892 893 udelay(50); 894 } 895 896 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n", 897 state ? "DISABLED" : "ENABLED"); 898 return -EIO; 899 } 900 901 /********************************************************************* 902 Procedure : sw_reset_and_clock 903 Purpose : Asserts s/w reset, asserts clock initialization 904 and waits for clock stabilization 905 ********************************************************************/ 906 static int sw_reset_and_clock(struct ipw2100_priv *priv) 907 { 908 int i; 909 u32 r; 910 911 // assert s/w reset 912 write_register(priv->net_dev, IPW_REG_RESET_REG, 913 IPW_AUX_HOST_RESET_REG_SW_RESET); 914 915 // wait for clock stabilization 916 for (i = 0; i < 1000; i++) { 917 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY); 918 919 // check clock ready bit 920 read_register(priv->net_dev, IPW_REG_RESET_REG, &r); 921 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET) 922 break; 923 } 924 925 if (i == 1000) 926 return -EIO; // TODO: better error value 927 928 /* set "initialization complete" bit to move adapter to 929 * D0 state */ 930 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 931 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE); 932 933 /* wait for clock stabilization */ 934 for (i = 0; i < 10000; i++) { 935 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4); 936 937 /* check clock ready bit */ 938 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 939 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY) 940 break; 941 } 942 943 if (i == 10000) 944 return -EIO; /* TODO: better error value */ 945 946 /* set D0 standby bit */ 947 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r); 948 write_register(priv->net_dev, IPW_REG_GP_CNTRL, 949 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); 950 951 return 0; 952 } 953 954 /********************************************************************* 955 Procedure : ipw2100_download_firmware 956 Purpose : Initiaze adapter after power on. 957 The sequence is: 958 1. assert s/w reset first! 959 2. awake clocks & wait for clock stabilization 960 3. hold ARC (don't ask me why...) 961 4. load Dino ucode and reset/clock init again 962 5. zero-out shared mem 963 6. download f/w 964 *******************************************************************/ 965 static int ipw2100_download_firmware(struct ipw2100_priv *priv) 966 { 967 u32 address; 968 int err; 969 970 #ifndef CONFIG_PM 971 /* Fetch the firmware and microcode */ 972 struct ipw2100_fw ipw2100_firmware; 973 #endif 974 975 if (priv->fatal_error) { 976 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after " 977 "fatal error %d. Interface must be brought down.\n", 978 priv->net_dev->name, priv->fatal_error); 979 return -EINVAL; 980 } 981 #ifdef CONFIG_PM 982 if (!ipw2100_firmware.version) { 983 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 984 if (err) { 985 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 986 priv->net_dev->name, err); 987 priv->fatal_error = IPW2100_ERR_FW_LOAD; 988 goto fail; 989 } 990 } 991 #else 992 err = ipw2100_get_firmware(priv, &ipw2100_firmware); 993 if (err) { 994 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n", 995 priv->net_dev->name, err); 996 priv->fatal_error = IPW2100_ERR_FW_LOAD; 997 goto fail; 998 } 999 #endif 1000 priv->firmware_version = ipw2100_firmware.version; 1001 1002 /* s/w reset and clock stabilization */ 1003 err = sw_reset_and_clock(priv); 1004 if (err) { 1005 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n", 1006 priv->net_dev->name, err); 1007 goto fail; 1008 } 1009 1010 err = ipw2100_verify(priv); 1011 if (err) { 1012 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n", 1013 priv->net_dev->name, err); 1014 goto fail; 1015 } 1016 1017 /* Hold ARC */ 1018 write_nic_dword(priv->net_dev, 1019 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000); 1020 1021 /* allow ARC to run */ 1022 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1023 1024 /* load microcode */ 1025 err = ipw2100_ucode_download(priv, &ipw2100_firmware); 1026 if (err) { 1027 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n", 1028 priv->net_dev->name, err); 1029 goto fail; 1030 } 1031 1032 /* release ARC */ 1033 write_nic_dword(priv->net_dev, 1034 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000); 1035 1036 /* s/w reset and clock stabilization (again!!!) */ 1037 err = sw_reset_and_clock(priv); 1038 if (err) { 1039 printk(KERN_ERR DRV_NAME 1040 ": %s: sw_reset_and_clock failed: %d\n", 1041 priv->net_dev->name, err); 1042 goto fail; 1043 } 1044 1045 /* load f/w */ 1046 err = ipw2100_fw_download(priv, &ipw2100_firmware); 1047 if (err) { 1048 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n", 1049 priv->net_dev->name, err); 1050 goto fail; 1051 } 1052 #ifndef CONFIG_PM 1053 /* 1054 * When the .resume method of the driver is called, the other 1055 * part of the system, i.e. the ide driver could still stay in 1056 * the suspend stage. This prevents us from loading the firmware 1057 * from the disk. --YZ 1058 */ 1059 1060 /* free any storage allocated for firmware image */ 1061 ipw2100_release_firmware(priv, &ipw2100_firmware); 1062 #endif 1063 1064 /* zero out Domain 1 area indirectly (Si requirement) */ 1065 for (address = IPW_HOST_FW_SHARED_AREA0; 1066 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4) 1067 write_nic_dword(priv->net_dev, address, 0); 1068 for (address = IPW_HOST_FW_SHARED_AREA1; 1069 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4) 1070 write_nic_dword(priv->net_dev, address, 0); 1071 for (address = IPW_HOST_FW_SHARED_AREA2; 1072 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4) 1073 write_nic_dword(priv->net_dev, address, 0); 1074 for (address = IPW_HOST_FW_SHARED_AREA3; 1075 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4) 1076 write_nic_dword(priv->net_dev, address, 0); 1077 for (address = IPW_HOST_FW_INTERRUPT_AREA; 1078 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4) 1079 write_nic_dword(priv->net_dev, address, 0); 1080 1081 return 0; 1082 1083 fail: 1084 ipw2100_release_firmware(priv, &ipw2100_firmware); 1085 return err; 1086 } 1087 1088 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv) 1089 { 1090 if (priv->status & STATUS_INT_ENABLED) 1091 return; 1092 priv->status |= STATUS_INT_ENABLED; 1093 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK); 1094 } 1095 1096 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv) 1097 { 1098 if (!(priv->status & STATUS_INT_ENABLED)) 1099 return; 1100 priv->status &= ~STATUS_INT_ENABLED; 1101 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0); 1102 } 1103 1104 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv) 1105 { 1106 struct ipw2100_ordinals *ord = &priv->ordinals; 1107 1108 IPW_DEBUG_INFO("enter\n"); 1109 1110 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1, 1111 &ord->table1_addr); 1112 1113 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2, 1114 &ord->table2_addr); 1115 1116 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size); 1117 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size); 1118 1119 ord->table2_size &= 0x0000FFFF; 1120 1121 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size); 1122 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size); 1123 IPW_DEBUG_INFO("exit\n"); 1124 } 1125 1126 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv) 1127 { 1128 u32 reg = 0; 1129 /* 1130 * Set GPIO 3 writable by FW; GPIO 1 writable 1131 * by driver and enable clock 1132 */ 1133 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE | 1134 IPW_BIT_GPIO_LED_OFF); 1135 write_register(priv->net_dev, IPW_REG_GPIO, reg); 1136 } 1137 1138 static int rf_kill_active(struct ipw2100_priv *priv) 1139 { 1140 #define MAX_RF_KILL_CHECKS 5 1141 #define RF_KILL_CHECK_DELAY 40 1142 1143 unsigned short value = 0; 1144 u32 reg = 0; 1145 int i; 1146 1147 if (!(priv->hw_features & HW_FEATURE_RFKILL)) { 1148 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1149 priv->status &= ~STATUS_RF_KILL_HW; 1150 return 0; 1151 } 1152 1153 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) { 1154 udelay(RF_KILL_CHECK_DELAY); 1155 read_register(priv->net_dev, IPW_REG_GPIO, ®); 1156 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1); 1157 } 1158 1159 if (value == 0) { 1160 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 1161 priv->status |= STATUS_RF_KILL_HW; 1162 } else { 1163 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); 1164 priv->status &= ~STATUS_RF_KILL_HW; 1165 } 1166 1167 return (value == 0); 1168 } 1169 1170 static int ipw2100_get_hw_features(struct ipw2100_priv *priv) 1171 { 1172 u32 addr, len; 1173 u32 val; 1174 1175 /* 1176 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1 1177 */ 1178 len = sizeof(addr); 1179 if (ipw2100_get_ordinal 1180 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) { 1181 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 1182 __LINE__); 1183 return -EIO; 1184 } 1185 1186 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr); 1187 1188 /* 1189 * EEPROM version is the byte at offset 0xfd in firmware 1190 * We read 4 bytes, then shift out the byte we actually want */ 1191 read_nic_dword(priv->net_dev, addr + 0xFC, &val); 1192 priv->eeprom_version = (val >> 24) & 0xFF; 1193 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version); 1194 1195 /* 1196 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware 1197 * 1198 * notice that the EEPROM bit is reverse polarity, i.e. 1199 * bit = 0 signifies HW RF kill switch is supported 1200 * bit = 1 signifies HW RF kill switch is NOT supported 1201 */ 1202 read_nic_dword(priv->net_dev, addr + 0x20, &val); 1203 if (!((val >> 24) & 0x01)) 1204 priv->hw_features |= HW_FEATURE_RFKILL; 1205 1206 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n", 1207 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not "); 1208 1209 return 0; 1210 } 1211 1212 /* 1213 * Start firmware execution after power on and initialization 1214 * The sequence is: 1215 * 1. Release ARC 1216 * 2. Wait for f/w initialization completes; 1217 */ 1218 static int ipw2100_start_adapter(struct ipw2100_priv *priv) 1219 { 1220 int i; 1221 u32 inta, inta_mask, gpio; 1222 1223 IPW_DEBUG_INFO("enter\n"); 1224 1225 if (priv->status & STATUS_RUNNING) 1226 return 0; 1227 1228 /* 1229 * Initialize the hw - drive adapter to DO state by setting 1230 * init_done bit. Wait for clk_ready bit and Download 1231 * fw & dino ucode 1232 */ 1233 if (ipw2100_download_firmware(priv)) { 1234 printk(KERN_ERR DRV_NAME 1235 ": %s: Failed to power on the adapter.\n", 1236 priv->net_dev->name); 1237 return -EIO; 1238 } 1239 1240 /* Clear the Tx, Rx and Msg queues and the r/w indexes 1241 * in the firmware RBD and TBD ring queue */ 1242 ipw2100_queues_initialize(priv); 1243 1244 ipw2100_hw_set_gpio(priv); 1245 1246 /* TODO -- Look at disabling interrupts here to make sure none 1247 * get fired during FW initialization */ 1248 1249 /* Release ARC - clear reset bit */ 1250 write_register(priv->net_dev, IPW_REG_RESET_REG, 0); 1251 1252 /* wait for f/w initialization complete */ 1253 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n"); 1254 i = 5000; 1255 do { 1256 schedule_timeout_uninterruptible(msecs_to_jiffies(40)); 1257 /* Todo... wait for sync command ... */ 1258 1259 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1260 1261 /* check "init done" bit */ 1262 if (inta & IPW2100_INTA_FW_INIT_DONE) { 1263 /* reset "init done" bit */ 1264 write_register(priv->net_dev, IPW_REG_INTA, 1265 IPW2100_INTA_FW_INIT_DONE); 1266 break; 1267 } 1268 1269 /* check error conditions : we check these after the firmware 1270 * check so that if there is an error, the interrupt handler 1271 * will see it and the adapter will be reset */ 1272 if (inta & 1273 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) { 1274 /* clear error conditions */ 1275 write_register(priv->net_dev, IPW_REG_INTA, 1276 IPW2100_INTA_FATAL_ERROR | 1277 IPW2100_INTA_PARITY_ERROR); 1278 } 1279 } while (--i); 1280 1281 /* Clear out any pending INTAs since we aren't supposed to have 1282 * interrupts enabled at this point... */ 1283 read_register(priv->net_dev, IPW_REG_INTA, &inta); 1284 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 1285 inta &= IPW_INTERRUPT_MASK; 1286 /* Clear out any pending interrupts */ 1287 if (inta & inta_mask) 1288 write_register(priv->net_dev, IPW_REG_INTA, inta); 1289 1290 IPW_DEBUG_FW("f/w initialization complete: %s\n", 1291 i ? "SUCCESS" : "FAILED"); 1292 1293 if (!i) { 1294 printk(KERN_WARNING DRV_NAME 1295 ": %s: Firmware did not initialize.\n", 1296 priv->net_dev->name); 1297 return -EIO; 1298 } 1299 1300 /* allow firmware to write to GPIO1 & GPIO3 */ 1301 read_register(priv->net_dev, IPW_REG_GPIO, &gpio); 1302 1303 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK); 1304 1305 write_register(priv->net_dev, IPW_REG_GPIO, gpio); 1306 1307 /* Ready to receive commands */ 1308 priv->status |= STATUS_RUNNING; 1309 1310 /* The adapter has been reset; we are not associated */ 1311 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); 1312 1313 IPW_DEBUG_INFO("exit\n"); 1314 1315 return 0; 1316 } 1317 1318 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv) 1319 { 1320 if (!priv->fatal_error) 1321 return; 1322 1323 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error; 1324 priv->fatal_index %= IPW2100_ERROR_QUEUE; 1325 priv->fatal_error = 0; 1326 } 1327 1328 /* NOTE: Our interrupt is disabled when this method is called */ 1329 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv) 1330 { 1331 u32 reg; 1332 int i; 1333 1334 IPW_DEBUG_INFO("Power cycling the hardware.\n"); 1335 1336 ipw2100_hw_set_gpio(priv); 1337 1338 /* Step 1. Stop Master Assert */ 1339 write_register(priv->net_dev, IPW_REG_RESET_REG, 1340 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1341 1342 /* Step 2. Wait for stop Master Assert 1343 * (not more than 50us, otherwise ret error */ 1344 i = 5; 1345 do { 1346 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 1347 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1348 1349 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1350 break; 1351 } while (--i); 1352 1353 priv->status &= ~STATUS_RESET_PENDING; 1354 1355 if (!i) { 1356 IPW_DEBUG_INFO 1357 ("exit - waited too long for master assert stop\n"); 1358 return -EIO; 1359 } 1360 1361 write_register(priv->net_dev, IPW_REG_RESET_REG, 1362 IPW_AUX_HOST_RESET_REG_SW_RESET); 1363 1364 /* Reset any fatal_error conditions */ 1365 ipw2100_reset_fatalerror(priv); 1366 1367 /* At this point, the adapter is now stopped and disabled */ 1368 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING | 1369 STATUS_ASSOCIATED | STATUS_ENABLED); 1370 1371 return 0; 1372 } 1373 1374 /* 1375 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it 1376 * 1377 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent. 1378 * 1379 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of 1380 * if STATUS_ASSN_LOST is sent. 1381 */ 1382 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv) 1383 { 1384 1385 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50)) 1386 1387 struct host_command cmd = { 1388 .host_command = CARD_DISABLE_PHY_OFF, 1389 .host_command_sequence = 0, 1390 .host_command_length = 0, 1391 }; 1392 int err, i; 1393 u32 val1, val2; 1394 1395 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n"); 1396 1397 /* Turn off the radio */ 1398 err = ipw2100_hw_send_command(priv, &cmd); 1399 if (err) 1400 return err; 1401 1402 for (i = 0; i < 2500; i++) { 1403 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1); 1404 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2); 1405 1406 if ((val1 & IPW2100_CONTROL_PHY_OFF) && 1407 (val2 & IPW2100_COMMAND_PHY_OFF)) 1408 return 0; 1409 1410 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY); 1411 } 1412 1413 return -EIO; 1414 } 1415 1416 static int ipw2100_enable_adapter(struct ipw2100_priv *priv) 1417 { 1418 struct host_command cmd = { 1419 .host_command = HOST_COMPLETE, 1420 .host_command_sequence = 0, 1421 .host_command_length = 0 1422 }; 1423 int err = 0; 1424 1425 IPW_DEBUG_HC("HOST_COMPLETE\n"); 1426 1427 if (priv->status & STATUS_ENABLED) 1428 return 0; 1429 1430 mutex_lock(&priv->adapter_mutex); 1431 1432 if (rf_kill_active(priv)) { 1433 IPW_DEBUG_HC("Command aborted due to RF kill active.\n"); 1434 goto fail_up; 1435 } 1436 1437 err = ipw2100_hw_send_command(priv, &cmd); 1438 if (err) { 1439 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n"); 1440 goto fail_up; 1441 } 1442 1443 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED); 1444 if (err) { 1445 IPW_DEBUG_INFO("%s: card not responding to init command.\n", 1446 priv->net_dev->name); 1447 goto fail_up; 1448 } 1449 1450 if (priv->stop_hang_check) { 1451 priv->stop_hang_check = 0; 1452 schedule_delayed_work(&priv->hang_check, HZ / 2); 1453 } 1454 1455 fail_up: 1456 mutex_unlock(&priv->adapter_mutex); 1457 return err; 1458 } 1459 1460 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv) 1461 { 1462 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100)) 1463 1464 struct host_command cmd = { 1465 .host_command = HOST_PRE_POWER_DOWN, 1466 .host_command_sequence = 0, 1467 .host_command_length = 0, 1468 }; 1469 int err, i; 1470 u32 reg; 1471 1472 if (!(priv->status & STATUS_RUNNING)) 1473 return 0; 1474 1475 priv->status |= STATUS_STOPPING; 1476 1477 /* We can only shut down the card if the firmware is operational. So, 1478 * if we haven't reset since a fatal_error, then we can not send the 1479 * shutdown commands. */ 1480 if (!priv->fatal_error) { 1481 /* First, make sure the adapter is enabled so that the PHY_OFF 1482 * command can shut it down */ 1483 ipw2100_enable_adapter(priv); 1484 1485 err = ipw2100_hw_phy_off(priv); 1486 if (err) 1487 printk(KERN_WARNING DRV_NAME 1488 ": Error disabling radio %d\n", err); 1489 1490 /* 1491 * If in D0-standby mode going directly to D3 may cause a 1492 * PCI bus violation. Therefore we must change out of the D0 1493 * state. 1494 * 1495 * Sending the PREPARE_FOR_POWER_DOWN will restrict the 1496 * hardware from going into standby mode and will transition 1497 * out of D0-standby if it is already in that state. 1498 * 1499 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the 1500 * driver upon completion. Once received, the driver can 1501 * proceed to the D3 state. 1502 * 1503 * Prepare for power down command to fw. This command would 1504 * take HW out of D0-standby and prepare it for D3 state. 1505 * 1506 * Currently FW does not support event notification for this 1507 * event. Therefore, skip waiting for it. Just wait a fixed 1508 * 100ms 1509 */ 1510 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n"); 1511 1512 err = ipw2100_hw_send_command(priv, &cmd); 1513 if (err) 1514 printk(KERN_WARNING DRV_NAME ": " 1515 "%s: Power down command failed: Error %d\n", 1516 priv->net_dev->name, err); 1517 else 1518 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY); 1519 } 1520 1521 priv->status &= ~STATUS_ENABLED; 1522 1523 /* 1524 * Set GPIO 3 writable by FW; GPIO 1 writable 1525 * by driver and enable clock 1526 */ 1527 ipw2100_hw_set_gpio(priv); 1528 1529 /* 1530 * Power down adapter. Sequence: 1531 * 1. Stop master assert (RESET_REG[9]=1) 1532 * 2. Wait for stop master (RESET_REG[8]==1) 1533 * 3. S/w reset assert (RESET_REG[7] = 1) 1534 */ 1535 1536 /* Stop master assert */ 1537 write_register(priv->net_dev, IPW_REG_RESET_REG, 1538 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 1539 1540 /* wait stop master not more than 50 usec. 1541 * Otherwise return error. */ 1542 for (i = 5; i > 0; i--) { 1543 udelay(10); 1544 1545 /* Check master stop bit */ 1546 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 1547 1548 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 1549 break; 1550 } 1551 1552 if (i == 0) 1553 printk(KERN_WARNING DRV_NAME 1554 ": %s: Could now power down adapter.\n", 1555 priv->net_dev->name); 1556 1557 /* assert s/w reset */ 1558 write_register(priv->net_dev, IPW_REG_RESET_REG, 1559 IPW_AUX_HOST_RESET_REG_SW_RESET); 1560 1561 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING); 1562 1563 return 0; 1564 } 1565 1566 static int ipw2100_disable_adapter(struct ipw2100_priv *priv) 1567 { 1568 struct host_command cmd = { 1569 .host_command = CARD_DISABLE, 1570 .host_command_sequence = 0, 1571 .host_command_length = 0 1572 }; 1573 int err = 0; 1574 1575 IPW_DEBUG_HC("CARD_DISABLE\n"); 1576 1577 if (!(priv->status & STATUS_ENABLED)) 1578 return 0; 1579 1580 /* Make sure we clear the associated state */ 1581 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1582 1583 if (!priv->stop_hang_check) { 1584 priv->stop_hang_check = 1; 1585 cancel_delayed_work(&priv->hang_check); 1586 } 1587 1588 mutex_lock(&priv->adapter_mutex); 1589 1590 err = ipw2100_hw_send_command(priv, &cmd); 1591 if (err) { 1592 printk(KERN_WARNING DRV_NAME 1593 ": exit - failed to send CARD_DISABLE command\n"); 1594 goto fail_up; 1595 } 1596 1597 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED); 1598 if (err) { 1599 printk(KERN_WARNING DRV_NAME 1600 ": exit - card failed to change to DISABLED\n"); 1601 goto fail_up; 1602 } 1603 1604 IPW_DEBUG_INFO("TODO: implement scan state machine\n"); 1605 1606 fail_up: 1607 mutex_unlock(&priv->adapter_mutex); 1608 return err; 1609 } 1610 1611 static int ipw2100_set_scan_options(struct ipw2100_priv *priv) 1612 { 1613 struct host_command cmd = { 1614 .host_command = SET_SCAN_OPTIONS, 1615 .host_command_sequence = 0, 1616 .host_command_length = 8 1617 }; 1618 int err; 1619 1620 IPW_DEBUG_INFO("enter\n"); 1621 1622 IPW_DEBUG_SCAN("setting scan options\n"); 1623 1624 cmd.host_command_parameters[0] = 0; 1625 1626 if (!(priv->config & CFG_ASSOCIATE)) 1627 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE; 1628 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled) 1629 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL; 1630 if (priv->config & CFG_PASSIVE_SCAN) 1631 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE; 1632 1633 cmd.host_command_parameters[1] = priv->channel_mask; 1634 1635 err = ipw2100_hw_send_command(priv, &cmd); 1636 1637 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n", 1638 cmd.host_command_parameters[0]); 1639 1640 return err; 1641 } 1642 1643 static int ipw2100_start_scan(struct ipw2100_priv *priv) 1644 { 1645 struct host_command cmd = { 1646 .host_command = BROADCAST_SCAN, 1647 .host_command_sequence = 0, 1648 .host_command_length = 4 1649 }; 1650 int err; 1651 1652 IPW_DEBUG_HC("START_SCAN\n"); 1653 1654 cmd.host_command_parameters[0] = 0; 1655 1656 /* No scanning if in monitor mode */ 1657 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 1658 return 1; 1659 1660 if (priv->status & STATUS_SCANNING) { 1661 IPW_DEBUG_SCAN("Scan requested while already in scan...\n"); 1662 return 0; 1663 } 1664 1665 IPW_DEBUG_INFO("enter\n"); 1666 1667 /* Not clearing here; doing so makes iwlist always return nothing... 1668 * 1669 * We should modify the table logic to use aging tables vs. clearing 1670 * the table on each scan start. 1671 */ 1672 IPW_DEBUG_SCAN("starting scan\n"); 1673 1674 priv->status |= STATUS_SCANNING; 1675 err = ipw2100_hw_send_command(priv, &cmd); 1676 if (err) 1677 priv->status &= ~STATUS_SCANNING; 1678 1679 IPW_DEBUG_INFO("exit\n"); 1680 1681 return err; 1682 } 1683 1684 static const struct libipw_geo ipw_geos[] = { 1685 { /* Restricted */ 1686 "---", 1687 .bg_channels = 14, 1688 .bg = {{2412, 1}, {2417, 2}, {2422, 3}, 1689 {2427, 4}, {2432, 5}, {2437, 6}, 1690 {2442, 7}, {2447, 8}, {2452, 9}, 1691 {2457, 10}, {2462, 11}, {2467, 12}, 1692 {2472, 13}, {2484, 14}}, 1693 }, 1694 }; 1695 1696 static int ipw2100_up(struct ipw2100_priv *priv, int deferred) 1697 { 1698 unsigned long flags; 1699 int err = 0; 1700 u32 lock; 1701 u32 ord_len = sizeof(lock); 1702 1703 /* Age scan list entries found before suspend */ 1704 if (priv->suspend_time) { 1705 libipw_networks_age(priv->ieee, priv->suspend_time); 1706 priv->suspend_time = 0; 1707 } 1708 1709 /* Quiet if manually disabled. */ 1710 if (priv->status & STATUS_RF_KILL_SW) { 1711 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable " 1712 "switch\n", priv->net_dev->name); 1713 return 0; 1714 } 1715 1716 /* the ipw2100 hardware really doesn't want power management delays 1717 * longer than 175usec 1718 */ 1719 cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 175); 1720 1721 /* If the interrupt is enabled, turn it off... */ 1722 spin_lock_irqsave(&priv->low_lock, flags); 1723 ipw2100_disable_interrupts(priv); 1724 1725 /* Reset any fatal_error conditions */ 1726 ipw2100_reset_fatalerror(priv); 1727 spin_unlock_irqrestore(&priv->low_lock, flags); 1728 1729 if (priv->status & STATUS_POWERED || 1730 (priv->status & STATUS_RESET_PENDING)) { 1731 /* Power cycle the card ... */ 1732 err = ipw2100_power_cycle_adapter(priv); 1733 if (err) { 1734 printk(KERN_WARNING DRV_NAME 1735 ": %s: Could not cycle adapter.\n", 1736 priv->net_dev->name); 1737 goto exit; 1738 } 1739 } else 1740 priv->status |= STATUS_POWERED; 1741 1742 /* Load the firmware, start the clocks, etc. */ 1743 err = ipw2100_start_adapter(priv); 1744 if (err) { 1745 printk(KERN_ERR DRV_NAME 1746 ": %s: Failed to start the firmware.\n", 1747 priv->net_dev->name); 1748 goto exit; 1749 } 1750 1751 ipw2100_initialize_ordinals(priv); 1752 1753 /* Determine capabilities of this particular HW configuration */ 1754 err = ipw2100_get_hw_features(priv); 1755 if (err) { 1756 printk(KERN_ERR DRV_NAME 1757 ": %s: Failed to determine HW features.\n", 1758 priv->net_dev->name); 1759 goto exit; 1760 } 1761 1762 /* Initialize the geo */ 1763 libipw_set_geo(priv->ieee, &ipw_geos[0]); 1764 priv->ieee->freq_band = LIBIPW_24GHZ_BAND; 1765 1766 lock = LOCK_NONE; 1767 err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len); 1768 if (err) { 1769 printk(KERN_ERR DRV_NAME 1770 ": %s: Failed to clear ordinal lock.\n", 1771 priv->net_dev->name); 1772 goto exit; 1773 } 1774 1775 priv->status &= ~STATUS_SCANNING; 1776 1777 if (rf_kill_active(priv)) { 1778 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n", 1779 priv->net_dev->name); 1780 1781 if (priv->stop_rf_kill) { 1782 priv->stop_rf_kill = 0; 1783 schedule_delayed_work(&priv->rf_kill, 1784 round_jiffies_relative(HZ)); 1785 } 1786 1787 deferred = 1; 1788 } 1789 1790 /* Turn on the interrupt so that commands can be processed */ 1791 ipw2100_enable_interrupts(priv); 1792 1793 /* Send all of the commands that must be sent prior to 1794 * HOST_COMPLETE */ 1795 err = ipw2100_adapter_setup(priv); 1796 if (err) { 1797 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n", 1798 priv->net_dev->name); 1799 goto exit; 1800 } 1801 1802 if (!deferred) { 1803 /* Enable the adapter - sends HOST_COMPLETE */ 1804 err = ipw2100_enable_adapter(priv); 1805 if (err) { 1806 printk(KERN_ERR DRV_NAME ": " 1807 "%s: failed in call to enable adapter.