1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2014 Broadcom Corporation 4 */ 5 #include <linux/kernel.h> 6 #include <linux/delay.h> 7 #include <linux/list.h> 8 #include <linux/ssb/ssb_regs.h> 9 #include <linux/bcma/bcma.h> 10 #include <linux/bcma/bcma_regs.h> 11 12 #include <defs.h> 13 #include <soc.h> 14 #include <brcm_hw_ids.h> 15 #include <brcmu_utils.h> 16 #include <chipcommon.h> 17 #include "debug.h" 18 #include "chip.h" 19 20 /* SOC Interconnect types (aka chip types) */ 21 #define SOCI_SB 0 22 #define SOCI_AI 1 23 24 /* PL-368 DMP definitions */ 25 #define DMP_DESC_TYPE_MSK 0x0000000F 26 #define DMP_DESC_EMPTY 0x00000000 27 #define DMP_DESC_VALID 0x00000001 28 #define DMP_DESC_COMPONENT 0x00000001 29 #define DMP_DESC_MASTER_PORT 0x00000003 30 #define DMP_DESC_ADDRESS 0x00000005 31 #define DMP_DESC_ADDRSIZE_GT32 0x00000008 32 #define DMP_DESC_EOT 0x0000000F 33 34 #define DMP_COMP_DESIGNER 0xFFF00000 35 #define DMP_COMP_DESIGNER_S 20 36 #define DMP_COMP_PARTNUM 0x000FFF00 37 #define DMP_COMP_PARTNUM_S 8 38 #define DMP_COMP_CLASS 0x000000F0 39 #define DMP_COMP_CLASS_S 4 40 #define DMP_COMP_REVISION 0xFF000000 41 #define DMP_COMP_REVISION_S 24 42 #define DMP_COMP_NUM_SWRAP 0x00F80000 43 #define DMP_COMP_NUM_SWRAP_S 19 44 #define DMP_COMP_NUM_MWRAP 0x0007C000 45 #define DMP_COMP_NUM_MWRAP_S 14 46 #define DMP_COMP_NUM_SPORT 0x00003E00 47 #define DMP_COMP_NUM_SPORT_S 9 48 #define DMP_COMP_NUM_MPORT 0x000001F0 49 #define DMP_COMP_NUM_MPORT_S 4 50 51 #define DMP_MASTER_PORT_UID 0x0000FF00 52 #define DMP_MASTER_PORT_UID_S 8 53 #define DMP_MASTER_PORT_NUM 0x000000F0 54 #define DMP_MASTER_PORT_NUM_S 4 55 56 #define DMP_SLAVE_ADDR_BASE 0xFFFFF000 57 #define DMP_SLAVE_ADDR_BASE_S 12 58 #define DMP_SLAVE_PORT_NUM 0x00000F00 59 #define DMP_SLAVE_PORT_NUM_S 8 60 #define DMP_SLAVE_TYPE 0x000000C0 61 #define DMP_SLAVE_TYPE_S 6 62 #define DMP_SLAVE_TYPE_SLAVE 0 63 #define DMP_SLAVE_TYPE_BRIDGE 1 64 #define DMP_SLAVE_TYPE_SWRAP 2 65 #define DMP_SLAVE_TYPE_MWRAP 3 66 #define DMP_SLAVE_SIZE_TYPE 0x00000030 67 #define DMP_SLAVE_SIZE_TYPE_S 4 68 #define DMP_SLAVE_SIZE_4K 0 69 #define DMP_SLAVE_SIZE_8K 1 70 #define DMP_SLAVE_SIZE_16K 2 71 #define DMP_SLAVE_SIZE_DESC 3 72 73 /* EROM CompIdentB */ 74 #define CIB_REV_MASK 0xff000000 75 #define CIB_REV_SHIFT 24 76 77 /* ARM CR4 core specific control flag bits */ 78 #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020 79 80 /* D11 core specific control flag bits */ 81 #define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004 82 #define D11_BCMA_IOCTL_PHYRESET 0x0008 83 84 /* chip core base & ramsize */ 85 /* bcm4329 */ 86 /* SDIO device core, ID 0x829 */ 87 #define BCM4329_CORE_BUS_BASE 0x18011000 88 /* internal memory core, ID 0x80e */ 89 #define BCM4329_CORE_SOCRAM_BASE 0x18003000 90 /* ARM Cortex M3 core, ID 0x82a */ 91 #define BCM4329_CORE_ARM_BASE 0x18002000 92 93 /* Max possibly supported memory size (limited by IO mapped memory) */ 94 #define BRCMF_CHIP_MAX_MEMSIZE (4 * 1024 * 1024) 95 96 #define CORE_SB(base, field) \ 97 (base + SBCONFIGOFF + offsetof(struct sbconfig, field)) 98 #define SBCOREREV(sbidh) \ 99 ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \ 100 ((sbidh) & SSB_IDHIGH_RCLO)) 101 102 struct sbconfig { 103 u32 PAD[2]; 104 u32 sbipsflag; /* initiator port ocp slave flag */ 105 u32 PAD[3]; 106 u32 sbtpsflag; /* target port ocp slave flag */ 107 u32 PAD[11]; 108 u32 sbtmerrloga; /* (sonics >= 2.3) */ 109 u32 PAD; 110 u32 sbtmerrlog; /* (sonics >= 2.3) */ 111 u32 PAD[3]; 112 u32 sbadmatch3; /* address match3 */ 113 u32 PAD; 114 u32 sbadmatch2; /* address match2 */ 115 u32 PAD; 116 u32 sbadmatch1; /* address match1 */ 117 u32 PAD[7]; 118 u32 sbimstate; /* initiator agent state */ 119 u32 sbintvec; /* interrupt mask */ 120 u32 sbtmstatelow; /* target state */ 121 u32 sbtmstatehigh; /* target state */ 122 u32 sbbwa0; /* bandwidth allocation table0 */ 123 u32 PAD; 124 u32 sbimconfiglow; /* initiator configuration */ 125 u32 sbimconfighigh; /* initiator configuration */ 126 u32 sbadmatch0; /* address match0 */ 127 u32 PAD; 128 u32 sbtmconfiglow; /* target configuration */ 129 u32 sbtmconfighigh; /* target configuration */ 130 u32 sbbconfig; /* broadcast configuration */ 131 u32 PAD; 132 u32 sbbstate; /* broadcast state */ 133 u32 PAD[3]; 134 u32 sbactcnfg; /* activate configuration */ 135 u32 PAD[3]; 136 u32 sbflagst; /* current sbflags */ 137 u32 PAD[3]; 138 u32 sbidlow; /* identification */ 139 u32 sbidhigh; /* identification */ 140 }; 141 142 #define INVALID_RAMBASE ((u32)(~0)) 143 144 /* bankidx and bankinfo reg defines corerev >= 8 */ 145 #define SOCRAM_BANKINFO_RETNTRAM_MASK 0x00010000 146 #define SOCRAM_BANKINFO_SZMASK 0x0000007f 147 #define SOCRAM_BANKIDX_ROM_MASK 0x00000100 148 149 #define SOCRAM_BANKIDX_MEMTYPE_SHIFT 8 150 /* socram bankinfo memtype */ 151 #define SOCRAM_MEMTYPE_RAM 0 152 #define SOCRAM_MEMTYPE_R0M 1 153 #define SOCRAM_MEMTYPE_DEVRAM 2 154 155 #define SOCRAM_BANKINFO_SZBASE 8192 156 #define SRCI_LSS_MASK 0x00f00000 157 #define SRCI_LSS_SHIFT 20 158 #define SRCI_SRNB_MASK 0xf0 159 #define SRCI_SRNB_MASK_EXT 0x100 160 #define SRCI_SRNB_SHIFT 4 161 #define SRCI_SRBSZ_MASK 0xf 162 #define SRCI_SRBSZ_SHIFT 0 163 #define SR_BSZ_BASE 14 164 165 struct sbsocramregs { 166 u32 coreinfo; 167 u32 bwalloc; 168 u32 extracoreinfo; 169 u32 biststat; 170 u32 bankidx; 171 u32 standbyctrl; 172 173 u32 errlogstatus; /* rev 6 */ 174 u32 