xref: /linux/drivers/net/wireless/ath/wil6210/wmi.c (revision 2359ccddc1c3f4752f43cc19b3db189710b15791)
1 /*
2  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/moduleparam.h>
19 #include <linux/etherdevice.h>
20 #include <linux/if_arp.h>
21 
22 #include "wil6210.h"
23 #include "txrx.h"
24 #include "wmi.h"
25 #include "trace.h"
26 
27 static uint max_assoc_sta = WIL6210_MAX_CID;
28 module_param(max_assoc_sta, uint, 0644);
29 MODULE_PARM_DESC(max_assoc_sta, " Max number of stations associated to the AP");
30 
31 int agg_wsize; /* = 0; */
32 module_param(agg_wsize, int, 0644);
33 MODULE_PARM_DESC(agg_wsize, " Window size for Tx Block Ack after connect;"
34 		 " 0 - use default; < 0 - don't auto-establish");
35 
36 u8 led_id = WIL_LED_INVALID_ID;
37 module_param(led_id, byte, 0444);
38 MODULE_PARM_DESC(led_id,
39 		 " 60G device led enablement. Set the led ID (0-2) to enable");
40 
41 #define WIL_WAIT_FOR_SUSPEND_RESUME_COMP 200
42 #define WIL_WMI_CALL_GENERAL_TO_MS 100
43 
44 /**
45  * WMI event receiving - theory of operations
46  *
47  * When firmware about to report WMI event, it fills memory area
48  * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
49  * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
50  *
51  * @wmi_recv_cmd reads event, allocates memory chunk  and attaches it to the
52  * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
53  * and handles events within the @wmi_event_worker. Every event get detached
54  * from list, processed and deleted.
55  *
56  * Purpose for this mechanism is to release IRQ thread; otherwise,
57  * if WMI event handling involves another WMI command flow, this 2-nd flow
58  * won't be completed because of blocked IRQ thread.
59  */
60 
61 /**
62  * Addressing - theory of operations
63  *
64  * There are several buses present on the WIL6210 card.
65  * Same memory areas are visible at different address on
66  * the different busses. There are 3 main bus masters:
67  *  - MAC CPU (ucode)
68  *  - User CPU (firmware)
69  *  - AHB (host)
70  *
71  * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
72  * AHB addresses starting from 0x880000
73  *
74  * Internally, firmware uses addresses that allow faster access but
75  * are invisible from the host. To read from these addresses, alternative
76  * AHB address must be used.
77  */
78 
79 /**
80  * @sparrow_fw_mapping provides memory remapping table for sparrow
81  *
82  * array size should be in sync with the declaration in the wil6210.h
83  *
84  * Sparrow memory mapping:
85  * Linker address         PCI/Host address
86  *                        0x880000 .. 0xa80000  2Mb BAR0
87  * 0x800000 .. 0x808000   0x900000 .. 0x908000  32k DCCM
88  * 0x840000 .. 0x860000   0x908000 .. 0x928000  128k PERIPH
89  */
90 const struct fw_map sparrow_fw_mapping[] = {
91 	/* FW code RAM 256k */
92 	{0x000000, 0x040000, 0x8c0000, "fw_code", true},
93 	/* FW data RAM 32k */
94 	{0x800000, 0x808000, 0x900000, "fw_data", true},
95 	/* periph data 128k */
96 	{0x840000, 0x860000, 0x908000, "fw_peri", true},
97 	/* various RGF 40k */
98 	{0x880000, 0x88a000, 0x880000, "rgf", true},
99 	/* AGC table   4k */
100 	{0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true},
101 	/* Pcie_ext_rgf 4k */
102 	{0x88b000, 0x88c000, 0x88b000, "rgf_ext", true},
103 	/* mac_ext_rgf 512b */
104 	{0x88c000, 0x88c200, 0x88c000, "mac_rgf_ext", true},
105 	/* upper area 548k */
106 	{0x8c0000, 0x949000, 0x8c0000, "upper", true},
107 	/* UCODE areas - accessible by debugfs blobs but not by
108 	 * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
109 	 */
110 	/* ucode code RAM 128k */
111 	{0x000000, 0x020000, 0x920000, "uc_code", false},
112 	/* ucode data RAM 16k */
113 	{0x800000, 0x804000, 0x940000, "uc_data", false},
114 };
115 
116 /**
117  * @sparrow_d0_mac_rgf_ext - mac_rgf_ext section for Sparrow D0
118  * it is a bit larger to support extra features
119  */
120 const struct fw_map sparrow_d0_mac_rgf_ext = {
121 	0x88c000, 0x88c500, 0x88c000, "mac_rgf_ext", true
122 };
123 
124 /**
125  * @talyn_fw_mapping provides memory remapping table for Talyn
126  *
127  * array size should be in sync with the declaration in the wil6210.h
128  *
129  * Talyn memory mapping:
130  * Linker address         PCI/Host address
131  *                        0x880000 .. 0xc80000  4Mb BAR0
132  * 0x800000 .. 0x820000   0xa00000 .. 0xa20000  128k DCCM
133  * 0x840000 .. 0x858000   0xa20000 .. 0xa38000  96k PERIPH
134  */
135 const struct fw_map talyn_fw_mapping[] = {
136 	/* FW code RAM 1M */
137 	{0x000000, 0x100000, 0x900000, "fw_code", true},
138 	/* FW data RAM 128k */
139 	{0x800000, 0x820000, 0xa00000, "fw_data", true},
140 	/* periph. data RAM 96k */
141 	{0x840000, 0x858000, 0xa20000, "fw_peri", true},
142 	/* various RGF 40k */
143 	{0x880000, 0x88a000, 0x880000, "rgf", true},
144 	/* AGC table 4k */
145 	{0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true},
146 	/* Pcie_ext_rgf 4k */
147 	{0x88b000, 0x88c000, 0x88b000, "rgf_ext", true},
148 	/* mac_ext_rgf 1344b */
149 	{0x88c000, 0x88c540, 0x88c000, "mac_rgf_ext", true},
150 	/* ext USER RGF 4k */
151 	{0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true},
152 	/* OTP 4k */
153 	{0x8a0000, 0x8a1000, 0x8a0000, "otp", true},
154 	/* DMA EXT RGF 64k */
155 	{0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true},
156 	/* upper area 1536k */
157 	{0x900000, 0xa80000, 0x900000, "upper", true},
158 	/* UCODE areas - accessible by debugfs blobs but not by
159 	 * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
160 	 */
161 	/* ucode code RAM 256k */
162 	{0x000000, 0x040000, 0xa38000, "uc_code", false},
163 	/* ucode data RAM 32k */
164 	{0x800000, 0x808000, 0xa78000, "uc_data", false},
165 };
166 
167 struct fw_map fw_mapping[MAX_FW_MAPPING_TABLE_SIZE];
168 
169 struct blink_on_off_time led_blink_time[] = {
170 	{WIL_LED_BLINK_ON_SLOW_MS, WIL_LED_BLINK_OFF_SLOW_MS},
171 	{WIL_LED_BLINK_ON_MED_MS, WIL_LED_BLINK_OFF_MED_MS},
172 	{WIL_LED_BLINK_ON_FAST_MS, WIL_LED_BLINK_OFF_FAST_MS},
173 };
174 
175 u8 led_polarity = LED_POLARITY_LOW_ACTIVE;
176 
177 /**
178  * return AHB address for given firmware internal (linker) address
179  * @x - internal address
180  * If address have no valid AHB mapping, return 0
181  */
182 static u32 wmi_addr_remap(u32 x)
183 {
184 	uint i;
185 
186 	for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
187 		if (fw_mapping[i].fw &&
188 		    ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to)))
189 			return x + fw_mapping[i].host - fw_mapping[i].from;
190 	}
191 
192 	return 0;
193 }
194 
195 /**
196  * find fw_mapping entry by section name
197  * @section - section name
198  *
199  * Return pointer to section or NULL if not found
200  */
201 struct fw_map *wil_find_fw_mapping(const char *section)
202 {
203 	int i;
204 
205 	for (i = 0; i < ARRAY_SIZE(fw_mapping); i++)
206 		if (fw_mapping[i].name &&
207 		    !strcmp(section, fw_mapping[i].name))
208 			return &fw_mapping[i];
209 
210 	return NULL;
211 }
212 
213 /**
214  * Check address validity for WMI buffer; remap if needed
215  * @ptr - internal (linker) fw/ucode address
216  * @size - if non zero, validate the block does not
217  *  exceed the device memory (bar)
218  *
219  * Valid buffer should be DWORD aligned
220  *
221  * return address for accessing buffer from the host;
222  * if buffer is not valid, return NULL.
223  */
224 void __iomem *wmi_buffer_block(struct wil6210_priv *wil, __le32 ptr_, u32 size)
225 {
226 	u32 off;
227 	u32 ptr = le32_to_cpu(ptr_);
228 
229 	if (ptr % 4)
230 		return NULL;
231 
232 	ptr = wmi_addr_remap(ptr);
233 	if (ptr < WIL6210_FW_HOST_OFF)
234 		return NULL;
235 
236 	off = HOSTADDR(ptr);
237 	if (off > wil->bar_size - 4)
238 		return NULL;
239 	if (size && ((off + size > wil->bar_size) || (off + size < off)))
240 		return NULL;
241 
242 	return wil->csr + off;
243 }
244 
245 void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
246 {
247 	return wmi_buffer_block(wil, ptr_, 0);
248 }
249 
250 /**
251  * Check address validity
252  */
253 void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
254 {
255 	u32 off;
256 
257 	if (ptr % 4)
258 		return NULL;
259 
260 	if (ptr < WIL6210_FW_HOST_OFF)
261 		return NULL;
262 
263 	off = HOSTADDR(ptr);
264 	if (off > wil->bar_size - 4)
265 		return NULL;
266 
267 	return wil->csr + off;
268 }
269 
270 int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
271 		 struct wil6210_mbox_hdr *hdr)
272 {
273 	void __iomem *src = wmi_buffer(wil, ptr);
274 
275 	if (!src)
276 		return -EINVAL;
277 
278 	wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
279 
280 	return 0;
281 }
282 
283 static const char *cmdid2name(u16 cmdid)
284 {
285 	switch (cmdid) {
286 	case WMI_NOTIFY_REQ_CMDID:
287 		return "WMI_NOTIFY_REQ_CMD";
288 	case WMI_START_SCAN_CMDID:
289 		return "WMI_START_SCAN_CMD";
290 	case WMI_CONNECT_CMDID:
291 		return "WMI_CONNECT_CMD";
292 	case WMI_DISCONNECT_CMDID:
293 		return "WMI_DISCONNECT_CMD";
294 	case WMI_SW_TX_REQ_CMDID:
295 		return "WMI_SW_TX_REQ_CMD";
296 	case WMI_GET_RF_SECTOR_PARAMS_CMDID:
297 		return "WMI_GET_RF_SECTOR_PARAMS_CMD";
298 	case WMI_SET_RF_SECTOR_PARAMS_CMDID:
299 		return "WMI_SET_RF_SECTOR_PARAMS_CMD";
300 	case WMI_GET_SELECTED_RF_SECTOR_INDEX_CMDID:
301 		return "WMI_GET_SELECTED_RF_SECTOR_INDEX_CMD";
302 	case WMI_SET_SELECTED_RF_SECTOR_INDEX_CMDID:
303 		return "WMI_SET_SELECTED_RF_SECTOR_INDEX_CMD";
304 	case WMI_BRP_SET_ANT_LIMIT_CMDID:
305 		return "WMI_BRP_SET_ANT_LIMIT_CMD";
306 	case WMI_TOF_SESSION_START_CMDID:
307 		return "WMI_TOF_SESSION_START_CMD";
308 	case WMI_AOA_MEAS_CMDID:
309 		return "WMI_AOA_MEAS_CMD";
310 	case WMI_PMC_CMDID:
311 		return "WMI_PMC_CMD";
312 	case WMI_TOF_GET_TX_RX_OFFSET_CMDID:
313 		return "WMI_TOF_GET_TX_RX_OFFSET_CMD";
314 	case WMI_TOF_SET_TX_RX_OFFSET_CMDID:
315 		return "WMI_TOF_SET_TX_RX_OFFSET_CMD";
316 	case WMI_VRING_CFG_CMDID:
317 		return "WMI_VRING_CFG_CMD";
318 	case WMI_BCAST_VRING_CFG_CMDID:
319 		return "WMI_BCAST_VRING_CFG_CMD";
320 	case WMI_TRAFFIC_SUSPEND_CMDID:
321 		return "WMI_TRAFFIC_SUSPEND_CMD";
322 	case WMI_TRAFFIC_RESUME_CMDID:
323 		return "WMI_TRAFFIC_RESUME_CMD";
324 	case WMI_ECHO_CMDID:
325 		return "WMI_ECHO_CMD";
326 	case WMI_SET_MAC_ADDRESS_CMDID:
327 		return "WMI_SET_MAC_ADDRESS_CMD";
328 	case WMI_LED_CFG_CMDID:
329 		return "WMI_LED_CFG_CMD";
330 	case WMI_PCP_START_CMDID:
331 		return "WMI_PCP_START_CMD";
332 	case WMI_PCP_STOP_CMDID:
333 		return "WMI_PCP_STOP_CMD";
334 	case WMI_SET_SSID_CMDID:
335 		return "WMI_SET_SSID_CMD";
336 	case WMI_GET_SSID_CMDID:
337 		return "WMI_GET_SSID_CMD";
338 	case WMI_SET_PCP_CHANNEL_CMDID:
339 		return "WMI_SET_PCP_CHANNEL_CMD";
340 	case WMI_GET_PCP_CHANNEL_CMDID:
341 		return "WMI_GET_PCP_CHANNEL_CMD";
342 	case WMI_P2P_CFG_CMDID:
343 		return "WMI_P2P_CFG_CMD";
344 	case WMI_PORT_ALLOCATE_CMDID:
345 		return "WMI_PORT_ALLOCATE_CMD";
346 	case WMI_PORT_DELETE_CMDID:
347 		return "WMI_PORT_DELETE_CMD";
348 	case WMI_START_LISTEN_CMDID:
349 		return "WMI_START_LISTEN_CMD";
350 	case WMI_START_SEARCH_CMDID:
351 		return "WMI_START_SEARCH_CMD";
352 	case WMI_DISCOVERY_STOP_CMDID:
353 		return "WMI_DISCOVERY_STOP_CMD";
354 	case WMI_DELETE_CIPHER_KEY_CMDID:
355 		return "WMI_DELETE_CIPHER_KEY_CMD";
356 	case WMI_ADD_CIPHER_KEY_CMDID:
357 		return "WMI_ADD_CIPHER_KEY_CMD";
358 	case WMI_SET_APPIE_CMDID:
359 		return "WMI_SET_APPIE_CMD";
360 	case WMI_CFG_RX_CHAIN_CMDID:
361 		return "WMI_CFG_RX_CHAIN_CMD";
362 	case WMI_TEMP_SENSE_CMDID:
363 		return "WMI_TEMP_SENSE_CMD";
364 	case WMI_DEL_STA_CMDID:
365 		return "WMI_DEL_STA_CMD";
366 	case WMI_DISCONNECT_STA_CMDID:
367 		return "WMI_DISCONNECT_STA_CMD";
368 	case WMI_VRING_BA_EN_CMDID:
369 		return "WMI_VRING_BA_EN_CMD";
370 	case WMI_VRING_BA_DIS_CMDID:
371 		return "WMI_VRING_BA_DIS_CMD";
372 	case WMI_RCP_DELBA_CMDID:
373 		return "WMI_RCP_DELBA_CMD";
374 	case WMI_RCP_ADDBA_RESP_CMDID:
375 		return "WMI_RCP_ADDBA_RESP_CMD";
376 	case WMI_PS_DEV_PROFILE_CFG_CMDID:
377 		return "WMI_PS_DEV_PROFILE_CFG_CMD";
378 	case WMI_SET_MGMT_RETRY_LIMIT_CMDID:
379 		return "WMI_SET_MGMT_RETRY_LIMIT_CMD";
380 	case WMI_GET_MGMT_RETRY_LIMIT_CMDID:
381 		return "WMI_GET_MGMT_RETRY_LIMIT_CMD";
382 	case WMI_ABORT_SCAN_CMDID:
383 		return "WMI_ABORT_SCAN_CMD";
384 	case WMI_NEW_STA_CMDID:
385 		return "WMI_NEW_STA_CMD";
386 	case WMI_SET_THERMAL_THROTTLING_CFG_CMDID:
387 		return "WMI_SET_THERMAL_THROTTLING_CFG_CMD";
388 	case WMI_GET_THERMAL_THROTTLING_CFG_CMDID:
389 		return "WMI_GET_THERMAL_THROTTLING_CFG_CMD";
390 	case WMI_LINK_MAINTAIN_CFG_WRITE_CMDID:
391 		return "WMI_LINK_MAINTAIN_CFG_WRITE_CMD";
392 	case WMI_LO_POWER_CALIB_FROM_OTP_CMDID:
393 		return "WMI_LO_POWER_CALIB_FROM_OTP_CMD";
394 	case WMI_START_SCHED_SCAN_CMDID:
395 		return "WMI_START_SCHED_SCAN_CMD";
396 	case WMI_STOP_SCHED_SCAN_CMDID:
397 		return "WMI_STOP_SCHED_SCAN_CMD";
398 	default:
399 		return "Untracked CMD";
400 	}
401 }
402 
403 static const char *eventid2name(u16 eventid)
404 {
405 	switch (eventid) {
406 	case WMI_NOTIFY_REQ_DONE_EVENTID:
407 		return "WMI_NOTIFY_REQ_DONE_EVENT";
408 	case WMI_DISCONNECT_EVENTID:
409 		return "WMI_DISCONNECT_EVENT";
410 	case WMI_SW_TX_COMPLETE_EVENTID:
411 		return "WMI_SW_TX_COMPLETE_EVENT";
412 	case WMI_GET_RF_SECTOR_PARAMS_DONE_EVENTID:
413 		return "WMI_GET_RF_SECTOR_PARAMS_DONE_EVENT";
414 	case WMI_SET_RF_SECTOR_PARAMS_DONE_EVENTID:
415 		return "WMI_SET_RF_SECTOR_PARAMS_DONE_EVENT";
416 	case WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
417 		return "WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
418 	case WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
419 		return "WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
420 	case WMI_BRP_SET_ANT_LIMIT_EVENTID:
421 		return "WMI_BRP_SET_ANT_LIMIT_EVENT";
422 	case WMI_FW_READY_EVENTID:
423 		return "WMI_FW_READY_EVENT";
424 	case WMI_TRAFFIC_RESUME_EVENTID:
425 		return "WMI_TRAFFIC_RESUME_EVENT";
426 	case WMI_TOF_GET_TX_RX_OFFSET_EVENTID:
427 		return "WMI_TOF_GET_TX_RX_OFFSET_EVENT";
428 	case WMI_TOF_SET_TX_RX_OFFSET_EVENTID:
429 		return "WMI_TOF_SET_TX_RX_OFFSET_EVENT";
430 	case WMI_VRING_CFG_DONE_EVENTID:
431 		return "WMI_VRING_CFG_DONE_EVENT";
432 	case WMI_READY_EVENTID:
433 		return "WMI_READY_EVENT";
434 	case WMI_RX_MGMT_PACKET_EVENTID:
435 		return "WMI_RX_MGMT_PACKET_EVENT";
436 	case WMI_TX_MGMT_PACKET_EVENTID:
437 		return "WMI_TX_MGMT_PACKET_EVENT";
438 	case WMI_SCAN_COMPLETE_EVENTID:
439 		return "WMI_SCAN_COMPLETE_EVENT";
440 	case WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENTID:
441 		return "WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENT";
442 	case WMI_CONNECT_EVENTID:
443 		return "WMI_CONNECT_EVENT";
444 	case WMI_EAPOL_RX_EVENTID:
445 		return "WMI_EAPOL_RX_EVENT";
446 	case WMI_BA_STATUS_EVENTID:
447 		return "WMI_BA_STATUS_EVENT";
448 	case WMI_RCP_ADDBA_REQ_EVENTID:
449 		return "WMI_RCP_ADDBA_REQ_EVENT";
450 	case WMI_DELBA_EVENTID:
451 		return "WMI_DELBA_EVENT";
452 	case WMI_VRING_EN_EVENTID:
453 		return "WMI_VRING_EN_EVENT";
454 	case WMI_DATA_PORT_OPEN_EVENTID:
455 		return "WMI_DATA_PORT_OPEN_EVENT";
456 	case WMI_AOA_MEAS_EVENTID:
457 		return "WMI_AOA_MEAS_EVENT";
458 	case WMI_TOF_SESSION_END_EVENTID:
459 		return "WMI_TOF_SESSION_END_EVENT";
460 	case WMI_TOF_GET_CAPABILITIES_EVENTID:
461 		return "WMI_TOF_GET_CAPABILITIES_EVENT";
462 	case WMI_TOF_SET_LCR_EVENTID:
463 		return "WMI_TOF_SET_LCR_EVENT";
464 	case WMI_TOF_SET_LCI_EVENTID:
465 		return "WMI_TOF_SET_LCI_EVENT";
466 	case WMI_TOF_FTM_PER_DEST_RES_EVENTID:
467 		return "WMI_TOF_FTM_PER_DEST_RES_EVENT";
468 	case WMI_TOF_CHANNEL_INFO_EVENTID:
469 		return "WMI_TOF_CHANNEL_INFO_EVENT";
470 	case WMI_TRAFFIC_SUSPEND_EVENTID:
471 		return "WMI_TRAFFIC_SUSPEND_EVENT";
472 	case WMI_ECHO_RSP_EVENTID:
473 		return "WMI_ECHO_RSP_EVENT";
474 	case WMI_LED_CFG_DONE_EVENTID:
475 		return "WMI_LED_CFG_DONE_EVENT";
476 	case WMI_PCP_STARTED_EVENTID:
477 		return "WMI_PCP_STARTED_EVENT";
478 	case WMI_PCP_STOPPED_EVENTID:
479 		return "WMI_PCP_STOPPED_EVENT";
480 	case WMI_GET_SSID_EVENTID:
481 		return "WMI_GET_SSID_EVENT";
482 	case WMI_GET_PCP_CHANNEL_EVENTID:
483 		return "WMI_GET_PCP_CHANNEL_EVENT";
484 	case WMI_P2P_CFG_DONE_EVENTID:
485 		return "WMI_P2P_CFG_DONE_EVENT";
486 	case WMI_PORT_ALLOCATED_EVENTID:
487 		return "WMI_PORT_ALLOCATED_EVENT";
488 	case WMI_PORT_DELETED_EVENTID:
489 		return "WMI_PORT_DELETED_EVENT";
490 	case WMI_LISTEN_STARTED_EVENTID:
491 		return "WMI_LISTEN_STARTED_EVENT";
492 	case WMI_SEARCH_STARTED_EVENTID:
493 		return "WMI_SEARCH_STARTED_EVENT";
494 	case WMI_DISCOVERY_STOPPED_EVENTID:
495 		return "WMI_DISCOVERY_STOPPED_EVENT";
496 	case WMI_CFG_RX_CHAIN_DONE_EVENTID:
497 		return "WMI_CFG_RX_CHAIN_DONE_EVENT";
498 	case WMI_TEMP_SENSE_DONE_EVENTID:
499 		return "WMI_TEMP_SENSE_DONE_EVENT";
500 	case WMI_RCP_ADDBA_RESP_SENT_EVENTID:
501 		return "WMI_RCP_ADDBA_RESP_SENT_EVENT";
502 	case WMI_PS_DEV_PROFILE_CFG_EVENTID:
503 		return "WMI_PS_DEV_PROFILE_CFG_EVENT";
504 	case WMI_SET_MGMT_RETRY_LIMIT_EVENTID:
505 		return "WMI_SET_MGMT_RETRY_LIMIT_EVENT";
506 	case WMI_GET_MGMT_RETRY_LIMIT_EVENTID:
507 		return "WMI_GET_MGMT_RETRY_LIMIT_EVENT";
508 	case WMI_SET_THERMAL_THROTTLING_CFG_EVENTID:
509 		return "WMI_SET_THERMAL_THROTTLING_CFG_EVENT";
510 	case WMI_GET_THERMAL_THROTTLING_CFG_EVENTID:
511 		return "WMI_GET_THERMAL_THROTTLING_CFG_EVENT";
512 	case WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENTID:
513 		return "WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENT";
514 	case WMI_LO_POWER_CALIB_FROM_OTP_EVENTID:
515 		return "WMI_LO_POWER_CALIB_FROM_OTP_EVENT";
516 	case WMI_START_SCHED_SCAN_EVENTID:
517 		return "WMI_START_SCHED_SCAN_EVENT";
518 	case WMI_STOP_SCHED_SCAN_EVENTID:
519 		return "WMI_STOP_SCHED_SCAN_EVENT";
520 	case WMI_SCHED_SCAN_RESULT_EVENTID:
521 		return "WMI_SCHED_SCAN_RESULT_EVENT";
522 	default:
523 		return "Untracked EVENT";
524 	}
525 }
526 
527 static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid,
528 		      void *buf, u16 len)
529 {
530 	struct {
531 		struct wil6210_mbox_hdr hdr;
532 		struct wmi_cmd_hdr wmi;
533 	} __packed cmd = {
534 		.hdr = {
535 			.type = WIL_MBOX_HDR_TYPE_WMI,
536 			.flags = 0,
537 			.len = cpu_to_le16(sizeof(cmd.wmi) + len),
538 		},
539 		.wmi = {
540 			.mid = mid,
541 			.command_id = cpu_to_le16(cmdid),
542 		},
543 	};
544 	struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
545 	struct wil6210_mbox_ring_desc d_head;
546 	u32 next_head;
547 	void __iomem *dst;
548 	void __iomem *head = wmi_addr(wil, r->head);
549 	uint retry;
550 	int rc = 0;
551 
552 	if (len > r->entry_size - sizeof(cmd)) {
553 		wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
554 			(int)(sizeof(cmd) + len), r->entry_size);
555 		return -ERANGE;
556 	}
557 
558 	might_sleep();
559 
560 	if (!test_bit(wil_status_fwready, wil->status)) {
561 		wil_err(wil, "WMI: cannot send command while FW not ready\n");
562 		return -EAGAIN;
563 	}
564 
565 	/* Allow sending only suspend / resume commands during susepnd flow */
566 	if ((test_bit(wil_status_suspending, wil->status) ||
567 	     test_bit(wil_status_suspended, wil->status) ||
568 	     test_bit(wil_status_resuming, wil->status)) &&
569 	     ((cmdid != WMI_TRAFFIC_SUSPEND_CMDID) &&
570 	      (cmdid != WMI_TRAFFIC_RESUME_CMDID))) {
571 		wil_err(wil, "WMI: reject send_command during suspend\n");
572 		return -EINVAL;
573 	}
574 
575 	if (!head) {
576 		wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
577 		return -EINVAL;
578 	}
579 
580 	wil_halp_vote(wil);
581 
582 	/* read Tx head till it is not busy */
583 	for (retry = 5; retry > 0; retry--) {
584 		wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
585 		if (d_head.sync == 0)
586 			break;
587 		msleep(20);
588 	}
589 	if (d_head.sync != 0) {
590 		wil_err(wil, "WMI head busy\n");
591 		rc = -EBUSY;
592 		goto out;
593 	}
594 	/* next head */
595 	next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
596 	wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
597 	/* wait till FW finish with previous command */
598 	for (retry = 5; retry > 0; retry--) {
599 		if (!test_bit(wil_status_fwready, wil->status)) {
600 			wil_err(wil, "WMI: cannot send command while FW not ready\n");
601 			rc = -EAGAIN;
602 			goto out;
603 		}
604 		r->tail = wil_r(wil, RGF_MBOX +
605 				offsetof(struct wil6210_mbox_ctl, tx.tail));
606 		if (next_head != r->tail)
607 			break;
608 		msleep(20);
609 	}
610 	if (next_head == r->tail) {
611 		wil_err(wil, "WMI ring full\n");
612 		rc = -EBUSY;
613 		goto out;
614 	}
615 	dst = wmi_buffer(wil, d_head.addr);
616 	if (!dst) {
617 		wil_err(wil, "invalid WMI buffer: 0x%08x\n",
618 			le32_to_cpu(d_head.addr));
619 		rc = -EAGAIN;
620 		goto out;
621 	}
622 	cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
623 	/* set command */
624 	wil_dbg_wmi(wil, "sending %s (0x%04x) [%d] mid %d\n",
625 		    cmdid2name(cmdid), cmdid, len, mid);
626 	wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
627 			 sizeof(cmd), true);
628 	wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
629 			 len, true);
630 	wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
631 	wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
632 	/* mark entry as full */
633 	wil_w(wil, r->head + offsetof(struct wil6210_mbox_ring_desc, sync), 1);
634 	/* advance next ptr */
635 	wil_w(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, tx.head),
636 	      r->head = next_head);
637 
638 	trace_wil6210_wmi_cmd(&cmd.wmi, buf, len);
639 
640 	/* interrupt to FW */
641 	wil_w(wil, RGF_USER_USER_ICR + offsetof(struct RGF_ICR, ICS),
642 	      SW_INT_MBOX);
643 
644 out:
645 	wil_halp_unvote(wil);
646 	return rc;
647 }
648 
649 int wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len)
650 {
651 	int rc;
652 
653 	mutex_lock(&wil->wmi_mutex);
654 	rc = __wmi_send(wil, cmdid, mid, buf, len);
655 	mutex_unlock(&wil->wmi_mutex);
656 
657 	return rc;
658 }
659 
660 /*=== Event handlers ===*/
661 static void wmi_evt_ready(struct wil6210_vif *vif, int id, void *d, int len)
662 {
663 	struct wil6210_priv *wil = vif_to_wil(vif);
664 	struct wiphy *wiphy = wil_to_wiphy(wil);
665 	struct wmi_ready_event *evt = d;
666 
667 	wil_info(wil, "FW ver. %s(SW %d); MAC %pM; %d MID's\n",
668 		 wil->fw_version, le32_to_cpu(evt->sw_version),
669 		 evt->mac, evt->numof_additional_mids);
670 	if (evt->numof_additional_mids + 1 < wil->max_vifs) {
671 		wil_err(wil, "FW does not support enough MIDs (need %d)",
672 			wil->max_vifs - 1);
673 		return; /* FW load will fail after timeout */
674 	}
675 	/* ignore MAC address, we already have it from the boot loader */
676 	strlcpy(wiphy->fw_version, wil->fw_version, sizeof(wiphy->fw_version));
677 
678 	if (len > offsetof(struct wmi_ready_event, rfc_read_calib_result)) {
679 		wil_dbg_wmi(wil, "rfc calibration result %d\n",