\n", 1808 priv->net_dev->name); 1809 ipw2100_hw_stop_adapter(priv); 1810 goto exit; 1811 } 1812 1813 /* Start a scan . . . */ 1814 ipw2100_set_scan_options(priv); 1815 ipw2100_start_scan(priv); 1816 } 1817 1818 exit: 1819 return err; 1820 } 1821 1822 static void ipw2100_down(struct ipw2100_priv *priv) 1823 { 1824 unsigned long flags; 1825 union iwreq_data wrqu = { 1826 .ap_addr = { 1827 .sa_family = ARPHRD_ETHER} 1828 }; 1829 int associated = priv->status & STATUS_ASSOCIATED; 1830 1831 /* Kill the RF switch timer */ 1832 if (!priv->stop_rf_kill) { 1833 priv->stop_rf_kill = 1; 1834 cancel_delayed_work(&priv->rf_kill); 1835 } 1836 1837 /* Kill the firmware hang check timer */ 1838 if (!priv->stop_hang_check) { 1839 priv->stop_hang_check = 1; 1840 cancel_delayed_work(&priv->hang_check); 1841 } 1842 1843 /* Kill any pending resets */ 1844 if (priv->status & STATUS_RESET_PENDING) 1845 cancel_delayed_work(&priv->reset_work); 1846 1847 /* Make sure the interrupt is on so that FW commands will be 1848 * processed correctly */ 1849 spin_lock_irqsave(&priv->low_lock, flags); 1850 ipw2100_enable_interrupts(priv); 1851 spin_unlock_irqrestore(&priv->low_lock, flags); 1852 1853 if (ipw2100_hw_stop_adapter(priv)) 1854 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n", 1855 priv->net_dev->name); 1856 1857 /* Do not disable the interrupt until _after_ we disable 1858 * the adaptor. Otherwise the CARD_DISABLE command will never 1859 * be ack'd by the firmware */ 1860 spin_lock_irqsave(&priv->low_lock, flags); 1861 ipw2100_disable_interrupts(priv); 1862 spin_unlock_irqrestore(&priv->low_lock, flags); 1863 1864 cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 1865 PM_QOS_DEFAULT_VALUE); 1866 1867 /* We have to signal any supplicant if we are disassociating */ 1868 if (associated) 1869 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1870 1871 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1872 netif_carrier_off(priv->net_dev); 1873 netif_stop_queue(priv->net_dev); 1874 } 1875 1876 static int ipw2100_wdev_init(struct net_device *dev) 1877 { 1878 struct ipw2100_priv *priv = libipw_priv(dev); 1879 const struct libipw_geo *geo = libipw_get_geo(priv->ieee); 1880 struct wireless_dev *wdev = &priv->ieee->wdev; 1881 int i; 1882 1883 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); 1884 1885 /* fill-out priv->ieee->bg_band */ 1886 if (geo->bg_channels) { 1887 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; 1888 1889 bg_band->band = NL80211_BAND_2GHZ; 1890 bg_band->n_channels = geo->bg_channels; 1891 bg_band->channels = kcalloc(geo->bg_channels, 1892 sizeof(struct ieee80211_channel), 1893 GFP_KERNEL); 1894 if (!bg_band->channels) { 1895 ipw2100_down(priv); 1896 return -ENOMEM; 1897 } 1898 /* translate geo->bg to bg_band.channels */ 1899 for (i = 0; i < geo->bg_channels; i++) { 1900 bg_band->channels[i].band = NL80211_BAND_2GHZ; 1901 bg_band->channels[i].center_freq = geo->bg[i].freq; 1902 bg_band->channels[i].hw_value = geo->bg[i].channel; 1903 bg_band->channels[i].max_power = geo->bg[i].max_power; 1904 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) 1905 bg_band->channels[i].flags |= 1906 IEEE80211_CHAN_NO_IR; 1907 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) 1908 bg_band->channels[i].flags |= 1909 IEEE80211_CHAN_NO_IR; 1910 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) 1911 bg_band->channels[i].flags |= 1912 IEEE80211_CHAN_RADAR; 1913 /* No equivalent for LIBIPW_CH_80211H_RULES, 1914 LIBIPW_CH_UNIFORM_SPREADING, or 1915 LIBIPW_CH_B_ONLY... */ 1916 } 1917 /* point at bitrate info */ 1918 bg_band->bitrates = ipw2100_bg_rates; 1919 bg_band->n_bitrates = RATE_COUNT; 1920 1921 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; 1922 } 1923 1924 wdev->wiphy->cipher_suites = ipw_cipher_suites; 1925 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); 1926 1927 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); 1928 if (wiphy_register(wdev->wiphy)) 1929 return -EIO; 1930 return 0; 1931 } 1932 1933 static void ipw2100_reset_adapter(struct work_struct *work) 1934 { 1935 struct ipw2100_priv *priv = 1936 container_of(work, struct ipw2100_priv, reset_work.work); 1937 unsigned long flags; 1938 union iwreq_data wrqu = { 1939 .ap_addr = { 1940 .sa_family = ARPHRD_ETHER} 1941 }; 1942 int associated = priv->status & STATUS_ASSOCIATED; 1943 1944 spin_lock_irqsave(&priv->low_lock, flags); 1945 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name); 1946 priv->resets++; 1947 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 1948 priv->status |= STATUS_SECURITY_UPDATED; 1949 1950 /* Force a power cycle even if interface hasn't been opened 1951 * yet */ 1952 cancel_delayed_work(&priv->reset_work); 1953 priv->status |= STATUS_RESET_PENDING; 1954 spin_unlock_irqrestore(&priv->low_lock, flags); 1955 1956 mutex_lock(&priv->action_mutex); 1957 /* stop timed checks so that they don't interfere with reset */ 1958 priv->stop_hang_check = 1; 1959 cancel_delayed_work(&priv->hang_check); 1960 1961 /* We have to signal any supplicant if we are disassociating */ 1962 if (associated) 1963 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 1964 1965 ipw2100_up(priv, 0); 1966 mutex_unlock(&priv->action_mutex); 1967 1968 } 1969 1970 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status) 1971 { 1972 1973 #define MAC_ASSOCIATION_READ_DELAY (HZ) 1974 int ret; 1975 unsigned int len, essid_len; 1976 char essid[IW_ESSID_MAX_SIZE]; 1977 u32 txrate; 1978 u32 chan; 1979 char *txratename; 1980 u8 bssid[ETH_ALEN]; 1981 1982 /* 1983 * TBD: BSSID is usually 00:00:00:00:00:00 here and not 1984 * an actual MAC of the AP. Seems like FW sets this 1985 * address too late. Read it later and expose through 1986 * /proc or schedule a later task to query and update 1987 */ 1988 1989 essid_len = IW_ESSID_MAX_SIZE; 1990 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, 1991 essid, &essid_len); 1992 if (ret) { 1993 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 1994 __LINE__); 1995 return; 1996 } 1997 1998 len = sizeof(u32); 1999 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len); 2000 if (ret) { 2001 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2002 __LINE__); 2003 return; 2004 } 2005 2006 len = sizeof(u32); 2007 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len); 2008 if (ret) { 2009 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2010 __LINE__); 2011 return; 2012 } 2013 len = ETH_ALEN; 2014 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid, 2015 &len); 2016 if (ret) { 2017 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 2018 __LINE__); 2019 return; 2020 } 2021 memcpy(priv->ieee->bssid, bssid, ETH_ALEN); 2022 2023 switch (txrate) { 2024 case TX_RATE_1_MBIT: 2025 txratename = "1Mbps"; 2026 break; 2027 case TX_RATE_2_MBIT: 2028 txratename = "2Mbsp"; 2029 break; 2030 case TX_RATE_5_5_MBIT: 2031 txratename = "5.5Mbps"; 2032 break; 2033 case TX_RATE_11_MBIT: 2034 txratename = "11Mbps"; 2035 break; 2036 default: 2037 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate); 2038 txratename = "unknown rate"; 2039 break; 2040 } 2041 2042 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n", 2043 priv->net_dev->name, essid_len, essid, 2044 txratename, chan, bssid); 2045 2046 /* now we copy read ssid into dev */ 2047 if (!(priv->config & CFG_STATIC_ESSID)) { 2048 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE); 2049 memcpy(priv->essid, essid, priv->essid_len); 2050 } 2051 priv->channel = chan; 2052 memcpy(priv->bssid, bssid, ETH_ALEN); 2053 2054 priv->status |= STATUS_ASSOCIATING; 2055 priv->connect_start = ktime_get_boottime_seconds(); 2056 2057 schedule_delayed_work(&priv->wx_event_work, HZ / 10); 2058 } 2059 2060 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid, 2061 int length, int batch_mode) 2062 { 2063 int ssid_len = min(length, IW_ESSID_MAX_SIZE); 2064 struct host_command cmd = { 2065 .host_command = SSID, 2066 .host_command_sequence = 0, 2067 .host_command_length = ssid_len 2068 }; 2069 int err; 2070 2071 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid); 2072 2073 if (ssid_len) 2074 memcpy(cmd.host_command_parameters, essid, ssid_len); 2075 2076 if (!batch_mode) { 2077 err = ipw2100_disable_adapter(priv); 2078 if (err) 2079 return err; 2080 } 2081 2082 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to 2083 * disable auto association -- so we cheat by setting a bogus SSID */ 2084 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) { 2085 int i; 2086 u8 *bogus = (u8 *) cmd.host_command_parameters; 2087 for (i = 0; i < IW_ESSID_MAX_SIZE; i++) 2088 bogus[i] = 0x18 + i; 2089 cmd.host_command_length = IW_ESSID_MAX_SIZE; 2090 } 2091 2092 /* NOTE: We always send the SSID command even if the provided ESSID is 2093 * the same as what we currently think is set. */ 2094 2095 err = ipw2100_hw_send_command(priv, &cmd); 2096 if (!err) { 2097 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len); 2098 memcpy(priv->essid, essid, ssid_len); 2099 priv->essid_len = ssid_len; 2100 } 2101 2102 if (!batch_mode) { 2103 if (ipw2100_enable_adapter(priv)) 2104 err = -EIO; 2105 } 2106 2107 return err; 2108 } 2109 2110 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status) 2111 { 2112 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, 2113 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid, 2114 priv->bssid); 2115 2116 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); 2117 2118 if (priv->status & STATUS_STOPPING) { 2119 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n"); 2120 return; 2121 } 2122 2123 eth_zero_addr(priv->bssid); 2124 eth_zero_addr(priv->ieee->bssid); 2125 2126 netif_carrier_off(priv->net_dev); 2127 netif_stop_queue(priv->net_dev); 2128 2129 if (!(priv->status & STATUS_RUNNING)) 2130 return; 2131 2132 if (priv->status & STATUS_SECURITY_UPDATED) 2133 schedule_delayed_work(&priv->security_work, 0); 2134 2135 schedule_delayed_work(&priv->wx_event_work, 0); 2136 } 2137 2138 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status) 2139 { 2140 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n", 2141 priv->net_dev->name); 2142 2143 /* RF_KILL is now enabled (else we wouldn't be here) */ 2144 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); 2145 priv->status |= STATUS_RF_KILL_HW; 2146 2147 /* Make sure the RF Kill check timer is running */ 2148 priv->stop_rf_kill = 0; 2149 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ)); 2150 } 2151 2152 static void ipw2100_scan_event(struct work_struct *work) 2153 { 2154 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv, 2155 scan_event.work); 2156 union iwreq_data wrqu; 2157 2158 wrqu.data.length = 0; 2159 wrqu.data.flags = 0; 2160 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); 2161 } 2162 2163 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status) 2164 { 2165 IPW_DEBUG_SCAN("scan complete\n"); 2166 /* Age the scan results... */ 2167 priv->ieee->scans++; 2168 priv->status &= ~STATUS_SCANNING; 2169 2170 /* Only userspace-requested scan completion events go out immediately */ 2171 if (!priv->user_requested_scan) { 2172 schedule_delayed_work(&priv->scan_event, 2173 round_jiffies_relative(msecs_to_jiffies(4000))); 2174 } else { 2175 priv->user_requested_scan = 0; 2176 mod_delayed_work(system_wq, &priv->scan_event, 0); 2177 } 2178 } 2179 2180 #ifdef CONFIG_IPW2100_DEBUG 2181 #define IPW2100_HANDLER(v, f) { v, f, # v } 2182 struct ipw2100_status_indicator { 2183 int status; 2184 void (*cb) (struct ipw2100_priv * priv, u32 status); 2185 char *name; 2186 }; 2187 #else 2188 #define IPW2100_HANDLER(v, f) { v, f } 2189 struct ipw2100_status_indicator { 2190 int status; 2191 void (*cb) (struct ipw2100_priv * priv, u32 status); 2192 }; 2193 #endif /* CONFIG_IPW2100_DEBUG */ 2194 2195 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status) 2196 { 2197 IPW_DEBUG_SCAN("Scanning...\n"); 2198 priv->status |= STATUS_SCANNING; 2199 } 2200 2201 static const struct ipw2100_status_indicator status_handlers[] = { 2202 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL), 2203 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL), 2204 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated), 2205 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost), 2206 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL), 2207 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete), 2208 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL), 2209 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL), 2210 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill), 2211 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL), 2212 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL), 2213 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning), 2214 IPW2100_HANDLER(-1, NULL) 2215 }; 2216 2217 static void isr_status_change(struct ipw2100_priv *priv, int status) 2218 { 2219 int i; 2220 2221 if (status == IPW_STATE_SCANNING && 2222 priv->status & STATUS_ASSOCIATED && 2223 !(priv->status & STATUS_SCANNING)) { 2224 IPW_DEBUG_INFO("Scan detected while associated, with " 2225 "no scan request. Restarting firmware.\n"); 2226 2227 /* Wake up any sleeping jobs */ 2228 schedule_reset(priv); 2229 } 2230 2231 for (i = 0; status_handlers[i].status != -1; i++) { 2232 if (status == status_handlers[i].status) { 2233 IPW_DEBUG_NOTIF("Status change: %s\n", 2234 status_handlers[i].name); 2235 if (status_handlers[i].cb) 2236 status_handlers[i].cb(priv, status); 2237 priv->wstats.status = status; 2238 return; 2239 } 2240 } 2241 2242 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status); 2243 } 2244 2245 static void isr_rx_complete_command(struct ipw2100_priv *priv, 2246 struct ipw2100_cmd_header *cmd) 2247 { 2248 #ifdef CONFIG_IPW2100_DEBUG 2249 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) { 2250 IPW_DEBUG_HC("Command completed '%s (%d)'\n", 2251 command_types[cmd->host_command_reg], 2252 cmd->host_command_reg); 2253 } 2254 #endif 2255 if (cmd->host_command_reg == HOST_COMPLETE) 2256 priv->status |= STATUS_ENABLED; 2257 2258 if (cmd->host_command_reg == CARD_DISABLE) 2259 priv->status &= ~STATUS_ENABLED; 2260 2261 priv->status &= ~STATUS_CMD_ACTIVE; 2262 2263 wake_up_interruptible(&priv->wait_command_queue); 2264 } 2265 2266 #ifdef CONFIG_IPW2100_DEBUG 2267 static const char *frame_types[] = { 2268 "COMMAND_STATUS_VAL", 2269 "STATUS_CHANGE_VAL", 2270 "P80211_DATA_VAL", 2271 "P8023_DATA_VAL", 2272 "HOST_NOTIFICATION_VAL" 2273 }; 2274 #endif 2275 2276 static int ipw2100_alloc_skb(struct ipw2100_priv *priv, 2277 struct ipw2100_rx_packet *packet) 2278 { 2279 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx)); 2280 if (!packet->skb) 2281 return -ENOMEM; 2282 2283 packet->rxp = (struct ipw2100_rx *)packet->skb->data; 2284 packet->dma_addr = dma_map_single(&priv->pci_dev->dev, 2285 packet->skb->data, 2286 sizeof(struct ipw2100_rx), 2287 DMA_FROM_DEVICE); 2288 if (dma_mapping_error(&priv->pci_dev->dev, packet->dma_addr)) { 2289 dev_kfree_skb(packet->skb); 2290 return -ENOMEM; 2291 } 2292 2293 return 0; 2294 } 2295 2296 #define SEARCH_ERROR 0xffffffff 2297 #define SEARCH_FAIL 0xfffffffe 2298 #define SEARCH_SUCCESS 0xfffffff0 2299 #define SEARCH_DISCARD 0 2300 #define SEARCH_SNAPSHOT 1 2301 2302 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff)) 2303 static void ipw2100_snapshot_free(struct ipw2100_priv *priv) 2304 { 2305 int i; 2306 if (!priv->snapshot[0]) 2307 return; 2308 for (i = 0; i < 0x30; i++) 2309 kfree(priv->snapshot[i]); 2310 priv->snapshot[0] = NULL; 2311 } 2312 2313 #ifdef IPW2100_DEBUG_C3 2314 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv) 2315 { 2316 int i; 2317 if (priv->snapshot[0]) 2318 return 1; 2319 for (i = 0; i < 0x30; i++) { 2320 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC); 2321 if (!priv->snapshot[i]) { 2322 IPW_DEBUG_INFO("%s: Error allocating snapshot " 2323 "buffer %d\n", priv->net_dev->name, i); 2324 while (i > 0) 2325 kfree(priv->snapshot[--i]); 2326 priv->snapshot[0] = NULL; 2327 return 0; 2328 } 2329 } 2330 2331 return 1; 2332 } 2333 2334 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf, 2335 size_t len, int mode) 2336 { 2337 u32 i, j; 2338 u32 tmp; 2339 u8 *s, *d; 2340 u32 ret; 2341 2342 s = in_buf; 2343 if (mode == SEARCH_SNAPSHOT) { 2344 if (!ipw2100_snapshot_alloc(priv)) 2345 mode = SEARCH_DISCARD; 2346 } 2347 2348 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) { 2349 read_nic_dword(priv->net_dev, i, &tmp); 2350 if (mode == SEARCH_SNAPSHOT) 2351 *(u32 *) SNAPSHOT_ADDR(i) = tmp; 2352 if (ret == SEARCH_FAIL) { 2353 d = (u8 *) & tmp; 2354 for (j = 0; j < 4; j++) { 2355 if (*s != *d) { 2356 s = in_buf; 2357 continue; 2358 } 2359 2360 s++; 2361 d++; 2362 2363 if ((s - in_buf) == len) 2364 ret = (i + j) - len + 1; 2365 } 2366 } else if (mode == SEARCH_DISCARD) 2367 return ret; 2368 } 2369 2370 return ret; 2371 } 2372 #endif 2373 2374 /* 2375 * 2376 * 0) Disconnect the SKB from the firmware (just unmap) 2377 * 1) Pack the ETH header into the SKB 2378 * 2) Pass the SKB to the network stack 2379 * 2380 * When packet is provided by the firmware, it contains the following: 2381 * 2382 * . libipw_hdr 2383 * . libipw_snap_hdr 2384 * 2385 * The size of the constructed ethernet 2386 * 2387 */ 2388 #ifdef IPW2100_RX_DEBUG 2389 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH]; 2390 #endif 2391 2392 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i) 2393 { 2394 #ifdef IPW2100_DEBUG_C3 2395 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2396 u32 match, reg; 2397 int j; 2398 #endif 2399 2400 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n", 2401 i * sizeof(struct ipw2100_status)); 2402 2403 #ifdef IPW2100_DEBUG_C3 2404 /* Halt the firmware so we can get a good image */ 2405 write_register(priv->net_dev, IPW_REG_RESET_REG, 2406 IPW_AUX_HOST_RESET_REG_STOP_MASTER); 2407 j = 5; 2408 do { 2409 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY); 2410 read_register(priv->net_dev, IPW_REG_RESET_REG, ®); 2411 2412 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED) 2413 break; 2414 } while (j--); 2415 2416 match = ipw2100_match_buf(priv, (u8 *) status, 2417 sizeof(struct ipw2100_status), 2418 SEARCH_SNAPSHOT); 2419 if (match < SEARCH_SUCCESS) 2420 IPW_DEBUG_INFO("%s: DMA status match in Firmware at " 2421 "offset 0x%06X, length %d:\n", 2422 priv->net_dev->name, match, 2423 sizeof(struct ipw2100_status)); 2424 else 2425 IPW_DEBUG_INFO("%s: No DMA status match in " 2426 "Firmware.\n", priv->net_dev->name); 2427 2428 printk_buf((u8 *) priv->status_queue.drv, 2429 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH); 2430 #endif 2431 2432 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION; 2433 priv->net_dev->stats.rx_errors++; 2434 schedule_reset(priv); 2435 } 2436 2437 static void isr_rx(struct ipw2100_priv *priv, int i, 2438 struct libipw_rx_stats *stats) 2439 { 2440 struct net_device *dev = priv->net_dev; 2441 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2442 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2443 2444 IPW_DEBUG_RX("Handler...\n"); 2445 2446 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) { 2447 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2448 " Dropping.\n", 2449 dev->name, 2450 status->frame_size, skb_tailroom(packet->skb)); 2451 dev->stats.rx_errors++; 2452 return; 2453 } 2454 2455 if (unlikely(!netif_running(dev))) { 2456 dev->stats.rx_errors++; 2457 priv->wstats.discard.misc++; 2458 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2459 return; 2460 } 2461 2462 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR && 2463 !(priv->status & STATUS_ASSOCIATED))) { 2464 IPW_DEBUG_DROP("Dropping packet while not associated.\n"); 2465 priv->wstats.discard.misc++; 2466 return; 2467 } 2468 2469 dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr, 2470 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE); 2471 2472 skb_put(packet->skb, status->frame_size); 2473 2474 #ifdef IPW2100_RX_DEBUG 2475 /* Make a copy of the frame so we can dump it to the logs if 2476 * libipw_rx fails */ 2477 skb_copy_from_linear_data(packet->skb, packet_data, 2478 min_t(u32, status->frame_size, 2479 IPW_RX_NIC_BUFFER_LENGTH)); 2480 #endif 2481 2482 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2483 #ifdef IPW2100_RX_DEBUG 2484 IPW_DEBUG_DROP("%s: Non consumed packet:\n", 2485 dev->name); 2486 printk_buf(IPW_DL_DROP, packet_data, status->frame_size); 2487 #endif 2488 dev->stats.rx_errors++; 2489 2490 /* libipw_rx failed, so it didn't free the SKB */ 2491 dev_kfree_skb_any(packet->skb); 2492 packet->skb = NULL; 2493 } 2494 2495 /* We need to allocate a new SKB and attach it to the RDB. */ 2496 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2497 printk(KERN_WARNING DRV_NAME ": " 2498 "%s: Unable to allocate SKB onto RBD ring - disabling " 2499 "adapter.\n", dev->name); 2500 /* TODO: schedule adapter shutdown */ 2501 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2502 } 2503 2504 /* Update the RDB entry */ 2505 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2506 } 2507 2508 #ifdef CONFIG_IPW2100_MONITOR 2509 2510 static void isr_rx_monitor(struct ipw2100_priv *priv, int i, 2511 struct libipw_rx_stats *stats) 2512 { 2513 struct net_device *dev = priv->net_dev; 2514 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2515 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 2516 2517 /* Magic struct that slots into the radiotap header -- no reason 2518 * to build this manually element by element, we can write it much 2519 * more efficiently than we can parse it. ORDER MATTERS HERE */ 2520 struct ipw_rt_hdr { 2521 struct ieee80211_radiotap_header_fixed rt_hdr; 2522 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */ 2523 } *ipw_rt; 2524 2525 IPW_DEBUG_RX("Handler...\n"); 2526 2527 if (unlikely(status->frame_size > skb_tailroom(packet->skb) - 2528 sizeof(struct ipw_rt_hdr))) { 2529 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!" 2530 " Dropping.\n", 2531 dev->name, 2532 status->frame_size, 2533 skb_tailroom(packet->skb)); 2534 dev->stats.rx_errors++; 2535 return; 2536 } 2537 2538 if (unlikely(!netif_running(dev))) { 2539 dev->stats.rx_errors++; 2540 priv->wstats.discard.misc++; 2541 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); 2542 return; 2543 } 2544 2545 if (unlikely(priv->config & CFG_CRC_CHECK && 2546 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) { 2547 IPW_DEBUG_RX("CRC error in packet. Dropping.\n"); 2548 dev->stats.rx_errors++; 2549 return; 2550 } 2551 2552 dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr, 2553 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE); 2554 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr), 2555 packet->skb->data, status->frame_size); 2556 2557 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data; 2558 2559 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; 2560 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ 2561 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */ 2562 2563 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 2564 2565 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM; 2566 2567 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr)); 2568 2569 if (!libipw_rx(priv->ieee, packet->skb, stats)) { 2570 dev->stats.rx_errors++; 2571 2572 /* libipw_rx failed, so it didn't free the SKB */ 2573 dev_kfree_skb_any(packet->skb); 2574 packet->skb = NULL; 2575 } 2576 2577 /* We need to allocate a new SKB and attach it to the RDB. */ 2578 if (unlikely(ipw2100_alloc_skb(priv, packet))) { 2579 IPW_DEBUG_WARNING( 2580 "%s: Unable to allocate SKB onto RBD ring - disabling " 2581 "adapter.\n", dev->name); 2582 /* TODO: schedule adapter shutdown */ 2583 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n"); 2584 } 2585 2586 /* Update the RDB entry */ 2587 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 2588 } 2589 2590 #endif 2591 2592 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i) 2593 { 2594 struct ipw2100_status *status = &priv->status_queue.drv[i]; 2595 struct ipw2100_rx *u = priv->rx_buffers[i].rxp; 2596 u16 frame_type = status->status_fields & STATUS_TYPE_MASK; 2597 2598 switch (frame_type) { 2599 case COMMAND_STATUS_VAL: 2600 return (status->frame_size != sizeof(u->rx_data.command)); 2601 case STATUS_CHANGE_VAL: 2602 return (status->frame_size != sizeof(u->rx_data.status)); 2603 case HOST_NOTIFICATION_VAL: 2604 return (status->frame_size < sizeof(u->rx_data.notification)); 2605 case P80211_DATA_VAL: 2606 case P8023_DATA_VAL: 2607 #ifdef CONFIG_IPW2100_MONITOR 2608 return 0; 2609 #else 2610 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2611 case IEEE80211_FTYPE_MGMT: 2612 case IEEE80211_FTYPE_CTL: 2613 return 0; 2614 case IEEE80211_FTYPE_DATA: 2615 return (status->frame_size > 2616 IPW_MAX_802_11_PAYLOAD_LENGTH); 2617 } 2618 #endif 2619 } 2620 2621 return 1; 2622 } 2623 2624 /* 2625 * ipw2100 interrupts are disabled at this point, and the ISR 2626 * is the only code that calls this method. So, we do not need 2627 * to play with any locks. 2628 * 2629 * RX Queue works as follows: 2630 * 2631 * Read index - firmware places packet in entry identified by the 2632 * Read index and advances Read index. In this manner, 2633 * Read index will always point to the next packet to 2634 * be filled--but not yet valid. 2635 * 2636 * Write index - driver fills this entry with an unused RBD entry. 2637 * This entry has not filled by the firmware yet. 2638 * 2639 * In between the W and R indexes are the RBDs that have been received 2640 * but not yet processed. 2641 * 2642 * The process of handling packets will start at WRITE + 1 and advance 2643 * until it reaches the READ index. 2644 * 2645 * The WRITE index is cached in the variable 'priv->rx_queue.next'. 2646 * 2647 */ 2648 static void __ipw2100_rx_process(struct ipw2100_priv *priv) 2649 { 2650 struct ipw2100_bd_queue *rxq = &priv->rx_queue; 2651 struct ipw2100_status_queue *sq = &priv->status_queue; 2652 struct ipw2100_rx_packet *packet; 2653 u16 frame_type; 2654 u32 r, w, i, s; 2655 struct ipw2100_rx *u; 2656 struct libipw_rx_stats stats = { 2657 .mac_time = jiffies, 2658 }; 2659 2660 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r); 2661 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w); 2662 2663 if (r >= rxq->entries) { 2664 IPW_DEBUG_RX("exit - bad read index\n"); 2665 return; 2666 } 2667 2668 i = (rxq->next + 1) % rxq->entries; 2669 s = i; 2670 while (i != r) { 2671 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n", 2672 r, rxq->next, i); */ 2673 2674 packet = &priv->rx_buffers[i]; 2675 2676 /* Sync the DMA for the RX buffer so CPU is sure to get 2677 * the correct values */ 2678 dma_sync_single_for_cpu(&priv->pci_dev->dev, packet->dma_addr, 2679 sizeof(struct ipw2100_rx), 2680 DMA_FROM_DEVICE); 2681 2682 if (unlikely(ipw2100_corruption_check(priv, i))) { 2683 ipw2100_corruption_detected(priv, i); 2684 goto increment; 2685 } 2686 2687 u = packet->rxp; 2688 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK; 2689 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM; 2690 stats.len = sq->drv[i].frame_size; 2691 2692 stats.mask = 0; 2693 if (stats.rssi != 0) 2694 stats.mask |= LIBIPW_STATMASK_RSSI; 2695 stats.freq = LIBIPW_24GHZ_BAND; 2696 2697 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n", 2698 priv->net_dev->name, frame_types[frame_type], 2699 stats.len); 2700 2701 switch (frame_type) { 2702 case COMMAND_STATUS_VAL: 2703 /* Reset Rx watchdog */ 2704 isr_rx_complete_command(priv, &u->rx_data.command); 2705 break; 2706 2707 case STATUS_CHANGE_VAL: 2708 isr_status_change(priv, u->rx_data.status); 2709 break; 2710 2711 case P80211_DATA_VAL: 2712 case P8023_DATA_VAL: 2713 #ifdef CONFIG_IPW2100_MONITOR 2714 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 2715 isr_rx_monitor(priv, i, &stats); 2716 break; 2717 } 2718 #endif 2719 if (stats.len < sizeof(struct libipw_hdr_3addr)) 2720 break; 2721 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) { 2722 case IEEE80211_FTYPE_MGMT: 2723 libipw_rx_mgt(priv->ieee, 2724 &u->rx_data.header, &stats); 2725 break; 2726 2727 case IEEE80211_FTYPE_CTL: 2728 break; 2729 2730 case IEEE80211_FTYPE_DATA: 2731 isr_rx(priv, i, &stats); 2732 break; 2733 2734 } 2735 break; 2736 } 2737 2738 increment: 2739 /* clear status field associated with this RBD */ 2740 rxq->drv[i].status.info.field = 0; 2741 2742 i = (i + 1) % rxq->entries; 2743 } 2744 2745 if (i != s) { 2746 /* backtrack one entry, wrapping to end if at 0 */ 2747 rxq->next = (i ? i : rxq->entries) - 1; 2748 2749 write_register(priv->net_dev, 2750 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next); 2751 } 2752 } 2753 2754 /* 2755 * __ipw2100_tx_process 2756 * 2757 * This routine will determine whether the next packet on 2758 * the fw_pend_list has been processed by the firmware yet. 2759 * 2760 * If not, then it does nothing and returns. 2761 * 2762 * If so, then it removes the item from the fw_pend_list, frees 2763 * any associated storage, and places the item back on the 2764 * free list of its source (either msg_free_list or tx_free_list) 2765 * 2766 * TX Queue works as follows: 2767 * 2768 * Read index - points to the next TBD that the firmware will 2769 * process. The firmware will read the data, and once 2770 * done processing, it will advance the Read index. 2771 * 2772 * Write index - driver fills this entry with an constructed TBD 2773 * entry. The Write index is not advanced until the 2774 * packet has been configured. 