errlogaddr; /* rev 6 */ 175 /* used for patching rev 3 & 5 */ 176 u32 cambankidx; 177 u32 cambankstandbyctrl; 178 u32 cambankpatchctrl; 179 u32 cambankpatchtblbaseaddr; 180 u32 cambankcmdreg; 181 u32 cambankdatareg; 182 u32 cambankmaskreg; 183 u32 PAD[1]; 184 u32 bankinfo; /* corev 8 */ 185 u32 bankpda; 186 u32 PAD[14]; 187 u32 extmemconfig; 188 u32 extmemparitycsr; 189 u32 extmemparityerrdata; 190 u32 extmemparityerrcnt; 191 u32 extmemwrctrlandsize; 192 u32 PAD[84]; 193 u32 workaround; 194 u32 pwrctl; /* corerev >= 2 */ 195 u32 PAD[133]; 196 u32 sr_control; /* corerev >= 15 */ 197 u32 sr_status; /* corerev >= 15 */ 198 u32 sr_address; /* corerev >= 15 */ 199 u32 sr_data; /* corerev >= 15 */ 200 }; 201 202 #define SOCRAMREGOFFS(_f) offsetof(struct sbsocramregs, _f) 203 #define SYSMEMREGOFFS(_f) offsetof(struct sbsocramregs, _f) 204 205 #define ARMCR4_CAP (0x04) 206 #define ARMCR4_BANKIDX (0x40) 207 #define ARMCR4_BANKINFO (0x44) 208 #define ARMCR4_BANKPDA (0x4C) 209 210 #define ARMCR4_TCBBNB_MASK 0xf0 211 #define ARMCR4_TCBBNB_SHIFT 4 212 #define ARMCR4_TCBANB_MASK 0xf 213 #define ARMCR4_TCBANB_SHIFT 0 214 215 #define ARMCR4_BSZ_MASK 0x7f 216 #define ARMCR4_BSZ_MULT 8192 217 #define ARMCR4_BLK_1K_MASK 0x200 218 219 struct brcmf_core_priv { 220 struct brcmf_core pub; 221 u32 wrapbase; 222 struct list_head list; 223 struct brcmf_chip_priv *chip; 224 }; 225 226 struct brcmf_chip_priv { 227 struct brcmf_chip pub; 228 const struct brcmf_buscore_ops *ops; 229 void *ctx; 230 /* assured first core is chipcommon, second core is buscore */ 231 struct list_head cores; 232 u16 num_cores; 233 234 bool (*iscoreup)(struct brcmf_core_priv *core); 235 void (*coredisable)(struct brcmf_core_priv *core, u32 prereset, 236 u32 reset); 237 void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset, 238 u32 postreset); 239 }; 240 241 static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci, 242 struct brcmf_core *core) 243 { 244 u32 regdata; 245 246 regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh)); 247 core->rev = SBCOREREV(regdata); 248 } 249 250 static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core) 251 { 252 struct brcmf_chip_priv *ci; 253 u32 regdata; 254 u32 address; 255 256 ci = core->chip; 257 address = CORE_SB(core->pub.base, sbtmstatelow); 258 regdata = ci->ops->read32(ci->ctx, address); 259 regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT | 260 SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK); 261 return SSB_TMSLOW_CLOCK == regdata; 262 } 263 264 static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core) 265 { 266 struct brcmf_chip_priv *ci; 267 u32 regdata; 268 bool ret; 269 270 ci = core->chip; 271 regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); 272 ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK; 273 274 regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL); 275 ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0); 276 277 return ret; 278 } 279 280 static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core, 281 u32 prereset, u32 reset) 282 { 283 struct brcmf_chip_priv *ci; 284 u32 val, base; 285 286 ci = core->chip; 287 base = core->pub.base; 288 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 289 if (val & SSB_TMSLOW_RESET) 290 return; 291 292 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 293 if ((val & SSB_TMSLOW_CLOCK) != 0) { 294 /* 295 * set target reject and spin until busy is clear 296 * (preserve core-specific bits) 297 */ 298 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 299 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 300 val | SSB_TMSLOW_REJECT); 301 302 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 303 udelay(1); 304 SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh)) 305 & SSB_TMSHIGH_BUSY), 100000); 306 307 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh)); 308 if (val & SSB_TMSHIGH_BUSY) 309 brcmf_err("core state still busy\n"); 310 311 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow)); 312 if (val & SSB_IDLOW_INITIATOR) { 313 val = ci->ops->read32(ci->ctx, 314 CORE_SB(base, sbimstate)); 315 val |= SSB_IMSTATE_REJECT; 316 ci->ops->write32(ci->ctx, 317 CORE_SB(base, sbimstate), val); 318 val = ci->ops->read32(ci->ctx, 319 CORE_SB(base, sbimstate)); 320 udelay(1); 321 SPINWAIT((ci->ops->read32(ci->ctx, 322 CORE_SB(base, sbimstate)) & 323 SSB_IMSTATE_BUSY), 100000); 324 } 325 326 /* set reset and reject while enabling the clocks */ 327 val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | 328 SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET; 329 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val); 330 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 331 udelay(10); 332 333 /* clear the initiator reject bit */ 334 val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow)); 335 if (val & SSB_IDLOW_INITIATOR) { 336 val = ci->ops->read32(ci->ctx, 337 CORE_SB(base, sbimstate)); 338 val &= ~SSB_IMSTATE_REJECT; 339 ci->ops->write32(ci->ctx, 340 CORE_SB(base, sbimstate), val); 341 } 342 } 343 344 /* leave reset and reject asserted */ 345 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 346 (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET)); 347 udelay(1); 348 } 349 350 static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core, 351 u32 prereset, u32 reset) 352 { 353 struct brcmf_chip_priv *ci; 354 u32 regdata; 355 356 ci = core->chip; 357 