xref: /linux/drivers/net/wireless/broadcom/brcm80211/brcmfmac/chip.c (revision d003d772e64df08af04ee63609d47169ee82ae0e)
1 /*
2  * Copyright (c) 2014 Broadcom Corporation
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/list.h>
19 #include <linux/ssb/ssb_regs.h>
20 #include <linux/bcma/bcma.h>
21 #include <linux/bcma/bcma_regs.h>
22 
23 #include <defs.h>
24 #include <soc.h>
25 #include <brcm_hw_ids.h>
26 #include <brcmu_utils.h>
27 #include <chipcommon.h>
28 #include "debug.h"
29 #include "chip.h"
30 
31 /* SOC Interconnect types (aka chip types) */
32 #define SOCI_SB		0
33 #define SOCI_AI		1
34 
35 /* PL-368 DMP definitions */
36 #define DMP_DESC_TYPE_MSK	0x0000000F
37 #define  DMP_DESC_EMPTY		0x00000000
38 #define  DMP_DESC_VALID		0x00000001
39 #define  DMP_DESC_COMPONENT	0x00000001
40 #define  DMP_DESC_MASTER_PORT	0x00000003
41 #define  DMP_DESC_ADDRESS	0x00000005
42 #define  DMP_DESC_ADDRSIZE_GT32	0x00000008
43 #define  DMP_DESC_EOT		0x0000000F
44 
45 #define DMP_COMP_DESIGNER	0xFFF00000
46 #define DMP_COMP_DESIGNER_S	20
47 #define DMP_COMP_PARTNUM	0x000FFF00
48 #define DMP_COMP_PARTNUM_S	8
49 #define DMP_COMP_CLASS		0x000000F0
50 #define DMP_COMP_CLASS_S	4
51 #define DMP_COMP_REVISION	0xFF000000
52 #define DMP_COMP_REVISION_S	24
53 #define DMP_COMP_NUM_SWRAP	0x00F80000
54 #define DMP_COMP_NUM_SWRAP_S	19
55 #define DMP_COMP_NUM_MWRAP	0x0007C000
56 #define DMP_COMP_NUM_MWRAP_S	14
57 #define DMP_COMP_NUM_SPORT	0x00003E00
58 #define DMP_COMP_NUM_SPORT_S	9
59 #define DMP_COMP_NUM_MPORT	0x000001F0
60 #define DMP_COMP_NUM_MPORT_S	4
61 
62 #define DMP_MASTER_PORT_UID	0x0000FF00
63 #define DMP_MASTER_PORT_UID_S	8
64 #define DMP_MASTER_PORT_NUM	0x000000F0
65 #define DMP_MASTER_PORT_NUM_S	4
66 
67 #define DMP_SLAVE_ADDR_BASE	0xFFFFF000
68 #define DMP_SLAVE_ADDR_BASE_S	12
69 #define DMP_SLAVE_PORT_NUM	0x00000F00
70 #define DMP_SLAVE_PORT_NUM_S	8
71 #define DMP_SLAVE_TYPE		0x000000C0
72 #define DMP_SLAVE_TYPE_S	6
73 #define  DMP_SLAVE_TYPE_SLAVE	0
74 #define  DMP_SLAVE_TYPE_BRIDGE	1
75 #define  DMP_SLAVE_TYPE_SWRAP	2
76 #define  DMP_SLAVE_TYPE_MWRAP	3
77 #define DMP_SLAVE_SIZE_TYPE	0x00000030
78 #define DMP_SLAVE_SIZE_TYPE_S	4
79 #define  DMP_SLAVE_SIZE_4K	0
80 #define  DMP_SLAVE_SIZE_8K	1
81 #define  DMP_SLAVE_SIZE_16K	2
82 #define  DMP_SLAVE_SIZE_DESC	3
83 
84 /* EROM CompIdentB */
85 #define CIB_REV_MASK		0xff000000
86 #define CIB_REV_SHIFT		24
87 
88 /* ARM CR4 core specific control flag bits */
89 #define ARMCR4_BCMA_IOCTL_CPUHALT	0x0020
90 
91 /* D11 core specific control flag bits */
92 #define D11_BCMA_IOCTL_PHYCLOCKEN	0x0004
93 #define D11_BCMA_IOCTL_PHYRESET		0x0008
94 
95 /* chip core base & ramsize */
96 /* bcm4329 */
97 /* SDIO device core, ID 0x829 */
98 #define BCM4329_CORE_BUS_BASE		0x18011000
99 /* internal memory core, ID 0x80e */
100 #define BCM4329_CORE_SOCRAM_BASE	0x18003000
101 /* ARM Cortex M3 core, ID 0x82a */
102 #define BCM4329_CORE_ARM_BASE		0x18002000
103 
104 /* Max possibly supported memory size (limited by IO mapped memory) */
105 #define BRCMF_CHIP_MAX_MEMSIZE		(4 * 1024 * 1024)
106 
107 #define CORE_SB(base, field) \
108 		(base + SBCONFIGOFF + offsetof(struct sbconfig, field))
109 #define	SBCOREREV(sbidh) \
110 	((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
111 	  ((sbidh) & SSB_IDHIGH_RCLO))
112 
113 struct sbconfig {
114 	u32 PAD[2];
115 	u32 sbipsflag;	/* initiator port ocp slave flag */
116 	u32 PAD[3];
117 	u32 sbtpsflag;	/* target port ocp slave flag */
118 	u32 PAD[11];
119 	u32 sbtmerrloga;	/* (sonics >= 2.3) */
120 	u32 PAD;
121 	u32 sbtmerrlog;	/* (sonics >= 2.3) */
122 	u32 PAD[3];
123 	u32 sbadmatch3;	/* address match3 */
124 	u32 PAD;
125 	u32 sbadmatch2;	/* address match2 */
126 	u32 PAD;
127 	u32 sbadmatch1;	/* address match1 */
128 	u32 PAD[7];
129 	u32 sbimstate;	/* initiator agent state */
130 	u32 sbintvec;	/* interrupt mask */
131 	u32 sbtmstatelow;	/* target state */
132 	u32 sbtmstatehigh;	/* target state */
133 	u32 sbbwa0;		/* bandwidth allocation table0 */
134 	u32 PAD;
135 	u32 sbimconfiglow;	/* initiator configuration */
136 	u32 sbimconfighigh;	/* initiator configuration */
137 	u32 sbadmatch0;	/* address match0 */
138 	u32 PAD;
139 	u32 sbtmconfiglow;	/* target configuration */
140 	u32 sbtmconfighigh;	/* target configuration */
141 	u32 sbbconfig;	/* broadcast configuration */
142 	u32 PAD;
143 	u32 sbbstate;	/* broadcast state */
144 	u32 PAD[3];
145 	u32 sbactcnfg;	/* activate configuration */
146 	u32 PAD[3];
147 	u32 sbflagst;	/* current sbflags */
148 	u32 PAD[3];
149 	u32 sbidlow;		/* identification */
150 	u32 sbidhigh;	/* identification */
151 };
152 
153 /* bankidx and bankinfo reg defines corerev >= 8 */
154 #define SOCRAM_BANKINFO_RETNTRAM_MASK	0x00010000