680 			    evt->rfc_read_calib_result);
681 		wil->fw_calib_result = evt->rfc_read_calib_result;
682 	}
683 	wil_set_recovery_state(wil, fw_recovery_idle);
684 	set_bit(wil_status_fwready, wil->status);
685 	/* let the reset sequence continue */
686 	complete(&wil->wmi_ready);
687 }
688 
689 static void wmi_evt_rx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
690 {
691 	struct wil6210_priv *wil = vif_to_wil(vif);
692 	struct wmi_rx_mgmt_packet_event *data = d;
693 	struct wiphy *wiphy = wil_to_wiphy(wil);
694 	struct ieee80211_mgmt *rx_mgmt_frame =
695 			(struct ieee80211_mgmt *)data->payload;
696 	int flen = len - offsetof(struct wmi_rx_mgmt_packet_event, payload);
697 	int ch_no;
698 	u32 freq;
699 	struct ieee80211_channel *channel;
700 	s32 signal;
701 	__le16 fc;
702 	u32 d_len;
703 	u16 d_status;
704 
705 	if (flen < 0) {
706 		wil_err(wil, "MGMT Rx: short event, len %d\n", len);
707 		return;
708 	}
709 
710 	d_len = le32_to_cpu(data->info.len);
711 	if (d_len != flen) {
712 		wil_err(wil,
713 			"MGMT Rx: length mismatch, d_len %d should be %d\n",
714 			d_len, flen);
715 		return;
716 	}
717 
718 	ch_no = data->info.channel + 1;
719 	freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
720 	channel = ieee80211_get_channel(wiphy, freq);
721 	if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
722 		signal = 100 * data->info.rssi;
723 	else
724 		signal = data->info.sqi;
725 	d_status = le16_to_cpu(data->info.status);
726 	fc = rx_mgmt_frame->frame_control;
727 
728 	wil_dbg_wmi(wil, "MGMT Rx: channel %d MCS %d RSSI %d SQI %d%%\n",
729 		    data->info.channel, data->info.mcs, data->info.rssi,
730 		    data->info.sqi);
731 	wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
732 		    le16_to_cpu(fc));
733 	wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
734 		    data->info.qid, data->info.mid, data->info.cid);
735 	wil_hex_dump_wmi("MGMT Rx ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
736 			 d_len, true);
737 
738 	if (!channel) {
739 		wil_err(wil, "Frame on unsupported channel\n");
740 		return;
741 	}
742 
743 	if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
744 		struct cfg80211_bss *bss;
745 		u64 tsf = le64_to_cpu(rx_mgmt_frame->u.beacon.timestamp);
746 		u16 cap = le16_to_cpu(rx_mgmt_frame->u.beacon.capab_info);
747 		u16 bi = le16_to_cpu(rx_mgmt_frame->u.beacon.beacon_int);
748 		const u8 *ie_buf = rx_mgmt_frame->u.beacon.variable;
749 		size_t ie_len = d_len - offsetof(struct ieee80211_mgmt,
750 						 u.beacon.variable);
751 		wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
752 		wil_dbg_wmi(wil, "TSF : 0x%016llx\n", tsf);
753 		wil_dbg_wmi(wil, "Beacon interval : %d\n", bi);
754 		wil_hex_dump_wmi("IE ", DUMP_PREFIX_OFFSET, 16, 1, ie_buf,
755 				 ie_len, true);
756 
757 		wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
758 
759 		bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
760 						d_len, signal, GFP_KERNEL);
761 		if (bss) {
762 			wil_dbg_wmi(wil, "Added BSS %pM\n",
763 				    rx_mgmt_frame->bssid);
764 			cfg80211_put_bss(wiphy, bss);
765 		} else {
766 			wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
767 		}
768 	} else {
769 		mutex_lock(&wil->vif_mutex);
770 		cfg80211_rx_mgmt(vif_to_radio_wdev(wil, vif), freq, signal,
771 				 (void *)rx_mgmt_frame, d_len, 0);
772 		mutex_unlock(&wil->vif_mutex);
773 	}
774 }
775 
776 static void wmi_evt_tx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
777 {
778 	struct wmi_tx_mgmt_packet_event *data = d;
779 	struct ieee80211_mgmt *mgmt_frame =
780 			(struct ieee80211_mgmt *)data->payload;
781 	int flen = len - offsetof(struct wmi_tx_mgmt_packet_event, payload);
782 
783 	wil_hex_dump_wmi("MGMT Tx ", DUMP_PREFIX_OFFSET, 16, 1, mgmt_frame,
784 			 flen, true);
785 }
786 
787 static void wmi_evt_scan_complete(struct wil6210_vif *vif, int id,
788 				  void *d, int len)
789 {
790 	struct wil6210_priv *wil = vif_to_wil(vif);
791 
792 	mutex_lock(&wil->vif_mutex);
793 	if (vif->scan_request) {
794 		struct wmi_scan_complete_event *data = d;
795 		int status = le32_to_cpu(data->status);
796 		struct cfg80211_scan_info info = {
797 			.aborted = ((status != WMI_SCAN_SUCCESS) &&
798 				(status != WMI_SCAN_ABORT_REJECTED)),
799 		};
800 
801 		wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", status);
802 		wil_dbg_misc(wil, "Complete scan_request 0x%p aborted %d\n",
803 			     vif->scan_request, info.aborted);
804 		del_timer_sync(&vif->scan_timer);
805 		cfg80211_scan_done(vif->scan_request, &info);
806 		if (vif->mid == 0)
807 			wil->radio_wdev = wil->main_ndev->ieee80211_ptr;
808 		vif->scan_request = NULL;
809 		wake_up_interruptible(&wil->wq);
810 		if (vif->p2p.pending_listen_wdev) {
811 			wil_dbg_misc(wil, "Scheduling delayed listen\n");
812 			schedule_work(&vif->p2p.delayed_listen_work);
813 		}
814 	} else {
815 		wil_err(wil, "SCAN_COMPLETE while not scanning\n");
816 	}
817 	mutex_unlock(&wil->vif_mutex);
818 }
819 
820 static void wmi_evt_connect(struct wil6210_vif *vif, int id, void *d, int len)
821 {
822 	struct wil6210_priv *wil = vif_to_wil(vif);
823 	struct net_device *ndev = vif_to_ndev(vif);
824 	struct wireless_dev *wdev = vif_to_wdev(vif);
825 	struct wmi_connect_event *evt = d;
826 	int ch; /* channel number */
827 	struct station_info sinfo;
828 	u8 *assoc_req_ie, *assoc_resp_ie;
829 	size_t assoc_req_ielen, assoc_resp_ielen;
830 	/* capinfo(u16) + listen_interval(u16) + IEs */
831 	const size_t assoc_req_ie_offset = sizeof(u16) * 2;
832 	/* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
833 	const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
834 	int rc;
835 
836 	if (len < sizeof(*evt)) {
837 		wil_err(wil, "Connect event too short : %d bytes\n", len);
838 		return;
839 	}
840 	if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
841 		   evt->assoc_resp_len) {
842 		wil_err(wil,
843 			"Connect event corrupted : %d != %d + %d + %d + %d\n",
844 			len, (int)sizeof(*evt), evt->beacon_ie_len,
845 			evt->assoc_req_len, evt->assoc_resp_len);
846 		return;
847 	}
848 	if (evt->cid >= WIL6210_MAX_CID) {
849 		wil_err(wil, "Connect CID invalid : %d\n", evt->cid);
850 		return;
851 	}
852 
853 	ch = evt->channel + 1;
854 	wil_info(wil, "Connect %pM channel [%d] cid %d aid %d\n",
855 		 evt->bssid, ch, evt->cid, evt->aid);
856 	wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
857 			 evt->assoc_info, len - sizeof(*evt), true);
858 
859 	/* figure out IE's */
860 	assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
861 					assoc_req_ie_offset];
862 	assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
863 	if (evt->assoc_req_len <= assoc_req_ie_offset) {
864 		assoc_req_ie = NULL;
865 		assoc_req_ielen = 0;
866 	}
867 
868 	assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
869 					 evt->assoc_req_len +
870 					 assoc_resp_ie_offset];
871 	assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
872 	if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
873 		assoc_resp_ie = NULL;
874 		assoc_resp_ielen = 0;
875 	}
876 
877 	if (test_bit(wil_status_resetting, wil->status) ||
878 	    !test_bit(wil_status_fwready, wil->status)) {
879 		wil_err(wil, "status_resetting, cancel connect event, CID %d\n",
880 			evt->cid);
881 		/* no need for cleanup, wil_reset will do that */
882 		return;
883 	}
884 
885 	mutex_lock(&wil->mutex);
886 
887 	if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
888 	    (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
889 		if (!test_bit(wil_vif_fwconnecting, vif->status)) {
890 			wil_err(wil, "Not in connecting state\n");
891 			mutex_unlock(&wil->mutex);
892 			return;
893 		}
894 		del_timer_sync(&vif->connect_timer);
895 	} else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
896 		   (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
897 		if (wil->sta[evt->cid].status != wil_sta_unused) {
898 			wil_err(wil, "AP: Invalid status %d for CID %d\n",
899 				wil->sta[evt->cid].status, evt->cid);
900 			mutex_unlock(&wil->mutex);
901 			return;
902 		}
903 	}
904 
905 	ether_addr_copy(wil->sta[evt->cid].addr, evt->bssid);
906 	wil->sta[evt->cid].mid = vif->mid;
907 	wil->sta[evt->cid].status = wil_sta_conn_pending;
908 
909 	rc = wil_tx_init(vif, evt->cid);
910 	if (rc) {
911 		wil_err(wil, "config tx vring failed for CID %d, rc (%d)\n",
912 			evt->cid, rc);
913 		wmi_disconnect_sta(vif, wil->sta[evt->cid].addr,
914 				   WLAN_REASON_UNSPECIFIED, false, false);
915 	} else {
916 		wil_info(wil, "successful connection to CID %d\n", evt->cid);
917 	}
918 
919 	if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
920 	    (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
921 		if (rc) {
922 			netif_carrier_off(ndev);
923 			wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
924 			wil_err(wil, "cfg80211_connect_result with failure\n");
925 			cfg80211_connect_result(ndev, evt->bssid, NULL, 0,
926 						NULL, 0,
927 						WLAN_STATUS_UNSPECIFIED_FAILURE,
928 						GFP_KERNEL);
929 			goto out;
930 		} else {
931 			struct wiphy *wiphy = wil_to_wiphy(wil);
932 
933 			cfg80211_ref_bss(wiphy, vif->bss);
934 			cfg80211_connect_bss(ndev, evt->bssid, vif->bss,
935 					     assoc_req_ie, assoc_req_ielen,
936 					     assoc_resp_ie, assoc_resp_ielen,
937 					     WLAN_STATUS_SUCCESS, GFP_KERNEL,
938 					     NL80211_TIMEOUT_UNSPECIFIED);
939 		}
940 		vif->bss = NULL;
941 	} else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
942 		   (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
943 		if (rc) {
944 			if (disable_ap_sme)
945 				/* notify new_sta has failed */
946 				cfg80211_del_sta(ndev, evt->bssid, GFP_KERNEL);
947 			goto out;
948 		}
949 
950 		memset(&sinfo, 0, sizeof(sinfo));
951 
952 		sinfo.generation = wil->sinfo_gen++;
953 
954 		if (assoc_req_ie) {
955 			sinfo.assoc_req_ies = assoc_req_ie;
956 			sinfo.assoc_req_ies_len = assoc_req_ielen;
957 		}
958 
959 		cfg80211_new_sta(ndev, evt->bssid, &sinfo, GFP_KERNEL);
960 	} else {
961 		wil_err(wil, "unhandled iftype %d for CID %d\n", wdev->iftype,
962 			evt->cid);
963 		goto out;
964 	}
965 
966 	wil->sta[evt->cid].status = wil_sta_connected;
967 	wil->sta[evt->cid].aid = evt->aid;
968 	if (!test_and_set_bit(wil_vif_fwconnected, vif->status))
969 		atomic_inc(&wil->connected_vifs);
970 	wil_update_net_queues_bh(wil, vif, NULL, false);
971 
972 out:
973 	if (rc) {
974 		wil->sta[evt->cid].status = wil_sta_unused;
975 		wil->sta[evt->cid].mid = U8_MAX;
976 	}
977 	clear_bit(wil_vif_fwconnecting, vif->status);
978 	mutex_unlock(&wil->mutex);
979 }
980 
981 static void wmi_evt_disconnect(struct wil6210_vif *vif, int id,
982 			       void *d, int len)
983 {
984 	struct wil6210_priv *wil = vif_to_wil(vif);
985 	struct wmi_disconnect_event *evt = d;
986 	u16 reason_code = le16_to_cpu(evt->protocol_reason_status);
987 
988 	wil_info(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
989 		 evt->bssid, reason_code, evt->disconnect_reason);
990 
991 	wil->sinfo_gen++;
992 
993 	if (test_bit(wil_status_resetting, wil->status) ||
994 	    !test_bit(wil_status_fwready, wil->status)) {
995 		wil_err(wil, "status_resetting, cancel disconnect event\n");
996 		/* no need for cleanup, wil_reset will do that */
997 		return;
998 	}
999 
1000 	mutex_lock(&wil->mutex);
1001 	wil6210_disconnect(vif, evt->bssid, reason_code, true);
1002 	mutex_unlock(&wil->mutex);
1003 }
1004 
1005 /*
1006  * Firmware reports EAPOL frame using WME event.
