xref: /linux/drivers/net/wireless/broadcom/brcm80211/brcmsmac/dma.c (revision 6af91e3d2cfc8bb579b1aa2d22cd91f8c34acdf6)
1 /*
2  * Copyright (c) 2010 Broadcom Corporation
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/pci.h>
20 #include <net/cfg80211.h>
21 #include <net/mac80211.h>
22 
23 #include <brcmu_utils.h>
24 #include <aiutils.h>
25 #include "types.h"
26 #include "main.h"
27 #include "dma.h"
28 #include "soc.h"
29 #include "scb.h"
30 #include "ampdu.h"
31 #include "debug.h"
32 #include "brcms_trace_events.h"
33 
34 /*
35  * dma register field offset calculation
36  */
37 #define DMA64REGOFFS(field)		offsetof(struct dma64regs, field)
38 #define DMA64TXREGOFFS(di, field)	(di->d64txregbase + DMA64REGOFFS(field))
39 #define DMA64RXREGOFFS(di, field)	(di->d64rxregbase + DMA64REGOFFS(field))
40 
41 /*
42  * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
43  * a contiguous 8kB physical address.
44  */
45 #define D64RINGALIGN_BITS	13
46 #define	D64MAXRINGSZ		(1 << D64RINGALIGN_BITS)
47 #define	D64RINGALIGN		(1 << D64RINGALIGN_BITS)
48 
49 #define	D64MAXDD	(D64MAXRINGSZ / sizeof(struct dma64desc))
50 
51 /* transmit channel control */
52 #define	D64_XC_XE		0x00000001	/* transmit enable */
53 #define	D64_XC_SE		0x00000002	/* transmit suspend request */
54 #define	D64_XC_LE		0x00000004	/* loopback enable */
55 #define	D64_XC_FL		0x00000010	/* flush request */
56 #define	D64_XC_PD		0x00000800	/* parity check disable */
57 #define	D64_XC_AE		0x00030000	/* address extension bits */
58 #define	D64_XC_AE_SHIFT		16
59 
60 /* transmit descriptor table pointer */
61 #define	D64_XP_LD_MASK		0x00000fff	/* last valid descriptor */
62 
63 /* transmit channel status */
64 #define	D64_XS0_CD_MASK		0x00001fff	/* current descriptor pointer */
65 #define	D64_XS0_XS_MASK		0xf0000000	/* transmit state */
66 #define	D64_XS0_XS_SHIFT		28
67 #define	D64_XS0_XS_DISABLED	0x00000000	/* disabled */
68 #define	D64_XS0_XS_ACTIVE	0x10000000	/* active */
69 #define	D64_XS0_XS_IDLE		0x20000000	/* idle wait */
70 #define	D64_XS0_XS_STOPPED	0x30000000	/* stopped */
71 #define	D64_XS0_XS_SUSP		0x40000000	/* suspend pending */
72 
73 #define	D64_XS1_AD_MASK		0x00001fff	/* active descriptor */
74 #define	D64_XS1_XE_MASK		0xf0000000	/* transmit errors */
75 #define	D64_XS1_XE_SHIFT		28
76 #define	D64_XS1_XE_NOERR	0x00000000	/* no error */
77 #define	D64_XS1_XE_DPE		0x10000000	/* descriptor protocol error */
78 #define	D64_XS1_XE_DFU		0x20000000	/* data fifo underrun */
79 #define	D64_XS1_XE_DTE		0x30000000	/* data transfer error */
80 #define	D64_XS1_XE_DESRE	0x40000000	/* descriptor read error */
81 #define	D64_XS1_XE_COREE	0x50000000	/* core error */
82 
83 /* receive channel control */
84 /* receive enable */
85 #define	D64_RC_RE		0x00000001
86 /* receive frame offset */
87 #define	D64_RC_RO_MASK		0x000000fe
88 #define	D64_RC_RO_SHIFT		1
89 /* direct fifo receive (pio) mode */
90 #define	D64_RC_FM		0x00000100
91 /* separate rx header descriptor enable */
92 #define	D64_RC_SH		0x00000200
93 /* overflow continue */
94 #define	D64_RC_OC		0x00000400
95 /* parity check disable */
96 #define	D64_RC_PD		0x00000800
97 /* address extension bits */
98 #define	D64_RC_AE		0x00030000
99 #define	D64_RC_AE_SHIFT		16
100 
101 /* flags for dma controller */
102 /* partity enable */
103 #define DMA_CTRL_PEN		(1 << 0)
104 /* rx overflow continue */
105 #define DMA_CTRL_ROC		(1 << 1)
106 /* allow rx scatter to multiple descriptors */
107 #define DMA_CTRL_RXMULTI	(1 << 2)
108 /* Unframed Rx/Tx data */
109 #define DMA_CTRL_UNFRAMED	(1 << 3)
110 
111 /* receive descriptor table pointer */
112 #define	D64_RP_LD_MASK		0x00000fff	/* last valid descriptor */
113 
114 /* receive channel status */
115 #define	D64_RS0_CD_MASK		0x00001fff	/* current descriptor pointer */
116 #define	D64_RS0_RS_MASK		0xf0000000	/* receive state */
117 #define	D64_RS0_RS_SHIFT		28
118 #define	D64_RS0_RS_DISABLED	0x00000000	/* disabled */
119 #define	D64_RS0_RS_ACTIVE	0x10000000	/* active */
120 #define	D64_RS0_RS_IDLE		0x20000000	/* idle wait */
121 #define	D64_RS0_RS_STOPPED	0x30000000	/* stopped */
122 #define	D64_RS0_RS_SUSP		0x40000000	/* suspend pending */
123 
124 #define	D64_RS1_AD_MASK		0x0001ffff	/* active descriptor */
125 #define	D64_RS1_RE_MASK		0xf0000000	/* receive errors */
126 #define	D64_RS1_RE_SHIFT		28
127 #define	D64_RS1_RE_NOERR	0x00000000	/* no error */
128 #define	D64_RS1_RE_DPO		0x10000000	/* descriptor protocol error */
129 #define	D64_RS1_RE_DFU		0x20000000	/* data fifo overflow */
130 #define	D64_RS1_RE_DTE		0x30000000	/* data transfer error */
131 #define	D64_RS1_RE_DESRE	0x40000000	/* descriptor read error */
132 #define	D64_RS1_RE_COREE	0x50000000	/* core error */
133 
134 /* fifoaddr */
135 #define	D64_FA_OFF_MASK		0xffff	/* offset */
136 #define	D64_FA_SEL_MASK		0xf0000	/* select */
137 #define	D64_FA_SEL_SHIFT	16
138 #define	D64_FA_SEL_XDD		0x00000	/* transmit dma data */
139 #define	D64_FA_SEL_XDP		0x10000	/* transmit dma pointers */
140 #define	D64_FA_SEL_RDD		0x40000	/* receive dma data */
141 #define	D64_FA_SEL_RDP		0x50000	/* receive dma pointers */
142 #define	D64_FA_SEL_XFD		0x80000	/* transmit fifo data */
143 #define	D64_FA_SEL_XFP		0x90000	/* transmit fifo pointers */
144 #define	D64_FA_SEL_RFD		0xc0000	/* receive fifo data */
145 #define	D64_FA_SEL_RFP		0xd0000	/* receive fifo pointers */
146 #define	D64_FA_SEL_RSD		0xe0000	/* receive frame status data */
147 #define	D64_FA_SEL_RSP		0xf0000	/* receive frame status pointers */
148 
149 /* descriptor control flags 1 */
150 #define D64_CTRL_COREFLAGS	0x0ff00000	/* core specific flags */
151 #define	D64_CTRL1_EOT		((u32)1 << 28)	/* end of descriptor table */
152 #define	D64_CTRL1_IOC		((u32)1 << 29)	/* interrupt on completion */
153 #define	D64_CTRL1_EOF		((u32)1 << 30)	/* end of frame */
154 #define	D64_CTRL1_SOF		((u32)1 << 31)	/* start of frame */
155 
156 /* descriptor control flags 2 */
157 /* buffer byte count. real data len must <= 16KB */
158 #define	D64_CTRL2_BC_MASK	0x00007fff
159 /* address extension bits */
160 #define	D64_CTRL2_AE		0x00030000
161 #define	D64_CTRL2_AE_SHIFT	16
162 /* parity bit */
163 #define D64_CTRL2_PARITY	0x00040000
164 
165 /* control flags in the range [27:20] are core-specific and not defined here */
166 #define	D64_CTRL_CORE_MASK	0x0ff00000
167 
168 #define D64_RX_FRM_STS_LEN	0x0000ffff	/* frame length mask */
169 #define D64_RX_FRM_STS_OVFL	0x00800000	/* RxOverFlow */
170 #define D64_RX_FRM_STS_DSCRCNT	0x0f000000  /* no. of descriptors used - 1 */
171 #define D64_RX_FRM_STS_DATATYPE	0xf0000000	/* core-dependent data type */
172 
173 /*
174  * packet headroom necessary to accommodate the largest header
175  * in the system, (i.e TXOFF). By doing, we avoid the need to
176  * allocate an extra buffer for the header when bridging to WL.