155 #define SOCRAM_BANKINFO_SZMASK		0x0000007f
156 #define SOCRAM_BANKIDX_ROM_MASK		0x00000100
157 
158 #define SOCRAM_BANKIDX_MEMTYPE_SHIFT	8
159 /* socram bankinfo memtype */
160 #define SOCRAM_MEMTYPE_RAM		0
161 #define SOCRAM_MEMTYPE_R0M		1
162 #define SOCRAM_MEMTYPE_DEVRAM		2
163 
164 #define SOCRAM_BANKINFO_SZBASE		8192
165 #define SRCI_LSS_MASK		0x00f00000
166 #define SRCI_LSS_SHIFT		20
167 #define	SRCI_SRNB_MASK		0xf0
168 #define	SRCI_SRNB_MASK_EXT	0x100
169 #define	SRCI_SRNB_SHIFT		4
170 #define	SRCI_SRBSZ_MASK		0xf
171 #define	SRCI_SRBSZ_SHIFT	0
172 #define SR_BSZ_BASE		14
173 
174 struct sbsocramregs {
175 	u32 coreinfo;
176 	u32 bwalloc;
177 	u32 extracoreinfo;
178 	u32 biststat;
179 	u32 bankidx;
180 	u32 standbyctrl;
181 
182 	u32 errlogstatus;	/* rev 6 */
183 	u32 errlogaddr;	/* rev 6 */
184 	/* used for patching rev 3 & 5 */
185 	u32 cambankidx;
186 	u32 cambankstandbyctrl;
187 	u32 cambankpatchctrl;
188 	u32 cambankpatchtblbaseaddr;
189 	u32 cambankcmdreg;
190 	u32 cambankdatareg;
191 	u32 cambankmaskreg;
192 	u32 PAD[1];
193 	u32 bankinfo;	/* corev 8 */
194 	u32 bankpda;
195 	u32 PAD[14];
196 	u32 extmemconfig;
197 	u32 extmemparitycsr;
198 	u32 extmemparityerrdata;
199 	u32 extmemparityerrcnt;
200 	u32 extmemwrctrlandsize;
201 	u32 PAD[84];
202 	u32 workaround;
203 	u32 pwrctl;		/* corerev >= 2 */
204 	u32 PAD[133];
205 	u32 sr_control;     /* corerev >= 15 */
206 	u32 sr_status;      /* corerev >= 15 */
207 	u32 sr_address;     /* corerev >= 15 */
208 	u32 sr_data;        /* corerev >= 15 */
209 };
210 
211 #define SOCRAMREGOFFS(_f)	offsetof(struct sbsocramregs, _f)
212 #define SYSMEMREGOFFS(_f)	offsetof(struct sbsocramregs, _f)
213 
214 #define ARMCR4_CAP		(0x04)
215 #define ARMCR4_BANKIDX		(0x40)
216 #define ARMCR4_BANKINFO		(0x44)
217 #define ARMCR4_BANKPDA		(0x4C)
218 
219 #define	ARMCR4_TCBBNB_MASK	0xf0
220 #define	ARMCR4_TCBBNB_SHIFT	4
221 #define	ARMCR4_TCBANB_MASK	0xf
222 #define	ARMCR4_TCBANB_SHIFT	0
223 
224 #define	ARMCR4_BSZ_MASK		0x3f
225 #define	ARMCR4_BSZ_MULT		8192
226 
227 struct brcmf_core_priv {
228 	struct brcmf_core pub;
229 	u32 wrapbase;
230 	struct list_head list;
231 	struct brcmf_chip_priv *chip;
232 };
233 
234 struct brcmf_chip_priv {
235 	struct brcmf_chip pub;
236 	const struct brcmf_buscore_ops *ops;
237 	void *ctx;
238 	/* assured first core is chipcommon, second core is buscore */
239 	struct list_head cores;
240 	u16 num_cores;
241 
242 	bool (*iscoreup)(struct brcmf_core_priv *core);
243 	void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
244 			    u32 reset);
245 	void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
246 			  u32 postreset);
247 };
248 
249 static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
250 				  struct brcmf_core *core)
251 {
252 	u32 regdata;
253 
254 	regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
255 	core->rev = SBCOREREV(regdata);
256 }
257 
258 static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
259 {
260 	struct brcmf_chip_priv *ci;
261 	u32 regdata;
262 	u32 address;
263 
264 	ci = core->chip;
265 	address = CORE_SB(core->pub.base, sbtmstatelow);
266 	regdata = ci->ops->read32(ci->ctx, address);
267 	regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
268 		    SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
269 	return SSB_TMSLOW_CLOCK == regdata;
270 }
271 
272 static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
273 {
274 	struct brcmf_chip_priv *ci;
275 	u32 regdata;
276 	bool ret;
277 
278 	ci = core->chip;
279 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
280 	ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
281 
282 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
283 	ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
284 
285 	return ret;
286 }
287 
288 static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
289 				      u32 prereset, u32 reset)
290 {
291 	struct brcmf_chip_priv *ci;
292 	u32 val, base;
293 
294 	ci = core->chip;
295 	base = core->pub.base;
296 	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
297 	if (val & SSB_TMSLOW_RESET)
298 		return;
299 
300 	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
301 	if ((val & SSB_TMSLOW_CLOCK) != 0) {
302 		/*
303 		 * set target reject and spin until busy is clear
304 		 * (preserve core-specific bits)
305 		 */
306 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
307 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
308 					 val | SSB_TMSLOW_REJECT);
309 
310 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
311 		udelay(1);
312 		SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
313 			  & SSB_TMSHIGH_BUSY), 100000);
314 
315 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
