xref: /linux/drivers/net/wireless/broadcom/brcm80211/brcmfmac/chip.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  * Copyright (c) 2014 Broadcom Corporation
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/list.h>
19 #include <linux/ssb/ssb_regs.h>
20 #include <linux/bcma/bcma.h>
21 #include <linux/bcma/bcma_regs.h>
22 
23 #include <defs.h>
24 #include <soc.h>
25 #include <brcm_hw_ids.h>
26 #include <brcmu_utils.h>
27 #include <chipcommon.h>
28 #include "debug.h"
29 #include "chip.h"
30 
31 /* SOC Interconnect types (aka chip types) */
32 #define SOCI_SB		0
33 #define SOCI_AI		1
34 
35 /* PL-368 DMP definitions */
36 #define DMP_DESC_TYPE_MSK	0x0000000F
37 #define  DMP_DESC_EMPTY		0x00000000
38 #define  DMP_DESC_VALID		0x00000001
39 #define  DMP_DESC_COMPONENT	0x00000001
40 #define  DMP_DESC_MASTER_PORT	0x00000003
41 #define  DMP_DESC_ADDRESS	0x00000005
42 #define  DMP_DESC_ADDRSIZE_GT32	0x00000008
43 #define  DMP_DESC_EOT		0x0000000F
44 
45 #define DMP_COMP_DESIGNER	0xFFF00000
46 #define DMP_COMP_DESIGNER_S	20
47 #define DMP_COMP_PARTNUM	0x000FFF00
48 #define DMP_COMP_PARTNUM_S	8
49 #define DMP_COMP_CLASS		0x000000F0
50 #define DMP_COMP_CLASS_S	4
51 #define DMP_COMP_REVISION	0xFF000000
52 #define DMP_COMP_REVISION_S	24
53 #define DMP_COMP_NUM_SWRAP	0x00F80000
54 #define DMP_COMP_NUM_SWRAP_S	19
55 #define DMP_COMP_NUM_MWRAP	0x0007C000
56 #define DMP_COMP_NUM_MWRAP_S	14
57 #define DMP_COMP_NUM_SPORT	0x00003E00
58 #define DMP_COMP_NUM_SPORT_S	9
59 #define DMP_COMP_NUM_MPORT	0x000001F0
60 #define DMP_COMP_NUM_MPORT_S	4
61 
62 #define DMP_MASTER_PORT_UID	0x0000FF00
63 #define DMP_MASTER_PORT_UID_S	8
64 #define DMP_MASTER_PORT_NUM	0x000000F0
65 #define DMP_MASTER_PORT_NUM_S	4
66 
67 #define DMP_SLAVE_ADDR_BASE	0xFFFFF000
68 #define DMP_SLAVE_ADDR_BASE_S	12
69 #define DMP_SLAVE_PORT_NUM	0x00000F00
70 #define DMP_SLAVE_PORT_NUM_S	8
71 #define DMP_SLAVE_TYPE		0x000000C0
72 #define DMP_SLAVE_TYPE_S	6
73 #define  DMP_SLAVE_TYPE_SLAVE	0
74 #define  DMP_SLAVE_TYPE_BRIDGE	1
75 #define  DMP_SLAVE_TYPE_SWRAP	2
76 #define  DMP_SLAVE_TYPE_MWRAP	3
77 #define DMP_SLAVE_SIZE_TYPE	0x00000030
78 #define DMP_SLAVE_SIZE_TYPE_S	4
79 #define  DMP_SLAVE_SIZE_4K	0
80 #define  DMP_SLAVE_SIZE_8K	1
81 #define  DMP_SLAVE_SIZE_16K	2
82 #define  DMP_SLAVE_SIZE_DESC	3
83 
84 /* EROM CompIdentB */
85 #define CIB_REV_MASK		0xff000000
86 #define CIB_REV_SHIFT		24
87 
88 /* ARM CR4 core specific control flag bits */
89 #define ARMCR4_BCMA_IOCTL_CPUHALT	0x0020
90 
91 /* D11 core specific control flag bits */
92 #define D11_BCMA_IOCTL_PHYCLOCKEN	0x0004
93 #define D11_BCMA_IOCTL_PHYRESET		0x0008
94 
95 /* chip core base & ramsize */
96 /* bcm4329 */
97 /* SDIO device core, ID 0x829 */
98 #define BCM4329_CORE_BUS_BASE		0x18011000
99 /* internal memory core, ID 0x80e */
100 #define BCM4329_CORE_SOCRAM_BASE	0x18003000
101 /* ARM Cortex M3 core, ID 0x82a */
102 #define BCM4329_CORE_ARM_BASE		0x18002000
103 
104 /* Max possibly supported memory size (limited by IO mapped memory) */
105 #define BRCMF_CHIP_MAX_MEMSIZE		(4 * 1024 * 1024)
106 
107 #define CORE_SB(base, field) \
108 		(base + SBCONFIGOFF + offsetof(struct sbconfig, field))
109 #define	SBCOREREV(sbidh) \
110 	((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
111 	  ((sbidh) & SSB_IDHIGH_RCLO))
112 
113 struct sbconfig {
114 	u32 PAD[2];
115 	u32 sbipsflag;	/* initiator port ocp slave flag */
116 	u32 PAD[3];
117 	u32 sbtpsflag;	/* target port ocp slave flag */
118 	u32 PAD[11];
119 	u32 sbtmerrloga;	/* (sonics >= 2.3) */
120 	u32 PAD;
121 	u32 sbtmerrlog;	/* (sonics >= 2.3) */
122 	u32 PAD[3];
123 	u32 sbadmatch3;	/* address match3 */
124 	u32 PAD;
125 	u32 sbadmatch2;	/* address match2 */
126 	u32 PAD;
127 	u32 sbadmatch1;	/* address match1 */
128 	u32 PAD[7];
129 	u32 sbimstate;	/* initiator agent state */
130 	u32 sbintvec;	/* interrupt mask */
131 	u32 sbtmstatelow;	/* target state */
132 	u32 sbtmstatehigh;	/* target state */
133 	u32 sbbwa0;		/* bandwidth allocation table0 */
134 	u32 PAD;
135 	u32 sbimconfiglow;	/* initiator configuration */
136 	u32 sbimconfighigh;	/* initiator configuration */
137 	u32 sbadmatch0;	/* address match0 */