177  * There is a compile time check in wlc.c which ensure that this
178  * value is at least as big as TXOFF. This value is used in
179  * dma_rxfill().
180  */
181 
182 #define BCMEXTRAHDROOM 172
183 
184 #define	MAXNAMEL	8	/* 8 char names */
185 
186 /* macros to convert between byte offsets and indexes */
187 #define	B2I(bytes, type)	((bytes) / sizeof(type))
188 #define	I2B(index, type)	((index) * sizeof(type))
189 
190 #define	PCI32ADDR_HIGH		0xc0000000	/* address[31:30] */
191 #define	PCI32ADDR_HIGH_SHIFT	30	/* address[31:30] */
192 
193 #define	PCI64ADDR_HIGH		0x80000000	/* address[63] */
194 #define	PCI64ADDR_HIGH_SHIFT	31	/* address[63] */
195 
196 /*
197  * DMA Descriptor
198  * Descriptors are only read by the hardware, never written back.
199  */
200 struct dma64desc {
201 	__le32 ctrl1;	/* misc control bits & bufcount */
202 	__le32 ctrl2;	/* buffer count and address extension */
203 	__le32 addrlow;	/* memory address of the date buffer, bits 31:0 */
204 	__le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
205 };
206 
207 /* dma engine software state */
208 struct dma_info {
209 	struct dma_pub dma; /* exported structure */
210 	char name[MAXNAMEL];	/* callers name for diag msgs */
211 
212 	struct bcma_device *core;
213 	struct device *dmadev;
214 
215 	/* session information for AMPDU */
216 	struct brcms_ampdu_session ampdu_session;
217 
218 	bool dma64;	/* this dma engine is operating in 64-bit mode */
219 	bool addrext;	/* this dma engine supports DmaExtendedAddrChanges */
220 
221 	/* 64-bit dma tx engine registers */
222 	uint d64txregbase;
223 	/* 64-bit dma rx engine registers */
224 	uint d64rxregbase;
225 	/* pointer to dma64 tx descriptor ring */
226 	struct dma64desc *txd64;
227 	/* pointer to dma64 rx descriptor ring */
228 	struct dma64desc *rxd64;
229 
230 	u16 dmadesc_align;	/* alignment requirement for dma descriptors */
231 
232 	u16 ntxd;		/* # tx descriptors tunable */
233 	u16 txin;		/* index of next descriptor to reclaim */
234 	u16 txout;		/* index of next descriptor to post */
235 	/* pointer to parallel array of pointers to packets */
236 	struct sk_buff **txp;
237 	/* Aligned physical address of descriptor ring */
238 	dma_addr_t txdpa;
239 	/* Original physical address of descriptor ring */
240 	dma_addr_t txdpaorig;
241 	u16 txdalign;	/* #bytes added to alloc'd mem to align txd */
242 	u32 txdalloc;	/* #bytes allocated for the ring */
243 	u32 xmtptrbase;	/* When using unaligned descriptors, the ptr register
244 			 * is not just an index, it needs all 13 bits to be
245 			 * an offset from the addr register.
246 			 */
247 
248 	u16 nrxd;	/* # rx descriptors tunable */
249 	u16 rxin;	/* index of next descriptor to reclaim */
250 	u16 rxout;	/* index of next descriptor to post */
251 	/* pointer to parallel array of pointers to packets */
252 	struct sk_buff **rxp;
253 	/* Aligned physical address of descriptor ring */
254 	dma_addr_t rxdpa;
255 	/* Original physical address of descriptor ring */
256 	dma_addr_t rxdpaorig;
257 	u16 rxdalign;	/* #bytes added to alloc'd mem to align rxd */
258 	u32 rxdalloc;	/* #bytes allocated for the ring */
259 	u32 rcvptrbase;	/* Base for ptr reg when using unaligned descriptors */
260 
261 	/* tunables */
262 	unsigned int rxbufsize;	/* rx buffer size in bytes, not including
263 				 * the extra headroom
264 				 */
265 	uint rxextrahdrroom;	/* extra rx headroom, reverseved to assist upper
266 				 * stack, e.g. some rx pkt buffers will be
267 				 * bridged to tx side without byte copying.
268 				 * The extra headroom needs to be large enough
269 				 * to fit txheader needs. Some dongle driver may
270 				 * not need it.