316 		if (val & SSB_TMSHIGH_BUSY)
317 			brcmf_err("core state still busy\n");
318 
319 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
320 		if (val & SSB_IDLOW_INITIATOR) {
321 			val = ci->ops->read32(ci->ctx,
322 					      CORE_SB(base, sbimstate));
323 			val |= SSB_IMSTATE_REJECT;
324 			ci->ops->write32(ci->ctx,
325 					 CORE_SB(base, sbimstate), val);
326 			val = ci->ops->read32(ci->ctx,
327 					      CORE_SB(base, sbimstate));
328 			udelay(1);
329 			SPINWAIT((ci->ops->read32(ci->ctx,
330 						  CORE_SB(base, sbimstate)) &
331 				  SSB_IMSTATE_BUSY), 100000);
332 		}
333 
334 		/* set reset and reject while enabling the clocks */
335 		val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
336 		      SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
337 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
338 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
339 		udelay(10);
340 
341 		/* clear the initiator reject bit */
342 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
343 		if (val & SSB_IDLOW_INITIATOR) {
344 			val = ci->ops->read32(ci->ctx,
345 					      CORE_SB(base, sbimstate));
346 			val &= ~SSB_IMSTATE_REJECT;
347 			ci->ops->write32(ci->ctx,
348 					 CORE_SB(base, sbimstate), val);
349 		}
350 	}
351 
352 	/* leave reset and reject asserted */
353 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
354 			 (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
355 	udelay(1);
356 }
357 
358 static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
359 				      u32 prereset, u32 reset)
360 {
361 	struct brcmf_chip_priv *ci;
362 	u32 regdata;
363 
364 	ci = core->chip;
365 
366 	/* if core is already in reset, skip reset */
367 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
368 	if ((regdata & BCMA_RESET_CTL_RESET) != 0)
369 		goto in_reset_configure;
370 
371 	/* configure reset */
372 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
373 			 prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
374 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
375 
376 	/* put in reset */
377 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
378 			 BCMA_RESET_CTL_RESET);
379 	usleep_range(10, 20);
380 
381 	/* wait till reset is 1 */
382 	SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
383 		 BCMA_RESET_CTL_RESET, 300);
384 
385 in_reset_configure:
386 	/* in-reset configure */
387 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
388 			 reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
389 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
390 }
391 
392 static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
393 				    u32 reset, u32 postreset)
394 {
395 	struct brcmf_chip_priv *ci;
396 	u32 regdata;
397 	u32 base;
398 
399 	ci = core->chip;
400 	base = core->pub.base;
401 	/*
402 	 * Must do the disable sequence first to work for
403 	 * arbitrary current core state.
404 	 */
405 	brcmf_chip_sb_coredisable(core, 0, 0);
406 
407 	/*
408 	 * Now do the initialization sequence.
409 	 * set reset while enabling the clock and
410 	 * forcing them on throughout the core
411 	 */
412 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
413 			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
414 			 SSB_TMSLOW_RESET);
415 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
416 	udelay(1);
417 
418 	/* clear any serror */
419 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
420 	if (regdata & SSB_TMSHIGH_SERR)
421 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
422 
423 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
424 	if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
425 		regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
426 		ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
427 	}
428 
429 	/* clear reset and allow it to propagate throughout the core */
430 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
431 			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
432 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
433 	udelay(1);
434 
435 	/* leave clock enabled */
436 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
437 			 SSB_TMSLOW_CLOCK);
438 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
439 	udelay(1);
440 }
441 
442 static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
443 				    u32 reset, u32 postreset)
444 {
445 	struct brcmf_chip_priv *ci;
446 	int count;
447 
448 	ci = core->chip;
449 
450 	/* must disable first to work for arbitrary current core state */
451 	brcmf_chip_ai_coredisable(core, prereset, reset);
452 
453 	count = 0;
454 	while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
455 	       BCMA_RESET_CTL_RESET) {