138 	u32 PAD;
139 	u32 sbtmconfiglow;	/* target configuration */
140 	u32 sbtmconfighigh;	/* target configuration */
141 	u32 sbbconfig;	/* broadcast configuration */
142 	u32 PAD;
143 	u32 sbbstate;	/* broadcast state */
144 	u32 PAD[3];
145 	u32 sbactcnfg;	/* activate configuration */
146 	u32 PAD[3];
147 	u32 sbflagst;	/* current sbflags */
148 	u32 PAD[3];
149 	u32 sbidlow;		/* identification */
150 	u32 sbidhigh;	/* identification */
151 };
152 
153 /* bankidx and bankinfo reg defines corerev >= 8 */
154 #define SOCRAM_BANKINFO_RETNTRAM_MASK	0x00010000
155 #define SOCRAM_BANKINFO_SZMASK		0x0000007f
156 #define SOCRAM_BANKIDX_ROM_MASK		0x00000100
157 
158 #define SOCRAM_BANKIDX_MEMTYPE_SHIFT	8
159 /* socram bankinfo memtype */
160 #define SOCRAM_MEMTYPE_RAM		0
161 #define SOCRAM_MEMTYPE_R0M		1
162 #define SOCRAM_MEMTYPE_DEVRAM		2
163 
164 #define SOCRAM_BANKINFO_SZBASE		8192
165 #define SRCI_LSS_MASK		0x00f00000
166 #define SRCI_LSS_SHIFT		20
167 #define	SRCI_SRNB_MASK		0xf0
168 #define	SRCI_SRNB_SHIFT		4
169 #define	SRCI_SRBSZ_MASK		0xf
170 #define	SRCI_SRBSZ_SHIFT	0
171 #define SR_BSZ_BASE		14
172 
173 struct sbsocramregs {
174 	u32 coreinfo;
175 	u32 bwalloc;
176 	u32 extracoreinfo;
177 	u32 biststat;
178 	u32 bankidx;
179 	u32 standbyctrl;
180 
181 	u32 errlogstatus;	/* rev 6 */
182 	u32 errlogaddr;	/* rev 6 */
183 	/* used for patching rev 3 & 5 */
184 	u32 cambankidx;
185 	u32 cambankstandbyctrl;
186 	u32 cambankpatchctrl;
187 	u32 cambankpatchtblbaseaddr;
188 	u32 cambankcmdreg;
189 	u32 cambankdatareg;
190 	u32 cambankmaskreg;
191 	u32 PAD[1];
192 	u32 bankinfo;	/* corev 8 */
193 	u32 bankpda;
194 	u32 PAD[14];
195 	u32 extmemconfig;
196 	u32 extmemparitycsr;
197 	u32 extmemparityerrdata;
198 	u32 extmemparityerrcnt;
199 	u32 extmemwrctrlandsize;
200 	u32 PAD[84];
201 	u32 workaround;
202 	u32 pwrctl;		/* corerev >= 2 */
203 	u32 PAD[133];
204 	u32 sr_control;     /* corerev >= 15 */
205 	u32 sr_status;      /* corerev >= 15 */
206 	u32 sr_address;     /* corerev >= 15 */
207 	u32 sr_data;        /* corerev >= 15 */
208 };
209 
210 #define SOCRAMREGOFFS(_f)	offsetof(struct sbsocramregs, _f)
211 #define SYSMEMREGOFFS(_f)	offsetof(struct sbsocramregs, _f)
212 
213 #define ARMCR4_CAP		(0x04)
214 #define ARMCR4_BANKIDX		(0x40)
215 #define ARMCR4_BANKINFO		(0x44)
216 #define ARMCR4_BANKPDA		(0x4C)
217 
218 #define	ARMCR4_TCBBNB_MASK	0xf0
219 #define	ARMCR4_TCBBNB_SHIFT	4
220 #define	ARMCR4_TCBANB_MASK	0xf
221 #define	ARMCR4_TCBANB_SHIFT	0
222 
223 #define	ARMCR4_BSZ_MASK		0x3f
224 #define	ARMCR4_BSZ_MULT		8192
225 
226 struct brcmf_core_priv {
227 	struct brcmf_core pub;
228 	u32 wrapbase;
229 	struct list_head list;
230 	struct brcmf_chip_priv *chip;
231 };
232 
233 struct brcmf_chip_priv {
234 	struct brcmf_chip pub;
235 	const struct brcmf_buscore_ops *ops;
236 	void *ctx;
237 	/* assured first core is chipcommon, second core is buscore */
238 	struct list_head cores;
239 	u16 num_cores;
240 
241 	bool (*iscoreup)(struct brcmf_core_priv *core);
242 	void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
243 			    u32 reset);
244 	void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
245 			  u32 postreset);
246 };
247 
248 static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
249 				  struct brcmf_core *core)
250 {
251 	u32 regdata;
252 
253 	regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
254 	core->rev = SBCOREREV(regdata);
255 }
256 
257 static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
258 {
259 	struct brcmf_chip_priv *ci;
260 	u32 regdata;
261 	u32 address;
262 
263 	ci = core->chip;
264 	address = CORE_SB(core->pub.base, sbtmstatelow);
265 	regdata = ci->ops->read32(ci->ctx, address);
266 	regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
267 		    SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
268 	return SSB_TMSLOW_CLOCK == regdata;
269 }
270 
271 static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
272 {
273 	struct brcmf_chip_priv *ci;
274 	u32 regdata;
275 	bool ret;
276 
277 	ci = core->chip;
278 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
279 	ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
