1 /* 2 * Copyright (c) 2010 Broadcom Corporation 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION 13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 #include <net/mac80211.h> 17 18 #include "rate.h" 19 #include "scb.h" 20 #include "phy/phy_hal.h" 21 #include "antsel.h" 22 #include "main.h" 23 #include "ampdu.h" 24 #include "debug.h" 25 #include "brcms_trace_events.h" 26 27 /* max number of mpdus in an ampdu */ 28 #define AMPDU_MAX_MPDU 32 29 /* max number of mpdus in an ampdu to a legacy */ 30 #define AMPDU_NUM_MPDU_LEGACY 16 31 /* max Tx ba window size (in pdu) */ 32 #define AMPDU_TX_BA_MAX_WSIZE 64 33 /* default Tx ba window size (in pdu) */ 34 #define AMPDU_TX_BA_DEF_WSIZE 64 35 /* default Rx ba window size (in pdu) */ 36 #define AMPDU_RX_BA_DEF_WSIZE 64 37 /* max Rx ba window size (in pdu) */ 38 #define AMPDU_RX_BA_MAX_WSIZE 64 39 /* max dur of tx ampdu (in msec) */ 40 #define AMPDU_MAX_DUR 5 41 /* default tx retry limit */ 42 #define AMPDU_DEF_RETRY_LIMIT 5 43 /* default tx retry limit at reg rate */ 44 #define AMPDU_DEF_RR_RETRY_LIMIT 2 45 /* default ffpld reserved bytes */ 46 #define AMPDU_DEF_FFPLD_RSVD 2048 47 /* # of inis to be freed on detach */ 48 #define AMPDU_INI_FREE 10 49 /* max # of mpdus released at a time */ 50 #define AMPDU_SCB_MAX_RELEASE 20 51 52 #define NUM_FFPLD_FIFO 4 /* number of fifo concerned by pre-loading */ 53 #define FFPLD_TX_MAX_UNFL 200 /* default value of the average number of ampdu 54 * without underflows 55 */ 56 #define FFPLD_MPDU_SIZE 1800 /* estimate of maximum mpdu size */ 57 #define FFPLD_MAX_MCS 23 /* we don't deal with mcs 32 */ 58 #define FFPLD_PLD_INCR 1000 /* increments in bytes */ 59 #define FFPLD_MAX_AMPDU_CNT 5000 /* maximum number of ampdu we 60 * accumulate between resets. 61 */ 62 63 #define AMPDU_DELIMITER_LEN 4 64 65 /* max allowed number of mpdus in an ampdu (2 streams) */ 66 #define AMPDU_NUM_MPDU 16 67 68 #define TX_SEQ_TO_INDEX(seq) ((seq) % AMPDU_TX_BA_MAX_WSIZE) 69 70 /* max possible overhead per mpdu in the ampdu; 3 is for roundup if needed */ 71 #define AMPDU_MAX_MPDU_OVERHEAD (FCS_LEN + DOT11_ICV_AES_LEN +\ 72 AMPDU_DELIMITER_LEN + 3\ 73 + DOT11_A4_HDR_LEN + DOT11_QOS_LEN + DOT11_IV_MAX_LEN) 74 75 /* modulo add/sub, bound = 2^k */ 76 #define MODADD_POW2(x, y, bound) (((x) + (y)) & ((bound) - 1)) 77 #define MODSUB_POW2(x, y, bound) (((x) - (y)) & ((bound) - 1)) 78 79 /* structure to hold tx fifo information and pre-loading state 80 * counters specific to tx underflows of ampdus 81 * some counters might be redundant with the ones in wlc or ampdu structures. 82 * This allows to maintain a specific state independently of 83 * how often and/or when the wlc counters are updated. 84 * 85 * ampdu_pld_size: number of bytes to be pre-loaded 86 * mcs2ampdu_table: per-mcs max # of mpdus in an ampdu 87 * prev_txfunfl: num of underflows last read from the HW macstats counter 88 * accum_txfunfl: num of underflows since we modified pld params 89 * accum_txampdu: num of tx ampdu since we modified pld params 90 * prev_txampdu: previous reading of tx ampdu 91 * dmaxferrate: estimated dma avg xfer rate in kbits/sec 92 */ 93 struct brcms_fifo_info { 94 u16 ampdu_pld_size; 95 u8 mcs2ampdu_table[FFPLD_MAX_MCS + 1]; 96 u16 prev_txfunfl; 97 u32 accum_txfunfl; 98 u32 accum_txampdu; 99 u32 prev_txampdu; 100 u32 dmaxferrate; 101 }; 102 103 /* AMPDU module specific state 104 * 105 * wlc: pointer to main wlc structure 106 * scb_handle: scb cubby handle to retrieve data from scb 107 * ini_enable: per-tid initiator enable/disable of ampdu 108 * ba_tx_wsize: Tx ba window size (in pdu) 109 * ba_rx_wsize: Rx ba window size (in pdu) 110 * retry_limit: mpdu transmit retry limit 111 * rr_retry_limit: mpdu transmit retry limit at regular rate 112 * retry_limit_tid: per-tid mpdu transmit retry limit 113 * rr_retry_limit_tid: per-tid mpdu transmit retry limit at regular rate 114 * mpdu_density: min mpdu spacing (0-7) ==> 2^(x-1)/8 usec 115 * max_pdu: max pdus allowed in ampdu 116 * dur: max duration of an ampdu (in msec) 117 * rx_factor: maximum rx ampdu factor (0-3) ==> 2^(13+x) bytes 118 * ffpld_rsvd: number of bytes to reserve for preload 119 * max_txlen: max size of ampdu per mcs, bw and sgi 120 * mfbr: enable multiple