1 /* 2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. 3 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include <linux/moduleparam.h> 19 #include <linux/etherdevice.h> 20 #include <linux/if_arp.h> 21 22 #include "wil6210.h" 23 #include "txrx.h" 24 #include "wmi.h" 25 #include "trace.h" 26 27 static uint max_assoc_sta = WIL6210_MAX_CID; 28 module_param(max_assoc_sta, uint, 0644); 29 MODULE_PARM_DESC(max_assoc_sta, " Max number of stations associated to the AP"); 30 31 int agg_wsize; /* = 0; */ 32 module_param(agg_wsize, int, 0644); 33 MODULE_PARM_DESC(agg_wsize, " Window size for Tx Block Ack after connect;" 34 " 0 - use default; < 0 - don't auto-establish"); 35 36 u8 led_id = WIL_LED_INVALID_ID; 37 module_param(led_id, byte, 0444); 38 MODULE_PARM_DESC(led_id, 39 " 60G device led enablement. Set the led ID (0-2) to enable"); 40 41 #define WIL_WAIT_FOR_SUSPEND_RESUME_COMP 200 42 #define WIL_WMI_CALL_GENERAL_TO_MS 100 43 44 /** 45 * WMI event receiving - theory of operations 46 * 47 * When firmware about to report WMI event, it fills memory area 48 * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for 49 * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler. 50 * 51 * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the 52 * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up 53 * and handles events within the @wmi_event_worker. Every event get detached 54 * from list, processed and deleted. 55 * 56 * Purpose for this mechanism is to release IRQ thread; otherwise, 57 * if WMI event handling involves another WMI command flow, this 2-nd flow 58 * won't be completed because of blocked IRQ thread. 59 */ 60 61 /** 62 * Addressing - theory of operations 63 * 64 * There are several buses present on the WIL6210 card. 65 * Same memory areas are visible at different address on 66 * the different busses. There are 3 main bus masters: 67 * - MAC CPU (ucode) 68 * - User CPU (firmware) 69 * - AHB (host) 70 * 71 * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing 72 * AHB addresses starting from 0x880000 73 * 74 * Internally, firmware uses addresses that allow faster access but 75 * are invisible from the host. To read from these addresses, alternative 76 * AHB address must be used. 77 */ 78 79 /** 80 * @sparrow_fw_mapping provides memory remapping table for sparrow 81 * 82 * array size should be in sync with the declaration in the wil6210.h 83 * 84 * Sparrow memory mapping: 85 * Linker address PCI/Host address 86 * 0x880000 .. 0xa80000 2Mb BAR0 87 * 0x800000 .. 0x808000 0x900000 .. 0x908000 32k DCCM 88 * 0x840000 .. 0x860000 0x908000 .. 0x928000 128k PERIPH 89 */ 90 const struct fw_map sparrow_fw_mapping[] = { 91 /* FW code RAM 256k */ 92 {0x000000, 0x040000, 0x8c0000, "fw_code", true}, 93 /* FW data RAM 32k */ 94 {0x800000, 0x808000, 0x900000, "fw_data", true}, 95 /* periph data 128k */ 96 {0x840000, 0x860000, 0x908000, "fw_peri", true}, 97 /* various RGF 40k */ 98 {0x880000, 0x88a000, 0x880000, "rgf", true}, 99 /* AGC table 4k */ 100 {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true}, 101 /* Pcie_ext_rgf 4k */ 102 {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true}, 103 /* mac_ext_rgf 512b */ 104 {0x88c000, 0x88c200, 0x88c000, "mac_rgf_ext", true}, 105 /* upper area 548k */ 106 {0x8c0000, 0x949000, 0x8c0000, "upper", true}, 107 /* UCODE areas - accessible by debugfs blobs but not by 108 * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas! 109 */ 110 /* ucode code RAM 128k */ 111 {0x000000, 0x020000, 0x920000, "uc_code", false}, 112 /* ucode data RAM 16k */ 113 {0x800000, 0x804000, 0x940000, "uc_data", false}, 114 }; 115 116 /** 117 * @sparrow_d0_mac_rgf_ext - mac_rgf_ext section for Sparrow D0 118 * it is a bit larger to support extra features 119 */ 120 const struct fw_map sparrow_d0_mac_rgf_ext = { 121 0x88c000, 0x88c500, 0x88c000, "mac_rgf_ext", true 122 }; 123 124 /** 125 * @talyn_fw_mapping provides memory remapping table for Talyn 126 * 127 * array size should be in sync with the declaration in the wil6210.h 128 * 129 * Talyn memory mapping: 130 * Linker address PCI/Host address 131 * 0x880000 .. 0xc80000 4Mb BAR0 132 * 0x800000 .. 0x820000 0xa00000 .. 0xa20000 128k DCCM 133 * 0x840000 .. 0x858000 0xa20000 .. 0xa38000 96k PERIPH 134 */ 135 const struct fw_map talyn_fw_mapping[] = { 136 /* FW code RAM 1M */ 137 {0x000000, 0x100000, 0x900000, "fw_code", true}, 138 /* FW data RAM 128k */ 139 {0x800000, 0x820000, 0xa00000, "fw_data", true}, 140 /* periph. data RAM 96k */ 141 {0x840000, 0x858000, 0xa20000, "fw_peri", true}, 142 /* various RGF 40k */ 143 {0x880000, 0x88a000, 0x880000, "rgf", true}, 144 /* AGC table 4k */ 145 {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true}, 146 /* Pcie_ext_rgf 4k */ 147 {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true}, 148 /* mac_ext_rgf 1344b */ 149 {0x88c000, 0x88c540, 0x88c000, "mac_rgf_ext", true}, 150 /* ext USER RGF 4k */ 151 {0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true}, 152 /* OTP 4k */ 153 {0x8a0000, 0x8a1000, 0x8a0000, "otp", true}, 154 /* DMA EXT RGF 64k */ 155 {0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true}, 156 /* upper area 1536k */ 157 {0x900000, 0xa80000, 0x900000, "upper", true}, 158 /* UCODE areas - accessible by debugfs blobs but not by 159 * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas! 160 */ 161 /* ucode code RAM 256k */ 162 {0x000000, 0x040000, 0xa38000, "uc_code", false}, 163 /* ucode data RAM 32k */ 164 {0x800000, 0x808000, 0xa78000, "uc_data", false}, 165 }; 166 167 struct fw_map fw_mapping[MAX_FW_MAPPING_TABLE_SIZE]; 168 169 struct blink_on_off_time led_blink_time[] = { 170 {WIL_LED_BLINK_ON_SLOW_MS, WIL_LED_BLINK_OFF_SLOW_MS}, 171 {WIL_LED_BLINK_ON_MED_MS, WIL_LED_BLINK_OFF_MED_MS}, 172 {WIL_LED_BLINK_ON_FAST_MS, WIL_LED_BLINK_OFF_FAST_MS}, 173 }; 174 175 u8 led_polarity = LED_POLARITY_LOW_ACTIVE; 176 177 /** 178 * return AHB address for given firmware internal (linker) address 179 * @x - internal address 180 * If address have no valid AHB mapping, return 0 181 */ 182 static u32 wmi_addr_remap(u32 x) 183 { 184 uint i; 185 186 for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) { 187 if (fw_mapping[i].fw && 188 ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to))) 189 return x + fw_mapping[i].host - fw_mapping[i].from; 190 } 191 192 return 0; 193 } 194 195 /** 196 * find fw_mapping entry by section name 197 * @section - section name 198 * 199 * Return pointer to section or NULL if not found 200 */ 201 struct fw_map *wil_find_fw_mapping(const char *section) 202 { 203 int i; 204 205 for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) 206 if (fw_mapping[i].name && 207 !strcmp(section, fw_mapping[i].name)) 208 return &fw_mapping[i]; 209 210 return NULL; 211 } 212 213 /** 214 * Check address validity for WMI buffer; remap if needed 215 * @ptr - internal (linker) fw/ucode address 216 * @size - if non zero, validate the block does not 217 * exceed the device memory (bar) 218 * 219 * Valid buffer should be DWORD aligned 220 * 221 * return address for accessing buffer from the host; 222 * if buffer is not valid, return NULL. 223 */ 224 void __iomem *wmi_buffer_block(struct wil6210_priv *wil, __le32 ptr_, u32 size) 225 { 226 u32 off; 227 u32 ptr = le32_to_cpu(ptr_); 228 229 if (ptr % 4) 230 return NULL; 231 232 ptr = wmi_addr_remap(ptr); 233 if (ptr < WIL6210_FW_HOST_OFF) 234 return NULL; 235 236 off = HOSTADDR(ptr); 237 if (off > wil->bar_size - 4) 238 return NULL; 239 if (size && ((off + size > wil->bar_size) || (off + size < off))) 240 return NULL; 241 242 return wil->csr + off; 243 } 244 245 void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_) 246 { 247 return wmi_buffer_block(wil, ptr_, 0); 248 } 249 250 /** 251 * Check address validity 252 */ 253 void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr) 254 { 255 u32 off; 256 257 if (ptr % 4) 258 return NULL; 259 260 if (ptr < WIL6210_FW_HOST_OFF) 261 return NULL; 262 263 off = HOSTADDR(ptr); 264 if (off > wil->bar_size - 4) 265 return NULL; 266 267 return wil->csr + off; 268 } 269 270 int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr, 271 struct wil6210_mbox_hdr *hdr) 272 { 273 void __iomem *src = wmi_buffer(wil, ptr); 274 275 if (!src) 276 return -EINVAL; 277 278 wil_memcpy_fromio_32(hdr, src, sizeof(*hdr)); 279 280 return 0; 281 } 282 283 static const char *cmdid2name(u16 cmdid) 284 { 285 switch (cmdid) { 286 case WMI_NOTIFY_REQ_CMDID: 287 return "WMI_NOTIFY_REQ_CMD"; 288 case WMI_START_SCAN_CMDID: 289 return "WMI_START_SCAN_CMD"; 290 case WMI_CONNECT_CMDID: 291 return "WMI_CONNECT_CMD"; 292 case WMI_DISCONNECT_CMDID: 293 return "WMI_DISCONNECT_CMD"; 294 case WMI_SW_TX_REQ_CMDID: 295 return "WMI_SW_TX_REQ_CMD"; 296 case WMI_GET_RF_SECTOR_PARAMS_CMDID: 297 return "WMI_GET_RF_SECTOR_PARAMS_CMD"; 298 case WMI_SET_RF_SECTOR_PARAMS_CMDID: 299 return "WMI_SET_RF_SECTOR_PARAMS_CMD"; 300 case WMI_GET_SELECTED_RF_SECTOR_INDEX_CMDID: 301 return "WMI_GET_SELECTED_RF_SECTOR_INDEX_CMD"; 302 case WMI_SET_SELECTED_RF_SECTOR_INDEX_CMDID: 303 return "WMI_SET_SELECTED_RF_SECTOR_INDEX_CMD"; 304 case WMI_BRP_SET_ANT_LIMIT_CMDID: 305 return "WMI_BRP_SET_ANT_LIMIT_CMD"; 306 case WMI_TOF_SESSION_START_CMDID: 307 return "WMI_TOF_SESSION_START_CMD"; 308 case WMI_AOA_MEAS_CMDID: 309 return "WMI_AOA_MEAS_CMD"; 310 case WMI_PMC_CMDID: 311 return "WMI_PMC_CMD"; 312 case WMI_TOF_GET_TX_RX_OFFSET_CMDID: 313 return "WMI_TOF_GET_TX_RX_OFFSET_CMD"; 314 case WMI_TOF_SET_TX_RX_OFFSET_CMDID: 315 return "WMI_TOF_SET_TX_RX_OFFSET_CMD"; 316 case WMI_VRING_CFG_CMDID: 317 return "WMI_VRING_CFG_CMD"; 318 case WMI_BCAST_VRING_CFG_CMDID: 319 return "WMI_BCAST_VRING_CFG_CMD"; 320 case WMI_TRAFFIC_SUSPEND_CMDID: 321 return "WMI_TRAFFIC_SUSPEND_CMD"; 322 case WMI_TRAFFIC_RESUME_CMDID: 323 return "WMI_TRAFFIC_RESUME_CMD"; 324 case WMI_ECHO_CMDID: 325 return "WMI_ECHO_CMD"; 326 case WMI_SET_MAC_ADDRESS_CMDID: 327 return "WMI_SET_MAC_ADDRESS_CMD"; 328 case WMI_LED_CFG_CMDID: 329 return "WMI_LED_CFG_CMD"; 330 case WMI_PCP_START_CMDID: 331 return "WMI_PCP_START_CMD"; 332 case WMI_PCP_STOP_CMDID: 333 return "WMI_PCP_STOP_CMD"; 334 case WMI_SET_SSID_CMDID: 335 return "WMI_SET_SSID_CMD"; 336 case WMI_GET_SSID_CMDID: 337 return "WMI_GET_SSID_CMD"; 338 case WMI_SET_PCP_CHANNEL_CMDID: 339 return "WMI_SET_PCP_CHANNEL_CMD"; 340 case WMI_GET_PCP_CHANNEL_CMDID: 341 return "WMI_GET_PCP_CHANNEL_CMD"; 342 case WMI_P2P_CFG_CMDID: 343 return "WMI_P2P_CFG_CMD"; 344 case WMI_PORT_ALLOCATE_CMDID: 345 return "WMI_PORT_ALLOCATE_CMD"; 346 case WMI_PORT_DELETE_CMDID: 347 return "WMI_PORT_DELETE_CMD"; 348 case WMI_START_LISTEN_CMDID: 349 return "WMI_START_LISTEN_CMD"; 350 case