280 
281 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
282 	ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
283 
284 	return ret;
285 }
286 
287 static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
288 				      u32 prereset, u32 reset)
289 {
290 	struct brcmf_chip_priv *ci;
291 	u32 val, base;
292 
293 	ci = core->chip;
294 	base = core->pub.base;
295 	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
296 	if (val & SSB_TMSLOW_RESET)
297 		return;
298 
299 	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
300 	if ((val & SSB_TMSLOW_CLOCK) != 0) {
301 		/*
302 		 * set target reject and spin until busy is clear
303 		 * (preserve core-specific bits)
304 		 */
305 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
306 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
307 					 val | SSB_TMSLOW_REJECT);
308 
309 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
310 		udelay(1);
311 		SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
312 			  & SSB_TMSHIGH_BUSY), 100000);
313 
314 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
315 		if (val & SSB_TMSHIGH_BUSY)
316 			brcmf_err("core state still busy\n");
317 
318 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
319 		if (val & SSB_IDLOW_INITIATOR) {
320 			val = ci->ops->read32(ci->ctx,
321 					      CORE_SB(base, sbimstate));
322 			val |= SSB_IMSTATE_REJECT;
323 			ci->ops->write32(ci->ctx,
324 					 CORE_SB(base, sbimstate), val);
325 			val = ci->ops->read32(ci->ctx,
326 					      CORE_SB(base, sbimstate));
327 			udelay(1);
328 			SPINWAIT((ci->ops->read32(ci->ctx,
329 						  CORE_SB(base, sbimstate)) &
330 				  SSB_IMSTATE_BUSY), 100000);
331 		}
332 
333 		/* set reset and reject while enabling the clocks */
334 		val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
335 		      SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
336 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
337 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
338 		udelay(10);
339 
340 		/* clear the initiator reject bit */
341 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
342 		if (val & SSB_IDLOW_INITIATOR) {
343 			val = ci->ops->read32(ci->ctx,
344 					      CORE_SB(base, sbimstate));
345 			val &= ~SSB_IMSTATE_REJECT;
346 			ci->ops->write32(ci->ctx,
347 					 CORE_SB(base, sbimstate), val);
348 		}
349 	}
350 
351 	/* leave reset and reject asserted */
352 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
353 			 (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
354 	udelay(1);
355 }
356 
357 static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
358 				      u32 prereset, u32 reset)
359 {
360 	struct brcmf_chip_priv *ci;
361 	u32 regdata;
362 
363 	ci = core->chip;
364 
365 	/* if core is already in reset, skip reset */
366 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
367 	if ((regdata & BCMA_RESET_CTL_RESET) != 0)
368 		goto in_reset_configure;
369 
370 	/* configure reset */
371 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
372 			 prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
373 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
374 
375 	/* put in reset */
376 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
377 			 BCMA_RESET_CTL_RESET);
378 	usleep_range(10, 20);
379 
380 	/* wait till reset is 1 */
381 	SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
382 		 BCMA_RESET_CTL_RESET, 300);
383 
384 in_reset_configure:
385 	/* in-reset configure */
386 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
387 			 reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
388 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
389 }
390 
391 static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
392 				    u32 reset, u32 postreset)
393 {
394 	struct brcmf_chip_priv *ci;
395 	u32 regdata;
396 	u32 base;
397 
398 	ci = core->chip;
399 	base = core->pub.base;
400 	/*
401 	 * Must do the disable sequence first to work for
402 	 * arbitrary current core state.
403 	 */
404 	brcmf_chip_sb_coredisable(core, 0, 0);
405 
406 	/*
407 	 * Now do the initialization sequence.