2775 * 2776 * In between the W and R indexes are the TBDs that have NOT been 2777 * processed. Lagging behind the R index are packets that have 2778 * been processed but have not been freed by the driver. 2779 * 2780 * In order to free old storage, an internal index will be maintained 2781 * that points to the next packet to be freed. When all used 2782 * packets have been freed, the oldest index will be the same as the 2783 * firmware's read index. 2784 * 2785 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest' 2786 * 2787 * Because the TBD structure can not contain arbitrary data, the 2788 * driver must keep an internal queue of cached allocations such that 2789 * it can put that data back into the tx_free_list and msg_free_list 2790 * for use by future command and data packets. 2791 * 2792 */ 2793 static int __ipw2100_tx_process(struct ipw2100_priv *priv) 2794 { 2795 struct ipw2100_bd_queue *txq = &priv->tx_queue; 2796 struct ipw2100_bd *tbd; 2797 struct list_head *element; 2798 struct ipw2100_tx_packet *packet; 2799 int descriptors_used; 2800 int e, i; 2801 u32 r, w, frag_num = 0; 2802 2803 if (list_empty(&priv->fw_pend_list)) 2804 return 0; 2805 2806 element = priv->fw_pend_list.next; 2807 2808 packet = list_entry(element, struct ipw2100_tx_packet, list); 2809 tbd = &txq->drv[packet->index]; 2810 2811 /* Determine how many TBD entries must be finished... */ 2812 switch (packet->type) { 2813 case COMMAND: 2814 /* COMMAND uses only one slot; don't advance */ 2815 descriptors_used = 1; 2816 e = txq->oldest; 2817 break; 2818 2819 case DATA: 2820 /* DATA uses two slots; advance and loop position. */ 2821 descriptors_used = tbd->num_fragments; 2822 frag_num = tbd->num_fragments - 1; 2823 e = txq->oldest + frag_num; 2824 e %= txq->entries; 2825 break; 2826 2827 default: 2828 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n", 2829 priv->net_dev->name); 2830 return 0; 2831 } 2832 2833 /* if the last TBD is not done by NIC yet, then packet is 2834 * not ready to be released. 2835 * 2836 */ 2837 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 2838 &r); 2839 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 2840 &w); 2841 if (w != txq->next) 2842 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n", 2843 priv->net_dev->name); 2844 2845 /* 2846 * txq->next is the index of the last packet written txq->oldest is 2847 * the index of the r is the index of the next packet to be read by 2848 * firmware 2849 */ 2850 2851 /* 2852 * Quick graphic to help you visualize the following 2853 * if / else statement 2854 * 2855 * ===>| s---->|=============== 2856 * e>| 2857 * | a | b | c | d | e | f | g | h | i | j | k | l 2858 * r---->| 2859 * w 2860 * 2861 * w - updated by driver 2862 * r - updated by firmware 2863 * s - start of oldest BD entry (txq->oldest) 2864 * e - end of oldest BD entry 2865 * 2866 */ 2867 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) { 2868 IPW_DEBUG_TX("exit - no processed packets ready to release.\n"); 2869 return 0; 2870 } 2871 2872 list_del(element); 2873 DEC_STAT(&priv->fw_pend_stat); 2874 2875 #ifdef CONFIG_IPW2100_DEBUG 2876 { 2877 i = txq->oldest; 2878 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2879 &txq->drv[i], 2880 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)), 2881 txq->drv[i].host_addr, txq->drv[i].buf_length); 2882 2883 if (packet->type == DATA) { 2884 i = (i + 1) % txq->entries; 2885 2886 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i, 2887 &txq->drv[i], 2888 (u32) (txq->nic + i * 2889 sizeof(struct ipw2100_bd)), 2890 (u32) txq->drv[i].host_addr, 2891 txq->drv[i].buf_length); 2892 } 2893 } 2894 #endif 2895 2896 switch (packet->type) { 2897 case DATA: 2898 if (txq->drv[txq->oldest].status.info.fields.txType != 0) 2899 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2900 "Expecting DATA TBD but pulled " 2901 "something else: ids %d=%d.\n", 2902 priv->net_dev->name, txq->oldest, packet->index); 2903 2904 /* DATA packet; we have to unmap and free the SKB */ 2905 for (i = 0; i < frag_num; i++) { 2906 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries]; 2907 2908 IPW_DEBUG_TX("TX%d P=%08x L=%d\n", 2909 (packet->index + 1 + i) % txq->entries, 2910 tbd->host_addr, tbd->buf_length); 2911 2912 dma_unmap_single(&priv->pci_dev->dev, tbd->host_addr, 2913 tbd->buf_length, DMA_TO_DEVICE); 2914 } 2915 2916 libipw_txb_free(packet->info.d_struct.txb); 2917 packet->info.d_struct.txb = NULL; 2918 2919 list_add_tail(element, &priv->tx_free_list); 2920 INC_STAT(&priv->tx_free_stat); 2921 2922 /* We have a free slot in the Tx queue, so wake up the 2923 * transmit layer if it is stopped. */ 2924 if (priv->status & STATUS_ASSOCIATED) 2925 netif_wake_queue(priv->net_dev); 2926 2927 /* A packet was processed by the hardware, so update the 2928 * watchdog */ 2929 netif_trans_update(priv->net_dev); 2930 2931 break; 2932 2933 case COMMAND: 2934 if (txq->drv[txq->oldest].status.info.fields.txType != 1) 2935 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. " 2936 "Expecting COMMAND TBD but pulled " 2937 "something else: ids %d=%d.\n", 2938 priv->net_dev->name, txq->oldest, packet->index); 2939 2940 #ifdef CONFIG_IPW2100_DEBUG 2941 if (packet->info.c_struct.cmd->host_command_reg < 2942 ARRAY_SIZE(command_types)) 2943 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n", 2944 command_types[packet->info.c_struct.cmd-> 2945 host_command_reg], 2946 packet->info.c_struct.cmd-> 2947 host_command_reg, 2948 packet->info.c_struct.cmd->cmd_status_reg); 2949 #endif 2950 2951 list_add_tail(element, &priv->msg_free_list); 2952 INC_STAT(&priv->msg_free_stat); 2953 break; 2954 } 2955 2956 /* advance oldest used TBD pointer to start of next entry */ 2957 txq->oldest = (e + 1) % txq->entries; 2958 /* increase available TBDs number */ 2959 txq->available += descriptors_used; 2960 SET_STAT(&priv->txq_stat, txq->available); 2961 2962 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n", 2963 jiffies - packet->jiffy_start); 2964 2965 return (!list_empty(&priv->fw_pend_list)); 2966 } 2967 2968 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv) 2969 { 2970 int i = 0; 2971 2972 while (__ipw2100_tx_process(priv) && i < 200) 2973 i++; 2974 2975 if (i == 200) { 2976 printk(KERN_WARNING DRV_NAME ": " 2977 "%s: Driver is running slow (%d iters).\n", 2978 priv->net_dev->name, i); 2979 } 2980 } 2981 2982 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv) 2983 { 2984 struct list_head *element; 2985 struct ipw2100_tx_packet *packet; 2986 struct ipw2100_bd_queue *txq = &priv->tx_queue; 2987 struct ipw2100_bd *tbd; 2988 int next = txq->next; 2989 2990 while (!list_empty(&priv->msg_pend_list)) { 2991 /* if there isn't enough space in TBD queue, then 2992 * don't stuff a new one in. 2993 * NOTE: 3 are needed as a command will take one, 2994 * and there is a minimum of 2 that must be 2995 * maintained between the r and w indexes 2996 */ 2997 if (txq->available <= 3) { 2998 IPW_DEBUG_TX("no room in tx_queue\n"); 2999 break; 3000 } 3001 3002 element = priv->msg_pend_list.next; 3003 list_del(element); 3004 DEC_STAT(&priv->msg_pend_stat); 3005 3006 packet = list_entry(element, struct ipw2100_tx_packet, list); 3007 3008 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n", 3009 &txq->drv[txq->next], 3010 (u32) (txq->nic + txq->next * 3011 sizeof(struct ipw2100_bd))); 3012 3013 packet->index = txq->next; 3014 3015 tbd = &txq->drv[txq->next]; 3016 3017 /* initialize TBD */ 3018 tbd->host_addr = packet->info.c_struct.cmd_phys; 3019 tbd->buf_length = sizeof(struct ipw2100_cmd_header); 3020 /* not marking number of fragments causes problems 3021 * with f/w debug version */ 3022 tbd->num_fragments = 1; 3023 tbd->status.info.field = 3024 IPW_BD_STATUS_TX_FRAME_COMMAND | 3025 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3026 3027 /* update TBD queue counters */ 3028 txq->next++; 3029 txq->next %= txq->entries; 3030 txq->available--; 3031 DEC_STAT(&priv->txq_stat); 3032 3033 list_add_tail(element, &priv->fw_pend_list); 3034 INC_STAT(&priv->fw_pend_stat); 3035 } 3036 3037 if (txq->next != next) { 3038 /* kick off the DMA by notifying firmware the 3039 * write index has moved; make sure TBD stores are sync'd */ 3040 wmb(); 3041 write_register(priv->net_dev, 3042 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3043 txq->next); 3044 } 3045 } 3046 3047 /* 3048 * ipw2100_tx_send_data 3049 * 3050 */ 3051 static void ipw2100_tx_send_data(struct ipw2100_priv *priv) 3052 { 3053 struct list_head *element; 3054 struct ipw2100_tx_packet *packet; 3055 struct ipw2100_bd_queue *txq = &priv->tx_queue; 3056 struct ipw2100_bd *tbd; 3057 int next = txq->next; 3058 int i = 0; 3059 struct ipw2100_data_header *ipw_hdr; 3060 struct libipw_hdr_3addr *hdr; 3061 3062 while (!list_empty(&priv->tx_pend_list)) { 3063 /* if there isn't enough space in TBD queue, then 3064 * don't stuff a new one in. 3065 * NOTE: 4 are needed as a data will take two, 3066 * and there is a minimum of 2 that must be 3067 * maintained between the r and w indexes 3068 */ 3069 element = priv->tx_pend_list.next; 3070 packet = list_entry(element, struct ipw2100_tx_packet, list); 3071 3072 if (unlikely(1 + packet->info.d_struct.txb->nr_frags > 3073 IPW_MAX_BDS)) { 3074 /* TODO: Support merging buffers if more than 3075 * IPW_MAX_BDS are used */ 3076 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. " 3077 "Increase fragmentation level.\n", 3078 priv->net_dev->name); 3079 } 3080 3081 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) { 3082 IPW_DEBUG_TX("no room in tx_queue\n"); 3083 break; 3084 } 3085 3086 list_del(element); 3087 DEC_STAT(&priv->tx_pend_stat); 3088 3089 tbd = &txq->drv[txq->next]; 3090 3091 packet->index = txq->next; 3092 3093 ipw_hdr = packet->info.d_struct.data; 3094 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb-> 3095 fragments[0]->data; 3096 3097 if (priv->ieee->iw_mode == IW_MODE_INFRA) { 3098 /* To DS: Addr1 = BSSID, Addr2 = SA, 3099 Addr3 = DA */ 3100 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3101 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN); 3102 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 3103 /* not From/To DS: Addr1 = DA, Addr2 = SA, 3104 Addr3 = BSSID */ 3105 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN); 3106 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN); 3107 } 3108 3109 ipw_hdr->host_command_reg = SEND; 3110 ipw_hdr->host_command_reg1 = 0; 3111 3112 /* For now we only support host based encryption */ 3113 ipw_hdr->needs_encryption = 0; 3114 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted; 3115 if (packet->info.d_struct.txb->nr_frags > 1) 3116 ipw_hdr->fragment_size = 3117 packet->info.d_struct.txb->frag_size - 3118 LIBIPW_3ADDR_LEN; 3119 else 3120 ipw_hdr->fragment_size = 0; 3121 3122 tbd->host_addr = packet->info.d_struct.data_phys; 3123 tbd->buf_length = sizeof(struct ipw2100_data_header); 3124 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags; 3125 tbd->status.info.field = 3126 IPW_BD_STATUS_TX_FRAME_802_3 | 3127 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3128 txq->next++; 3129 txq->next %= txq->entries; 3130 3131 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n", 3132 packet->index, tbd->host_addr, tbd->buf_length); 3133 #ifdef CONFIG_IPW2100_DEBUG 3134 if (packet->info.d_struct.txb->nr_frags > 1) 3135 IPW_DEBUG_FRAG("fragment Tx: %d frames\n", 3136 packet->info.d_struct.txb->nr_frags); 3137 #endif 3138 3139 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) { 3140 tbd = &txq->drv[txq->next]; 3141 if (i == packet->info.d_struct.txb->nr_frags - 1) 3142 tbd->status.info.field = 3143 IPW_BD_STATUS_TX_FRAME_802_3 | 3144 IPW_BD_STATUS_TX_INTERRUPT_ENABLE; 3145 else 3146 tbd->status.info.field = 3147 IPW_BD_STATUS_TX_FRAME_802_3 | 3148 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT; 3149 3150 tbd->buf_length = packet->info.d_struct.txb-> 3151 fragments[i]->len - LIBIPW_3ADDR_LEN; 3152 3153 tbd->host_addr = dma_map_single(&priv->pci_dev->dev, 3154 packet->info.d_struct. 3155 txb->fragments[i]->data + 3156 LIBIPW_3ADDR_LEN, 3157 tbd->buf_length, 3158 DMA_TO_DEVICE); 3159 if (dma_mapping_error(&priv->pci_dev->dev, tbd->host_addr)) { 3160 IPW_DEBUG_TX("dma mapping error\n"); 3161 break; 3162 } 3163 3164 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n", 3165 txq->next, tbd->host_addr, 3166 tbd->buf_length); 3167 3168 dma_sync_single_for_device(&priv->pci_dev->dev, 3169 tbd->host_addr, 3170 tbd->buf_length, 3171 DMA_TO_DEVICE); 3172 3173 txq->next++; 3174 txq->next %= txq->entries; 3175 } 3176 3177 txq->available -= 1 + packet->info.d_struct.txb->nr_frags; 3178 SET_STAT(&priv->txq_stat, txq->available); 3179 3180 list_add_tail(element, &priv->fw_pend_list); 3181 INC_STAT(&priv->fw_pend_stat); 3182 } 3183 3184 if (txq->next != next) { 3185 /* kick off the DMA by notifying firmware the 3186 * write index has moved; make sure TBD stores are sync'd */ 3187 write_register(priv->net_dev, 3188 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX, 3189 txq->next); 3190 } 3191 } 3192 3193 static void ipw2100_irq_tasklet(struct tasklet_struct *t) 3194 { 3195 struct ipw2100_priv *priv = from_tasklet(priv, t, irq_tasklet); 3196 struct net_device *dev = priv->net_dev; 3197 unsigned long flags; 3198 u32 inta, tmp; 3199 3200 spin_lock_irqsave(&priv->low_lock, flags); 3201 ipw2100_disable_interrupts(priv); 3202 3203 read_register(dev, IPW_REG_INTA, &inta); 3204 3205 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n", 3206 (unsigned long)inta & IPW_INTERRUPT_MASK); 3207 3208 priv->in_isr++; 3209 priv->interrupts++; 3210 3211 /* We do not loop and keep polling for more interrupts as this 3212 * is frowned upon and doesn't play nicely with other potentially 3213 * chained IRQs */ 3214 IPW_DEBUG_ISR("INTA: 0x%08lX\n", 3215 (unsigned long)inta & IPW_INTERRUPT_MASK); 3216 3217 if (inta & IPW2100_INTA_FATAL_ERROR) { 3218 printk(KERN_WARNING DRV_NAME 3219 ": Fatal interrupt. Scheduling firmware restart.\n"); 3220 priv->inta_other++; 3221 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR); 3222 3223 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error); 3224 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n", 3225 priv->net_dev->name, priv->fatal_error); 3226 3227 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp); 3228 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n", 3229 priv->net_dev->name, tmp); 3230 3231 /* Wake up any sleeping jobs */ 3232 schedule_reset(priv); 3233 } 3234 3235 if (inta & IPW2100_INTA_PARITY_ERROR) { 3236 printk(KERN_ERR DRV_NAME 3237 ": ***** PARITY ERROR INTERRUPT !!!!\n"); 3238 priv->inta_other++; 3239 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR); 3240 } 3241 3242 if (inta & IPW2100_INTA_RX_TRANSFER) { 3243 IPW_DEBUG_ISR("RX interrupt\n"); 3244 3245 priv->rx_interrupts++; 3246 3247 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER); 3248 3249 __ipw2100_rx_process(priv); 3250 __ipw2100_tx_complete(priv); 3251 } 3252 3253 if (inta & IPW2100_INTA_TX_TRANSFER) { 3254 IPW_DEBUG_ISR("TX interrupt\n"); 3255 3256 priv->tx_interrupts++; 3257 3258 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER); 3259 3260 __ipw2100_tx_complete(priv); 3261 ipw2100_tx_send_commands(priv); 3262 ipw2100_tx_send_data(priv); 3263 } 3264 3265 if (inta & IPW2100_INTA_TX_COMPLETE) { 3266 IPW_DEBUG_ISR("TX complete\n"); 3267 priv->inta_other++; 3268 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE); 3269 3270 __ipw2100_tx_complete(priv); 3271 } 3272 3273 if (inta & IPW2100_INTA_EVENT_INTERRUPT) { 3274 /* ipw2100_handle_event(dev); */ 3275 priv->inta_other++; 3276 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT); 3277 } 3278 3279 if (inta & IPW2100_INTA_FW_INIT_DONE) { 3280 IPW_DEBUG_ISR("FW init done interrupt\n"); 3281 priv->inta_other++; 3282 3283 read_register(dev, IPW_REG_INTA, &tmp); 3284 if (tmp & (IPW2100_INTA_FATAL_ERROR | 3285 IPW2100_INTA_PARITY_ERROR)) { 3286 write_register(dev, IPW_REG_INTA, 3287 IPW2100_INTA_FATAL_ERROR | 3288 IPW2100_INTA_PARITY_ERROR); 3289 } 3290 3291 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE); 3292 } 3293 3294 if (inta & IPW2100_INTA_STATUS_CHANGE) { 3295 IPW_DEBUG_ISR("Status change interrupt\n"); 3296 priv->inta_other++; 3297 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE); 3298 } 3299 3300 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) { 3301 IPW_DEBUG_ISR("slave host mode interrupt\n"); 3302 priv->inta_other++; 3303 write_register(dev, IPW_REG_INTA, 3304 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE); 3305 } 3306 3307 priv->in_isr--; 3308 ipw2100_enable_interrupts(priv); 3309 3310 spin_unlock_irqrestore(&priv->low_lock, flags); 3311 3312 IPW_DEBUG_ISR("exit\n"); 3313 } 3314 3315 static irqreturn_t ipw2100_interrupt(int irq, void *data) 3316 { 3317 struct ipw2100_priv *priv = data; 3318 u32 inta, inta_mask; 3319 3320 if (!data) 3321 return IRQ_NONE; 3322 3323 spin_lock(&priv->low_lock); 3324 3325 /* We check to see if we should be ignoring interrupts before 3326 * we touch the hardware. During ucode load if we try and handle 3327 * an interrupt we can cause keyboard problems as well as cause 3328 * the ucode to fail to initialize */ 3329 if (!(priv->status & STATUS_INT_ENABLED)) { 3330 /* Shared IRQ */ 3331 goto none; 3332 } 3333 3334 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask); 3335 read_register(priv->net_dev, IPW_REG_INTA, &inta); 3336 3337 if (inta == 0xFFFFFFFF) { 3338 /* Hardware disappeared */ 3339 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n"); 3340 goto none; 3341 } 3342 3343 inta &= IPW_INTERRUPT_MASK; 3344 3345 if (!(inta & inta_mask)) { 3346 /* Shared interrupt */ 3347 goto none; 3348 } 3349 3350 /* We disable the hardware interrupt here just to prevent unneeded 3351 * calls to be made. We disable this again within the actual 3352 * work tasklet, so if another part of the code re-enables the 3353 * interrupt, that is fine */ 3354 ipw2100_disable_interrupts(priv); 3355 3356 tasklet_schedule(&priv->irq_tasklet); 3357 spin_unlock(&priv->low_lock); 3358 3359 return IRQ_HANDLED; 3360 none: 3361 spin_unlock(&priv->low_lock); 3362 return IRQ_NONE; 3363 } 3364 3365 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb, 3366 struct net_device *dev, int pri) 3367 { 3368 struct ipw2100_priv *priv = libipw_priv(dev); 3369 struct list_head *element; 3370 struct ipw2100_tx_packet *packet; 3371 unsigned long flags; 3372 3373 spin_lock_irqsave(&priv->low_lock, flags); 3374 3375 if (!(priv->status & STATUS_ASSOCIATED)) { 3376 IPW_DEBUG_INFO("Can not transmit when not connected.\n"); 3377 priv->net_dev->stats.tx_carrier_errors++; 3378 netif_stop_queue(dev); 3379 goto fail_unlock; 3380 } 3381 3382 if (list_empty(&priv->tx_free_list)) 3383 goto fail_unlock; 3384 3385 element = priv->tx_free_list.next; 3386 packet = list_entry(element, struct ipw2100_tx_packet, list); 3387 3388 packet->info.d_struct.txb = txb; 3389 3390 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len); 3391 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len); 3392 3393 packet->jiffy_start = jiffies; 3394 3395 list_del(element); 3396 DEC_STAT(&priv->tx_free_stat); 3397 3398 list_add_tail(element, &priv->tx_pend_list); 3399 INC_STAT(&priv->tx_pend_stat); 3400 3401 ipw2100_tx_send_data(priv); 3402 3403 spin_unlock_irqrestore(&priv->low_lock, flags); 3404 return NETDEV_TX_OK; 3405 3406 fail_unlock: 3407 netif_stop_queue(dev); 3408 spin_unlock_irqrestore(&priv->low_lock, flags); 3409 return NETDEV_TX_BUSY; 3410 } 3411 3412 static int ipw2100_msg_allocate(struct ipw2100_priv *priv) 3413 { 3414 int i, j, err = -EINVAL; 3415 void *v; 3416 dma_addr_t p; 3417 3418 priv->msg_buffers = 3419 kmalloc_array(IPW_COMMAND_POOL_SIZE, 3420 sizeof(struct ipw2100_tx_packet), 3421 GFP_KERNEL); 3422 if (!priv->msg_buffers) 3423 return -ENOMEM; 3424 3425 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3426 v = dma_alloc_coherent(&priv->pci_dev->dev, 3427 sizeof(struct ipw2100_cmd_header), &p, 3428 GFP_KERNEL); 3429 if (!v) { 3430 printk(KERN_ERR DRV_NAME ": " 3431 "%s: PCI alloc failed for msg " 3432 "buffers.\n", priv->net_dev->name); 3433 err = -ENOMEM; 3434 break; 3435 } 3436 3437 priv->msg_buffers[i].type = COMMAND; 3438 priv->msg_buffers[i].info.c_struct.cmd = 3439 (struct ipw2100_cmd_header *)v; 3440 priv->msg_buffers[i].info.c_struct.cmd_phys = p; 3441 } 3442 3443 if (i == IPW_COMMAND_POOL_SIZE) 3444 return 0; 3445 3446 for (j = 0; j < i; j++) { 3447 dma_free_coherent(&priv->pci_dev->dev, 3448 sizeof(struct ipw2100_cmd_header), 3449 priv->msg_buffers[j].info.c_struct.cmd, 3450 priv->msg_buffers[j].info.c_struct.cmd_phys); 3451 } 3452 3453 kfree(priv->msg_buffers); 3454 priv->msg_buffers = NULL; 3455 3456 return err; 3457 } 3458 3459 static int ipw2100_msg_initialize(struct ipw2100_priv *priv) 3460 { 3461 int i; 3462 3463 INIT_LIST_HEAD(&priv->msg_free_list); 3464 INIT_LIST_HEAD(&priv->msg_pend_list); 3465 3466 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) 3467 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list); 3468 SET_STAT(&priv->msg_free_stat, i); 3469 3470 return 0; 3471 } 3472 3473 static void ipw2100_msg_free(struct ipw2100_priv *priv) 3474 { 3475 int i; 3476 3477 if (!priv->msg_buffers) 3478 return; 3479 3480 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) { 3481 dma_free_coherent(&priv->pci_dev->dev, 3482 sizeof(struct ipw2100_cmd_header), 3483 priv->msg_buffers[i].info.c_struct.cmd, 3484 priv->msg_buffers[i].info.c_struct.cmd_phys); 3485 } 3486 3487 kfree(priv->msg_buffers); 3488 priv->msg_buffers = NULL; 3489 } 3490 3491 static ssize_t pci_show(struct device *d, struct device_attribute *attr, 3492 char *buf) 3493 { 3494 struct pci_dev *pci_dev = to_pci_dev(d); 3495 char *out = buf; 3496 int i, j; 3497 u32 val; 3498 3499 for (i = 0; i < 16; i++) { 3500 out += sprintf(out, "[%08X] ", i * 16); 3501 for (j = 0; j < 16; j += 4) { 3502 pci_read_config_dword(pci_dev, i * 16 + j, &val); 3503 out += sprintf(out, "%08X ", val); 3504 } 3505 out += sprintf(out, "\n"); 3506 } 3507 3508 return out - buf; 3509 } 3510 3511 static DEVICE_ATTR_RO(pci); 3512 3513 static ssize_t cfg_show(struct device *d, struct device_attribute *attr, 3514 char *buf) 3515 { 3516 struct ipw2100_priv *p = dev_get_drvdata(d); 3517 return sprintf(buf, "0x%08x\n", (int)p->config); 3518 } 3519 3520 static DEVICE_ATTR_RO(cfg); 3521 3522 static ssize_t status_show(struct device *d, struct device_attribute *attr, 3523 char *buf) 3524 { 3525 struct ipw2100_priv *p = dev_get_drvdata(d); 3526 return sprintf(buf, "0x%08x\n", (int)p->status); 3527 } 3528 3529 static DEVICE_ATTR_RO(status); 3530 3531 static ssize_t capability_show(struct device *d, struct device_attribute *attr, 3532 char *buf) 3533 { 3534 struct ipw2100_priv *p = dev_get_drvdata(d); 3535 return sprintf(buf, "0x%08x\n", (int)p->capability); 3536 } 3537 3538 static DEVICE_ATTR_RO(capability); 3539 3540 #define IPW2100_REG(x) { IPW_ ##x, #x } 3541 static const struct { 3542 u32 addr; 3543 const char *name; 3544 } hw_data[] = { 3545 IPW2100_REG(REG_GP_CNTRL), 3546 IPW2100_REG(REG_GPIO), 3547 IPW2100_REG(REG_INTA), 3548 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),}; 3549 #define IPW2100_NIC(x, s) { x, #x, s } 3550 static const struct { 3551 u32 addr; 3552 const char *name; 3553 size_t size; 3554 } nic_data[] = { 3555 IPW2100_NIC(IPW2100_CONTROL_REG, 2), 3556 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),}; 3557 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d } 3558 static const struct { 3559 u8 index; 3560 const char *name; 3561 const char *desc; 3562 } ord_data[] = { 3563 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"), 3564 IPW2100_ORD(STAT_TX_HOST_COMPLETE, 3565 "successful Host Tx's (MSDU)"), 3566 IPW2100_ORD(STAT_TX_DIR_DATA, 3567 "successful Directed Tx's (MSDU)"), 3568 IPW2100_ORD(STAT_TX_DIR_DATA1, 3569 "successful Directed Tx's (MSDU) @ 1MB"), 3570 IPW2100_ORD(STAT_TX_DIR_DATA2, 3571 "successful Directed Tx's (MSDU) @ 2MB"), 3572 IPW2100_ORD(STAT_TX_DIR_DATA5_5, 3573 "successful Directed Tx's (MSDU) @ 5_5MB"), 3574 IPW2100_ORD(STAT_TX_DIR_DATA11, 3575 "successful Directed Tx's (MSDU) @ 11MB"), 3576 IPW2100_ORD(STAT_TX_NODIR_DATA1, 3577 "successful Non_Directed Tx's (MSDU) @ 1MB"), 3578 IPW2100_ORD(STAT_TX_NODIR_DATA2, 3579 "successful Non_Directed Tx's (MSDU) @ 2MB"), 3580 IPW2100_ORD(STAT_TX_NODIR_DATA5_5, 3581 "successful Non_Directed Tx's (MSDU) @ 5.5MB"), 3582 IPW2100_ORD(STAT_TX_NODIR_DATA11, 3583 "successful Non_Directed Tx's (MSDU) @ 11MB"), 3584 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"), 3585 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"), 3586 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"), 3587 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"), 3588 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"), 3589 IPW2100_ORD(STAT_TX_ASSN_RESP, 3590 "successful Association response Tx's"), 3591 IPW2100_ORD(STAT_TX_REASSN, 3592 "successful Reassociation Tx's"), 3593 IPW2100_ORD(STAT_TX_REASSN_RESP, 3594 "successful Reassociation response Tx's"), 3595 IPW2100_ORD(STAT_TX_PROBE, 3596 "probes successfully transmitted"), 3597 IPW2100_ORD(STAT_TX_PROBE_RESP, 3598 "probe responses successfully transmitted"), 3599 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"), 3600 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"), 3601 IPW2100_ORD(STAT_TX_DISASSN, 3602 "successful Disassociation TX"), 3603 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"), 3604 IPW2100_ORD(STAT_TX_DEAUTH, 3605 "successful Deauthentication TX"), 3606 IPW2100_ORD(STAT_TX_TOTAL_BYTES, 3607 "Total successful Tx data bytes"), 3608 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"), 3609 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"), 3610 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"), 3611 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"), 3612 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"), 3613 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"), 3614 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP, 3615 "times max tries in a hop failed"), 3616 IPW2100_ORD(STAT_TX_DISASSN_FAIL, 3617 "times disassociation failed"), 3618 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"), 3619 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"), 3620 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"), 3621 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"), 3622 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"), 3623 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"), 3624 IPW2100_ORD(STAT_RX_DIR_DATA5_5, 3625 "directed packets at 5.5MB"), 3626 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"), 3627 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"), 3628 IPW2100_ORD(STAT_RX_NODIR_DATA1, 3629 "nondirected packets at 1MB"), 3630 IPW2100_ORD(STAT_RX_NODIR_DATA2, 3631 "nondirected packets at 2MB"), 3632 IPW2100_ORD(STAT_RX_NODIR_DATA5_5, 3633 "nondirected packets at 5.5MB"), 3634 IPW2100_ORD(STAT_RX_NODIR_DATA11, 3635 "nondirected packets at 11MB"), 3636 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"), 3637 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS, 3638 "Rx CTS"), 3639 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"), 3640 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"), 3641 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"), 3642 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"), 3643 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"), 3644 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"), 3645 IPW2100_ORD(STAT_RX_REASSN_RESP, 3646 "Reassociation response Rx's"), 3647 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"), 3648 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"), 3649 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"), 3650 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"), 3651 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"), 3652 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"), 3653 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"), 3654 IPW2100_ORD(STAT_RX_TOTAL_BYTES, 3655 "Total rx data bytes received"), 3656 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"), 3657 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"), 3658 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"), 3659 