WMI_START_SEARCH_CMDID: 351 return "WMI_START_SEARCH_CMD"; 352 case WMI_DISCOVERY_STOP_CMDID: 353 return "WMI_DISCOVERY_STOP_CMD"; 354 case WMI_DELETE_CIPHER_KEY_CMDID: 355 return "WMI_DELETE_CIPHER_KEY_CMD"; 356 case WMI_ADD_CIPHER_KEY_CMDID: 357 return "WMI_ADD_CIPHER_KEY_CMD"; 358 case WMI_SET_APPIE_CMDID: 359 return "WMI_SET_APPIE_CMD"; 360 case WMI_CFG_RX_CHAIN_CMDID: 361 return "WMI_CFG_RX_CHAIN_CMD"; 362 case WMI_TEMP_SENSE_CMDID: 363 return "WMI_TEMP_SENSE_CMD"; 364 case WMI_DEL_STA_CMDID: 365 return "WMI_DEL_STA_CMD"; 366 case WMI_DISCONNECT_STA_CMDID: 367 return "WMI_DISCONNECT_STA_CMD"; 368 case WMI_VRING_BA_EN_CMDID: 369 return "WMI_VRING_BA_EN_CMD"; 370 case WMI_VRING_BA_DIS_CMDID: 371 return "WMI_VRING_BA_DIS_CMD"; 372 case WMI_RCP_DELBA_CMDID: 373 return "WMI_RCP_DELBA_CMD"; 374 case WMI_RCP_ADDBA_RESP_CMDID: 375 return "WMI_RCP_ADDBA_RESP_CMD"; 376 case WMI_PS_DEV_PROFILE_CFG_CMDID: 377 return "WMI_PS_DEV_PROFILE_CFG_CMD"; 378 case WMI_SET_MGMT_RETRY_LIMIT_CMDID: 379 return "WMI_SET_MGMT_RETRY_LIMIT_CMD"; 380 case WMI_GET_MGMT_RETRY_LIMIT_CMDID: 381 return "WMI_GET_MGMT_RETRY_LIMIT_CMD"; 382 case WMI_ABORT_SCAN_CMDID: 383 return "WMI_ABORT_SCAN_CMD"; 384 case WMI_NEW_STA_CMDID: 385 return "WMI_NEW_STA_CMD"; 386 case WMI_SET_THERMAL_THROTTLING_CFG_CMDID: 387 return "WMI_SET_THERMAL_THROTTLING_CFG_CMD"; 388 case WMI_GET_THERMAL_THROTTLING_CFG_CMDID: 389 return "WMI_GET_THERMAL_THROTTLING_CFG_CMD"; 390 case WMI_LINK_MAINTAIN_CFG_WRITE_CMDID: 391 return "WMI_LINK_MAINTAIN_CFG_WRITE_CMD"; 392 case WMI_LO_POWER_CALIB_FROM_OTP_CMDID: 393 return "WMI_LO_POWER_CALIB_FROM_OTP_CMD"; 394 case WMI_START_SCHED_SCAN_CMDID: 395 return "WMI_START_SCHED_SCAN_CMD"; 396 case WMI_STOP_SCHED_SCAN_CMDID: 397 return "WMI_STOP_SCHED_SCAN_CMD"; 398 default: 399 return "Untracked CMD"; 400 } 401 } 402 403 static const char *eventid2name(u16 eventid) 404 { 405 switch (eventid) { 406 case WMI_NOTIFY_REQ_DONE_EVENTID: 407 return "WMI_NOTIFY_REQ_DONE_EVENT"; 408 case WMI_DISCONNECT_EVENTID: 409 return "WMI_DISCONNECT_EVENT"; 410 case WMI_SW_TX_COMPLETE_EVENTID: 411 return "WMI_SW_TX_COMPLETE_EVENT"; 412 case WMI_GET_RF_SECTOR_PARAMS_DONE_EVENTID: 413 return "WMI_GET_RF_SECTOR_PARAMS_DONE_EVENT"; 414 case WMI_SET_RF_SECTOR_PARAMS_DONE_EVENTID: 415 return "WMI_SET_RF_SECTOR_PARAMS_DONE_EVENT"; 416 case WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID: 417 return "WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT"; 418 case WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID: 419 return "WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT"; 420 case WMI_BRP_SET_ANT_LIMIT_EVENTID: 421 return "WMI_BRP_SET_ANT_LIMIT_EVENT"; 422 case WMI_FW_READY_EVENTID: 423 return "WMI_FW_READY_EVENT"; 424 case WMI_TRAFFIC_RESUME_EVENTID: 425 return "WMI_TRAFFIC_RESUME_EVENT"; 426 case WMI_TOF_GET_TX_RX_OFFSET_EVENTID: 427 return "WMI_TOF_GET_TX_RX_OFFSET_EVENT"; 428 case WMI_TOF_SET_TX_RX_OFFSET_EVENTID: 429 return "WMI_TOF_SET_TX_RX_OFFSET_EVENT"; 430 case WMI_VRING_CFG_DONE_EVENTID: 431 return "WMI_VRING_CFG_DONE_EVENT"; 432 case WMI_READY_EVENTID: 433 return "WMI_READY_EVENT"; 434 case WMI_RX_MGMT_PACKET_EVENTID: 435 return "WMI_RX_MGMT_PACKET_EVENT"; 436 case WMI_TX_MGMT_PACKET_EVENTID: 437 return "WMI_TX_MGMT_PACKET_EVENT"; 438 case WMI_SCAN_COMPLETE_EVENTID: 439 return "WMI_SCAN_COMPLETE_EVENT"; 440 case WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENTID: 441 return "WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENT"; 442 case WMI_CONNECT_EVENTID: 443 return "WMI_CONNECT_EVENT"; 444 case WMI_EAPOL_RX_EVENTID: 445 return "WMI_EAPOL_RX_EVENT"; 446 case WMI_BA_STATUS_EVENTID: 447 return "WMI_BA_STATUS_EVENT"; 448 case WMI_RCP_ADDBA_REQ_EVENTID: 449 return "WMI_RCP_ADDBA_REQ_EVENT"; 450 case WMI_DELBA_EVENTID: 451 return "WMI_DELBA_EVENT"; 452 case WMI_VRING_EN_EVENTID: 453 return "WMI_VRING_EN_EVENT"; 454 case WMI_DATA_PORT_OPEN_EVENTID: 455 return "WMI_DATA_PORT_OPEN_EVENT"; 456 case WMI_AOA_MEAS_EVENTID: 457 return "WMI_AOA_MEAS_EVENT"; 458 case WMI_TOF_SESSION_END_EVENTID: 459 return "WMI_TOF_SESSION_END_EVENT"; 460 case WMI_TOF_GET_CAPABILITIES_EVENTID: 461 return "WMI_TOF_GET_CAPABILITIES_EVENT"; 462 case WMI_TOF_SET_LCR_EVENTID: 463 return "WMI_TOF_SET_LCR_EVENT"; 464 case WMI_TOF_SET_LCI_EVENTID: 465 return "WMI_TOF_SET_LCI_EVENT"; 466 case WMI_TOF_FTM_PER_DEST_RES_EVENTID: 467 return "WMI_TOF_FTM_PER_DEST_RES_EVENT"; 468 case WMI_TOF_CHANNEL_INFO_EVENTID: 469 return "WMI_TOF_CHANNEL_INFO_EVENT"; 470 case WMI_TRAFFIC_SUSPEND_EVENTID: 471 return "WMI_TRAFFIC_SUSPEND_EVENT"; 472 case WMI_ECHO_RSP_EVENTID: 473 return "WMI_ECHO_RSP_EVENT"; 474 case WMI_LED_CFG_DONE_EVENTID: 475 return "WMI_LED_CFG_DONE_EVENT"; 476 case WMI_PCP_STARTED_EVENTID: 477 return "WMI_PCP_STARTED_EVENT"; 478 case WMI_PCP_STOPPED_EVENTID: 479 return "WMI_PCP_STOPPED_EVENT"; 480 case WMI_GET_SSID_EVENTID: 481 return "WMI_GET_SSID_EVENT"; 482 case WMI_GET_PCP_CHANNEL_EVENTID: 483 return "WMI_GET_PCP_CHANNEL_EVENT"; 484 case WMI_P2P_CFG_DONE_EVENTID: 485 return "WMI_P2P_CFG_DONE_EVENT"; 486 case WMI_PORT_ALLOCATED_EVENTID: 487 return "WMI_PORT_ALLOCATED_EVENT"; 488 case WMI_PORT_DELETED_EVENTID: 489 return "WMI_PORT_DELETED_EVENT"; 490 case WMI_LISTEN_STARTED_EVENTID: 491 return "WMI_LISTEN_STARTED_EVENT"; 492 case WMI_SEARCH_STARTED_EVENTID: 493 return "WMI_SEARCH_STARTED_EVENT"; 494 case WMI_DISCOVERY_STOPPED_EVENTID: 495 return "WMI_DISCOVERY_STOPPED_EVENT"; 496 case WMI_CFG_RX_CHAIN_DONE_EVENTID: 497 return "WMI_CFG_RX_CHAIN_DONE_EVENT"; 498 case WMI_TEMP_SENSE_DONE_EVENTID: 499 return "WMI_TEMP_SENSE_DONE_EVENT"; 500 case WMI_RCP_ADDBA_RESP_SENT_EVENTID: 501 return "WMI_RCP_ADDBA_RESP_SENT_EVENT"; 502 case WMI_PS_DEV_PROFILE_CFG_EVENTID: 503 return "WMI_PS_DEV_PROFILE_CFG_EVENT"; 504 case WMI_SET_MGMT_RETRY_LIMIT_EVENTID: 505 return "WMI_SET_MGMT_RETRY_LIMIT_EVENT"; 506 case WMI_GET_MGMT_RETRY_LIMIT_EVENTID: 507 return "WMI_GET_MGMT_RETRY_LIMIT_EVENT"; 508 case WMI_SET_THERMAL_THROTTLING_CFG_EVENTID: 509 return "WMI_SET_THERMAL_THROTTLING_CFG_EVENT"; 510 case WMI_GET_THERMAL_THROTTLING_CFG_EVENTID: 511 return "WMI_GET_THERMAL_THROTTLING_CFG_EVENT"; 512 case WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENTID: 513 return "WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENT"; 514 case WMI_LO_POWER_CALIB_FROM_OTP_EVENTID: 515 return "WMI_LO_POWER_CALIB_FROM_OTP_EVENT"; 516 case WMI_START_SCHED_SCAN_EVENTID: 517 return "WMI_START_SCHED_SCAN_EVENT"; 518 case WMI_STOP_SCHED_SCAN_EVENTID: 519 return "WMI_STOP_SCHED_SCAN_EVENT"; 520 case WMI_SCHED_SCAN_RESULT_EVENTID: 521 return "WMI_SCHED_SCAN_RESULT_EVENT"; 522 default: 523 return "Untracked EVENT"; 524 } 525 } 526 527 static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid, 528 void *buf, u16 len) 529 { 530 struct { 531 struct wil6210_mbox_hdr hdr; 532 struct wmi_cmd_hdr wmi; 533 } __packed cmd = { 534 .hdr = { 535 .type = WIL_MBOX_HDR_TYPE_WMI, 536 .flags = 0, 537 .len = cpu_to_le16(sizeof(cmd.wmi) + len), 538 }, 539 .wmi = { 540 .mid = mid, 541 .command_id = cpu_to_le16(cmdid), 542 }, 543 }; 544 struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx; 545 struct wil6210_mbox_ring_desc d_head; 546 u32 next_head; 547 void __iomem *dst; 548 void __iomem *head = wmi_addr(wil, r->head); 549 uint retry; 550 int rc = 0; 551 552 if (len > r->entry_size - sizeof(cmd)) { 553 wil_err(wil, "WMI size too large: %d bytes, max is %d\n", 554 (int)(sizeof(cmd) + len), r->entry_size); 555 return -ERANGE; 556 } 557 558 might_sleep(); 559 560 if (!test_bit(wil_status_fwready, wil->status)) { 561 wil_err(wil, "WMI: cannot send command while FW not ready\n"); 562 return -EAGAIN; 563 } 564 565 /* Allow sending only suspend / resume commands during susepnd flow */ 566 if ((test_bit(wil_status_suspending, wil->status) || 567 test_bit(wil_status_suspended, wil->status) || 568 test_bit(wil_status_resuming, wil->status)) && 569 ((cmdid != WMI_TRAFFIC_SUSPEND_CMDID) && 570 (cmdid != WMI_TRAFFIC_RESUME_CMDID))) { 571 wil_err(wil, "WMI: reject send_command during suspend\n"); 572 return -EINVAL; 573 } 574 575 if (!head) { 576 wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head); 577 return -EINVAL; 578 } 579 580 wil_halp_vote(wil); 581 582 /* read Tx head till it is not busy */ 583 for (retry = 5; retry > 0; retry--) { 584 wil_memcpy_fromio_32(&d_head, head, sizeof(d_head)); 585 if (d_head.sync == 0) 586 break; 587 msleep(20); 588 } 589 if (d_head.sync != 0) { 590 wil_err(wil, "WMI head busy\n"); 591 rc = -EBUSY; 592 goto out; 593 } 594 /* next head */ 595 next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size); 596 wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head); 597 /* wait till FW finish with previous command */ 598 for (retry = 5; retry > 0; retry--) { 599 if (!test_bit(wil_status_fwready, wil->status)) { 600 wil_err(wil, "WMI: cannot send command while FW not ready\n"); 601 rc = -EAGAIN; 602 goto out; 603 } 604 r->tail = wil_r(wil, RGF_MBOX + 605 offsetof(struct wil6210_mbox_ctl, tx.tail)); 606 if (next_head != r->tail) 607 break; 608 msleep(20); 609 } 610 if (next_head == r->tail) { 611 wil_err(wil, "WMI ring full\n"); 612 rc = -EBUSY; 613 goto out; 614 } 615 dst = wmi_buffer(wil, d_head.addr); 616 if (!dst) { 617 wil_err(wil, "invalid WMI buffer: 0x%08x\n", 618 le32_to_cpu(d_head.addr)); 619 rc = -EAGAIN; 620 goto out; 621 } 622 cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq); 623 /* set command */ 624 wil_dbg_wmi(wil, "sending %s (0x%04x) [%d] mid %d\n", 625 cmdid2name(cmdid), cmdid, len, mid); 626 wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd, 627 sizeof(cmd), true); 628 wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf, 629 len, true); 630 wil_memcpy_toio_32(dst, &cmd, sizeof(cmd)); 631 wil_memcpy_toio_32(dst + sizeof(cmd), buf, len); 632 /* mark entry as full */ 633 wil_w(wil, r->head + offsetof(struct wil6210_mbox_ring_desc, sync), 1); 634 /* advance next ptr */ 635 wil_w(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, tx.head), 636 r->head = next_head); 637 638 trace_wil6210_wmi_cmd(&cmd.wmi, buf, len); 639 640 /* interrupt to FW */ 641 wil_w(wil, RGF_USER_USER_ICR + offsetof(struct RGF_ICR, ICS), 642 SW_INT_MBOX); 643 644 out: 645 wil_halp_unvote(wil); 646 return rc; 647 } 648 649 int wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len) 650 { 651 int rc; 652 653 mutex_lock(&wil->wmi_mutex); 654 rc = __wmi_send(wil, cmdid, mid, buf, len); 655 mutex_unlock(&wil->wmi_mutex); 656 657 return rc; 658 } 659 660 /*=== Event handlers ===*/ 661 static void wmi_evt_ready(struct wil6210_vif *vif, int id, void *d, int len) 662 { 663 struct wil6210_priv *wil = vif_to_wil(vif); 664 struct wiphy *wiphy = wil_to_wiphy(wil); 665 struct wmi_ready_event *evt = d; 666 667 wil_info(wil, "FW ver. %s(SW %d); MAC %pM; %d MID's\n", 668 wil->fw_version, le32_to_cpu(evt->sw_version), 669 evt->mac, evt->numof_additional_mids); 670 if (evt->numof_additional_mids + 1 < wil->max_vifs) { 671 wil_err(wil, "FW does not support enough MIDs (need %d)", 672 wil->max_vifs - 1); 673 return; /* FW load will fail after timeout */ 674 } 675 /* ignore MAC address, we already have it from the boot loader */ 676 strlcpy(wiphy->fw_version, wil->fw_version, sizeof(wiphy->fw_version)); 677 678 if (len > offsetof(struct wmi_ready_event, rfc_read_calib_result)) { 679 wil_dbg_wmi(wil, "rfc calibration result %d\n", 680 evt->rfc_read_calib_result); 681 wil->fw_calib_result = evt->rfc_read_calib_result; 682 } 683 wil_set_recovery_state(wil, fw_recovery_idle); 684 set_bit(wil_status_fwready, wil->status); 685 /* let the reset sequence continue */ 686 complete(&wil->wmi_ready); 687 } 688 689 static void wmi_evt_rx_mgmt(struct wil6210_vif *vif, int id, void *d, int len) 690 { 691 struct wil6210_priv *wil = vif_to_wil(vif); 692 struct wmi_rx_mgmt_packet_event *data = d; 693 struct wiphy *wiphy = wil_to_wiphy(wil); 694 struct ieee80211_mgmt *rx_mgmt_frame = 695 (struct ieee80211_mgmt *)data->payload; 696 int flen = len - offsetof(struct wmi_rx_mgmt_packet_event, payload); 697 int ch_no; 698 u32 freq; 699 struct ieee80211_channel *channel; 700 s32 signal; 701 __le16 fc; 702 u32 d_len; 703 u16 d_status; 704 705 if (flen < 0) { 706 wil_err(wil, "MGMT Rx: short event, len %d\n", len); 707 return; 708 } 709 710 d_len = le32_to_cpu(data->info.len); 711 if (d_len != flen) { 712 wil_err(wil, 713 "MGMT Rx: length mismatch, d_len %d should be %d\n", 714 d_len, flen); 715 return; 716 } 717 718 ch_no = data->info.channel + 1; 719 freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ); 720 channel = ieee80211_get_channel(wiphy, freq); 721 if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities)) 722 signal = 100 * data->info.rssi; 723 else 724 signal = data->info.sqi; 725 d_status = le16_to_cpu(data->info.status); 726 fc = rx_mgmt_frame->frame_control; 727 728 wil_dbg_wmi(wil, "MGMT Rx: channel %d MCS %d RSSI %d SQI %d%%\n", 729 data->info.channel, data->info.mcs, data->info.rssi, 730 data->info.sqi); 731 wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len, 732 le16_to_cpu(fc)); 733 wil_dbg_wmi(wil, "qid %d mid %d cid %d\n", 734 data->info.qid, data->info.mid, data->info.cid); 735 wil_hex_dump_wmi("MGMT Rx ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame, 736 d_len, true); 737 738 if (!channel) { 739 wil_err(wil, "Frame on unsupported channel\n"); 740 return; 741 } 742 743 if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) { 744 struct cfg80211_bss *bss; 745 u64 tsf = le64_to_cpu(rx_mgmt_frame->u.beacon.timestamp); 746 u16 cap = le16_to_cpu(rx_mgmt_frame->u.beacon.capab_info); 747 u16 bi = le16_to_cpu(rx_mgmt_frame->u.beacon.beacon_int); 748 const u8 *ie_buf = rx_mgmt_frame->u.beacon.variable; 749 size_t ie_len = d_len - offsetof(struct ieee80211_mgmt, 750 u.beacon.variable); 751 wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap); 752 wil_dbg_wmi(wil, "TSF : 0x%016llx\n", tsf); 753 wil_dbg_wmi(wil, "Beacon interval : %d\n", bi); 754 wil_hex_dump_wmi("IE ", DUMP_PREFIX_OFFSET, 16, 1, ie_buf, 755 ie_len, true); 756 757 wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap); 758 759 bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame, 760 d_len, signal, GFP_KERNEL); 761 if (bss) { 762 wil_dbg_wmi(wil, "Added BSS %pM\n", 763 rx_mgmt_frame->bssid); 764 cfg80211_put_bss(wiphy, bss); 765 } else { 766 wil_err(wil, "cfg80211_inform_bss_frame() failed\n"); 767 } 768 } else { 769 mutex_lock(&wil->vif_mutex); 770 cfg80211_rx_mgmt(vif_to_radio_wdev(wil, vif), freq, signal, 771 (void *)rx_mgmt_frame, d_len, 0); 772 mutex_unlock(&wil->vif_mutex); 773 } 774 } 775 776 static void wmi_evt_tx_mgmt(struct wil6210_vif *vif, int id, void *d, int len) 777 { 778 struct wmi_tx_mgmt_packet_event *data = d; 779 struct ieee80211_mgmt *mgmt_frame = 780 (struct ieee80211_mgmt *)data->payload; 781 int flen = len - offsetof(struct wmi_tx_mgmt_packet_event, payload); 782 783 wil_hex_dump_wmi("MGMT Tx ", DUMP_PREFIX_OFFSET, 16, 1, mgmt_frame, 784 flen, true); 785 } 786 787 static void wmi_evt_scan_complete(struct wil6210_vif *vif, int id, 788 void *d, int len) 789 { 790 struct wil6210_priv *wil = vif_to_wil(vif); 791 792 mutex_lock(&wil->vif_mutex); 793 if (vif->scan_request) { 794 struct wmi_scan_complete_event *data = d; 795 int status = le32_to_cpu(data->status); 796 struct cfg80211_scan_info info = { 797 .aborted = ((status != WMI_SCAN_SUCCESS) && 798 (status != WMI_SCAN_ABORT_REJECTED)), 799 }; 800 801 wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", status); 802 wil_dbg_misc(wil, "Complete scan_request 0x%p aborted %d\n", 803 vif->scan_request, info.aborted); 804 del_timer_sync(&vif->scan_timer); 805 cfg80211_scan_done(vif->scan_request, &info); 806 if (vif->mid == 0) 807 wil->radio_wdev = wil->main_ndev->ieee80211_ptr; 808 vif->scan_request = NULL; 809 wake_up_interruptible(&wil->wq); 810 if (vif->p2p.pending_listen_wdev) { 811 wil_dbg_misc(wil, "Scheduling delayed listen\n"); 812 schedule_work(&vif->p2p.delayed_listen_work); 813 } 814 } else { 815 wil_err(wil, "SCAN_COMPLETE while not scanning\n"); 816 } 817 mutex_unlock(&wil->vif_mutex); 818 } 819 820 static void wmi_evt_connect(struct wil6210_vif *vif, int id, void *d, int len) 821 { 822 struct wil6210_priv *wil = vif_to_wil(vif); 823 struct net_device *ndev = vif_to_ndev(vif); 824 struct wireless_dev *wdev = vif_to_wdev(vif); 825 struct wmi_connect_event *evt = d; 826 int ch; /* channel number */ 827 struct station_info sinfo; 828 u8 *assoc_req_ie, *assoc_resp_ie; 829 size_t assoc_req_ielen, assoc_resp_ielen; 830 /* capinfo(u16) + listen_interval(u16) + IEs */ 831 const size_t assoc_req_ie_offset = sizeof(u16) * 2; 832 /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */ 833 const size_t assoc_resp_ie_offset = sizeof(u16) * 3; 834 int rc; 835 836 if (len < sizeof(*evt)) { 837 wil_err(wil, "Connect event too short : %d bytes\n", len); 838 return; 839 } 840 if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len + 841 evt->assoc_resp_len) { 842 wil_err(wil, 843 "Connect event corrupted : %d != %d + %d + %d + %d\n", 844 len, (int)sizeof(*evt), evt->beacon_ie_len, 845 evt->assoc_req_len, evt->assoc_resp_len); 846 return; 847 } 848 if (evt->cid >= WIL6210_MAX_CID) { 849 wil_err(wil, "Connect CID invalid : %d\n", evt->cid); 850 return; 851 } 852 853 ch = evt->channel + 1; 854 wil_info(wil, "Connect %pM channel [%d] cid %d aid %d\n", 855 evt->bssid, ch, evt->cid, evt->aid); 856 wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1, 857 evt->assoc_info, len - sizeof(*evt), true); 858 859 /* figure out IE's */ 860 assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len + 861 assoc_req_ie_offset]; 862 assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset; 863 if (evt->assoc_req_len <= assoc_req_ie_offset) { 864 assoc_req_ie = NULL; 865 assoc_req_ielen = 0; 866 } 867 868 assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len + 869 evt->assoc_req_len + 870 assoc_resp_ie_offset]; 871 assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset; 872 if (evt->assoc_resp_len <= assoc_resp_ie_offset) { 873 assoc_resp_ie = NULL; 874 assoc_resp_ielen = 0; 875 } 876 877 if (test_bit(wil_status_resetting, wil->status) || 878 !test_bit(wil_status_fwready, wil->status)) { 879 wil_err(wil, "status_resetting, cancel connect event, CID %d\n", 880 evt->cid); 881 /* no need for cleanup, wil_reset will do that */ 882 return; 883 } 884 885 mutex_lock(&wil->mutex); 886 887 if ((wdev->iftype == NL80211_IFTYPE_STATION) || 888 (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) { 889 if (!test_bit(wil_vif_fwconnecting, vif->status)) { 890 wil_err(wil, "Not in connecting state\n"); 891 mutex_unlock(&wil->mutex); 892 return; 893 } 894 del_timer_sync(&vif->connect_timer); 895 } else if ((wdev->iftype == NL80211_IFTYPE_AP) || 896 (wdev->iftype == NL80211_IFTYPE_P2P_GO)) { 897 if (wil->sta[evt->cid].status != wil_sta_unused) { 898 wil_err(wil, "AP: Invalid status %d for CID %d\n", 899 wil->sta[evt->cid].status, evt->cid); 900 mutex_unlock(&wil->mutex); 901 return; 902 } 903 } 904 905 ether_addr_copy(wil->sta[evt->cid].addr, evt->bssid); 906 wil->sta[evt->cid].mid = vif->mid; 907 wil->sta[evt->cid].status = wil_sta_conn_pending; 908 909 rc = wil_tx_init(vif, evt->cid); 910 if (rc) { 911 wil_err(wil, "config tx vring failed for CID %d, rc (%d)\n", 912 evt->cid, rc); 913 wmi_disconnect_sta(vif, wil->sta[evt->cid].addr, 914 WLAN_REASON_UNSPECIFIED, false, false); 915 } else { 916 wil_info(wil, "successful connection to CID %d\n", evt->cid); 917 } 918 919 if ((wdev->iftype == NL80211_IFTYPE_STATION) || 920 (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) { 921 if (rc) { 922 netif_carrier_off(ndev); 923 wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); 924 wil_err(wil, "cfg80211_connect_result with failure\n"); 925 cfg80211_connect_result(ndev, evt->bssid, NULL, 0, 926 NULL, 0, 927 WLAN_STATUS_UNSPECIFIED_FAILURE, 928 GFP_KERNEL); 929 goto out; 930 } else { 931 struct wiphy *wiphy = wil_to_wiphy(wil); 932 933 cfg80211_ref_bss(wiphy, vif->bss); 934 cfg80211_connect_bss(ndev, evt->bssid, vif->bss, 935 assoc_req_ie, assoc_req_ielen, 936 assoc_resp_ie, assoc_resp_ielen, 937 WLAN_STATUS_SUCCESS, GFP_KERNEL, 938 NL80211_TIMEOUT_UNSPECIFIED); 939 } 940 vif->bss = NULL; 941 } else if ((wdev->iftype == NL80211_IFTYPE_AP) || 942 (wdev->iftype == NL80211_IFTYPE_P2P_GO)) { 943 if (rc) { 944 if (disable_ap_sme) 945 /* notify new_sta has failed */ 946 cfg80211_del_sta(ndev, evt->bssid, GFP_KERNEL); 947 goto out; 948 } 949 950 memset(&sinfo, 0, sizeof(sinfo)); 951 952 sinfo.generation = wil->sinfo_gen++; 953 954 if (assoc_req_ie) { 955 sinfo.assoc_req_ies = assoc_req_ie; 956 sinfo.assoc_req_ies_len = assoc_req_ielen; 957 } 958 959 cfg80211_new_sta(ndev, evt->bssid, &sinfo, GFP_KERNEL); 960 } else { 961 wil_err(wil, "unhandled iftype %d for CID %d\n", wdev->iftype, 962 evt->cid); 963 goto out; 964 } 965 966 wil->sta[evt->cid].status = wil_sta_connected; 967 wil->sta[evt->cid].aid = evt->aid; 968 if (!test_and_set_bit(wil_vif_fwconnected, vif->status)) 969 atomic_inc(&wil->connected_vifs); 970 wil_update_net_queues_bh(wil, vif, NULL, false); 971 972 out: 973 if (rc) { 974 wil->sta[evt->cid].status = wil_sta_unused; 975 wil->sta[evt->cid].mid = U8_MAX; 976 } 977 clear_bit(wil_vif_fwconnecting, vif->status); 978 mutex_unlock(&wil->mutex); 979 } 980 981 static void wmi_evt_disconnect(struct wil6210_vif *vif, int id, 982 void *d, int len) 983 { 984 struct wil6210_priv *wil = vif_to_wil(vif); 985 struct wmi_disconnect_event *evt = d; 986 u16 reason_code = le16_to_cpu(evt->protocol_reason_status); 987 988 wil_info(wil, "Disconnect %pM reason [proto %d wmi %d]\n", 989 evt->bssid, reason_code, evt->disconnect_reason); 990 991 wil->sinfo_gen++; 992 993 if (test_bit(wil_status_resetting, wil->status) || 994 !test_bit(wil_status_fwready, wil->status)) { 995 wil_err(wil, "status_resetting, cancel disconnect event\n"); 996 /* no need for cleanup, wil_reset will do that */ 997 return; 998 } 999 1000 mutex_lock(&wil->mutex); 1001 wil6210_disconnect(vif, evt->bssid, reason_code, true); 1002 mutex_unlock(&wil->mutex); 1003 } 1004 1005 /* 1006 * Firmware reports EAPOL frame using WME event. 