408 	 * set reset while enabling the clock and
409 	 * forcing them on throughout the core
410 	 */
411 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
412 			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
413 			 SSB_TMSLOW_RESET);
414 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
415 	udelay(1);
416 
417 	/* clear any serror */
418 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
419 	if (regdata & SSB_TMSHIGH_SERR)
420 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
421 
422 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
423 	if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
424 		regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
425 		ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
426 	}
427 
428 	/* clear reset and allow it to propagate throughout the core */
429 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
430 			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
431 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
432 	udelay(1);
433 
434 	/* leave clock enabled */
435 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
436 			 SSB_TMSLOW_CLOCK);
437 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
438 	udelay(1);
439 }
440 
441 static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
442 				    u32 reset, u32 postreset)
443 {
444 	struct brcmf_chip_priv *ci;
445 	int count;
446 
447 	ci = core->chip;
448 
449 	/* must disable first to work for arbitrary current core state */
450 	brcmf_chip_ai_coredisable(core, prereset, reset);
451 
452 	count = 0;
453 	while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
454 	       BCMA_RESET_CTL_RESET) {
455 		ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
456 		count++;
457 		if (count > 50)
458 			break;
459 		usleep_range(40, 60);
460 	}
461 
462 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
463 			 postreset | BCMA_IOCTL_CLK);
464 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
465 }
466 
467 char *brcmf_chip_name(u32 id, u32 rev, char *buf, uint len)
468 {
469 	const char *fmt;
470 
471 	fmt = ((id > 0xa000) || (id < 0x4000)) ? "BCM%d/%u" : "BCM%x/%u";
472 	snprintf(buf, len, fmt, id, rev);
473 	return buf;
474 }
475 
476 static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
477 					      u16 coreid, u32 base,
478 					      u32 wrapbase)
479 {
480 	struct brcmf_core_priv *core;
481 
482 	core = kzalloc(sizeof(*core), GFP_KERNEL);
483 	if (!core)
484 		return ERR_PTR(-ENOMEM);
485 
486 	core->pub.id = coreid;
487 	core->pub.base = base;
488 	core->chip = ci;
489 	core->wrapbase = wrapbase;
490 
491 	list_add_tail(&core->list, &ci->cores);
492 	return &core->pub;
493 }
494 
495 /* safety check for chipinfo */
496 static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
497 {
498 	struct brcmf_core_priv *core;
499 	bool need_socram = false;
500 	bool has_socram = false;
501 	bool cpu_found = false;
502 	int idx = 1;
503 
504 	list_for_each_entry(core, &ci->cores, list) {
505 		brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n",
506 			  idx++, core->pub.id, core->pub.rev, core->pub.base,
507 			  core->wrapbase);
508 
509 		switch (core->pub.id) {
510 		case BCMA_CORE_ARM_CM3:
511 			cpu_found = true;
512 			need_socram = true;
513 			break;
514 		case BCMA_CORE_INTERNAL_MEM:
515 			has_socram = true;
516 			break;
517 		case BCMA_CORE_ARM_CR4:
518 			cpu_found = true;
519 			break;
520 		case BCMA_CORE_ARM_CA7:
521 			cpu_found = true;
522 			break;
523 		default:
524 			break;
525 		}
526 	}
527 
528 	if (!cpu_found) {
529 		brcmf_err("CPU core not detected\n");
530 		return -ENXIO;
531 	}
532 	/* check RAM core presence for ARM CM3 core */
533 	if (need_socram && !has_socram) {
534 		brcmf_err("RAM core not provided with ARM CM3 core\n");
535 		return -ENODEV;
536 	}
537 	return 0;
538 }
539 
540 static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg)
541 {
542 	return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg);
543 }
544 
545 static void brcmf_chip_core_write32(struct brcmf_core_priv *core,
546 				    u16 reg, u32 val)
547 {
548 	core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val);
549 }
550 
551 static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx,
552 				       u32 *banksize)
553 {
554 	u32 bankinfo;
555 	u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
556 
557 	bankidx |= idx;
558 	brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx);
559 	bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo));
560 	*banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1;
561 	*banksize *= SOCRAM_BANKINFO_SZBASE;
562 	return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK);
563 }
564 
565 static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize,
566 				      u32 *srsize)
567 {
568 	u32 coreinfo;
569 	uint nb, banksize, lss;
570 	bool retent;
571 	int i;
572 
573 	*ramsize = 0;
574 	*srsize = 0;
575 
576 	if (WARN_ON(sr->pub.rev < 4))
577 		return;
578 
579 	if (!brcmf_chip_iscoreup(&sr->pub))
580 		brcmf_chip_resetcore(&sr->pub, 0, 0, 0);
581 
582 	/* Get info for determining size */
583 	coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo));
584 	nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
585 
586 	if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) {
587 		banksize = (coreinfo & SRCI_SRBSZ_MASK);
588 		lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
589 		if (lss != 0)
590 			nb--;
591 		*ramsize = nb * (1 << (banksize + SR_BSZ_BASE));
592 		if (lss != 0)
593 			*ramsize += (1 << ((lss - 1) + SR_BSZ_BASE));
594 	} else {
595 		nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
596 		for (i = 0; i < nb; i++) {
597 			retent = brcmf_chip_socram_banksize(sr, i, &banksize);
598 			*ramsize += banksize;
599 			if (retent)
600 				*srsize += banksize;
601 		}
602 	}
603 
604 	/* hardcoded save&restore memory sizes */
605 	switch (sr->chip->pub.chip) {
606 	case BRCM_CC_4334_CHIP_ID:
607 		if (sr->chip->pub.chiprev < 2)
608 			*srsize = (32 * 1024);
609 		break;
610 	case BRCM_CC_43430_CHIP_ID:
611 		/* assume sr for now as we can not check
612 		 * firmware sr capability at this point.