456 		ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
457 		count++;
458 		if (count > 50)
459 			break;
460 		usleep_range(40, 60);
461 	}
462 
463 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
464 			 postreset | BCMA_IOCTL_CLK);
465 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
466 }
467 
468 char *brcmf_chip_name(u32 id, u32 rev, char *buf, uint len)
469 {
470 	const char *fmt;
471 
472 	fmt = ((id > 0xa000) || (id < 0x4000)) ? "BCM%d/%u" : "BCM%x/%u";
473 	snprintf(buf, len, fmt, id, rev);
474 	return buf;
475 }
476 
477 static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
478 					      u16 coreid, u32 base,
479 					      u32 wrapbase)
480 {
481 	struct brcmf_core_priv *core;
482 
483 	core = kzalloc(sizeof(*core), GFP_KERNEL);
484 	if (!core)
485 		return ERR_PTR(-ENOMEM);
486 
487 	core->pub.id = coreid;
488 	core->pub.base = base;
489 	core->chip = ci;
490 	core->wrapbase = wrapbase;
491 
492 	list_add_tail(&core->list, &ci->cores);
493 	return &core->pub;
494 }
495 
496 /* safety check for chipinfo */
497 static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
498 {
499 	struct brcmf_core_priv *core;
500 	bool need_socram = false;
501 	bool has_socram = false;
502 	bool cpu_found = false;
503 	int idx = 1;
504 
505 	list_for_each_entry(core, &ci->cores, list) {
506 		brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n",
507 			  idx++, core->pub.id, core->pub.rev, core->pub.base,
508 			  core->wrapbase);
509 
510 		switch (core->pub.id) {
511 		case BCMA_CORE_ARM_CM3:
512 			cpu_found = true;
513 			need_socram = true;
514 			break;
515 		case BCMA_CORE_INTERNAL_MEM:
516 			has_socram = true;
517 			break;
518 		case BCMA_CORE_ARM_CR4:
519 			cpu_found = true;
520 			break;
521 		case BCMA_CORE_ARM_CA7:
522 			cpu_found = true;
523 			break;
524 		default:
525 			break;
526 		}
527 	}
528 
529 	if (!cpu_found) {
530 		brcmf_err("CPU core not detected\n");
531 		return -ENXIO;
532 	}
533 	/* check RAM core presence for ARM CM3 core */
534 	if (need_socram && !has_socram) {
535 		brcmf_err("RAM core not provided with ARM CM3 core\n");
536 		return -ENODEV;
537 	}
538 	return 0;
539 }
540 
541 static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg)
542 {
543 	return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg);
544 }
545 
546 static void brcmf_chip_core_write32(struct brcmf_core_priv *core,
547 				    u16 reg, u32 val)
548 {
549 	core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val);
550 }
551 
552 static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx,
553 				       u32 *banksize)
554 {
555 	u32 bankinfo;
556 	u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
557 
558 	bankidx |= idx;
559 	brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx);
560 	bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo));
561 	*banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1;
562 	*banksize *= SOCRAM_BANKINFO_SZBASE;
563 	return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK);
564 }
565 
566 static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize,
567 				      u32 *srsize)
568 {
569 	u32 coreinfo;
570 	uint nb, banksize, lss;
571 	bool retent;
572 	int i;
573 
574 	*ramsize = 0;
575 	*srsize = 0;
576 
577 	if (WARN_ON(sr->pub.rev < 4))
578 		return;
579 
580 	if (!brcmf_chip_iscoreup(&sr->pub))
581 		brcmf_chip_resetcore(&sr->pub, 0, 0, 0);
582 
583 	/* Get info for determining size */
584 	coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo));
585 	nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
586 
587 	if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) {
588 		banksize = (coreinfo & SRCI_SRBSZ_MASK);
589 		lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
590 		if (lss != 0)
591 			nb--;
592 		*ramsize = nb * (1 << (banksize + SR_BSZ_BASE));
593 		if (lss != 0)
594 			*ramsize += (1 << ((lss - 1) + SR_BSZ_BASE));
595 	} else {
596 		/* length of SRAM Banks increased for corerev greater than 23 */
597 		if (sr->pub.rev >= 23) {
598 			nb = (coreinfo & (SRCI_SRNB_MASK | SRCI_SRNB_MASK_EXT))
599 				>> SRCI_SRNB_SHIFT;
600 		} else {
601 			nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
602 		}
603 		for (i = 0; i < nb; i++) {
604 			retent = brcmf_chip_socram_banksize(sr, i, &banksize);
605 			*ramsize += banksize;
606 			if (retent)
607 				*srsize += banksize;
608 		}
609 	}
610 
611 	/* hardcoded save&restore memory sizes */
612 	switch (sr->chip->pub.chip) {
613 	case BRCM_CC_4334_CHIP_ID:
614 		if (sr->chip->pub.chiprev < 2)
615 			*srsize = (32 * 1024);
616 		break;
617 	case BRCM_CC_43430_CHIP_ID:
618 		/* assume sr for now as we can not check
619 		 * firmware sr capability at this point.