fallback rate 121 * tx_max_funl: underflows should be kept such that 122 * (tx_max_funfl*underflows) < tx frames 123 * fifo_tb: table of fifo infos 124 */ 125 struct ampdu_info { 126 struct brcms_c_info *wlc; 127 int scb_handle; 128 u8 ini_enable[AMPDU_MAX_SCB_TID]; 129 u8 ba_tx_wsize; 130 u8 ba_rx_wsize; 131 u8 retry_limit; 132 u8 rr_retry_limit; 133 u8 retry_limit_tid[AMPDU_MAX_SCB_TID]; 134 u8 rr_retry_limit_tid[AMPDU_MAX_SCB_TID]; 135 u8 mpdu_density; 136 s8 max_pdu; 137 u8 dur; 138 u8 rx_factor; 139 u32 ffpld_rsvd; 140 u32 max_txlen[MCS_TABLE_SIZE][2][2]; 141 bool mfbr; 142 u32 tx_max_funl; 143 struct brcms_fifo_info fifo_tb[NUM_FFPLD_FIFO]; 144 }; 145 146 static void brcms_c_scb_ampdu_update_max_txlen(struct ampdu_info *ampdu, u8 dur) 147 { 148 u32 rate, mcs; 149 150 for (mcs = 0; mcs < MCS_TABLE_SIZE; mcs++) { 151 /* rate is in Kbps; dur is in msec ==> len = (rate * dur) / 8 */ 152 /* 20MHz, No SGI */ 153 rate = mcs_2_rate(mcs, false, false); 154 ampdu->max_txlen[mcs][0][0] = (rate * dur) >> 3; 155 /* 40 MHz, No SGI */ 156 rate = mcs_2_rate(mcs, true, false); 157 ampdu->max_txlen[mcs][1][0] = (rate * dur) >> 3; 158 /* 20MHz, SGI */ 159 rate = mcs_2_rate(mcs, false, true); 160 ampdu->max_txlen[mcs][0][1] = (rate * dur) >> 3; 161 /* 40 MHz, SGI */ 162 rate = mcs_2_rate(mcs, true, true); 163 ampdu->max_txlen[mcs][1][1] = (rate * dur) >> 3; 164 } 165 } 166 167 static bool brcms_c_ampdu_cap(struct ampdu_info *ampdu) 168 { 169 if (BRCMS_PHY_11N_CAP(ampdu->wlc->band)) 170 return true; 171 else 172 return false; 173 } 174 175 static int brcms_c_ampdu_set(struct ampdu_info *ampdu, bool on) 176 { 177 struct brcms_c_info *wlc = ampdu->wlc; 178 struct bcma_device *core = wlc->hw->d11core; 179 180 wlc->pub->_ampdu = false; 181 182 if (on) { 183 if (!(wlc->pub->_n_enab & SUPPORT_11N)) { 184 brcms_err(core, "wl%d: driver not nmode enabled\n", 185 wlc->pub->unit); 186 return -ENOTSUPP; 187 } 188 if (!brcms_c_ampdu_cap(ampdu)) { 189 brcms_err(core, "wl%d: device not ampdu capable\n", 190 wlc->pub->unit); 191 return -ENOTSUPP; 192 } 193 wlc->pub->_ampdu = on; 194 } 195 196 return 0; 197 } 198 199 static void brcms_c_ffpld_init(struct ampdu_info *ampdu) 200 { 201 int i, j; 202 struct brcms_fifo_info *fifo; 203 204 for (j = 0; j < NUM_FFPLD_FIFO; j++) { 205 fifo = (ampdu->fifo_tb + j); 206 fifo->ampdu_pld_size = 0; 207 for (i = 0; i <= FFPLD_MAX_MCS; i++) 208 fifo->mcs2ampdu_table[i] = 255; 209 fifo->dmaxferrate = 0; 210 fifo->accum_txampdu = 0; 211 fifo->prev_txfunfl = 0; 212 fifo->accum_txfunfl = 0; 213 214 } 215 } 216 217 struct ampdu_info *brcms_c_ampdu_attach(struct brcms_c_info *wlc) 218 { 219 struct ampdu_info *ampdu; 220 int i; 221 222 ampdu = kzalloc(sizeof(*ampdu), GFP_ATOMIC); 223 if (!ampdu) 224 return NULL; 225 226 ampdu->wlc = wlc; 227 228 for (i = 0; i < AMPDU_MAX_SCB_TID; i++) 229 ampdu->ini_enable[i] = true; 230 /* Disable ampdu for VO by default */ 231 ampdu->ini_enable[PRIO_8021D_VO] = false; 232 ampdu->ini_enable[PRIO_8021D_NC] = false; 233 234 /* Disable ampdu for BK by default since not enough fifo space */ 235 ampdu->ini_enable[PRIO_8021D_NONE] = false; 236 ampdu->ini_enable[PRIO_8021D_BK] = false; 237 238 ampdu->ba_tx_wsize = AMPDU_TX_BA_DEF_WSIZE; 239 ampdu->ba_rx_wsize = AMPDU_RX_BA_DEF_WSIZE; 240 ampdu->mpdu_density = AMPDU_DEF_MPDU_DENSITY; 241 ampdu->max_pdu = AUTO; 242 ampdu->dur = AMPDU_MAX_DUR; 243 244 ampdu->ffpld_rsvd = AMPDU_DEF_FFPLD_RSVD; 245 /* 246 * bump max ampdu rcv size to 64k for all 11n 247 * devices except 4321A0 and 4321A1 248 */ 249 if (BRCMS_ISNPHY(wlc->band) && NREV_LT(wlc->band->phyrev, 2)) 250 ampdu->rx_factor = IEEE80211_HT_MAX_AMPDU_32K; 251 else 252 ampdu->rx_factor = IEEE80211_HT_MAX_AMPDU_64K; 253 ampdu->retry_limit = AMPDU_DEF_RETRY_LIMIT; 254 ampdu->rr_retry_limit = AMPDU_DEF_RR_RETRY_LIMIT; 255 256 for (i = 0; i < AMPDU_MAX_SCB_TID; i++) { 257 ampdu->retry_limit_tid[i] = ampdu->retry_limit; 258 ampdu->rr_retry_limit_tid[i] = ampdu->rr_retry_limit; 259 } 260 261 brcms_c_scb_ampdu_update_max_txlen(ampdu, ampdu->dur); 262 ampdu->mfbr = false; 263 /* try to set ampdu to the default value */ 264 brcms_c_ampdu_set(ampdu, wlc->pub->_ampdu); 265 266 ampdu->tx_max_funl = FFPLD_TX_MAX_UNFL; 267 brcms_c_ffpld_init(ampdu); 