613 		 */
614 		*srsize = (64 * 1024);
615 		break;
616 	default:
617 		break;
618 	}
619 }
620 
621 /** Return the SYS MEM size */
622 static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem)
623 {
624 	u32 memsize = 0;
625 	u32 coreinfo;
626 	u32 idx;
627 	u32 nb;
628 	u32 banksize;
629 
630 	if (!brcmf_chip_iscoreup(&sysmem->pub))
631 		brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0);
632 
633 	coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo));
634 	nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
635 
636 	for (idx = 0; idx < nb; idx++) {
637 		brcmf_chip_socram_banksize(sysmem, idx, &banksize);
638 		memsize += banksize;
639 	}
640 
641 	return memsize;
642 }
643 
644 /** Return the TCM-RAM size of the ARMCR4 core. */
645 static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4)
646 {
647 	u32 corecap;
648 	u32 memsize = 0;
649 	u32 nab;
650 	u32 nbb;
651 	u32 totb;
652 	u32 bxinfo;
653 	u32 idx;
654 
655 	corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP);
656 
657 	nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
658 	nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
659 	totb = nab + nbb;
660 
661 	for (idx = 0; idx < totb; idx++) {
662 		brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx);
663 		bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO);
664 		memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT;
665 	}
666 
667 	return memsize;
668 }
669 
670 static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci)
671 {
672 	switch (ci->pub.chip) {
673 	case BRCM_CC_4345_CHIP_ID:
674 		return 0x198000;
675 	case BRCM_CC_4335_CHIP_ID:
676 	case BRCM_CC_4339_CHIP_ID:
677 	case BRCM_CC_4350_CHIP_ID:
678 	case BRCM_CC_4354_CHIP_ID:
679 	case BRCM_CC_4356_CHIP_ID:
680 	case BRCM_CC_43567_CHIP_ID:
681 	case BRCM_CC_43569_CHIP_ID:
682 	case BRCM_CC_43570_CHIP_ID:
683 	case BRCM_CC_4358_CHIP_ID:
684 	case BRCM_CC_4359_CHIP_ID:
685 	case BRCM_CC_43602_CHIP_ID:
686 	case BRCM_CC_4371_CHIP_ID:
687 		return 0x180000;
688 	case BRCM_CC_43465_CHIP_ID:
689 	case BRCM_CC_43525_CHIP_ID:
690 	case BRCM_CC_4365_CHIP_ID:
691 	case BRCM_CC_4366_CHIP_ID:
692 	case BRCM_CC_43664_CHIP_ID:
693 		return 0x200000;
694 	case CY_CC_4373_CHIP_ID:
695 		return 0x160000;
696 	default:
697 		brcmf_err("unknown chip: %s\n", ci->pub.name);
698 		break;
699 	}
700 	return 0;
701 }
702 
703 static int brcmf_chip_get_raminfo(struct brcmf_chip_priv *ci)
704 {
705 	struct brcmf_core_priv *mem_core;
706 	struct brcmf_core *mem;
707 
708 	mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4);
709 	if (mem) {
710 		mem_core = container_of(mem, struct brcmf_core_priv, pub);
711 		ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core);
712 		ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
713 		if (!ci->pub.rambase) {
714 			brcmf_err("RAM base not provided with ARM CR4 core\n");
715 			return -EINVAL;
716 		}
717 	} else {
718 		mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM);
719 		if (mem) {
720 			mem_core = container_of(mem, struct brcmf_core_priv,
721 						pub);
722 			ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core);
723 			ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
724 			if (!ci->pub.rambase) {
725 				brcmf_err("RAM base not provided with ARM CA7 core\n");
726 				return -EINVAL;
727 			}
728 		} else {
729 			mem = brcmf_chip_get_core(&ci->pub,
730 						  BCMA_CORE_INTERNAL_MEM);
731 			if (!mem) {
732 				brcmf_err("No memory cores found\n");
733 				return -ENOMEM;
734 			}
735 			mem_core = container_of(mem, struct brcmf_core_priv,
736 						pub);
737 			brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize,
738 						  &ci->pub.srsize);
739 		}
740 	}
741 	brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n",
742 		  ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize,
743 		  ci->pub.srsize, ci->pub.srsize);
744 
745 	if (!ci->pub.ramsize) {
746 		brcmf_err("RAM size is undetermined\n");
747 		return -ENOMEM;
748 	}
749 
750 	if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) {
751 		brcmf_err("RAM size is incorrect\n");
752 		return -ENOMEM;
753 	}
754 
755 	return 0;
756 }
757 
758 static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
759 				   u8 *type)
760 {
761 	u32 val;
762 
763 	/* read next descriptor */
764 	val = ci->ops->read32(ci->ctx, *eromaddr);
765 	*eromaddr += 4;
766 
767 	if (!type)
768 		return val;
769 
770 	/* determine descriptor type */
771 	*type = (val & DMP_DESC_TYPE_MSK);
772 	if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
773 		*type = DMP_DESC_ADDRESS;
774 
775 	return val;
776 }
777 
778 static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
779 				      u32 *regbase, u32 *wrapbase)
780 {
781 	u8 desc;
782 	u32 val;
783 	u8 mpnum = 0;
784 	u8 stype, sztype, wraptype;
785 
786 	*regbase = 0;
787 	*wrapbase = 0;
788 
789 	val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
790 	if (desc == DMP_DESC_MASTER_PORT) {
791 		mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S;
792 		wraptype = DMP_SLAVE_TYPE_MWRAP;
793 	} else if (desc == DMP_DESC_ADDRESS) {
794 		/* revert erom address */
795 		*eromaddr -= 4;
796 		wraptype = DMP_SLAVE_TYPE_SWRAP;
797 	} else {
798 		*eromaddr -= 4;
799 		return -EILSEQ;
800 	}
801 
802 	do {
803 		/* locate address descriptor */
804 		do {
805 			val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
806 			/* unexpected table end */
807 			if (desc == DMP_DESC_EOT) {
808 				*eromaddr -= 4;
809 				return -EFAULT;
