xref: /linux/drivers/net/wireless/ath/wil6210/txrx.c (revision ba95c7452439756d4f6dceb5a188b7c31dbbe5b6)
1 /*
2  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
3  * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/etherdevice.h>
19 #include <net/ieee80211_radiotap.h>
20 #include <linux/if_arp.h>
21 #include <linux/moduleparam.h>
22 #include <linux/ip.h>
23 #include <linux/ipv6.h>
24 #include <net/ipv6.h>
25 #include <linux/prefetch.h>
26 
27 #include "wil6210.h"
28 #include "wmi.h"
29 #include "txrx.h"
30 #include "trace.h"
31 #include "txrx_edma.h"
32 
33 bool rx_align_2;
34 module_param(rx_align_2, bool, 0444);
35 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
36 
37 bool rx_large_buf;
38 module_param(rx_large_buf, bool, 0444);
39 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
40 
41 /* Drop Tx packets in case Tx ring is full */
42 bool drop_if_ring_full;
43 
44 static inline uint wil_rx_snaplen(void)
45 {
46 	return rx_align_2 ? 6 : 0;
47 }
48 
49 /* wil_ring_wmark_low - low watermark for available descriptor space */
50 static inline int wil_ring_wmark_low(struct wil_ring *ring)
51 {
52 	return ring->size / 8;
53 }
54 
55 /* wil_ring_wmark_high - high watermark for available descriptor space */
56 static inline int wil_ring_wmark_high(struct wil_ring *ring)
57 {
58 	return ring->size / 4;
59 }
60 
61 /* returns true if num avail descriptors is lower than wmark_low */
62 static inline int wil_ring_avail_low(struct wil_ring *ring)
63 {
64 	return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
65 }
66 
67 /* returns true if num avail descriptors is higher than wmark_high */
68 static inline int wil_ring_avail_high(struct wil_ring *ring)
69 {
70 	return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
71 }
72 
73 /* returns true when all tx vrings are empty */
74 bool wil_is_tx_idle(struct wil6210_priv *wil)
75 {
76 	int i;
77 	unsigned long data_comp_to;
78 	int min_ring_id = wil_get_min_tx_ring_id(wil);
79 
80 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
81 		struct wil_ring *vring = &wil->ring_tx[i];
82 		int vring_index = vring - wil->ring_tx;
83 		struct wil_ring_tx_data *txdata =
84 			&wil->ring_tx_data[vring_index];
85 
86 		spin_lock(&txdata->lock);
87 
88 		if (!vring->va || !txdata->enabled) {
89 			spin_unlock(&txdata->lock);
90 			continue;
91 		}
92 
93 		data_comp_to = jiffies + msecs_to_jiffies(
94 					WIL_DATA_COMPLETION_TO_MS);
95 		if (test_bit(wil_status_napi_en, wil->status)) {
96 			while (!wil_ring_is_empty(vring)) {
97 				if (time_after(jiffies, data_comp_to)) {
98 					wil_dbg_pm(wil,
99 						   "TO waiting for idle tx\n");
100 					spin_unlock(&txdata->lock);
101 					return false;
102 				}
103 				wil_dbg_ratelimited(wil,
104 						    "tx vring is not empty -> NAPI\n");
105 				spin_unlock(&txdata->lock);
106 				napi_synchronize(&wil->napi_tx);
107 				msleep(20);
108 				spin_lock(&txdata->lock);
109 				if (!vring->va || !txdata->enabled)
110 					break;
111 			}
112 		}
113 
114 		spin_unlock(&txdata->lock);
115 	}
116 
117 	return true;
118 }
119 
120 static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
121 {
122 	struct device *dev = wil_to_dev(wil);
123 	size_t sz = vring->size * sizeof(vring->va[0]);
124 	uint i;
125 
126 	wil_dbg_misc(wil, "vring_alloc:\n");
127 
128 	BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
129 
130 	vring->swhead = 0;
131 	vring->swtail = 0;
132 	vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
133 	if (!vring->ctx) {
134 		vring->va = NULL;
135 		return -ENOMEM;
136 	}
137 
138 	/* vring->va should be aligned on its size rounded up to power of 2
139 	 * This is granted by the dma_alloc_coherent.