1007  * Reconstruct Ethernet frame and deliver it via normal Rx
1008  */
1009 static void wmi_evt_eapol_rx(struct wil6210_vif *vif, int id, void *d, int len)
1010 {
1011 	struct wil6210_priv *wil = vif_to_wil(vif);
1012 	struct net_device *ndev = vif_to_ndev(vif);
1013 	struct wmi_eapol_rx_event *evt = d;
1014 	u16 eapol_len = le16_to_cpu(evt->eapol_len);
1015 	int sz = eapol_len + ETH_HLEN;
1016 	struct sk_buff *skb;
1017 	struct ethhdr *eth;
1018 	int cid;
1019 	struct wil_net_stats *stats = NULL;
1020 
1021 	wil_dbg_wmi(wil, "EAPOL len %d from %pM MID %d\n", eapol_len,
1022 		    evt->src_mac, vif->mid);
1023 
1024 	cid = wil_find_cid(wil, vif->mid, evt->src_mac);
1025 	if (cid >= 0)
1026 		stats = &wil->sta[cid].stats;
1027 
1028 	if (eapol_len > 196) { /* TODO: revisit size limit */
1029 		wil_err(wil, "EAPOL too large\n");
1030 		return;
1031 	}
1032 
1033 	skb = alloc_skb(sz, GFP_KERNEL);
1034 	if (!skb) {
1035 		wil_err(wil, "Failed to allocate skb\n");
1036 		return;
1037 	}
1038 
1039 	eth = skb_put(skb, ETH_HLEN);
1040 	ether_addr_copy(eth->h_dest, ndev->dev_addr);
1041 	ether_addr_copy(eth->h_source, evt->src_mac);
1042 	eth->h_proto = cpu_to_be16(ETH_P_PAE);
1043 	skb_put_data(skb, evt->eapol, eapol_len);
1044 	skb->protocol = eth_type_trans(skb, ndev);
1045 	if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
1046 		ndev->stats.rx_packets++;
1047 		ndev->stats.rx_bytes += sz;
1048 		if (stats) {
1049 			stats->rx_packets++;
1050 			stats->rx_bytes += sz;
1051 		}
1052 	} else {
1053 		ndev->stats.rx_dropped++;
1054 		if (stats)
1055 			stats->rx_dropped++;
1056 	}
1057 }
1058 
1059 static void wmi_evt_vring_en(struct wil6210_vif *vif, int id, void *d, int len)
1060 {
1061 	struct wil6210_priv *wil = vif_to_wil(vif);
1062 	struct wmi_vring_en_event *evt = d;
1063 	u8 vri = evt->vring_index;
1064 	struct wireless_dev *wdev = vif_to_wdev(vif);
1065 
1066 	wil_dbg_wmi(wil, "Enable vring %d MID %d\n", vri, vif->mid);
1067 
1068 	if (vri >= ARRAY_SIZE(wil->vring_tx)) {
1069 		wil_err(wil, "Enable for invalid vring %d\n", vri);
1070 		return;
1071 	}
1072 
1073 	if (wdev->iftype != NL80211_IFTYPE_AP || !disable_ap_sme)
1074 		/* in AP mode with disable_ap_sme, this is done by
1075 		 * wil_cfg80211_change_station()
1076 		 */
1077 		wil->vring_tx_data[vri].dot1x_open = true;
1078 	if (vri == vif->bcast_vring) /* no BA for bcast */
1079 		return;
1080 	if (agg_wsize >= 0)
1081 		wil_addba_tx_request(wil, vri, agg_wsize);
1082 }
1083 
1084 static void wmi_evt_ba_status(struct wil6210_vif *vif, int id,
1085 			      void *d, int len)
1086 {
1087 	struct wil6210_priv *wil = vif_to_wil(vif);
1088 	struct wmi_ba_status_event *evt = d;
1089 	struct vring_tx_data *txdata;
1090 
1091 	wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d AMSDU%s\n",
1092 		    evt->ringid,
1093 		    evt->status == WMI_BA_AGREED ? "OK" : "N/A",
1094 		    evt->agg_wsize, __le16_to_cpu(evt->ba_timeout),
1095 		    evt->amsdu ? "+" : "-");
1096 
1097 	if (evt->ringid >= WIL6210_MAX_TX_RINGS) {
1098 		wil_err(wil, "invalid ring id %d\n", evt->ringid);
1099 		return;
1100 	}
1101 
1102 	if (evt->status != WMI_BA_AGREED) {
1103 		evt->ba_timeout = 0;
1104 		evt->agg_wsize = 0;
1105 		evt->amsdu = 0;
1106 	}
1107 
1108 	txdata = &wil->vring_tx_data[evt->ringid];
1109 
1110 	txdata->agg_timeout = le16_to_cpu(evt->ba_timeout);
1111 	txdata->agg_wsize = evt->agg_wsize;
1112 	txdata->agg_amsdu = evt->amsdu;
1113 	txdata->addba_in_progress = false;
1114 }
1115 
1116 static void wmi_evt_addba_rx_req(struct wil6210_vif *vif, int id,
1117 				 void *d, int len)
1118 {
1119 	struct wil6210_priv *wil = vif_to_wil(vif);
1120 	struct wmi_rcp_addba_req_event *evt = d;
1121 
1122 	wil_addba_rx_request(wil, vif->mid, evt->cidxtid, evt->dialog_token,
1123 			     evt->ba_param_set, evt->ba_timeout,
1124 			     evt->ba_seq_ctrl);
1125 }
1126 
1127 static void wmi_evt_delba(struct wil6210_vif *vif, int id, void *d, int len)
1128 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
1129 {
1130 	struct wil6210_priv *wil = vif_to_wil(vif);
1131 	struct wmi_delba_event *evt = d;
1132 	u8 cid, tid;
1133 	u16 reason = __le16_to_cpu(evt->reason);
1134 	struct wil_sta_info *sta;
1135 	struct wil_tid_ampdu_rx *r;
1136 
1137 	might_sleep();
1138 	parse_cidxtid(evt->cidxtid, &cid, &tid);
1139 	wil_dbg_wmi(wil, "DELBA MID %d CID %d TID %d from %s reason %d\n",
1140 		    vif->mid, cid, tid,
1141 		    evt->from_initiator ? "originator" : "recipient",
1142 		    reason);
1143 	if (!evt->from_initiator) {
1144 		int i;
1145 		/* find Tx vring it belongs to */
1146 		for (i = 0; i < ARRAY_SIZE(wil->vring2cid_tid); i++) {
1147 			if ((wil->vring2cid_tid[i][0] == cid) &&
1148 			    (wil->vring2cid_tid[i][1] == tid)) {
1149 				struct vring_tx_data *txdata =
1150 					&wil->vring_tx_data[i];
1151 
1152 				wil_dbg_wmi(wil, "DELBA Tx vring %d\n", i);
1153 				txdata->agg_timeout = 0;
1154 				txdata->agg_wsize = 0;
1155 				txdata->addba_in_progress = false;
1156 
1157 				break; /* max. 1 matching ring */
1158 			}
1159 		}
1160 		if (i >= ARRAY_SIZE(wil->vring2cid_tid))
1161 			wil_err(wil, "DELBA: unable to find Tx vring\n");
1162 		return;
1163 	}
1164 
1165 	sta = &wil->sta[cid];
1166 
1167 	spin_lock_bh(&sta->tid_rx_lock);
1168 
1169 	r = sta->tid_rx[tid];
1170 	sta->tid_rx[tid] = NULL;
1171 	wil_tid_ampdu_rx_free(wil, r);
1172 
1173 	spin_unlock_bh(&sta->tid_rx_lock);
1174 }
1175 
1176 static void
1177 wmi_evt_sched_scan_result(struct wil6210_vif *vif, int id, void *d, int len)
1178 {
1179 	struct wil6210_priv *wil = vif_to_wil(vif);
1180 	struct wmi_sched_scan_result_event *data = d;
1181 	struct wiphy *wiphy = wil_to_wiphy(wil);
1182 	struct ieee80211_mgmt *rx_mgmt_frame =
1183 		(struct ieee80211_mgmt *)data->payload;
1184 	int flen = len - offsetof(struct wmi_sched_scan_result_event, payload);
1185 	int ch_no;
1186 	u32 freq;
1187 	struct ieee80211_channel *channel;
1188 	s32 signal;
1189 	__le16 fc;
1190 	u32 d_len;
1191 	struct cfg80211_bss *bss;
1192 
1193 	if (flen < 0) {
1194 		wil_err(wil, "sched scan result event too short, len %d\n",
1195 			len);
1196 		return;
1197 	}
1198 
1199 	d_len = le32_to_cpu(data->info.len);
1200 	if (d_len != flen) {
1201 		wil_err(wil,
1202 			"sched scan result length mismatch, d_len %d should be %d\n",
1203 			d_len, flen);
1204 		return;
1205 	}
1206 
1207 	fc = rx_mgmt_frame->frame_control;
1208 	if (!ieee80211_is_probe_resp(fc)) {
1209 		wil_err(wil, "sched scan result invalid frame, fc 0x%04x\n",
1210 			fc);
1211 		return;
1212 	}
1213 
1214 	ch_no = data->info.channel + 1;
1215 	freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
1216 	channel = ieee80211_get_channel(wiphy, freq);
1217 	if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1218 		signal = 100 * data->info.rssi;
1219 	else
1220 		signal = data->info.sqi;
1221 
1222 	wil_dbg_wmi(wil, "sched scan result: channel %d MCS %d RSSI %d\n",
1223 		    data->info.channel, data->info.mcs, data->info.rssi);
1224 	wil_dbg_wmi(wil, "len %d qid %d mid %d cid %d\n",
1225 		    d_len, data->info.qid, data->info.mid, data->info.cid);
1226 	wil_hex_dump_wmi("PROBE ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
1227 			 d_len, true);
1228 
1229 	if (!channel) {
1230 		wil_err(wil, "Frame on unsupported channel\n");
1231 		return;
1232 	}
1233 
1234 	bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
1235 					d_len, signal, GFP_KERNEL);
1236 	if (bss) {
1237 		wil_dbg_wmi(wil, "Added BSS %pM\n", rx_mgmt_frame->bssid);
1238 		cfg80211_put_bss(wiphy, bss);
1239 	} else {
1240 		wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
1241 	}
1242 
1243 	cfg80211_sched_scan_results(wiphy, 0);
1244 }
1245 
1246 /**
1247  * Some events are ignored for purpose; and need not be interpreted as
1248  * "unhandled events"
1249  */
1250 static void wmi_evt_ignore(struct wil6210_vif *vif, int id, void *d, int len)
1251 {
1252 	struct wil6210_priv *wil = vif_to_wil(vif);
1253 
1254 	wil_dbg_wmi(wil, "Ignore event 0x%04x len %d\n", id, len);
1255 }
1256 
1257 static const struct {
1258 	int eventid;
1259 	void (*handler)(struct wil6210_vif *vif,
1260 			int eventid, void *data, int data_len);
1261 } wmi_evt_handlers[] = {
1262 	{WMI_READY_EVENTID,		wmi_evt_ready},
1263 	{WMI_FW_READY_EVENTID,			wmi_evt_ignore},
1264 	{WMI_RX_MGMT_PACKET_EVENTID,	wmi_evt_rx_mgmt},
1265 	{WMI_TX_MGMT_PACKET_EVENTID,		wmi_evt_tx_mgmt},
1266 	{WMI_SCAN_COMPLETE_EVENTID,	wmi_evt_scan_complete},
1267 	{WMI_CONNECT_EVENTID,		wmi_evt_connect},
1268 	{WMI_DISCONNECT_EVENTID,	wmi_evt_disconnect},
1269 	{WMI_EAPOL_RX_EVENTID,		wmi_evt_eapol_rx},
1270 	{WMI_BA_STATUS_EVENTID,		wmi_evt_ba_status},
1271 	{WMI_RCP_ADDBA_REQ_EVENTID,	wmi_evt_addba_rx_req},
1272 	{WMI_DELBA_EVENTID,		wmi_evt_delba},
1273 	{WMI_VRING_EN_EVENTID,		wmi_evt_vring_en},
1274 	{WMI_DATA_PORT_OPEN_EVENTID,		wmi_evt_ignore},
1275 	{WMI_SCHED_SCAN_RESULT_EVENTID,		wmi_evt_sched_scan_result},
1276 };
1277 
1278 /*
1279  * Run in IRQ context
1280  * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
1281  * that will be eventually handled by the @wmi_event_worker in the thread
1282  * context of thread "wil6210_wmi"
1283  */
1284 void wmi_recv_cmd(struct wil6210_priv *wil)
1285 {
1286 	struct wil6210_mbox_ring_desc d_tail;
1287 	struct wil6210_mbox_hdr hdr;
1288 	struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
1289 	struct pending_wmi_event *evt;
1290 	u8 *cmd;
1291 	void __iomem *src;
1292 	ulong flags;
1293 	unsigned n;
1294 	unsigned int num_immed_reply = 0;
1295 
1296 	if (!test_bit(wil_status_mbox_ready, wil->status)) {
1297 		wil_err(wil, "Reset in progress. Cannot handle WMI event\n");
1298 		return;
1299 	}
1300 
1301 	if (test_bit(wil_status_suspended, wil->status)) {
1302 		wil_err(wil, "suspended. cannot handle WMI event\n");
1303 		return;
1304 	}
1305 
1306 	for (n = 0;; n++) {
1307 		u16 len;
1308 		bool q;
1309 		bool immed_reply = false;
1310 
1311 		r->head = wil_r(wil, RGF_MBOX +
1312 				offsetof(struct wil6210_mbox_ctl, rx.head));
1313 		if (r->tail == r->head)
1314 			break;
1315 
1316 		wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n",
1317 			    r->head, r->tail);
1318 		/* read cmd descriptor from tail */
1319 		wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
1320 				     sizeof(struct wil6210_mbox_ring_desc));
1321 		if (d_tail.sync == 0) {
1322 			wil_err(wil, "Mbox evt not owned by FW?\n");
1323 			break;
1324 		}
1325 
1326 		/* read cmd header from descriptor */
1327 		if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
1328 			wil_err(wil, "Mbox evt at 0x%08x?\n",
1329 				le32_to_cpu(d_tail.addr));
1330 			break;
1331 		}
1332 		len = le16_to_cpu(hdr.len);
1333 		wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
1334 			    le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
1335 			    hdr.flags);
1336 
1337 		/* read cmd buffer from descriptor */
1338 		src = wmi_buffer(wil, d_tail.addr) +
1339 		      sizeof(struct wil6210_mbox_hdr);
1340 		evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