268 269 return ampdu; 270 } 271 272 void brcms_c_ampdu_detach(struct ampdu_info *ampdu) 273 { 274 kfree(ampdu); 275 } 276 277 static void brcms_c_scb_ampdu_update_config(struct ampdu_info *ampdu, 278 struct scb *scb) 279 { 280 struct scb_ampdu *scb_ampdu = &scb->scb_ampdu; 281 int i; 282 283 scb_ampdu->max_pdu = AMPDU_NUM_MPDU; 284 285 /* go back to legacy size if some preloading is occurring */ 286 for (i = 0; i < NUM_FFPLD_FIFO; i++) { 287 if (ampdu->fifo_tb[i].ampdu_pld_size > FFPLD_PLD_INCR) 288 scb_ampdu->max_pdu = AMPDU_NUM_MPDU_LEGACY; 289 } 290 291 /* apply user override */ 292 if (ampdu->max_pdu != AUTO) 293 scb_ampdu->max_pdu = (u8) ampdu->max_pdu; 294 295 scb_ampdu->release = min_t(u8, scb_ampdu->max_pdu, 296 AMPDU_SCB_MAX_RELEASE); 297 298 if (scb_ampdu->max_rx_ampdu_bytes) 299 scb_ampdu->release = min_t(u8, scb_ampdu->release, 300 scb_ampdu->max_rx_ampdu_bytes / 1600); 301 302 scb_ampdu->release = min(scb_ampdu->release, 303 ampdu->fifo_tb[TX_AC_BE_FIFO]. 304 mcs2ampdu_table[FFPLD_MAX_MCS]); 305 } 306 307 static void brcms_c_scb_ampdu_update_config_all(struct ampdu_info *ampdu) 308 { 309 brcms_c_scb_ampdu_update_config(ampdu, &du->wlc->pri_scb); 310 } 311 312 static void brcms_c_ffpld_calc_mcs2ampdu_table(struct ampdu_info *ampdu, int f) 313 { 314 int i; 315 u32 phy_rate, dma_rate, tmp; 316 u8 max_mpdu; 317 struct brcms_fifo_info *fifo = (ampdu->fifo_tb + f); 318 319 /* recompute the dma rate */ 320 /* note : we divide/multiply by 100 to avoid integer overflows */ 321 max_mpdu = min_t(u8, fifo->mcs2ampdu_table[FFPLD_MAX_MCS], 322 AMPDU_NUM_MPDU_LEGACY); 323 phy_rate = mcs_2_rate(FFPLD_MAX_MCS, true, false); 324 dma_rate = 325 (((phy_rate / 100) * 326 (max_mpdu * FFPLD_MPDU_SIZE - fifo->ampdu_pld_size)) 327 / (max_mpdu * FFPLD_MPDU_SIZE)) * 100; 328 fifo->dmaxferrate = dma_rate; 329 330 /* fill up the mcs2ampdu table; do not recalc the last mcs */ 331 dma_rate = dma_rate >> 7; 332 for (i = 0; i < FFPLD_MAX_MCS; i++) { 333 /* shifting to keep it within integer range */ 334 phy_rate = mcs_2_rate(i, true, false) >> 7; 335 if (phy_rate > dma_rate) { 336 tmp = ((fifo->ampdu_pld_size * phy_rate) / 337 ((phy_rate - dma_rate) * FFPLD_MPDU_SIZE)) + 1; 338 tmp = min_t(u32, tmp, 255); 339 fifo->mcs2ampdu_table[i] = (u8) tmp; 340 } 341 } 342 } 343 344 /* evaluate the dma transfer rate using the tx underflows as feedback. 345 * If necessary, increase tx fifo preloading. If not enough, 346 * decrease maximum ampdu size for each mcs till underflows stop 347 * Return 1 if pre-loading not active, -1 if not an underflow event, 348 * 0 if pre-loading module took care of the event. 349 */ 350 static int brcms_c_ffpld_check_txfunfl(struct brcms_c_info *wlc, int fid) 351 { 352 struct ampdu_info *ampdu = wlc->ampdu; 353 u32 phy_rate = mcs_2_rate(FFPLD_MAX_MCS, true, false); 354 u8 max_mpdu; 355 u16 max_pld_size; 356 u32 new_txunfl; 357 struct brcms_fifo_info *fifo = (ampdu->fifo_tb + fid); 358 uint xmtfifo_sz; 359 u16 cur_txunfl; 360 361 /* return if we got here for a different reason than underflows */ 362 cur_txunfl = brcms_b_read_shm(wlc->hw, 363 M_UCODE_MACSTAT + 364 offsetof(struct macstat, txfunfl[fid])); 365 new_txunfl = (u16) (cur_txunfl - fifo->prev_txfunfl); 366 if (new_txunfl == 0) { 367 brcms_dbg_ht(wlc->hw->d11core, 368 "TX status FRAG set but no tx underflows\n"); 369 return -1; 370 } 371 fifo->prev_txfunfl = cur_txunfl; 372 373 if (!ampdu->tx_max_funl) 374 return 1; 375 376 /* check if fifo is big enough */ 377 if (brcms_b_xmtfifo_sz_get(wlc->hw, fid, &xmtfifo_sz)) 378 return -1; 379 380 if ((TXFIFO_SIZE_UNIT * (u32) xmtfifo_sz) <= ampdu->ffpld_rsvd) 381 return 1; 382 383 max_pld_size = TXFIFO_SIZE_UNIT * xmtfifo_sz - ampdu->ffpld_rsvd; 384 fifo->accum_txfunfl += new_txunfl; 385 386 /* we need to wait for at least 10 underflows */ 387 if (fifo->accum_txfunfl < 10) 388 return 0; 389 390 brcms_dbg_ht(wlc->hw->d11core, "tx_underflows %d\n", fifo->accum_txfunfl); 391 392 max_mpdu = min_t(u8, fifo->mcs2ampdu_table[FFPLD_MAX_MCS], 393 AMPDU_NUM_MPDU_LEGACY); 394 395 /* In case max value max_pdu is already lower than 396 the fifo depth, there is nothing more we can do. 397 */ 398 399 if (fifo->ampdu_pld_size >= max_mpdu * FFPLD_MPDU_SIZE) { 400 fifo->accum_txfunfl = 0; 401 return 0; 402 } 403 404 if (fifo->ampdu_pld_size < max_pld_size) { 405 406 /* increment by TX_FIFO_PLD_INC bytes */ 407 fifo->ampdu_pld_size += FFPLD_PLD_INCR; 408 if (fifo->ampdu_pld_size > max_pld_size) 409 fifo->ampdu_pld_size = max_pld_size; 410 411 /* update scb release size */ 412 brcms_c_scb_ampdu_update_config_all(ampdu); 413 414 /* 415 * compute a new dma xfer rate for max_mpdu @ max mcs. 416 * This is the minimum dma rate that can achieve no 417 * underflow condition for the current mpdu size. 418 * 419 * note : we divide/multiply by 100 to avoid integer overflows 420 */ 421 fifo->dmaxferrate = 422 (((phy_rate / 100) * 423 (max_mpdu * FFPLD_MPDU_SIZE - fifo->ampdu_pld_size)) 424 / (max_mpdu * FFPLD_MPDU_SIZE)) * 100; 425 426 brcms_dbg_ht(wlc->hw->d11core, 427 "DMA estimated transfer rate %d; " 428 "pre-load size %d\n", 429 fifo->dmaxferrate, fifo->ampdu_pld_size); 430 } else { 431 432 /* decrease ampdu size */ 433 if (fifo->mcs2ampdu_table[FFPLD_MAX_MCS] > 1) { 434 if (fifo->mcs2ampdu_table[FFPLD_MAX_MCS] == 255) 435 fifo->mcs2ampdu_table[FFPLD_MAX_MCS] = 436 AMPDU_NUM_MPDU_LEGACY - 1; 437 else 438 fifo->mcs2ampdu_table[FFPLD_MAX_MCS] -= 1; 439 440 /* recompute the table */ 441 brcms_c_ffpld_calc_mcs2ampdu_table(ampdu, fid); 442 443 /* update scb release size */ 444 brcms_c_scb_ampdu_update_config_all(ampdu); 445 } 446 } 447 fifo->accum_txfunfl = 0; 448 return 0; 449 } 450 451 void 452 brcms_c_ampdu_tx_operational(struct brcms_c_info *wlc, u8 tid, 453 uint max_rx_ampdu_bytes) /* from ht_cap in beacon */ 454 { 455 struct scb_ampdu *scb_ampdu; 456 struct ampdu_info *ampdu = wlc->ampdu; 457 struct scb *scb = &wlc->pri_scb; 458 scb_ampdu = &scb->scb_ampdu; 459 460 if (!ampdu->ini_enable[tid]) { 461 brcms_err(wlc->hw->d11core, "%s: Rejecting tid %d\n", 462 __func__, tid); 463 return; 464 } 465 466 scb_ampdu->max_rx_ampdu_bytes = max_rx_ampdu_bytes; 467 } 468 469 void brcms_c_ampdu_reset_session(struct brcms_ampdu_session *session, 470 struct brcms_c_info *wlc) 471 { 472 session->wlc = wlc; 473 skb_queue_head_init(&session->skb_list); 474 session->max_ampdu_len = 0; /* determined from first MPDU */ 475 session->max_ampdu_frames = 0; /* determined from first MPDU */ 476 session->ampdu_len = 0; 477 session->dma_len = 0; 478 } 479 480 /* 481 * Preps the given packet for AMPDU based on the session data. If the 482 * frame cannot be accomodated in the current session, -ENOSPC is 483 * returned. 484 */ 485 int brcms_c_ampdu_add_frame(struct brcms_ampdu_session *session, 486 struct sk_buff *p) 487 { 488 struct brcms_c_info *wlc = session->wlc; 489 struct ampdu_info *ampdu = wlc->ampdu; 490 struct scb *scb = &wlc->pri_scb; 491 struct scb_ampdu *scb_ampdu = &scb->scb_ampdu; 492 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(p); 493 struct ieee80211_tx_rate *txrate = tx_info->status.rates; 494 struct d11txh *txh = (struct d11txh *)p->data; 495 unsigned ampdu_frames; 496 u8 ndelim, tid; 497 u8 *plcp; 498 uint len; 499 u16 mcl; 500 bool fbr_iscck; 501 bool rr; 502 503 ndelim = txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM]; 504 plcp = (u8 *)(txh + 1); 505 fbr_iscck = !(le16_to_cpu(txh->XtraFrameTypes) & 0x03); 506 len = fbr_iscck ? BRCMS_GET_CCK_PLCP_LEN(txh->FragPLCPFallback) : 507 BRCMS_GET_MIMO_PLCP_LEN(txh->FragPLCPFallback); 508 len = roundup(len, 4) + (ndelim + 1) * AMPDU_DELIMITER_LEN; 509 510 ampdu_frames = skb_queue_len(&session->skb_list); 511 if (ampdu_frames != 0) { 512 struct sk_buff *first; 513 514 if (ampdu_frames + 1 > session->max_ampdu_frames || 515 session->ampdu_len + len > session->max_ampdu_len) 516 return -ENOSPC; 517 518 /* 519 * We aren't really out of space if the new frame is of 520 * a different priority, but we want the same behaviour 521 * so return -ENOSPC anyway. 522 * 523 * XXX: The old AMPDU code did this, but is it really 524 * necessary? 525 */ 526 first = skb_peek(&session->skb_list); 527 if (p->priority != first->priority) 528 return -ENOSPC; 529 } 530 531 /* 532 * Now that we're sure this frame can be accomodated, update the 533 * session information. 