358 /* if core is already in reset, skip reset */ 359 regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL); 360 if ((regdata & BCMA_RESET_CTL_RESET) != 0) 361 goto in_reset_configure; 362 363 /* configure reset */ 364 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL, 365 prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK); 366 ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); 367 368 /* put in reset */ 369 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 370 BCMA_RESET_CTL_RESET); 371 usleep_range(10, 20); 372 373 /* wait till reset is 1 */ 374 SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) != 375 BCMA_RESET_CTL_RESET, 300); 376 377 in_reset_configure: 378 /* in-reset configure */ 379 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL, 380 reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK); 381 ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); 382 } 383 384 static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset, 385 u32 reset, u32 postreset) 386 { 387 struct brcmf_chip_priv *ci; 388 u32 regdata; 389 u32 base; 390 391 ci = core->chip; 392 base = core->pub.base; 393 /* 394 * Must do the disable sequence first to work for 395 * arbitrary current core state. 396 */ 397 brcmf_chip_sb_coredisable(core, 0, 0); 398 399 /* 400 * Now do the initialization sequence. 401 * set reset while enabling the clock and 402 * forcing them on throughout the core 403 */ 404 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 405 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | 406 SSB_TMSLOW_RESET); 407 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 408 udelay(1); 409 410 /* clear any serror */ 411 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh)); 412 if (regdata & SSB_TMSHIGH_SERR) 413 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0); 414 415 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate)); 416 if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) { 417 regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO); 418 ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata); 419 } 420 421 /* clear reset and allow it to propagate throughout the core */ 422 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 423 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK); 424 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 425 udelay(1); 426 427 /* leave clock enabled */ 428 ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), 429 SSB_TMSLOW_CLOCK); 430 regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); 431 udelay(1); 432 } 433 434 static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset, 435 u32 reset, u32 postreset) 436 { 437 struct brcmf_chip_priv *ci; 438 int count; 439 struct brcmf_core *d11core2 = NULL; 440 struct brcmf_core_priv *d11priv2 = NULL; 441 442 ci = core->chip; 443 444 /* special handle two D11 cores reset */ 445 if (core->pub.id == BCMA_CORE_80211) { 446 d11core2 = brcmf_chip_get_d11core(&ci->pub, 1); 447 if (d11core2) { 448 brcmf_dbg(INFO, "found two d11 cores, reset both\n"); 449 d11priv2 = container_of(d11core2, 450 struct brcmf_core_priv, pub); 451 } 452 } 453 454 /* must disable first to work for arbitrary current core state */ 455 brcmf_chip_ai_coredisable(core, prereset, reset); 456 if (d11priv2) 457 brcmf_chip_ai_coredisable(d11priv2, prereset, reset); 458 459 count = 0; 460 while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) & 461 BCMA_RESET_CTL_RESET) { 462 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0); 463 count++; 464 if (count > 50) 465 break; 466 usleep_range(40, 60); 467 } 468 469 if (d11priv2) { 470 count = 0; 471 while (ci->ops->read32(ci->ctx, 472 d11priv2->wrapbase + BCMA_RESET_CTL) & 473 BCMA_RESET_CTL_RESET) { 474 ci->ops->write32(ci->ctx, 475 d11priv2->wrapbase + BCMA_RESET_CTL, 476 0); 477 count++; 478 if (count > 50) 479 break; 480 usleep_range(40, 60); 481 } 482 } 483 484 ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL, 485 postreset | BCMA_IOCTL_CLK); 486 ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); 487 488 if (d11priv2) { 489 ci->ops->write32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL, 490 postreset | BCMA_IOCTL_CLK); 491 ci->ops->read32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL); 492 } 493 } 494 495 char *brcmf_chip_name(u32 id, u32 rev, char *buf, uint len) 496 { 497 const char *fmt; 498 499 fmt = ((id > 0xa000) || (id < 0x4000)) ? "BCM%d/%u" : "BCM%x/%u"; 500 snprintf(buf, len, fmt, id, rev); 501 return buf; 502 } 503 504 static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci, 505 u16 coreid, u32 base, 506 u32 wrapbase) 507 { 508 struct brcmf_core_priv *core; 509 510 core = kzalloc(sizeof(*core), GFP_KERNEL); 511 if (!core) 512 return ERR_PTR(-ENOMEM); 513 514 core->pub.id = coreid; 515 core->pub.base = base; 516 core->chip = ci; 517 core->wrapbase = wrapbase; 518 519 list_add_tail(&core->list, &ci->cores); 520 return &core->pub; 521 } 522 523 /* safety check for chipinfo */ 524 static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci) 525 { 526 struct brcmf_core_priv *core; 527 bool need_socram = false; 528 bool has_socram = false; 529 bool cpu_found = false; 530 int idx = 1; 531 532 list_for_each_entry(core, &ci->cores, list) { 533 brcmf_dbg(INFO, " [%-2d] core 0x%x:%-3d base 0x%08x wrap 0x%08x\n", 534 idx++, core->pub.id, core->pub.rev, core->pub.base, 535 core->wrapbase); 536 537 switch (core->pub.id) { 538 case BCMA_CORE_ARM_CM3: 539 cpu_found = true; 540 need_socram = true; 541 break; 542 case BCMA_CORE_INTERNAL_MEM: 543 has_socram = true; 544 break; 545 case BCMA_CORE_ARM_CR4: 546 cpu_found = true; 547 break; 548 case BCMA_CORE_ARM_CA7: 549 cpu_found = true; 550 break; 551 default: 552 break; 553 } 554 } 555 556 if (!cpu_found) { 557 brcmf_err("CPU core not detected\n"); 558 return -ENXIO; 559 } 560 /* check RAM core presence for ARM CM3 core */ 561 if (need_socram && !has_socram) { 562 brcmf_err("RAM core not provided with ARM CM3 core\n"); 563 return -ENODEV; 564 } 565 return 0; 566 } 567 568 static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg) 569 { 570 return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg); 571 } 572 573 static void brcmf_chip_core_write32(struct brcmf_core_priv *core, 574 u16 reg, u32 val) 575 { 576 core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val); 577 } 578 579 static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx, 580 u32 *banksize) 581 { 582 u32 bankinfo; 583 u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT); 584 585 bankidx |= idx; 586 brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx); 587 bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo)); 588 *banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1; 589 *banksize *= SOCRAM_BANKINFO_SZBASE; 590 return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK); 591 } 592 593 static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize, 594 u32 *srsize) 595 { 596 u32 coreinfo; 597 uint nb, banksize, lss; 598 bool retent; 599 int i; 600 601 *ramsize = 0; 602 *srsize = 0; 603 604 if (WARN_ON(sr->pub.rev < 4)) 605 return; 606 607 if (!brcmf_chip_iscoreup(&sr->pub)) 608 brcmf_chip_resetcore(&sr->pub, 0, 0, 0); 609 610 /* Get info for determining size */ 611 coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo)); 612 nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; 613 614 if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) { 615 banksize = (coreinfo & SRCI_SRBSZ_MASK); 616 lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT; 617 if (lss != 0) 618 nb--; 619 *ramsize = nb * (1 << (banksize + SR_BSZ_BASE)); 620 if (lss != 0) 621 *ramsize += (1 << ((lss - 1) + SR_BSZ_BASE)); 622 } else { 623 /* length of SRAM Banks increased for corerev greater than 23 */ 624 if (sr->pub.rev >= 23) { 625 nb = (coreinfo & (SRCI_SRNB_MASK | SRCI_SRNB_MASK_EXT)) 626 >> SRCI_SRNB_SHIFT; 627 } else { 628 nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; 629 } 630 for (i = 0; i < nb; i++) { 631 retent = brcmf_chip_socram_banksize(sr, i, &banksize); 632 *ramsize += banksize; 633 if (retent) 634 *srsize += banksize; 635 } 636 } 637 638 /* hardcoded save&restore memory sizes */ 639 switch (sr->chip->pub.chip) { 640 case BRCM_CC_4334_CHIP_ID: 641 if (sr->chip->pub.chiprev < 2) 642 *srsize = (32 * 1024); 643 break; 644 case BRCM_CC_43430_CHIP_ID: 645 case CY_CC_43439_CHIP_ID: 646 /* assume sr for now as we can not check 647 * firmware sr capability at this point. 648 */ 649 *srsize = (64 * 1024); 650 break; 651 default: 652 break; 653 } 654 } 655 656 /** Return the SYS MEM size */ 657 static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem) 658 { 659 u32 memsize = 0; 660 u32 coreinfo; 661 u32 idx; 662 u32 nb; 663 u32 banksize; 664 665 if (!brcmf_chip_iscoreup(&sysmem->pub)) 666 brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0); 667 668 coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo)); 669 nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; 670 671 for (idx = 0; idx < nb; idx++) { 672 brcmf_chip_socram_banksize(sysmem, idx, &banksize); 673 memsize += banksize; 674 } 675 676 return memsize; 677 } 678 679 /** Return the TCM-RAM size of the ARMCR4 core. */ 680 static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4) 681 { 682 u32 corecap; 683 u32 memsize = 0; 684 u32 nab; 685 u32 nbb; 686 u32 totb; 687 u32 bxinfo; 688 u32 blksize; 689 u32 idx; 690 691 corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP); 692 693 nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT; 694 nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT; 695 totb = nab + nbb; 696 697 for (idx = 0; idx < totb; idx++) { 698 brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx); 699 bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO); 700 blksize = ARMCR4_BSZ_MULT; 701 if (bxinfo & ARMCR4_BLK_1K_MASK) 702 blksize >>= 3; 703 704 memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * blksize; 705 } 706 707 return memsize; 708 } 709 710 static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci) 711 { 712 switch (ci->pub.chip) { 713 case BRCM_CC_4345_CHIP_ID: 714 case BRCM_CC_43454_CHIP_ID: 715 return 0x198000; 716 case BRCM_CC_4335_CHIP_ID: 717 case BRCM_CC_4339_CHIP_ID: 718 case BRCM_CC_4350_CHIP_ID: 719 case BRCM_CC_4354_CHIP_ID: 720 case BRCM_CC_4356_CHIP_ID: 721 case BRCM_CC_43567_CHIP_ID: 722 case BRCM_CC_43569_CHIP_ID: 723 case BRCM_CC_43570_CHIP_ID: 724 case BRCM_CC_4358_CHIP_ID: 725 case BRCM_CC_43602_CHIP_ID: 726 case BRCM_CC_4371_CHIP_ID: 727 return 0x180000; 728 case BRCM_CC_43465_CHIP_ID: 729 case BRCM_CC_43525_CHIP_ID: 730 case BRCM_CC_4365_CHIP_ID: 731 case BRCM_CC_4366_CHIP_ID: 732 case BRCM_CC_43664_CHIP_ID: 733 case BRCM_CC_43666_CHIP_ID: 734 return 0x200000; 735 case BRCM_CC_4355_CHIP_ID: 736 case BRCM_CC_4359_CHIP_ID: 737 return (ci->pub.chiprev < 9) ? 