810 			}
811 		} while (desc != DMP_DESC_ADDRESS &&
812 			 desc != DMP_DESC_COMPONENT);
813 
814 		/* stop if we crossed current component border */
815 		if (desc == DMP_DESC_COMPONENT) {
816 			*eromaddr -= 4;
817 			return 0;
818 		}
819 
820 		/* skip upper 32-bit address descriptor */
821 		if (val & DMP_DESC_ADDRSIZE_GT32)
822 			brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
823 
824 		sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
825 
826 		/* next size descriptor can be skipped */
827 		if (sztype == DMP_SLAVE_SIZE_DESC) {
828 			val = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
829 			/* skip upper size descriptor if present */
830 			if (val & DMP_DESC_ADDRSIZE_GT32)
831 				brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
832 		}
833 
834 		/* only look for 4K register regions */
835 		if (sztype != DMP_SLAVE_SIZE_4K)
836 			continue;
837 
838 		stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
839 
840 		/* only regular slave and wrapper */
841 		if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
842 			*regbase = val & DMP_SLAVE_ADDR_BASE;
843 		if (*wrapbase == 0 && stype == wraptype)
844 			*wrapbase = val & DMP_SLAVE_ADDR_BASE;
845 	} while (*regbase == 0 || *wrapbase == 0);
846 
847 	return 0;
848 }
849 
850 static
851 int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
852 {
853 	struct brcmf_core *core;
854 	u32 eromaddr;
855 	u8 desc_type = 0;
856 	u32 val;
857 	u16 id;
858 	u8 nmp, nsp, nmw, nsw, rev;
859 	u32 base, wrap;
860 	int err;
861 
862 	eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr));
863 
864 	while (desc_type != DMP_DESC_EOT) {
865 		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
866 		if (!(val & DMP_DESC_VALID))
867 			continue;
868 
869 		if (desc_type == DMP_DESC_EMPTY)
870 			continue;
871 
872 		/* need a component descriptor */
873 		if (desc_type != DMP_DESC_COMPONENT)
874 			continue;
875 
876 		id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
877 
878 		/* next descriptor must be component as well */
879 		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
880 		if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
881 			return -EFAULT;
882 
883 		/* only look at cores with master port(s) */
884 		nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S;
885 		nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S;
886 		nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
887 		nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
888 		rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
889 
890 		/* need core with ports */
891 		if (nmw + nsw == 0 &&
892 		    id != BCMA_CORE_PMU)
893 			continue;
894 
895 		/* try to obtain register address info */
896 		err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
897 		if (err)
898 			continue;
899 
900 		/* finally a core to be added */
901 		core = brcmf_chip_add_core(ci, id, base, wrap);
902 		if (IS_ERR(core))
903 			return PTR_ERR(core);
904 
905 		core->rev = rev;
906 	}
907 
908 	return 0;
909 }
910 
911 static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
912 {
913 	struct brcmf_core *core;
914 	u32 regdata;
915 	u32 socitype;
916 	int ret;
917 
918 	/* Get CC core rev
919 	 * Chipid is assume to be at offset 0 from SI_ENUM_BASE
920 	 * For different chiptypes or old sdio hosts w/o chipcommon,
921 	 * other ways of recognition should be added here.
922 	 */
923 	regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid));
924 	ci->pub.chip = regdata & CID_ID_MASK;
925 	ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
926 	socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
927 
928 	brcmf_chip_name(ci->pub.chip, ci->pub.chiprev,
929 			ci->pub.name, sizeof(ci->pub.name));
930 	brcmf_dbg(INFO, "found %s chip: %s\n",
931 		  socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name);
932 
933 	if (socitype == SOCI_SB) {
934 		if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
935 			brcmf_err("SB chip is not supported\n");
936 			return -ENODEV;
937 		}
938 		ci->iscoreup = brcmf_chip_sb_iscoreup;
939 		ci->coredisable = brcmf_chip_sb_coredisable;
940 		ci->resetcore = brcmf_chip_sb_resetcore;
941 
942 		core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
943 					   SI_ENUM_BASE, 0);
944 		brcmf_chip_sb_corerev(ci, core);
945 		core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
946 					   BCM4329_CORE_BUS_BASE, 0);
947 		brcmf_chip_sb_corerev(ci, core);
948 		core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
949 					   BCM4329_CORE_SOCRAM_BASE, 0);
950 		brcmf_chip_sb_corerev(ci, core);
951 		core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
952 					   BCM4329_CORE_ARM_BASE, 0);
953 		brcmf_chip_sb_corerev(ci, core);
954 
955 		core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
956 		brcmf_chip_sb_corerev(ci, core);
957 	} else if (socitype == SOCI_AI) {
958 		ci->iscoreup = brcmf_chip_ai_iscoreup;
959 		ci->coredisable = brcmf_chip_ai_coredisable;
960 		ci->resetcore = brcmf_chip_ai_resetcore;
961 
962 		brcmf_chip_dmp_erom_scan(ci);
963 	} else {
964 		brcmf_err("chip backplane type %u is not supported\n",
965 			  socitype);
966 		return -ENODEV;
967 	}
968 
969 	ret = brcmf_chip_cores_check(ci);
970 	if (ret)
971 		return ret;
972 
973 	/* assure chip is passive for core access */
974 	brcmf_chip_set_passive(&ci->pub);
975 
976 	/* Call bus specific reset function now. Cores have been determined
977 	 * but further access may require a chip specific reset at this point.