534 */ 535 session->ampdu_len += len; 536 session->dma_len += p->len; 537 538 tid = (u8)p->priority; 539 540 /* Handle retry limits */ 541 if (txrate[0].count <= ampdu->rr_retry_limit_tid[tid]) { 542 txrate[0].count++; 543 rr = true; 544 } else { 545 txrate[1].count++; 546 rr = false; 547 } 548 549 if (ampdu_frames == 0) { 550 u8 plcp0, plcp3, is40, sgi, mcs; 551 uint fifo = le16_to_cpu(txh->TxFrameID) & TXFID_QUEUE_MASK; 552 struct brcms_fifo_info *f = &du->fifo_tb[fifo]; 553 554 if (rr) { 555 plcp0 = plcp[0]; 556 plcp3 = plcp[3]; 557 } else { 558 plcp0 = txh->FragPLCPFallback[0]; 559 plcp3 = txh->FragPLCPFallback[3]; 560 561 } 562 563 /* Limit AMPDU size based on MCS */ 564 is40 = (plcp0 & MIMO_PLCP_40MHZ) ? 1 : 0; 565 sgi = plcp3_issgi(plcp3) ? 1 : 0; 566 mcs = plcp0 & ~MIMO_PLCP_40MHZ; 567 session->max_ampdu_len = min(scb_ampdu->max_rx_ampdu_bytes, 568 ampdu->max_txlen[mcs][is40][sgi]); 569 570 session->max_ampdu_frames = scb_ampdu->max_pdu; 571 if (mcs_2_rate(mcs, true, false) >= f->dmaxferrate) { 572 session->max_ampdu_frames = 573 min_t(u16, f->mcs2ampdu_table[mcs], 574 session->max_ampdu_frames); 575 } 576 } 577 578 /* 579 * Treat all frames as "middle" frames of AMPDU here. First and 580 * last frames must be fixed up after all MPDUs have been prepped. 581 */ 582 mcl = le16_to_cpu(txh->MacTxControlLow); 583 mcl &= ~TXC_AMPDU_MASK; 584 mcl |= (TXC_AMPDU_MIDDLE << TXC_AMPDU_SHIFT); 585 mcl &= ~(TXC_STARTMSDU | TXC_SENDRTS | TXC_SENDCTS); 586 txh->MacTxControlLow = cpu_to_le16(mcl); 587 txh->PreloadSize = 0; /* always default to 0 */ 588 589 skb_queue_tail(&session->skb_list, p); 590 591 return 0; 592 } 593 594 void brcms_c_ampdu_finalize(struct brcms_ampdu_session *session) 595 { 596 struct brcms_c_info *wlc = session->wlc; 597 struct ampdu_info *ampdu = wlc->ampdu; 598 struct sk_buff *first, *last; 599 struct d11txh *txh; 600 struct ieee80211_tx_info *tx_info; 601 struct ieee80211_tx_rate *txrate; 602 u8 ndelim; 603 u8 *plcp; 604 uint len; 605 uint fifo; 606 struct brcms_fifo_info *f; 607 u16 mcl; 608 bool fbr; 609 bool fbr_iscck; 610 struct ieee80211_rts *rts; 611 bool use_rts = false, use_cts = false; 612 u16 dma_len = session->dma_len; 613 u16 mimo_ctlchbw = PHY_TXC1_BW_20MHZ; 614 u32 rspec = 0, rspec_fallback = 0; 615 u32 rts_rspec = 0, rts_rspec_fallback = 0; 616 u8 plcp0, is40, mcs; 617 u16 mch; 618 u8 preamble_type = BRCMS_GF_PREAMBLE; 619 u8 fbr_preamble_type = BRCMS_GF_PREAMBLE; 620 u8 rts_preamble_type = BRCMS_LONG_PREAMBLE; 621 u8 rts_fbr_preamble_type = BRCMS_LONG_PREAMBLE; 622 623 if (skb_queue_empty(&session->skb_list)) 624 return; 625 626 first = skb_peek(&session->skb_list); 627 last = skb_peek_tail(&session->skb_list); 628 629 /* Need to fix up last MPDU first to adjust AMPDU length */ 630 txh = (struct d11txh *)last->data; 631 fifo = le16_to_cpu(txh->TxFrameID) & TXFID_QUEUE_MASK; 632 f = &du->fifo_tb[fifo]; 633 634 mcl = le16_to_cpu(txh->MacTxControlLow); 635 mcl &= ~TXC_AMPDU_MASK; 636 mcl |= (TXC_AMPDU_LAST << TXC_AMPDU_SHIFT); 637 txh->MacTxControlLow = cpu_to_le16(mcl); 638 639 /* remove the null delimiter after last mpdu */ 640 ndelim = txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM]; 641 txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM] = 0; 642 session->ampdu_len -= ndelim * AMPDU_DELIMITER_LEN; 643 644 /* remove the pad len from last mpdu */ 645 fbr_iscck = ((le16_to_cpu(txh->XtraFrameTypes) & 0x3) == 0); 646 len = fbr_iscck ? BRCMS_GET_CCK_PLCP_LEN(txh->FragPLCPFallback) : 647 BRCMS_GET_MIMO_PLCP_LEN(txh->FragPLCPFallback); 648 session->ampdu_len -= roundup(len, 4) - len; 649 650 /* Now fix up the first MPDU */ 651 tx_info = IEEE80211_SKB_CB(first); 652 txrate = tx_info->status.rates; 653 txh = (struct d11txh *)first->data; 654 plcp = (u8 *)(txh + 1); 655 rts = (struct ieee80211_rts *)&txh->rts_frame; 656 657 mcl = le16_to_cpu(txh->MacTxControlLow); 658 /* If only one MPDU leave it marked as last */ 659 if (first != last) { 660 mcl &= ~TXC_AMPDU_MASK; 661 mcl |= (TXC_AMPDU_FIRST << TXC_AMPDU_SHIFT); 662 } 663 mcl |= TXC_STARTMSDU; 664 if (ieee80211_is_rts(rts->frame_control)) { 665 mcl |= TXC_SENDRTS; 666 use_rts = true; 667 } 668 if (ieee80211_is_cts(rts->frame_control)) { 669 mcl |= TXC_SENDCTS; 670 use_cts = true; 671 } 672 txh->MacTxControlLow = cpu_to_le16(mcl); 673 674 fbr = txrate[1].count > 0; 675 if (!fbr) 676 plcp0 = plcp[0]; 677 else 678 plcp0 = txh->FragPLCPFallback[0]; 679 680 is40 = (plcp0 & MIMO_PLCP_40MHZ) ? 