1007 * Reconstruct Ethernet frame and deliver it via normal Rx 1008 */ 1009 static void wmi_evt_eapol_rx(struct wil6210_vif *vif, int id, void *d, int len) 1010 { 1011 struct wil6210_priv *wil = vif_to_wil(vif); 1012 struct net_device *ndev = vif_to_ndev(vif); 1013 struct wmi_eapol_rx_event *evt = d; 1014 u16 eapol_len = le16_to_cpu(evt->eapol_len); 1015 int sz = eapol_len + ETH_HLEN; 1016 struct sk_buff *skb; 1017 struct ethhdr *eth; 1018 int cid; 1019 struct wil_net_stats *stats = NULL; 1020 1021 wil_dbg_wmi(wil, "EAPOL len %d from %pM MID %d\n", eapol_len, 1022 evt->src_mac, vif->mid); 1023 1024 cid = wil_find_cid(wil, vif->mid, evt->src_mac); 1025 if (cid >= 0) 1026 stats = &wil->sta[cid].stats; 1027 1028 if (eapol_len > 196) { /* TODO: revisit size limit */ 1029 wil_err(wil, "EAPOL too large\n"); 1030 return; 1031 } 1032 1033 skb = alloc_skb(sz, GFP_KERNEL); 1034 if (!skb) { 1035 wil_err(wil, "Failed to allocate skb\n"); 1036 return; 1037 } 1038 1039 eth = skb_put(skb, ETH_HLEN); 1040 ether_addr_copy(eth->h_dest, ndev->dev_addr); 1041 ether_addr_copy(eth->h_source, evt->src_mac); 1042 eth->h_proto = cpu_to_be16(ETH_P_PAE); 1043 skb_put_data(skb, evt->eapol, eapol_len); 1044 skb->protocol = eth_type_trans(skb, ndev); 1045 if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) { 1046 ndev->stats.rx_packets++; 1047 ndev->stats.rx_bytes += sz; 1048 if (stats) { 1049 stats->rx_packets++; 1050 stats->rx_bytes += sz; 1051 } 1052 } else { 1053 ndev->stats.rx_dropped++; 1054 if (stats) 1055 stats->rx_dropped++; 1056 } 1057 } 1058 1059 static void wmi_evt_vring_en(struct wil6210_vif *vif, int id, void *d, int len) 1060 { 1061 struct wil6210_priv *wil = vif_to_wil(vif); 1062 struct wmi_vring_en_event *evt = d; 1063 u8 vri = evt->vring_index; 1064 struct wireless_dev *wdev = vif_to_wdev(vif); 1065 1066 wil_dbg_wmi(wil, "Enable vring %d MID %d\n", vri, vif->mid); 1067 1068 if (vri >= ARRAY_SIZE(wil->vring_tx)) { 1069 wil_err(wil, "Enable for invalid vring %d\n", vri); 1070 return; 1071 } 1072 1073 if (wdev->iftype != NL80211_IFTYPE_AP || !disable_ap_sme) 1074 /* in AP mode with disable_ap_sme, this is done by 1075 * wil_cfg80211_change_station() 1076 */ 1077 wil->vring_tx_data[vri].dot1x_open = true; 1078 if (vri == vif->bcast_vring) /* no BA for bcast */ 1079 return; 1080 if (agg_wsize >= 0) 1081 wil_addba_tx_request(wil, vri, agg_wsize); 1082 } 1083 1084 static void wmi_evt_ba_status(struct wil6210_vif *vif, int id, 1085 void *d, int len) 1086 { 1087 struct wil6210_priv *wil = vif_to_wil(vif); 1088 struct wmi_ba_status_event *evt = d; 1089 struct vring_tx_data *txdata; 1090 1091 wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d AMSDU%s\n", 1092 evt->ringid, 1093 evt->status == WMI_BA_AGREED ? "OK" : "N/A", 1094 evt->agg_wsize, __le16_to_cpu(evt->ba_timeout), 1095 evt->amsdu ? "+" : "-"); 1096 1097 if (evt->ringid >= WIL6210_MAX_TX_RINGS) { 1098 wil_err(wil, "invalid ring id %d\n", evt->ringid); 1099 return; 1100 } 1101 1102 if (evt->status != WMI_BA_AGREED) { 1103 evt->ba_timeout = 0; 1104 evt->agg_wsize = 0; 1105 evt->amsdu = 0; 1106 } 1107 1108 txdata = &wil->vring_tx_data[evt->ringid]; 1109 1110 txdata->agg_timeout = le16_to_cpu(evt->ba_timeout); 1111 txdata->agg_wsize = evt->agg_wsize; 1112 txdata->agg_amsdu = evt->amsdu; 1113 txdata->addba_in_progress = false; 1114 } 1115 1116 static void wmi_evt_addba_rx_req(struct wil6210_vif *vif, int id, 1117 void *d, int len) 1118 { 1119 struct wil6210_priv *wil = vif_to_wil(vif); 1120 struct wmi_rcp_addba_req_event *evt = d; 1121 1122 wil_addba_rx_request(wil, vif->mid, evt->cidxtid, evt->dialog_token, 1123 evt->ba_param_set, evt->ba_timeout, 1124 evt->ba_seq_ctrl); 1125 } 1126 1127 static void wmi_evt_delba(struct wil6210_vif *vif, int id, void *d, int len) 1128 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock) 1129 { 1130 struct wil6210_priv *wil = vif_to_wil(vif); 1131 struct wmi_delba_event *evt = d; 1132 u8 cid, tid; 1133 u16 reason = __le16_to_cpu(evt->reason); 1134 struct wil_sta_info *sta; 1135 struct wil_tid_ampdu_rx *r; 1136 1137 might_sleep(); 1138 parse_cidxtid(evt->cidxtid, &cid, &tid); 1139 wil_dbg_wmi(wil, "DELBA MID %d CID %d TID %d from %s reason %d\n", 1140 vif->mid, cid, tid, 1141 evt->from_initiator ? "originator" : "recipient", 1142 reason); 1143 if (!evt->from_initiator) { 1144 int i; 1145 /* find Tx vring it belongs to */ 1146 for (i = 0; i < ARRAY_SIZE(wil->vring2cid_tid); i++) { 1147 if ((wil->vring2cid_tid[i][0] == cid) && 1148 (wil->vring2cid_tid[i][1] == tid)) { 1149 struct vring_tx_data *txdata = 1150 &wil->vring_tx_data[i]; 1151 1152 wil_dbg_wmi(wil, "DELBA Tx vring %d\n", i); 1153 txdata->agg_timeout = 0; 1154 txdata->agg_wsize = 0; 1155 txdata->addba_in_progress = false; 1156 1157 break; /* max. 1 matching ring */ 1158 } 1159 } 1160 if (i >= ARRAY_SIZE(wil->vring2cid_tid)) 1161 wil_err(wil, "DELBA: unable to find Tx vring\n"); 1162 return; 1163 } 1164 1165 sta = &wil->sta[cid]; 1166 1167 spin_lock_bh(&sta->tid_rx_lock); 1168 1169 r = sta->tid_rx[tid]; 1170 sta->tid_rx[tid] = NULL; 1171 wil_tid_ampdu_rx_free(wil, r); 1172 1173 spin_unlock_bh(&sta->tid_rx_lock); 1174 } 1175 1176 static void 1177 wmi_evt_sched_scan_result(struct wil6210_vif *vif, int id, void *d, int len) 1178 { 1179 struct wil6210_priv *wil = vif_to_wil(vif); 1180 struct wmi_sched_scan_result_event *data = d; 1181 struct wiphy *wiphy = wil_to_wiphy(wil); 1182 struct ieee80211_mgmt *rx_mgmt_frame = 1183 (struct ieee80211_mgmt *)data->payload; 1184 int flen = len - offsetof(struct wmi_sched_scan_result_event, payload); 1185 int ch_no; 1186 u32 freq; 1187 struct ieee80211_channel *channel; 1188 s32 signal; 1189 __le16 fc; 1190 u32 d_len; 1191 struct cfg80211_bss *bss; 1192 1193 if (flen < 0) { 1194 wil_err(wil, "sched scan result event too short, len %d\n", 1195 len); 1196 return; 1197 } 1198 1199 d_len = le32_to_cpu(data->info.len); 1200 if (d_len != flen) { 1201 wil_err(wil, 1202 "sched scan result length mismatch, d_len %d should be %d\n", 1203 d_len, flen); 1204 return; 1205 } 1206 1207 fc = rx_mgmt_frame->frame_control; 1208 if (!ieee80211_is_probe_resp(fc)) { 1209 wil_err(wil, "sched scan result invalid frame, fc 0x%04x\n", 1210 fc); 1211 return; 1212 } 1213 1214 ch_no = data->info.channel + 1; 1215 freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ); 1216 channel = ieee80211_get_channel(wiphy, freq); 1217 if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities)) 1218 signal = 100 * data->info.rssi; 1219 else 1220 signal = data->info.sqi; 1221 1222 wil_dbg_wmi(wil, "sched scan result: channel %d MCS %d RSSI %d\n", 1223 data->info.channel, data->info.mcs, data->info.rssi); 1224 wil_dbg_wmi(wil, "len %d qid %d mid %d cid %d\n", 1225 d_len, data->info.qid, data->info.mid, data->info.cid); 1226 wil_hex_dump_wmi("PROBE ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame, 1227 d_len, true); 1228 1229 if (!channel) { 1230 wil_err(wil, "Frame on unsupported channel\n"); 1231 return; 1232 } 1233 1234 bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame, 1235 d_len, signal, GFP_KERNEL); 1236 if (bss) { 1237 wil_dbg_wmi(wil, "Added BSS %pM\n", rx_mgmt_frame->bssid); 1238 cfg80211_put_bss(wiphy, bss); 1239 } else { 1240 wil_err(wil, "cfg80211_inform_bss_frame() failed\n"); 1241 } 1242 1243 cfg80211_sched_scan_results(wiphy, 0); 1244 } 1245 1246 /** 1247 * Some events are ignored for purpose; and need not be interpreted as 1248 * "unhandled events" 1249 */ 1250 static void wmi_evt_ignore(struct wil6210_vif *vif, int id, void *d, int len) 1251 { 1252 struct wil6210_priv *wil = vif_to_wil(vif); 1253 1254 wil_dbg_wmi(wil, "Ignore event 0x%04x len %d\n", id, len); 1255 } 1256 1257 static const struct { 1258 int eventid; 1259 void (*handler)(struct wil6210_vif *vif, 1260 int eventid, void *data, int data_len); 1261 } wmi_evt_handlers[] = { 1262 {WMI_READY_EVENTID, wmi_evt_ready}, 1263 {WMI_FW_READY_EVENTID, wmi_evt_ignore}, 1264 {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt}, 1265 {WMI_TX_MGMT_PACKET_EVENTID, wmi_evt_tx_mgmt}, 1266 {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete}, 1267 {WMI_CONNECT_EVENTID, wmi_evt_connect}, 1268 {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect}, 1269 {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx}, 1270 {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status}, 1271 {WMI_RCP_ADDBA_REQ_EVENTID, wmi_evt_addba_rx_req}, 1272 {WMI_DELBA_EVENTID, wmi_evt_delba}, 1273 {WMI_VRING_EN_EVENTID, wmi_evt_vring_en}, 1274 {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_ignore}, 1275 {WMI_SCHED_SCAN_RESULT_EVENTID, wmi_evt_sched_scan_result}, 1276 }; 1277 1278 /* 1279 * Run in IRQ context 1280 * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev 1281 * that will be eventually handled by the @wmi_event_worker in the thread 1282 * context of thread "wil6210_wmi" 1283 */ 1284 void wmi_recv_cmd(struct wil6210_priv *wil) 1285 { 1286 struct wil6210_mbox_ring_desc d_tail; 1287 struct wil6210_mbox_hdr hdr; 1288 struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx; 1289 struct pending_wmi_event *evt; 1290 u8 *cmd; 1291 void __iomem *src; 1292 ulong flags; 1293 unsigned n; 1294 unsigned int num_immed_reply = 0; 1295 1296 if (!test_bit(wil_status_mbox_ready, wil->status)) { 1297 wil_err(wil, "Reset in progress. Cannot handle WMI event\n"); 1298 return; 1299 } 1300 1301 if (test_bit(wil_status_suspended, wil->status)) { 1302 wil_err(wil, "suspended. cannot handle WMI event\n"); 1303 return; 1304 } 1305 1306 for (n = 0;; n++) { 1307 u16 len; 1308 bool q; 1309 bool immed_reply = false; 1310 1311 r->head = wil_r(wil, RGF_MBOX + 1312 offsetof(struct wil6210_mbox_ctl, rx.head)); 1313 if (r->tail == r->head) 1314 break; 1315 1316 wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n", 1317 r->head, r->tail); 1318 /* read cmd descriptor from tail */ 1319 wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail), 1320 sizeof(struct wil6210_mbox_ring_desc)); 1321 if (d_tail.sync == 0) { 1322 wil_err(wil, "Mbox evt not owned by FW?