978 	 */
979 	if (ci->ops->reset) {
980 		ci->ops->reset(ci->ctx, &ci->pub);
981 		brcmf_chip_set_passive(&ci->pub);
982 	}
983 
984 	return brcmf_chip_get_raminfo(ci);
985 }
986 
987 static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
988 {
989 	struct brcmf_core *core;
990 	struct brcmf_core_priv *cpu;
991 	u32 val;
992 
993 
994 	core = brcmf_chip_get_core(&chip->pub, id);
995 	if (!core)
996 		return;
997 
998 	switch (id) {
999 	case BCMA_CORE_ARM_CM3:
1000 		brcmf_chip_coredisable(core, 0, 0);
1001 		break;
1002 	case BCMA_CORE_ARM_CR4:
1003 	case BCMA_CORE_ARM_CA7:
1004 		cpu = container_of(core, struct brcmf_core_priv, pub);
1005 
1006 		/* clear all IOCTL bits except HALT bit */
1007 		val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL);
1008 		val &= ARMCR4_BCMA_IOCTL_CPUHALT;
1009 		brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
1010 				     ARMCR4_BCMA_IOCTL_CPUHALT);
1011 		break;
1012 	default:
1013 		brcmf_err("unknown id: %u\n", id);
1014 		break;
1015 	}
1016 }
1017 
1018 static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
1019 {
1020 	struct brcmf_chip *pub;
1021 	struct brcmf_core_priv *cc;
1022 	struct brcmf_core *pmu;
1023 	u32 base;
1024 	u32 val;
1025 	int ret = 0;
1026 
1027 	pub = &chip->pub;
1028 	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
1029 	base = cc->pub.base;
1030 
1031 	/* get chipcommon capabilites */
1032 	pub->cc_caps = chip->ops->read32(chip->ctx,
1033 					 CORE_CC_REG(base, capabilities));
1034 	pub->cc_caps_ext = chip->ops->read32(chip->ctx,
1035 					     CORE_CC_REG(base,
1036 							 capabilities_ext));
1037 
1038 	/* get pmu caps & rev */
1039 	pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */
1040 	if (pub->cc_caps & CC_CAP_PMU) {
1041 		val = chip->ops->read32(chip->ctx,
1042 					CORE_CC_REG(pmu->base, pmucapabilities));
1043 		pub->pmurev = val & PCAP_REV_MASK;
1044 		pub->pmucaps = val;
1045 	}
1046 
1047 	brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
1048 		  cc->pub.rev, pub->pmurev, pub->pmucaps);
1049 
1050 	/* execute bus core specific setup */
1051 	if (chip->ops->setup)
1052 		ret = chip->ops->setup(chip->ctx, pub);
1053 
1054 	return ret;
1055 }
1056 
1057 struct brcmf_chip *brcmf_chip_attach(void *ctx,
1058 				     const struct brcmf_buscore_ops *ops)
1059 {
1060 	struct brcmf_chip_priv *chip;
1061 	int err = 0;
1062 
1063 	if (WARN_ON(!ops->read32))
1064 		err = -EINVAL;
1065 	if (WARN_ON(!ops->write32))
1066 		err = -EINVAL;
1067 	if (WARN_ON(!ops->prepare))
1068 		err = -EINVAL;
1069 	if (WARN_ON(!ops->activate))
1070 		err = -EINVAL;
1071 	if (err < 0)
1072 		return ERR_PTR(-EINVAL);
1073 
1074 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1075 	if (!chip)
1076 		return ERR_PTR(-ENOMEM);
1077 
1078 	INIT_LIST_HEAD(&chip->cores);
1079 	chip->num_cores = 0;
1080 	chip->ops = ops;
1081 	chip->ctx = ctx;
1082 
1083 	err = ops->prepare(ctx);
1084 	if (err < 0)
1085 		goto fail;
1086 
1087 	err = brcmf_chip_recognition(chip);
1088 	if (err < 0)
1089 		goto fail;
1090 
1091 	err = brcmf_chip_setup(chip);
1092 	if (err < 0)
1093 		goto fail;
1094 
1095 	return &chip->pub;
1096 
1097 fail:
1098 	brcmf_chip_detach(&chip->pub);
1099 	return ERR_PTR(err);
1100 }
1101 
1102 void brcmf_chip_detach(struct brcmf_chip *pub)
1103 {
1104 	struct brcmf_chip_priv *chip;
1105 	struct brcmf_core_priv *core;
1106 	struct brcmf_core_priv *tmp;
1107 
1108 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1109 	list_for_each_entry_safe(core, tmp, &chip->cores, list) {
1110 		list_del(&core->list);
1111 		kfree(core);
1112 	}
1113 	kfree(chip);
1114 }
1115 
1116 struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
1117 {
1118 	struct brcmf_chip_priv *chip;
1119 	struct brcmf_core_priv *core;
1120 
1121 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1122 	list_for_each_entry(core, &chip->cores, list)
1123 		if (core->pub.id == coreid)
1124 			return &core->pub;
1125 
1126 	return NULL;
1127 }
1128 
1129 struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
1130 {
1131 	struct brcmf_chip_priv *chip;
1132 	struct brcmf_core_priv *cc;
1133 
1134 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1135 	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
1136 	if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
1137 		return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
1138 	return &cc->pub;
1139 }
1140 
1141 struct brcmf_core *brcmf_chip_get_pmu(struct brcmf_chip *pub)
1142 {
1143 	struct brcmf_core *cc = brcmf_chip_get_chipcommon(pub);
1144 	struct brcmf_core *pmu;
1145 
1146 	/* See if there is separated PMU core available */
1147 	if (cc->rev >= 35 &&
1148 	    pub->cc_caps_ext & BCMA_CC_CAP_EXT_AOB_PRESENT) {
1149 		pmu = brcmf_chip_get_core(pub, BCMA_CORE_PMU);
1150 		if (pmu)
1151 			return pmu;
1152 	}
1153 
1154 	/* Fallback to ChipCommon core for older hardware */
1155 	return cc;
1156 }
1157 
1158 bool brcmf_chip_iscoreup(struct brcmf_core *pub)
1159 {
1160 	struct brcmf_core_priv *core;
1161 
1162 	core = container_of(pub, struct brcmf_core_priv, pub);
1163 	return core->chip->iscoreup(core);
1164 }
1165 
1166 void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
1167 {
1168 	struct brcmf_core_priv *core;
1169 
1170 	core = container_of(pub, struct brcmf_core_priv, pub);
1171 	core->chip->coredisable(core, prereset, reset);
1172 }
1173 
1174 void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
1175 			  u32 postreset)
1176 {
1177 	struct brcmf_core_priv *core;
1178 
1179 	core = container_of(pub, struct brcmf_core_priv, pub);
1180 	core->chip->resetcore(core, prereset, reset, postreset);
1181 }
1182 
1183 static void
1184 brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip)
1185 {
1186 	struct brcmf_core *core;
1187 	struct brcmf_core_priv *sr;
1188 
1189 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