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"), 3660 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"), 3661 IPW2100_ORD(STAT_RX_DUPLICATE1, 3662 "duplicate rx packets at 1MB"), 3663 IPW2100_ORD(STAT_RX_DUPLICATE2, 3664 "duplicate rx packets at 2MB"), 3665 IPW2100_ORD(STAT_RX_DUPLICATE5_5, 3666 "duplicate rx packets at 5.5MB"), 3667 IPW2100_ORD(STAT_RX_DUPLICATE11, 3668 "duplicate rx packets at 11MB"), 3669 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"), 3670 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"), 3671 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"), 3672 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"), 3673 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL, 3674 "rx frames with invalid protocol"), 3675 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"), 3676 IPW2100_ORD(STAT_RX_NO_BUFFER, 3677 "rx frames rejected due to no buffer"), 3678 IPW2100_ORD(STAT_RX_MISSING_FRAG, 3679 "rx frames dropped due to missing fragment"), 3680 IPW2100_ORD(STAT_RX_ORPHAN_FRAG, 3681 "rx frames dropped due to non-sequential fragment"), 3682 IPW2100_ORD(STAT_RX_ORPHAN_FRAME, 3683 "rx frames dropped due to unmatched 1st frame"), 3684 IPW2100_ORD(STAT_RX_FRAG_AGEOUT, 3685 "rx frames dropped due to uncompleted frame"), 3686 IPW2100_ORD(STAT_RX_ICV_ERRORS, 3687 "ICV errors during decryption"), 3688 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"), 3689 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"), 3690 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT, 3691 "poll response timeouts"), 3692 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT, 3693 "timeouts waiting for last {broad,multi}cast pkt"), 3694 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"), 3695 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"), 3696 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"), 3697 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"), 3698 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS, 3699 "current calculation of % missed beacons"), 3700 IPW2100_ORD(STAT_PERCENT_RETRIES, 3701 "current calculation of % missed tx retries"), 3702 IPW2100_ORD(ASSOCIATED_AP_PTR, 3703 "0 if not associated, else pointer to AP table entry"), 3704 IPW2100_ORD(AVAILABLE_AP_CNT, 3705 "AP's described in the AP table"), 3706 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"), 3707 IPW2100_ORD(STAT_AP_ASSNS, "associations"), 3708 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"), 3709 IPW2100_ORD(STAT_ASSN_RESP_FAIL, 3710 "failures due to response fail"), 3711 IPW2100_ORD(STAT_FULL_SCANS, "full scans"), 3712 IPW2100_ORD(CARD_DISABLED, "Card Disabled"), 3713 IPW2100_ORD(STAT_ROAM_INHIBIT, 3714 "times roaming was inhibited due to activity"), 3715 IPW2100_ORD(RSSI_AT_ASSN, 3716 "RSSI of associated AP at time of association"), 3717 IPW2100_ORD(STAT_ASSN_CAUSE1, 3718 "reassociation: no probe response or TX on hop"), 3719 IPW2100_ORD(STAT_ASSN_CAUSE2, 3720 "reassociation: poor tx/rx quality"), 3721 IPW2100_ORD(STAT_ASSN_CAUSE3, 3722 "reassociation: tx/rx quality (excessive AP load"), 3723 IPW2100_ORD(STAT_ASSN_CAUSE4, 3724 "reassociation: AP RSSI level"), 3725 IPW2100_ORD(STAT_ASSN_CAUSE5, 3726 "reassociations due to load leveling"), 3727 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"), 3728 IPW2100_ORD(STAT_AUTH_RESP_FAIL, 3729 "times authentication response failed"), 3730 IPW2100_ORD(STATION_TABLE_CNT, 3731 "entries in association table"), 3732 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"), 3733 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"), 3734 IPW2100_ORD(COUNTRY_CODE, 3735 "IEEE country code as recv'd from beacon"), 3736 IPW2100_ORD(COUNTRY_CHANNELS, 3737 "channels supported by country"), 3738 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"), 3739 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"), 3740 IPW2100_ORD(ANTENNA_DIVERSITY, 3741 "TRUE if antenna diversity is disabled"), 3742 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"), 3743 IPW2100_ORD(OUR_FREQ, 3744 "current radio freq lower digits - channel ID"), 3745 IPW2100_ORD(RTC_TIME, "current RTC time"), 3746 IPW2100_ORD(PORT_TYPE, "operating mode"), 3747 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"), 3748 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"), 3749 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"), 3750 IPW2100_ORD(BASIC_RATES, "basic tx rates"), 3751 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"), 3752 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"), 3753 IPW2100_ORD(CAPABILITIES, 3754 "Management frame capability field"), 3755 IPW2100_ORD(AUTH_TYPE, "Type of authentication"), 3756 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"), 3757 IPW2100_ORD(RTS_THRESHOLD, 3758 "Min packet length for RTS handshaking"), 3759 IPW2100_ORD(INT_MODE, "International mode"), 3760 IPW2100_ORD(FRAGMENTATION_THRESHOLD, 3761 "protocol frag threshold"), 3762 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS, 3763 "EEPROM offset in SRAM"), 3764 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE, 3765 "EEPROM size in SRAM"), 3766 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"), 3767 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS, 3768 "EEPROM IBSS 11b channel set"), 3769 IPW2100_ORD(MAC_VERSION, "MAC Version"), 3770 IPW2100_ORD(MAC_REVISION, "MAC Revision"), 3771 IPW2100_ORD(RADIO_VERSION, "Radio Version"), 3772 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"), 3773 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),}; 3774 3775 static ssize_t registers_show(struct device *d, struct device_attribute *attr, 3776 char *buf) 3777 { 3778 int i; 3779 struct ipw2100_priv *priv = dev_get_drvdata(d); 3780 struct net_device *dev = priv->net_dev; 3781 char *out = buf; 3782 u32 val = 0; 3783 3784 out += sprintf(out, "%30s [Address ] : Hex\n", "Register"); 3785 3786 for (i = 0; i < ARRAY_SIZE(hw_data); i++) { 3787 read_register(dev, hw_data[i].addr, &val); 3788 out += sprintf(out, "%30s [%08X] : %08X\n", 3789 hw_data[i].name, hw_data[i].addr, val); 3790 } 3791 3792 return out - buf; 3793 } 3794 3795 static DEVICE_ATTR_RO(registers); 3796 3797 static ssize_t hardware_show(struct device *d, struct device_attribute *attr, 3798 char *buf) 3799 { 3800 struct ipw2100_priv *priv = dev_get_drvdata(d); 3801 struct net_device *dev = priv->net_dev; 3802 char *out = buf; 3803 int i; 3804 3805 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry"); 3806 3807 for (i = 0; i < ARRAY_SIZE(nic_data); i++) { 3808 u8 tmp8; 3809 u16 tmp16; 3810 u32 tmp32; 3811 3812 switch (nic_data[i].size) { 3813 case 1: 3814 read_nic_byte(dev, nic_data[i].addr, &tmp8); 3815 out += sprintf(out, "%30s [%08X] : %02X\n", 3816 nic_data[i].name, nic_data[i].addr, 3817 tmp8); 3818 break; 3819 case 2: 3820 read_nic_word(dev, nic_data[i].addr, &tmp16); 3821 out += sprintf(out, "%30s [%08X] : %04X\n", 3822 nic_data[i].name, nic_data[i].addr, 3823 tmp16); 3824 break; 3825 case 4: 3826 read_nic_dword(dev, nic_data[i].addr, &tmp32); 3827 out += sprintf(out, "%30s [%08X] : %08X\n", 3828 nic_data[i].name, nic_data[i].addr, 3829 tmp32); 3830 break; 3831 } 3832 } 3833 return out - buf; 3834 } 3835 3836 static DEVICE_ATTR_RO(hardware); 3837 3838 static ssize_t memory_show(struct device *d, struct device_attribute *attr, 3839 char *buf) 3840 { 3841 struct ipw2100_priv *priv = dev_get_drvdata(d); 3842 struct net_device *dev = priv->net_dev; 3843 static unsigned long loop = 0; 3844 int len = 0; 3845 u32 buffer[4]; 3846 int i; 3847 char line[81]; 3848 3849 if (loop >= 0x30000) 3850 loop = 0; 3851 3852 /* sysfs provides us PAGE_SIZE buffer */ 3853 while (len < PAGE_SIZE - 128 && loop < 0x30000) { 3854 3855 if (priv->snapshot[0]) 3856 for (i = 0; i < 4; i++) 3857 buffer[i] = 3858 *(u32 *) SNAPSHOT_ADDR(loop + i * 4); 3859 else 3860 for (i = 0; i < 4; i++) 3861 read_nic_dword(dev, loop + i * 4, &buffer[i]); 3862 3863 if (priv->dump_raw) 3864 len += sprintf(buf + len, 3865 "%c%c%c%c" 3866 "%c%c%c%c" 3867 "%c%c%c%c" 3868 "%c%c%c%c", 3869 ((u8 *) buffer)[0x0], 3870 ((u8 *) buffer)[0x1], 3871 ((u8 *) buffer)[0x2], 3872 ((u8 *) buffer)[0x3], 3873 ((u8 *) buffer)[0x4], 3874 ((u8 *) buffer)[0x5], 3875 ((u8 *) buffer)[0x6], 3876 ((u8 *) buffer)[0x7], 3877 ((u8 *) buffer)[0x8], 3878 ((u8 *) buffer)[0x9], 3879 ((u8 *) buffer)[0xa], 3880 ((u8 *) buffer)[0xb], 3881 ((u8 *) buffer)[0xc], 3882 ((u8 *) buffer)[0xd], 3883 ((u8 *) buffer)[0xe], 3884 ((u8 *) buffer)[0xf]); 3885 else 3886 len += sprintf(buf + len, "%s\n", 3887 snprint_line(line, sizeof(line), 3888 (u8 *) buffer, 16, loop)); 3889 loop += 16; 3890 } 3891 3892 return len; 3893 } 3894 3895 static ssize_t memory_store(struct device *d, struct device_attribute *attr, 3896 const char *buf, size_t count) 3897 { 3898 struct ipw2100_priv *priv = dev_get_drvdata(d); 3899 struct net_device *dev = priv->net_dev; 3900 const char *p = buf; 3901 3902 (void)dev; /* kill unused-var warning for debug-only code */ 3903 3904 if (count < 1) 3905 return count; 3906 3907 if (p[0] == '1' || 3908 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) { 3909 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n", 3910 dev->name); 3911 priv->dump_raw = 1; 3912 3913 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' && 3914 tolower(p[1]) == 'f')) { 3915 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n", 3916 dev->name); 3917 priv->dump_raw = 0; 3918 3919 } else if (tolower(p[0]) == 'r') { 3920 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name); 3921 ipw2100_snapshot_free(priv); 3922 3923 } else 3924 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, " 3925 "reset = clear memory snapshot\n", dev->name); 3926 3927 return count; 3928 } 3929 3930 static DEVICE_ATTR_RW(memory); 3931 3932 static ssize_t ordinals_show(struct device *d, struct device_attribute *attr, 3933 char *buf) 3934 { 3935 struct ipw2100_priv *priv = dev_get_drvdata(d); 3936 u32 val = 0; 3937 int len = 0; 3938 u32 val_len; 3939 static int loop = 0; 3940 3941 if (priv->status & STATUS_RF_KILL_MASK) 3942 return 0; 3943 3944 if (loop >= ARRAY_SIZE(ord_data)) 3945 loop = 0; 3946 3947 /* sysfs provides us PAGE_SIZE buffer */ 3948 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) { 3949 val_len = sizeof(u32); 3950 3951 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val, 3952 &val_len)) 3953 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n", 3954 ord_data[loop].index, 3955 ord_data[loop].desc); 3956 else 3957 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n", 3958 ord_data[loop].index, val, 3959 ord_data[loop].desc); 3960 loop++; 3961 } 3962 3963 return len; 3964 } 3965 3966 static DEVICE_ATTR_RO(ordinals); 3967 3968 static ssize_t stats_show(struct device *d, struct device_attribute *attr, 3969 char *buf) 3970 { 3971 struct ipw2100_priv *priv = dev_get_drvdata(d); 3972 char *out = buf; 3973 3974 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n", 3975 priv->interrupts, priv->tx_interrupts, 3976 priv->rx_interrupts, priv->inta_other); 3977 out += sprintf(out, "firmware resets: %d\n", priv->resets); 3978 out += sprintf(out, "firmware hangs: %d\n", priv->hangs); 3979 #ifdef CONFIG_IPW2100_DEBUG 3980 out += sprintf(out, "packet mismatch image: %s\n", 3981 priv->snapshot[0] ? "YES" : "NO"); 3982 #endif 3983 3984 return out - buf; 3985 } 3986 3987 static DEVICE_ATTR_RO(stats); 3988 3989 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode) 3990 { 3991 int err; 3992 3993 if (mode == priv->ieee->iw_mode) 3994 return 0; 3995 3996 err = ipw2100_disable_adapter(priv); 3997 if (err) { 3998 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n", 3999 priv->net_dev->name, err); 4000 return err; 4001 } 4002 4003 switch (mode) { 4004 case IW_MODE_INFRA: 4005 priv->net_dev->type = ARPHRD_ETHER; 4006 break; 4007 case IW_MODE_ADHOC: 4008 priv->net_dev->type = ARPHRD_ETHER; 4009 break; 4010 #ifdef CONFIG_IPW2100_MONITOR 4011 case IW_MODE_MONITOR: 4012 priv->last_mode = priv->ieee->iw_mode; 4013 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 4014 break; 4015 #endif /* CONFIG_IPW2100_MONITOR */ 4016 } 4017 4018 priv->ieee->iw_mode = mode; 4019 4020 #ifdef CONFIG_PM 4021 /* Indicate ipw2100_download_firmware download firmware 4022 * from disk instead of memory. */ 4023 ipw2100_firmware.version = 0; 4024 #endif 4025 4026 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name); 4027 priv->reset_backoff = 0; 4028 schedule_reset(priv); 4029 4030 return 0; 4031 } 4032 4033 static ssize_t internals_show(struct device *d, struct device_attribute *attr, 4034 char *buf) 4035 { 4036 struct ipw2100_priv *priv = dev_get_drvdata(d); 4037 int len = 0; 4038 4039 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x) 4040 4041 if (priv->status & STATUS_ASSOCIATED) 4042 len += sprintf(buf + len, "connected: %llu\n", 4043 ktime_get_boottime_seconds() - priv->connect_start); 4044 else 4045 len += sprintf(buf + len, "not connected\n"); 4046 4047 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p"); 4048 DUMP_VAR(status, "08lx"); 4049 DUMP_VAR(config, "08lx"); 4050 DUMP_VAR(capability, "08lx"); 4051 4052 len += 4053 sprintf(buf + len, "last_rtc: %lu\n", 4054 (unsigned long)priv->last_rtc); 4055 4056 DUMP_VAR(fatal_error, "d"); 4057 DUMP_VAR(stop_hang_check, "d"); 4058 DUMP_VAR(stop_rf_kill, "d"); 4059 DUMP_VAR(messages_sent, "d"); 4060 4061 DUMP_VAR(tx_pend_stat.value, "d"); 4062 DUMP_VAR(tx_pend_stat.hi, "d"); 4063 4064 DUMP_VAR(tx_free_stat.value, "d"); 4065 DUMP_VAR(tx_free_stat.lo, "d"); 4066 4067 DUMP_VAR(msg_free_stat.value, "d"); 4068 DUMP_VAR(msg_free_stat.lo, "d"); 4069 4070 DUMP_VAR(msg_pend_stat.value, "d"); 4071 DUMP_VAR(msg_pend_stat.hi, "d"); 4072 4073 DUMP_VAR(fw_pend_stat.value, "d"); 4074 DUMP_VAR(fw_pend_stat.hi, "d"); 4075 4076 DUMP_VAR(txq_stat.value, "d"); 4077 DUMP_VAR(txq_stat.lo, "d"); 4078 4079 DUMP_VAR(ieee->scans, "d"); 4080 DUMP_VAR(reset_backoff, "lld"); 4081 4082 return len; 4083 } 4084 4085 static DEVICE_ATTR_RO(internals); 4086 4087 static ssize_t bssinfo_show(struct device *d, struct device_attribute *attr, 4088 char *buf) 4089 { 4090 struct ipw2100_priv *priv = dev_get_drvdata(d); 4091 char essid[IW_ESSID_MAX_SIZE + 1]; 4092 u8 bssid[ETH_ALEN]; 4093 u32 chan = 0; 4094 char *out = buf; 4095 unsigned int length; 4096 int ret; 4097 4098 if (priv->status & STATUS_RF_KILL_MASK) 4099 return 0; 4100 4101 memset(essid, 0, sizeof(essid)); 4102 memset(bssid, 0, sizeof(bssid)); 4103 4104 length = IW_ESSID_MAX_SIZE; 4105 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length); 4106 if (ret) 4107 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4108 __LINE__); 4109 4110 length = sizeof(bssid); 4111 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 4112 bssid, &length); 4113 if (ret) 4114 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4115 __LINE__); 4116 4117 length = sizeof(u32); 4118 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length); 4119 if (ret) 4120 IPW_DEBUG_INFO("failed querying ordinals at line %d\n", 4121 __LINE__); 4122 4123 out += sprintf(out, "ESSID: %s\n", essid); 4124 out += sprintf(out, "BSSID: %pM\n", bssid); 4125 out += sprintf(out, "Channel: %d\n", chan); 4126 4127 return out - buf; 4128 } 4129 4130 static DEVICE_ATTR_RO(bssinfo); 4131 4132 #ifdef CONFIG_IPW2100_DEBUG 4133 static ssize_t debug_level_show(struct device_driver *d, char *buf) 4134 { 4135 return sprintf(buf, "0x%08X\n", ipw2100_debug_level); 4136 } 4137 4138 static ssize_t debug_level_store(struct device_driver *d, 4139 const char *buf, size_t count) 4140 { 4141 u32 val; 4142 int ret; 4143 4144 ret = kstrtou32(buf, 0, &val); 4145 if (ret) 4146 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf); 4147 else 4148 ipw2100_debug_level = val; 4149 4150 return strnlen(buf, count); 4151 } 4152 static DRIVER_ATTR_RW(debug_level); 4153 #endif /* CONFIG_IPW2100_DEBUG */ 4154 4155 static ssize_t fatal_error_show(struct device *d, 4156 struct device_attribute *attr, char *buf) 4157 { 4158 struct ipw2100_priv *priv = dev_get_drvdata(d); 4159 char *out = buf; 4160 int i; 4161 4162 if (priv->fatal_error) 4163 out += sprintf(out, "0x%08X\n", priv->fatal_error); 4164 else 4165 out += sprintf(out, "0\n"); 4166 4167 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) { 4168 if (!priv->fatal_errors[(priv->fatal_index - i) % 4169 IPW2100_ERROR_QUEUE]) 4170 continue; 4171 4172 out += sprintf(out, "%d. 0x%08X\n", i, 4173 priv->fatal_errors[(priv->fatal_index - i) % 4174 IPW2100_ERROR_QUEUE]); 4175 } 4176 4177 return out - buf; 4178 } 4179 4180 static ssize_t fatal_error_store(struct device *d, 4181 struct device_attribute *attr, const char *buf, 4182 size_t count) 4183 { 4184 struct ipw2100_priv *priv = dev_get_drvdata(d); 4185 schedule_reset(priv); 4186 return count; 4187 } 4188 4189 static DEVICE_ATTR_RW(fatal_error); 4190 4191 static ssize_t scan_age_show(struct device *d, struct device_attribute *attr, 4192 char *buf) 4193 { 4194 struct ipw2100_priv *priv = dev_get_drvdata(d); 4195 return sprintf(buf, "%d\n", priv->ieee->scan_age); 4196 } 4197 4198 static ssize_t scan_age_store(struct device *d, struct device_attribute *attr, 4199 const char *buf, size_t count) 4200 { 4201 struct ipw2100_priv *priv = dev_get_drvdata(d); 4202 struct net_device *dev = priv->net_dev; 4203 unsigned long val; 4204 int ret; 4205 4206 (void)dev; /* kill unused-var warning for debug-only code */ 4207 4208 IPW_DEBUG_INFO("enter\n"); 4209 4210 ret = kstrtoul(buf, 0, &val); 4211 if (ret) { 4212 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); 4213 } else { 4214 priv->ieee->scan_age = val; 4215 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); 4216 } 4217 4218 IPW_DEBUG_INFO("exit\n"); 4219 return strnlen(buf, count); 4220 } 4221 4222 static DEVICE_ATTR_RW(scan_age); 4223 4224 static ssize_t rf_kill_show(struct device *d, struct device_attribute *attr, 4225 char *buf) 4226 { 4227 /* 0 - RF kill not enabled 4228 1 - SW based RF kill active (sysfs) 4229 2 - HW based RF kill active 4230 3 - Both HW and SW baed RF kill active */ 4231 struct ipw2100_priv *priv = dev_get_drvdata(d); 4232 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | 4233 (rf_kill_active(priv) ? 0x2 : 0x0); 4234 return sprintf(buf, "%i\n", val); 4235 } 4236 4237 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio) 4238 { 4239 if ((disable_radio ? 1 : 0) == 4240 (priv->status & STATUS_RF_KILL_SW ? 1 : 0)) 4241 return 0; 4242 4243 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", 4244 disable_radio ? "OFF" : "ON"); 4245 4246 mutex_lock(&priv->action_mutex); 4247 4248 if (disable_radio) { 4249 priv->status |= STATUS_RF_KILL_SW; 4250 ipw2100_down(priv); 4251 } else { 4252 priv->status &= ~STATUS_RF_KILL_SW; 4253 if (rf_kill_active(priv)) { 4254 IPW_DEBUG_RF_KILL("Can not turn radio back on - " 4255 "disabled by HW switch\n"); 4256 /* Make sure the RF_KILL check timer is running */ 4257 priv->stop_rf_kill = 0; 4258 mod_delayed_work(system_wq, &priv->rf_kill, 4259 round_jiffies_relative(HZ)); 4260 } else 4261 schedule_reset(priv); 4262 } 4263 4264 mutex_unlock(&priv->action_mutex); 4265 return 1; 4266 } 4267 4268 static ssize_t rf_kill_store(struct device *d, struct device_attribute *attr, 4269 const char *buf, size_t count) 4270 { 4271 struct ipw2100_priv *priv = dev_get_drvdata(d); 4272 ipw_radio_kill_sw(priv, buf[0] == '1'); 4273 return count; 4274 } 4275 4276 static DEVICE_ATTR_RW(rf_kill); 4277 4278 static struct attribute *ipw2100_sysfs_entries[] = { 4279 &dev_attr_hardware.attr, 4280 &dev_attr_registers.attr, 4281 &dev_attr_ordinals.attr, 4282 &dev_attr_pci.attr, 4283 &dev_attr_stats.attr, 4284 &dev_attr_internals.attr, 4285 &dev_attr_bssinfo.attr, 4286 &dev_attr_memory.attr, 4287 &dev_attr_scan_age.attr, 4288 &dev_attr_fatal_error.attr, 4289 &dev_attr_rf_kill.attr, 4290 &dev_attr_cfg.attr, 4291 &dev_attr_status.attr, 4292 &dev_attr_capability.attr, 4293 NULL, 4294 }; 4295 4296 static const struct attribute_group ipw2100_attribute_group = { 4297 .attrs = ipw2100_sysfs_entries, 4298 }; 4299 4300 static int status_queue_allocate(struct ipw2100_priv *priv, int entries) 4301 { 4302 struct ipw2100_status_queue *q = &priv->status_queue; 4303 4304 IPW_DEBUG_INFO("enter\n"); 4305 4306 q->size = entries * sizeof(struct ipw2100_status); 4307 q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic, 4308 GFP_KERNEL); 4309 if (!q->drv) { 4310 IPW_DEBUG_WARNING("Can not allocate status queue.\n"); 4311 return -ENOMEM; 4312 } 4313 4314 IPW_DEBUG_INFO("exit\n"); 4315 4316 return 0; 4317 } 4318 4319 static void status_queue_free(struct ipw2100_priv *priv) 4320 { 4321 IPW_DEBUG_INFO("enter\n"); 4322 4323 if (priv->status_queue.drv) { 4324 dma_free_coherent(&priv->pci_dev->dev, 4325 priv->status_queue.size, 4326 priv->status_queue.drv, 4327 priv->status_queue.nic); 4328 priv->status_queue.drv = NULL; 4329 } 4330 4331 IPW_DEBUG_INFO("exit\n"); 4332 } 4333 4334 static int bd_queue_allocate(struct ipw2100_priv *priv, 4335 struct ipw2100_bd_queue *q, int entries) 4336 { 4337 IPW_DEBUG_INFO("enter\n"); 4338 4339 memset(q, 0, sizeof(struct ipw2100_bd_queue)); 4340 4341 q->entries = entries; 4342 q->size = entries * sizeof(struct ipw2100_bd); 4343 q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic, 4344 GFP_KERNEL); 4345 if (!q->drv) { 4346 IPW_DEBUG_INFO 4347 ("can't allocate shared memory for buffer descriptors\n"); 4348 return -ENOMEM; 4349 } 4350 4351 IPW_DEBUG_INFO("exit\n"); 4352 4353 return 0; 4354 } 4355 4356 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q) 4357 { 4358 IPW_DEBUG_INFO("enter\n"); 4359 4360 if (!q) 4361 return; 4362 4363 if (q->drv) { 4364 dma_free_coherent(&priv->pci_dev->dev, q->size, q->drv, 4365 q->nic); 4366 q->drv = NULL; 4367 } 4368 4369 IPW_DEBUG_INFO("exit\n"); 4370 } 4371 4372 static void bd_queue_initialize(struct ipw2100_priv *priv, 4373 struct ipw2100_bd_queue *q, u32 base, u32 size, 4374 u32 r, u32 w) 4375 { 4376 IPW_DEBUG_INFO("enter\n"); 4377 4378 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv, 4379 (u32) q->nic); 4380 4381 write_register(priv->net_dev, base, q->nic); 4382 write_register(priv->net_dev, size, q->entries); 4383 write_register(priv->net_dev, r, q->oldest); 4384 write_register(priv->net_dev, w, q->next); 4385 4386 IPW_DEBUG_INFO("exit\n"); 4387 } 4388 4389 static void ipw2100_kill_works(struct ipw2100_priv *priv) 4390 { 4391 priv->stop_rf_kill = 1; 4392 priv->stop_hang_check = 1; 4393 cancel_delayed_work_sync(&priv->reset_work); 4394 cancel_delayed_work_sync(&priv->security_work); 4395 cancel_delayed_work_sync(&priv->wx_event_work); 4396 cancel_delayed_work_sync(&priv->hang_check); 4397 cancel_delayed_work_sync(&priv->rf_kill); 4398 cancel_delayed_work_sync(&priv->scan_event); 4399 } 4400 4401 static int ipw2100_tx_allocate(struct ipw2100_priv *priv) 4402 { 4403 int i, j, err; 4404 void *v; 4405 dma_addr_t p; 4406 4407 IPW_DEBUG_INFO("enter\n"); 4408 4409 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH); 4410 if (err) { 4411 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n", 4412 priv->net_dev->name); 4413 return err; 4414 } 4415 4416 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH, 4417 sizeof(struct ipw2100_tx_packet), 4418 GFP_KERNEL); 4419 if (!priv->tx_buffers) { 4420 bd_queue_free(priv, &priv->tx_queue); 4421 return -ENOMEM; 4422 } 4423 4424 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4425 v = dma_alloc_coherent(&priv->pci_dev->dev, 4426 sizeof(struct ipw2100_data_header), &p, 4427 GFP_KERNEL); 4428 if (!v) { 4429 printk(KERN_ERR DRV_NAME 4430 ": %s: PCI alloc failed for tx " "buffers.\n", 4431 priv->net_dev->name); 4432 err = -ENOMEM; 4433 break; 4434 } 4435 4436 priv->tx_buffers[i].type = DATA; 4437 priv->tx_buffers[i].info.d_struct.data = 4438 (struct ipw2100_data_header *)v; 4439 priv->tx_buffers[i].info.d_struct.data_phys = p; 4440 priv->tx_buffers[i].info.d_struct.txb = NULL; 4441 } 4442 4443 if (i == TX_PENDED_QUEUE_LENGTH) 4444 return 0; 4445 4446 for (j = 0; j < i; j++) { 4447 dma_free_coherent(&priv->pci_dev->dev, 4448 sizeof(struct ipw2100_data_header), 4449 priv->tx_buffers[j].info.d_struct.data, 4450 priv->tx_buffers[j].info.d_struct.data_phys); 4451 } 4452 4453 kfree(priv->tx_buffers); 4454 priv->tx_buffers = NULL; 4455 4456 return err; 4457 } 4458 4459 static void ipw2100_tx_initialize(struct ipw2100_priv *priv) 4460 { 4461 int i; 4462 4463 IPW_DEBUG_INFO("enter\n"); 4464 4465 /* 4466 * reinitialize packet info lists 4467 */ 4468 INIT_LIST_HEAD(&priv->fw_pend_list); 4469 INIT_STAT(&priv->fw_pend_stat); 4470 4471 /* 4472 * reinitialize lists 4473 */ 4474 INIT_LIST_HEAD(&priv->tx_pend_list); 4475 INIT_LIST_HEAD(&priv->tx_free_list); 4476 INIT_STAT(&priv->tx_pend_stat); 4477 INIT_STAT(&priv->tx_free_stat); 4478 4479 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4480 /* We simply drop any SKBs that have been queued for 4481 * transmit */ 4482 if (priv->tx_buffers[i].info.d_struct.txb) { 4483 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4484 txb); 4485 priv->tx_buffers[i].info.d_struct.txb = NULL; 4486 } 4487 4488 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list); 4489 } 4490 4491 SET_STAT(&priv->tx_free_stat, i); 4492 4493 priv->tx_queue.oldest = 0; 4494 priv->tx_queue.available = priv->tx_queue.entries; 4495 priv->tx_queue.next = 0; 4496 INIT_STAT(&priv->txq_stat); 4497 SET_STAT(&priv->txq_stat, priv->tx_queue.available); 4498 4499 bd_queue_initialize(priv, &priv->tx_queue, 4500 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE, 4501 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE, 4502 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX, 4503 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX); 4504 4505 IPW_DEBUG_INFO("exit\n"); 4506 4507 } 4508 4509 static void ipw2100_tx_free(struct ipw2100_priv *priv) 4510 { 4511 int i; 4512 4513 IPW_DEBUG_INFO("enter\n"); 4514 4515 bd_queue_free(priv, &priv->tx_queue); 4516 4517 if (!priv->tx_buffers) 4518 return; 4519 4520 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) { 4521 if (priv->tx_buffers[i].info.d_struct.txb) { 4522 libipw_txb_free(priv->tx_buffers[i].info.d_struct. 