1 : 0; 681 mcs = plcp0 & ~MIMO_PLCP_40MHZ; 682 683 if (is40) { 684 if (CHSPEC_SB_UPPER(wlc_phy_chanspec_get(wlc->band->pi))) 685 mimo_ctlchbw = PHY_TXC1_BW_20MHZ_UP; 686 else 687 mimo_ctlchbw = PHY_TXC1_BW_20MHZ; 688 } 689 690 /* rebuild the rspec and rspec_fallback */ 691 rspec = RSPEC_MIMORATE; 692 rspec |= plcp[0] & ~MIMO_PLCP_40MHZ; 693 if (plcp[0] & MIMO_PLCP_40MHZ) 694 rspec |= (PHY_TXC1_BW_40MHZ << RSPEC_BW_SHIFT); 695 696 fbr_iscck = !(le16_to_cpu(txh->XtraFrameTypes) & 0x03); 697 if (fbr_iscck) { 698 rspec_fallback = 699 cck_rspec(cck_phy2mac_rate(txh->FragPLCPFallback[0])); 700 } else { 701 rspec_fallback = RSPEC_MIMORATE; 702 rspec_fallback |= txh->FragPLCPFallback[0] & ~MIMO_PLCP_40MHZ; 703 if (txh->FragPLCPFallback[0] & MIMO_PLCP_40MHZ) 704 rspec_fallback |= PHY_TXC1_BW_40MHZ << RSPEC_BW_SHIFT; 705 } 706 707 if (use_rts || use_cts) { 708 rts_rspec = 709 brcms_c_rspec_to_rts_rspec(wlc, rspec, 710 false, mimo_ctlchbw); 711 rts_rspec_fallback = 712 brcms_c_rspec_to_rts_rspec(wlc, rspec_fallback, 713 false, mimo_ctlchbw); 714 } 715 716 BRCMS_SET_MIMO_PLCP_LEN(plcp, session->ampdu_len); 717 /* mark plcp to indicate ampdu */ 718 BRCMS_SET_MIMO_PLCP_AMPDU(plcp); 719 720 /* reset the mixed mode header durations */ 721 if (txh->MModeLen) { 722 u16 mmodelen = brcms_c_calc_lsig_len(wlc, rspec, 723 session->ampdu_len); 724 txh->MModeLen = cpu_to_le16(mmodelen); 725 preamble_type = BRCMS_MM_PREAMBLE; 726 } 727 if (txh->MModeFbrLen) { 728 u16 mmfbrlen = brcms_c_calc_lsig_len(wlc, rspec_fallback, 729 session->ampdu_len); 730 txh->MModeFbrLen = cpu_to_le16(mmfbrlen); 731 fbr_preamble_type = BRCMS_MM_PREAMBLE; 732 } 733 734 /* set the preload length */ 735 if (mcs_2_rate(mcs, true, false) >= f->dmaxferrate) { 736 dma_len = min(dma_len, f->ampdu_pld_size); 737 txh->PreloadSize = cpu_to_le16(dma_len); 738 } else { 739 txh->PreloadSize = 0; 740 } 741 742 mch = le16_to_cpu(txh->MacTxControlHigh); 743 744 /* update RTS dur fields */ 745 if (use_rts || use_cts) { 746 u16 durid; 747 if ((mch & TXC_PREAMBLE_RTS_MAIN_SHORT) == 748 TXC_PREAMBLE_RTS_MAIN_SHORT) 749 rts_preamble_type = BRCMS_SHORT_PREAMBLE; 750 751 if ((mch & TXC_PREAMBLE_RTS_FB_SHORT) == 752 TXC_PREAMBLE_RTS_FB_SHORT) 753 rts_fbr_preamble_type = BRCMS_SHORT_PREAMBLE; 754 755 durid = brcms_c_compute_rtscts_dur(wlc, use_cts, rts_rspec, 756 rspec, rts_preamble_type, 757 preamble_type, 758 session->ampdu_len, true); 759 rts->duration = cpu_to_le16(durid); 760 durid = brcms_c_compute_rtscts_dur(wlc, use_cts, 761 rts_rspec_fallback, 762 rspec_fallback, 763 rts_fbr_preamble_type, 764 fbr_preamble_type, 765 session->ampdu_len, true); 766 txh->RTSDurFallback = cpu_to_le16(durid); 767 /* set TxFesTimeNormal */ 768 txh->TxFesTimeNormal = rts->duration; 769 /* set fallback rate version of TxFesTimeNormal */ 770 txh->TxFesTimeFallback = txh->RTSDurFallback; 771 } 772 773 /* set flag and plcp for fallback rate */ 774 if (fbr) { 775 mch |= TXC_AMPDU_FBR; 776 txh->MacTxControlHigh = cpu_to_le16(mch); 777 BRCMS_SET_MIMO_PLCP_AMPDU(plcp); 778 BRCMS_SET_MIMO_PLCP_AMPDU(txh->FragPLCPFallback); 779 } 780 781 brcms_dbg_ht(wlc->hw->d11core, "wl%d: count %d ampdu_len %d\n", 782 wlc->pub->unit, skb_queue_len(&session->skb_list), 783 session->ampdu_len); 784 } 785 786 static void 787 brcms_c_ampdu_rate_status(struct brcms_c_info *wlc, 788 struct ieee80211_tx_info *tx_info, 789 struct tx_status *txs, u8 mcs) 790 { 791 struct ieee80211_tx_rate *txrate = tx_info->status.rates; 792 int i; 793 794 /* clear the rest of the rates */ 795 for (i = 2; i < IEEE80211_TX_MAX_RATES; i++) { 796 txrate[i].idx = -1; 797 txrate[i].count = 0; 798 } 799 } 800 801 static void 802 brcms_c_ampdu_dotxstatus_complete(struct ampdu_info *ampdu, struct scb *scb, 803 struct sk_buff *p, struct tx_status *txs, 804 u32 s1, u32 s2) 805 { 806 struct scb_ampdu *scb_ampdu; 807 struct brcms_c_info *wlc = ampdu->wlc; 808 struct scb_ampdu_tid_ini *ini; 809 u8 bitmap[8], queue, tid; 810 struct d11txh *txh; 811 u8 *plcp; 812 struct ieee80211_hdr *h; 813 u16 seq, start_seq = 0, bindex, index, mcl; 814 u8 mcs = 0; 815 bool ba_recd = false, ack_recd = false; 816 u8 tot_mpdu = 0; 817 uint supr_status; 818 bool retry = true; 819 u16 mimoantsel = 0; 820 u8 retry_limit; 821 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(p); 822 823 #ifdef DEBUG 824 u8 hole[AMPDU_MAX_MPDU]; 825 memset(hole, 0, sizeof(hole)); 826 #endif 827 828 scb_ampdu = &scb->scb_ampdu; 829 tid = (u8) (p->priority); 830 831 ini = &scb_ampdu->ini[tid]; 832 retry_limit = ampdu->retry_limit_tid[tid]; 833 memset(bitmap, 0, sizeof(bitmap)); 834 queue = txs->frameid & TXFID_QUEUE_MASK; 835 supr_status = txs->status & TX_STATUS_SUPR_MASK; 836 837 if (txs->status & TX_STATUS_ACK_RCV) { 838 WARN_ON(!