271 				 */
272 	uint nrxpost;		/* # rx buffers to keep posted */
273 	unsigned int rxoffset;	/* rxcontrol offset */
274 	/* add to get dma address of descriptor ring, low 32 bits */
275 	uint ddoffsetlow;
276 	/*   high 32 bits */
277 	uint ddoffsethigh;
278 	/* add to get dma address of data buffer, low 32 bits */
279 	uint dataoffsetlow;
280 	/*   high 32 bits */
281 	uint dataoffsethigh;
282 	/* descriptor base need to be aligned or not */
283 	bool aligndesc_4k;
284 };
285 
286 /* Check for odd number of 1's */
287 static u32 parity32(__le32 data)
288 {
289 	/* no swap needed for counting 1's */
290 	u32 par_data = *(u32 *)&data;
291 
292 	par_data ^= par_data >> 16;
293 	par_data ^= par_data >> 8;
294 	par_data ^= par_data >> 4;
295 	par_data ^= par_data >> 2;
296 	par_data ^= par_data >> 1;
297 
298 	return par_data & 1;
299 }
300 
301 static bool dma64_dd_parity(struct dma64desc *dd)
302 {
303 	return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
304 }
305 
306 /* descriptor bumping functions */
307 
308 static uint xxd(uint x, uint n)
309 {
310 	return x & (n - 1); /* faster than %, but n must be power of 2 */
311 }
312 
313 static uint txd(struct dma_info *di, uint x)
314 {
315 	return xxd(x, di->ntxd);
316 }
317 
318 static uint rxd(struct dma_info *di, uint x)
319 {
320 	return xxd(x, di->nrxd);
321 }
322 
323 static uint nexttxd(struct dma_info *di, uint i)
324 {
325 	return txd(di, i + 1);
326 }
327 
328 static uint prevtxd(struct dma_info *di, uint i)
329 {
330 	return txd(di, i - 1);
331 }
332 
333 static uint nextrxd(struct dma_info *di, uint i)
334 {
335 	return rxd(di, i + 1);
336 }
337 
338 static uint ntxdactive(struct dma_info *di, uint h, uint t)
339 {
340 	return txd(di, t-h);
341 }
342 
343 static uint nrxdactive(struct dma_info *di, uint h, uint t)
344 {
345 	return rxd(di, t-h);
346 }
347 
348 static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
349 {
350 	uint dmactrlflags;
351 
352 	if (di == NULL)
353 		return 0;
354 
355 	dmactrlflags = di->dma.dmactrlflags;
356 	dmactrlflags &= ~mask;
357 	dmactrlflags |= flags;
358 
359 	/* If trying to enable parity, check if parity is actually supported */
360 	if (dmactrlflags & DMA_CTRL_PEN) {
361 		u32 control;
362 
363 		control = bcma_read32(di->core, DMA64TXREGOFFS(di, control));
364 		bcma_write32(di->core, DMA64TXREGOFFS(di, control),
365 		      control | D64_XC_PD);
366 		if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) &
367 		    D64_XC_PD)
368 			/* We *can* disable it so it is supported,
369 			 * restore control register
370 			 */
371 			bcma_write32(di->core, DMA64TXREGOFFS(di, control),
372 				     control);
373 		else
374 			/* Not supported, don't allow it to be enabled */
375 			dmactrlflags &= ~DMA_CTRL_PEN;
376 	}
377 
378 	di->dma.dmactrlflags = dmactrlflags;
379 
380 	return dmactrlflags;
381 }
382 
383 static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset)
384 {
385 	u32 w;
386 	bcma_set32(di->core, ctrl_offset, D64_XC_AE);
387 	w = bcma_read32(di->core, ctrl_offset);
388 	bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE);
389 	return (w & D64_XC_AE) == D64_XC_AE;
390 }
391 
392 /*
393  * return true if this dma engine supports DmaExtendedAddrChanges,
394  * otherwise false
395  */
396 static bool _dma_isaddrext(struct dma_info *di)
397 {
398 	/* DMA64 supports full 32- or 64-bit operation. AE is always valid */
399 
400 	/* not all tx or rx channel are available */
401 	if (di->d64txregbase != 0) {
402 		if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control)))
403 			brcms_dbg_dma(di->core,
404 				      "%s: DMA64 tx doesn't have AE set\n",
405 				      di->name);
406 		return true;
407 	} else if (di->d64rxregbase != 0) {
408 		if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control)))
409 			brcms_dbg_dma(di->core,
410 				      "%s: DMA64 rx doesn't have AE set\n",
411 				      di->name);
412 		return true;
413 	}
414 
415 	return false;
416 }
417 
418 static bool _dma_descriptor_align(struct dma_info *di)
419 {
420 	u32 addrl;
421 
422 	/* Check to see if the descriptors need to be aligned on 4K/8K or not */
423 	if (di->d64txregbase != 0) {
424 		bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0);
425 		addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow));
426 		if (addrl != 0)
427 			return false;
428 	} else if (di->d64rxregbase != 0) {
429 		bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0);
430 		addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow));
431 		if (addrl != 0)
432 			return false;
433 	}
434 	return true;
435 }
436 
437 /*
438  * Descriptor table must start at the DMA hardware dictated alignment, so
439  * allocated memory must be large enough to support this requirement.
440  */
441 static void *dma_alloc_consistent(struct dma_info *di, uint size,
442 				  u16 align_bits, uint *alloced,
443 				  dma_addr_t *pap)
444 {
445 	if (align_bits) {
446 		u16 align = (1 << align_bits);
447 		if (!IS_ALIGNED(PAGE_SIZE, align))
448 			size += align;
449 		*alloced = size;
450 	}
451 	return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
452 }
453 
454 static
455 u8 dma_align_sizetobits(uint size)
456 {
457 	u8 bitpos = 0;
458 	while (size >>= 1)
459 		bitpos++;
460 	return bitpos;
461 }
462 
463 /* This function ensures that the DMA descriptor ring will not get allocated
464  * across Page boundary. If the allocation is done across the page boundary
465  * at the first time, then it is freed and the allocation is done at
466  * descriptor ring size aligned location. This will ensure that the ring will
467  * not cross page boundary
468  */
469 static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
470 			   u16 *alignbits, uint *alloced,
471 			   dma_addr_t *descpa)
472 {
473 	void *va;
474 	u32 desc_strtaddr;
475 	u32 alignbytes = 1 << *alignbits;
476 
477 	va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
478 
479 	if (NULL == va)
480 		return NULL;
481 
482 	desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
483 	if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
484 							& boundary)) {
485 		*alignbits = dma_align_sizetobits(size);
486 		dma_free_coherent(di->dmadev, size, va, *descpa);
487 		va = dma_alloc_consistent(di, size, *alignbits,
488 			alloced, descpa);
489 	}
490 	return va;
491 }
492 
493 static bool dma64_alloc(struct dma_info *di, uint direction)
494 {
495 	u16 size;
496 	uint ddlen;
497 	void *va;
498 	uint alloced = 0;
499 	u16 align;
500 	u16 align_bits;
501 
502 	ddlen = sizeof(struct dma64desc);
503 
504 	size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
505 	align_bits = di->dmadesc_align;
506 	align = (1 << align_bits);
507 
508 	if (direction == DMA_TX) {
509 		va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
510 			&alloced, &di->txdpaorig);
511 		if (va == NULL) {
512 			brcms_dbg_dma(di->core,
513 				      "%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
514 				      di->name);
515 			return false;
516 		}
517 		align = (1 << align_bits);
518 		di->txd64 = (struct dma64desc *)
519 					roundup((unsigned long)va, align);
520 		di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
521 		di->txdpa = di->txdpaorig + di->txdalign;
522 		di->txdalloc = alloced;
523 	} else {
524 		va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
525 			&alloced, &di->rxdpaorig);
526 		if (va == NULL) {
527 			brcms_dbg_dma(di->core,
528 				      "%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
529 				      di->name);
530 			return false;
531 		}
532 		align = (1 << align_bits);
533 		di->rxd64 = (struct dma64desc *)
534 					roundup((unsigned long)va, align);
535 		di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
536 		di->rxdpa = di->rxdpaorig + di->rxdalign;
537 		di->rxdalloc = alloced;
538 	}
539 
540 	return true;
541 }
542 
543 static bool _dma_alloc(struct dma_info *di, uint direction)
544 {
545 	return dma64_alloc(di, direction);
546 }
547 
548 struct dma_pub *dma_attach(char *name, struct brcms_c_info *wlc,
549 			   uint txregbase, uint rxregbase, uint ntxd, uint nrxd,
550 			   uint rxbufsize, int rxextheadroom,
551 			   uint nrxpost, uint rxoffset)
552 {
553 	struct si_pub *sih = wlc->hw->sih;
554 	struct bcma_device *core = wlc->hw->d11core;
555 	struct dma_info *di;
556 	u8 rev = core->id.rev;
557 	uint size;
558 	struct si_info *sii = container_of(sih, struct si_info, pub);
559 
560 	/* allocate private info structure */
561 	di = kzalloc(sizeof(*di), GFP_ATOMIC);
562 	if (di == NULL)
563 		return NULL;
564 
565 	di->dma64 =
566 		((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64);
567 
568 	/* init dma reg info */
569 	di->core = core;
570 	di->d64txregbase = txregbase;
571 	di->d64rxregbase = rxregbase;
572 
573 	/*
574 	 * Default flags (which can be changed by the driver calling
575 	 * dma_ctrlflags before enable): For backwards compatibility
576 	 * both Rx Overflow Continue and Parity are DISABLED.