620 		 */
621 		*srsize = (64 * 1024);
622 		break;
623 	default:
624 		break;
625 	}
626 }
627 
628 /** Return the SYS MEM size */
629 static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem)
630 {
631 	u32 memsize = 0;
632 	u32 coreinfo;
633 	u32 idx;
634 	u32 nb;
635 	u32 banksize;
636 
637 	if (!brcmf_chip_iscoreup(&sysmem->pub))
638 		brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0);
639 
640 	coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo));
641 	nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
642 
643 	for (idx = 0; idx < nb; idx++) {
644 		brcmf_chip_socram_banksize(sysmem, idx, &banksize);
645 		memsize += banksize;
646 	}
647 
648 	return memsize;
649 }
650 
651 /** Return the TCM-RAM size of the ARMCR4 core. */
652 static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4)
653 {
654 	u32 corecap;
655 	u32 memsize = 0;
656 	u32 nab;
657 	u32 nbb;
658 	u32 totb;
659 	u32 bxinfo;
660 	u32 idx;
661 
662 	corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP);
663 
664 	nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
665 	nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
666 	totb = nab + nbb;
667 
668 	for (idx = 0; idx < totb; idx++) {
669 		brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx);
670 		bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO);
671 		memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT;
672 	}
673 
674 	return memsize;
675 }
676 
677 static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci)
678 {
679 	switch (ci->pub.chip) {
680 	case BRCM_CC_4345_CHIP_ID:
681 		return 0x198000;
682 	case BRCM_CC_4335_CHIP_ID:
683 	case BRCM_CC_4339_CHIP_ID:
684 	case BRCM_CC_4350_CHIP_ID:
685 	case BRCM_CC_4354_CHIP_ID:
686 	case BRCM_CC_4356_CHIP_ID:
687 	case BRCM_CC_43567_CHIP_ID:
688 	case BRCM_CC_43569_CHIP_ID:
689 	case BRCM_CC_43570_CHIP_ID:
690 	case BRCM_CC_4358_CHIP_ID:
691 	case BRCM_CC_4359_CHIP_ID:
692 	case BRCM_CC_43602_CHIP_ID:
693 	case BRCM_CC_4371_CHIP_ID:
694 		return 0x180000;
695 	case BRCM_CC_43465_CHIP_ID:
696 	case BRCM_CC_43525_CHIP_ID:
697 	case BRCM_CC_4365_CHIP_ID:
698 	case BRCM_CC_4366_CHIP_ID:
699 	case BRCM_CC_43664_CHIP_ID:
700 		return 0x200000;
701 	case CY_CC_4373_CHIP_ID:
702 		return 0x160000;
703 	default:
704 		brcmf_err("unknown chip: %s\n", ci->pub.name);
705 		break;
706 	}
707 	return 0;
708 }
709 
710 static int brcmf_chip_get_raminfo(struct brcmf_chip_priv *ci)
711 {
712 	struct brcmf_core_priv *mem_core;
713 	struct brcmf_core *mem;
714 
715 	mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4);
716 	if (mem) {
717 		mem_core = container_of(mem, struct brcmf_core_priv, pub);
718 		ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core);
719 		ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
720 		if (!ci->pub.rambase) {
721 			brcmf_err("RAM base not provided with ARM CR4 core\n");
722 			return -EINVAL;
723 		}
724 	} else {
725 		mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM);
726 		if (mem) {
727 			mem_core = container_of(mem, struct brcmf_core_priv,
728 						pub);
729 			ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core);
730 			ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
731 			if (!ci->pub.rambase) {
732 				brcmf_err("RAM base not provided with ARM CA7 core\n");
733 				return -EINVAL;
734 			}
735 		} else {
736 			mem = brcmf_chip_get_core(&ci->pub,
737 						  BCMA_CORE_INTERNAL_MEM);
738 			if (!mem) {
739 				brcmf_err("No memory cores found\n");
740 				return -ENOMEM;
741 			}
742 			mem_core = container_of(mem, struct brcmf_core_priv,
743 						pub);
744 			brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize,
745 						  &ci->pub.srsize);
746 		}
747 	}
748 	brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n",
749 		  ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize,
750 		  ci->pub.srsize, ci->pub.srsize);
751 
752 	if (!ci->pub.ramsize) {
753 		brcmf_err("RAM size is undetermined\n");
754 		return -ENOMEM;
755 	}
756 
757 	if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) {
758 		brcmf_err("RAM size is incorrect\n");
759 		return -ENOMEM;
760 	}
761 
762 	return 0;
763 }
764 
765 static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
766 				   u8 *type)
767 {
768 	u32 val;
769 
770 	/* read next descriptor */
771 	val = ci->ops->read32(ci->ctx, *eromaddr);
772 	*eromaddr += 4;
773 
774 	if (!type)
775 		return val;
776 
777 	/* determine descriptor type */
778 	*type = (val & DMP_DESC_TYPE_MSK);
779 	if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
780 		*type = DMP_DESC_ADDRESS;
781 
782 	return val;
783 }
784 
785 static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
786 				      u32 *regbase, u32 *wrapbase)
787 {
788 	u8 desc;
789 	u32 val, szdesc;
790 	u8 mpnum = 0;
791 	u8 stype, sztype, wraptype;
792 
793 	*regbase = 0;
794 	*wrapbase = 0;
795 
796 	val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
797 	if (desc == DMP_DESC_MASTER_PORT) {
798 		mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S;
799 		wraptype = DMP_SLAVE_TYPE_MWRAP;
800 	} else if (desc == DMP_DESC_ADDRESS) {
801 		/* revert erom address */
802 		*eromaddr -= 4;
803 		wraptype = DMP_SLAVE_TYPE_SWRAP;
804 	} else {
805 		*eromaddr -= 4;
806 		return -EILSEQ;
807 	}
808 
809 	do {
810 		/* locate address descriptor */
811 		do {
812 			val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
813 			/* unexpected table end */
814 			if (desc == DMP_DESC_EOT) {
815 				*eromaddr -= 4;
816 				return -EFAULT;
817 			}
818 		} while (desc != DMP_DESC_ADDRESS &&