140 	 *
141 	 * HW has limitation that all vrings addresses must share the same
142 	 * upper 16 msb bits part of 48 bits address. To workaround that,
143 	 * if we are using more than 32 bit addresses switch to 32 bit
144 	 * allocation before allocating vring memory.
145 	 *
146 	 * There's no check for the return value of dma_set_mask_and_coherent,
147 	 * since we assume if we were able to set the mask during
148 	 * initialization in this system it will not fail if we set it again
149 	 */
150 	if (wil->dma_addr_size > 32)
151 		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
152 
153 	vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
154 	if (!vring->va) {
155 		kfree(vring->ctx);
156 		vring->ctx = NULL;
157 		return -ENOMEM;
158 	}
159 
160 	if (wil->dma_addr_size > 32)
161 		dma_set_mask_and_coherent(dev,
162 					  DMA_BIT_MASK(wil->dma_addr_size));
163 
164 	/* initially, all descriptors are SW owned
165 	 * For Tx and Rx, ownership bit is at the same location, thus
166 	 * we can use any
167 	 */
168 	for (i = 0; i < vring->size; i++) {
169 		volatile struct vring_tx_desc *_d =
170 			&vring->va[i].tx.legacy;
171 
172 		_d->dma.status = TX_DMA_STATUS_DU;
173 	}
174 
175 	wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
176 		     vring->va, &vring->pa, vring->ctx);
177 
178 	return 0;
179 }
180 
181 static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
182 			     struct wil_ctx *ctx)
183 {
184 	struct vring_tx_desc *d = &desc->legacy;
185 	dma_addr_t pa = wil_desc_addr(&d->dma.addr);
186 	u16 dmalen = le16_to_cpu(d->dma.length);
187 
188 	switch (ctx->mapped_as) {
189 	case wil_mapped_as_single:
190 		dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
191 		break;
192 	case wil_mapped_as_page:
193 		dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
194 		break;
195 	default:
196 		break;
197 	}
198 }
199 
200 static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
201 {
202 	struct device *dev = wil_to_dev(wil);
203 	size_t sz = vring->size * sizeof(vring->va[0]);
204 
205 	lockdep_assert_held(&wil->mutex);
206 	if (!vring->is_rx) {
207 		int vring_index = vring - wil->ring_tx;
208 
209 		wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
210 			     vring_index, vring->size, vring->va,
211 			     &vring->pa, vring->ctx);
212 	} else {
213 		wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
214 			     vring->size, vring->va,
215 			     &vring->pa, vring->ctx);
216 	}
217 
218 	while (!wil_ring_is_empty(vring)) {
219 		dma_addr_t pa;
220 		u16 dmalen;
221 		struct wil_ctx *ctx;
222 
223 		if (!vring->is_rx) {
224 			struct vring_tx_desc dd, *d = &dd;
225 			volatile struct vring_tx_desc *_d =
226 					&vring->va[vring->swtail].tx.legacy;
227 
228 			ctx = &vring->ctx[vring->swtail];
229 			if (!ctx) {
230 				wil_dbg_txrx(wil,
231 					     "ctx(%d) was already completed\n",
232 					     vring->swtail);
233 				vring->swtail = wil_ring_next_tail(vring);
234 				continue;
235 			}
236 			*d = *_d;
237 			wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
238 			if (ctx->skb)
239 				dev_kfree_skb_any(ctx->skb);
240 			vring->swtail = wil_ring_next_tail(vring);
241 		} else { /* rx */
242 			struct vring_rx_desc dd, *d = &dd;
243 			volatile struct vring_rx_desc *_d =
244 				&vring->va[vring->swhead].rx.legacy;
245 
246 			ctx = &vring->ctx[vring->swhead];
247 			*d = *_d;
248 			pa = wil_desc_addr(&d->dma.addr);
249 			dmalen = le16_to_cpu(d->dma.length);
250 			dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
251 			kfree_skb(ctx->skb);
252 			wil_ring_advance_head(vring, 1);
253 		}
254 	}
255 	dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
256 	kfree(vring->ctx);