0x180000 : 0x160000; 738 case BRCM_CC_4364_CHIP_ID: 739 case CY_CC_4373_CHIP_ID: 740 return 0x160000; 741 case CY_CC_43752_CHIP_ID: 742 case BRCM_CC_43751_CHIP_ID: 743 case BRCM_CC_4377_CHIP_ID: 744 return 0x170000; 745 case BRCM_CC_4378_CHIP_ID: 746 return 0x352000; 747 case BRCM_CC_4387_CHIP_ID: 748 return 0x740000; 749 default: 750 brcmf_err("unknown chip: %s\n", ci->pub.name); 751 break; 752 } 753 return INVALID_RAMBASE; 754 } 755 756 int brcmf_chip_get_raminfo(struct brcmf_chip *pub) 757 { 758 struct brcmf_chip_priv *ci = container_of(pub, struct brcmf_chip_priv, 759 pub); 760 struct brcmf_core_priv *mem_core; 761 struct brcmf_core *mem; 762 763 mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4); 764 if (mem) { 765 mem_core = container_of(mem, struct brcmf_core_priv, pub); 766 ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core); 767 ci->pub.rambase = brcmf_chip_tcm_rambase(ci); 768 if (ci->pub.rambase == INVALID_RAMBASE) { 769 brcmf_err("RAM base not provided with ARM CR4 core\n"); 770 return -EINVAL; 771 } 772 } else { 773 mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM); 774 if (mem) { 775 mem_core = container_of(mem, struct brcmf_core_priv, 776 pub); 777 ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core); 778 ci->pub.rambase = brcmf_chip_tcm_rambase(ci); 779 if (ci->pub.rambase == INVALID_RAMBASE) { 780 brcmf_err("RAM base not provided with ARM CA7 core\n"); 781 return -EINVAL; 782 } 783 } else { 784 mem = brcmf_chip_get_core(&ci->pub, 785 BCMA_CORE_INTERNAL_MEM); 786 if (!mem) { 787 brcmf_err("No memory cores found\n"); 788 return -ENOMEM; 789 } 790 mem_core = container_of(mem, struct brcmf_core_priv, 791 pub); 792 brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize, 793 &ci->pub.srsize); 794 } 795 } 796 brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n", 797 ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize, 798 ci->pub.srsize, ci->pub.srsize); 799 800 if (!ci->pub.ramsize) { 801 brcmf_err("RAM size is undetermined\n"); 802 return -ENOMEM; 803 } 804 805 if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) { 806 brcmf_err("RAM size is incorrect\n"); 807 return -ENOMEM; 808 } 809 810 return 0; 811 } 812 813 static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr, 814 u8 *type) 815 { 816 u32 val; 817 818 /* read next descriptor */ 819 val = ci->ops->read32(ci->ctx, *eromaddr); 820 *eromaddr += 4; 821 822 if (!type) 823 return val; 824 825 /* determine descriptor type */ 826 *type = (val & DMP_DESC_TYPE_MSK); 827 if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS) 828 *type = DMP_DESC_ADDRESS; 829 830 return val; 831 } 832 833 static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr, 834 u32 *regbase, u32 *wrapbase) 835 { 836 u8 desc; 837 u32 val, szdesc; 838 u8 stype, sztype, wraptype; 839 840 *regbase = 0; 841 *wrapbase = 0; 842 843 val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc); 844 if (desc == DMP_DESC_MASTER_PORT) { 845 wraptype = DMP_SLAVE_TYPE_MWRAP; 846 } else if (desc == DMP_DESC_ADDRESS) { 847 /* revert erom address */ 848 *eromaddr -= 4; 849 wraptype = DMP_SLAVE_TYPE_SWRAP; 850 } else { 851 *eromaddr -= 4; 852 return -EILSEQ; 853 } 854 855 do { 856 /* locate address descriptor */ 857 do { 858 val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc); 859 /* unexpected table end */ 860 if (desc == DMP_DESC_EOT) { 861 *eromaddr -= 4; 862 return -EFAULT; 863 } 864 } while (desc != DMP_DESC_ADDRESS && 865 desc != DMP_DESC_COMPONENT); 866 867 /* stop if we crossed current component border */ 868 if (desc == DMP_DESC_COMPONENT) { 869 *eromaddr -= 4; 870 return 0; 871 } 872 873 /* skip upper 32-bit address descriptor */ 874 if (val & DMP_DESC_ADDRSIZE_GT32) 875 brcmf_chip_dmp_get_desc(ci, eromaddr, NULL); 876 877 sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S; 878 879 /* next size descriptor can be skipped */ 880 if (sztype == DMP_SLAVE_SIZE_DESC) { 881 szdesc = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL); 882 /* skip upper size descriptor if present */ 883 if (szdesc & DMP_DESC_ADDRSIZE_GT32) 884 brcmf_chip_dmp_get_desc(ci, eromaddr, NULL); 885 } 886 887 /* look for 4K or 8K register regions */ 888 if (sztype != DMP_SLAVE_SIZE_4K && 889 sztype != DMP_SLAVE_SIZE_8K) 890 continue; 891 892 stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S; 893 894 /* only regular slave and wrapper */ 895 if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE) 896 *regbase = val & DMP_SLAVE_ADDR_BASE; 897 if (*wrapbase == 0 && stype == wraptype) 898 *wrapbase = val & DMP_SLAVE_ADDR_BASE; 899 } while (*regbase == 0 || *wrapbase == 0); 900 901 return 0; 902 } 903 904 static 905 int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci) 906 { 907 struct brcmf_core *core; 908 u32 eromaddr; 909 u8 desc_type = 0; 910 u32 val; 911 u16 id; 912 u8 nmw, nsw, rev; 913 u32 base, wrap; 914 int err; 915 916 eromaddr = ci->ops->read32(ci->ctx, 917 CORE_CC_REG(ci->pub.enum_base, eromptr)); 918 919 while (desc_type != DMP_DESC_EOT) { 920 val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type); 921 if (!