1341 					     event.wmi) + len, 4),
1342 			      GFP_KERNEL);
1343 		if (!evt)
1344 			break;
1345 
1346 		evt->event.hdr = hdr;
1347 		cmd = (void *)&evt->event.wmi;
1348 		wil_memcpy_fromio_32(cmd, src, len);
1349 		/* mark entry as empty */
1350 		wil_w(wil, r->tail +
1351 		      offsetof(struct wil6210_mbox_ring_desc, sync), 0);
1352 		/* indicate */
1353 		if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
1354 		    (len >= sizeof(struct wmi_cmd_hdr))) {
1355 			struct wmi_cmd_hdr *wmi = &evt->event.wmi;
1356 			u16 id = le16_to_cpu(wmi->command_id);
1357 			u8 mid = wmi->mid;
1358 			u32 tstamp = le32_to_cpu(wmi->fw_timestamp);
1359 			if (test_bit(wil_status_resuming, wil->status)) {
1360 				if (id == WMI_TRAFFIC_RESUME_EVENTID)
1361 					clear_bit(wil_status_resuming,
1362 						  wil->status);
1363 				else
1364 					wil_err(wil,
1365 						"WMI evt %d while resuming\n",
1366 						id);
1367 			}
1368 			spin_lock_irqsave(&wil->wmi_ev_lock, flags);
1369 			if (wil->reply_id && wil->reply_id == id &&
1370 			    wil->reply_mid == mid) {
1371 				if (wil->reply_buf) {
1372 					memcpy(wil->reply_buf, wmi,
1373 					       min(len, wil->reply_size));
1374 					immed_reply = true;
1375 				}
1376 				if (id == WMI_TRAFFIC_SUSPEND_EVENTID) {
1377 					wil_dbg_wmi(wil,
1378 						    "set suspend_resp_rcvd\n");
1379 					wil->suspend_resp_rcvd = true;
1380 				}
1381 			}
1382 			spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
1383 
1384 			wil_dbg_wmi(wil, "recv %s (0x%04x) MID %d @%d msec\n",
1385 				    eventid2name(id), id, wmi->mid, tstamp);
1386 			trace_wil6210_wmi_event(wmi, &wmi[1],
1387 						len - sizeof(*wmi));
1388 		}
1389 		wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
1390 				 &evt->event.hdr, sizeof(hdr) + len, true);
1391 
1392 		/* advance tail */
1393 		r->tail = r->base + ((r->tail - r->base +
1394 			  sizeof(struct wil6210_mbox_ring_desc)) % r->size);
1395 		wil_w(wil, RGF_MBOX +
1396 		      offsetof(struct wil6210_mbox_ctl, rx.tail), r->tail);
1397 
1398 		if (immed_reply) {
1399 			wil_dbg_wmi(wil, "recv_cmd: Complete WMI 0x%04x\n",
1400 				    wil->reply_id);
1401 			kfree(evt);
1402 			num_immed_reply++;
1403 			complete(&wil->wmi_call);
1404 		} else {
1405 			/* add to the pending list */
1406 			spin_lock_irqsave(&wil->wmi_ev_lock, flags);
1407 			list_add_tail(&evt->list, &wil->pending_wmi_ev);
1408 			spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
1409 			q = queue_work(wil->wmi_wq, &wil->wmi_event_worker);
1410 			wil_dbg_wmi(wil, "queue_work -> %d\n", q);
1411 		}
1412 	}
1413 	/* normally, 1 event per IRQ should be processed */
1414 	wil_dbg_wmi(wil, "recv_cmd: -> %d events queued, %d completed\n",
1415 		    n - num_immed_reply, num_immed_reply);
1416 }
1417 
1418 int wmi_call(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len,
1419 	     u16 reply_id, void *reply, u8 reply_size, int to_msec)
1420 {
1421 	int rc;
1422 	unsigned long remain;
1423 
1424 	mutex_lock(&wil->wmi_mutex);
1425 
1426 	spin_lock(&wil->wmi_ev_lock);
1427 	wil->reply_id = reply_id;
1428 	wil->reply_mid = mid;
1429 	wil->reply_buf = reply;
1430 	wil->reply_size = reply_size;
1431 	reinit_completion(&wil->wmi_call);
1432 	spin_unlock(&wil->wmi_ev_lock);
1433 
1434 	rc = __wmi_send(wil, cmdid, mid, buf, len);
1435 	if (rc)
1436 		goto out;
1437 
1438 	remain = wait_for_completion_timeout(&wil->wmi_call,
1439 					     msecs_to_jiffies(to_msec));
1440 	if (0 == remain) {
1441 		wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
1442 			cmdid, reply_id, to_msec);
1443 		rc = -ETIME;
1444 	} else {
1445 		wil_dbg_wmi(wil,
1446 			    "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
1447 			    cmdid, reply_id,
1448 			    to_msec - jiffies_to_msecs(remain));
1449 	}
1450 
1451 out:
1452 	spin_lock(&wil->wmi_ev_lock);
1453 	wil->reply_id = 0;
1454 	wil->reply_mid = U8_MAX;
1455 	wil->reply_buf = NULL;
1456 	wil->reply_size = 0;
1457 	spin_unlock(&wil->wmi_ev_lock);
1458 
1459 	mutex_unlock(&wil->wmi_mutex);
1460 
1461 	return rc;
1462 }
1463 
1464 int wmi_echo(struct wil6210_priv *wil)
1465 {
1466 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1467 	struct wmi_echo_cmd cmd = {
1468 		.value = cpu_to_le32(0x12345678),
1469 	};
1470 
1471 	return wmi_call(wil, WMI_ECHO_CMDID, vif->mid, &cmd, sizeof(cmd),
1472 			WMI_ECHO_RSP_EVENTID, NULL, 0, 50);
1473 }
1474 
1475 int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
1476 {
1477 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1478 	struct wmi_set_mac_address_cmd cmd;
1479 
1480 	ether_addr_copy(cmd.mac, addr);
1481 
1482 	wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
1483 
1484 	return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, vif->mid,
1485 			&cmd, sizeof(cmd));
1486 }
1487 
1488 int wmi_led_cfg(struct wil6210_priv *wil, bool enable)
1489 {
1490 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1491 	int rc = 0;
1492 	struct wmi_led_cfg_cmd cmd = {
1493 		.led_mode = enable,
1494 		.id = led_id,
1495 		.slow_blink_cfg.blink_on =
1496 			cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].on_ms),
1497 		.slow_blink_cfg.blink_off =
1498 			cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].off_ms),
1499 		.medium_blink_cfg.blink_on =
1500 			cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].on_ms),
1501 		.medium_blink_cfg.blink_off =
1502 			cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].off_ms),
1503 		.fast_blink_cfg.blink_on =
1504 			cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].on_ms),
1505 		.fast_blink_cfg.blink_off =
1506 			cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].off_ms),
1507 		.led_polarity = led_polarity,
1508 	};
1509 	struct {
1510 		struct wmi_cmd_hdr wmi;
1511 		struct wmi_led_cfg_done_event evt;
1512 	} __packed reply;
1513 
1514 	if (led_id == WIL_LED_INVALID_ID)
1515 		goto out;
1516 
1517 	if (led_id > WIL_LED_MAX_ID) {
1518 		wil_err(wil, "Invalid led id %d\n", led_id);
1519 		rc = -EINVAL;
1520 		goto out;
1521 	}
1522 
1523 	wil_dbg_wmi(wil,
1524 		    "%s led %d\n",
1525 		    enable ? "enabling" : "disabling", led_id);
1526 
1527 	rc = wmi_call(wil, WMI_LED_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1528 		      WMI_LED_CFG_DONE_EVENTID, &reply, sizeof(reply),
1529 		      100);
1530 	if (rc)
1531 		goto out;
1532 
1533 	if (reply.evt.status) {
1534 		wil_err(wil, "led %d cfg failed with status %d\n",
1535 			led_id, le32_to_cpu(reply.evt.status));
1536 		rc = -EINVAL;
1537 	}
1538 
1539 out:
1540 	return rc;
1541 }
1542 
1543 int wmi_pcp_start(struct wil6210_vif *vif,
1544 		  int bi, u8 wmi_nettype, u8 chan, u8 hidden_ssid, u8 is_go)
1545 {
1546 	struct wil6210_priv *wil = vif_to_wil(vif);
1547 	int rc;
1548 
1549 	struct wmi_pcp_start_cmd cmd = {
1550 		.bcon_interval = cpu_to_le16(bi),
1551 		.network_type = wmi_nettype,
1552 		.disable_sec_offload = 1,
1553 		.channel = chan - 1,
1554 		.pcp_max_assoc_sta = max_assoc_sta,
1555 		.hidden_ssid = hidden_ssid,
1556 		.is_go = is_go,
1557 		.disable_ap_sme = disable_ap_sme,
1558 		.abft_len = wil->abft_len,
1559 	};
1560 	struct {
1561 		struct wmi_cmd_hdr wmi;
1562 		struct wmi_pcp_started_event evt;
1563 	} __packed reply;
1564 
1565 	if (!vif->privacy)
1566 		cmd.disable_sec = 1;
1567 
1568 	if ((cmd.pcp_max_assoc_sta > WIL6210_MAX_CID) ||
1569 	    (cmd.pcp_max_assoc_sta <= 0)) {
1570 		wil_info(wil,
1571 			 "Requested connection limit %u, valid values are 1 - %d. Setting to %d\n",
1572 			 max_assoc_sta, WIL6210_MAX_CID, WIL6210_MAX_CID);
1573 		cmd.pcp_max_assoc_sta = WIL6210_MAX_CID;
1574 	}
1575 
1576 	if (disable_ap_sme &&
1577 	    !test_bit(WMI_FW_CAPABILITY_DISABLE_AP_SME,
1578 		      wil->fw_capabilities)) {
1579 		wil_err(wil, "disable_ap_sme not supported by FW\n");
1580 		return -EOPNOTSUPP;
1581 	}
1582 
1583 	/*
1584 	 * Processing time may be huge, in case of secure AP it takes about
1585 	 * 3500ms for FW to start AP
1586 	 */
1587 	rc = wmi_call(wil, WMI_PCP_START_CMDID, vif->mid, &cmd, sizeof(cmd),
1588 		      WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
1589 	if (rc)
1590 		return rc;
1591 
1592 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
1593 		rc = -EINVAL;
1594 
1595 	if (wmi_nettype != WMI_NETTYPE_P2P)
1596 		/* Don't fail due to error in the led configuration */
1597 		wmi_led_cfg(wil, true);
1598 
1599 	return rc;
1600 }
1601 
1602 int wmi_pcp_stop(struct wil6210_vif *vif)
1603 {
1604 	struct wil6210_priv *wil = vif_to_wil(vif);
1605 	int rc;
1606 
1607 	rc = wmi_led_cfg(wil, false);
1608 	if (rc)
1609 		return rc;
1610 
1611 	return wmi_call(wil, WMI_PCP_STOP_CMDID, vif->mid, NULL, 0,
1612 			WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
1613 }
1614 
1615 int wmi_set_ssid(struct wil6210_vif *vif, u8 ssid_len, const void *ssid)
1616 {
1617 	struct wil6210_priv *wil = vif_to_wil(vif);
1618 	struct wmi_set_ssid_cmd cmd = {
1619 		.ssid_len = cpu_to_le32(ssid_len),
1620 	};
1621 
1622 	if (ssid_len > sizeof(cmd.ssid))
1623 		return -EINVAL;
1624 
1625 	memcpy(cmd.ssid, ssid, ssid_len);
1626 
1627 	return wmi_send(wil, WMI_SET_SSID_CMDID, vif->mid, &cmd, sizeof(cmd));
1628 }
1629 
1630 int wmi_get_ssid(struct wil6210_vif *vif, u8 *ssid_len, void *ssid)
1631 {
1632 	struct wil6210_priv *wil = vif_to_wil(vif);
1633 	int rc;
1634 	struct {
1635 		struct wmi_cmd_hdr wmi;
1636 		struct wmi_set_ssid_cmd cmd;
1637 	} __packed reply;
1638 	int len; /* reply.cmd.ssid_len in CPU order */
1639 
1640 	rc = wmi_call(wil, WMI_GET_SSID_CMDID, vif->mid, NULL, 0,
1641 		      WMI_GET_SSID_EVENTID, &reply, sizeof(reply), 20);
1642 	if (rc)
1643 		return rc;
1644 
1645 	len = le32_to_cpu(reply.cmd.ssid_len);
1646 	if (len > sizeof(reply.cmd.ssid))
1647 		return -EINVAL;
1648 
1649 	*ssid_len = len;
1650 	memcpy(ssid, reply.cmd.ssid, len);
1651 
1652 	return 0;
1653 }
1654 
1655 int wmi_set_channel(struct wil6210_priv *wil, int channel)
1656 {
1657 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1658 	struct wmi_set_pcp_channel_cmd cmd = {
1659 		.channel = channel - 1,
1660 	};
1661 
1662 	return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, vif->mid,
1663 			&cmd, sizeof(cmd));
1664 }
1665 
1666 int wmi_get_channel(struct wil6210_priv *wil, int *channel)
1667 {
1668 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1669 	int rc;
1670 	struct {
1671 		struct wmi_cmd_hdr wmi;
1672 		struct wmi_set_pcp_channel_cmd cmd;
1673 	} __packed reply;
1674 
1675 	rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, vif->mid, NULL, 0,
1676 		      WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
1677 	if (rc)
1678 		return rc;
1679 
1680 	if (reply.cmd.channel > 3)
1681 		return -EINVAL;
1682 
1683 	*channel = reply.cmd.channel + 1;
1684 
1685 	return 0;
1686 }
1687 
1688 int wmi_p2p_cfg(struct wil6210_vif *vif, int channel, int bi)
1689 {
1690 	struct wil6210_priv *wil = vif_to_wil(vif);
1691 	int rc;
1692 	struct wmi_p2p_cfg_cmd cmd = {
1693 		.discovery_mode = WMI_DISCOVERY_MODE_PEER2PEER,
1694 		.bcon_interval = cpu_to_le16(bi),