(txs->status & TX_STATUS_INTERMEDIATE)); 839 start_seq = txs->sequence >> SEQNUM_SHIFT; 840 bitmap[0] = (txs->status & TX_STATUS_BA_BMAP03_MASK) >> 841 TX_STATUS_BA_BMAP03_SHIFT; 842 843 WARN_ON(s1 & TX_STATUS_INTERMEDIATE); 844 WARN_ON(!(s1 & TX_STATUS_AMPDU)); 845 846 bitmap[0] |= 847 (s1 & TX_STATUS_BA_BMAP47_MASK) << 848 TX_STATUS_BA_BMAP47_SHIFT; 849 bitmap[1] = (s1 >> 8) & 0xff; 850 bitmap[2] = (s1 >> 16) & 0xff; 851 bitmap[3] = (s1 >> 24) & 0xff; 852 853 bitmap[4] = s2 & 0xff; 854 bitmap[5] = (s2 >> 8) & 0xff; 855 bitmap[6] = (s2 >> 16) & 0xff; 856 bitmap[7] = (s2 >> 24) & 0xff; 857 858 ba_recd = true; 859 } else { 860 if (supr_status) { 861 if (supr_status == TX_STATUS_SUPR_BADCH) { 862 brcms_dbg_ht(wlc->hw->d11core, 863 "%s: Pkt tx suppressed, illegal channel possibly %d\n", 864 __func__, CHSPEC_CHANNEL( 865 wlc->default_bss->chanspec)); 866 } else { 867 if (supr_status != TX_STATUS_SUPR_FRAG) 868 brcms_err(wlc->hw->d11core, 869 "%s: supr_status 0x%x\n", 870 __func__, supr_status); 871 } 872 /* no need to retry for badch; will fail again */ 873 if (supr_status == TX_STATUS_SUPR_BADCH || 874 supr_status == TX_STATUS_SUPR_EXPTIME) { 875 retry = false; 876 } else if (supr_status == TX_STATUS_SUPR_EXPTIME) { 877 /* TX underflow: 878 * try tuning pre-loading or ampdu size 879 */ 880 } else if (supr_status == TX_STATUS_SUPR_FRAG) { 881 /* 882 * if there were underflows, but pre-loading 883 * is not active, notify rate adaptation. 884 */ 885 brcms_c_ffpld_check_txfunfl(wlc, queue); 886 } 887 } else if (txs->phyerr) { 888 brcms_dbg_ht(wlc->hw->d11core, 889 "%s: ampdu tx phy error (0x%x)\n", 890 __func__, txs->phyerr); 891 } 892 } 893 894 /* loop through all pkts and retry if not acked */ 895 while (p) { 896 tx_info = IEEE80211_SKB_CB(p); 897 txh = (struct d11txh *) p->data; 898 mcl = le16_to_cpu(txh->MacTxControlLow); 899 plcp = (u8 *) (txh + 1); 900 h = (struct ieee80211_hdr *)(plcp + D11_PHY_HDR_LEN); 901 seq = le16_to_cpu(h->seq_ctrl) >> SEQNUM_SHIFT; 902 903 trace_brcms_txdesc(&wlc->hw->d11core->dev, txh, sizeof(*txh)); 904 905 if (tot_mpdu == 0) { 906 mcs = plcp[0] & MIMO_PLCP_MCS_MASK; 907 mimoantsel = le16_to_cpu(txh->ABI_MimoAntSel); 908 } 909 910 index = TX_SEQ_TO_INDEX(seq); 911 ack_recd = false; 912 if (ba_recd) { 913 int block_acked; 914 915 bindex = MODSUB_POW2(seq, start_seq, SEQNUM_MAX); 916 if (bindex < AMPDU_TX_BA_MAX_WSIZE) 917 block_acked = isset(bitmap, bindex); 918 else 919 block_acked = 0; 920 brcms_dbg_ht(wlc->hw->d11core, 921 "tid %d seq %d, start_seq %d, bindex %d set %d, index %d\n", 922 tid, seq, start_seq, bindex, 923 block_acked, index); 924 /* if acked then clear bit and free packet */ 925 if (block_acked) { 926 ini->txretry[index] = 0; 927 928 /* 929 * ampdu_ack_len: 930 * number of acked aggregated frames 931 */ 932 /* ampdu_len: number of aggregated frames */ 933 brcms_c_ampdu_rate_status(wlc, tx_info, txs, 934 mcs); 935 tx_info->flags |= IEEE80211_TX_STAT_ACK; 936 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 937 tx_info->status.ampdu_ack_len = 938 tx_info->status.ampdu_len = 1; 939 940 skb_pull(p, D11_PHY_HDR_LEN); 941 skb_pull(p, D11_TXH_LEN); 942 943 ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw, 944 p); 945 ack_recd = true; 946 } 947 } 948 /* either retransmit or send bar if ack not recd */ 949 if (!ack_recd) { 950 if (retry && (ini->txretry[index] < (int)retry_limit)) { 951 int ret; 952 ini->txretry[index]++; 953 ret = brcms_c_txfifo(wlc, queue, p); 954 /* 955 * We shouldn't be out of space in the DMA 956 * ring here since we're reinserting a frame 957 * that was just pulled out. 958 */ 959 WARN_ONCE(ret, "queue %d out of txds\n", queue); 