(val & DMP_DESC_VALID)) 922 continue; 923 924 if (desc_type == DMP_DESC_EMPTY) 925 continue; 926 927 /* need a component descriptor */ 928 if (desc_type != DMP_DESC_COMPONENT) 929 continue; 930 931 id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S; 932 933 /* next descriptor must be component as well */ 934 val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type); 935 if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT)) 936 return -EFAULT; 937 938 /* only look at cores with master port(s) */ 939 nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S; 940 nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S; 941 rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S; 942 943 /* need core with ports */ 944 if (nmw + nsw == 0 && 945 id != BCMA_CORE_PMU && 946 id != BCMA_CORE_GCI) 947 continue; 948 949 /* try to obtain register address info */ 950 err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap); 951 if (err) 952 continue; 953 954 /* finally a core to be added */ 955 core = brcmf_chip_add_core(ci, id, base, wrap); 956 if (IS_ERR(core)) 957 return PTR_ERR(core); 958 959 core->rev = rev; 960 } 961 962 return 0; 963 } 964 965 u32 brcmf_chip_enum_base(u16 devid) 966 { 967 return SI_ENUM_BASE_DEFAULT; 968 } 969 970 static int brcmf_chip_recognition(struct brcmf_chip_priv *ci) 971 { 972 struct brcmf_core *core; 973 u32 regdata; 974 u32 socitype; 975 int ret; 976 const u32 READ_FAILED = 0xFFFFFFFF; 977 978 /* Get CC core rev 979 * Chipid is assume to be at offset 0 from SI_ENUM_BASE 980 * For different chiptypes or old sdio hosts w/o chipcommon, 981 * other ways of recognition should be added here. 982 */ 983 regdata = ci->ops->read32(ci->ctx, 984 CORE_CC_REG(ci->pub.enum_base, chipid)); 985 if (regdata == READ_FAILED) { 986 brcmf_err("MMIO read failed: 0x%08x\n", regdata); 987 return -ENODEV; 988 } 989 990 ci->pub.chip = regdata & CID_ID_MASK; 991 ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT; 992 socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT; 993 994 brcmf_chip_name(ci->pub.chip, ci->pub.chiprev, 995 ci->pub.name, sizeof(ci->pub.name)); 996 brcmf_dbg(INFO, "found %s chip: %s\n", 997 socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name); 998 999 if (socitype == SOCI_SB) { 1000 if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) { 1001 brcmf_err("SB chip is not supported\n"); 1002 return -ENODEV; 1003 } 1004 ci->iscoreup = brcmf_chip_sb_iscoreup; 1005 ci->coredisable = brcmf_chip_sb_coredisable; 1006 ci->resetcore = brcmf_chip_sb_resetcore; 1007 1008 core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON, 1009 SI_ENUM_BASE_DEFAULT, 0); 1010 brcmf_chip_sb_corerev(ci, core); 1011 core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV, 1012 BCM4329_CORE_BUS_BASE, 0); 1013 brcmf_chip_sb_corerev(ci, core); 1014 core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM, 1015 BCM4329_CORE_SOCRAM_BASE, 0); 1016 brcmf_chip_sb_corerev(ci, core); 1017 core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3, 1018 BCM4329_CORE_ARM_BASE, 0); 1019 brcmf_chip_sb_corerev(ci, core); 1020 1021 core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0); 1022 brcmf_chip_sb_corerev(ci, core); 1023 } else if (socitype == SOCI_AI) { 1024 ci->iscoreup = brcmf_chip_ai_iscoreup; 1025 ci->coredisable = brcmf_chip_ai_coredisable; 1026 ci->resetcore = brcmf_chip_ai_resetcore; 1027 1028 brcmf_chip_dmp_erom_scan(ci); 1029 } else { 1030 brcmf_err("chip backplane type %u is not supported\n", 1031 socitype); 1032 return -ENODEV; 1033 } 1034 1035 ret = brcmf_chip_cores_check(ci); 1036 if (ret) 1037 return ret; 1038 1039 /* assure chip is passive for core access */ 1040 brcmf_chip_set_passive(&ci->pub); 1041 1042 /* Call bus specific reset function now. Cores have been determined 1043 * but further access may require a chip specific reset at this point. 1044 */ 1045 if (ci->ops->reset) { 1046 ci->ops->reset(ci->ctx, &ci->pub); 1047 brcmf_chip_set_passive(&ci->pub); 1048 } 1049 1050 return brcmf_chip_get_raminfo(&ci->pub); 1051 } 1052 1053 static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id) 1054 { 1055 struct brcmf_core *core; 1056 struct brcmf_core_priv *cpu; 1057 u32 val; 1058 1059 1060 core = brcmf_chip_get_core(&chip->pub, id); 1061 if (!core) 1062 return; 1063 1064 switch (id) { 1065 case BCMA_CORE_ARM_CM3: 1066 brcmf_chip_coredisable(core, 0, 0); 1067 break; 1068 case BCMA_CORE_ARM_CR4: 1069 case BCMA_CORE_ARM_CA7: 1070 cpu = container_of(core, struct brcmf_core_priv, pub); 1071 1072 /* clear all IOCTL bits except HALT bit */ 1073 val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL); 1074 val &= ARMCR4_BCMA_IOCTL_CPUHALT; 1075 brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT, 1076 ARMCR4_BCMA_IOCTL_CPUHALT); 1077 break; 1078 default: 1079 brcmf_err("unknown id: %u\n", id); 1080 break; 1081 } 1082 } 1083 1084 static int brcmf_chip_setup(struct brcmf_chip_priv *chip) 1085 { 1086 struct brcmf_chip *pub; 1087 struct brcmf_core_priv *cc; 1088 struct brcmf_core *pmu; 1089 u32 base; 1090 u32 val; 1091 int ret = 0; 1092 1093 pub = &chip->pub; 1094 cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list); 1095 base = cc->pub.base; 1096 1097 /* get chipcommon capabilites */ 1098 pub->cc_caps = chip->ops->read32(chip->ctx, 1099 CORE_CC_REG(base, capabilities)); 1100 pub->cc_caps_ext = chip->ops->read32(chip->ctx, 1101 CORE_CC_REG(base, 1102 capabilities_ext)); 1103 1104 /* get pmu caps & rev */ 1105 pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */ 1106 if (pub->cc_caps & CC_CAP_PMU) { 1107 val = chip->ops->read32(chip->ctx, 1108 CORE_CC_REG(pmu->base, pmucapabilities)); 1109 pub->pmurev = val & PCAP_REV_MASK; 1110 pub->pmucaps = val; 1111 } 1112 1113 brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n", 1114 cc->pub.rev, pub->pmurev, pub->pmucaps); 1115 1116 /* execute bus core specific setup */ 1117 if (chip->ops->setup) 1118 ret = chip->ops->setup(chip->ctx, pub); 1119 1120 return ret; 1121 } 1122 1123 struct brcmf_chip *brcmf_chip_attach(void *ctx, u16 devid, 1124 const struct brcmf_buscore_ops *ops) 1125 { 1126 struct brcmf_chip_priv *chip; 1127 int err = 0; 1128 1129 if (WARN_ON(!ops->read32)) 1130 err = -EINVAL; 1131 if (WARN_ON(!ops->write32)) 1132 err = -EINVAL; 1133 if (WARN_ON(!ops->prepare)) 1134 err = -EINVAL; 1135 if (WARN_ON(!ops->activate)) 1136 err = -EINVAL; 1137 if (err < 0) 1138 return ERR_PTR(-EINVAL); 1139 1140 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 1141 if (!chip) 1142 return ERR_PTR(-ENOMEM); 1143 1144 INIT_LIST_HEAD(&chip->cores); 1145 chip->num_cores = 0; 1146 chip->ops = ops; 1147 chip->ctx = ctx; 1148 chip->pub.enum_base = brcmf_chip_enum_base(devid); 1149 1150 err = ops->prepare(ctx); 1151 if (err < 0) 1152 goto fail; 1153 1154 err = brcmf_chip_recognition(chip); 1155 if (err < 0) 1156 goto fail; 1157 1158 err = brcmf_chip_setup(chip); 1159 if (err < 0) 1160 goto fail; 1161 1162 return &chip->pub; 1163 1164 fail: 1165 brcmf_chip_detach(&chip->pub); 1166 return ERR_PTR(err); 1167 } 1168 1169 void brcmf_chip_detach(struct brcmf_chip *pub) 1170 { 1171 struct brcmf_chip_priv *chip; 1172 struct brcmf_core_priv *core; 1173 struct brcmf_core_priv *tmp; 1174 1175 chip = container_of(pub, struct brcmf_chip_priv, pub); 1176 list_for_each_entry_safe(core, tmp, &chip->cores, list) { 1177 list_del(&core->list); 1178 kfree(core); 1179 } 1180 kfree(chip); 1181 } 1182 1183 struct brcmf_core *brcmf_chip_get_d11core(struct brcmf_chip *pub, u8 unit) 1184 { 1185 struct brcmf_chip_priv *chip; 1186 struct brcmf_core_priv *core; 1187 1188 chip = container_of(pub, struct brcmf_chip_priv, pub); 1189 list_for_each_entry(core, &chip->cores, list) { 1190 if (core->pub.id == BCMA_CORE_80211) { 1191 if (unit-- == 0) 1192 return &core->pub; 1193 } 1194 } 1195 return NULL; 1196 } 1197 1198 struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid) 1199 { 1200 struct brcmf_chip_priv *chip; 1201 struct brcmf_core_priv *core; 1202 1203 chip = container_of(pub, struct brcmf_chip_priv, pub); 1204 list_for_each_entry(core, &chip->cores, list) 1205 if (core->pub.id == coreid) 1206 return &core->pub; 1207 1208 return NULL; 1209 } 1210 1211 struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub) 1212 { 1213 struct brcmf_chip_priv *chip; 1214 struct brcmf_core_priv *cc; 1215 1216 chip = container_of(pub, struct brcmf_chip_priv, pub); 1217 cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list); 1218 if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON)) 1219 return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON); 1220 return &cc->pub; 1221 } 1222 1223 struct brcmf_core *brcmf_chip_get_pmu(struct brcmf_chip *pub) 1224 { 1225 struct brcmf_core *cc = brcmf_chip_get_chipcommon(pub); 1226 struct brcmf_core *pmu; 1227 1228 /* See if there is separated PMU core available */ 1229 if (cc->rev >= 35 && 1230 pub->cc_caps_ext & BCMA_CC_CAP_EXT_AOB_PRESENT) { 1231 pmu = brcmf_chip_get_core(pub, BCMA_CORE_PMU); 1232 if (pmu) 1233 return pmu; 1234 } 1235 1236 /* Fallback to ChipCommon core for older hardware */ 1237 return cc; 1238 } 1239 1240 bool brcmf_chip_iscoreup(struct brcmf_core *pub) 1241 { 1242 struct brcmf_core_priv *core; 1243 1244 core = container_of(pub, struct brcmf_core_priv, pub); 1245 return core->chip->iscoreup(core); 1246 } 1247 1248 void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset) 1249 { 1250 struct brcmf_core_priv *core; 1251 1252 core = container_of(pub, struct brcmf_core_priv, pub); 1253 core->chip->coredisable(core, prereset, reset); 1254 } 1255 1256 void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset, 1257 u32 postreset) 1258 { 1259 struct brcmf_core_priv *core; 1260 1261 core = container_of(pub, struct brcmf_core_priv, pub); 1262 core->chip->resetcore(core, prereset, reset, postreset); 1263 } 1264 1265 static void 1266 brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip) 1267 { 1268 struct brcmf_core *core; 1269 struct brcmf_core_priv *sr; 1270 1271 brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3); 1272 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211); 1273 brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | 1274 D11_BCMA_IOCTL_PHYCLOCKEN, 1275 D11_BCMA_IOCTL_PHYCLOCKEN, 1276 D11_BCMA_IOCTL_PHYCLOCKEN); 1277 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM); 1278 brcmf_chip_resetcore(core, 0, 0, 0); 1279 1280 /* disable bank #3 remap for this device */ 1281 if (chip->pub.chip == BRCM_CC_43430_CHIP_ID || 1282 chip->pub.chip == CY_CC_43439_CHIP_ID) { 1283 sr = container_of(core, struct brcmf_core_priv, pub); 1284 brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3); 1285 brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0); 1286 } 1287 } 1288 1289 static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip) 1290 { 1291 struct brcmf_core *core; 1292 1293 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM); 1294 if (!brcmf_chip_iscoreup(core)) { 1295 brcmf_err("SOCRAM core is down after reset?