257 	vring->pa = 0;
258 	vring->va = NULL;
259 	vring->ctx = NULL;
260 }
261 
262 /**
263  * Allocate one skb for Rx VRING
264  *
265  * Safe to call from IRQ
266  */
267 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
268 			       u32 i, int headroom)
269 {
270 	struct device *dev = wil_to_dev(wil);
271 	unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
272 	struct vring_rx_desc dd, *d = &dd;
273 	volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
274 	dma_addr_t pa;
275 	struct sk_buff *skb = dev_alloc_skb(sz + headroom);
276 
277 	if (unlikely(!skb))
278 		return -ENOMEM;
279 
280 	skb_reserve(skb, headroom);
281 	skb_put(skb, sz);
282 
283 	/**
284 	 * Make sure that the network stack calculates checksum for packets
285 	 * which failed the HW checksum calculation
286 	 */
287 	skb->ip_summed = CHECKSUM_NONE;
288 
289 	pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
290 	if (unlikely(dma_mapping_error(dev, pa))) {
291 		kfree_skb(skb);
292 		return -ENOMEM;
293 	}
294 
295 	d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
296 	wil_desc_addr_set(&d->dma.addr, pa);
297 	/* ip_length don't care */
298 	/* b11 don't care */
299 	/* error don't care */
300 	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
301 	d->dma.length = cpu_to_le16(sz);
302 	*_d = *d;
303 	vring->ctx[i].skb = skb;
304 
305 	return 0;
306 }
307 
308 /**
309  * Adds radiotap header
310  *
311  * Any error indicated as "Bad FCS"
312  *
313  * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
314  *  - Rx descriptor: 32 bytes
315  *  - Phy info
316  */
317 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
318 				       struct sk_buff *skb)
319 {
320 	struct wil6210_rtap {
321 		struct ieee80211_radiotap_header rthdr;
322 		/* fields should be in the order of bits in rthdr.it_present */
323 		/* flags */
324 		u8 flags;
325 		/* channel */
326 		__le16 chnl_freq __aligned(2);
327 		__le16 chnl_flags;
328 		/* MCS */
329 		u8 mcs_present;
330 		u8 mcs_flags;
331 		u8 mcs_index;
332 	} __packed;
333 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
334 	struct wil6210_rtap *rtap;
335 	int rtap_len = sizeof(struct wil6210_rtap);
336 	struct ieee80211_channel *ch = wil->monitor_chandef.chan;
337 
338 	if (skb_headroom(skb) < rtap_len &&
339 	    pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
340 		wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
341 		return;
342 	}
343 
344 	rtap = skb_push(skb, rtap_len);
345 	memset(rtap, 0, rtap_len);
346 
347 	rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
348 	rtap->rthdr.it_len = cpu_to_le16(rtap_len);
349 	rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
350 			(1 << IEEE80211_RADIOTAP_CHANNEL) |
351 			(1 << IEEE80211_RADIOTAP_MCS));
352 	if (d->dma.status & RX_DMA_STATUS_ERROR)
353 		rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS;
354 
355 	rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
356 	rtap->chnl_flags = cpu_to_le16(0);
357 
358 	rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
359 	rtap->mcs_flags = 0;
360 	rtap->mcs_index = wil_rxdesc_mcs(d);
361 }
362 
363 static bool wil_is_rx_idle(struct wil6210_priv *wil)
364 {
365 	struct vring_rx_desc *_d;
366 	struct wil_ring *ring = &wil->ring_rx;
367 
368 	_d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
369 	if (_d->dma.status & RX_DMA_STATUS_DU)
370 		return false;
371 
372 	return true;
373 }
374 
375 static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb)
376 {
377 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
378 	int mid = wil_rxdesc_mid(d);
379 	struct wil6210_vif *vif = wil->vifs[mid];
380 	/* cid from DMA descriptor is limited to 3 bits.