1695 		.channel = channel - 1,
1696 	};
1697 	struct {
1698 		struct wmi_cmd_hdr wmi;
1699 		struct wmi_p2p_cfg_done_event evt;
1700 	} __packed reply;
1701 
1702 	wil_dbg_wmi(wil, "sending WMI_P2P_CFG_CMDID\n");
1703 
1704 	rc = wmi_call(wil, WMI_P2P_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1705 		      WMI_P2P_CFG_DONE_EVENTID, &reply, sizeof(reply), 300);
1706 	if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
1707 		wil_err(wil, "P2P_CFG failed. status %d\n", reply.evt.status);
1708 		rc = -EINVAL;
1709 	}
1710 
1711 	return rc;
1712 }
1713 
1714 int wmi_start_listen(struct wil6210_vif *vif)
1715 {
1716 	struct wil6210_priv *wil = vif_to_wil(vif);
1717 	int rc;
1718 	struct {
1719 		struct wmi_cmd_hdr wmi;
1720 		struct wmi_listen_started_event evt;
1721 	} __packed reply;
1722 
1723 	wil_dbg_wmi(wil, "sending WMI_START_LISTEN_CMDID\n");
1724 
1725 	rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
1726 		      WMI_LISTEN_STARTED_EVENTID, &reply, sizeof(reply), 300);
1727 	if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
1728 		wil_err(wil, "device failed to start listen. status %d\n",
1729 			reply.evt.status);
1730 		rc = -EINVAL;
1731 	}
1732 
1733 	return rc;
1734 }
1735 
1736 int wmi_start_search(struct wil6210_vif *vif)
1737 {
1738 	struct wil6210_priv *wil = vif_to_wil(vif);
1739 	int rc;
1740 	struct {
1741 		struct wmi_cmd_hdr wmi;
1742 		struct wmi_search_started_event evt;
1743 	} __packed reply;
1744 
1745 	wil_dbg_wmi(wil, "sending WMI_START_SEARCH_CMDID\n");
1746 
1747 	rc = wmi_call(wil, WMI_START_SEARCH_CMDID, vif->mid, NULL, 0,
1748 		      WMI_SEARCH_STARTED_EVENTID, &reply, sizeof(reply), 300);
1749 	if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
1750 		wil_err(wil, "device failed to start search. status %d\n",
1751 			reply.evt.status);
1752 		rc = -EINVAL;
1753 	}
1754 
1755 	return rc;
1756 }
1757 
1758 int wmi_stop_discovery(struct wil6210_vif *vif)
1759 {
1760 	struct wil6210_priv *wil = vif_to_wil(vif);
1761 	int rc;
1762 
1763 	wil_dbg_wmi(wil, "sending WMI_DISCOVERY_STOP_CMDID\n");
1764 
1765 	rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
1766 		      WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 100);
1767 
1768 	if (rc)
1769 		wil_err(wil, "Failed to stop discovery\n");
1770 
1771 	return rc;
1772 }
1773 
1774 int wmi_del_cipher_key(struct wil6210_vif *vif, u8 key_index,
1775 		       const void *mac_addr, int key_usage)
1776 {
1777 	struct wil6210_priv *wil = vif_to_wil(vif);
1778 	struct wmi_delete_cipher_key_cmd cmd = {
1779 		.key_index = key_index,
1780 	};
1781 
1782 	if (mac_addr)
1783 		memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
1784 
1785 	return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, vif->mid,
1786 			&cmd, sizeof(cmd));
1787 }
1788 
1789 int wmi_add_cipher_key(struct wil6210_vif *vif, u8 key_index,
1790 		       const void *mac_addr, int key_len, const void *key,
1791 		       int key_usage)
1792 {
1793 	struct wil6210_priv *wil = vif_to_wil(vif);
1794 	struct wmi_add_cipher_key_cmd cmd = {
1795 		.key_index = key_index,
1796 		.key_usage = key_usage,
1797 		.key_len = key_len,
1798 	};
1799 
1800 	if (!key || (key_len > sizeof(cmd.key)))
1801 		return -EINVAL;
1802 
1803 	memcpy(cmd.key, key, key_len);
1804 	if (mac_addr)
1805 		memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
1806 
1807 	return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, vif->mid,
1808 			&cmd, sizeof(cmd));
1809 }
1810 
1811 int wmi_set_ie(struct wil6210_vif *vif, u8 type, u16 ie_len, const void *ie)
1812 {
1813 	struct wil6210_priv *wil = vif_to_wil(vif);
1814 	static const char *const names[] = {
1815 		[WMI_FRAME_BEACON]	= "BEACON",
1816 		[WMI_FRAME_PROBE_REQ]	= "PROBE_REQ",
1817 		[WMI_FRAME_PROBE_RESP]	= "WMI_FRAME_PROBE_RESP",
1818 		[WMI_FRAME_ASSOC_REQ]	= "WMI_FRAME_ASSOC_REQ",
1819 		[WMI_FRAME_ASSOC_RESP]	= "WMI_FRAME_ASSOC_RESP",
1820 	};
1821 	int rc;
1822 	u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
1823 	struct wmi_set_appie_cmd *cmd;
1824 
1825 	if (len < ie_len) {
1826 		rc = -EINVAL;
1827 		goto out;
1828 	}
1829 
1830 	cmd = kzalloc(len, GFP_KERNEL);
1831 	if (!cmd) {
1832 		rc = -ENOMEM;
1833 		goto out;
1834 	}
1835 	if (!ie)
1836 		ie_len = 0;
1837 
1838 	cmd->mgmt_frm_type = type;
1839 	/* BUG: FW API define ieLen as u8. Will fix FW */
1840 	cmd->ie_len = cpu_to_le16(ie_len);
1841 	memcpy(cmd->ie_info, ie, ie_len);
1842 	rc = wmi_send(wil, WMI_SET_APPIE_CMDID, vif->mid, cmd, len);
1843 	kfree(cmd);
1844 out:
1845 	if (rc) {
1846 		const char *name = type < ARRAY_SIZE(names) ?
1847 				   names[type] : "??";
1848 		wil_err(wil, "set_ie(%d %s) failed : %d\n", type, name, rc);
1849 	}
1850 
1851 	return rc;
1852 }
1853 
1854 /**
1855  * wmi_rxon - turn radio on/off
1856  * @on:		turn on if true, off otherwise
1857  *
1858  * Only switch radio. Channel should be set separately.
1859  * No timeout for rxon - radio turned on forever unless some other call
1860  * turns it off
1861  */
1862 int wmi_rxon(struct wil6210_priv *wil, bool on)
1863 {
1864 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1865 	int rc;
1866 	struct {
1867 		struct wmi_cmd_hdr wmi;
1868 		struct wmi_listen_started_event evt;
1869 	} __packed reply;
1870 
1871 	wil_info(wil, "(%s)\n", on ? "on" : "off");
1872 
1873 	if (on) {
1874 		rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
1875 			      WMI_LISTEN_STARTED_EVENTID,
1876 			      &reply, sizeof(reply), 100);
1877 		if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS))
1878 			rc = -EINVAL;
1879 	} else {
1880 		rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
1881 			      WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 20);
1882 	}
1883 
1884 	return rc;
1885 }
1886 
1887 int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring)
1888 {
1889 	struct net_device *ndev = wil->main_ndev;
1890 	struct wireless_dev *wdev = ndev->ieee80211_ptr;
1891 	struct wil6210_vif *vif = ndev_to_vif(ndev);
1892 	struct wmi_cfg_rx_chain_cmd cmd = {
1893 		.action = WMI_RX_CHAIN_ADD,
1894 		.rx_sw_ring = {
1895 			.max_mpdu_size = cpu_to_le16(
1896 				wil_mtu2macbuf(wil->rx_buf_len)),
1897 			.ring_mem_base = cpu_to_le64(vring->pa),
1898 			.ring_size = cpu_to_le16(vring->size),
1899 		},
1900 		.mid = 0, /* TODO - what is it? */
1901 		.decap_trans_type = WMI_DECAP_TYPE_802_3,
1902 		.reorder_type = WMI_RX_SW_REORDER,
1903 		.host_thrsh = cpu_to_le16(rx_ring_overflow_thrsh),
1904 	};
1905 	struct {
1906 		struct wmi_cmd_hdr wmi;
1907 		struct wmi_cfg_rx_chain_done_event evt;
1908 	} __packed evt;
1909 	int rc;
1910 
1911 	if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
1912 		struct ieee80211_channel *ch = wil->monitor_chandef.chan;
1913 
1914 		cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
1915 		if (ch)
1916 			cmd.sniffer_cfg.channel = ch->hw_value - 1;
1917 		cmd.sniffer_cfg.phy_info_mode =
1918 			cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
1919 		cmd.sniffer_cfg.phy_support =
1920 			cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
1921 				    ? WMI_SNIFFER_CP : WMI_SNIFFER_BOTH_PHYS);
1922 	} else {
1923 		/* Initialize offload (in non-sniffer mode).
1924 		 * Linux IP stack always calculates IP checksum
1925 		 * HW always calculate TCP/UDP checksum
1926 		 */
1927 		cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS);
1928 	}
1929 
1930 	if (rx_align_2)
1931 		cmd.l2_802_3_offload_ctrl |=
1932 				L2_802_3_OFFLOAD_CTRL_SNAP_KEEP_MSK;
1933 
1934 	/* typical time for secure PCP is 840ms */
1935 	rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, vif->mid, &cmd, sizeof(cmd),
1936 		      WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
1937 	if (rc)
1938 		return rc;
1939 
1940 	vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
1941 
1942 	wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
1943 		     le32_to_cpu(evt.evt.status), vring->hwtail);
1944 
1945 	if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
1946 		rc = -EINVAL;
1947 
1948 	return rc;
1949 }
1950 
1951 int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_bb, u32 *t_rf)
1952 {
1953 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1954 	int rc;
1955 	struct wmi_temp_sense_cmd cmd = {
1956 		.measure_baseband_en = cpu_to_le32(!!t_bb),
1957 		.measure_rf_en = cpu_to_le32(!!t_rf),
1958 		.measure_mode = cpu_to_le32(TEMPERATURE_MEASURE_NOW),
1959 	};
1960 	struct {
1961 		struct wmi_cmd_hdr wmi;
1962 		struct wmi_temp_sense_done_event evt;
1963 	} __packed reply;
1964 
1965 	rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, vif->mid, &cmd, sizeof(cmd),
1966 		      WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
1967 	if (rc)
1968 		return rc;
1969 
1970 	if (t_bb)
1971 		*t_bb = le32_to_cpu(reply.evt.baseband_t1000);
1972 	if (t_rf)
1973 		*t_rf = le32_to_cpu(reply.evt.rf_t1000);
1974 
1975 	return 0;
1976 }
1977 
1978 int wmi_disconnect_sta(struct wil6210_vif *vif, const u8 *mac,
1979 		       u16 reason, bool full_disconnect, bool del_sta)
1980 {
1981 	struct wil6210_priv *wil = vif_to_wil(vif);
1982 	int rc;
1983 	u16 reason_code;
1984 	struct wmi_disconnect_sta_cmd disc_sta_cmd = {
1985 		.disconnect_reason = cpu_to_le16(reason),
1986 	};
1987 	struct wmi_del_sta_cmd del_sta_cmd = {
1988 		.disconnect_reason = cpu_to_le16(reason),
1989 	};
1990 	struct {
1991 		struct wmi_cmd_hdr wmi;
1992 		struct wmi_disconnect_event evt;
1993 	} __packed reply;
1994 
1995 	wil_dbg_wmi(wil, "disconnect_sta: (%pM, reason %d)\n", mac, reason);
1996 
1997 	vif->locally_generated_disc = true;
1998 	if (del_sta) {
1999 		ether_addr_copy(del_sta_cmd.dst_mac, mac);
2000 		rc = wmi_call(wil, WMI_DEL_STA_CMDID, vif->mid, &del_sta_cmd,
2001 			      sizeof(del_sta_cmd), WMI_DISCONNECT_EVENTID,
2002 			      &reply, sizeof(reply), 1000);
2003 	} else {
2004 		ether_addr_copy(disc_sta_cmd.dst_mac, mac);
2005 		rc = wmi_call(wil, WMI_DISCONNECT_STA_CMDID, vif->mid,
2006 			      &disc_sta_cmd, sizeof(disc_sta_cmd),
2007 			      WMI_DISCONNECT_EVENTID,
2008 			      &reply, sizeof(reply), 1000);
2009 	}
2010 	/* failure to disconnect in reasonable time treated as FW error */
2011 	if (rc) {
2012 		wil_fw_error_recovery(wil);
2013 		return rc;
2014 	}
2015 
2016 	if (full_disconnect) {
2017 		/* call event handler manually after processing wmi_call,
2018 		 * to avoid deadlock - disconnect event handler acquires
2019 		 * wil->mutex while it is already held here
2020 		 */
2021 		reason_code = le16_to_cpu(reply.evt.protocol_reason_status);
2022 
2023 		wil_dbg_wmi(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
2024 			    reply.evt.bssid, reason_code,
2025 			    reply.evt.disconnect_reason);
2026 
2027 		wil->sinfo_gen++;
2028 		wil6210_disconnect(vif, reply.evt.bssid, reason_code, true);
2029 	}
2030 	return 0;
2031 }
2032 
2033 int wmi_addba(struct wil6210_priv *wil, u8 mid,
2034 	      u8 ringid, u8 size, u16 timeout)
2035 {
2036 	struct wmi_vring_ba_en_cmd cmd = {
2037 		.ringid = ringid,
2038 		.agg_max_wsize = size,
2039 		.ba_timeout = cpu_to_le16(timeout),