\n"); 1323 break; 1324 } 1325 1326 /* read cmd header from descriptor */ 1327 if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) { 1328 wil_err(wil, "Mbox evt at 0x%08x?\n", 1329 le32_to_cpu(d_tail.addr)); 1330 break; 1331 } 1332 len = le16_to_cpu(hdr.len); 1333 wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n", 1334 le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type), 1335 hdr.flags); 1336 1337 /* read cmd buffer from descriptor */ 1338 src = wmi_buffer(wil, d_tail.addr) + 1339 sizeof(struct wil6210_mbox_hdr); 1340 evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event, 1341 event.wmi) + len, 4), 1342 GFP_KERNEL); 1343 if (!evt) 1344 break; 1345 1346 evt->event.hdr = hdr; 1347 cmd = (void *)&evt->event.wmi; 1348 wil_memcpy_fromio_32(cmd, src, len); 1349 /* mark entry as empty */ 1350 wil_w(wil, r->tail + 1351 offsetof(struct wil6210_mbox_ring_desc, sync), 0); 1352 /* indicate */ 1353 if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) && 1354 (len >= sizeof(struct wmi_cmd_hdr))) { 1355 struct wmi_cmd_hdr *wmi = &evt->event.wmi; 1356 u16 id = le16_to_cpu(wmi->command_id); 1357 u8 mid = wmi->mid; 1358 u32 tstamp = le32_to_cpu(wmi->fw_timestamp); 1359 if (test_bit(wil_status_resuming, wil->status)) { 1360 if (id == WMI_TRAFFIC_RESUME_EVENTID) 1361 clear_bit(wil_status_resuming, 1362 wil->status); 1363 else 1364 wil_err(wil, 1365 "WMI evt %d while resuming\n", 1366 id); 1367 } 1368 spin_lock_irqsave(&wil->wmi_ev_lock, flags); 1369 if (wil->reply_id && wil->reply_id == id && 1370 wil->reply_mid == mid) { 1371 if (wil->reply_buf) { 1372 memcpy(wil->reply_buf, wmi, 1373 min(len, wil->reply_size)); 1374 immed_reply = true; 1375 } 1376 if (id == WMI_TRAFFIC_SUSPEND_EVENTID) { 1377 wil_dbg_wmi(wil, 1378 "set suspend_resp_rcvd\n"); 1379 wil->suspend_resp_rcvd = true; 1380 } 1381 } 1382 spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); 1383 1384 wil_dbg_wmi(wil, "recv %s (0x%04x) MID %d @%d msec\n", 1385 eventid2name(id), id, wmi->mid, tstamp); 1386 trace_wil6210_wmi_event(wmi, &wmi[1], 1387 len - sizeof(*wmi)); 1388 } 1389 wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1, 1390 &evt->event.hdr, sizeof(hdr) + len, true); 1391 1392 /* advance tail */ 1393 r->tail = r->base + ((r->tail - r->base + 1394 sizeof(struct wil6210_mbox_ring_desc)) % r->size); 1395 wil_w(wil, RGF_MBOX + 1396 offsetof(struct wil6210_mbox_ctl, rx.tail), r->tail); 1397 1398 if (immed_reply) { 1399 wil_dbg_wmi(wil, "recv_cmd: Complete WMI 0x%04x\n", 1400 wil->reply_id); 1401 kfree(evt); 1402 num_immed_reply++; 1403 complete(&wil->wmi_call); 1404 } else { 1405 /* add to the pending list */ 1406 spin_lock_irqsave(&wil->wmi_ev_lock, flags); 1407 list_add_tail(&evt->list, &wil->pending_wmi_ev); 1408 spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); 1409 q = queue_work(wil->wmi_wq, &wil->wmi_event_worker); 1410 wil_dbg_wmi(wil, "queue_work -> %d\n", q); 1411 } 1412 } 1413 /* normally, 1 event per IRQ should be processed */ 1414 wil_dbg_wmi(wil, "recv_cmd: -> %d events queued, %d completed\n", 1415 n - num_immed_reply, num_immed_reply); 1416 } 1417 1418 int wmi_call(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len, 1419 u16 reply_id, void *reply, u8 reply_size, int to_msec) 1420 { 1421 int rc; 1422 unsigned long remain; 1423 1424 mutex_lock(&wil->wmi_mutex); 1425 1426 spin_lock(&wil->wmi_ev_lock); 1427 wil->reply_id = reply_id; 1428 wil->reply_mid = mid; 1429 wil->reply_buf = reply; 1430 wil->reply_size = reply_size; 1431 reinit_completion(&wil->wmi_call); 1432 spin_unlock(&wil->wmi_ev_lock); 1433 1434 rc = __wmi_send(wil, cmdid, mid, buf, len); 1435 if (rc) 1436 goto out; 1437 1438 remain = wait_for_completion_timeout(&wil->wmi_call, 1439 msecs_to_jiffies(to_msec)); 1440 if (0 == remain) { 1441 wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n", 1442 cmdid, reply_id, to_msec); 1443 rc = -ETIME; 1444 } else { 1445 wil_dbg_wmi(wil, 1446 "wmi_call(0x%04x->0x%04x) completed in %d msec\n", 1447 cmdid, reply_id, 1448 to_msec - jiffies_to_msecs(remain)); 1449 } 1450 1451 out: 1452 spin_lock(&wil->wmi_ev_lock); 1453 wil->reply_id = 0; 1454 wil->reply_mid = U8_MAX; 1455 wil->reply_buf = NULL; 1456 wil->reply_size = 0; 1457 spin_unlock(&wil->wmi_ev_lock); 1458 1459 mutex_unlock(&wil->wmi_mutex); 1460 1461 return rc; 1462 } 1463 1464 int wmi_echo(struct wil6210_priv *wil) 1465 { 1466 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1467 struct wmi_echo_cmd cmd = { 1468 .value = cpu_to_le32(0x12345678), 1469 }; 1470 1471 return wmi_call(wil, WMI_ECHO_CMDID, vif->mid, &cmd, sizeof(cmd), 1472 WMI_ECHO_RSP_EVENTID, NULL, 0, 50); 1473 } 1474 1475 int wmi_set_mac_address(struct wil6210_priv *wil, void *addr) 1476 { 1477 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1478 struct wmi_set_mac_address_cmd cmd; 1479 1480 ether_addr_copy(cmd.mac, addr); 1481 1482 wil_dbg_wmi(wil, "Set MAC %pM\n", addr); 1483 1484 return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, vif->mid, 1485 &cmd, sizeof(cmd)); 1486 } 1487 1488 int wmi_led_cfg(struct wil6210_priv *wil, bool enable) 1489 { 1490 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1491 int rc = 0; 1492 struct wmi_led_cfg_cmd cmd = { 1493 .led_mode = enable, 1494 .id = led_id, 1495 .slow_blink_cfg.blink_on = 1496 cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].on_ms), 1497 .slow_blink_cfg.blink_off = 1498 cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].off_ms), 1499 .medium_blink_cfg.blink_on = 1500 cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].on_ms), 1501 .medium_blink_cfg.blink_off = 1502 cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].off_ms), 1503 .fast_blink_cfg.blink_on = 1504 cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].on_ms), 1505 .fast_blink_cfg.blink_off = 1506 cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].off_ms), 1507 .led_polarity = led_polarity, 1508 }; 1509 struct { 1510 struct wmi_cmd_hdr wmi; 1511 struct wmi_led_cfg_done_event evt; 1512 } __packed reply; 1513 1514 if (led_id == WIL_LED_INVALID_ID) 1515 goto out; 1516 1517 if (led_id > WIL_LED_MAX_ID) { 1518 wil_err(wil, "Invalid led id %d\n", led_id); 1519 rc = -EINVAL; 1520 goto out; 1521 } 1522 1523 wil_dbg_wmi(wil, 1524 "%s led %d\n", 1525 enable ? "enabling" : "disabling", led_id); 1526 1527 rc = wmi_call(wil, WMI_LED_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), 1528 WMI_LED_CFG_DONE_EVENTID, &reply, sizeof(reply), 1529 100); 1530 if (rc) 1531 goto out; 1532 1533 if (reply.evt.status) { 1534 wil_err(wil, "led %d cfg failed with status %d\n", 1535 led_id, le32_to_cpu(reply.evt.status)); 1536 rc = -EINVAL; 1537 } 1538 1539 out: 1540 return rc; 1541 } 1542 1543 int wmi_pcp_start(struct wil6210_vif *vif, 1544 int bi, u8 wmi_nettype, u8 chan, u8 hidden_ssid, u8 is_go) 1545 { 1546 struct wil6210_priv *wil = vif_to_wil(vif); 1547 int rc; 1548 1549 struct wmi_pcp_start_cmd cmd = { 1550 .bcon_interval = cpu_to_le16(bi), 1551 .network_type = wmi_nettype, 1552 .disable_sec_offload = 1, 1553 .channel = chan - 1, 1554 .pcp_max_assoc_sta = max_assoc_sta, 1555 .hidden_ssid = hidden_ssid, 1556 .is_go = is_go, 1557 .disable_ap_sme = disable_ap_sme, 1558 .abft_len = wil->abft_len, 1559 }; 1560 struct { 1561 struct wmi_cmd_hdr wmi; 1562 struct wmi_pcp_started_event evt; 1563 } __packed reply; 1564 1565 if (!vif->privacy) 1566 cmd.disable_sec = 1; 1567 1568 if ((cmd.pcp_max_assoc_sta > WIL6210_MAX_CID) || 1569 (cmd.pcp_max_assoc_sta <= 0)) { 1570 wil_info(wil, 1571 "Requested connection limit %u, valid values are 1 - %d. Setting to %d\n", 1572 max_assoc_sta, WIL6210_MAX_CID, WIL6210_MAX_CID); 1573 cmd.pcp_max_assoc_sta = WIL6210_MAX_CID; 1574 } 1575 1576 if (disable_ap_sme && 1577 !test_bit(WMI_FW_CAPABILITY_DISABLE_AP_SME, 1578 wil->fw_capabilities)) { 1579 wil_err(wil, "disable_ap_sme not supported by FW\n"); 1580 return -EOPNOTSUPP; 1581 } 1582 1583 /* 1584 * Processing time may be huge, in case of secure AP it takes about 1585 * 3500ms for FW to start AP 1586 */ 1587 rc = wmi_call(wil, WMI_PCP_START_CMDID, vif->mid, &cmd, sizeof(cmd), 1588 WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000); 1589 if (rc) 1590 return rc; 1591 1592 if (reply.evt.status != WMI_FW_STATUS_SUCCESS) 1593 rc = -EINVAL; 1594 1595 if (wmi_nettype != WMI_NETTYPE_P2P) 1596 /* Don't fail due to error in the led configuration */ 1597 wmi_led_cfg(wil, true); 1598 1599 return rc; 1600 } 1601 1602 int wmi_pcp_stop(struct wil6210_vif *vif) 1603 { 1604 struct wil6210_priv *wil = vif_to_wil(vif); 1605 int rc; 1606 1607 rc = wmi_led_cfg(wil, false); 1608 if (rc) 1609 return rc; 1610 1611 return wmi_call(wil, WMI_PCP_STOP_CMDID, vif->mid, NULL, 0, 1612 WMI_PCP_STOPPED_EVENTID, NULL, 0, 20); 1613 } 1614 1615 int wmi_set_ssid(struct wil6210_vif *vif, u8 ssid_len, const void *ssid) 1616 { 1617 struct wil6210_priv *wil = vif_to_wil(vif); 1618 struct wmi_set_ssid_cmd cmd = { 1619 .ssid_len = cpu_to_le32(ssid_len), 1620 }; 1621 1622 if (ssid_len > sizeof(cmd.ssid)) 1623 return -EINVAL; 1624 1625 memcpy(cmd.ssid, ssid, ssid_len); 1626 1627 return wmi_send(wil, WMI_SET_SSID_CMDID, vif->mid, &cmd, sizeof(cmd)); 1628 } 1629 1630 int wmi_get_ssid(struct wil6210_vif *vif, u8 *ssid_len, void *ssid) 1631 { 1632 struct wil6210_priv *wil = vif_to_wil(vif); 1633 int rc; 1634 struct { 1635 struct wmi_cmd_hdr wmi; 1636 struct wmi_set_ssid_cmd cmd; 1637 } __packed reply; 1638 int len; /* reply.cmd.ssid_len in CPU order */ 1639 1640 rc = wmi_call(wil, WMI_GET_SSID_CMDID, vif->mid, NULL, 0, 1641 WMI_GET_SSID_EVENTID, &reply, sizeof(reply), 20); 1642 if (rc) 1643 return rc; 1644 1645 len = le32_to_cpu(reply.cmd.ssid_len); 1646 if (len > sizeof(reply.cmd.ssid)) 1647 return -EINVAL; 1648 1649 *ssid_len = len; 1650 memcpy(ssid, reply.cmd.ssid, len); 1651 1652 return 0; 1653 } 1654 1655 int wmi_set_channel(struct wil6210_priv *wil, int channel) 1656 { 1657 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1658 struct wmi_set_pcp_channel_cmd cmd = { 1659 .channel = channel - 1, 1660 }; 1661 1662 return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, vif->mid, 1663 &cmd, sizeof(cmd)); 1664 } 1665 1666 int wmi_get_channel(struct wil6210_priv *wil, int *channel) 1667 { 1668 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1669 int rc; 1670 struct { 1671 struct wmi_cmd_hdr wmi; 1672 struct wmi_set_pcp_channel_cmd cmd; 1673 } __packed reply; 1674 1675 rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, vif->mid, NULL, 0, 1676 WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20); 1677 if (rc) 1678 return rc; 1679 1680 if (reply.cmd.channel > 3) 1681 return -EINVAL; 1682 1683 *channel = reply.cmd.channel + 1; 1684 1685 return 0; 1686 } 1687 1688 int wmi_p2p_cfg(struct wil6210_vif *vif, int channel, int bi) 1689 { 1690 struct wil6210_priv *wil = vif_to_wil(vif); 1691 int rc; 1692 struct wmi_p2p_cfg_cmd cmd = { 1693 .discovery_mode = WMI_DISCOVERY_MODE_PEER2PEER, 1694 .bcon_interval = cpu_to_le16(bi), 1695 .channel = channel - 1, 1696 }; 1697 struct { 1698 struct wmi_cmd_hdr wmi; 1699 struct wmi_p2p_cfg_done_event evt; 1700 } __packed reply; 1701 1702 wil_dbg_wmi(wil, "sending WMI_P2P_CFG_CMDID\n"); 1703 1704 rc = wmi_call(wil, WMI_P2P_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), 1705 WMI_P2P_CFG_DONE_EVENTID, &reply, sizeof(reply), 300); 1706 if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) { 1707 wil_err(wil, "P2P_CFG failed. status %d\n", reply.evt.status); 1708 rc = -EINVAL; 1709 } 1710 1711 return rc; 1712 } 1713 1714 int wmi_start_listen(struct wil6210_vif *vif) 1715 { 1716 struct wil6210_priv *wil = vif_to_wil(vif); 1717 int rc; 1718 struct { 1719 struct wmi_cmd_hdr wmi; 1720 struct wmi_listen_started_event evt; 1721 } __packed reply; 1722 1723 wil_dbg_wmi(wil, "sending WMI_START_LISTEN_CMDID\n"); 1724 1725 rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0, 1726 WMI_LISTEN_STARTED_EVENTID, &reply, sizeof(reply), 300); 1727 if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) { 1728 wil_err(wil, "device failed to start listen. status %d\n", 1729 reply.evt.status); 1730 rc = -EINVAL; 1731 } 1732 1733 return rc; 1734 } 1735 1736 int wmi_start_search(struct wil6210_vif *vif) 1737 { 1738 struct wil6210_priv *wil = vif_to_wil(vif); 1739 int rc; 1740 struct { 1741 struct wmi_cmd_hdr wmi; 1742 struct wmi_search_started_event evt; 1743 } __packed reply; 1744 1745 wil_dbg_wmi(wil, "sending WMI_START_SEARCH_CMDID\n"); 1746 1747 rc = wmi_call(wil, WMI_START_SEARCH_CMDID, vif->mid, NULL, 0, 1748 WMI_SEARCH_STARTED_EVENTID, &reply, sizeof(reply), 300); 1749 if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) { 1750 wil_err(wil, "device failed to start search. status %d\n", 1751 reply.evt.status); 1752 rc = -EINVAL; 1753 } 1754 1755 return rc; 1756 } 1757 1758 int wmi_stop_discovery(struct wil6210_vif *vif) 1759 { 1760 struct wil6210_priv *wil = vif_to_wil(vif); 1761 int rc; 1762 1763 wil_dbg_wmi(wil, "sending WMI_DISCOVERY_STOP_CMDID\n"); 1764 1765 rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0, 1766 WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 100); 1767 1768 if (rc) 1769 wil_err(wil, "Failed to stop discovery\n"); 1770 1771 return rc; 1772 } 1773 1774 int wmi_del_cipher_key(struct wil6210_vif *vif, u8 key_index, 1775 const void *mac_addr, int key_usage) 1776 { 1777 struct wil6210_priv *wil = vif_to_wil(vif); 1778 struct wmi_delete_cipher_key_cmd cmd = { 1779 .key_index = key_index, 1780 }; 1781 1782 if (mac_addr) 1783 memcpy(cmd.mac, mac_addr, WMI_MAC_LEN); 1784 1785 return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, vif->mid, 1786 &cmd, sizeof(cmd)); 1787 } 1788 1789 int wmi_add_cipher_key(struct wil6210_vif *vif, u8 key_index, 1790 const void *mac_addr, int key_len, const void *key, 1791 int key_usage) 1792 { 1793 struct wil6210_priv *wil = vif_to_wil(vif); 1794 struct wmi_add_cipher_key_cmd cmd = { 1795 .key_index = key_index, 1796 .key_usage = key_usage, 1797 .key_len = key_len, 1798 }; 1799 1800 if (!key || (key_len > sizeof(cmd.key))) 1801 return -EINVAL; 1802 1803 memcpy(cmd.key, key, key_len); 1804 if (mac_addr) 1805 memcpy(cmd.mac, mac_addr, WMI_MAC_LEN); 1806 1807 return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, vif->mid, 1808 &cmd, sizeof(cmd)); 1809 } 1810 1811 int wmi_set_ie(struct wil6210_vif *vif, u8 type, u16 ie_len, const void *ie) 1812 { 1813 struct wil6210_priv *wil = vif_to_wil(vif); 1814 static const char *const names[] = { 1815 [WMI_FRAME_BEACON] = "BEACON", 1816 [WMI_FRAME_PROBE_REQ] = "PROBE_REQ", 1817 [WMI_FRAME_PROBE_RESP] = "WMI_FRAME_PROBE_RESP", 1818 [WMI_FRAME_ASSOC_REQ] = "WMI_FRAME_ASSOC_REQ", 1819 [WMI_FRAME_ASSOC_RESP] = "WMI_FRAME_ASSOC_RESP", 1820 }; 1821 int rc; 1822 u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len; 1823 struct wmi_set_appie_cmd *cmd; 1824 1825 if (len < ie_len) { 1826 rc = -EINVAL; 1827 goto out; 1828 } 1829 1830 cmd = kzalloc(len, GFP_KERNEL); 1831 if (!cmd) { 1832 rc = -ENOMEM; 1833 goto out; 1834 } 1835 if (!ie) 1836 ie_len = 0; 1837 1838 cmd->mgmt_frm_type = type; 1839 /* BUG: FW API define ieLen as u8. Will fix FW */ 1840 cmd->ie_len = cpu_to_le16(ie_len); 1841 memcpy(cmd->ie_info, ie, ie_len); 1842 rc = wmi_send(wil, WMI_SET_APPIE_CMDID, vif->mid, cmd, len); 1843 kfree(cmd); 1844 out: 1845 if (rc) { 1846 const char *name = type < ARRAY_SIZE(names) ? 1847 names[type] : "??"; 1848 wil_err(wil, "set_ie(%d %s) failed : %d\n", type, name, rc); 1849 } 1850 1851 return rc; 1852 } 1853 1854 /** 1855 * wmi_rxon - turn radio on/off 1856 * @on: turn on if true, off otherwise 1857 * 1858 * Only switch radio. Channel should be set separately. 1859 * No timeout for rxon - radio turned on forever unless some other call 1860 * turns it off 1861 */ 1862 int wmi_rxon(struct wil6210_priv *wil, bool on) 1863 { 1864 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1865 int rc; 1866 struct { 1867 struct wmi_cmd_hdr wmi; 1868 struct wmi_listen_started_event evt; 1869 } __packed reply; 1870 1871 wil_info(wil, "(%s)\n", on ? "on" : "off"); 1872 1873 if (on) { 1874 rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0, 1875 WMI_LISTEN_STARTED_EVENTID, 1876 &reply, sizeof(reply), 100); 1877 if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS)) 1878 rc = -EINVAL; 1879 } else { 1880 rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0, 1881 WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 20); 1882 } 1883 1884 return rc; 1885 } 1886 1887 int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring) 1888 { 1889 struct net_device *ndev = wil->main_ndev; 1890 struct wireless_dev *wdev = ndev->ieee80211_ptr; 1891 struct wil6210_vif *vif = ndev_to_vif(ndev); 1892 struct wmi_cfg_rx_chain_cmd cmd = { 1893 .action = WMI_RX_CHAIN_ADD, 1894 .rx_sw_ring = { 1895 .max_mpdu_size = cpu_to_le16( 1896 wil_mtu2macbuf(wil->rx_buf_len)), 1897 .ring_mem_base = cpu_to_le64(vring->pa), 1898 .ring_size = cpu_to_le16(vring->size), 1899 }, 1900 .mid = 0, /* TODO - what is it? */ 1901 .decap_trans_type = WMI_DECAP_TYPE_802_3, 1902 .reorder_type = WMI_RX_SW_REORDER, 1903 .host_thrsh = cpu_to_le16(rx_ring_overflow_thrsh), 1904 }; 1905 struct { 1906 struct wmi_cmd_hdr wmi; 1907 struct wmi_cfg_rx_chain_done_event evt; 1908 } __packed evt; 1909 int rc; 1910 1911 if (wdev->iftype == NL80211_IFTYPE_MONITOR) { 1912 struct ieee80211_channel *ch = wil->monitor_chandef.chan; 1913 1914 cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON); 1915 if (ch) 1916 cmd.sniffer_cfg.channel = ch->hw_value - 1; 1917 cmd.sniffer_cfg.phy_info_mode = 1918 cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP); 1919 cmd.sniffer_cfg.phy_support = 1920 cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL) 1921 ? WMI_SNIFFER_CP : WMI_SNIFFER_BOTH_PHYS); 1922 } else { 1923 /* Initialize offload (in non-sniffer mode). 1924 * Linux IP stack always calculates IP checksum 1925 * HW always calculate TCP/UDP checksum 1926 */ 1927 cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS); 1928 } 1929 1930 if (rx_align_2) 1931 cmd.l2_802_3_offload_ctrl |= 1932 L2_802_3_OFFLOAD_CTRL_SNAP_KEEP_MSK; 1933 1934 /* typical time for secure PCP is 840ms */ 1935 rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, vif->mid, &cmd, sizeof(cmd), 1936 WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000); 1937 if (rc) 1938 return rc; 1939 1940 vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr); 1941 1942 wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n", 1943 le32_to_cpu(evt.evt.status), vring->hwtail); 1944 1945 if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS) 1946 rc = -EINVAL; 1947 1948 return rc; 1949 } 1950 1951 int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_bb, u32 *t_rf) 1952 { 1953 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1954 int rc; 1955 struct wmi_temp_sense_cmd cmd = { 1956 .measure_baseband_en = cpu_to_le32(!!t_bb), 1957 .measure_rf_en = cpu_to_le32(!!t_rf), 1958 .measure_mode = cpu_to_le32(TEMPERATURE_MEASURE_NOW), 1959 }; 1960 struct { 1961 struct wmi_cmd_hdr wmi; 1962 struct wmi_temp_sense_done_event evt; 1963 } __packed reply; 1964 1965 rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, vif->mid, &cmd, sizeof(cmd), 1966 WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100); 1967 if (rc) 1968 return rc; 1969 1970 if (t_bb) 1971 *t_bb = le32_to_cpu(reply.evt.baseband_t1000); 1972 if (t_rf) 1973 *t_rf = le32_to_cpu(reply.evt.rf_t1000); 1974 1975 return 0; 1976 } 1977 1978 int wmi_disconnect_sta(struct wil6210_vif *vif, const u8 *mac, 1979 u16 reason, bool full_disconnect, bool del_sta) 1980 { 1981 struct wil6210_priv *wil = vif_to_wil(vif); 1982 int rc; 1983 u16 reason_code; 1984 struct wmi_disconnect_sta_cmd disc_sta_cmd = { 1985 .disconnect_reason = cpu_to_le16(reason), 1986 }; 1987 struct wmi_del_sta_cmd del_sta_cmd = { 1988 .disconnect_reason = cpu_to_le16(reason), 1989 }; 1990 struct { 1991 struct wmi_cmd_hdr wmi; 1992 struct wmi_disconnect_event evt; 1993 } __packed reply; 1994 1995 wil_dbg_wmi(wil, "disconnect_sta: (%pM, reason %d)\n", mac, reason); 1996 1997 vif->locally_generated_disc = true; 1998 if (del_sta) { 1999 ether_addr_copy(del_sta_cmd.dst_mac, mac); 2000 rc = wmi_call(wil, WMI_DEL_STA_CMDID, vif->mid, &del_sta_cmd, 2001 sizeof(del_sta_cmd), WMI_DISCONNECT_EVENTID, 2002 &reply, sizeof(reply), 1000); 2003 } else { 2004 ether_addr_copy(disc_sta_cmd.dst_mac, mac); 2005 rc = wmi_call(wil, WMI_DISCONNECT_STA_CMDID, vif->mid, 2006 &disc_sta_cmd, sizeof(disc_sta_cmd), 2007 WMI_DISCONNECT_EVENTID, 2008 &reply, sizeof(reply), 1000); 2009 } 2010 /* failure to disconnect in reasonable time treated as FW error */ 2011 if (rc) { 2012 wil_fw_error_recovery(wil); 2013 return rc; 2014 } 2015 2016 if (full_disconnect) { 2017 /* call event handler manually after processing wmi_call, 2018 * to avoid deadlock - disconnect event handler acquires 2019 * wil->mutex while it is already held here 2020 */ 2021 reason_code = le16_to_cpu(reply.evt.protocol_reason_status); 2022 2023 wil_dbg_wmi(wil, "Disconnect %pM reason [proto %d