960 } else { 961 /* Retry timeout */ 962 ieee80211_tx_info_clear_status(tx_info); 963 tx_info->status.ampdu_ack_len = 0; 964 tx_info->status.ampdu_len = 1; 965 tx_info->flags |= 966 IEEE80211_TX_STAT_AMPDU_NO_BACK; 967 skb_pull(p, D11_PHY_HDR_LEN); 968 skb_pull(p, D11_TXH_LEN); 969 brcms_dbg_ht(wlc->hw->d11core, 970 "BA Timeout, seq %d\n", 971 seq); 972 ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw, 973 p); 974 } 975 } 976 tot_mpdu++; 977 978 /* break out if last packet of ampdu */ 979 if (((mcl & TXC_AMPDU_MASK) >> TXC_AMPDU_SHIFT) == 980 TXC_AMPDU_LAST) 981 break; 982 983 p = dma_getnexttxp(wlc->hw->di[queue], DMA_RANGE_TRANSMITTED); 984 } 985 986 /* update rate state */ 987 brcms_c_antsel_antsel2id(wlc->asi, mimoantsel); 988 } 989 990 void 991 brcms_c_ampdu_dotxstatus(struct ampdu_info *ampdu, struct scb *scb, 992 struct sk_buff *p, struct tx_status *txs) 993 { 994 struct brcms_c_info *wlc = ampdu->wlc; 995 u32 s1 = 0, s2 = 0; 996 997 /* BMAC_NOTE: For the split driver, second level txstatus comes later 998 * So if the ACK was received then wait for the second level else just 999 * call the first one 1000 */ 1001 if (txs->status & TX_STATUS_ACK_RCV) { 1002 u8 status_delay = 0; 1003 1004 /* wait till the next 8 bytes of txstatus is available */ 1005 s1 = bcma_read32(wlc->hw->d11core, D11REGOFFS(frmtxstatus)); 1006 while ((s1 & TXS_V) == 0) { 1007 udelay(1); 1008 status_delay++; 1009 if (status_delay > 10) 1010 return; /* error condition */ 1011 s1 = bcma_read32(wlc->hw->d11core, 1012 D11REGOFFS(frmtxstatus)); 1013 } 1014 1015 s2 = bcma_read32(wlc->hw->d11core, D11REGOFFS(frmtxstatus2)); 1016 } 1017 1018 if (scb) { 1019 brcms_c_ampdu_dotxstatus_complete(ampdu, scb, p, txs, s1, s2); 1020 } else { 1021 /* loop through all pkts and free */ 1022 u8 queue = txs->frameid & TXFID_QUEUE_MASK; 1023 struct d11txh *txh; 1024 u16 mcl; 1025 while (p) { 1026 txh = (struct d11txh *) p->data; 1027 trace_brcms_txdesc(&wlc->hw->d11core->dev, txh, 1028 sizeof(*txh)); 1029 mcl = le16_to_cpu(txh->MacTxControlLow); 1030 brcmu_pkt_buf_free_skb(p); 1031 /* break out if last packet of ampdu */ 1032 if (((mcl & TXC_AMPDU_MASK) >> TXC_AMPDU_SHIFT) == 1033 TXC_AMPDU_LAST) 1034 break; 1035 p = dma_getnexttxp(wlc->hw->di[queue], 1036 DMA_RANGE_TRANSMITTED); 1037 } 1038 } 1039 } 1040 1041 void brcms_c_ampdu_macaddr_upd(struct brcms_c_info *wlc) 1042 { 1043 char template[T_RAM_ACCESS_SZ * 2]; 1044 1045 /* driver needs to write the ta in the template; ta is at offset 16 */ 1046 memset(template, 0, sizeof(template)); 1047 memcpy(template, wlc->pub->cur_etheraddr, ETH_ALEN); 1048 brcms_b_write_template_ram(wlc->hw, (T_BA_TPL_BASE + 16), 1049 (T_RAM_ACCESS_SZ * 2), 1050 template); 1051 } 1052 1053 bool brcms_c_aggregatable(struct brcms_c_info *wlc, u8 tid) 1054 { 1055 return wlc->ampdu->ini_enable[tid]; 1056 } 1057 1058 void brcms_c_ampdu_shm_upd(struct ampdu_info *ampdu) 1059 { 1060 struct brcms_c_info *wlc = ampdu->wlc; 1061 1062 /* 1063 * Extend ucode internal watchdog timer to 1064 * match larger received frames 1065 */ 1066 if ((ampdu->rx_factor & IEEE80211_HT_AMPDU_PARM_FACTOR) == 1067 IEEE80211_HT_MAX_AMPDU_64K) { 1068 brcms_b_write_shm(wlc->hw, M_MIMO_MAXSYM, MIMO_MAXSYM_MAX); 1069 brcms_b_write_shm(wlc->hw, M_WATCHDOG_8TU, WATCHDOG_8TU_MAX); 1070 } else { 1071 brcms_b_write_shm(wlc->hw, M_MIMO_MAXSYM, MIMO_MAXSYM_DEF); 1072 brcms_b_write_shm(wlc->hw, M_WATCHDOG_8TU, WATCHDOG_8TU_DEF); 1073 } 1074 } 1075 1076 /* 1077 * callback function that helps invalidating ampdu packets in a DMA queue 1078 */ 1079 static void dma_cb_fn_ampdu(void *txi, void *arg_a) 1080 { 1081 struct ieee80211_sta *sta = arg_a; 1082 struct ieee80211_tx_info *tx_info = (struct ieee80211_tx_info *)txi; 1083 1084 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && 1085 (tx_info->rate_driver_data[0] == sta || sta == NULL)) 1086 tx_info->rate_driver_data[0] = NULL; 1087 } 1088 1089 /* 1090 * When a remote party is no longer available for ampdu communication, any 1091 * pending tx ampdu packets in the driver have to be flushed. 1092 */ 1093 void brcms_c_ampdu_flush(struct brcms_c_info *wlc, 1094 struct ieee80211_sta *sta, u16 tid) 1095 { 1096 brcms_c_inval_dma_pkts(wlc->hw, sta, dma_cb_fn_ampdu); 1097 } 1098