2040 		.amsdu = 0,
2041 	};
2042 
2043 	wil_dbg_wmi(wil, "addba: (ring %d size %d timeout %d)\n", ringid, size,
2044 		    timeout);
2045 
2046 	return wmi_send(wil, WMI_VRING_BA_EN_CMDID, mid, &cmd, sizeof(cmd));
2047 }
2048 
2049 int wmi_delba_tx(struct wil6210_priv *wil, u8 mid, u8 ringid, u16 reason)
2050 {
2051 	struct wmi_vring_ba_dis_cmd cmd = {
2052 		.ringid = ringid,
2053 		.reason = cpu_to_le16(reason),
2054 	};
2055 
2056 	wil_dbg_wmi(wil, "delba_tx: (ring %d reason %d)\n", ringid, reason);
2057 
2058 	return wmi_send(wil, WMI_VRING_BA_DIS_CMDID, mid, &cmd, sizeof(cmd));
2059 }
2060 
2061 int wmi_delba_rx(struct wil6210_priv *wil, u8 mid, u8 cidxtid, u16 reason)
2062 {
2063 	struct wmi_rcp_delba_cmd cmd = {
2064 		.cidxtid = cidxtid,
2065 		.reason = cpu_to_le16(reason),
2066 	};
2067 
2068 	wil_dbg_wmi(wil, "delba_rx: (CID %d TID %d reason %d)\n", cidxtid & 0xf,
2069 		    (cidxtid >> 4) & 0xf, reason);
2070 
2071 	return wmi_send(wil, WMI_RCP_DELBA_CMDID, mid, &cmd, sizeof(cmd));
2072 }
2073 
2074 int wmi_addba_rx_resp(struct wil6210_priv *wil,
2075 		      u8 mid, u8 cid, u8 tid, u8 token,
2076 		      u16 status, bool amsdu, u16 agg_wsize, u16 timeout)
2077 {
2078 	int rc;
2079 	struct wmi_rcp_addba_resp_cmd cmd = {
2080 		.cidxtid = mk_cidxtid(cid, tid),
2081 		.dialog_token = token,
2082 		.status_code = cpu_to_le16(status),
2083 		/* bit 0: A-MSDU supported
2084 		 * bit 1: policy (should be 0 for us)
2085 		 * bits 2..5: TID
2086 		 * bits 6..15: buffer size
2087 		 */
2088 		.ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) |
2089 					    (agg_wsize << 6)),
2090 		.ba_timeout = cpu_to_le16(timeout),
2091 	};
2092 	struct {
2093 		struct wmi_cmd_hdr wmi;
2094 		struct wmi_rcp_addba_resp_sent_event evt;
2095 	} __packed reply;
2096 
2097 	wil_dbg_wmi(wil,
2098 		    "ADDBA response for MID %d CID %d TID %d size %d timeout %d status %d AMSDU%s\n",
2099 		    mid, cid, tid, agg_wsize,
2100 		    timeout, status, amsdu ? "+" : "-");
2101 
2102 	rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_CMDID, mid, &cmd, sizeof(cmd),
2103 		      WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply, sizeof(reply),
2104 		      100);
2105 	if (rc)
2106 		return rc;
2107 
2108 	if (reply.evt.status) {
2109 		wil_err(wil, "ADDBA response failed with status %d\n",
2110 			le16_to_cpu(reply.evt.status));
2111 		rc = -EINVAL;
2112 	}
2113 
2114 	return rc;
2115 }
2116 
2117 int wmi_ps_dev_profile_cfg(struct wil6210_priv *wil,
2118 			   enum wmi_ps_profile_type ps_profile)
2119 {
2120 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2121 	int rc;
2122 	struct wmi_ps_dev_profile_cfg_cmd cmd = {
2123 		.ps_profile = ps_profile,
2124 	};
2125 	struct {
2126 		struct wmi_cmd_hdr wmi;
2127 		struct wmi_ps_dev_profile_cfg_event evt;
2128 	} __packed reply;
2129 	u32 status;
2130 
2131 	wil_dbg_wmi(wil, "Setting ps dev profile %d\n", ps_profile);
2132 
2133 	reply.evt.status = cpu_to_le32(WMI_PS_CFG_CMD_STATUS_ERROR);
2134 
2135 	rc = wmi_call(wil, WMI_PS_DEV_PROFILE_CFG_CMDID, vif->mid,
2136 		      &cmd, sizeof(cmd),
2137 		      WMI_PS_DEV_PROFILE_CFG_EVENTID, &reply, sizeof(reply),
2138 		      100);
2139 	if (rc)
2140 		return rc;
2141 
2142 	status = le32_to_cpu(reply.evt.status);
2143 
2144 	if (status != WMI_PS_CFG_CMD_STATUS_SUCCESS) {
2145 		wil_err(wil, "ps dev profile cfg failed with status %d\n",
2146 			status);
2147 		rc = -EINVAL;
2148 	}
2149 
2150 	return rc;
2151 }
2152 
2153 int wmi_set_mgmt_retry(struct wil6210_priv *wil, u8 retry_short)
2154 {
2155 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2156 	int rc;
2157 	struct wmi_set_mgmt_retry_limit_cmd cmd = {
2158 		.mgmt_retry_limit = retry_short,
2159 	};
2160 	struct {
2161 		struct wmi_cmd_hdr wmi;
2162 		struct wmi_set_mgmt_retry_limit_event evt;
2163 	} __packed reply;
2164 
2165 	wil_dbg_wmi(wil, "Setting mgmt retry short %d\n", retry_short);
2166 
2167 	if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
2168 		return -ENOTSUPP;
2169 
2170 	reply.evt.status = WMI_FW_STATUS_FAILURE;
2171 
2172 	rc = wmi_call(wil, WMI_SET_MGMT_RETRY_LIMIT_CMDID, vif->mid,
2173 		      &cmd, sizeof(cmd),
2174 		      WMI_SET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
2175 		      100);
2176 	if (rc)
2177 		return rc;
2178 
2179 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
2180 		wil_err(wil, "set mgmt retry limit failed with status %d\n",
2181 			reply.evt.status);
2182 		rc = -EINVAL;
2183 	}
2184 
2185 	return rc;
2186 }
2187 
2188 int wmi_get_mgmt_retry(struct wil6210_priv *wil, u8 *retry_short)
2189 {
2190 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2191 	int rc;
2192 	struct {
2193 		struct wmi_cmd_hdr wmi;
2194 		struct wmi_get_mgmt_retry_limit_event evt;
2195 	} __packed reply;
2196 
2197 	wil_dbg_wmi(wil, "getting mgmt retry short\n");
2198 
2199 	if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
2200 		return -ENOTSUPP;
2201 
2202 	reply.evt.mgmt_retry_limit = 0;
2203 	rc = wmi_call(wil, WMI_GET_MGMT_RETRY_LIMIT_CMDID, vif->mid, NULL, 0,
2204 		      WMI_GET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
2205 		      100);
2206 	if (rc)
2207 		return rc;
2208 
2209 	if (retry_short)
2210 		*retry_short = reply.evt.mgmt_retry_limit;
2211 
2212 	return 0;
2213 }
2214 
2215 int wmi_abort_scan(struct wil6210_vif *vif)
2216 {
2217 	struct wil6210_priv *wil = vif_to_wil(vif);
2218 	int rc;
2219 
2220 	wil_dbg_wmi(wil, "sending WMI_ABORT_SCAN_CMDID\n");
2221 
2222 	rc = wmi_send(wil, WMI_ABORT_SCAN_CMDID, vif->mid, NULL, 0);
2223 	if (rc)
2224 		wil_err(wil, "Failed to abort scan (%d)\n", rc);
2225 
2226 	return rc;
2227 }
2228 
2229 int wmi_new_sta(struct wil6210_vif *vif, const u8 *mac, u8 aid)
2230 {
2231 	struct wil6210_priv *wil = vif_to_wil(vif);
2232 	int rc;
2233 	struct wmi_new_sta_cmd cmd = {
2234 		.aid = aid,
2235 	};
2236 
2237 	wil_dbg_wmi(wil, "new sta %pM, aid %d\n", mac, aid);
2238 
2239 	ether_addr_copy(cmd.dst_mac, mac);
2240 
2241 	rc = wmi_send(wil, WMI_NEW_STA_CMDID, vif->mid, &cmd, sizeof(cmd));
2242 	if (rc)
2243 		wil_err(wil, "Failed to send new sta (%d)\n", rc);
2244 
2245 	return rc;
2246 }
2247 
2248 void wmi_event_flush(struct wil6210_priv *wil)
2249 {
2250 	ulong flags;
2251 	struct pending_wmi_event *evt, *t;
2252 
2253 	wil_dbg_wmi(wil, "event_flush\n");
2254 
2255 	spin_lock_irqsave(&wil->wmi_ev_lock, flags);
2256 
2257 	list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
2258 		list_del(&evt->list);
2259 		kfree(evt);
2260 	}
2261 
2262 	spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
2263 }
2264 
2265 static const char *suspend_status2name(u8 status)
2266 {
2267 	switch (status) {
2268 	case WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE:
2269 		return "LINK_NOT_IDLE";
2270 	default:
2271 		return "Untracked status";
2272 	}
2273 }
2274 
2275 int wmi_suspend(struct wil6210_priv *wil)
2276 {
2277 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2278 	int rc;
2279 	struct wmi_traffic_suspend_cmd cmd = {
2280 		.wakeup_trigger = wil->wakeup_trigger,
2281 	};
2282 	struct {
2283 		struct wmi_cmd_hdr wmi;
2284 		struct wmi_traffic_suspend_event evt;
2285 	} __packed reply;
2286 	u32 suspend_to = WIL_WAIT_FOR_SUSPEND_RESUME_COMP;
2287 
2288 	wil->suspend_resp_rcvd = false;
2289 	wil->suspend_resp_comp = false;
2290 
2291 	reply.evt.status = WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE;
2292 
2293 	rc = wmi_call(wil, WMI_TRAFFIC_SUSPEND_CMDID, vif->mid,
2294 		      &cmd, sizeof(cmd),
2295 		      WMI_TRAFFIC_SUSPEND_EVENTID, &reply, sizeof(reply),
2296 		      suspend_to);
2297 	if (rc) {
2298 		wil_err(wil, "wmi_call for suspend req failed, rc=%d\n", rc);
2299 		if (rc == -ETIME)
2300 			/* wmi_call TO */
2301 			wil->suspend_stats.rejected_by_device++;
2302 		else
2303 			wil->suspend_stats.rejected_by_host++;
2304 		goto out;
2305 	}
2306 
2307 	wil_dbg_wmi(wil, "waiting for suspend_response_completed\n");
2308 
2309 	rc = wait_event_interruptible_timeout(wil->wq,
2310 					      wil->suspend_resp_comp,
2311 					      msecs_to_jiffies(suspend_to));
2312 	if (rc == 0) {
2313 		wil_err(wil, "TO waiting for suspend_response_completed\n");
2314 		if (wil->suspend_resp_rcvd)
2315 			/* Device responded but we TO due to another reason */
2316 			wil->suspend_stats.rejected_by_host++;
2317 		else
2318 			wil->suspend_stats.rejected_by_device++;
2319 		rc = -EBUSY;
2320 		goto out;
2321 	}
2322 
2323 	wil_dbg_wmi(wil, "suspend_response_completed rcvd\n");
2324 	if (reply.evt.status != WMI_TRAFFIC_SUSPEND_APPROVED) {
2325 		wil_dbg_pm(wil, "device rejected the suspend, %s\n",
2326 			   suspend_status2name(reply.evt.status));
2327 		wil->suspend_stats.rejected_by_device++;
2328 	}
2329 	rc = reply.evt.status;
2330 
2331 out:
2332 	wil->suspend_resp_rcvd = false;
2333 	wil->suspend_resp_comp = false;
2334 
2335 	return rc;
2336 }
2337 
2338 static void resume_triggers2string(u32 triggers, char *string, int str_size)
2339 {
2340 	string[0] = '\0';
2341 
2342 	if (!triggers) {
2343 		strlcat(string, " UNKNOWN", str_size);
2344 		return;
2345 	}
2346 
2347 	if (triggers & WMI_RESUME_TRIGGER_HOST)
2348 		strlcat(string, " HOST", str_size);
2349 
2350 	if (triggers & WMI_RESUME_TRIGGER_UCAST_RX)
2351 		strlcat(string, " UCAST_RX", str_size);
2352 
2353 	if (triggers & WMI_RESUME_TRIGGER_BCAST_RX)
2354 		strlcat(string, " BCAST_RX", str_size);
2355 
2356 	if (triggers & WMI_RESUME_TRIGGER_WMI_EVT)
2357 		strlcat(string, " WMI_EVT", str_size);
2358 }
2359 
2360 int wmi_resume(struct wil6210_priv *wil)
2361 {
2362 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2363 	int rc;
2364 	char string[100];
2365 	struct {
2366 		struct wmi_cmd_hdr wmi;
2367 		struct wmi_traffic_resume_event evt;
2368 	} __packed reply;
2369 
2370 	reply.evt.status = WMI_TRAFFIC_RESUME_FAILED;
2371 	reply.evt.resume_triggers = WMI_RESUME_TRIGGER_UNKNOWN;
2372 
2373 	rc = wmi_call(wil, WMI_TRAFFIC_RESUME_CMDID, vif->mid, NULL, 0,
2374 		      WMI_TRAFFIC_RESUME_EVENTID, &reply, sizeof(reply),
2375 		      WIL_WAIT_FOR_SUSPEND_RESUME_COMP);
2376 	if (rc)
2377 		return rc;
2378 	resume_triggers2string(le32_to_cpu(reply.evt.resume_triggers), string,
2379 			       sizeof(string));
2380 	wil_dbg_pm(wil, "device resume %s, resume triggers:%s (0x%x)\n",
2381 		   reply.evt.status ? "failed" : "passed", string,
2382 		   le32_to_cpu(reply.evt.resume_triggers));
2383 
2384 	return reply.evt.status;
2385 }
2386 
2387 int wmi_port_allocate(struct wil6210_priv *wil, u8 mid,
2388 		      const u8 *mac, enum nl80211_iftype iftype)
2389 {
2390 	int rc;
2391 	struct wmi_port_allocate_cmd cmd = {
2392 		.mid = mid,
2393 	};
2394 	struct {
2395 		struct wmi_cmd_hdr wmi;
2396 		struct wmi_port_allocated_event evt;
2397 	} __packed reply;
2398 
2399 	wil_dbg_misc(wil, "port allocate, mid %d iftype %d, mac %pM\n",
2400 		     mid, iftype, mac);
2401 
2402 	ether_addr_copy(cmd.mac, mac);
2403 	switch (iftype) {
2404 	case NL80211_IFTYPE_STATION:
2405 		cmd.port_role = WMI_PORT_STA;
2406 		break;
2407 	case NL80211_IFTYPE_AP:
2408 		cmd.port_role = WMI_PORT_AP;
2409 		break;
2410 	case NL80211_IFTYPE_P2P_CLIENT:
2411 		cmd.port_role = WMI_PORT_P2P_CLIENT;
2412 		break;
2413 	case NL80211_IFTYPE_P2P_GO:
2414 		cmd.port_role = WMI_PORT_P2P_GO;
2415 		break;
2416 	/* what about monitor??? */
2417 	default:
2418 		wil_err(wil, "unsupported iftype: %d\n", iftype);
2419 		return -EINVAL;
2420 	}
2421 
2422 	reply.evt.status = WMI_FW_STATUS_FAILURE;
2423 
2424 	rc = wmi_call(wil, WMI_PORT_ALLOCATE_CMDID, mid,
2425 		      &cmd, sizeof(cmd),
2426 		      WMI_PORT_ALLOCATED_EVENTID, &reply,
2427 		      sizeof(reply), 300);
2428 	if (rc) {
2429 		wil_err(wil, "failed to allocate port, status %d\n", rc);
2430 		return rc;
2431 	}
2432 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
2433 		wil_err(wil, "WMI_PORT_ALLOCATE returned status %d\n",
2434 			reply.evt.status);
2435 		return -EINVAL;
2436 	}
2437 
2438 	return 0;
2439 }
2440 
2441 int wmi_port_delete(struct wil6210_priv *wil, u8 mid)
2442 {
2443 	int rc;
2444 	struct wmi_port_delete_cmd cmd = {
2445 		.mid = mid,
2446 	};
2447 	struct {
2448 		struct wmi_cmd_hdr wmi;
2449 		struct wmi_port_deleted_event evt;
2450 	} __packed reply;
2451 
2452 	wil_dbg_misc(wil, "port delete, mid %d\n", mid);
2453 
2454 	reply.evt.status = WMI_FW_STATUS_FAILURE;
2455 
2456 	rc = wmi_call(wil, WMI_PORT_DELETE_CMDID, mid,
2457 		      &cmd, sizeof(cmd),
2458 		      WMI_PORT_DELETED_EVENTID, &reply,
2459 		      sizeof(reply), 2000);
2460 	if (rc) {
2461 		wil_err(wil, "failed to delete port, status %d\n", rc);
2462 		return rc;
2463 	}
2464 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
2465 		wil_err(wil, "WMI_PORT_DELETE returned status %d\n",
2466 			reply.evt.status);
2467 		return -EINVAL;
2468 	}
2469 
2470 	return 0;
2471 }
2472 
2473 static bool wmi_evt_call_handler(struct wil6210_vif *vif, int id,
2474 				 void *d, int len)
2475 {
2476 	uint i;
2477 
2478 	for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
2479 		if (wmi_evt_handlers[i].eventid == id) {
2480 			wmi_evt_handlers[i].handler(vif, id, d, len);
2481 			return true;
2482 		}
2483 	}
2484 
2485 	return false;
2486 }
2487 
2488 static void wmi_event_handle(struct wil6210_priv *wil,
2489 			     struct wil6210_mbox_hdr *hdr)
2490 {
2491 	u16 len = le16_to_cpu(hdr->len);
2492 	struct wil6210_vif *vif;
2493 
2494 	if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
2495 	    (len >= sizeof(struct wmi_cmd_hdr))) {
2496 		struct wmi_cmd_hdr *wmi = (void *)(&hdr[1]);
2497 		void *evt_data = (void *)(&wmi[1]);
2498 		u16 id = le16_to_cpu(wmi->command_id);
2499 		u8 mid = wmi->mid;
2500 
2501 		wil_dbg_wmi(wil, "Handle %s (0x%04x) (reply_id 0x%04x,%d)\n",
2502 			    eventid2name(id), id, wil->reply_id,
2503 			    wil->reply_mid);
2504 
2505 		if (mid == MID_BROADCAST)
2506 			mid = 0;
2507 		if (mid >= wil->max_vifs) {
2508 			wil_dbg_wmi(wil, "invalid mid %d, event skipped\n",
2509 				    mid);
2510 			return;
2511 		}
2512 		vif = wil->vifs[mid];
2513 		if (!vif) {
2514 			wil_dbg_wmi(wil, "event for empty VIF(%d), skipped\n",
2515 				    mid);
2516 			return;
2517 		}
2518 
2519 		/* check if someone waits for this event */
2520 		if (wil->reply_id && wil->reply_id == id &&
2521 		    wil->reply_mid == mid) {
2522 			WARN_ON(wil->reply_buf);
2523 
2524 			wmi_evt_call_handler(vif, id, evt_data,
2525 					     len - sizeof(*wmi));
2526 			wil_dbg_wmi(wil, "event_handle: Complete WMI 0x%04x\n",
2527 				    id);
2528 			complete(&wil->wmi_call);
2529 			return;
2530 		}
2531 		/* unsolicited event */
2532 		/* search for handler */
2533 		if (!wmi_evt_call_handler(vif, id, evt_data,
2534 					  len - sizeof(*wmi))) {
2535 			wil_info(wil, "Unhandled event 0x%04x\n", id);
2536 		}
2537 	} else {
2538 		wil_err(wil, "Unknown event type\n");
2539 		print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
2540 			       hdr, sizeof(*hdr) + len, true);
2541 	}
2542 }
2543 
2544 /*
2545  * Retrieve next WMI event from the pending list
2546  */
2547 static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
2548 {
2549 	ulong flags;
2550 	struct list_head *ret = NULL;
2551 
2552 	spin_lock_irqsave(&wil->wmi_ev_lock, flags);
2553 
2554 	if (!list_empty(&wil->pending_wmi_ev)) {
2555 		ret = wil->pending_wmi_ev.next;
2556 		list_del(ret);
2557 	}
2558 
2559 	spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
2560 
2561 	return ret;
2562 }
2563 
2564 /*
2565  * Handler for the WMI events
2566  */
2567 void wmi_event_worker(struct work_struct *work)
2568 {
2569 	struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
2570 						 wmi_event_worker);
2571 	struct pending_wmi_event *evt;
2572 	struct list_head *lh;
2573 
2574 	wil_dbg_wmi(wil, "event_worker: Start\n");
2575 	while ((lh = next_wmi_ev(wil)) != NULL) {
2576 		evt = list_entry(lh, struct pending_wmi_event, list);
2577 		wmi_event_handle(wil, &evt->event.hdr);
2578 		kfree(evt);
2579 	}
2580 	wil_dbg_wmi(wil, "event_worker: Finished\n");
2581 }
2582 
2583 bool wil_is_wmi_idle(struct wil6210_priv *wil)
2584 {
2585 	ulong flags;
2586 	struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
2587 	bool rc = false;
2588 
2589 	spin_lock_irqsave(&wil->wmi_ev_lock, flags);
2590 
2591 	/* Check if there are pending WMI events in the events queue */
2592 	if (!list_empty(&wil->pending_wmi_ev)) {
2593 		wil_dbg_pm(wil, "Pending WMI events in queue\n");
2594 		goto out;
2595 	}
2596 
2597 	/* Check if there is a pending WMI call */
2598 	if (wil->reply_id) {
2599 		wil_dbg_pm(wil, "Pending WMI call\n");
2600 		goto out;
2601 	}
2602 
2603 	/* Check if there are pending RX events in mbox */
2604 	r->head = wil_r(wil, RGF_MBOX +
2605 			offsetof(struct wil6210_mbox_ctl, rx.head));
2606 	if (r->tail != r->head)
2607 		wil_dbg_pm(wil, "Pending WMI mbox events\n");
2608 	else
2609 		rc = true;
2610 
2611 out:
2612 	spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
2613 	return rc;
2614 }
2615 
2616 static void
2617 wmi_sched_scan_set_ssids(struct wil6210_priv *wil,
2618 			 struct wmi_start_sched_scan_cmd *cmd,
2619 			 struct cfg80211_ssid *ssids, int n_ssids,
2620 			 struct cfg80211_match_set *match_sets,
2621 			 int n_match_sets)
2622 {
2623 	int i;
2624 
2625 	if (n_match_sets > WMI_MAX_PNO_SSID_NUM) {
2626 		wil_dbg_wmi(wil, "too many match sets (%d), use first %d\n",
2627 			    n_match_sets, WMI_MAX_PNO_SSID_NUM);
2628 		n_match_sets = WMI_MAX_PNO_SSID_NUM;
2629 	}
2630 	cmd->num_of_ssids = n_match_sets;
2631 
2632 	for (i = 0; i < n_match_sets; i++) {
2633 		struct wmi_sched_scan_ssid_match *wmi_match =
2634 			&cmd->ssid_for_match[i];
2635 		struct cfg80211_match_set *cfg_match = &match_sets[i];
2636 		int j;
2637 
2638 		wmi_match->ssid_len = cfg_match->ssid.ssid_len;
2639 		memcpy(wmi_match->ssid, cfg_match->ssid.ssid,
2640 		       min_t(u8, wmi_match->ssid_len, WMI_MAX_SSID_LEN));
2641 		wmi_match->rssi_threshold = S8_MIN;
2642 		if (cfg_match->rssi_thold >= S8_MIN &&
2643 		    cfg_match->rssi_thold <= S8_MAX)
2644 			wmi_match->rssi_threshold = cfg_match->rssi_thold;
2645 
2646 		for (j = 0; j < n_ssids; j++)
2647 			if (wmi_match->ssid_len == ssids[j].ssid_len &&
2648 			    memcmp(wmi_match->ssid, ssids[j].ssid,
2649 				   wmi_match->ssid_len) == 0)
2650 				wmi_match->add_ssid_to_probe = true;
2651 	}
2652 }
2653 
2654 static void
2655 wmi_sched_scan_set_channels(struct wil6210_priv *wil,
2656 			    struct wmi_start_sched_scan_cmd *cmd,
2657 			    u32 n_channels,
2658 			    struct ieee80211_channel **channels)
2659 {
2660 	int i;
2661 
2662 	if (n_channels > WMI_MAX_CHANNEL_NUM) {
2663 		wil_dbg_wmi(wil, "too many channels (%d), use first %d\n",
2664 			    n_channels, WMI_MAX_CHANNEL_NUM);
2665 		n_channels = WMI_MAX_CHANNEL_NUM;
2666 	}
2667 	cmd->num_of_channels = n_channels;
2668 
2669 	for (i = 0; i < n_channels; i++) {
2670 		struct ieee80211_channel *cfg_chan = channels[i];
2671 
2672 		cmd->channel_list[i] = cfg_chan->hw_value - 1;
2673 	}
2674 }
2675 
2676 static void
2677 wmi_sched_scan_set_plans(struct wil6210_priv *wil,
2678 			 struct wmi_start_sched_scan_cmd *cmd,
2679 			 struct cfg80211_sched_scan_plan *scan_plans,
2680 			 int n_scan_plans)
2681 {
2682 	int i;
2683 
2684 	if (n_scan_plans > WMI_MAX_PLANS_NUM) {
2685 		wil_dbg_wmi(wil, "too many plans (%d), use first %d\n",
2686 			    n_scan_plans, WMI_MAX_PLANS_NUM);
2687 		n_scan_plans = WMI_MAX_PLANS_NUM;
2688 	}
2689 
2690 	for (i = 0; i < n_scan_plans; i++) {
2691 		struct cfg80211_sched_scan_plan *cfg_plan = &scan_plans[i];
2692 
2693 		cmd->scan_plans[i].interval_sec =
2694 			cpu_to_le16(cfg_plan->interval);
2695 		cmd->scan_plans[i].num_of_iterations =
2696 			cpu_to_le16(cfg_plan->iterations);
2697 	}
2698 }
2699 
2700 int wmi_start_sched_scan(struct wil6210_priv *wil,
2701 			 struct cfg80211_sched_scan_request *request)
2702 {
2703 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2704 	int rc;
2705 	struct wmi_start_sched_scan_cmd cmd = {
2706 		.min_rssi_threshold = S8_MIN,
2707 		.initial_delay_sec = cpu_to_le16(request->delay),
2708 	};
2709 	struct {
2710 		struct wmi_cmd_hdr wmi;
2711 		struct wmi_start_sched_scan_event evt;
2712 	} __packed reply;
2713 
2714 	if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
2715 		return -ENOTSUPP;
2716 
2717 	if (request->min_rssi_thold >= S8_MIN &&
2718 	    request->min_rssi_thold <= S8_MAX)
2719 		cmd.min_rssi_threshold = request->min_rssi_thold;
2720 
2721 	wmi_sched_scan_set_ssids(wil, &cmd, request->ssids, request->n_ssids,
2722 				 request->match_sets, request->n_match_sets);
2723 	wmi_sched_scan_set_channels(wil, &cmd,
2724 				    request->n_channels, request->channels);
2725 	wmi_sched_scan_set_plans(wil, &cmd,
2726 				 request->scan_plans, request->n_scan_plans);
2727 
2728 	reply.evt.result = WMI_PNO_REJECT;
2729 
2730 	rc = wmi_call(wil, WMI_START_SCHED_SCAN_CMDID, vif->mid,
2731 		      &cmd, sizeof(cmd),
2732 		      WMI_START_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
2733 		      WIL_WMI_CALL_GENERAL_TO_MS);
2734 	if (rc)
2735 		return rc;
2736 
2737 	if (reply.evt.result != WMI_PNO_SUCCESS) {
2738 		wil_err(wil, "start sched scan failed, result %d\n",
2739 			reply.evt.result);
2740 		return -EINVAL;
2741 	}
2742 
2743 	return 0;
2744 }
2745 
2746 int wmi_stop_sched_scan(struct wil6210_priv *wil)
2747 {
2748 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2749 	int rc;
2750 	struct {
2751 		struct wmi_cmd_hdr wmi;
2752 		struct wmi_stop_sched_scan_event evt;
2753 	} __packed reply;
2754 
2755 	if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
2756 		return -ENOTSUPP;
2757 
2758 	reply.evt.result = WMI_PNO_REJECT;
2759 
2760 	rc = wmi_call(wil, WMI_STOP_SCHED_SCAN_CMDID, vif->mid, NULL, 0,
2761 		      WMI_STOP_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
2762 		      WIL_WMI_CALL_GENERAL_TO_MS);
2763 	if (rc)
2764 		return rc;
2765 
2766 	if (reply.evt.result != WMI_PNO_SUCCESS) {
2767 		wil_err(wil, "stop sched scan failed, result %d\n",
2768 			reply.evt.result);
2769 		return -EINVAL;
2770 	}
2771 
2772 	return 0;
2773 }
2774