wmi %d]\n", 2024 reply.evt.bssid, reason_code, 2025 reply.evt.disconnect_reason); 2026 2027 wil->sinfo_gen++; 2028 wil6210_disconnect(vif, reply.evt.bssid, reason_code, true); 2029 } 2030 return 0; 2031 } 2032 2033 int wmi_addba(struct wil6210_priv *wil, u8 mid, 2034 u8 ringid, u8 size, u16 timeout) 2035 { 2036 struct wmi_vring_ba_en_cmd cmd = { 2037 .ringid = ringid, 2038 .agg_max_wsize = size, 2039 .ba_timeout = cpu_to_le16(timeout), 2040 .amsdu = 0, 2041 }; 2042 2043 wil_dbg_wmi(wil, "addba: (ring %d size %d timeout %d)\n", ringid, size, 2044 timeout); 2045 2046 return wmi_send(wil, WMI_VRING_BA_EN_CMDID, mid, &cmd, sizeof(cmd)); 2047 } 2048 2049 int wmi_delba_tx(struct wil6210_priv *wil, u8 mid, u8 ringid, u16 reason) 2050 { 2051 struct wmi_vring_ba_dis_cmd cmd = { 2052 .ringid = ringid, 2053 .reason = cpu_to_le16(reason), 2054 }; 2055 2056 wil_dbg_wmi(wil, "delba_tx: (ring %d reason %d)\n", ringid, reason); 2057 2058 return wmi_send(wil, WMI_VRING_BA_DIS_CMDID, mid, &cmd, sizeof(cmd)); 2059 } 2060 2061 int wmi_delba_rx(struct wil6210_priv *wil, u8 mid, u8 cidxtid, u16 reason) 2062 { 2063 struct wmi_rcp_delba_cmd cmd = { 2064 .cidxtid = cidxtid, 2065 .reason = cpu_to_le16(reason), 2066 }; 2067 2068 wil_dbg_wmi(wil, "delba_rx: (CID %d TID %d reason %d)\n", cidxtid & 0xf, 2069 (cidxtid >> 4) & 0xf, reason); 2070 2071 return wmi_send(wil, WMI_RCP_DELBA_CMDID, mid, &cmd, sizeof(cmd)); 2072 } 2073 2074 int wmi_addba_rx_resp(struct wil6210_priv *wil, 2075 u8 mid, u8 cid, u8 tid, u8 token, 2076 u16 status, bool amsdu, u16 agg_wsize, u16 timeout) 2077 { 2078 int rc; 2079 struct wmi_rcp_addba_resp_cmd cmd = { 2080 .cidxtid = mk_cidxtid(cid, tid), 2081 .dialog_token = token, 2082 .status_code = cpu_to_le16(status), 2083 /* bit 0: A-MSDU supported 2084 * bit 1: policy (should be 0 for us) 2085 * bits 2..5: TID 2086 * bits 6..15: buffer size 2087 */ 2088 .ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) | 2089 (agg_wsize << 6)), 2090 .ba_timeout = cpu_to_le16(timeout), 2091 }; 2092 struct { 2093 struct wmi_cmd_hdr wmi; 2094 struct wmi_rcp_addba_resp_sent_event evt; 2095 } __packed reply; 2096 2097 wil_dbg_wmi(wil, 2098 "ADDBA response for MID %d CID %d TID %d size %d timeout %d status %d AMSDU%s\n", 2099 mid, cid, tid, agg_wsize, 2100 timeout, status, amsdu ? "+" : "-"); 2101 2102 rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_CMDID, mid, &cmd, sizeof(cmd), 2103 WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply, sizeof(reply), 2104 100); 2105 if (rc) 2106 return rc; 2107 2108 if (reply.evt.status) { 2109 wil_err(wil, "ADDBA response failed with status %d\n", 2110 le16_to_cpu(reply.evt.status)); 2111 rc = -EINVAL; 2112 } 2113 2114 return rc; 2115 } 2116 2117 int wmi_ps_dev_profile_cfg(struct wil6210_priv *wil, 2118 enum wmi_ps_profile_type ps_profile) 2119 { 2120 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2121 int rc; 2122 struct wmi_ps_dev_profile_cfg_cmd cmd = { 2123 .ps_profile = ps_profile, 2124 }; 2125 struct { 2126 struct wmi_cmd_hdr wmi; 2127 struct wmi_ps_dev_profile_cfg_event evt; 2128 } __packed reply; 2129 u32 status; 2130 2131 wil_dbg_wmi(wil, "Setting ps dev profile %d\n", ps_profile); 2132 2133 reply.evt.status = cpu_to_le32(WMI_PS_CFG_CMD_STATUS_ERROR); 2134 2135 rc = wmi_call(wil, WMI_PS_DEV_PROFILE_CFG_CMDID, vif->mid, 2136 &cmd, sizeof(cmd), 2137 WMI_PS_DEV_PROFILE_CFG_EVENTID, &reply, sizeof(reply), 2138 100); 2139 if (rc) 2140 return rc; 2141 2142 status = le32_to_cpu(reply.evt.status); 2143 2144 if (status != WMI_PS_CFG_CMD_STATUS_SUCCESS) { 2145 wil_err(wil, "ps dev profile cfg failed with status %d\n", 2146 status); 2147 rc = -EINVAL; 2148 } 2149 2150 return rc; 2151 } 2152 2153 int wmi_set_mgmt_retry(struct wil6210_priv *wil, u8 retry_short) 2154 { 2155 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2156 int rc; 2157 struct wmi_set_mgmt_retry_limit_cmd cmd = { 2158 .mgmt_retry_limit = retry_short, 2159 }; 2160 struct { 2161 struct wmi_cmd_hdr wmi; 2162 struct wmi_set_mgmt_retry_limit_event evt; 2163 } __packed reply; 2164 2165 wil_dbg_wmi(wil, "Setting mgmt retry short %d\n", retry_short); 2166 2167 if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities)) 2168 return -ENOTSUPP; 2169 2170 reply.evt.status = WMI_FW_STATUS_FAILURE; 2171 2172 rc = wmi_call(wil, WMI_SET_MGMT_RETRY_LIMIT_CMDID, vif->mid, 2173 &cmd, sizeof(cmd), 2174 WMI_SET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply), 2175 100); 2176 if (rc) 2177 return rc; 2178 2179 if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { 2180 wil_err(wil, "set mgmt retry limit failed with status %d\n", 2181 reply.evt.status); 2182 rc = -EINVAL; 2183 } 2184 2185 return rc; 2186 } 2187 2188 int wmi_get_mgmt_retry(struct wil6210_priv *wil, u8 *retry_short) 2189 { 2190 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2191 int rc; 2192 struct { 2193 struct wmi_cmd_hdr wmi; 2194 struct wmi_get_mgmt_retry_limit_event evt; 2195 } __packed reply; 2196 2197 wil_dbg_wmi(wil, "getting mgmt retry short\n"); 2198 2199 if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities)) 2200 return -ENOTSUPP; 2201 2202 reply.evt.mgmt_retry_limit = 0; 2203 rc = wmi_call(wil, WMI_GET_MGMT_RETRY_LIMIT_CMDID, vif->mid, NULL, 0, 2204 WMI_GET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply), 2205 100); 2206 if (rc) 2207 return rc; 2208 2209 if (retry_short) 2210 *retry_short = reply.evt.mgmt_retry_limit; 2211 2212 return 0; 2213 } 2214 2215 int wmi_abort_scan(struct wil6210_vif *vif) 2216 { 2217 struct wil6210_priv *wil = vif_to_wil(vif); 2218 int rc; 2219 2220 wil_dbg_wmi(wil, "sending WMI_ABORT_SCAN_CMDID\n"); 2221 2222 rc = wmi_send(wil, WMI_ABORT_SCAN_CMDID, vif->mid, NULL, 0); 2223 if (rc) 2224 wil_err(wil, "Failed to abort scan (%d)\n", rc); 2225 2226 return rc; 2227 } 2228 2229 int wmi_new_sta(struct wil6210_vif *vif, const u8 *mac, u8 aid) 2230 { 2231 struct wil6210_priv *wil = vif_to_wil(vif); 2232 int rc; 2233 struct wmi_new_sta_cmd cmd = { 2234 .aid = aid, 2235 }; 2236 2237 wil_dbg_wmi(wil, "new sta %pM, aid %d\n", mac, aid); 2238 2239 ether_addr_copy(cmd.dst_mac, mac); 2240 2241 rc = wmi_send(wil, WMI_NEW_STA_CMDID, vif->mid, &cmd, sizeof(cmd)); 2242 if (rc) 2243 wil_err(wil, "Failed to send new sta (%d)\n", rc); 2244 2245 return rc; 2246 } 2247 2248 void wmi_event_flush(struct wil6210_priv *wil) 2249 { 2250 ulong flags; 2251 struct pending_wmi_event *evt, *t; 2252 2253 wil_dbg_wmi(wil, "event_flush\n"); 2254 2255 spin_lock_irqsave(&wil->wmi_ev_lock, flags); 2256 2257 list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) { 2258 list_del(&evt->list); 2259 kfree(evt); 2260 } 2261 2262 spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); 2263 } 2264 2265 static const char *suspend_status2name(u8 status) 2266 { 2267 switch (status) { 2268 case WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE: 2269 return "LINK_NOT_IDLE"; 2270 default: 2271 return "Untracked status"; 2272 } 2273 } 2274 2275 int wmi_suspend(struct wil6210_priv *wil) 2276 { 2277 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2278 int rc; 2279 struct wmi_traffic_suspend_cmd cmd = { 2280 .wakeup_trigger = wil->wakeup_trigger, 2281 }; 2282 struct { 2283 struct wmi_cmd_hdr wmi; 2284 struct wmi_traffic_suspend_event evt; 2285 } __packed reply; 2286 u32 suspend_to = WIL_WAIT_FOR_SUSPEND_RESUME_COMP; 2287 2288 wil->suspend_resp_rcvd = false; 2289 wil->suspend_resp_comp = false; 2290 2291 reply.evt.status = WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE; 2292 2293 rc = wmi_call(wil, WMI_TRAFFIC_SUSPEND_CMDID, vif->mid, 2294 &cmd, sizeof(cmd), 2295 WMI_TRAFFIC_SUSPEND_EVENTID, &reply, sizeof(reply), 2296 suspend_to); 2297 if (rc) { 2298 wil_err(wil, "wmi_call for suspend req failed, rc=%d\n", rc); 2299 if (rc == -ETIME) 2300 /* wmi_call TO */ 2301 wil->suspend_stats.rejected_by_device++; 2302 else 2303 wil->suspend_stats.rejected_by_host++; 2304 goto out; 2305 } 2306 2307 wil_dbg_wmi(wil, "waiting for suspend_response_completed\n"); 2308 2309 rc = wait_event_interruptible_timeout(wil->wq, 2310 wil->suspend_resp_comp, 2311 msecs_to_jiffies(suspend_to)); 2312 if (rc == 0) { 2313 wil_err(wil, "TO waiting for suspend_response_completed\n"); 2314 if (wil->suspend_resp_rcvd) 2315 /* Device responded but we TO due to another reason */ 2316 wil->suspend_stats.rejected_by_host++; 2317 else 2318 wil->suspend_stats.rejected_by_device++; 2319 rc = -EBUSY; 2320 goto out; 2321 } 2322 2323 wil_dbg_wmi(wil, "suspend_response_completed rcvd\n"); 2324 if (reply.evt.status != WMI_TRAFFIC_SUSPEND_APPROVED) { 2325 wil_dbg_pm(wil, "device rejected the suspend, %s\n", 2326 suspend_status2name(reply.evt.status)); 2327 wil->suspend_stats.rejected_by_device++; 2328 } 2329 rc = reply.evt.status; 2330 2331 out: 2332 wil->suspend_resp_rcvd = false; 2333 wil->suspend_resp_comp = false; 2334 2335 return rc; 2336 } 2337 2338 static void resume_triggers2string(u32 triggers, char *string, int str_size) 2339 { 2340 string[0] = '\0'; 2341 2342 if (!triggers) { 2343 strlcat(string, " UNKNOWN", str_size); 2344 return; 2345 } 2346 2347 if (triggers & WMI_RESUME_TRIGGER_HOST) 2348 strlcat(string, " HOST", str_size); 2349 2350 if (triggers & WMI_RESUME_TRIGGER_UCAST_RX) 2351 strlcat(string, " UCAST_RX", str_size); 2352 2353 if (triggers & WMI_RESUME_TRIGGER_BCAST_RX) 2354 strlcat(string, " BCAST_RX", str_size); 2355 2356 if (triggers & WMI_RESUME_TRIGGER_WMI_EVT) 2357 strlcat(string, " WMI_EVT", str_size); 2358 } 2359 2360 int wmi_resume(struct wil6210_priv *wil) 2361 { 2362 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2363 int rc; 2364 char string[100]; 2365 struct { 2366 struct wmi_cmd_hdr wmi; 2367 struct wmi_traffic_resume_event evt; 2368 } __packed reply; 2369 2370 reply.evt.status = WMI_TRAFFIC_RESUME_FAILED; 2371 reply.evt.resume_triggers = WMI_RESUME_TRIGGER_UNKNOWN; 2372 2373 rc = wmi_call(wil, WMI_TRAFFIC_RESUME_CMDID, vif->mid, NULL, 0, 2374 WMI_TRAFFIC_RESUME_EVENTID, &reply, sizeof(reply), 2375 WIL_WAIT_FOR_SUSPEND_RESUME_COMP); 2376 if (rc) 2377 return rc; 2378 resume_triggers2string(le32_to_cpu(reply.evt.resume_triggers), string, 2379 sizeof(string)); 2380 wil_dbg_pm(wil, "device resume %s, resume triggers:%s (0x%x)\n", 2381 reply.evt.status ? "failed" : "passed", string, 2382 le32_to_cpu(reply.evt.resume_triggers)); 2383 2384 return reply.evt.status; 2385 } 2386 2387 int wmi_port_allocate(struct wil6210_priv *wil, u8 mid, 2388 const u8 *mac, enum nl80211_iftype iftype) 2389 { 2390 int rc; 2391 struct wmi_port_allocate_cmd cmd = { 2392 .mid = mid, 2393 }; 2394 struct { 2395 struct wmi_cmd_hdr wmi; 2396 struct wmi_port_allocated_event evt; 2397 } __packed reply; 2398 