\n"); 1296 return false; 1297 } 1298 1299 chip->ops->activate(chip->ctx, &chip->pub, 0); 1300 1301 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3); 1302 brcmf_chip_resetcore(core, 0, 0, 0); 1303 1304 return true; 1305 } 1306 1307 static inline void 1308 brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip) 1309 { 1310 int i; 1311 struct brcmf_core *core; 1312 1313 brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4); 1314 1315 /* Disable the cores only and let the firmware enable them. 1316 * Releasing reset ourselves breaks BCM4387 in weird ways. 1317 */ 1318 for (i = 0; (core = brcmf_chip_get_d11core(&chip->pub, i)); i++) 1319 brcmf_chip_coredisable(core, D11_BCMA_IOCTL_PHYRESET | 1320 D11_BCMA_IOCTL_PHYCLOCKEN, 1321 D11_BCMA_IOCTL_PHYCLOCKEN); 1322 } 1323 1324 static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec) 1325 { 1326 struct brcmf_core *core; 1327 1328 chip->ops->activate(chip->ctx, &chip->pub, rstvec); 1329 1330 /* restore ARM */ 1331 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4); 1332 brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0); 1333 1334 return true; 1335 } 1336 1337 static inline void 1338 brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip) 1339 { 1340 struct brcmf_core *core; 1341 1342 brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7); 1343 1344 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211); 1345 brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | 1346 D11_BCMA_IOCTL_PHYCLOCKEN, 1347 D11_BCMA_IOCTL_PHYCLOCKEN, 1348 D11_BCMA_IOCTL_PHYCLOCKEN); 1349 } 1350 1351 static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec) 1352 { 1353 struct brcmf_core *core; 1354 1355 chip->ops->activate(chip->ctx, &chip->pub, rstvec); 1356 1357 /* restore ARM */ 1358 core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7); 1359 brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0); 1360 1361 return true; 1362 } 1363 1364 void brcmf_chip_set_passive(struct brcmf_chip *pub) 1365 { 1366 struct brcmf_chip_priv *chip; 1367 struct brcmf_core *arm; 1368 1369 brcmf_dbg(TRACE, "Enter\n"); 1370 1371 chip = container_of(pub, struct brcmf_chip_priv, pub); 1372 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4); 1373 if (arm) { 1374 brcmf_chip_cr4_set_passive(chip); 1375 return; 1376 } 1377 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7); 1378 if (arm) { 1379 brcmf_chip_ca7_set_passive(chip); 1380 return; 1381 } 1382 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3); 1383 if (arm) { 1384 brcmf_chip_cm3_set_passive(chip); 1385 return; 1386 } 1387 } 1388 1389 bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec) 1390 { 1391 struct brcmf_chip_priv *chip; 1392 struct brcmf_core *arm; 1393 1394 brcmf_dbg(TRACE, "Enter\n"); 1395 1396 chip = container_of(pub, struct brcmf_chip_priv, pub); 1397 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4); 1398 if (arm) 1399 return brcmf_chip_cr4_set_active(chip, rstvec); 1400 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7); 1401 if (arm) 1402 return brcmf_chip_ca7_set_active(chip, rstvec); 1403 arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3); 1404 if (arm) 1405 return brcmf_chip_cm3_set_active(chip); 1406 1407 return false; 1408 } 1409 1410 bool brcmf_chip_sr_capable(struct brcmf_chip *pub) 1411 { 1412 u32 base, addr, reg, pmu_cc3_mask = ~0; 1413 struct brcmf_chip_priv *chip; 1414 struct brcmf_core *pmu = brcmf_chip_get_pmu(pub); 1415 1416 brcmf_dbg(TRACE, "Enter\n"); 1417 1418 /* old chips with PMU version less than 17 don't support save restore */ 1419 if (pub->pmurev < 17) 1420 return false; 1421 1422 base = brcmf_chip_get_chipcommon(pub)->base; 1423 chip = container_of(pub, struct brcmf_chip_priv, pub); 1424 1425 switch (pub->chip) { 1426 case BRCM_CC_4354_CHIP_ID: 1427 case BRCM_CC_4356_CHIP_ID: 1428 case BRCM_CC_4345_CHIP_ID: 1429 case BRCM_CC_43454_CHIP_ID: 1430 /* explicitly check SR engine enable bit */ 1431 pmu_cc3_mask = BIT(2); 1432 fallthrough; 1433 case BRCM_CC_43241_CHIP_ID: 1434 case BRCM_CC_4335_CHIP_ID: 1435 case BRCM_CC_4339_CHIP_ID: 1436 /* read PMU chipcontrol register 3 */ 1437 addr = CORE_CC_REG(pmu->base, chipcontrol_addr); 1438 chip->ops->write32(chip->ctx, addr, 3); 1439 addr = CORE_CC_REG(pmu->base, chipcontrol_data); 1440 reg = chip->ops->read32(chip->ctx, addr); 1441 return (reg & pmu_cc3_mask) != 0; 1442 case BRCM_CC_43430_CHIP_ID: 1443 case CY_CC_43439_CHIP_ID: 1444 addr = CORE_CC_REG(base, sr_control1); 1445 reg = chip->ops->read32(chip->ctx, addr); 1446 return reg != 0; 1447 case BRCM_CC_4355_CHIP_ID: 1448 case CY_CC_4373_CHIP_ID: 1449 /* explicitly check SR engine enable bit */ 1450 addr = CORE_CC_REG(base, sr_control0); 1451 reg = chip->ops->read32(chip->ctx, addr); 1452 return (reg & CC_SR_CTL0_ENABLE_MASK) != 0; 1453 case BRCM_CC_4359_CHIP_ID: 1454 case BRCM_CC_43751_CHIP_ID: 1455 case CY_CC_43752_CHIP_ID: 1456 case CY_CC_43012_CHIP_ID: 1457 addr = CORE_CC_REG(pmu->base, retention_ctl); 1458 reg = chip->ops->read32(chip->ctx, addr); 1459 return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK | 1460 PMU_RCTL_LOGIC_DISABLE_MASK)) == 0; 1461 default: 1462 addr = CORE_CC_REG(pmu->base, pmucapabilities_ext); 1463 reg = chip->ops->read32(chip->ctx, addr); 1464 if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0) 1465 return false; 1466 1467 addr = CORE_CC_REG(pmu->base, retention_ctl); 1468 reg = chip->ops->read32(chip->ctx, addr); 1469 return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK | 1470 PMU_RCTL_LOGIC_DISABLE_MASK)) == 0; 1471 } 1472 } 1473