4523 txb); 4524 priv->tx_buffers[i].info.d_struct.txb = NULL; 4525 } 4526 if (priv->tx_buffers[i].info.d_struct.data) 4527 dma_free_coherent(&priv->pci_dev->dev, 4528 sizeof(struct ipw2100_data_header), 4529 priv->tx_buffers[i].info.d_struct.data, 4530 priv->tx_buffers[i].info.d_struct.data_phys); 4531 } 4532 4533 kfree(priv->tx_buffers); 4534 priv->tx_buffers = NULL; 4535 4536 IPW_DEBUG_INFO("exit\n"); 4537 } 4538 4539 static int ipw2100_rx_allocate(struct ipw2100_priv *priv) 4540 { 4541 int i, j, err = -EINVAL; 4542 4543 IPW_DEBUG_INFO("enter\n"); 4544 4545 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH); 4546 if (err) { 4547 IPW_DEBUG_INFO("failed bd_queue_allocate\n"); 4548 return err; 4549 } 4550 4551 err = status_queue_allocate(priv, RX_QUEUE_LENGTH); 4552 if (err) { 4553 IPW_DEBUG_INFO("failed status_queue_allocate\n"); 4554 bd_queue_free(priv, &priv->rx_queue); 4555 return err; 4556 } 4557 4558 /* 4559 * allocate packets 4560 */ 4561 priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH, 4562 sizeof(struct ipw2100_rx_packet), 4563 GFP_KERNEL); 4564 if (!priv->rx_buffers) { 4565 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n"); 4566 4567 bd_queue_free(priv, &priv->rx_queue); 4568 4569 status_queue_free(priv); 4570 4571 return -ENOMEM; 4572 } 4573 4574 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4575 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i]; 4576 4577 err = ipw2100_alloc_skb(priv, packet); 4578 if (unlikely(err)) { 4579 err = -ENOMEM; 4580 break; 4581 } 4582 4583 /* The BD holds the cache aligned address */ 4584 priv->rx_queue.drv[i].host_addr = packet->dma_addr; 4585 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH; 4586 priv->status_queue.drv[i].status_fields = 0; 4587 } 4588 4589 if (i == RX_QUEUE_LENGTH) 4590 return 0; 4591 4592 for (j = 0; j < i; j++) { 4593 dma_unmap_single(&priv->pci_dev->dev, 4594 priv->rx_buffers[j].dma_addr, 4595 sizeof(struct ipw2100_rx_packet), 4596 DMA_FROM_DEVICE); 4597 dev_kfree_skb(priv->rx_buffers[j].skb); 4598 } 4599 4600 kfree(priv->rx_buffers); 4601 priv->rx_buffers = NULL; 4602 4603 bd_queue_free(priv, &priv->rx_queue); 4604 4605 status_queue_free(priv); 4606 4607 return err; 4608 } 4609 4610 static void ipw2100_rx_initialize(struct ipw2100_priv *priv) 4611 { 4612 IPW_DEBUG_INFO("enter\n"); 4613 4614 priv->rx_queue.oldest = 0; 4615 priv->rx_queue.available = priv->rx_queue.entries - 1; 4616 priv->rx_queue.next = priv->rx_queue.entries - 1; 4617 4618 INIT_STAT(&priv->rxq_stat); 4619 SET_STAT(&priv->rxq_stat, priv->rx_queue.available); 4620 4621 bd_queue_initialize(priv, &priv->rx_queue, 4622 IPW_MEM_HOST_SHARED_RX_BD_BASE, 4623 IPW_MEM_HOST_SHARED_RX_BD_SIZE, 4624 IPW_MEM_HOST_SHARED_RX_READ_INDEX, 4625 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX); 4626 4627 /* set up the status queue */ 4628 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE, 4629 priv->status_queue.nic); 4630 4631 IPW_DEBUG_INFO("exit\n"); 4632 } 4633 4634 static void ipw2100_rx_free(struct ipw2100_priv *priv) 4635 { 4636 int i; 4637 4638 IPW_DEBUG_INFO("enter\n"); 4639 4640 bd_queue_free(priv, &priv->rx_queue); 4641 status_queue_free(priv); 4642 4643 if (!priv->rx_buffers) 4644 return; 4645 4646 for (i = 0; i < RX_QUEUE_LENGTH; i++) { 4647 if (priv->rx_buffers[i].rxp) { 4648 dma_unmap_single(&priv->pci_dev->dev, 4649 priv->rx_buffers[i].dma_addr, 4650 sizeof(struct ipw2100_rx), 4651 DMA_FROM_DEVICE); 4652 dev_kfree_skb(priv->rx_buffers[i].skb); 4653 } 4654 } 4655 4656 kfree(priv->rx_buffers); 4657 priv->rx_buffers = NULL; 4658 4659 IPW_DEBUG_INFO("exit\n"); 4660 } 4661 4662 static int ipw2100_read_mac_address(struct ipw2100_priv *priv) 4663 { 4664 u32 length = ETH_ALEN; 4665 u8 addr[ETH_ALEN]; 4666 4667 int err; 4668 4669 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length); 4670 if (err) { 4671 IPW_DEBUG_INFO("MAC address read failed\n"); 4672 return -EIO; 4673 } 4674 4675 eth_hw_addr_set(priv->net_dev, addr); 4676 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr); 4677 4678 return 0; 4679 } 4680 4681 /******************************************************************** 4682 * 4683 * Firmware Commands 4684 * 4685 ********************************************************************/ 4686 4687 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode) 4688 { 4689 struct host_command cmd = { 4690 .host_command = ADAPTER_ADDRESS, 4691 .host_command_sequence = 0, 4692 .host_command_length = ETH_ALEN 4693 }; 4694 int err; 4695 4696 IPW_DEBUG_HC("SET_MAC_ADDRESS\n"); 4697 4698 IPW_DEBUG_INFO("enter\n"); 4699 4700 if (priv->config & CFG_CUSTOM_MAC) { 4701 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN); 4702 eth_hw_addr_set(priv->net_dev, priv->mac_addr); 4703 } else 4704 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr, 4705 ETH_ALEN); 4706 4707 err = ipw2100_hw_send_command(priv, &cmd); 4708 4709 IPW_DEBUG_INFO("exit\n"); 4710 return err; 4711 } 4712 4713 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type, 4714 int batch_mode) 4715 { 4716 struct host_command cmd = { 4717 .host_command = PORT_TYPE, 4718 .host_command_sequence = 0, 4719 .host_command_length = sizeof(u32) 4720 }; 4721 int err; 4722 4723 switch (port_type) { 4724 case IW_MODE_INFRA: 4725 cmd.host_command_parameters[0] = IPW_BSS; 4726 break; 4727 case IW_MODE_ADHOC: 4728 cmd.host_command_parameters[0] = IPW_IBSS; 4729 break; 4730 } 4731 4732 IPW_DEBUG_HC("PORT_TYPE: %s\n", 4733 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed"); 4734 4735 if (!batch_mode) { 4736 err = ipw2100_disable_adapter(priv); 4737 if (err) { 4738 printk(KERN_ERR DRV_NAME 4739 ": %s: Could not disable adapter %d\n", 4740 priv->net_dev->name, err); 4741 return err; 4742 } 4743 } 4744 4745 /* send cmd to firmware */ 4746 err = ipw2100_hw_send_command(priv, &cmd); 4747 4748 if (!batch_mode) 4749 ipw2100_enable_adapter(priv); 4750 4751 return err; 4752 } 4753 4754 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel, 4755 int batch_mode) 4756 { 4757 struct host_command cmd = { 4758 .host_command = CHANNEL, 4759 .host_command_sequence = 0, 4760 .host_command_length = sizeof(u32) 4761 }; 4762 int err; 4763 4764 cmd.host_command_parameters[0] = channel; 4765 4766 IPW_DEBUG_HC("CHANNEL: %d\n", channel); 4767 4768 /* If BSS then we don't support channel selection */ 4769 if (priv->ieee->iw_mode == IW_MODE_INFRA) 4770 return 0; 4771 4772 if ((channel != 0) && 4773 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL))) 4774 return -EINVAL; 4775 4776 if (!batch_mode) { 4777 err = ipw2100_disable_adapter(priv); 4778 if (err) 4779 return err; 4780 } 4781 4782 err = ipw2100_hw_send_command(priv, &cmd); 4783 if (err) { 4784 IPW_DEBUG_INFO("Failed to set channel to %d", channel); 4785 return err; 4786 } 4787 4788 if (channel) 4789 priv->config |= CFG_STATIC_CHANNEL; 4790 else 4791 priv->config &= ~CFG_STATIC_CHANNEL; 4792 4793 priv->channel = channel; 4794 4795 if (!batch_mode) { 4796 err = ipw2100_enable_adapter(priv); 4797 if (err) 4798 return err; 4799 } 4800 4801 return 0; 4802 } 4803 4804 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode) 4805 { 4806 struct host_command cmd = { 4807 .host_command = SYSTEM_CONFIG, 4808 .host_command_sequence = 0, 4809 .host_command_length = 12, 4810 }; 4811 u32 ibss_mask, len = sizeof(u32); 4812 int err; 4813 4814 /* Set system configuration */ 4815 4816 if (!batch_mode) { 4817 err = ipw2100_disable_adapter(priv); 4818 if (err) 4819 return err; 4820 } 4821 4822 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 4823 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START; 4824 4825 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK | 4826 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE; 4827 4828 if (!(priv->config & CFG_LONG_PREAMBLE)) 4829 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO; 4830 4831 err = ipw2100_get_ordinal(priv, 4832 IPW_ORD_EEPROM_IBSS_11B_CHANNELS, 4833 &ibss_mask, &len); 4834 if (err) 4835 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK; 4836 4837 cmd.host_command_parameters[1] = REG_CHANNEL_MASK; 4838 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask; 4839 4840 /* 11b only */ 4841 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */ 4842 4843 err = ipw2100_hw_send_command(priv, &cmd); 4844 if (err) 4845 return err; 4846 4847 /* If IPv6 is configured in the kernel then we don't want to filter out all 4848 * of the multicast packets as IPv6 needs some. */ 4849 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE) 4850 cmd.host_command = ADD_MULTICAST; 4851 cmd.host_command_sequence = 0; 4852 cmd.host_command_length = 0; 4853 4854 ipw2100_hw_send_command(priv, &cmd); 4855 #endif 4856 if (!batch_mode) { 4857 err = ipw2100_enable_adapter(priv); 4858 if (err) 4859 return err; 4860 } 4861 4862 return 0; 4863 } 4864 4865 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate, 4866 int batch_mode) 4867 { 4868 struct host_command cmd = { 4869 .host_command = BASIC_TX_RATES, 4870 .host_command_sequence = 0, 4871 .host_command_length = 4 4872 }; 4873 int err; 4874 4875 cmd.host_command_parameters[0] = rate & TX_RATE_MASK; 4876 4877 if (!batch_mode) { 4878 err = ipw2100_disable_adapter(priv); 4879 if (err) 4880 return err; 4881 } 4882 4883 /* Set BASIC TX Rate first */ 4884 ipw2100_hw_send_command(priv, &cmd); 4885 4886 /* Set TX Rate */ 4887 cmd.host_command = TX_RATES; 4888 ipw2100_hw_send_command(priv, &cmd); 4889 4890 /* Set MSDU TX Rate */ 4891 cmd.host_command = MSDU_TX_RATES; 4892 ipw2100_hw_send_command(priv, &cmd); 4893 4894 if (!batch_mode) { 4895 err = ipw2100_enable_adapter(priv); 4896 if (err) 4897 return err; 4898 } 4899 4900 priv->tx_rates = rate; 4901 4902 return 0; 4903 } 4904 4905 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level) 4906 { 4907 struct host_command cmd = { 4908 .host_command = POWER_MODE, 4909 .host_command_sequence = 0, 4910 .host_command_length = 4 4911 }; 4912 int err; 4913 4914 cmd.host_command_parameters[0] = power_level; 4915 4916 err = ipw2100_hw_send_command(priv, &cmd); 4917 if (err) 4918 return err; 4919 4920 if (power_level == IPW_POWER_MODE_CAM) 4921 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 4922 else 4923 priv->power_mode = IPW_POWER_ENABLED | power_level; 4924 4925 #ifdef IPW2100_TX_POWER 4926 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) { 4927 /* Set beacon interval */ 4928 cmd.host_command = TX_POWER_INDEX; 4929 cmd.host_command_parameters[0] = (u32) priv->adhoc_power; 4930 4931 err = ipw2100_hw_send_command(priv, &cmd); 4932 if (err) 4933 return err; 4934 } 4935 #endif 4936 4937 return 0; 4938 } 4939 4940 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold) 4941 { 4942 struct host_command cmd = { 4943 .host_command = RTS_THRESHOLD, 4944 .host_command_sequence = 0, 4945 .host_command_length = 4 4946 }; 4947 int err; 4948 4949 if (threshold & RTS_DISABLED) 4950 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD; 4951 else 4952 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED; 4953 4954 err = ipw2100_hw_send_command(priv, &cmd); 4955 if (err) 4956 return err; 4957 4958 priv->rts_threshold = threshold; 4959 4960 return 0; 4961 } 4962 4963 #if 0 4964 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv, 4965 u32 threshold, int batch_mode) 4966 { 4967 struct host_command cmd = { 4968 .host_command = FRAG_THRESHOLD, 4969 .host_command_sequence = 0, 4970 .host_command_length = 4, 4971 .host_command_parameters[0] = 0, 4972 }; 4973 int err; 4974 4975 if (!batch_mode) { 4976 err = ipw2100_disable_adapter(priv); 4977 if (err) 4978 return err; 4979 } 4980 4981 if (threshold == 0) 4982 threshold = DEFAULT_FRAG_THRESHOLD; 4983 else { 4984 threshold = max(threshold, MIN_FRAG_THRESHOLD); 4985 threshold = min(threshold, MAX_FRAG_THRESHOLD); 4986 } 4987 4988 cmd.host_command_parameters[0] = threshold; 4989 4990 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold); 4991 4992 err = ipw2100_hw_send_command(priv, &cmd); 4993 4994 if (!batch_mode) 4995 ipw2100_enable_adapter(priv); 4996 4997 if (!err) 4998 priv->frag_threshold = threshold; 4999 5000 return err; 5001 } 5002 #endif 5003 5004 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry) 5005 { 5006 struct host_command cmd = { 5007 .host_command = SHORT_RETRY_LIMIT, 5008 .host_command_sequence = 0, 5009 .host_command_length = 4 5010 }; 5011 int err; 5012 5013 cmd.host_command_parameters[0] = retry; 5014 5015 err = ipw2100_hw_send_command(priv, &cmd); 5016 if (err) 5017 return err; 5018 5019 priv->short_retry_limit = retry; 5020 5021 return 0; 5022 } 5023 5024 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry) 5025 { 5026 struct host_command cmd = { 5027 .host_command = LONG_RETRY_LIMIT, 5028 .host_command_sequence = 0, 5029 .host_command_length = 4 5030 }; 5031 int err; 5032 5033 cmd.host_command_parameters[0] = retry; 5034 5035 err = ipw2100_hw_send_command(priv, &cmd); 5036 if (err) 5037 return err; 5038 5039 priv->long_retry_limit = retry; 5040 5041 return 0; 5042 } 5043 5044 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid, 5045 int batch_mode) 5046 { 5047 struct host_command cmd = { 5048 .host_command = MANDATORY_BSSID, 5049 .host_command_sequence = 0, 5050 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN 5051 }; 5052 int err; 5053 5054 #ifdef CONFIG_IPW2100_DEBUG 5055 if (bssid != NULL) 5056 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid); 5057 else 5058 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n"); 5059 #endif 5060 /* if BSSID is empty then we disable mandatory bssid mode */ 5061 if (bssid != NULL) 5062 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN); 5063 5064 if (!batch_mode) { 5065 err = ipw2100_disable_adapter(priv); 5066 if (err) 5067 return err; 5068 } 5069 5070 err = ipw2100_hw_send_command(priv, &cmd); 5071 5072 if (!batch_mode) 5073 ipw2100_enable_adapter(priv); 5074 5075 return err; 5076 } 5077 5078 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv) 5079 { 5080 struct host_command cmd = { 5081 .host_command = DISASSOCIATION_BSSID, 5082 .host_command_sequence = 0, 5083 .host_command_length = ETH_ALEN 5084 }; 5085 int err; 5086 5087 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n"); 5088 5089 /* The Firmware currently ignores the BSSID and just disassociates from 5090 * the currently associated AP -- but in the off chance that a future 5091 * firmware does use the BSSID provided here, we go ahead and try and 5092 * set it to the currently associated AP's BSSID */ 5093 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN); 5094 5095 err = ipw2100_hw_send_command(priv, &cmd); 5096 5097 return err; 5098 } 5099 5100 static int ipw2100_set_wpa_ie(struct ipw2100_priv *, 5101 struct ipw2100_wpa_assoc_frame *, int) 5102 __attribute__ ((unused)); 5103 5104 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv, 5105 struct ipw2100_wpa_assoc_frame *wpa_frame, 5106 int batch_mode) 5107 { 5108 struct host_command cmd = { 5109 .host_command = SET_WPA_IE, 5110 .host_command_sequence = 0, 5111 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame), 5112 }; 5113 int err; 5114 5115 IPW_DEBUG_HC("SET_WPA_IE\n"); 5116 5117 if (!batch_mode) { 5118 err = ipw2100_disable_adapter(priv); 5119 if (err) 5120 return err; 5121 } 5122 5123 memcpy(cmd.host_command_parameters, wpa_frame, 5124 sizeof(struct ipw2100_wpa_assoc_frame)); 5125 5126 err = ipw2100_hw_send_command(priv, &cmd); 5127 5128 if (!batch_mode) { 5129 if (ipw2100_enable_adapter(priv)) 5130 err = -EIO; 5131 } 5132 5133 return err; 5134 } 5135 5136 struct security_info_params { 5137 u32 allowed_ciphers; 5138 u16 version; 5139 u8 auth_mode; 5140 u8 replay_counters_number; 5141 u8 unicast_using_group; 5142 } __packed; 5143 5144 static int ipw2100_set_security_information(struct ipw2100_priv *priv, 5145 int auth_mode, 5146 int security_level, 5147 int unicast_using_group, 5148 int batch_mode) 5149 { 5150 struct host_command cmd = { 5151 .host_command = SET_SECURITY_INFORMATION, 5152 .host_command_sequence = 0, 5153 .host_command_length = sizeof(struct security_info_params) 5154 }; 5155 struct security_info_params *security = 5156 (struct security_info_params *)&cmd.host_command_parameters; 5157 int err; 5158 memset(security, 0, sizeof(*security)); 5159 5160 /* If shared key AP authentication is turned on, then we need to 5161 * configure the firmware to try and use it. 5162 * 5163 * Actual data encryption/decryption is handled by the host. */ 5164 security->auth_mode = auth_mode; 5165 security->unicast_using_group = unicast_using_group; 5166 5167 switch (security_level) { 5168 default: 5169 case SEC_LEVEL_0: 5170 security->allowed_ciphers = IPW_NONE_CIPHER; 5171 break; 5172 case SEC_LEVEL_1: 5173 security->allowed_ciphers = IPW_WEP40_CIPHER | 5174 IPW_WEP104_CIPHER; 5175 break; 5176 case SEC_LEVEL_2: 5177 security->allowed_ciphers = IPW_WEP40_CIPHER | 5178 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER; 5179 break; 5180 case SEC_LEVEL_2_CKIP: 5181 security->allowed_ciphers = IPW_WEP40_CIPHER | 5182 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER; 5183 break; 5184 case SEC_LEVEL_3: 5185 security->allowed_ciphers = IPW_WEP40_CIPHER | 5186 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER; 5187 break; 5188 } 5189 5190 IPW_DEBUG_HC 5191 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n", 5192 security->auth_mode, security->allowed_ciphers, security_level); 5193 5194 security->replay_counters_number = 0; 5195 5196 if (!batch_mode) { 5197 err = ipw2100_disable_adapter(priv); 5198 if (err) 5199 return err; 5200 } 5201 5202 err = ipw2100_hw_send_command(priv, &cmd); 5203 5204 if (!batch_mode) 5205 ipw2100_enable_adapter(priv); 5206 5207 return err; 5208 } 5209 5210 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power) 5211 { 5212 struct host_command cmd = { 5213 .host_command = TX_POWER_INDEX, 5214 .host_command_sequence = 0, 5215 .host_command_length = 4 5216 }; 5217 int err = 0; 5218 u32 tmp = tx_power; 5219 5220 if (tx_power != IPW_TX_POWER_DEFAULT) 5221 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 / 5222 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM); 5223 5224 cmd.host_command_parameters[0] = tmp; 5225 5226 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 5227 err = ipw2100_hw_send_command(priv, &cmd); 5228 if (!err) 5229 priv->tx_power = tx_power; 5230 5231 return 0; 5232 } 5233 5234 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv, 5235 u32 interval, int batch_mode) 5236 { 5237 struct host_command cmd = { 5238 .host_command = BEACON_INTERVAL, 5239 .host_command_sequence = 0, 5240 .host_command_length = 4 5241 }; 5242 int err; 5243 5244 cmd.host_command_parameters[0] = interval; 5245 5246 IPW_DEBUG_INFO("enter\n"); 5247 5248 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5249 if (!batch_mode) { 5250 err = ipw2100_disable_adapter(priv); 5251 if (err) 5252 return err; 5253 } 5254 5255 ipw2100_hw_send_command(priv, &cmd); 5256 5257 if (!batch_mode) { 5258 err = ipw2100_enable_adapter(priv); 5259 if (err) 5260 return err; 5261 } 5262 } 5263 5264 IPW_DEBUG_INFO("exit\n"); 5265 5266 return 0; 5267 } 5268 5269 static void ipw2100_queues_initialize(struct ipw2100_priv *priv) 5270 { 5271 ipw2100_tx_initialize(priv); 5272 ipw2100_rx_initialize(priv); 5273 ipw2100_msg_initialize(priv); 5274 } 5275 5276 static void ipw2100_queues_free(struct ipw2100_priv *priv) 5277 { 5278 ipw2100_tx_free(priv); 5279 ipw2100_rx_free(priv); 5280 ipw2100_msg_free(priv); 5281 } 5282 5283 static int ipw2100_queues_allocate(struct ipw2100_priv *priv) 5284 { 5285 if (ipw2100_tx_allocate(priv) || 5286 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv)) 5287 goto fail; 5288 5289 return 0; 5290 5291 fail: 5292 ipw2100_tx_free(priv); 5293 ipw2100_rx_free(priv); 5294 ipw2100_msg_free(priv); 5295 return -ENOMEM; 5296 } 5297 5298 #define IPW_PRIVACY_CAPABLE 0x0008 5299 5300 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags, 5301 int batch_mode) 5302 { 5303 struct host_command cmd = { 5304 .host_command = WEP_FLAGS, 5305 .host_command_sequence = 0, 5306 .host_command_length = 4 5307 }; 5308 int err; 5309 5310 cmd.host_command_parameters[0] = flags; 5311 5312 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags); 5313 5314 if (!batch_mode) { 5315 err = ipw2100_disable_adapter(priv); 5316 if (err) { 5317 printk(KERN_ERR DRV_NAME 5318 ": %s: Could not disable adapter %d\n", 5319 priv->net_dev->name, err); 5320 return err; 5321 } 5322 } 5323 5324 /* send cmd to firmware */ 5325 err = ipw2100_hw_send_command(priv, &cmd); 5326 5327 if (!batch_mode) 5328 ipw2100_enable_adapter(priv); 5329 5330 return err; 5331 } 5332 5333 struct ipw2100_wep_key { 5334 u8 idx; 5335 u8 len; 5336 u8 key[13]; 5337 }; 5338 5339 /* Macros to ease up priting WEP keys */ 5340 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X" 5341 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X" 5342 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4] 5343 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10] 5344 5345 /** 5346 * ipw2100_set_key() - Set a the wep key 5347 * 5348 * @priv: struct to work on 5349 * @idx: index of the key we want to set 5350 * @key: ptr to the key data to set 5351 * @len: length of the buffer at @key 5352 * @batch_mode: FIXME perform the operation in batch mode, not 5353 * disabling the device. 5354 * 5355 * @returns 0 if OK, < 0 errno code on error. 5356 * 5357 * Fill out a command structure with the new wep key, length an 5358 * index and send it down the wire. 5359 */ 5360 static int ipw2100_set_key(struct ipw2100_priv *priv, 5361 int idx, char *key, int len, int batch_mode) 5362 { 5363 int keylen = len ? (len <= 5 ? 5 : 13) : 0; 5364 struct host_command cmd = { 5365 .host_command = WEP_KEY_INFO, 5366 .host_command_sequence = 0, 5367 .host_command_length = sizeof(struct ipw2100_wep_key), 5368 }; 5369 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters; 5370 int err; 5371 5372 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n", 5373 idx, keylen, len); 5374 5375 /* NOTE: We don't check cached values in case the firmware was reset 5376 * or some other problem is occurring. If the user is setting the key, 5377 * then we push the change */ 5378 5379 wep_key->idx = idx; 5380 wep_key->len = keylen; 5381 5382 if (keylen) { 5383 memcpy(wep_key->key, key, len); 5384 memset(wep_key->key + len, 0, keylen - len); 5385 } 5386 5387 /* Will be optimized out on debug not being configured in */ 5388 if (keylen == 0) 5389 IPW_DEBUG_WEP("%s: Clearing key %d\n", 5390 priv->net_dev->name, wep_key->idx); 5391 else if (keylen == 5) 5392 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n", 5393 priv->net_dev->name, wep_key->idx, wep_key->len, 5394 WEP_STR_64(wep_key->key)); 5395 else 5396 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128 5397 "\n", 5398 priv->net_dev->name, wep_key->idx, wep_key->len, 5399 WEP_STR_128(wep_key->key)); 5400 5401 if (!batch_mode) { 5402 err = ipw2100_disable_adapter(priv); 5403 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */ 5404 if (err) { 5405 printk(KERN_ERR DRV_NAME 5406 ": %s: Could not disable adapter %d\n", 5407 priv->net_dev->name, err); 5408 return err; 5409 } 5410 } 5411 5412 /* send cmd to firmware */ 5413 err = ipw2100_hw_send_command(priv, &cmd); 5414 5415 if (!batch_mode) { 5416 int err2 = ipw2100_enable_adapter(priv); 5417 if (err == 0) 5418 err = err2; 5419 } 5420 return err; 5421 } 5422 5423 static int ipw2100_set_key_index(struct ipw2100_priv *priv, 5424 int idx, int batch_mode) 5425 { 5426 struct host_command cmd = { 5427 .host_command = WEP_KEY_INDEX, 5428 .host_command_sequence = 0, 5429 .host_command_length = 4, 5430 .host_command_parameters = {idx}, 5431 }; 5432 int err; 5433 5434 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx); 5435 5436 if (idx < 0 || idx > 3) 5437 return -EINVAL; 5438 5439 if (!batch_mode) { 5440 err = ipw2100_disable_adapter(priv); 5441 if (err) { 5442 printk(KERN_ERR DRV_NAME 5443 ": %s: Could not disable adapter %d\n", 5444 priv->net_dev->name, err); 5445 return err; 5446 } 5447 } 5448 5449 /* send cmd to firmware */ 5450 err = ipw2100_hw_send_command(priv, &cmd); 5451 5452 if (!batch_mode) 5453 ipw2100_enable_adapter(priv); 5454 5455 return err; 5456 } 5457 5458 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode) 5459 { 5460 int i, err, auth_mode, sec_level, use_group; 5461 5462 if (!(priv->status & STATUS_RUNNING)) 5463 return 0; 5464 5465 if (!batch_mode) { 5466 err = ipw2100_disable_adapter(priv); 5467 if (err) 5468 return err; 5469 } 5470 5471 if (!priv->ieee->sec.enabled) { 5472 err = 5473 ipw2100_set_security_information(priv, IPW_AUTH_OPEN, 5474 SEC_LEVEL_0, 0, 1); 5475 } else { 5476 auth_mode = IPW_AUTH_OPEN; 5477 if (priv->ieee->sec.flags & SEC_AUTH_MODE) { 5478 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY) 5479 auth_mode = IPW_AUTH_SHARED; 5480 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP) 5481 auth_mode = IPW_AUTH_LEAP_CISCO_ID; 5482 } 5483 5484 sec_level = SEC_LEVEL_0; 5485 if (priv->ieee->sec.flags & SEC_LEVEL) 5486 sec_level = priv->ieee->sec.level; 5487 5488 use_group = 0; 5489 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP) 5490 use_group = priv->ieee->sec.unicast_uses_group; 5491 5492 err = 5493 ipw2100_set_security_information(priv, auth_mode, sec_level, 5494 use_group, 1); 5495 } 5496 5497 if (err) 5498 goto exit; 5499 5500 if (priv->ieee->sec.enabled) { 5501 for (i = 0; i < 4; i++) { 5502 if (!(priv->ieee->sec.flags & (1 << i))) { 5503 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN); 5504 priv->ieee->sec.key_sizes[i] = 0; 5505 } else { 5506 err = ipw2100_set_key(priv, i, 5507 priv->ieee->sec.keys[i], 5508 priv->ieee->sec. 5509 key_sizes[i], 1); 5510 if (err) 5511 goto exit; 5512 } 5513 } 5514 5515 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1); 5516 } 5517 5518 /* Always enable privacy so the Host can filter WEP packets if 5519 * encrypted data is sent up */ 5520 err = 5521 ipw2100_set_wep_flags(priv, 5522 priv->ieee->sec. 5523 enabled ? IPW_PRIVACY_CAPABLE : 0, 1); 5524 if (err) 5525 goto exit; 5526 5527 priv->status &= ~STATUS_SECURITY_UPDATED; 5528 5529 exit: 5530 if (!batch_mode) 5531 ipw2100_enable_adapter(priv); 5532 5533 return err; 5534 } 5535 5536 static void ipw2100_security_work(struct work_struct *work) 5537 { 5538 struct ipw2100_priv *priv = 5539 container_of(work, struct ipw2100_priv, security_work.work); 5540 5541 /* If we happen to have reconnected before we get a chance to 5542 * process this, then update the security settings--which causes 5543 * a disassociation to occur */ 5544 if (!(priv->status & STATUS_ASSOCIATED) && 5545 priv->status & STATUS_SECURITY_UPDATED) 5546 ipw2100_configure_security(priv, 0); 5547 } 5548 5549 static void shim__set_security(struct net_device *dev, 5550 struct libipw_security *sec) 5551 { 5552 struct ipw2100_priv *priv = libipw_priv(dev); 5553 int i; 5554 5555 mutex_lock(&priv->action_mutex); 5556 if (!(priv->status & STATUS_INITIALIZED)) 5557 goto done; 5558 5559 for (i = 0; i < 4; i++) { 5560 if (sec->flags & (1 << i)) { 5561 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; 5562 if (sec->key_sizes[i] == 0) 5563 priv->ieee->sec.flags &= ~(1 << i); 5564 else 5565 memcpy(priv->ieee->sec.keys[i], sec->keys[i], 5566 sec->key_sizes[i]); 5567 if (sec->level == SEC_LEVEL_1) { 5568 priv->ieee->sec.flags |= (1 << i); 5569 priv->status |= STATUS_SECURITY_UPDATED; 5570 } else 5571 priv->ieee->sec.flags &= ~(1 << i); 5572 } 5573 } 5574 5575 if ((sec->flags & SEC_ACTIVE_KEY) && 5576 priv->ieee->sec.active_key != sec->active_key) { 5577 priv->ieee->sec.active_key = sec->active_key; 5578 priv->ieee->sec.flags |= SEC_ACTIVE_KEY; 5579 priv->status |= STATUS_SECURITY_UPDATED; 5580 } 5581 5582 if ((sec->flags & SEC_AUTH_MODE) && 5583 (priv->ieee->sec.auth_mode != sec->auth_mode)) { 5584 priv->ieee->sec.auth_mode = sec->auth_mode; 5585 priv->ieee->sec.flags |= SEC_AUTH_MODE; 5586 priv->status |= STATUS_SECURITY_UPDATED; 5587 } 5588 5589 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { 5590 priv->ieee->sec.flags |= SEC_ENABLED; 5591 priv->ieee->sec.enabled = sec->enabled; 5592 priv->status |= STATUS_SECURITY_UPDATED; 5593 } 5594 5595 if (sec->flags & SEC_ENCRYPT) 5596 priv->ieee->sec.encrypt = sec->encrypt; 5597 5598 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { 5599 priv->ieee->sec.level = sec->level; 5600 priv->ieee->sec.flags |= SEC_LEVEL; 5601 priv->status |= STATUS_SECURITY_UPDATED; 5602 } 5603 5604 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n", 5605 priv->ieee->sec.flags & (1 << 8) ? '1' : '0', 5606 priv->ieee->sec.flags & (1 << 7) ? '1' : '0', 5607 priv->ieee->sec.flags & (1 << 6) ? '1' : '0', 5608 priv->ieee->sec.flags & (1 << 5) ? '1' : '0', 5609 priv->ieee->sec.flags & (1 << 4) ? '1' : '0', 5610 priv->ieee->sec.flags & (1 << 3) ? '1' : '0', 5611 priv->ieee->sec.flags & (1 << 2) ? '1' : '0', 5612 priv->ieee->sec.flags & (1 << 1) ? '1' : '0', 5613 priv->ieee->sec.flags & (1 << 0) ? '1' : '0'); 5614 5615 /* As a temporary work around to enable WPA until we figure out why 5616 * wpa_supplicant toggles the security capability of the driver, which 5617 * forces a disassociation with force_update... 