819 			 desc != DMP_DESC_COMPONENT);
820 
821 		/* stop if we crossed current component border */
822 		if (desc == DMP_DESC_COMPONENT) {
823 			*eromaddr -= 4;
824 			return 0;
825 		}
826 
827 		/* skip upper 32-bit address descriptor */
828 		if (val & DMP_DESC_ADDRSIZE_GT32)
829 			brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
830 
831 		sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
832 
833 		/* next size descriptor can be skipped */
834 		if (sztype == DMP_SLAVE_SIZE_DESC) {
835 			szdesc = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
836 			/* skip upper size descriptor if present */
837 			if (szdesc & DMP_DESC_ADDRSIZE_GT32)
838 				brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
839 		}
840 
841 		/* look for 4K or 8K register regions */
842 		if (sztype != DMP_SLAVE_SIZE_4K &&
843 		    sztype != DMP_SLAVE_SIZE_8K)
844 			continue;
845 
846 		stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
847 
848 		/* only regular slave and wrapper */
849 		if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
850 			*regbase = val & DMP_SLAVE_ADDR_BASE;
851 		if (*wrapbase == 0 && stype == wraptype)
852 			*wrapbase = val & DMP_SLAVE_ADDR_BASE;
853 	} while (*regbase == 0 || *wrapbase == 0);
854 
855 	return 0;
856 }
857 
858 static
859 int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
860 {
861 	struct brcmf_core *core;
862 	u32 eromaddr;
863 	u8 desc_type = 0;
864 	u32 val;
865 	u16 id;
866 	u8 nmp, nsp, nmw, nsw, rev;
867 	u32 base, wrap;
868 	int err;
869 
870 	eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr));
871 
872 	while (desc_type != DMP_DESC_EOT) {
873 		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
874 		if (!(val & DMP_DESC_VALID))
875 			continue;
876 
877 		if (desc_type == DMP_DESC_EMPTY)
878 			continue;
879 
880 		/* need a component descriptor */
881 		if (desc_type != DMP_DESC_COMPONENT)
882 			continue;
883 
884 		id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
885 
886 		/* next descriptor must be component as well */
887 		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
888 		if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
889 			return -EFAULT;
890 
891 		/* only look at cores with master port(s) */
892 		nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S;
893 		nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S;
894 		nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
895 		nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
896 		rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
897 
898 		/* need core with ports */
899 		if (nmw + nsw == 0 &&
900 		    id != BCMA_CORE_PMU &&
901 		    id != BCMA_CORE_GCI)
902 			continue;
903 
904 		/* try to obtain register address info */
905 		err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
906 		if (err)
907 			continue;
908 
909 		/* finally a core to be added */
910 		core = brcmf_chip_add_core(ci, id, base, wrap);
911 		if (IS_ERR(core))
912 			return PTR_ERR(core);
913 
914 		core->rev = rev;
915 	}
916 
917 	return 0;
918 }
919 
920 static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
921 {
922 	struct brcmf_core *core;
923 	u32 regdata;
924 	u32 socitype;
925 	int ret;
926 
927 	/* Get CC core rev
928 	 * Chipid is assume to be at offset 0 from SI_ENUM_BASE
929 	 * For different chiptypes or old sdio hosts w/o chipcommon,
930 	 * other ways of recognition should be added here.
931 	 */
932 	regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid));
933 	ci->pub.chip = regdata & CID_ID_MASK;
934 	ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
935 	socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
936 
937 	brcmf_chip_name(ci->pub.chip, ci->pub.chiprev,
938 			ci->pub.name, sizeof(ci->pub.name));
939 	brcmf_dbg(INFO, "found %s chip: %s\n",
940 		  socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name);
941 
942 	if (socitype == SOCI_SB) {
943 		if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
944 			brcmf_err("SB chip is not supported\n");
945 			return -ENODEV;
946 		}
947 		ci->iscoreup = brcmf_chip_sb_iscoreup;
948 		ci->coredisable = brcmf_chip_sb_coredisable;
949 		ci->resetcore = brcmf_chip_sb_resetcore;
950 
951 		core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
952 					   SI_ENUM_BASE, 0);
953 		brcmf_chip_sb_corerev(ci, core);
954 		core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
955 					   BCM4329_CORE_BUS_BASE, 0);
956 		brcmf_chip_sb_corerev(ci, core);
957 		core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
958 					   BCM4329_CORE_SOCRAM_BASE, 0);
959 		brcmf_chip_sb_corerev(ci, core);
960 		core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
961 					   BCM4329_CORE_ARM_BASE, 0);
962 		brcmf_chip_sb_corerev(ci, core);
963 
964 		core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
965 		brcmf_chip_sb_corerev(ci, core);
966 	} else if (socitype == SOCI_AI) {
967 		ci->iscoreup = brcmf_chip_ai_iscoreup;
968 		ci->coredisable = brcmf_chip_ai_coredisable;
969 		ci->resetcore = brcmf_chip_ai_resetcore;
970 
971 		brcmf_chip_dmp_erom_scan(ci);
972 	} else {
973 		brcmf_err("chip backplane type %u is not supported\n",
974 			  socitype);
975 		return -ENODEV;
976 	}
977 
978 	ret = brcmf_chip_cores_check(ci);
979 	if (ret)
980 		return ret;
981 
982 	/* assure chip is passive for core access */
983 	brcmf_chip_set_passive(&ci->pub);
984 
985 	/* Call bus specific reset function now. Cores have been determined
986 	 * but further access may require a chip specific reset at this point.