577 	 */
578 	_dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
579 
580 	brcms_dbg_dma(di->core, "%s: %s flags 0x%x ntxd %d nrxd %d "
581 		      "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
582 		      "txregbase %u rxregbase %u\n", name, "DMA64",
583 		      di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
584 		      rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase);
585 
586 	/* make a private copy of our callers name */
587 	strscpy(di->name, name, sizeof(di->name));
588 
589 	di->dmadev = core->dma_dev;
590 
591 	/* save tunables */
592 	di->ntxd = (u16) ntxd;
593 	di->nrxd = (u16) nrxd;
594 
595 	/* the actual dma size doesn't include the extra headroom */
596 	di->rxextrahdrroom =
597 	    (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
598 	if (rxbufsize > BCMEXTRAHDROOM)
599 		di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
600 	else
601 		di->rxbufsize = (u16) rxbufsize;
602 
603 	di->nrxpost = (u16) nrxpost;
604 	di->rxoffset = (u8) rxoffset;
605 
606 	/*
607 	 * figure out the DMA physical address offset for dd and data
608 	 *     PCI/PCIE: they map silicon backplace address to zero
609 	 *     based memory, need offset
610 	 *     Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
611 	 *     swapped region for data buffer, not descriptor
612 	 */
613 	di->ddoffsetlow = 0;
614 	di->dataoffsetlow = 0;
615 	/* for pci bus, add offset */
616 	if (sii->icbus->hosttype == BCMA_HOSTTYPE_PCI) {
617 		/* add offset for pcie with DMA64 bus */
618 		di->ddoffsetlow = 0;
619 		di->ddoffsethigh = SI_PCIE_DMA_H32;
620 	}
621 	di->dataoffsetlow = di->ddoffsetlow;
622 	di->dataoffsethigh = di->ddoffsethigh;
623 
624 	/* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
625 	if ((core->id.id == BCMA_CORE_SDIO_DEV)
626 	    && ((rev > 0) && (rev <= 2)))
627 		di->addrext = false;
628 	else if ((core->id.id == BCMA_CORE_I2S) &&
629 		 ((rev == 0) || (rev == 1)))
630 		di->addrext = false;
631 	else
632 		di->addrext = _dma_isaddrext(di);
633 
634 	/* does the descriptor need to be aligned and if yes, on 4K/8K or not */
635 	di->aligndesc_4k = _dma_descriptor_align(di);
636 	if (di->aligndesc_4k) {
637 		di->dmadesc_align = D64RINGALIGN_BITS;
638 		if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
639 			/* for smaller dd table, HW relax alignment reqmnt */
640 			di->dmadesc_align = D64RINGALIGN_BITS - 1;
641 	} else {
642 		di->dmadesc_align = 4;	/* 16 byte alignment */
643 	}
644 
645 	brcms_dbg_dma(di->core, "DMA descriptor align_needed %d, align %d\n",
646 		      di->aligndesc_4k, di->dmadesc_align);
647 
648 	/* allocate tx packet pointer vector */
649 	if (ntxd) {
650 		size = ntxd * sizeof(void *);
651 		di->txp = kzalloc(size, GFP_ATOMIC);
652 		if (di->txp == NULL)
653 			goto fail;
654 	}
655 
656 	/* allocate rx packet pointer vector */
657 	if (nrxd) {
658 		size = nrxd * sizeof(void *);
659 		di->rxp = kzalloc(size, GFP_ATOMIC);
660 		if (di->rxp == NULL)
661 			goto fail;
662 	}
663 
664 	/*
665 	 * allocate transmit descriptor ring, only need ntxd descriptors
666 	 * but it must be aligned
667 	 */
668 	if (ntxd) {
669 		if (!_dma_alloc(di, DMA_TX))
670 			goto fail;
671 	}
672 
673 	/*
674 	 * allocate receive descriptor ring, only need nrxd descriptors
675 	 * but it must be aligned
676 	 */
677 	if (nrxd) {
678 		if (!_dma_alloc(di, DMA_RX))
679 			goto fail;
680 	}
681 
682 	if ((di->ddoffsetlow != 0) && !di->addrext) {
683 		if (di->txdpa > SI_PCI_DMA_SZ) {
684 			brcms_dbg_dma(di->core,
685 				      "%s: txdpa 0x%x: addrext not supported\n",
686 				      di->name, (u32)di->txdpa);
687 			goto fail;
688 		}
689 		if (di->rxdpa > SI_PCI_DMA_SZ) {
690 			brcms_dbg_dma(di->core,
691 				      "%s: rxdpa 0x%x: addrext not supported\n",
692 				      di->name, (u32)di->rxdpa);
693 			goto fail;
694 		}
695 	}
696 
697 	/* Initialize AMPDU session */
698 	brcms_c_ampdu_reset_session(&di->ampdu_session, wlc);
699 
700 	brcms_dbg_dma(di->core,
701 		      "ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
702 		      di->ddoffsetlow, di->ddoffsethigh,
703 		      di->dataoffsetlow, di->dataoffsethigh,
704 		      di->addrext);
705 
706 	return (struct dma_pub *) di;
707 
708  fail:
709 	dma_detach((struct dma_pub *)di);
710 	return NULL;
711 }
712 
713 static inline void
714 dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
715 	     dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
716 {
717 	u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
718 
719 	/* PCI bus with big(>1G) physical address, use address extension */
720 	if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
721 		ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
722 		ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
723 		ddring[outidx].ctrl1 = cpu_to_le32(*flags);
724 		ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
725 	} else {
726 		/* address extension for 32-bit PCI */
727 		u32 ae;
728 
729 		ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
730 		pa &= ~PCI32ADDR_HIGH;
731 
732 		ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
733 		ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
734 		ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
735 		ddring[outidx].ctrl1 = cpu_to_le32(*flags);
736 		ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