5618 * 5619 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/ 5620 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) 5621 ipw2100_configure_security(priv, 0); 5622 done: 5623 mutex_unlock(&priv->action_mutex); 5624 } 5625 5626 static int ipw2100_adapter_setup(struct ipw2100_priv *priv) 5627 { 5628 int err; 5629 int batch_mode = 1; 5630 u8 *bssid; 5631 5632 IPW_DEBUG_INFO("enter\n"); 5633 5634 err = ipw2100_disable_adapter(priv); 5635 if (err) 5636 return err; 5637 #ifdef CONFIG_IPW2100_MONITOR 5638 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 5639 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5640 if (err) 5641 return err; 5642 5643 IPW_DEBUG_INFO("exit\n"); 5644 5645 return 0; 5646 } 5647 #endif /* CONFIG_IPW2100_MONITOR */ 5648 5649 err = ipw2100_read_mac_address(priv); 5650 if (err) 5651 return -EIO; 5652 5653 err = ipw2100_set_mac_address(priv, batch_mode); 5654 if (err) 5655 return err; 5656 5657 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode); 5658 if (err) 5659 return err; 5660 5661 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5662 err = ipw2100_set_channel(priv, priv->channel, batch_mode); 5663 if (err) 5664 return err; 5665 } 5666 5667 err = ipw2100_system_config(priv, batch_mode); 5668 if (err) 5669 return err; 5670 5671 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode); 5672 if (err) 5673 return err; 5674 5675 /* Default to power mode OFF */ 5676 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 5677 if (err) 5678 return err; 5679 5680 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold); 5681 if (err) 5682 return err; 5683 5684 if (priv->config & CFG_STATIC_BSSID) 5685 bssid = priv->bssid; 5686 else 5687 bssid = NULL; 5688 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode); 5689 if (err) 5690 return err; 5691 5692 if (priv->config & CFG_STATIC_ESSID) 5693 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len, 5694 batch_mode); 5695 else 5696 err = ipw2100_set_essid(priv, NULL, 0, batch_mode); 5697 if (err) 5698 return err; 5699 5700 err = ipw2100_configure_security(priv, batch_mode); 5701 if (err) 5702 return err; 5703 5704 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 5705 err = 5706 ipw2100_set_ibss_beacon_interval(priv, 5707 priv->beacon_interval, 5708 batch_mode); 5709 if (err) 5710 return err; 5711 5712 err = ipw2100_set_tx_power(priv, priv->tx_power); 5713 if (err) 5714 return err; 5715 } 5716 5717 /* 5718 err = ipw2100_set_fragmentation_threshold( 5719 priv, priv->frag_threshold, batch_mode); 5720 if (err) 5721 return err; 5722 */ 5723 5724 IPW_DEBUG_INFO("exit\n"); 5725 5726 return 0; 5727 } 5728 5729 /************************************************************************* 5730 * 5731 * EXTERNALLY CALLED METHODS 5732 * 5733 *************************************************************************/ 5734 5735 /* This method is called by the network layer -- not to be confused with 5736 * ipw2100_set_mac_address() declared above called by this driver (and this 5737 * method as well) to talk to the firmware */ 5738 static int ipw2100_set_address(struct net_device *dev, void *p) 5739 { 5740 struct ipw2100_priv *priv = libipw_priv(dev); 5741 struct sockaddr *addr = p; 5742 int err = 0; 5743 5744 if (!is_valid_ether_addr(addr->sa_data)) 5745 return -EADDRNOTAVAIL; 5746 5747 mutex_lock(&priv->action_mutex); 5748 5749 priv->config |= CFG_CUSTOM_MAC; 5750 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 5751 5752 err = ipw2100_set_mac_address(priv, 0); 5753 if (err) 5754 goto done; 5755 5756 priv->reset_backoff = 0; 5757 mutex_unlock(&priv->action_mutex); 5758 ipw2100_reset_adapter(&priv->reset_work.work); 5759 return 0; 5760 5761 done: 5762 mutex_unlock(&priv->action_mutex); 5763 return err; 5764 } 5765 5766 static int ipw2100_open(struct net_device *dev) 5767 { 5768 struct ipw2100_priv *priv = libipw_priv(dev); 5769 unsigned long flags; 5770 IPW_DEBUG_INFO("dev->open\n"); 5771 5772 spin_lock_irqsave(&priv->low_lock, flags); 5773 if (priv->status & STATUS_ASSOCIATED) { 5774 netif_carrier_on(dev); 5775 netif_start_queue(dev); 5776 } 5777 spin_unlock_irqrestore(&priv->low_lock, flags); 5778 5779 return 0; 5780 } 5781 5782 static int ipw2100_close(struct net_device *dev) 5783 { 5784 struct ipw2100_priv *priv = libipw_priv(dev); 5785 unsigned long flags; 5786 struct list_head *element; 5787 struct ipw2100_tx_packet *packet; 5788 5789 IPW_DEBUG_INFO("enter\n"); 5790 5791 spin_lock_irqsave(&priv->low_lock, flags); 5792 5793 if (priv->status & STATUS_ASSOCIATED) 5794 netif_carrier_off(dev); 5795 netif_stop_queue(dev); 5796 5797 /* Flush the TX queue ... */ 5798 while (!list_empty(&priv->tx_pend_list)) { 5799 element = priv->tx_pend_list.next; 5800 packet = list_entry(element, struct ipw2100_tx_packet, list); 5801 5802 list_del(element); 5803 DEC_STAT(&priv->tx_pend_stat); 5804 5805 libipw_txb_free(packet->info.d_struct.txb); 5806 packet->info.d_struct.txb = NULL; 5807 5808 list_add_tail(element, &priv->tx_free_list); 5809 INC_STAT(&priv->tx_free_stat); 5810 } 5811 spin_unlock_irqrestore(&priv->low_lock, flags); 5812 5813 IPW_DEBUG_INFO("exit\n"); 5814 5815 return 0; 5816 } 5817 5818 /* 5819 * TODO: Fix this function... its just wrong 5820 */ 5821 static void ipw2100_tx_timeout(struct net_device *dev, unsigned int txqueue) 5822 { 5823 struct ipw2100_priv *priv = libipw_priv(dev); 5824 5825 dev->stats.tx_errors++; 5826 5827 #ifdef CONFIG_IPW2100_MONITOR 5828 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 5829 return; 5830 #endif 5831 5832 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n", 5833 dev->name); 5834 schedule_reset(priv); 5835 } 5836 5837 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value) 5838 { 5839 /* This is called when wpa_supplicant loads and closes the driver 5840 * interface. */ 5841 priv->ieee->wpa_enabled = value; 5842 return 0; 5843 } 5844 5845 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value) 5846 { 5847 5848 struct libipw_device *ieee = priv->ieee; 5849 struct libipw_security sec = { 5850 .flags = SEC_AUTH_MODE, 5851 }; 5852 int ret = 0; 5853 5854 if (value & IW_AUTH_ALG_SHARED_KEY) { 5855 sec.auth_mode = WLAN_AUTH_SHARED_KEY; 5856 ieee->open_wep = 0; 5857 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { 5858 sec.auth_mode = WLAN_AUTH_OPEN; 5859 ieee->open_wep = 1; 5860 } else if (value & IW_AUTH_ALG_LEAP) { 5861 sec.auth_mode = WLAN_AUTH_LEAP; 5862 ieee->open_wep = 1; 5863 } else 5864 return -EINVAL; 5865 5866 if (ieee->set_security) 5867 ieee->set_security(ieee->dev, &sec); 5868 else 5869 ret = -EOPNOTSUPP; 5870 5871 return ret; 5872 } 5873 5874 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv, 5875 char *wpa_ie, int wpa_ie_len) 5876 { 5877 5878 struct ipw2100_wpa_assoc_frame frame; 5879 5880 frame.fixed_ie_mask = 0; 5881 5882 /* copy WPA IE */ 5883 memcpy(frame.var_ie, wpa_ie, wpa_ie_len); 5884 frame.var_ie_len = wpa_ie_len; 5885 5886 /* make sure WPA is enabled */ 5887 ipw2100_wpa_enable(priv, 1); 5888 ipw2100_set_wpa_ie(priv, &frame, 0); 5889 } 5890 5891 static void ipw_ethtool_get_drvinfo(struct net_device *dev, 5892 struct ethtool_drvinfo *info) 5893 { 5894 struct ipw2100_priv *priv = libipw_priv(dev); 5895 char fw_ver[64]; 5896 5897 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 5898 strscpy(info->version, DRV_VERSION, sizeof(info->version)); 5899 5900 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver)); 5901 5902 strscpy(info->fw_version, fw_ver, sizeof(info->fw_version)); 5903 strscpy(info->bus_info, pci_name(priv->pci_dev), 5904 sizeof(info->bus_info)); 5905 } 5906 5907 static u32 ipw2100_ethtool_get_link(struct net_device *dev) 5908 { 5909 struct ipw2100_priv *priv = libipw_priv(dev); 5910 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0; 5911 } 5912 5913 static const struct ethtool_ops ipw2100_ethtool_ops = { 5914 .get_link = ipw2100_ethtool_get_link, 5915 .get_drvinfo = ipw_ethtool_get_drvinfo, 5916 }; 5917 5918 static void ipw2100_hang_check(struct work_struct *work) 5919 { 5920 struct ipw2100_priv *priv = 5921 container_of(work, struct ipw2100_priv, hang_check.work); 5922 unsigned long flags; 5923 u32 rtc = 0xa5a5a5a5; 5924 u32 len = sizeof(rtc); 5925 int restart = 0; 5926 5927 spin_lock_irqsave(&priv->low_lock, flags); 5928 5929 if (priv->fatal_error != 0) { 5930 /* If fatal_error is set then we need to restart */ 5931 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n", 5932 priv->net_dev->name); 5933 5934 restart = 1; 5935 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) || 5936 (rtc == priv->last_rtc)) { 5937 /* Check if firmware is hung */ 5938 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n", 5939 priv->net_dev->name); 5940 5941 restart = 1; 5942 } 5943 5944 if (restart) { 5945 /* Kill timer */ 5946 priv->stop_hang_check = 1; 5947 priv->hangs++; 5948 5949 /* Restart the NIC */ 5950 schedule_reset(priv); 5951 } 5952 5953 priv->last_rtc = rtc; 5954 5955 if (!priv->stop_hang_check) 5956 schedule_delayed_work(&priv->hang_check, HZ / 2); 5957 5958 spin_unlock_irqrestore(&priv->low_lock, flags); 5959 } 5960 5961 static void ipw2100_rf_kill(struct work_struct *work) 5962 { 5963 struct ipw2100_priv *priv = 5964 container_of(work, struct ipw2100_priv, rf_kill.work); 5965 unsigned long flags; 5966 5967 spin_lock_irqsave(&priv->low_lock, flags); 5968 5969 if (rf_kill_active(priv)) { 5970 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); 5971 if (!priv->stop_rf_kill) 5972 schedule_delayed_work(&priv->rf_kill, 5973 round_jiffies_relative(HZ)); 5974 goto exit_unlock; 5975 } 5976 5977 /* RF Kill is now disabled, so bring the device back up */ 5978 5979 if (!(priv->status & STATUS_RF_KILL_MASK)) { 5980 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " 5981 "device\n"); 5982 schedule_reset(priv); 5983 } else 5984 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " 5985 "enabled\n"); 5986 5987 exit_unlock: 5988 spin_unlock_irqrestore(&priv->low_lock, flags); 5989 } 5990 5991 static void ipw2100_irq_tasklet(struct tasklet_struct *t); 5992 5993 static const struct net_device_ops ipw2100_netdev_ops = { 5994 .ndo_open = ipw2100_open, 5995 .ndo_stop = ipw2100_close, 5996 .ndo_start_xmit = libipw_xmit, 5997 .ndo_tx_timeout = ipw2100_tx_timeout, 5998 .ndo_set_mac_address = ipw2100_set_address, 5999 .ndo_validate_addr = eth_validate_addr, 6000 }; 6001 6002 /* Look into using netdev destructor to shutdown libipw? */ 6003 6004 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev, 6005 void __iomem * ioaddr) 6006 { 6007 struct ipw2100_priv *priv; 6008 struct net_device *dev; 6009 6010 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0); 6011 if (!dev) 6012 return NULL; 6013 priv = libipw_priv(dev); 6014 priv->ieee = netdev_priv(dev); 6015 priv->pci_dev = pci_dev; 6016 priv->net_dev = dev; 6017 priv->ioaddr = ioaddr; 6018 6019 priv->ieee->hard_start_xmit = ipw2100_tx; 6020 priv->ieee->set_security = shim__set_security; 6021 6022 priv->ieee->perfect_rssi = -20; 6023 priv->ieee->worst_rssi = -85; 6024 6025 dev->netdev_ops = &ipw2100_netdev_ops; 6026 dev->ethtool_ops = &ipw2100_ethtool_ops; 6027 dev->wireless_handlers = &ipw2100_wx_handler_def; 6028 priv->wireless_data.libipw = priv->ieee; 6029 dev->wireless_data = &priv->wireless_data; 6030 dev->watchdog_timeo = 3 * HZ; 6031 dev->irq = 0; 6032 dev->min_mtu = 68; 6033 dev->max_mtu = LIBIPW_DATA_LEN; 6034 6035 /* NOTE: We don't use the wireless_handlers hook 6036 * in dev as the system will start throwing WX requests 6037 * to us before we're actually initialized and it just 6038 * ends up causing problems. So, we just handle 6039 * the WX extensions through the ipw2100_ioctl interface */ 6040 6041 /* memset() puts everything to 0, so we only have explicitly set 6042 * those values that need to be something else */ 6043 6044 /* If power management is turned on, default to AUTO mode */ 6045 priv->power_mode = IPW_POWER_AUTO; 6046 6047 #ifdef CONFIG_IPW2100_MONITOR 6048 priv->config |= CFG_CRC_CHECK; 6049 #endif 6050 priv->ieee->wpa_enabled = 0; 6051 priv->ieee->drop_unencrypted = 0; 6052 priv->ieee->privacy_invoked = 0; 6053 priv->ieee->ieee802_1x = 1; 6054 6055 /* Set module parameters */ 6056 switch (network_mode) { 6057 case 1: 6058 priv->ieee->iw_mode = IW_MODE_ADHOC; 6059 break; 6060 #ifdef CONFIG_IPW2100_MONITOR 6061 case 2: 6062 priv->ieee->iw_mode = IW_MODE_MONITOR; 6063 break; 6064 #endif 6065 default: 6066 case 0: 6067 priv->ieee->iw_mode = IW_MODE_INFRA; 6068 break; 6069 } 6070 6071 if (disable == 1) 6072 priv->status |= STATUS_RF_KILL_SW; 6073 6074 if (channel != 0 && 6075 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) { 6076 priv->config |= CFG_STATIC_CHANNEL; 6077 priv->channel = channel; 6078 } 6079 6080 if (associate) 6081 priv->config |= CFG_ASSOCIATE; 6082 6083 priv->beacon_interval = DEFAULT_BEACON_INTERVAL; 6084 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; 6085 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; 6086 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED; 6087 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED; 6088 priv->tx_power = IPW_TX_POWER_DEFAULT; 6089 priv->tx_rates = DEFAULT_TX_RATES; 6090 6091 strcpy(priv->nick, "ipw2100"); 6092 6093 spin_lock_init(&priv->low_lock); 6094 mutex_init(&priv->action_mutex); 6095 mutex_init(&priv->adapter_mutex); 6096 6097 init_waitqueue_head(&priv->wait_command_queue); 6098 6099 netif_carrier_off(dev); 6100 6101 INIT_LIST_HEAD(&priv->msg_free_list); 6102 INIT_LIST_HEAD(&priv->msg_pend_list); 6103 INIT_STAT(&priv->msg_free_stat); 6104 INIT_STAT(&priv->msg_pend_stat); 6105 6106 INIT_LIST_HEAD(&priv->tx_free_list); 6107 INIT_LIST_HEAD(&priv->tx_pend_list); 6108 INIT_STAT(&priv->tx_free_stat); 6109 INIT_STAT(&priv->tx_pend_stat); 6110 6111 INIT_LIST_HEAD(&priv->fw_pend_list); 6112 INIT_STAT(&priv->fw_pend_stat); 6113 6114 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter); 6115 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work); 6116 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work); 6117 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check); 6118 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill); 6119 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event); 6120 6121 tasklet_setup(&priv->irq_tasklet, ipw2100_irq_tasklet); 6122 6123 /* NOTE: We do not start the deferred work for status checks yet */ 6124 priv->stop_rf_kill = 1; 6125 priv->stop_hang_check = 1; 6126 6127 return dev; 6128 } 6129 6130 static int ipw2100_pci_init_one(struct pci_dev *pci_dev, 6131 const struct pci_device_id *ent) 6132 { 6133 void __iomem *ioaddr; 6134 struct net_device *dev = NULL; 6135 struct ipw2100_priv *priv = NULL; 6136 int err = 0; 6137 int registered = 0; 6138 u32 val; 6139 6140 IPW_DEBUG_INFO("enter\n"); 6141 6142 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) { 6143 IPW_DEBUG_INFO("weird - resource type is not memory\n"); 6144 err = -ENODEV; 6145 goto out; 6146 } 6147 6148 ioaddr = pci_iomap(pci_dev, 0, 0); 6149 if (!ioaddr) { 6150 printk(KERN_WARNING DRV_NAME 6151 "Error calling ioremap.\n"); 6152 err = -EIO; 6153 goto fail; 6154 } 6155 6156 /* allocate and initialize our net_device */ 6157 dev = ipw2100_alloc_device(pci_dev, ioaddr); 6158 if (!dev) { 6159 printk(KERN_WARNING DRV_NAME 6160 "Error calling ipw2100_alloc_device.\n"); 6161 err = -ENOMEM; 6162 goto fail; 6163 } 6164 6165 /* set up PCI mappings for device */ 6166 err = pci_enable_device(pci_dev); 6167 if (err) { 6168 printk(KERN_WARNING DRV_NAME 6169 "Error calling pci_enable_device.\n"); 6170 return err; 6171 } 6172 6173 priv = libipw_priv(dev); 6174 6175 pci_set_master(pci_dev); 6176 pci_set_drvdata(pci_dev, priv); 6177 6178 err = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32)); 6179 if (err) { 6180 printk(KERN_WARNING DRV_NAME 6181 "Error calling pci_set_dma_mask.\n"); 6182 pci_disable_device(pci_dev); 6183 return err; 6184 } 6185 6186 err = pci_request_regions(pci_dev, DRV_NAME); 6187 if (err) { 6188 printk(KERN_WARNING DRV_NAME 6189 "Error calling pci_request_regions.\n"); 6190 pci_disable_device(pci_dev); 6191 return err; 6192 } 6193 6194 /* We disable the RETRY_TIMEOUT register (0x41) to keep 6195 * PCI Tx retries from interfering with C3 CPU state */ 6196 pci_read_config_dword(pci_dev, 0x40, &val); 6197 if ((val & 0x0000ff00) != 0) 6198 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6199 6200 if (!ipw2100_hw_is_adapter_in_system(dev)) { 6201 printk(KERN_WARNING DRV_NAME 6202 "Device not found via register read.\n"); 6203 err = -ENODEV; 6204 goto fail; 6205 } 6206 6207 SET_NETDEV_DEV(dev, &pci_dev->dev); 6208 6209 /* Force interrupts to be shut off on the device */ 6210 priv->status |= STATUS_INT_ENABLED; 6211 ipw2100_disable_interrupts(priv); 6212 6213 /* Allocate and initialize the Tx/Rx queues and lists */ 6214 if (ipw2100_queues_allocate(priv)) { 6215 printk(KERN_WARNING DRV_NAME 6216 "Error calling ipw2100_queues_allocate.\n"); 6217 err = -ENOMEM; 6218 goto fail; 6219 } 6220 ipw2100_queues_initialize(priv); 6221 6222 err = request_irq(pci_dev->irq, 6223 ipw2100_interrupt, IRQF_SHARED, dev->name, priv); 6224 if (err) { 6225 printk(KERN_WARNING DRV_NAME 6226 "Error calling request_irq: %d.\n", pci_dev->irq); 6227 goto fail; 6228 } 6229 dev->irq = pci_dev->irq; 6230 6231 IPW_DEBUG_INFO("Attempting to register device...\n"); 6232 6233 printk(KERN_INFO DRV_NAME 6234 ": Detected Intel PRO/Wireless 2100 Network Connection\n"); 6235 6236 err = ipw2100_up(priv, 1); 6237 if (err) 6238 goto fail; 6239 6240 err = ipw2100_wdev_init(dev); 6241 if (err) 6242 goto fail; 6243 registered = 1; 6244 6245 /* Bring up the interface. Pre 0.46, after we registered the 6246 * network device we would call ipw2100_up. This introduced a race 6247 * condition with newer hotplug configurations (network was coming 6248 * up and making calls before the device was initialized). 6249 */ 6250 err = register_netdev(dev); 6251 if (err) { 6252 printk(KERN_WARNING DRV_NAME 6253 "Error calling register_netdev.\n"); 6254 goto fail; 6255 } 6256 registered = 2; 6257 6258 mutex_lock(&priv->action_mutex); 6259 6260 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev)); 6261 6262 /* perform this after register_netdev so that dev->name is set */ 6263 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6264 if (err) 6265 goto fail_unlock; 6266 6267 /* If the RF Kill switch is disabled, go ahead and complete the 6268 * startup sequence */ 6269 if (!(priv->status & STATUS_RF_KILL_MASK)) { 6270 /* Enable the adapter - sends HOST_COMPLETE */ 6271 if (ipw2100_enable_adapter(priv)) { 6272 printk(KERN_WARNING DRV_NAME 6273 ": %s: failed in call to enable adapter.\n", 6274 priv->net_dev->name); 6275 ipw2100_hw_stop_adapter(priv); 6276 err = -EIO; 6277 goto fail_unlock; 6278 } 6279 6280 /* Start a scan . . . */ 6281 ipw2100_set_scan_options(priv); 6282 ipw2100_start_scan(priv); 6283 } 6284 6285 IPW_DEBUG_INFO("exit\n"); 6286 6287 priv->status |= STATUS_INITIALIZED; 6288 6289 mutex_unlock(&priv->action_mutex); 6290 out: 6291 return err; 6292 6293 fail_unlock: 6294 mutex_unlock(&priv->action_mutex); 6295 fail: 6296 if (dev) { 6297 if (registered >= 2) 6298 unregister_netdev(dev); 6299 6300 if (registered) { 6301 wiphy_unregister(priv->ieee->wdev.wiphy); 6302 kfree(priv->ieee->bg_band.channels); 6303 } 6304 6305 ipw2100_hw_stop_adapter(priv); 6306 6307 ipw2100_disable_interrupts(priv); 6308 6309 if (dev->irq) 6310 free_irq(dev->irq, priv); 6311 6312 ipw2100_kill_works(priv); 6313 6314 /* These are safe to call even if they weren't allocated */ 6315 ipw2100_queues_free(priv); 6316 sysfs_remove_group(&pci_dev->dev.kobj, 6317 &ipw2100_attribute_group); 6318 6319 free_libipw(dev, 0); 6320 } 6321 6322 pci_iounmap(pci_dev, ioaddr); 6323 6324 pci_release_regions(pci_dev); 6325 pci_disable_device(pci_dev); 6326 goto out; 6327 } 6328 6329 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev) 6330 { 6331 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6332 struct net_device *dev = priv->net_dev; 6333 6334 mutex_lock(&priv->action_mutex); 6335 6336 priv->status &= ~STATUS_INITIALIZED; 6337 6338 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group); 6339 6340 #ifdef CONFIG_PM 6341 if (ipw2100_firmware.version) 6342 ipw2100_release_firmware(priv, &ipw2100_firmware); 6343 #endif 6344 /* Take down the hardware */ 6345 ipw2100_down(priv); 6346 6347 /* Release the mutex so that the network subsystem can 6348 * complete any needed calls into the driver... */ 6349 mutex_unlock(&priv->action_mutex); 6350 6351 /* Unregister the device first - this results in close() 6352 * being called if the device is open. If we free storage 6353 * first, then close() will crash. 6354 * FIXME: remove the comment above. */ 6355 unregister_netdev(dev); 6356 6357 ipw2100_kill_works(priv); 6358 6359 ipw2100_queues_free(priv); 6360 6361 /* Free potential debugging firmware snapshot */ 6362 ipw2100_snapshot_free(priv); 6363 6364 free_irq(dev->irq, priv); 6365 6366 pci_iounmap(pci_dev, priv->ioaddr); 6367 6368 /* wiphy_unregister needs to be here, before free_libipw */ 6369 wiphy_unregister(priv->ieee->wdev.wiphy); 6370 kfree(priv->ieee->bg_band.channels); 6371 free_libipw(dev, 0); 6372 6373 pci_release_regions(pci_dev); 6374 pci_disable_device(pci_dev); 6375 6376 IPW_DEBUG_INFO("exit\n"); 6377 } 6378 6379 static int __maybe_unused ipw2100_suspend(struct device *dev_d) 6380 { 6381 struct ipw2100_priv *priv = dev_get_drvdata(dev_d); 6382 struct net_device *dev = priv->net_dev; 6383 6384 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name); 6385 6386 mutex_lock(&priv->action_mutex); 6387 if (priv->status & STATUS_INITIALIZED) { 6388 /* Take down the device; powers it off, etc. */ 6389 ipw2100_down(priv); 6390 } 6391 6392 /* Remove the PRESENT state of the device */ 6393 netif_device_detach(dev); 6394 6395 priv->suspend_at = ktime_get_boottime_seconds(); 6396 6397 mutex_unlock(&priv->action_mutex); 6398 6399 return 0; 6400 } 6401 6402 static int __maybe_unused ipw2100_resume(struct device *dev_d) 6403 { 6404 struct pci_dev *pci_dev = to_pci_dev(dev_d); 6405 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6406 struct net_device *dev = priv->net_dev; 6407 u32 val; 6408 6409 if (IPW2100_PM_DISABLED) 6410 return 0; 6411 6412 mutex_lock(&priv->action_mutex); 6413 6414 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name); 6415 6416 /* 6417 * Suspend/Resume resets the PCI configuration space, so we have to 6418 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 6419 * from interfering with C3 CPU state. pci_restore_state won't help 6420 * here since it only restores the first 64 bytes pci config header. 6421 */ 6422 pci_read_config_dword(pci_dev, 0x40, &val); 6423 if ((val & 0x0000ff00) != 0) 6424 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff); 6425 6426 /* Set the device back into the PRESENT state; this will also wake 6427 * the queue of needed */ 6428 netif_device_attach(dev); 6429 6430 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at; 6431 6432 /* Bring the device back up */ 6433 if (!(priv->status & STATUS_RF_KILL_SW)) 6434 ipw2100_up(priv, 0); 6435 6436 mutex_unlock(&priv->action_mutex); 6437 6438 return 0; 6439 } 6440 6441 static void ipw2100_shutdown(struct pci_dev *pci_dev) 6442 { 6443 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev); 6444 6445 /* Take down the device; powers it off, etc. */ 6446 ipw2100_down(priv); 6447 6448 pci_disable_device(pci_dev); 6449 } 6450 6451 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x } 6452 6453 static const struct pci_device_id ipw2100_pci_id_table[] = { 6454 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */ 6455 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */ 6456 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */ 6457 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */ 6458 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */ 6459 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */ 6460 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */ 6461 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */ 6462 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */ 6463 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */ 6464 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */ 6465 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */ 6466 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */ 6467 6468 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */ 6469 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */ 6470 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */ 6471 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */ 6472 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */ 6473 6474 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */ 6475 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */ 6476 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */ 6477 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */ 6478 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */ 6479 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */ 6480 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */ 6481 6482 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */ 6483 6484 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */ 6485 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */ 6486 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */ 6487 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */ 6488 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */ 6489 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */ 6490 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */ 6491 6492 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */ 6493 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */ 6494 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */ 6495 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */ 6496 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */ 6497 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */ 6498 6499 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */ 6500 {0,}, 6501 }; 6502 6503 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table); 6504 6505 static SIMPLE_DEV_PM_OPS(ipw2100_pm_ops, ipw2100_suspend, ipw2100_resume); 6506 6507 static struct pci_driver ipw2100_pci_driver = { 6508 .name = DRV_NAME, 6509 .id_table = ipw2100_pci_id_table, 6510 .probe = ipw2100_pci_init_one, 6511 .remove = ipw2100_pci_remove_one, 6512 .driver.pm = &ipw2100_pm_ops, 6513 .shutdown = ipw2100_shutdown, 6514 }; 6515 6516 /* 6517 * Initialize the ipw2100 driver/module 6518 * 6519 * @returns 0 if ok, < 0 errno node con error. 6520 * 6521 * Note: we cannot init the /proc stuff until the PCI driver is there, 6522 * or we risk an unlikely race condition on someone accessing 6523 * uninitialized data in the PCI dev struct through /proc. 6524 */ 6525 static int __init ipw2100_init(void) 6526 { 6527 int ret; 6528 6529 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 6530 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT); 6531 6532 cpu_latency_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE); 6533 6534 ret = pci_register_driver(&ipw2100_pci_driver); 6535 if (ret) 6536 goto out; 6537 6538 #ifdef CONFIG_IPW2100_DEBUG 6539 ipw2100_debug_level = debug; 6540 ret = driver_create_file(&ipw2100_pci_driver.driver, 6541 &driver_attr_debug_level); 6542 #endif 6543 6544 out: 6545 return ret; 6546 } 6547 6548 /* 6549 * Cleanup ipw2100 driver registration 6550 */ 6551 static void __exit ipw2100_exit(void) 6552 { 6553 /* FIXME: IPG: check that we have no instances of the devices open */ 6554 #ifdef CONFIG_IPW2100_DEBUG 6555 driver_remove_file(&ipw2100_pci_driver.driver, 6556 &driver_attr_debug_level); 6557 #endif 6558 pci_unregister_driver(&ipw2100_pci_driver); 6559 cpu_latency_qos_remove_request(&ipw2100_pm_qos_req); 6560 } 6561 6562 module_init(ipw2100_init); 6563 module_exit(ipw2100_exit); 6564 6565 static int ipw2100_wx_get_name(struct net_device *dev, 6566 struct iw_request_info *info, 6567 union iwreq_data *wrqu, char *extra) 6568 { 6569 /* 6570 * This can be called at any time. No action lock required 6571 */ 6572 6573 struct ipw2100_priv *priv = libipw_priv(dev); 6574 if (!(priv->status & STATUS_ASSOCIATED)) 6575 strcpy(wrqu->name, "unassociated"); 6576 else 6577 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b"); 6578 6579 IPW_DEBUG_WX("Name: %s\n", wrqu->name); 6580 return 0; 6581 } 6582 6583 static int ipw2100_wx_set_freq(struct net_device *dev, 6584 struct iw_request_info *info, 6585 union iwreq_data *wrqu, char *extra) 6586 { 6587 struct ipw2100_priv *priv = libipw_priv(dev); 6588 struct iw_freq *fwrq = &wrqu->freq; 6589 int err = 0; 6590 6591 if (priv->ieee->iw_mode == IW_MODE_INFRA) 6592 return -EOPNOTSUPP; 6593 6594 mutex_lock(&priv->action_mutex); 6595 if (!