1190 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1191 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1192 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1193 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1194 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1195 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
1196 	brcmf_chip_resetcore(core, 0, 0, 0);
1197 
1198 	/* disable bank #3 remap for this device */
1199 	if (chip->pub.chip == BRCM_CC_43430_CHIP_ID) {
1200 		sr = container_of(core, struct brcmf_core_priv, pub);
1201 		brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3);
1202 		brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0);
1203 	}
1204 }
1205 
1206 static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip)
1207 {
1208 	struct brcmf_core *core;
1209 
1210 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
1211 	if (!brcmf_chip_iscoreup(core)) {
1212 		brcmf_err("SOCRAM core is down after reset?\n");
1213 		return false;
1214 	}
1215 
1216 	chip->ops->activate(chip->ctx, &chip->pub, 0);
1217 
1218 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
1219 	brcmf_chip_resetcore(core, 0, 0, 0);
1220 
1221 	return true;
1222 }
1223 
1224 static inline void
1225 brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip)
1226 {
1227 	struct brcmf_core *core;
1228 
1229 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
1230 
1231 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1232 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1233 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1234 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1235 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1236 }
1237 
1238 static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
1239 {
1240 	struct brcmf_core *core;
1241 
1242 	chip->ops->activate(chip->ctx, &chip->pub, rstvec);
1243 
1244 	/* restore ARM */
1245 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
1246 	brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
1247 
1248 	return true;
1249 }
1250 
1251 static inline void
1252 brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip)
1253 {
1254 	struct brcmf_core *core;
1255 
1256 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7);
1257 
1258 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1259 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1260 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1261 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1262 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1263 }
1264 
1265 static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
1266 {
1267 	struct brcmf_core *core;
1268 
1269 	chip->ops->activate(chip->ctx, &chip->pub, rstvec);
1270 
1271 	/* restore ARM */
1272 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7);
1273 	brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
1274 
1275 	return true;
1276 }
1277 
1278 void brcmf_chip_set_passive(struct brcmf_chip *pub)
1279 {
1280 	struct brcmf_chip_priv *chip;
1281 	struct brcmf_core *arm;
1282 
1283 	brcmf_dbg(TRACE, "Enter\n");
1284 
1285 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1286 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
1287 	if (arm) {
1288 		brcmf_chip_cr4_set_passive(chip);
1289 		return;
1290 	}
1291 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
1292 	if (arm) {
1293 		brcmf_chip_ca7_set_passive(chip);
1294 		return;
1295 	}
1296 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
1297 	if (arm) {
1298 		brcmf_chip_cm3_set_passive(chip);
1299 		return;
1300 	}
1301 }
1302 
1303 bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec)
1304 {
1305 	struct brcmf_chip_priv *chip;
1306 	struct brcmf_core *arm;
1307 
1308 	brcmf_dbg(TRACE, "Enter\n");
1309 
1310 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1311 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
1312 	if (arm)
1313 		return brcmf_chip_cr4_set_active(chip, rstvec);
1314 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
1315 	if (arm)
1316 		return brcmf_chip_ca7_set_active(chip, rstvec);
1317 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
1318 	if (arm)
1319 		return brcmf_chip_cm3_set_active(chip);
1320 
1321 	return false;
1322 }
1323 
1324 bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
1325 {
1326 	u32 base, addr, reg, pmu_cc3_mask = ~0;
1327 	struct brcmf_chip_priv *chip;
1328 	struct brcmf_core *pmu = brcmf_chip_get_pmu(pub);
1329 
1330 	brcmf_dbg(TRACE, "Enter\n");
1331 
1332 	/* old chips with PMU version less than 17 don't support save restore */
1333 	if (pub->pmurev < 17)
1334 		return false;
1335 
1336 	base = brcmf_chip_get_chipcommon(pub)->base;
1337 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1338 
1339 	switch (pub->chip) {
1340 	case BRCM_CC_4354_CHIP_ID:
1341 	case BRCM_CC_4356_CHIP_ID:
1342 	case BRCM_CC_4345_CHIP_ID:
1343 		/* explicitly check SR engine enable bit */
1344 		pmu_cc3_mask = BIT(2);
1345 		/* fall-through */
1346 	case BRCM_CC_43241_CHIP_ID:
1347 	case BRCM_CC_4335_CHIP_ID:
1348 	case BRCM_CC_4339_CHIP_ID:
1349 		/* read PMU chipcontrol register 3 */
1350 		addr = CORE_CC_REG(pmu->base, chipcontrol_addr);
1351 		chip->ops->write32(chip->ctx, addr, 3);
1352 		addr = CORE_CC_REG(pmu->base, chipcontrol_data);
1353 		reg = chip->ops->read32(chip->ctx, addr);
1354 		return (reg & pmu_cc3_mask) != 0;
1355 	case BRCM_CC_43430_CHIP_ID:
1356 		addr = CORE_CC_REG(base, sr_control1);
1357 		reg = chip->ops->read32(chip->ctx, addr);
1358 		return reg != 0;
1359 	default:
1360 		addr = CORE_CC_REG(pmu->base, pmucapabilities_ext);
1361 		reg = chip->ops->read32(chip->ctx, addr);
1362 		if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
1363 			return false;
1364 
1365 		addr = CORE_CC_REG(pmu->base, retention_ctl);
1366 		reg = chip->ops->read32(chip->ctx, addr);
1367 		return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
1368 			       PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
1369 	}
1370 }
1371