2399 wil_dbg_misc(wil, "port allocate, mid %d iftype %d, mac %pM\n", 2400 mid, iftype, mac); 2401 2402 ether_addr_copy(cmd.mac, mac); 2403 switch (iftype) { 2404 case NL80211_IFTYPE_STATION: 2405 cmd.port_role = WMI_PORT_STA; 2406 break; 2407 case NL80211_IFTYPE_AP: 2408 cmd.port_role = WMI_PORT_AP; 2409 break; 2410 case NL80211_IFTYPE_P2P_CLIENT: 2411 cmd.port_role = WMI_PORT_P2P_CLIENT; 2412 break; 2413 case NL80211_IFTYPE_P2P_GO: 2414 cmd.port_role = WMI_PORT_P2P_GO; 2415 break; 2416 /* what about monitor??? */ 2417 default: 2418 wil_err(wil, "unsupported iftype: %d\n", iftype); 2419 return -EINVAL; 2420 } 2421 2422 reply.evt.status = WMI_FW_STATUS_FAILURE; 2423 2424 rc = wmi_call(wil, WMI_PORT_ALLOCATE_CMDID, mid, 2425 &cmd, sizeof(cmd), 2426 WMI_PORT_ALLOCATED_EVENTID, &reply, 2427 sizeof(reply), 300); 2428 if (rc) { 2429 wil_err(wil, "failed to allocate port, status %d\n", rc); 2430 return rc; 2431 } 2432 if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { 2433 wil_err(wil, "WMI_PORT_ALLOCATE returned status %d\n", 2434 reply.evt.status); 2435 return -EINVAL; 2436 } 2437 2438 return 0; 2439 } 2440 2441 int wmi_port_delete(struct wil6210_priv *wil, u8 mid) 2442 { 2443 int rc; 2444 struct wmi_port_delete_cmd cmd = { 2445 .mid = mid, 2446 }; 2447 struct { 2448 struct wmi_cmd_hdr wmi; 2449 struct wmi_port_deleted_event evt; 2450 } __packed reply; 2451 2452 wil_dbg_misc(wil, "port delete, mid %d\n", mid); 2453 2454 reply.evt.status = WMI_FW_STATUS_FAILURE; 2455 2456 rc = wmi_call(wil, WMI_PORT_DELETE_CMDID, mid, 2457 &cmd, sizeof(cmd), 2458 WMI_PORT_DELETED_EVENTID, &reply, 2459 sizeof(reply), 2000); 2460 if (rc) { 2461 wil_err(wil, "failed to delete port, status %d\n", rc); 2462 return rc; 2463 } 2464 if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { 2465 wil_err(wil, "WMI_PORT_DELETE returned status %d\n", 2466 reply.evt.status); 2467 return -EINVAL; 2468 } 2469 2470 return 0; 2471 } 2472 2473 static bool wmi_evt_call_handler(struct wil6210_vif *vif, int id, 2474 void *d, int len) 2475 { 2476 uint i; 2477 2478 for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) { 2479 if (wmi_evt_handlers[i].eventid == id) { 2480 wmi_evt_handlers[i].handler(vif, id, d, len); 2481 return true; 2482 } 2483 } 2484 2485 return false; 2486 } 2487 2488 static void wmi_event_handle(struct wil6210_priv *wil, 2489 struct wil6210_mbox_hdr *hdr) 2490 { 2491 u16 len = le16_to_cpu(hdr->len); 2492 struct wil6210_vif *vif; 2493 2494 if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) && 2495 (len >= sizeof(struct wmi_cmd_hdr))) { 2496 struct wmi_cmd_hdr *wmi = (void *)(&hdr[1]); 2497 void *evt_data = (void *)(&wmi[1]); 2498 u16 id = le16_to_cpu(wmi->command_id); 2499 u8 mid = wmi->mid; 2500 2501 wil_dbg_wmi(wil, "Handle %s (0x%04x) (reply_id 0x%04x,%d)\n", 2502 eventid2name(id), id, wil->reply_id, 2503 wil->reply_mid); 2504 2505 if (mid == MID_BROADCAST) 2506 mid = 0; 2507 if (mid >= wil->max_vifs) { 2508 wil_dbg_wmi(wil, "invalid mid %d, event skipped\n", 2509 mid); 2510 return; 2511 } 2512 vif = wil->vifs[mid]; 2513 if (!vif) { 2514 wil_dbg_wmi(wil, "event for empty VIF(%d), skipped\n", 2515 mid); 2516 return; 2517 } 2518 2519 /* check if someone waits for this event */ 2520 if (wil->reply_id && wil->reply_id == id && 2521 wil->reply_mid == mid) { 2522 WARN_ON(wil->reply_buf); 2523 2524 wmi_evt_call_handler(vif, id, evt_data, 2525 len - sizeof(*wmi)); 2526 wil_dbg_wmi(wil, "event_handle: Complete WMI 0x%04x\n", 2527 id); 2528 complete(&wil->wmi_call); 2529 return; 2530 } 2531 /* unsolicited event */ 2532 /* search for handler */ 2533 if (!wmi_evt_call_handler(vif, id, evt_data, 2534 len - sizeof(*wmi))) { 2535 wil_info(wil, "Unhandled event 0x%04x\n", id); 2536 } 2537 } else { 2538 wil_err(wil, "Unknown event type\n"); 2539 print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1, 2540 hdr, sizeof(*hdr) + len, true); 2541 } 2542 } 2543 2544 /* 2545 * Retrieve next WMI event from the pending list 2546 */ 2547 static struct list_head *next_wmi_ev(struct wil6210_priv *wil) 2548 { 2549 ulong flags; 2550 struct list_head *ret = NULL; 2551 2552 spin_lock_irqsave(&wil->wmi_ev_lock, flags); 2553 2554 if (!list_empty(&wil->pending_wmi_ev)) { 2555 ret = wil->pending_wmi_ev.next; 2556 list_del(ret); 2557 } 2558 2559 spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); 2560 2561 return ret; 2562 } 2563 2564 /* 2565 * Handler for the WMI events 2566 */ 2567 void wmi_event_worker(struct work_struct *work) 2568 { 2569 struct wil6210_priv *wil = container_of(work, struct wil6210_priv, 2570 wmi_event_worker); 2571 struct pending_wmi_event *evt; 2572 struct list_head *lh; 2573 2574 wil_dbg_wmi(wil, "event_worker: Start\n"); 2575 while ((lh = next_wmi_ev(wil)) != NULL) { 2576 evt = list_entry(lh, struct pending_wmi_event, list); 2577 wmi_event_handle(wil, &evt->event.hdr); 2578 kfree(evt); 2579 } 2580 wil_dbg_wmi(wil, "event_worker: Finished\n"); 2581 } 2582 2583 bool wil_is_wmi_idle(struct wil6210_priv *wil) 2584 { 2585 ulong flags; 2586 struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx; 2587 bool rc = false; 2588 2589 spin_lock_irqsave(&wil->wmi_ev_lock, flags); 2590 2591 /* Check if there are pending WMI events in the events queue */ 2592 if (!list_empty(&wil->pending_wmi_ev)) { 2593 wil_dbg_pm(wil, "Pending WMI events in queue\n"); 2594 goto out; 2595 } 2596 2597 /* Check if there is a pending WMI call */ 2598 if (wil->reply_id) { 2599 wil_dbg_pm(wil, "Pending WMI call\n"); 2600 goto out; 2601 } 2602 2603 /* Check if there are pending RX events in mbox */ 2604 r->head = wil_r(wil, RGF_MBOX + 2605 offsetof(struct wil6210_mbox_ctl, rx.head)); 2606 if (r->tail != r->head) 2607 wil_dbg_pm(wil, "Pending WMI mbox events\n"); 2608 else 2609 rc = true; 2610 2611 out: 2612 spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); 2613 return rc; 2614 } 2615 2616 static void 2617 wmi_sched_scan_set_ssids(struct wil6210_priv *wil, 2618 struct wmi_start_sched_scan_cmd *cmd, 2619 struct cfg80211_ssid *ssids, int n_ssids, 2620 struct cfg80211_match_set *match_sets, 2621 int n_match_sets) 2622 { 2623 int i; 2624 2625 if (n_match_sets > WMI_MAX_PNO_SSID_NUM) { 2626 wil_dbg_wmi(wil, "too many match sets (%d), use first %d\n", 2627 n_match_sets, WMI_MAX_PNO_SSID_NUM); 2628 n_match_sets = WMI_MAX_PNO_SSID_NUM; 2629 } 2630 cmd->num_of_ssids = n_match_sets; 2631 2632 for (i = 0; i < n_match_sets; i++) { 2633 struct wmi_sched_scan_ssid_match *wmi_match = 2634 &cmd->ssid_for_match[i]; 2635 struct cfg80211_match_set *cfg_match = &match_sets[i]; 2636 int j; 2637 2638 wmi_match->ssid_len = cfg_match->ssid.ssid_len; 2639 memcpy(wmi_match->ssid, cfg_match->ssid.ssid, 2640 min_t(u8, wmi_match->ssid_len, WMI_MAX_SSID_LEN)); 2641 wmi_match->rssi_threshold = S8_MIN; 2642 if (cfg_match->rssi_thold >= S8_MIN && 2643 cfg_match->rssi_thold <= S8_MAX) 2644 wmi_match->rssi_threshold = cfg_match->rssi_thold; 2645 2646 for (j = 0; j < n_ssids; j++) 2647 if (wmi_match->ssid_len == ssids[j].ssid_len && 2648 memcmp(wmi_match->ssid, ssids[j].ssid, 2649 wmi_match->ssid_len) == 0) 2650 wmi_match->add_ssid_to_probe = true; 2651 } 2652 } 2653 2654 static void 2655 wmi_sched_scan_set_channels(struct wil6210_priv *wil, 2656 struct wmi_start_sched_scan_cmd *cmd, 2657 u32 n_channels, 2658 struct ieee80211_channel **channels) 2659 { 2660 int i; 2661 2662 if (n_channels > WMI_MAX_CHANNEL_NUM) { 2663 wil_dbg_wmi(wil, "too many channels (%d), use first %d\n", 2664 n_channels, WMI_MAX_CHANNEL_NUM); 2665 n_channels = WMI_MAX_CHANNEL_NUM; 2666 } 2667 cmd->num_of_channels = n_channels; 2668 2669 for (i = 0; i < n_channels; i++) { 2670 struct ieee80211_channel *cfg_chan = channels[i]; 2671 2672 cmd->channel_list[i] = cfg_chan->hw_value - 1; 2673 } 2674 } 2675 2676 static void 2677 wmi_sched_scan_set_plans(struct wil6210_priv *wil, 2678 struct wmi_start_sched_scan_cmd *cmd, 2679 struct cfg80211_sched_scan_plan *scan_plans, 2680 int n_scan_plans) 2681 { 2682 int i; 2683 2684 if (n_scan_plans > WMI_MAX_PLANS_NUM) { 2685 wil_dbg_wmi(wil, "too many plans (%d), use first %d\n", 2686 n_scan_plans, WMI_MAX_PLANS_NUM); 2687 n_scan_plans = WMI_MAX_PLANS_NUM; 2688 } 2689 2690 for (i = 0; i < n_scan_plans; i++) { 2691 struct cfg80211_sched_scan_plan *cfg_plan = &scan_plans[i]; 2692 2693 cmd->scan_plans[i].interval_sec = 2694 cpu_to_le16(cfg_plan->interval); 2695 cmd->scan_plans[i].num_of_iterations = 2696 cpu_to_le16(cfg_plan->iterations); 2697 } 2698 } 2699 2700 int wmi_start_sched_scan(struct wil6210_priv *wil, 2701 struct cfg80211_sched_scan_request *request) 2702 { 2703 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2704 int rc; 2705 struct wmi_start_sched_scan_cmd cmd = { 2706 .min_rssi_threshold = S8_MIN, 2707 .initial_delay_sec = cpu_to_le16(request->delay), 2708 }; 2709 struct { 2710 struct wmi_cmd_hdr wmi; 2711 struct wmi_start_sched_scan_event evt; 2712 } __packed reply; 2713 2714 if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) 2715 return -ENOTSUPP; 2716 2717 if (request->min_rssi_thold >= S8_MIN && 2718 request->min_rssi_thold <= S8_MAX) 2719 cmd.min_rssi_threshold = request->min_rssi_thold; 2720 2721 wmi_sched_scan_set_ssids(wil, &cmd, request->ssids, request->n_ssids, 2722 request->match_sets, request->n_match_sets); 2723 wmi_sched_scan_set_channels(wil, &cmd, 2724 request->n_channels, request->channels); 2725 wmi_sched_scan_set_plans(wil, &cmd, 2726 request->scan_plans, request->n_scan_plans); 2727 2728 reply.evt.result = WMI_PNO_REJECT; 2729 2730 rc = wmi_call(wil, WMI_START_SCHED_SCAN_CMDID, vif->mid, 2731 &cmd, sizeof(cmd), 2732 WMI_START_SCHED_SCAN_EVENTID, &reply, sizeof(reply), 2733 WIL_WMI_CALL_GENERAL_TO_MS); 2734 if (rc) 2735 return rc; 2736 2737 if (reply.evt.result != WMI_PNO_SUCCESS) { 2738 wil_err(wil, "start sched scan failed, result %d\n", 2739 reply.evt.result); 2740 return -EINVAL; 2741 } 2742 2743 return 0; 2744 } 2745 2746 int wmi_stop_sched_scan(struct wil6210_priv *wil) 2747 { 2748 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2749 int rc; 2750 struct { 2751 struct wmi_cmd_hdr wmi; 2752 struct wmi_stop_sched_scan_event evt; 2753 } __packed reply; 2754 2755 if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) 2756 return -ENOTSUPP; 2757 2758 reply.evt.result = WMI_PNO_REJECT; 2759 2760 rc = wmi_call(wil, WMI_STOP_SCHED_SCAN_CMDID, vif->mid, NULL, 0, 2761 WMI_STOP_SCHED_SCAN_EVENTID, &reply, sizeof(reply), 2762 WIL_WMI_CALL_GENERAL_TO_MS); 2763 if (rc) 2764 return rc; 2765 2766 if (reply.evt.result != WMI_PNO_SUCCESS) { 2767 wil_err(wil, "stop sched scan failed, result %d\n", 2768 reply.evt.result); 2769 return -EINVAL; 2770 } 2771 2772 return 0; 2773 } 2774