(priv->status & STATUS_INITIALIZED)) { 6596 err = -EIO; 6597 goto done; 6598 } 6599 6600 /* if setting by freq convert to channel */ 6601 if (fwrq->e == 1) { 6602 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) { 6603 int f = fwrq->m / 100000; 6604 int c = 0; 6605 6606 while ((c < REG_MAX_CHANNEL) && 6607 (f != ipw2100_frequencies[c])) 6608 c++; 6609 6610 /* hack to fall through */ 6611 fwrq->e = 0; 6612 fwrq->m = c + 1; 6613 } 6614 } 6615 6616 if (fwrq->e > 0 || fwrq->m > 1000) { 6617 err = -EOPNOTSUPP; 6618 goto done; 6619 } else { /* Set the channel */ 6620 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); 6621 err = ipw2100_set_channel(priv, fwrq->m, 0); 6622 } 6623 6624 done: 6625 mutex_unlock(&priv->action_mutex); 6626 return err; 6627 } 6628 6629 static int ipw2100_wx_get_freq(struct net_device *dev, 6630 struct iw_request_info *info, 6631 union iwreq_data *wrqu, char *extra) 6632 { 6633 /* 6634 * This can be called at any time. No action lock required 6635 */ 6636 6637 struct ipw2100_priv *priv = libipw_priv(dev); 6638 6639 wrqu->freq.e = 0; 6640 6641 /* If we are associated, trying to associate, or have a statically 6642 * configured CHANNEL then return that; otherwise return ANY */ 6643 if (priv->config & CFG_STATIC_CHANNEL || 6644 priv->status & STATUS_ASSOCIATED) 6645 wrqu->freq.m = priv->channel; 6646 else 6647 wrqu->freq.m = 0; 6648 6649 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); 6650 return 0; 6651 6652 } 6653 6654 static int ipw2100_wx_set_mode(struct net_device *dev, 6655 struct iw_request_info *info, 6656 union iwreq_data *wrqu, char *extra) 6657 { 6658 struct ipw2100_priv *priv = libipw_priv(dev); 6659 int err = 0; 6660 6661 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode); 6662 6663 if (wrqu->mode == priv->ieee->iw_mode) 6664 return 0; 6665 6666 mutex_lock(&priv->action_mutex); 6667 if (!(priv->status & STATUS_INITIALIZED)) { 6668 err = -EIO; 6669 goto done; 6670 } 6671 6672 switch (wrqu->mode) { 6673 #ifdef CONFIG_IPW2100_MONITOR 6674 case IW_MODE_MONITOR: 6675 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 6676 break; 6677 #endif /* CONFIG_IPW2100_MONITOR */ 6678 case IW_MODE_ADHOC: 6679 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC); 6680 break; 6681 case IW_MODE_INFRA: 6682 case IW_MODE_AUTO: 6683 default: 6684 err = ipw2100_switch_mode(priv, IW_MODE_INFRA); 6685 break; 6686 } 6687 6688 done: 6689 mutex_unlock(&priv->action_mutex); 6690 return err; 6691 } 6692 6693 static int ipw2100_wx_get_mode(struct net_device *dev, 6694 struct iw_request_info *info, 6695 union iwreq_data *wrqu, char *extra) 6696 { 6697 /* 6698 * This can be called at any time. No action lock required 6699 */ 6700 6701 struct ipw2100_priv *priv = libipw_priv(dev); 6702 6703 wrqu->mode = priv->ieee->iw_mode; 6704 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode); 6705 6706 return 0; 6707 } 6708 6709 #define POWER_MODES 5 6710 6711 /* Values are in microsecond */ 6712 static const s32 timeout_duration[POWER_MODES] = { 6713 350000, 6714 250000, 6715 75000, 6716 37000, 6717 25000, 6718 }; 6719 6720 static const s32 period_duration[POWER_MODES] = { 6721 400000, 6722 700000, 6723 1000000, 6724 1000000, 6725 1000000 6726 }; 6727 6728 static int ipw2100_wx_get_range(struct net_device *dev, 6729 struct iw_request_info *info, 6730 union iwreq_data *wrqu, char *extra) 6731 { 6732 /* 6733 * This can be called at any time. No action lock required 6734 */ 6735 6736 struct ipw2100_priv *priv = libipw_priv(dev); 6737 struct iw_range *range = (struct iw_range *)extra; 6738 u16 val; 6739 int i, level; 6740 6741 wrqu->data.length = sizeof(*range); 6742 memset(range, 0, sizeof(*range)); 6743 6744 /* Let's try to keep this struct in the same order as in 6745 * linux/include/wireless.h 6746 */ 6747 6748 /* TODO: See what values we can set, and remove the ones we can't 6749 * set, or fill them with some default data. 6750 */ 6751 6752 /* ~5 Mb/s real (802.11b) */ 6753 range->throughput = 5 * 1000 * 1000; 6754 6755 // range->sensitivity; /* signal level threshold range */ 6756 6757 range->max_qual.qual = 100; 6758 /* TODO: Find real max RSSI and stick here */ 6759 range->max_qual.level = 0; 6760 range->max_qual.noise = 0; 6761 range->max_qual.updated = 7; /* Updated all three */ 6762 6763 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */ 6764 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ 6765 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM; 6766 range->avg_qual.noise = 0; 6767 range->avg_qual.updated = 7; /* Updated all three */ 6768 6769 range->num_bitrates = RATE_COUNT; 6770 6771 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) { 6772 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000; 6773 } 6774 6775 range->min_rts = MIN_RTS_THRESHOLD; 6776 range->max_rts = MAX_RTS_THRESHOLD; 6777 range->min_frag = MIN_FRAG_THRESHOLD; 6778 range->max_frag = MAX_FRAG_THRESHOLD; 6779 6780 range->min_pmp = period_duration[0]; /* Minimal PM period */ 6781 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */ 6782 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */ 6783 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */ 6784 6785 /* How to decode max/min PM period */ 6786 range->pmp_flags = IW_POWER_PERIOD; 6787 /* How to decode max/min PM period */ 6788 range->pmt_flags = IW_POWER_TIMEOUT; 6789 /* What PM options are supported */ 6790 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD; 6791 6792 range->encoding_size[0] = 5; 6793 range->encoding_size[1] = 13; /* Different token sizes */ 6794 range->num_encoding_sizes = 2; /* Number of entry in the list */ 6795 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */ 6796 // range->encoding_login_index; /* token index for login token */ 6797 6798 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 6799 range->txpower_capa = IW_TXPOW_DBM; 6800 range->num_txpower = IW_MAX_TXPOWER; 6801 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16); 6802 i < IW_MAX_TXPOWER; 6803 i++, level -= 6804 ((IPW_TX_POWER_MAX_DBM - 6805 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1)) 6806 range->txpower[i] = level / 16; 6807 } else { 6808 range->txpower_capa = 0; 6809 range->num_txpower = 0; 6810 } 6811 6812 /* Set the Wireless Extension versions */ 6813 range->we_version_compiled = WIRELESS_EXT; 6814 range->we_version_source = 18; 6815 6816 // range->retry_capa; /* What retry options are supported */ 6817 // range->retry_flags; /* How to decode max/min retry limit */ 6818 // range->r_time_flags; /* How to decode max/min retry life */ 6819 // range->min_retry; /* Minimal number of retries */ 6820 // range->max_retry; /* Maximal number of retries */ 6821 // range->min_r_time; /* Minimal retry lifetime */ 6822 // range->max_r_time; /* Maximal retry lifetime */ 6823 6824 range->num_channels = FREQ_COUNT; 6825 6826 val = 0; 6827 for (i = 0; i < FREQ_COUNT; i++) { 6828 // TODO: Include only legal frequencies for some countries 6829 // if (local->channel_mask & (1 << i)) { 6830 range->freq[val].i = i + 1; 6831 range->freq[val].m = ipw2100_frequencies[i] * 100000; 6832 range->freq[val].e = 1; 6833 val++; 6834 // } 6835 if (val == IW_MAX_FREQUENCIES) 6836 break; 6837 } 6838 range->num_frequency = val; 6839 6840 /* Event capability (kernel + driver) */ 6841 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 6842 IW_EVENT_CAPA_MASK(SIOCGIWAP)); 6843 range->event_capa[1] = IW_EVENT_CAPA_K_1; 6844 6845 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 6846 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; 6847 6848 IPW_DEBUG_WX("GET Range\n"); 6849 6850 return 0; 6851 } 6852 6853 static int ipw2100_wx_set_wap(struct net_device *dev, 6854 struct iw_request_info *info, 6855 union iwreq_data *wrqu, char *extra) 6856 { 6857 struct ipw2100_priv *priv = libipw_priv(dev); 6858 int err = 0; 6859 6860 // sanity checks 6861 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 6862 return -EINVAL; 6863 6864 mutex_lock(&priv->action_mutex); 6865 if (!(priv->status & STATUS_INITIALIZED)) { 6866 err = -EIO; 6867 goto done; 6868 } 6869 6870 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || 6871 is_zero_ether_addr(wrqu->ap_addr.sa_data)) { 6872 /* we disable mandatory BSSID association */ 6873 IPW_DEBUG_WX("exit - disable mandatory BSSID\n"); 6874 priv->config &= ~CFG_STATIC_BSSID; 6875 err = ipw2100_set_mandatory_bssid(priv, NULL, 0); 6876 goto done; 6877 } 6878 6879 priv->config |= CFG_STATIC_BSSID; 6880 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN); 6881 6882 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0); 6883 6884 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data); 6885 6886 done: 6887 mutex_unlock(&priv->action_mutex); 6888 return err; 6889 } 6890 6891 static int ipw2100_wx_get_wap(struct net_device *dev, 6892 struct iw_request_info *info, 6893 union iwreq_data *wrqu, char *extra) 6894 { 6895 /* 6896 * This can be called at any time. No action lock required 6897 */ 6898 6899 struct ipw2100_priv *priv = libipw_priv(dev); 6900 6901 /* If we are associated, trying to associate, or have a statically 6902 * configured BSSID then return that; otherwise return ANY */ 6903 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) { 6904 wrqu->ap_addr.sa_family = ARPHRD_ETHER; 6905 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); 6906 } else 6907 eth_zero_addr(wrqu->ap_addr.sa_data); 6908 6909 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data); 6910 return 0; 6911 } 6912 6913 static int ipw2100_wx_set_essid(struct net_device *dev, 6914 struct iw_request_info *info, 6915 union iwreq_data *wrqu, char *extra) 6916 { 6917 struct ipw2100_priv *priv = libipw_priv(dev); 6918 char *essid = ""; /* ANY */ 6919 int length = 0; 6920 int err = 0; 6921 6922 mutex_lock(&priv->action_mutex); 6923 if (!(priv->status & STATUS_INITIALIZED)) { 6924 err = -EIO; 6925 goto done; 6926 } 6927 6928 if (wrqu->essid.flags && wrqu->essid.length) { 6929 length = wrqu->essid.length; 6930 essid = extra; 6931 } 6932 6933 if (length == 0) { 6934 IPW_DEBUG_WX("Setting ESSID to ANY\n"); 6935 priv->config &= ~CFG_STATIC_ESSID; 6936 err = ipw2100_set_essid(priv, NULL, 0, 0); 6937 goto done; 6938 } 6939 6940 length = min(length, IW_ESSID_MAX_SIZE); 6941 6942 priv->config |= CFG_STATIC_ESSID; 6943 6944 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) { 6945 IPW_DEBUG_WX("ESSID set to current ESSID.\n"); 6946 err = 0; 6947 goto done; 6948 } 6949 6950 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length); 6951 6952 priv->essid_len = length; 6953 memcpy(priv->essid, essid, priv->essid_len); 6954 6955 err = ipw2100_set_essid(priv, essid, length, 0); 6956 6957 done: 6958 mutex_unlock(&priv->action_mutex); 6959 return err; 6960 } 6961 6962 static int ipw2100_wx_get_essid(struct net_device *dev, 6963 struct iw_request_info *info, 6964 union iwreq_data *wrqu, char *extra) 6965 { 6966 /* 6967 * This can be called at any time. No action lock required 6968 */ 6969 6970 struct ipw2100_priv *priv = libipw_priv(dev); 6971 6972 /* If we are associated, trying to associate, or have a statically 6973 * configured ESSID then return that; otherwise return ANY */ 6974 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) { 6975 IPW_DEBUG_WX("Getting essid: '%*pE'\n", 6976 priv->essid_len, priv->essid); 6977 memcpy(extra, priv->essid, priv->essid_len); 6978 wrqu->essid.length = priv->essid_len; 6979 wrqu->essid.flags = 1; /* active */ 6980 } else { 6981 IPW_DEBUG_WX("Getting essid: ANY\n"); 6982 wrqu->essid.length = 0; 6983 wrqu->essid.flags = 0; /* active */ 6984 } 6985 6986 return 0; 6987 } 6988 6989 static int ipw2100_wx_set_nick(struct net_device *dev, 6990 struct iw_request_info *info, 6991 union iwreq_data *wrqu, char *extra) 6992 { 6993 /* 6994 * This can be called at any time. No action lock required 6995 */ 6996 6997 struct ipw2100_priv *priv = libipw_priv(dev); 6998 6999 if (wrqu->data.length > IW_ESSID_MAX_SIZE) 7000 return -E2BIG; 7001 7002 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); 7003 memset(priv->nick, 0, sizeof(priv->nick)); 7004 memcpy(priv->nick, extra, wrqu->data.length); 7005 7006 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick); 7007 7008 return 0; 7009 } 7010 7011 static int ipw2100_wx_get_nick(struct net_device *dev, 7012 struct iw_request_info *info, 7013 union iwreq_data *wrqu, char *extra) 7014 { 7015 /* 7016 * This can be called at any time. No action lock required 7017 */ 7018 7019 struct ipw2100_priv *priv = libipw_priv(dev); 7020 7021 wrqu->data.length = strlen(priv->nick); 7022 memcpy(extra, priv->nick, wrqu->data.length); 7023 wrqu->data.flags = 1; /* active */ 7024 7025 IPW_DEBUG_WX("GET Nickname -> %s\n", extra); 7026 7027 return 0; 7028 } 7029 7030 static int ipw2100_wx_set_rate(struct net_device *dev, 7031 struct iw_request_info *info, 7032 union iwreq_data *wrqu, char *extra) 7033 { 7034 struct ipw2100_priv *priv = libipw_priv(dev); 7035 u32 target_rate = wrqu->bitrate.value; 7036 u32 rate; 7037 int err = 0; 7038 7039 mutex_lock(&priv->action_mutex); 7040 if (!(priv->status & STATUS_INITIALIZED)) { 7041 err = -EIO; 7042 goto done; 7043 } 7044 7045 rate = 0; 7046 7047 if (target_rate == 1000000 || 7048 (!wrqu->bitrate.fixed && target_rate > 1000000)) 7049 rate |= TX_RATE_1_MBIT; 7050 if (target_rate == 2000000 || 7051 (!wrqu->bitrate.fixed && target_rate > 2000000)) 7052 rate |= TX_RATE_2_MBIT; 7053 if (target_rate == 5500000 || 7054 (!wrqu->bitrate.fixed && target_rate > 5500000)) 7055 rate |= TX_RATE_5_5_MBIT; 7056 if (target_rate == 11000000 || 7057 (!wrqu->bitrate.fixed && target_rate > 11000000)) 7058 rate |= TX_RATE_11_MBIT; 7059 if (rate == 0) 7060 rate = DEFAULT_TX_RATES; 7061 7062 err = ipw2100_set_tx_rates(priv, rate, 0); 7063 7064 IPW_DEBUG_WX("SET Rate -> %04X\n", rate); 7065 done: 7066 mutex_unlock(&priv->action_mutex); 7067 return err; 7068 } 7069 7070 static int ipw2100_wx_get_rate(struct net_device *dev, 7071 struct iw_request_info *info, 7072 union iwreq_data *wrqu, char *extra) 7073 { 7074 struct ipw2100_priv *priv = libipw_priv(dev); 7075 int val; 7076 unsigned int len = sizeof(val); 7077 int err = 0; 7078 7079 if (!(priv->status & STATUS_ENABLED) || 7080 priv->status & STATUS_RF_KILL_MASK || 7081 !(priv->status & STATUS_ASSOCIATED)) { 7082 wrqu->bitrate.value = 0; 7083 return 0; 7084 } 7085 7086 mutex_lock(&priv->action_mutex); 7087 if (!(priv->status & STATUS_INITIALIZED)) { 7088 err = -EIO; 7089 goto done; 7090 } 7091 7092 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len); 7093 if (err) { 7094 IPW_DEBUG_WX("failed querying ordinals.\n"); 7095 goto done; 7096 } 7097 7098 switch (val & TX_RATE_MASK) { 7099 case TX_RATE_1_MBIT: 7100 wrqu->bitrate.value = 1000000; 7101 break; 7102 case TX_RATE_2_MBIT: 7103 wrqu->bitrate.value = 2000000; 7104 break; 7105 case TX_RATE_5_5_MBIT: 7106 wrqu->bitrate.value = 5500000; 7107 break; 7108 case TX_RATE_11_MBIT: 7109 wrqu->bitrate.value = 11000000; 7110 break; 7111 default: 7112 wrqu->bitrate.value = 0; 7113 } 7114 7115 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); 7116 7117 done: 7118 mutex_unlock(&priv->action_mutex); 7119 return err; 7120 } 7121 7122 static int ipw2100_wx_set_rts(struct net_device *dev, 7123 struct iw_request_info *info, 7124 union iwreq_data *wrqu, char *extra) 7125 { 7126 struct ipw2100_priv *priv = libipw_priv(dev); 7127 int value, err; 7128 7129 /* Auto RTS not yet supported */ 7130 if (wrqu->rts.fixed == 0) 7131 return -EINVAL; 7132 7133 mutex_lock(&priv->action_mutex); 7134 if (!(priv->status & STATUS_INITIALIZED)) { 7135 err = -EIO; 7136 goto done; 7137 } 7138 7139 if (wrqu->rts.disabled) 7140 value = priv->rts_threshold | RTS_DISABLED; 7141 else { 7142 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) { 7143 err = -EINVAL; 7144 goto done; 7145 } 7146 value = wrqu->rts.value; 7147 } 7148 7149 err = ipw2100_set_rts_threshold(priv, value); 7150 7151 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value); 7152 done: 7153 mutex_unlock(&priv->action_mutex); 7154 return err; 7155 } 7156 7157 static int ipw2100_wx_get_rts(struct net_device *dev, 7158 struct iw_request_info *info, 7159 union iwreq_data *wrqu, char *extra) 7160 { 7161 /* 7162 * This can be called at any time. No action lock required 7163 */ 7164 7165 struct ipw2100_priv *priv = libipw_priv(dev); 7166 7167 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED; 7168 wrqu->rts.fixed = 1; /* no auto select */ 7169 7170 /* If RTS is set to the default value, then it is disabled */ 7171 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0; 7172 7173 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value); 7174 7175 return 0; 7176 } 7177 7178 static int ipw2100_wx_set_txpow(struct net_device *dev, 7179 struct iw_request_info *info, 7180 union iwreq_data *wrqu, char *extra) 7181 { 7182 struct ipw2100_priv *priv = libipw_priv(dev); 7183 int err = 0, value; 7184 7185 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled)) 7186 return -EINPROGRESS; 7187 7188 if (priv->ieee->iw_mode != IW_MODE_ADHOC) 7189 return 0; 7190 7191 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM) 7192 return -EINVAL; 7193 7194 if (wrqu->txpower.fixed == 0) 7195 value = IPW_TX_POWER_DEFAULT; 7196 else { 7197 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM || 7198 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM) 7199 return -EINVAL; 7200 7201 value = wrqu->txpower.value; 7202 } 7203 7204 mutex_lock(&priv->action_mutex); 7205 if (!(priv->status & STATUS_INITIALIZED)) { 7206 err = -EIO; 7207 goto done; 7208 } 7209 7210 err = ipw2100_set_tx_power(priv, value); 7211 7212 IPW_DEBUG_WX("SET TX Power -> %d\n", value); 7213 7214 done: 7215 mutex_unlock(&priv->action_mutex); 7216 return err; 7217 } 7218 7219 static int ipw2100_wx_get_txpow(struct net_device *dev, 7220 struct iw_request_info *info, 7221 union iwreq_data *wrqu, char *extra) 7222 { 7223 /* 7224 * This can be called at any time. No action lock required 7225 */ 7226 7227 struct ipw2100_priv *priv = libipw_priv(dev); 7228 7229 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; 7230 7231 if (priv->tx_power == IPW_TX_POWER_DEFAULT) { 7232 wrqu->txpower.fixed = 0; 7233 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM; 7234 } else { 7235 wrqu->txpower.fixed = 1; 7236 wrqu->txpower.value = priv->tx_power; 7237 } 7238 7239 wrqu->txpower.flags = IW_TXPOW_DBM; 7240 7241 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value); 7242 7243 return 0; 7244 } 7245 7246 static int ipw2100_wx_set_frag(struct net_device *dev, 7247 struct iw_request_info *info, 7248 union iwreq_data *wrqu, char *extra) 7249 { 7250 /* 7251 * This can be called at any time. No action lock required 7252 */ 7253 7254 struct ipw2100_priv *priv = libipw_priv(dev); 7255 7256 if (!wrqu->frag.fixed) 7257 return -EINVAL; 7258 7259 if (wrqu->frag.disabled) { 7260 priv->frag_threshold |= FRAG_DISABLED; 7261 priv->ieee->fts = DEFAULT_FTS; 7262 } else { 7263 if (wrqu->frag.value < MIN_FRAG_THRESHOLD || 7264 wrqu->frag.value > MAX_FRAG_THRESHOLD) 7265 return -EINVAL; 7266 7267 priv->ieee->fts = wrqu->frag.value & ~0x1; 7268 priv->frag_threshold = priv->ieee->fts; 7269 } 7270 7271 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts); 7272 7273 return 0; 7274 } 7275 7276 static int ipw2100_wx_get_frag(struct net_device *dev, 7277 struct iw_request_info *info, 7278 union iwreq_data *wrqu, char *extra) 7279 { 7280 /* 7281 * This can be called at any time. No action lock required 7282 */ 7283 7284 struct ipw2100_priv *priv = libipw_priv(dev); 7285 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED; 7286 wrqu->frag.fixed = 0; /* no auto select */ 7287 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0; 7288 7289 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); 7290 7291 return 0; 7292 } 7293 7294 static int ipw2100_wx_set_retry(struct net_device *dev, 7295 struct iw_request_info *info, 7296 union iwreq_data *wrqu, char *extra) 7297 { 7298 struct ipw2100_priv *priv = libipw_priv(dev); 7299 int err = 0; 7300 7301 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) 7302 return -EINVAL; 7303 7304 if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) 7305 return 0; 7306 7307 mutex_lock(&priv->action_mutex); 7308 if (!(priv->status & STATUS_INITIALIZED)) { 7309 err = -EIO; 7310 goto done; 7311 } 7312 7313 if (wrqu->retry.flags & IW_RETRY_SHORT) { 7314 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7315 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n", 7316 wrqu->retry.value); 7317 goto done; 7318 } 7319 7320 if (wrqu->retry.flags & IW_RETRY_LONG) { 7321 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7322 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n", 7323 wrqu->retry.value); 7324 goto done; 7325 } 7326 7327 err = ipw2100_set_short_retry(priv, wrqu->retry.value); 7328 if (!err) 7329 err = ipw2100_set_long_retry(priv, wrqu->retry.value); 7330 7331 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value); 7332 7333 done: 7334 mutex_unlock(&priv->action_mutex); 7335 return err; 7336 } 7337 7338 static int ipw2100_wx_get_retry(struct net_device *dev, 7339 struct iw_request_info *info, 7340 union iwreq_data *wrqu, char *extra) 7341 { 7342 /* 7343 * This can be called at any time. No action lock required 7344 */ 7345 7346 struct ipw2100_priv *priv = libipw_priv(dev); 7347 7348 wrqu->retry.disabled = 0; /* can't be disabled */ 7349 7350 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) 7351 return -EINVAL; 7352 7353 if (wrqu->retry.flags & IW_RETRY_LONG) { 7354 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; 7355 wrqu->retry.value = priv->long_retry_limit; 7356 } else { 7357 wrqu->retry.flags = 7358 (priv->short_retry_limit != 7359 priv->long_retry_limit) ? 7360 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT; 7361 7362 wrqu->retry.value = priv->short_retry_limit; 7363 } 7364 7365 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value); 7366 7367 return 0; 7368 } 7369 7370 static int ipw2100_wx_set_scan(struct net_device *dev, 7371 struct iw_request_info *info, 7372 union iwreq_data *wrqu, char *extra) 7373 { 7374 struct ipw2100_priv *priv = libipw_priv(dev); 7375 int err = 0; 7376 7377 mutex_lock(&priv->action_mutex); 7378 if (!(priv->status & STATUS_INITIALIZED)) { 7379 err = -EIO; 7380 goto done; 7381 } 7382 7383 IPW_DEBUG_WX("Initiating scan...\n"); 7384 7385 priv->user_requested_scan = 1; 7386 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) { 7387 IPW_DEBUG_WX("Start scan failed.\n"); 7388 7389 /* TODO: Mark a scan as pending so when hardware initialized 7390 * a scan starts */ 7391 } 7392 7393 done: 7394 mutex_unlock(&priv->action_mutex); 7395 return err; 7396 } 7397 7398 static int ipw2100_wx_get_scan(struct net_device *dev, 7399 struct iw_request_info *info, 7400 union iwreq_data *wrqu, char *extra) 7401 { 7402 /* 7403 * This can be called at any time. No action lock required 7404 */ 7405 7406 struct ipw2100_priv *priv = libipw_priv(dev); 7407 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); 7408 } 7409 7410 /* 7411 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c 7412 */ 7413 static int ipw2100_wx_set_encode(struct net_device *dev, 7414 struct iw_request_info *info, 7415 union iwreq_data *wrqu, char *key) 7416 { 7417 /* 7418 * No check of STATUS_INITIALIZED required 7419 */ 7420 7421 struct ipw2100_priv *priv = libipw_priv(dev); 7422 return libipw_wx_set_encode(priv->ieee, info, wrqu, key); 7423 } 7424 7425 static int ipw2100_wx_get_encode(struct net_device *dev, 7426 struct iw_request_info *info, 7427 union iwreq_data *wrqu, char *key) 7428 { 7429 /* 7430 * This can be called at any time. No action lock required 7431 */ 7432 7433 struct ipw2100_priv *priv = libipw_priv(dev); 7434 return libipw_wx_get_encode(priv->ieee, info, wrqu, key); 7435 } 7436 7437 static int ipw2100_wx_set_power(struct net_device *dev, 7438 struct iw_request_info *info, 7439 union iwreq_data *wrqu, char *extra) 7440 { 7441 struct ipw2100_priv *priv = libipw_priv(dev); 7442 int err = 0; 7443 7444 mutex_lock(&priv->action_mutex); 7445 if (!(priv->status & STATUS_INITIALIZED)) { 7446 err = -EIO; 7447 goto done; 7448 } 7449 7450 if (wrqu->power.disabled) { 7451 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); 7452 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM); 7453 IPW_DEBUG_WX("SET Power Management Mode -> off\n"); 7454 goto done; 7455 } 7456 7457 switch (wrqu->power.flags & IW_POWER_MODE) { 7458 case IW_POWER_ON: /* If not specified */ 7459 case IW_POWER_MODE: /* If set all mask */ 7460 case IW_POWER_ALL_R: /* If explicitly state all */ 7461 break; 7462 default: /* Otherwise we don't support it */ 7463 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", 7464 wrqu->power.flags); 7465 err = -EOPNOTSUPP; 7466 goto done; 7467 } 7468 7469 /* If the user hasn't specified a power management mode yet, default 7470 * to BATTERY */ 7471 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; 7472 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); 7473 7474 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); 7475 7476 done: 7477 mutex_unlock(&priv->action_mutex); 7478 return err; 7479 7480 } 7481 7482 static int ipw2100_wx_get_power(struct net_device *dev, 7483 struct iw_request_info *info, 7484 union iwreq_data *wrqu, char *extra) 7485 { 7486 /* 7487 * This can be called at any time. No action lock required 7488 */ 7489 7490 struct ipw2100_priv *priv = libipw_priv(dev); 7491 7492 if (!(priv->power_mode & IPW_POWER_ENABLED)) 7493 wrqu->power.disabled = 1; 7494 else { 7495 wrqu->power.disabled = 0; 7496 wrqu->power.flags = 0; 7497 } 7498 7499 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); 7500 7501 return 0; 7502 } 7503 7504 /* 7505 * WE-18 WPA support 7506 */ 7507 7508 /* SIOCSIWGENIE */ 7509 static int ipw2100_wx_set_genie(struct net_device *dev, 7510 struct iw_request_info *info, 7511 union iwreq_data *wrqu, char *extra) 7512 { 7513 7514 struct ipw2100_priv *priv = libipw_priv(dev); 7515 struct libipw_device *ieee = priv->ieee; 7516 u8 *buf; 7517 7518 if (!ieee->wpa_enabled) 7519 return -EOPNOTSUPP; 7520 7521 if (wrqu->data.length > MAX_WPA_IE_LEN || 7522 (wrqu->data.length && extra == NULL)) 7523 return -EINVAL; 7524 7525 if (wrqu->data.length) { 7526 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); 7527 if (buf == NULL) 7528 return -ENOMEM; 7529 7530 kfree(ieee->wpa_ie); 7531 ieee->wpa_ie = buf; 7532 ieee->wpa_ie_len = wrqu->data.length; 7533 } else { 7534 kfree(ieee->wpa_ie); 7535 ieee->wpa_ie = NULL; 7536 ieee->wpa_ie_len = 0; 7537 } 7538 7539 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); 7540 7541 return 0; 7542 } 7543 7544 /* SIOCGIWGENIE */ 7545 static int ipw2100_wx_get_genie(struct net_device *dev, 7546 struct iw_request_info *info, 7547 union iwreq_data *wrqu, char *extra) 7548 { 7549 struct ipw2100_priv *priv = libipw_priv(dev); 7550 struct libipw_device *ieee = priv->ieee; 7551 7552 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { 7553 wrqu->data.length = 0; 7554 return 0; 7555 } 7556 7557 if (wrqu->data.length < ieee->wpa_ie_len) 7558 return -E2BIG; 7559 7560 wrqu->data.length = ieee->wpa_ie_len; 7561 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); 7562 7563 return 0; 7564 } 7565 7566 /* SIOCSIWAUTH */ 7567 static int ipw2100_wx_set_auth(struct net_device *dev, 7568 struct iw_request_info *info, 7569 union iwreq_data *wrqu, char *extra) 7570 { 7571 struct ipw2100_priv *priv = libipw_priv(dev); 7572 struct libipw_device *ieee = priv->ieee; 7573 struct iw_param *param = &wrqu->param; 7574 struct lib80211_crypt_data *crypt; 7575 unsigned long flags; 7576 int ret = 0; 7577 7578 switch (param->flags & IW_AUTH_INDEX) { 7579 case IW_AUTH_WPA_VERSION: 7580 case IW_AUTH_CIPHER_PAIRWISE: 7581 case IW_AUTH_CIPHER_GROUP: 7582 case IW_AUTH_KEY_MGMT: 7583 /* 7584 * ipw2200 does not use these parameters 7585 */ 7586 break; 7587 7588 case IW_AUTH_TKIP_COUNTERMEASURES: 7589 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7590 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) 7591 break; 7592 7593 flags = crypt->ops->get_flags(crypt->priv); 7594 7595 if (param->value) 7596 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7597 else 7598 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; 7599 7600 crypt->ops->set_flags(flags, crypt->priv); 7601 7602 break; 7603 7604 case IW_AUTH_DROP_UNENCRYPTED:{ 7605 /* HACK: 7606 * 7607 * wpa_supplicant calls set_wpa_enabled when the driver 7608 * is loaded and unloaded, regardless of if WPA is being 7609 * used. No other calls are made which can be used to 7610 * determine if encryption will be used or not prior to 7611 * association being expected. If encryption is not being 7612 * used, drop_unencrypted is set to false, else true -- we 7613 * can use this to determine if the CAP_PRIVACY_ON bit should 7614 * be set. 7615 */ 7616 struct libipw_security sec = { 7617 .flags = SEC_ENABLED, 7618 .enabled = param->value, 7619 }; 7620 priv->ieee->drop_unencrypted = param->value; 7621 /* We only change SEC_LEVEL for open mode. Others 7622 * are set by ipw_wpa_set_encryption. 