737 	}
738 	if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
739 		if (dma64_dd_parity(&ddring[outidx]))
740 			ddring[outidx].ctrl2 =
741 			     cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
742 	}
743 }
744 
745 /* !! may be called with core in reset */
746 void dma_detach(struct dma_pub *pub)
747 {
748 	struct dma_info *di = container_of(pub, struct dma_info, dma);
749 
750 	brcms_dbg_dma(di->core, "%s:\n", di->name);
751 
752 	/* free dma descriptor rings */
753 	if (di->txd64)
754 		dma_free_coherent(di->dmadev, di->txdalloc,
755 				  ((s8 *)di->txd64 - di->txdalign),
756 				  (di->txdpaorig));
757 	if (di->rxd64)
758 		dma_free_coherent(di->dmadev, di->rxdalloc,
759 				  ((s8 *)di->rxd64 - di->rxdalign),
760 				  (di->rxdpaorig));
761 
762 	/* free packet pointer vectors */
763 	kfree(di->txp);
764 	kfree(di->rxp);
765 
766 	/* free our private info structure */
767 	kfree(di);
768 
769 }
770 
771 /* initialize descriptor table base address */
772 static void
773 _dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
774 {
775 	if (!di->aligndesc_4k) {
776 		if (direction == DMA_TX)
777 			di->xmtptrbase = pa;
778 		else
779 			di->rcvptrbase = pa;
780 	}
781 
782 	if ((di->ddoffsetlow == 0)
783 	    || !(pa & PCI32ADDR_HIGH)) {
784 		if (direction == DMA_TX) {
785 			bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
786 				     pa + di->ddoffsetlow);
787 			bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
788 				     di->ddoffsethigh);
789 		} else {
790 			bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
791 				     pa + di->ddoffsetlow);
792 			bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
793 				     di->ddoffsethigh);
794 		}
795 	} else {
796 		/* DMA64 32bits address extension */
797 		u32 ae;
798 
799 		/* shift the high bit(s) from pa to ae */
800 		ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
801 		pa &= ~PCI32ADDR_HIGH;
802 
803 		if (direction == DMA_TX) {
804 			bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
805 				     pa + di->ddoffsetlow);
806 			bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
807 				     di->ddoffsethigh);
808 			bcma_maskset32(di->core, DMA64TXREGOFFS(di, control),
809 				       D64_XC_AE, (ae << D64_XC_AE_SHIFT));
810 		} else {
811 			bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
812 				     pa + di->ddoffsetlow);
813 			bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
814 				     di->ddoffsethigh);
815 			bcma_maskset32(di->core, DMA64RXREGOFFS(di, control),
816 				       D64_RC_AE, (ae << D64_RC_AE_SHIFT));
817 		}
818 	}
819 }
820 
821 static void _dma_rxenable(struct dma_info *di)
822 {
823 	uint dmactrlflags = di->dma.dmactrlflags;
824 	u32 control;
825 
826 	brcms_dbg_dma(di->core, "%s:\n", di->name);
827 
828 	control = D64_RC_RE | (bcma_read32(di->core,
829 					   DMA64RXREGOFFS(di, control)) &
830 			       D64_RC_AE);
831 
832 	if ((dmactrlflags & DMA_CTRL_PEN) == 0)
833 		control |= D64_RC_PD;
834 
835 	if (dmactrlflags & DMA_CTRL_ROC)
836 		control |= D64_RC_OC;
837 
838 	bcma_write32(di->core, DMA64RXREGOFFS(di, control),
839 		((di->rxoffset << D64_RC_RO_SHIFT) | control));
840 }
841 
842 void dma_rxinit(struct dma_pub *pub)
843 {
844 	struct dma_info *di = container_of(pub, struct dma_info, dma);
845 
846 	brcms_dbg_dma(di->core, "%s:\n", di->name);
847 
848 	if (di->nrxd == 0)
849 		return;
850 
851 	di->rxin = di->rxout = 0;
852 
853 	/* clear rx descriptor ring */
854 	memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
855 
856 	/* DMA engine with out alignment requirement requires table to be inited
857 	 * before enabling the engine
858 	 */
859 	if (!di->aligndesc_4k)
860 		_dma_ddtable_init(di, DMA_RX, di->rxdpa);
861 
862 	_dma_rxenable(di);
863 
864 	if (di->aligndesc_4k)
865 		_dma_ddtable_init(di, DMA_RX, di->rxdpa);
866 }
867 
868 static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
869 {
870 	uint i, curr;
871 	struct sk_buff *rxp;
872 	dma_addr_t pa;
873 
874 	i = di->rxin;
875 
876 	/* return if no packets posted */
877 	if (i == di->rxout)
878 		return NULL;
879 
880 	curr =
881 	    B2I(((bcma_read32(di->core,
882 			      DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) -
883 		 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
884 
885 	/* ignore curr if forceall */
886 	if (!forceall && (i == curr))
887 		return NULL;
888 
889 	/* get the packet pointer that corresponds to the rx descriptor */
890 	rxp = di->rxp[i];
891 	di->rxp[i] = NULL;
892 
893 	pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
894 
895 	/* clear this packet from the descriptor ring */
896 	dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
897 
898 	di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
899 	di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
900 
901 	di->rxin = nextrxd(di, i);
902 
903 	return rxp;
904 }
905 
906 static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
907 {
908 	if (di->nrxd == 0)
909 		return NULL;
910 
911 	return dma64_getnextrxp(di, forceall);
912 }
913 
914 /*
915  * !! rx entry routine
916  * returns the number packages in the next frame, or 0 if there are no more
917  *   if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
918  *   supported with pkts chain
919  *   otherwise, it's treated as giant pkt and will be tossed.