987 	 */
988 	if (ci->ops->reset) {
989 		ci->ops->reset(ci->ctx, &ci->pub);
990 		brcmf_chip_set_passive(&ci->pub);
991 	}
992 
993 	return brcmf_chip_get_raminfo(ci);
994 }
995 
996 static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
997 {
998 	struct brcmf_core *core;
999 	struct brcmf_core_priv *cpu;
1000 	u32 val;
1001 
1002 
1003 	core = brcmf_chip_get_core(&chip->pub, id);
1004 	if (!core)
1005 		return;
1006 
1007 	switch (id) {
1008 	case BCMA_CORE_ARM_CM3:
1009 		brcmf_chip_coredisable(core, 0, 0);
1010 		break;
1011 	case BCMA_CORE_ARM_CR4:
1012 	case BCMA_CORE_ARM_CA7:
1013 		cpu = container_of(core, struct brcmf_core_priv, pub);
1014 
1015 		/* clear all IOCTL bits except HALT bit */
1016 		val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL);
1017 		val &= ARMCR4_BCMA_IOCTL_CPUHALT;
1018 		brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
1019 				     ARMCR4_BCMA_IOCTL_CPUHALT);
1020 		break;
1021 	default:
1022 		brcmf_err("unknown id: %u\n", id);
1023 		break;
1024 	}
1025 }
1026 
1027 static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
1028 {
1029 	struct brcmf_chip *pub;
1030 	struct brcmf_core_priv *cc;
1031 	struct brcmf_core *pmu;
1032 	u32 base;
1033 	u32 val;
1034 	int ret = 0;
1035 
1036 	pub = &chip->pub;
1037 	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
1038 	base = cc->pub.base;
1039 
1040 	/* get chipcommon capabilites */
1041 	pub->cc_caps = chip->ops->read32(chip->ctx,
1042 					 CORE_CC_REG(base, capabilities));
1043 	pub->cc_caps_ext = chip->ops->read32(chip->ctx,
1044 					     CORE_CC_REG(base,
1045 							 capabilities_ext));
1046 
1047 	/* get pmu caps & rev */
1048 	pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */
1049 	if (pub->cc_caps & CC_CAP_PMU) {
1050 		val = chip->ops->read32(chip->ctx,
1051 					CORE_CC_REG(pmu->base, pmucapabilities));
1052 		pub->pmurev = val & PCAP_REV_MASK;
1053 		pub->pmucaps = val;
1054 	}
1055 
1056 	brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
1057 		  cc->pub.rev, pub->pmurev, pub->pmucaps);
1058 
1059 	/* execute bus core specific setup */
1060 	if (chip->ops->setup)
1061 		ret = chip->ops->setup(chip->ctx, pub);
1062 
1063 	return ret;
1064 }
1065 
1066 struct brcmf_chip *brcmf_chip_attach(void *ctx,
1067 				     const struct brcmf_buscore_ops *ops)
1068 {
1069 	struct brcmf_chip_priv *chip;
1070 	int err = 0;
1071 
1072 	if (WARN_ON(!ops->read32))
1073 		err = -EINVAL;
1074 	if (WARN_ON(!ops->write32))
1075 		err = -EINVAL;
1076 	if (WARN_ON(!ops->prepare))
1077 		err = -EINVAL;
1078 	if (WARN_ON(!ops->activate))
1079 		err = -EINVAL;
1080 	if (err < 0)
1081 		return ERR_PTR(-EINVAL);
1082 
1083 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1084 	if (!chip)
1085 		return ERR_PTR(-ENOMEM);
1086 
1087 	INIT_LIST_HEAD(&chip->cores);
1088 	chip->num_cores = 0;
1089 	chip->ops = ops;
1090 	chip->ctx = ctx;
1091 
1092 	err = ops->prepare(ctx);
1093 	if (err < 0)
1094 		goto fail;
1095 
1096 	err = brcmf_chip_recognition(chip);
1097 	if (err < 0)
1098 		goto fail;
1099 
1100 	err = brcmf_chip_setup(chip);
1101 	if (err < 0)
1102 		goto fail;
1103 
1104 	return &chip->pub;
1105 
1106 fail:
1107 	brcmf_chip_detach(&chip->pub);
1108 	return ERR_PTR(err);
1109 }
1110 
1111 void brcmf_chip_detach(struct brcmf_chip *pub)
1112 {
1113 	struct brcmf_chip_priv *chip;
1114 	struct brcmf_core_priv *core;
1115 	struct brcmf_core_priv *tmp;
1116 
1117 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1118 	list_for_each_entry_safe(core, tmp, &chip->cores, list) {
1119 		list_del(&core->list);
1120 		kfree(core);
1121 	}
1122 	kfree(chip);
1123 }
1124 
1125 struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
1126 {
1127 	struct brcmf_chip_priv *chip;
1128 	struct brcmf_core_priv *core;
1129 
1130 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1131 	list_for_each_entry(core, &chip->cores, list)
1132 		if (core->pub.id == coreid)
1133 			return &core->pub;
1134 
1135 	return NULL;
1136 }
1137 
1138 struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
1139 {
1140 	struct brcmf_chip_priv *chip;
1141 	struct brcmf_core_priv *cc;
1142 
1143 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1144 	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
1145 	if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
1146 		return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
1147 	return &cc->pub;
1148 }
1149 
1150 struct brcmf_core *brcmf_chip_get_pmu(struct brcmf_chip *pub)
1151 {
1152 	struct brcmf_core *cc = brcmf_chip_get_chipcommon(pub);
1153 	struct brcmf_core *pmu;
1154 
1155 	/* See if there is separated PMU core available */
1156 	if (cc->rev >= 35 &&
1157 	    pub->cc_caps_ext & BCMA_CC_CAP_EXT_AOB_PRESENT) {
1158 		pmu = brcmf_chip_get_core(pub, BCMA_CORE_PMU);
1159 		if (pmu)
1160 			return pmu;
1161 	}
1162 
1163 	/* Fallback to ChipCommon core for older hardware */
1164 	return cc;
1165 }
1166 
1167 bool brcmf_chip_iscoreup(struct brcmf_core *pub)
1168 {
1169 	struct brcmf_core_priv *core;
1170 
1171 	core = container_of(pub, struct brcmf_core_priv, pub);
1172 	return core->chip->iscoreup(core);
1173 }
1174 
1175 void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
1176 {
1177 	struct brcmf_core_priv *core;
1178 
1179 	core = container_of(pub, struct brcmf_core_priv, pub);
1180 	core->chip->coredisable(core, prereset, reset);
1181 }
1182 
1183 void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
1184 			  u32 postreset)
1185 {
1186 	struct brcmf_core_priv *core;
1187 
1188 	core = container_of(pub, struct brcmf_core_priv, pub);
1189 	core->chip->resetcore(core, prereset, reset, postreset);
1190 }
1191 
1192 static void
1193 brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip)
1194 {
1195 	struct brcmf_core *core;
1196 	struct brcmf_core_priv *sr;
1197 
1198 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
1199 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1200 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1201 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1202 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1203 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1204 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