7623 */ 7624 if (!param->value) { 7625 sec.flags |= SEC_LEVEL; 7626 sec.level = SEC_LEVEL_0; 7627 } else { 7628 sec.flags |= SEC_LEVEL; 7629 sec.level = SEC_LEVEL_1; 7630 } 7631 if (priv->ieee->set_security) 7632 priv->ieee->set_security(priv->ieee->dev, &sec); 7633 break; 7634 } 7635 7636 case IW_AUTH_80211_AUTH_ALG: 7637 ret = ipw2100_wpa_set_auth_algs(priv, param->value); 7638 break; 7639 7640 case IW_AUTH_WPA_ENABLED: 7641 ret = ipw2100_wpa_enable(priv, param->value); 7642 break; 7643 7644 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7645 ieee->ieee802_1x = param->value; 7646 break; 7647 7648 //case IW_AUTH_ROAMING_CONTROL: 7649 case IW_AUTH_PRIVACY_INVOKED: 7650 ieee->privacy_invoked = param->value; 7651 break; 7652 7653 default: 7654 return -EOPNOTSUPP; 7655 } 7656 return ret; 7657 } 7658 7659 /* SIOCGIWAUTH */ 7660 static int ipw2100_wx_get_auth(struct net_device *dev, 7661 struct iw_request_info *info, 7662 union iwreq_data *wrqu, char *extra) 7663 { 7664 struct ipw2100_priv *priv = libipw_priv(dev); 7665 struct libipw_device *ieee = priv->ieee; 7666 struct lib80211_crypt_data *crypt; 7667 struct iw_param *param = &wrqu->param; 7668 7669 switch (param->flags & IW_AUTH_INDEX) { 7670 case IW_AUTH_WPA_VERSION: 7671 case IW_AUTH_CIPHER_PAIRWISE: 7672 case IW_AUTH_CIPHER_GROUP: 7673 case IW_AUTH_KEY_MGMT: 7674 /* 7675 * wpa_supplicant will control these internally 7676 */ 7677 break; 7678 7679 case IW_AUTH_TKIP_COUNTERMEASURES: 7680 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; 7681 if (!crypt || !crypt->ops->get_flags) { 7682 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: " 7683 "crypt not set!\n"); 7684 break; 7685 } 7686 7687 param->value = (crypt->ops->get_flags(crypt->priv) & 7688 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; 7689 7690 break; 7691 7692 case IW_AUTH_DROP_UNENCRYPTED: 7693 param->value = ieee->drop_unencrypted; 7694 break; 7695 7696 case IW_AUTH_80211_AUTH_ALG: 7697 param->value = priv->ieee->sec.auth_mode; 7698 break; 7699 7700 case IW_AUTH_WPA_ENABLED: 7701 param->value = ieee->wpa_enabled; 7702 break; 7703 7704 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 7705 param->value = ieee->ieee802_1x; 7706 break; 7707 7708 case IW_AUTH_ROAMING_CONTROL: 7709 case IW_AUTH_PRIVACY_INVOKED: 7710 param->value = ieee->privacy_invoked; 7711 break; 7712 7713 default: 7714 return -EOPNOTSUPP; 7715 } 7716 return 0; 7717 } 7718 7719 /* SIOCSIWENCODEEXT */ 7720 static int ipw2100_wx_set_encodeext(struct net_device *dev, 7721 struct iw_request_info *info, 7722 union iwreq_data *wrqu, char *extra) 7723 { 7724 struct ipw2100_priv *priv = libipw_priv(dev); 7725 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); 7726 } 7727 7728 /* SIOCGIWENCODEEXT */ 7729 static int ipw2100_wx_get_encodeext(struct net_device *dev, 7730 struct iw_request_info *info, 7731 union iwreq_data *wrqu, char *extra) 7732 { 7733 struct ipw2100_priv *priv = libipw_priv(dev); 7734 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); 7735 } 7736 7737 /* SIOCSIWMLME */ 7738 static int ipw2100_wx_set_mlme(struct net_device *dev, 7739 struct iw_request_info *info, 7740 union iwreq_data *wrqu, char *extra) 7741 { 7742 struct ipw2100_priv *priv = libipw_priv(dev); 7743 struct iw_mlme *mlme = (struct iw_mlme *)extra; 7744 7745 switch (mlme->cmd) { 7746 case IW_MLME_DEAUTH: 7747 // silently ignore 7748 break; 7749 7750 case IW_MLME_DISASSOC: 7751 ipw2100_disassociate_bssid(priv); 7752 break; 7753 7754 default: 7755 return -EOPNOTSUPP; 7756 } 7757 return 0; 7758 } 7759 7760 /* 7761 * 7762 * IWPRIV handlers 7763 * 7764 */ 7765 #ifdef CONFIG_IPW2100_MONITOR 7766 static int ipw2100_wx_set_promisc(struct net_device *dev, 7767 struct iw_request_info *info, 7768 union iwreq_data *wrqu, char *extra) 7769 { 7770 struct ipw2100_priv *priv = libipw_priv(dev); 7771 int *parms = (int *)extra; 7772 int enable = (parms[0] > 0); 7773 int err = 0; 7774 7775 mutex_lock(&priv->action_mutex); 7776 if (!(priv->status & STATUS_INITIALIZED)) { 7777 err = -EIO; 7778 goto done; 7779 } 7780 7781 if (enable) { 7782 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 7783 err = ipw2100_set_channel(priv, parms[1], 0); 7784 goto done; 7785 } 7786 priv->channel = parms[1]; 7787 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR); 7788 } else { 7789 if (priv->ieee->iw_mode == IW_MODE_MONITOR) 7790 err = ipw2100_switch_mode(priv, priv->last_mode); 7791 } 7792 done: 7793 mutex_unlock(&priv->action_mutex); 7794 return err; 7795 } 7796 7797 static int ipw2100_wx_reset(struct net_device *dev, 7798 struct iw_request_info *info, 7799 union iwreq_data *wrqu, char *extra) 7800 { 7801 struct ipw2100_priv *priv = libipw_priv(dev); 7802 if (priv->status & STATUS_INITIALIZED) 7803 schedule_reset(priv); 7804 return 0; 7805 } 7806 7807 #endif 7808 7809 static int ipw2100_wx_set_powermode(struct net_device *dev, 7810 struct iw_request_info *info, 7811 union iwreq_data *wrqu, char *extra) 7812 { 7813 struct ipw2100_priv *priv = libipw_priv(dev); 7814 int err = 0, mode = *(int *)extra; 7815 7816 mutex_lock(&priv->action_mutex); 7817 if (!(priv->status & STATUS_INITIALIZED)) { 7818 err = -EIO; 7819 goto done; 7820 } 7821 7822 if ((mode < 0) || (mode > POWER_MODES)) 7823 mode = IPW_POWER_AUTO; 7824 7825 if (IPW_POWER_LEVEL(priv->power_mode) != mode) 7826 err = ipw2100_set_power_mode(priv, mode); 7827 done: 7828 mutex_unlock(&priv->action_mutex); 7829 return err; 7830 } 7831 7832 #define MAX_POWER_STRING 80 7833 static int ipw2100_wx_get_powermode(struct net_device *dev, 7834 struct iw_request_info *info, 7835 union iwreq_data *wrqu, char *extra) 7836 { 7837 /* 7838 * This can be called at any time. No action lock required 7839 */ 7840 7841 struct ipw2100_priv *priv = libipw_priv(dev); 7842 int level = IPW_POWER_LEVEL(priv->power_mode); 7843 s32 timeout, period; 7844 7845 if (!(priv->power_mode & IPW_POWER_ENABLED)) { 7846 snprintf(extra, MAX_POWER_STRING, 7847 "Power save level: %d (Off)", level); 7848 } else { 7849 switch (level) { 7850 case IPW_POWER_MODE_CAM: 7851 snprintf(extra, MAX_POWER_STRING, 7852 "Power save level: %d (None)", level); 7853 break; 7854 case IPW_POWER_AUTO: 7855 snprintf(extra, MAX_POWER_STRING, 7856 "Power save level: %d (Auto)", level); 7857 break; 7858 default: 7859 timeout = timeout_duration[level - 1] / 1000; 7860 period = period_duration[level - 1] / 1000; 7861 snprintf(extra, MAX_POWER_STRING, 7862 "Power save level: %d " 7863 "(Timeout %dms, Period %dms)", 7864 level, timeout, period); 7865 } 7866 } 7867 7868 wrqu->data.length = strlen(extra) + 1; 7869 7870 return 0; 7871 } 7872 7873 static int ipw2100_wx_set_preamble(struct net_device *dev, 7874 struct iw_request_info *info, 7875 union iwreq_data *wrqu, char *extra) 7876 { 7877 struct ipw2100_priv *priv = libipw_priv(dev); 7878 int err, mode = *(int *)extra; 7879 7880 mutex_lock(&priv->action_mutex); 7881 if (!(priv->status & STATUS_INITIALIZED)) { 7882 err = -EIO; 7883 goto done; 7884 } 7885 7886 if (mode == 1) 7887 priv->config |= CFG_LONG_PREAMBLE; 7888 else if (mode == 0) 7889 priv->config &= ~CFG_LONG_PREAMBLE; 7890 else { 7891 err = -EINVAL; 7892 goto done; 7893 } 7894 7895 err = ipw2100_system_config(priv, 0); 7896 7897 done: 7898 mutex_unlock(&priv->action_mutex); 7899 return err; 7900 } 7901 7902 static int ipw2100_wx_get_preamble(struct net_device *dev, 7903 struct iw_request_info *info, 7904 union iwreq_data *wrqu, char *extra) 7905 { 7906 /* 7907 * This can be called at any time. No action lock required 7908 */ 7909 7910 struct ipw2100_priv *priv = libipw_priv(dev); 7911 7912 if (priv->config & CFG_LONG_PREAMBLE) 7913 snprintf(wrqu->name, IFNAMSIZ, "long (1)"); 7914 else 7915 snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); 7916 7917 return 0; 7918 } 7919 7920 #ifdef CONFIG_IPW2100_MONITOR 7921 static int ipw2100_wx_set_crc_check(struct net_device *dev, 7922 struct iw_request_info *info, 7923 union iwreq_data *wrqu, char *extra) 7924 { 7925 struct ipw2100_priv *priv = libipw_priv(dev); 7926 int err, mode = *(int *)extra; 7927 7928 mutex_lock(&priv->action_mutex); 7929 if (!(priv->status & STATUS_INITIALIZED)) { 7930 err = -EIO; 7931 goto done; 7932 } 7933 7934 if (mode == 1) 7935 priv->config |= CFG_CRC_CHECK; 7936 else if (mode == 0) 7937 priv->config &= ~CFG_CRC_CHECK; 7938 else { 7939 err = -EINVAL; 7940 goto done; 7941 } 7942 err = 0; 7943 7944 done: 7945 mutex_unlock(&priv->action_mutex); 7946 return err; 7947 } 7948 7949 static int ipw2100_wx_get_crc_check(struct net_device *dev, 7950 struct iw_request_info *info, 7951 union iwreq_data *wrqu, char *extra) 7952 { 7953 /* 7954 * This can be called at any time. No action lock required 7955 */ 7956 7957 struct ipw2100_priv *priv = libipw_priv(dev); 7958 7959 if (priv->config & CFG_CRC_CHECK) 7960 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)"); 7961 else 7962 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)"); 7963 7964 return 0; 7965 } 7966 #endif /* CONFIG_IPW2100_MONITOR */ 7967 7968 static iw_handler ipw2100_wx_handlers[] = { 7969 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name), 7970 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq), 7971 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq), 7972 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode), 7973 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode), 7974 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range), 7975 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap), 7976 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap), 7977 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme), 7978 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan), 7979 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan), 7980 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid), 7981 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid), 7982 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick), 7983 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick), 7984 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate), 7985 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate), 7986 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts), 7987 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts), 7988 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag), 7989 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag), 7990 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow), 7991 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow), 7992 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry), 7993 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry), 7994 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode), 7995 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode), 7996 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power), 7997 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power), 7998 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie), 7999 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie), 8000 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth), 8001 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth), 8002 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext), 8003 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext), 8004 }; 8005 8006 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV 8007 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1 8008 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2 8009 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3 8010 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4 8011 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5 8012 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6 8013 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7 8014 8015 static const struct iw_priv_args ipw2100_private_args[] = { 8016 8017 #ifdef CONFIG_IPW2100_MONITOR 8018 { 8019 IPW2100_PRIV_SET_MONITOR, 8020 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, 8021 { 8022 IPW2100_PRIV_RESET, 8023 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, 8024 #endif /* CONFIG_IPW2100_MONITOR */ 8025 8026 { 8027 IPW2100_PRIV_SET_POWER, 8028 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"}, 8029 { 8030 IPW2100_PRIV_GET_POWER, 8031 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING, 8032 "get_power"}, 8033 { 8034 IPW2100_PRIV_SET_LONGPREAMBLE, 8035 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"}, 8036 { 8037 IPW2100_PRIV_GET_LONGPREAMBLE, 8038 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"}, 8039 #ifdef CONFIG_IPW2100_MONITOR 8040 { 8041 IPW2100_PRIV_SET_CRC_CHECK, 8042 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"}, 8043 { 8044 IPW2100_PRIV_GET_CRC_CHECK, 8045 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"}, 8046 #endif /* CONFIG_IPW2100_MONITOR */ 8047 }; 8048 8049 static iw_handler ipw2100_private_handler[] = { 8050 #ifdef CONFIG_IPW2100_MONITOR 8051 ipw2100_wx_set_promisc, 8052 ipw2100_wx_reset, 8053 #else /* CONFIG_IPW2100_MONITOR */ 8054 NULL, 8055 NULL, 8056 #endif /* CONFIG_IPW2100_MONITOR */ 8057 ipw2100_wx_set_powermode, 8058 ipw2100_wx_get_powermode, 8059 ipw2100_wx_set_preamble, 8060 ipw2100_wx_get_preamble, 8061 #ifdef CONFIG_IPW2100_MONITOR 8062 ipw2100_wx_set_crc_check, 8063 ipw2100_wx_get_crc_check, 8064 #else /* CONFIG_IPW2100_MONITOR */ 8065 NULL, 8066 NULL, 8067 #endif /* CONFIG_IPW2100_MONITOR */ 8068 }; 8069 8070 /* 8071 * Get wireless statistics. 8072 * Called by /proc/net/wireless 8073 * Also called by SIOCGIWSTATS 8074 */ 8075 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev) 8076 { 8077 enum { 8078 POOR = 30, 8079 FAIR = 60, 8080 GOOD = 80, 8081 VERY_GOOD = 90, 8082 EXCELLENT = 95, 8083 PERFECT = 100 8084 }; 8085 int rssi_qual; 8086 int tx_qual; 8087 int beacon_qual; 8088 int quality; 8089 8090 struct ipw2100_priv *priv = libipw_priv(dev); 8091 struct iw_statistics *wstats; 8092 u32 rssi, tx_retries, missed_beacons, tx_failures; 8093 u32 ord_len = sizeof(u32); 8094 8095 if (!priv) 8096 return (struct iw_statistics *)NULL; 8097 8098 wstats = &priv->wstats; 8099 8100 /* if hw is disabled, then ipw2100_get_ordinal() can't be called. 8101 * ipw2100_wx_wireless_stats seems to be called before fw is 8102 * initialized. STATUS_ASSOCIATED will only be set if the hw is up 8103 * and associated; if not associcated, the values are all meaningless 8104 * anyway, so set them all to NULL and INVALID */ 8105 if (!(priv->status & STATUS_ASSOCIATED)) { 8106 wstats->miss.beacon = 0; 8107 wstats->discard.retries = 0; 8108 wstats->qual.qual = 0; 8109 wstats->qual.level = 0; 8110 wstats->qual.noise = 0; 8111 wstats->qual.updated = 7; 8112 wstats->qual.updated |= IW_QUAL_NOISE_INVALID | 8113 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; 8114 return wstats; 8115 } 8116 8117 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS, 8118 &missed_beacons, &ord_len)) 8119 goto fail_get_ordinal; 8120 8121 /* If we don't have a connection the quality and level is 0 */ 8122 if (!(priv->status & STATUS_ASSOCIATED)) { 8123 wstats->qual.qual = 0; 8124 wstats->qual.level = 0; 8125 } else { 8126 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR, 8127 &rssi, &ord_len)) 8128 goto fail_get_ordinal; 8129 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8130 if (rssi < 10) 8131 rssi_qual = rssi * POOR / 10; 8132 else if (rssi < 15) 8133 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR; 8134 else if (rssi < 20) 8135 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR; 8136 else if (rssi < 30) 8137 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) / 8138 10 + GOOD; 8139 else 8140 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) / 8141 10 + VERY_GOOD; 8142 8143 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES, 8144 &tx_retries, &ord_len)) 8145 goto fail_get_ordinal; 8146 8147 if (tx_retries > 75) 8148 tx_qual = (90 - tx_retries) * POOR / 15; 8149 else if (tx_retries > 70) 8150 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR; 8151 else if (tx_retries > 65) 8152 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR; 8153 else if (tx_retries > 50) 8154 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) / 8155 15 + GOOD; 8156 else 8157 tx_qual = (50 - tx_retries) * 8158 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD; 8159 8160 if (missed_beacons > 50) 8161 beacon_qual = (60 - missed_beacons) * POOR / 10; 8162 else if (missed_beacons > 40) 8163 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) / 8164 10 + POOR; 8165 else if (missed_beacons > 32) 8166 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) / 8167 18 + FAIR; 8168 else if (missed_beacons > 20) 8169 beacon_qual = (32 - missed_beacons) * 8170 (VERY_GOOD - GOOD) / 20 + GOOD; 8171 else 8172 beacon_qual = (20 - missed_beacons) * 8173 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD; 8174 8175 quality = min(tx_qual, rssi_qual); 8176 quality = min(beacon_qual, quality); 8177 8178 #ifdef CONFIG_IPW2100_DEBUG 8179 if (beacon_qual == quality) 8180 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n"); 8181 else if (tx_qual == quality) 8182 IPW_DEBUG_WX("Quality clamped by Tx Retries\n"); 8183 else if (quality != 100) 8184 IPW_DEBUG_WX("Quality clamped by Signal Strength\n"); 8185 else 8186 IPW_DEBUG_WX("Quality not clamped.\n"); 8187 #endif 8188 8189 wstats->qual.qual = quality; 8190 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM; 8191 } 8192 8193 wstats->qual.noise = 0; 8194 wstats->qual.updated = 7; 8195 wstats->qual.updated |= IW_QUAL_NOISE_INVALID; 8196 8197 /* FIXME: this is percent and not a # */ 8198 wstats->miss.beacon = missed_beacons; 8199 8200 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES, 8201 &tx_failures, &ord_len)) 8202 goto fail_get_ordinal; 8203 wstats->discard.retries = tx_failures; 8204 8205 return wstats; 8206 8207 fail_get_ordinal: 8208 IPW_DEBUG_WX("failed querying ordinals.\n"); 8209 8210 return (struct iw_statistics *)NULL; 8211 } 8212 8213 static const struct iw_handler_def ipw2100_wx_handler_def = { 8214 .standard = ipw2100_wx_handlers, 8215 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers), 8216 .num_private = ARRAY_SIZE(ipw2100_private_handler), 8217 .num_private_args = ARRAY_SIZE(ipw2100_private_args), 8218 .private = (iw_handler *) ipw2100_private_handler, 8219 .private_args = (struct iw_priv_args *)ipw2100_private_args, 8220 .get_wireless_stats = ipw2100_wx_wireless_stats, 8221 }; 8222 8223 static void ipw2100_wx_event_work(struct work_struct *work) 8224 { 8225 struct ipw2100_priv *priv = 8226 container_of(work, struct ipw2100_priv, wx_event_work.work); 8227 union iwreq_data wrqu; 8228 unsigned int len = ETH_ALEN; 8229 8230 if (priv->status & STATUS_STOPPING) 8231 return; 8232 8233 mutex_lock(&priv->action_mutex); 8234 8235 IPW_DEBUG_WX("enter\n"); 8236 8237 mutex_unlock(&priv->action_mutex); 8238 8239 wrqu.ap_addr.sa_family = ARPHRD_ETHER; 8240 8241 /* Fetch BSSID from the hardware */ 8242 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) || 8243 priv->status & STATUS_RF_KILL_MASK || 8244 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, 8245 &priv->bssid, &len)) { 8246 eth_zero_addr(wrqu.ap_addr.sa_data); 8247 } else { 8248 /* We now have the BSSID, so can finish setting to the full 8249 * associated state */ 8250 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); 8251 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN); 8252 priv->status &= ~STATUS_ASSOCIATING; 8253 priv->status |= STATUS_ASSOCIATED; 8254 netif_carrier_on(priv->net_dev); 8255 netif_wake_queue(priv->net_dev); 8256 } 8257 8258 if (!(priv->status & STATUS_ASSOCIATED)) { 8259 IPW_DEBUG_WX("Configuring ESSID\n"); 8260 mutex_lock(&priv->action_mutex); 8261 /* This is a disassociation event, so kick the firmware to 8262 * look for another AP */ 8263 if (priv->config & CFG_STATIC_ESSID) 8264 ipw2100_set_essid(priv, priv->essid, priv->essid_len, 8265 0); 8266 else 8267 ipw2100_set_essid(priv, NULL, 0, 0); 8268 mutex_unlock(&priv->action_mutex); 8269 } 8270 8271 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); 8272 } 8273 8274 #define IPW2100_FW_MAJOR_VERSION 1 8275 #define IPW2100_FW_MINOR_VERSION 3 8276 8277 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8) 8278 #define IPW2100_FW_MAJOR(x) (x & 0xff) 8279 8280 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \ 8281 IPW2100_FW_MAJOR_VERSION) 8282 8283 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \ 8284 "." __stringify(IPW2100_FW_MINOR_VERSION) 8285 8286 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw" 8287 8288 /* 8289 8290 BINARY FIRMWARE HEADER FORMAT 8291 8292 offset length desc 8293 0 2 version 8294 2 2 mode == 0:BSS,1:IBSS,2:MONITOR 8295 4 4 fw_len 8296 8 4 uc_len 8297 C fw_len firmware data 8298 12 + fw_len uc_len microcode data 8299 8300 */ 8301 8302 struct ipw2100_fw_header { 8303 short version; 8304 short mode; 8305 unsigned int fw_size; 8306 unsigned int uc_size; 8307 } __packed; 8308 8309 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw) 8310 { 8311 struct ipw2100_fw_header *h = 8312 (struct ipw2100_fw_header *)fw->fw_entry->data; 8313 8314 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) { 8315 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible " 8316 "(detected version id of %u). " 8317 "See Documentation/networking/device_drivers/wifi/intel/ipw2100.rst\n", 8318 h->version); 8319 return 1; 8320 } 8321 8322 fw->version = h->version; 8323 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header); 8324 fw->fw.size = h->fw_size; 8325 fw->uc.data = fw->fw.data + h->fw_size; 8326 fw->uc.size = h->uc_size; 8327 8328 return 0; 8329 } 8330 8331 static int ipw2100_get_firmware(struct ipw2100_priv *priv, 8332 struct ipw2100_fw *fw) 8333 { 8334 char *fw_name; 8335 int rc; 8336 8337 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n", 8338 priv->net_dev->name); 8339 8340 switch (priv->ieee->iw_mode) { 8341 case IW_MODE_ADHOC: 8342 fw_name = IPW2100_FW_NAME("-i"); 8343 break; 8344 #ifdef CONFIG_IPW2100_MONITOR 8345 case IW_MODE_MONITOR: 8346 fw_name = IPW2100_FW_NAME("-p"); 8347 break; 8348 #endif 8349 case IW_MODE_INFRA: 8350 default: 8351 fw_name = IPW2100_FW_NAME(""); 8352 break; 8353 } 8354 8355 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev); 8356 8357 if (rc < 0) { 8358 printk(KERN_ERR DRV_NAME ": " 8359 "%s: Firmware '%s' not available or load failed.\n", 8360 priv->net_dev->name, fw_name); 8361 return rc; 8362 } 8363 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data, 8364 fw->fw_entry->size); 8365 8366 ipw2100_mod_firmware_load(fw); 8367 8368 return 0; 8369 } 8370 8371 MODULE_FIRMWARE(IPW2100_FW_NAME("-i")); 8372 #ifdef CONFIG_IPW2100_MONITOR 8373 MODULE_FIRMWARE(IPW2100_FW_NAME("-p")); 8374 #endif 8375 MODULE_FIRMWARE(IPW2100_FW_NAME("")); 8376 8377 static void ipw2100_release_firmware(struct ipw2100_priv *priv, 8378 struct ipw2100_fw *fw) 8379 { 8380 fw->version = 0; 8381 release_firmware(fw->fw_entry); 8382 fw->fw_entry = NULL; 8383 } 8384 8385 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf, 8386 size_t max) 8387 { 8388 char ver[MAX_FW_VERSION_LEN]; 8389 u32 len = MAX_FW_VERSION_LEN; 8390 u32 tmp; 8391 int i; 8392 /* firmware version is an ascii string (max len of 14) */ 8393 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len)) 8394 return -EIO; 8395 tmp = max; 8396 if (len >= max) 8397 len = max - 1; 8398 for (i = 0; i < len; i++) 8399 buf[i] = ver[i]; 8400 buf[i] = '\0'; 8401 return tmp; 8402 } 8403 8404 /* 8405 * On exit, the firmware will have been freed from the fw list 8406 */ 8407 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw) 8408 { 8409 /* firmware is constructed of N contiguous entries, each entry is 8410 * structured as: 8411 * 8412 * offset sie desc 8413 * 0 4 address to write to 8414 * 4 2 length of data run 8415 * 6 length data 8416 */ 8417 unsigned int addr; 8418 unsigned short len; 8419 8420 const unsigned char *firmware_data = fw->fw.data; 8421 unsigned int firmware_data_left = fw->fw.size; 8422 8423 while (firmware_data_left > 0) { 8424 addr = *(u32 *) (firmware_data); 8425 firmware_data += 4; 8426 firmware_data_left -= 4; 8427 8428 len = *(u16 *) (firmware_data); 8429 firmware_data += 2; 8430 firmware_data_left -= 2; 8431 8432 if (len > 32) { 8433 printk(KERN_ERR DRV_NAME ": " 8434 "Invalid firmware run-length of %d bytes\n", 8435 len); 8436 return -EINVAL; 8437 } 8438 8439 write_nic_memory(priv->net_dev, addr, len, firmware_data); 8440 firmware_data += len; 8441 firmware_data_left -= len; 8442 } 8443 8444 return 0; 8445 } 8446 8447 struct symbol_alive_response { 8448 u8 cmd_id; 8449 u8 seq_num; 8450 u8 ucode_rev; 8451 u8 eeprom_valid; 8452 u16 valid_flags; 8453 u8 IEEE_addr[6]; 8454 u16 flags; 8455 u16 pcb_rev; 8456 u16 clock_settle_time; // 1us LSB 8457 u16 powerup_settle_time; // 1us LSB 8458 u16 hop_settle_time; // 1us LSB 8459 u8 date[3]; // month, day, year 8460 u8 time[2]; // hours, minutes 8461 u8 ucode_valid; 8462 }; 8463 8464 static int ipw2100_ucode_download(struct ipw2100_priv *priv, 8465 struct ipw2100_fw *fw) 8466 { 8467 struct net_device *dev = priv->net_dev; 8468 const unsigned char *microcode_data = fw->uc.data; 8469 unsigned int microcode_data_left = fw->uc.size; 8470 void __iomem *reg = priv->ioaddr; 8471 8472 struct symbol_alive_response response; 8473 int i, j; 8474 u8 data; 8475 8476 /* Symbol control */ 8477 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8478 readl(reg); 8479 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8480 readl(reg); 8481 8482 /* HW config */ 8483 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8484 readl(reg); 8485 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */ 8486 readl(reg); 8487 8488 /* EN_CS_ACCESS bit to reset control store pointer */ 8489 write_nic_byte(dev, 0x210000, 0x40); 8490 readl(reg); 8491 write_nic_byte(dev, 0x210000, 0x0); 8492 readl(reg); 8493 write_nic_byte(dev, 0x210000, 0x40); 8494 readl(reg); 8495 8496 /* copy microcode from buffer into Symbol */ 8497 8498 while (microcode_data_left > 0) { 8499 write_nic_byte(dev, 0x210010, *microcode_data++); 8500 write_nic_byte(dev, 0x210010, *microcode_data++); 8501 microcode_data_left -= 2; 8502 } 8503 8504 /* EN_CS_ACCESS bit to reset the control store pointer */ 8505 write_nic_byte(dev, 0x210000, 0x0); 8506 readl(reg); 8507 8508 /* Enable System (Reg 0) 8509 * first enable causes garbage in RX FIFO */ 8510 write_nic_byte(dev, 0x210000, 0x0); 8511 readl(reg); 8512 write_nic_byte(dev, 0x210000, 0x80); 8513 readl(reg); 8514 8515 /* Reset External Baseband Reg */ 8516 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703); 8517 readl(reg); 8518 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707); 8519 readl(reg); 8520 8521 /* HW Config (Reg 5) */ 8522 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8523 readl(reg); 8524 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16 8525 readl(reg); 8526 8527 /* Enable System (Reg 0) 8528 * second enable should be OK */ 8529 write_nic_byte(dev, 0x210000, 0x00); // clear enable system 8530 readl(reg); 8531 write_nic_byte(dev, 0x210000, 0x80); // set enable system 8532 8533 /* check Symbol is enabled - upped this from 5 as it wasn't always 8534 * catching the update */ 8535 for (i = 0; i < 10; i++) { 8536 udelay(10); 8537 8538 /* check Dino is enabled bit */ 8539 read_nic_byte(dev, 0x210000, &data); 8540 if (data & 0x1) 8541 break; 8542 } 8543 8544 if (i == 10) { 8545 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n", 8546 dev->name); 8547 return -EIO; 8548 } 8549 8550 /* Get Symbol alive response */ 8551 for (i = 0; i < 30; i++) { 8552 /* Read alive response structure */ 8553 for (j = 0; 8554 j < (sizeof(struct symbol_alive_response) >> 1); j++) 8555 read_nic_word(dev, 0x210004, ((u16 *) & response) + j); 8556 8557 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1)) 8558 break; 8559 udelay(10); 8560 } 8561 8562 if (i == 30) { 8563 printk(KERN_ERR DRV_NAME 8564 ": %s: No response from Symbol - hw not alive\n", 8565 dev->name); 8566 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response)); 8567 return -EIO; 8568 } 8569 8570 return 0; 8571 } 8572