920  *   The DMA scattering starts with normal DMA header, followed by first
921  *   buffer data. After it reaches the max size of buffer, the data continues
922  *   in next DMA descriptor buffer WITHOUT DMA header
923  */
924 int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
925 {
926 	struct dma_info *di = container_of(pub, struct dma_info, dma);
927 	struct sk_buff_head dma_frames;
928 	struct sk_buff *p, *next;
929 	uint len;
930 	uint pkt_len;
931 	int resid = 0;
932 	int pktcnt = 1;
933 
934 	skb_queue_head_init(&dma_frames);
935  next_frame:
936 	p = _dma_getnextrxp(di, false);
937 	if (p == NULL)
938 		return 0;
939 
940 	len = le16_to_cpu(*(__le16 *) (p->data));
941 	brcms_dbg_dma(di->core, "%s: dma_rx len %d\n", di->name, len);
942 	dma_spin_for_len(len, p);
943 
944 	/* set actual length */
945 	pkt_len = min((di->rxoffset + len), di->rxbufsize);
946 	__skb_trim(p, pkt_len);
947 	skb_queue_tail(&dma_frames, p);
948 	resid = len - (di->rxbufsize - di->rxoffset);
949 
950 	/* check for single or multi-buffer rx */
951 	if (resid > 0) {
952 		while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
953 			pkt_len = min_t(uint, resid, di->rxbufsize);
954 			__skb_trim(p, pkt_len);
955 			skb_queue_tail(&dma_frames, p);
956 			resid -= di->rxbufsize;
957 			pktcnt++;
958 		}
959 
960 #ifdef DEBUG
961 		if (resid > 0) {
962 			uint cur;
963 			cur =
964 			    B2I(((bcma_read32(di->core,
965 					      DMA64RXREGOFFS(di, status0)) &
966 				  D64_RS0_CD_MASK) - di->rcvptrbase) &
967 				D64_RS0_CD_MASK, struct dma64desc);
968 			brcms_dbg_dma(di->core,
969 				      "rxin %d rxout %d, hw_curr %d\n",
970 				      di->rxin, di->rxout, cur);
971 		}
972 #endif				/* DEBUG */
973 
974 		if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
975 			brcms_dbg_dma(di->core, "%s: bad frame length (%d)\n",
976 				      di->name, len);
977 			skb_queue_walk_safe(&dma_frames, p, next) {
978 				skb_unlink(p, &dma_frames);
979 				brcmu_pkt_buf_free_skb(p);
980 			}
981 			di->dma.rxgiants++;
982 			pktcnt = 1;
983 			goto next_frame;
984 		}
985 	}
986 
987 	skb_queue_splice_tail(&dma_frames, skb_list);
988 	return pktcnt;
989 }
990 
991 static bool dma64_rxidle(struct dma_info *di)
992 {
993 	brcms_dbg_dma(di->core, "%s:\n", di->name);
994 
995 	if (di->nrxd == 0)
996 		return true;
997 
998 	return ((bcma_read32(di->core,
999 			     DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) ==
1000 		(bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) &
1001 		 D64_RS0_CD_MASK));
1002 }
1003 
1004 static bool dma64_txidle(struct dma_info *di)
1005 {
1006 	if (di->ntxd == 0)
1007 		return true;
1008 
1009 	return ((bcma_read32(di->core,
1010 			     DMA64TXREGOFFS(di, status0)) & D64_XS0_CD_MASK) ==
1011 		(bcma_read32(di->core, DMA64TXREGOFFS(di, ptr)) &
1012 		 D64_XS0_CD_MASK));
1013 }
1014 
1015 /*
1016  * post receive buffers
1017  *  Return false if refill failed completely or dma mapping failed. The ring
1018  *  is empty, which will stall the rx dma and user might want to call rxfill
1019  *  again asap. This is unlikely to happen on a memory-rich NIC, but often on
1020  *  memory-constrained dongle.
1021  */
1022 bool dma_rxfill(struct dma_pub *pub)
1023 {
1024 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1025 	struct sk_buff *p;
1026 	u16 rxin, rxout;
1027 	u32 flags = 0;
1028 	uint n;
1029 	uint i;
1030 	dma_addr_t pa;
1031 	uint extra_offset = 0;
1032 	bool ring_empty;
1033 
1034 	ring_empty = false;
1035 
1036 	/*
1037 	 * Determine how many receive buffers we're lacking
1038 	 * from the full complement, allocate, initialize,
1039 	 * and post them, then update the chip rx lastdscr.
1040 	 */
1041 
1042 	rxin = di->rxin;
1043 	rxout = di->rxout;
1044 
1045 	n = di->nrxpost - nrxdactive(di, rxin, rxout);
1046 
1047 	brcms_dbg_dma(di->core, "%s: post %d\n", di->name, n);
1048 
1049 	if (di->rxbufsize > BCMEXTRAHDROOM)
1050 		extra_offset = di->rxextrahdrroom;
1051 
1052 	for (i = 0; i < n; i++) {
1053 		/*
1054 		 * the di->rxbufsize doesn't include the extra headroom,
1055 		 * we need to add it to the size to be allocated
1056 		 */
1057 		p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
1058 
1059 		if (p == NULL) {
1060 			brcms_dbg_dma(di->core, "%s: out of rxbufs\n",
1061 				      di->name);
1062 			if (i == 0 && dma64_rxidle(di)) {
1063 				brcms_dbg_dma(di->core, "%s: ring is empty !\n",
1064 					      di->name);
1065 				ring_empty = true;
1066 			}
1067 			di->dma.rxnobuf++;
1068 			break;
1069 		}
1070 		/* reserve an extra headroom, if applicable */
1071 		if (extra_offset)
1072 			skb_pull(p, extra_offset);
1073 
1074 		/* Do a cached write instead of uncached write since DMA_MAP
1075 		 * will flush the cache.
1076 		 */
1077 		*(u32 *) (p->data) = 0;
1078 
1079 		pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
1080 				    DMA_FROM_DEVICE);
1081 		if (dma_mapping_error(di->dmadev, pa)) {
1082 			brcmu_pkt_buf_free_skb(p);
1083 			return false;
1084 		}
1085 
1086 		/* save the free packet pointer */
1087 		di->rxp[rxout] = p;
1088 
1089 		/* reset flags for each descriptor */
1090 		flags = 0;
1091 		if (rxout == (di->nrxd - 1))
1092 			flags = D64_CTRL1_EOT;
1093 
1094 		dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
1095 			     di->rxbufsize);
1096 		rxout = nextrxd(di, rxout);
1097 	}
1098 
1099 	di->rxout = rxout;
1100 
1101 	/* update the chip lastdscr pointer */
1102 	bcma_write32(di->core, DMA64RXREGOFFS(di, ptr),
1103 	      di->rcvptrbase + I2B(rxout, struct dma64desc));
1104 
1105 	return ring_empty;
1106 }
1107 
1108 void dma_rxreclaim(struct dma_pub *pub)
1109 {
1110 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1111 	struct sk_buff *p;
1112 
1113 	brcms_dbg_dma(di->core, "%s:\n", di->name);
1114 
1115 	while ((p = _dma_getnextrxp(di, true)))
1116 		brcmu_pkt_buf_free_skb(p);
1117 }
1118 
1119 void dma_counterreset(struct dma_pub *pub)
1120 {
1121 	/* reset all software counters */
1122 	pub->rxgiants = 0;
1123 	pub->rxnobuf = 0;
1124 	pub->txnobuf = 0;
1125 }
1126 
1127 /* get the address of the var in order to change later */
1128 unsigned long dma_getvar(struct dma_pub *pub, const char *name)
1129 {
1130 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1131 
1132 	if (!strcmp(name, "&txavail"))
1133 		return (unsigned long)&(di->dma.txavail);
1134 	return 0;
1135 }
1136 
1137 /* 64-bit DMA functions */
1138 
1139 void dma_txinit(struct dma_pub *pub)
1140 {
1141 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1142 	u32 control = D64_XC_XE;
1143 
1144 	brcms_dbg_dma(di->core, "%s:\n", di->name);
1145 
1146 	if (di->ntxd == 0)