1205 	brcmf_chip_resetcore(core, 0, 0, 0);
1206 
1207 	/* disable bank #3 remap for this device */
1208 	if (chip->pub.chip == BRCM_CC_43430_CHIP_ID) {
1209 		sr = container_of(core, struct brcmf_core_priv, pub);
1210 		brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3);
1211 		brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0);
1212 	}
1213 }
1214 
1215 static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip)
1216 {
1217 	struct brcmf_core *core;
1218 
1219 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
1220 	if (!brcmf_chip_iscoreup(core)) {
1221 		brcmf_err("SOCRAM core is down after reset?\n");
1222 		return false;
1223 	}
1224 
1225 	chip->ops->activate(chip->ctx, &chip->pub, 0);
1226 
1227 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
1228 	brcmf_chip_resetcore(core, 0, 0, 0);
1229 
1230 	return true;
1231 }
1232 
1233 static inline void
1234 brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip)
1235 {
1236 	struct brcmf_core *core;
1237 
1238 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
1239 
1240 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1241 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1242 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1243 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1244 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1245 }
1246 
1247 static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
1248 {
1249 	struct brcmf_core *core;
1250 
1251 	chip->ops->activate(chip->ctx, &chip->pub, rstvec);
1252 
1253 	/* restore ARM */
1254 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
1255 	brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
1256 
1257 	return true;
1258 }
1259 
1260 static inline void
1261 brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip)
1262 {
1263 	struct brcmf_core *core;
1264 
1265 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7);
1266 
1267 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1268 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1269 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1270 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1271 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1272 }
1273 
1274 static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
1275 {
1276 	struct brcmf_core *core;
1277 
1278 	chip->ops->activate(chip->ctx, &chip->pub, rstvec);
1279 
1280 	/* restore ARM */
1281 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7);
1282 	brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
1283 
1284 	return true;
1285 }
1286 
1287 void brcmf_chip_set_passive(struct brcmf_chip *pub)
1288 {
1289 	struct brcmf_chip_priv *chip;
1290 	struct brcmf_core *arm;
1291 
1292 	brcmf_dbg(TRACE, "Enter\n");
1293 
1294 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1295 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
1296 	if (arm) {
1297 		brcmf_chip_cr4_set_passive(chip);
1298 		return;
1299 	}
1300 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
1301 	if (arm) {
1302 		brcmf_chip_ca7_set_passive(chip);
1303 		return;
1304 	}
1305 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
1306 	if (arm) {
1307 		brcmf_chip_cm3_set_passive(chip);
1308 		return;
1309 	}
1310 }
1311 
1312 bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec)
1313 {
1314 	struct brcmf_chip_priv *chip;
1315 	struct brcmf_core *arm;
1316 
1317 	brcmf_dbg(TRACE, "Enter\n");
1318 
1319 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1320 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
1321 	if (arm)
1322 		return brcmf_chip_cr4_set_active(chip, rstvec);
1323 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
1324 	if (arm)
1325 		return brcmf_chip_ca7_set_active(chip, rstvec);
1326 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
1327 	if (arm)
1328 		return brcmf_chip_cm3_set_active(chip);
1329 
1330 	return false;
1331 }
1332 
1333 bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
1334 {
1335 	u32 base, addr, reg, pmu_cc3_mask = ~0;
1336 	struct brcmf_chip_priv *chip;
1337 	struct brcmf_core *pmu = brcmf_chip_get_pmu(pub);
1338 
1339 	brcmf_dbg(TRACE, "Enter\n");
1340 
1341 	/* old chips with PMU version less than 17 don't support save restore */
1342 	if (pub->pmurev < 17)
1343 		return false;
1344 
1345 	base = brcmf_chip_get_chipcommon(pub)->base;
1346 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1347 
1348 	switch (pub->chip) {
1349 	case BRCM_CC_4354_CHIP_ID:
1350 	case BRCM_CC_4356_CHIP_ID:
1351 	case BRCM_CC_4345_CHIP_ID:
1352 		/* explicitly check SR engine enable bit */
1353 		pmu_cc3_mask = BIT(2);
1354 		/* fall-through */
1355 	case BRCM_CC_43241_CHIP_ID:
1356 	case BRCM_CC_4335_CHIP_ID:
1357 	case BRCM_CC_4339_CHIP_ID:
1358 		/* read PMU chipcontrol register 3 */
1359 		addr = CORE_CC_REG(pmu->base, chipcontrol_addr);
1360 		chip->ops->write32(chip->ctx, addr, 3);
1361 		addr = CORE_CC_REG(pmu->base, chipcontrol_data);
1362 		reg = chip->ops->read32(chip->ctx, addr);
1363 		return (reg & pmu_cc3_mask) != 0;
1364 	case BRCM_CC_43430_CHIP_ID:
1365 		addr = CORE_CC_REG(base, sr_control1);
1366 		reg = chip->ops->read32(chip->ctx, addr);
1367 		return reg != 0;
1368 	case CY_CC_4373_CHIP_ID:
1369 		/* explicitly check SR engine enable bit */
1370 		addr = CORE_CC_REG(base, sr_control0);
1371 		reg = chip->ops->read32(chip->ctx, addr);
1372 		return (reg & CC_SR_CTL0_ENABLE_MASK) != 0;
1373 	case CY_CC_43012_CHIP_ID:
1374 		addr = CORE_CC_REG(pmu->base, retention_ctl);
1375 		reg = chip->ops->read32(chip->ctx, addr);
1376 		return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
1377 			       PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
1378 	default:
1379 		addr = CORE_CC_REG(pmu->base, pmucapabilities_ext);
1380 		reg = chip->ops->read32(chip->ctx, addr);
1381 		if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
1382 			return false;
1383 
1384 		addr = CORE_CC_REG(pmu->base, retention_ctl);
1385 		reg = chip->ops->read32(chip->ctx, addr);
1386 		return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
1387 			       PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
1388 	}
1389 }
1390