1147 		return;
1148 
1149 	di->txin = di->txout = 0;
1150 	di->dma.txavail = di->ntxd - 1;
1151 
1152 	/* clear tx descriptor ring */
1153 	memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
1154 
1155 	/* DMA engine with out alignment requirement requires table to be inited
1156 	 * before enabling the engine
1157 	 */
1158 	if (!di->aligndesc_4k)
1159 		_dma_ddtable_init(di, DMA_TX, di->txdpa);
1160 
1161 	if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
1162 		control |= D64_XC_PD;
1163 	bcma_set32(di->core, DMA64TXREGOFFS(di, control), control);
1164 
1165 	/* DMA engine with alignment requirement requires table to be inited
1166 	 * before enabling the engine
1167 	 */
1168 	if (di->aligndesc_4k)
1169 		_dma_ddtable_init(di, DMA_TX, di->txdpa);
1170 }
1171 
1172 void dma_txsuspend(struct dma_pub *pub)
1173 {
1174 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1175 
1176 	brcms_dbg_dma(di->core, "%s:\n", di->name);
1177 
1178 	if (di->ntxd == 0)
1179 		return;
1180 
1181 	bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1182 }
1183 
1184 void dma_txresume(struct dma_pub *pub)
1185 {
1186 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1187 
1188 	brcms_dbg_dma(di->core, "%s:\n", di->name);
1189 
1190 	if (di->ntxd == 0)
1191 		return;
1192 
1193 	bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE);
1194 }
1195 
1196 bool dma_txsuspended(struct dma_pub *pub)
1197 {
1198 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1199 
1200 	return (di->ntxd == 0) ||
1201 	       ((bcma_read32(di->core,
1202 			     DMA64TXREGOFFS(di, control)) & D64_XC_SE) ==
1203 		D64_XC_SE);
1204 }
1205 
1206 void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
1207 {
1208 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1209 	struct sk_buff *p;
1210 
1211 	brcms_dbg_dma(di->core, "%s: %s\n",
1212 		      di->name,
1213 		      range == DMA_RANGE_ALL ? "all" :
1214 		      range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1215 		      "transferred");
1216 
1217 	if (di->txin == di->txout)
1218 		return;
1219 
1220 	while ((p = dma_getnexttxp(pub, range))) {
1221 		/* For unframed data, we don't have any packets to free */
1222 		if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
1223 			brcmu_pkt_buf_free_skb(p);
1224 	}
1225 }
1226 
1227 bool dma_txreset(struct dma_pub *pub)
1228 {
1229 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1230 	u32 status;
1231 
1232 	if (di->ntxd == 0)
1233 		return true;
1234 
1235 	/* suspend tx DMA first */
1236 	bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1237 	SPINWAIT(((status =
1238 		   (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1239 		    D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) &&
1240 		  (status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED),
1241 		 10000);
1242 
1243 	bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0);
1244 	SPINWAIT(((status =
1245 		   (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1246 		    D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000);
1247 
1248 	/* wait for the last transaction to complete */
1249 	udelay(300);
1250 
1251 	return status == D64_XS0_XS_DISABLED;
1252 }
1253 
1254 bool dma_rxreset(struct dma_pub *pub)
1255 {
1256 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1257 	u32 status;
1258 
1259 	if (di->nrxd == 0)
1260 		return true;
1261 
1262 	bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0);
1263 	SPINWAIT(((status =
1264 		   (bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) &
1265 		    D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000);
1266 
1267 	return status == D64_RS0_RS_DISABLED;
1268 }
1269 
1270 static void dma_txenq(struct dma_info *di, struct sk_buff *p)
1271 {
1272 	unsigned char *data;
1273 	uint len;
1274 	u16 txout;
1275 	u32 flags = 0;
1276 	dma_addr_t pa;
1277 
1278 	txout = di->txout;
1279 
1280 	if (WARN_ON(nexttxd(di, txout) == di->txin))
1281 		return;
1282 
1283 	/*
1284 	 * obtain and initialize transmit descriptor entry.
1285 	 */
1286 	data = p->data;
1287 	len = p->len;
1288 
1289 	/* get physical address of buffer start */
1290 	pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
1291 	/* if mapping failed, free skb */
1292 	if (dma_mapping_error(di->dmadev, pa)) {
1293 		brcmu_pkt_buf_free_skb(p);
1294 		return;
1295 	}
1296 	/* With a DMA segment list, Descriptor table is filled
1297 	 * using the segment list instead of looping over
1298 	 * buffers in multi-chain DMA. Therefore, EOF for SGLIST
1299 	 * is when end of segment list is reached.
1300 	 */
1301 	flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
1302 	if (txout == (di->ntxd - 1))
1303 		flags |= D64_CTRL1_EOT;
1304 
1305 	dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
1306 
1307 	txout = nexttxd(di, txout);
1308 
1309 	/* save the packet */
1310 	di->txp[prevtxd(di, txout)] = p;
1311 
1312 	/* bump the tx descriptor index */
1313 	di->txout = txout;
1314 }
1315 
1316 static void ampdu_finalize(struct dma_info *di)
1317 {
1318 	struct brcms_ampdu_session *session = &di->ampdu_session;
1319 	struct sk_buff *p;
1320 
1321 	trace_brcms_ampdu_session(&session->wlc->hw->d11core->dev,
1322 				  session->max_ampdu_len,
1323 				  session->max_ampdu_frames,
1324 				  session->ampdu_len,
1325 				  skb_queue_len(&session->skb_list),
1326 				  session->dma_len);
1327 
1328 	if (WARN_ON(skb_queue_empty(&session->skb_list)))
1329 		return;
1330 
1331 	brcms_c_ampdu_finalize(session);
1332 
1333 	while (!skb_queue_empty(&session->skb_list)) {
1334 		p = skb_dequeue(&session->skb_list);
1335 		dma_txenq(di, p);
1336 	}
1337 
1338 	bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1339 		     di->xmtptrbase + I2B(di->txout, struct dma64desc));
1340 	brcms_c_ampdu_reset_session(session, session->wlc);
1341 }
1342 
1343 static void prep_ampdu_frame(struct dma_info *di, struct sk_buff *p)
1344 {
1345 	struct brcms_ampdu_session *session = &di->ampdu_session;
1346 	int ret;
1347 
1348 	ret = brcms_c_ampdu_add_frame(session, p);
1349 	if (ret == -ENOSPC) {
1350 		/*
1351 		 * AMPDU cannot accomodate this frame. Close out the in-
1352 		 * progress AMPDU session and start a new one.
1353 		 */
1354 		ampdu_finalize(di);
1355 		ret = brcms_c_ampdu_add_frame(session, p);
1356 	}
1357 
1358 	WARN_ON(ret);
1359 }
1360 
1361 /* Update count of available tx descriptors based on current DMA state */
1362 static void dma_update_txavail(struct dma_info *di)
1363 {
1364 	/*
1365 	 * Available space is number of descriptors less the number of
1366 	 * active descriptors and the number of queued AMPDU frames.
1367 	 */
1368 	di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) -
1369 			  skb_queue_len(&di->ampdu_session.skb_list) - 1;
1370 }
1371 
1372 /*
1373  * !! tx entry routine
1374  * WARNING: call must check the return value for error.
1375  *   the error(toss frames) could be fatal and cause many subsequent hard
1376  *   to debug problems
1377  */
1378 int dma_txfast(struct brcms_c_info *wlc, struct dma_pub *pub,
1379 	       struct sk_buff *p)
1380 {
1381 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1382 	struct brcms_ampdu_session *session = &di->ampdu_session;
1383 	struct ieee80211_tx_info *tx_info;
1384 	bool is_ampdu;
1385 
1386 	/* no use to transmit a zero length packet */
1387 	if (p->len == 0)
1388 		return 0;
1389 
1390 	/* return nonzero if out of tx descriptors */
1391 	if (di->dma.txavail == 0 || nexttxd(di, di->txout) == di->txin)
1392 		goto outoftxd;
1393 
1394 	tx_info = IEEE80211_SKB_CB(p);
1395 	is_ampdu = tx_info->flags & IEEE80211_TX_CTL_AMPDU;
1396 	if (is_ampdu)
1397 		prep_ampdu_frame(di, p);
1398 	else
1399 		dma_txenq(di, p);
1400 
1401 	/* tx flow control */
1402 	dma_update_txavail(di);
1403 
1404 	/* kick the chip */
1405 	if (is_ampdu) {
1406 		/*
1407 		 * Start sending data if we've got a full AMPDU, there's
1408 		 * no more space in the DMA ring, or the ring isn't
1409 		 * currently transmitting.
1410 		 */
1411 		if (skb_queue_len(&session->skb_list) == session->max_ampdu_frames ||
1412 		    di->dma.txavail == 0 || dma64_txidle(di))
1413 			ampdu_finalize(di);
1414 	} else {
1415 		bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1416 			     di->xmtptrbase + I2B(di->txout, struct dma64desc));
1417 	}
1418 
1419 	return 0;
1420 
1421  outoftxd:
1422 	brcms_dbg_dma(di->core, "%s: out of txds !!!\n", di->name);
1423 	brcmu_pkt_buf_free_skb(p);
1424 	di->dma.txavail = 0;
1425 	di->dma.txnobuf++;
1426 	return -ENOSPC;
1427 }
1428 
1429 void dma_txflush(struct dma_pub *pub)
1430 {
1431 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1432 	struct brcms_ampdu_session *session = &di->ampdu_session;
1433 
1434 	if (!skb_queue_empty(&session->skb_list))
1435 		ampdu_finalize(di);
1436 }
1437 
1438 int dma_txpending(struct dma_pub *pub)
1439 {
1440 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1441 	return ntxdactive(di, di->txin, di->txout);
1442 }
1443 
1444 /*
1445  * If we have an active AMPDU session and are not transmitting,
1446  * this function will force tx to start.
1447  */
1448 void dma_kick_tx(struct dma_pub *pub)
1449 {
1450 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1451 	struct brcms_ampdu_session *session = &di->ampdu_session;
1452 
1453 	if (!skb_queue_empty(&session->skb_list) && dma64_txidle(di))
1454 		ampdu_finalize(di);
1455 }
1456 
1457 /*
1458  * Reclaim next completed txd (txds if using chained buffers) in the range
1459  * specified and return associated packet.
1460  * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
1461  * transmitted as noted by the hardware "CurrDescr" pointer.
1462  * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
1463  * transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
1464  * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
1465  * return associated packet regardless of the value of hardware pointers.
1466  */
1467 struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
1468 {
1469 	struct dma_info *di = container_of(pub, struct dma_info, dma);
1470 	u16 start, end, i;
1471 	u16 active_desc;
1472 	struct sk_buff *txp;
1473 
1474 	brcms_dbg_dma(di->core, "%s: %s\n",
1475 		      di->name,
1476 		      range == DMA_RANGE_ALL ? "all" :
1477 		      range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1478 		      "transferred");
1479 
1480 	if (di->ntxd == 0)
1481 		return NULL;
1482 
1483 	txp = NULL;
1484 
1485 	start = di->txin;
1486 	if (range == DMA_RANGE_ALL)
1487 		end = di->txout;
1488 	else {
1489 		end = (u16) (B2I(((bcma_read32(di->core,
1490 					       DMA64TXREGOFFS(di, status0)) &
1491 				   D64_XS0_CD_MASK) - di->xmtptrbase) &
1492 				 D64_XS0_CD_MASK, struct dma64desc));
1493 
1494 		if (range == DMA_RANGE_TRANSFERED) {
1495 			active_desc =
1496 				(u16)(bcma_read32(di->core,
1497 						  DMA64TXREGOFFS(di, status1)) &
1498 				      D64_XS1_AD_MASK);
1499 			active_desc =
1500 			    (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
1501 			active_desc = B2I(active_desc, struct dma64desc);
1502 			if (end != active_desc)
1503 				end = prevtxd(di, active_desc);
1504 		}
1505 	}
1506 
1507 	if ((start == 0) && (end > di->txout))
1508 		goto bogus;
1509 
1510 	for (i = start; i != end && !txp; i = nexttxd(di, i)) {
1511 		dma_addr_t pa;
1512 		uint size;
1513 
1514 		pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
1515 
1516 		size =
1517 		    (le32_to_cpu(di->txd64[i].ctrl2) &
1518 		     D64_CTRL2_BC_MASK);
1519 
1520 		di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
1521 		di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
1522 
1523 		txp = di->txp[i];
1524 		di->txp[i] = NULL;
1525 
1526 		dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
1527 	}
1528 
1529 	di->txin = i;
1530 
1531 	/* tx flow control */
1532 	dma_update_txavail(di);
1533 
1534 	return txp;
1535 
1536  bogus:
1537 	brcms_dbg_dma(di->core, "bogus curr: start %d end %d txout %d\n",
1538 		      start, end, di->txout);
1539 	return NULL;
1540 }
1541 
1542 /*
1543  * Mac80211 initiated actions sometimes require packets in the DMA queue to be
1544  * modified. The modified portion of the packet is not under control of the DMA
1545  * engine. This function calls a caller-supplied function for each packet in
1546  * the caller specified dma chain.
1547  */
1548 void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
1549 		      (void *pkt, void *arg_a), void *arg_a)
1550 {
1551 	struct dma_info *di = container_of(dmah, struct dma_info, dma);
1552 	uint i =   di->txin;
1553 	uint end = di->txout;
1554 	struct sk_buff *skb;
1555 	struct ieee80211_tx_info *tx_info;
1556 
1557 	while (i != end) {
1558 		skb = di->txp[i];
1559 		if (skb != NULL) {
1560 			tx_info = (struct ieee80211_tx_info *)skb->cb;
1561 			(callback_fnc)(tx_info, arg_a);
1562 		}
1563 		i = nexttxd(di, i);
1564 	}
1565 }
1566