381 	 * In case of cid>=8, the value would be cid modulo 8 and we need to
382 	 * find real cid by locating the transmitter (ta) inside sta array
383 	 */
384 	int cid = wil_rxdesc_cid(d);
385 	unsigned int snaplen = wil_rx_snaplen();
386 	struct ieee80211_hdr_3addr *hdr;
387 	int i;
388 	unsigned char *ta;
389 	u8 ftype;
390 
391 	/* in monitor mode there are no connections */
392 	if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR)
393 		return cid;
394 
395 	ftype = wil_rxdesc_ftype(d) << 2;
396 	if (likely(ftype == IEEE80211_FTYPE_DATA)) {
397 		if (unlikely(skb->len < ETH_HLEN + snaplen)) {
398 			wil_err_ratelimited(wil,
399 					    "Short data frame, len = %d\n",
400 					    skb->len);
401 			return -ENOENT;
402 		}
403 		ta = wil_skb_get_sa(skb);
404 	} else {
405 		if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) {
406 			wil_err_ratelimited(wil, "Short frame, len = %d\n",
407 					    skb->len);
408 			return -ENOENT;
409 		}
410 		hdr = (void *)skb->data;
411 		ta = hdr->addr2;
412 	}
413 
414 	if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID)
415 		return cid;
416 
417 	/* assuming no concurrency between AP interfaces and STA interfaces.
418 	 * multista is used only in P2P_GO or AP mode. In other modes return
419 	 * cid from the rx descriptor
420 	 */
421 	if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO &&
422 	    vif->wdev.iftype != NL80211_IFTYPE_AP)
423 		return cid;
424 
425 	/* For Rx packets cid from rx descriptor is limited to 3 bits (0..7),
426 	 * to find the real cid, compare transmitter address with the stored
427 	 * stations mac address in the driver sta array
428 	 */
429 	for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) {
430 		if (wil->sta[i].status != wil_sta_unused &&
431 		    ether_addr_equal(wil->sta[i].addr, ta)) {
432 			cid = i;
433 			break;
434 		}
435 	}
436 	if (i >= wil->max_assoc_sta) {
437 		wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n",
438 				    ta, vif->wdev.iftype, ftype, skb->len);
439 		cid = -ENOENT;
440 	}
441 
442 	return cid;
443 }
444 
445 /**
446  * reap 1 frame from @swhead
447  *
448  * Rx descriptor copied to skb->cb
449  *
450  * Safe to call from IRQ
451  */
452 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
453 					 struct wil_ring *vring)
454 {
455 	struct device *dev = wil_to_dev(wil);
456 	struct wil6210_vif *vif;
457 	struct net_device *ndev;
458 	volatile struct vring_rx_desc *_d;
459 	struct vring_rx_desc *d;
460 	struct sk_buff *skb;
461 	dma_addr_t pa;
462 	unsigned int snaplen = wil_rx_snaplen();
463 	unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
464 	u16 dmalen;
465 	u8 ftype;
466 	int cid, mid;
467 	int i;
468 	struct wil_net_stats *stats;
469 
470 	BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb));
471 
472 again:
473 	if (unlikely(wil_ring_is_empty(vring)))
474 		return NULL;
475 
476 	i = (int)vring->swhead;
477 	_d = &vring->va[i].rx.legacy;
478 	if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
479 		/* it is not error, we just reached end of Rx done area */
480 		return NULL;
481 	}
482 
483 	skb = vring->ctx[i].skb;
484 	vring->ctx[i].skb = NULL;
485 	wil_ring_advance_head(vring, 1);
486 	if (!skb) {
487 		wil_err(wil, "No Rx skb at [%d]\n", i);
488 		goto again;
489 	}
490 	d = wil_skb_rxdesc(skb);
491 	*d = *_d;
492 	pa = wil_desc_addr(&d->dma.addr);
493 
494 	dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
495 	dmalen = le16_to_cpu(d->dma.length);
496 
497 	trace_wil6210_rx(i, d);
498 	wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
499 	wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
500 			  (const void *)d, sizeof(*d), false);
501 
502 	mid = wil_rxdesc_mid(d);
503 	vif = wil->vifs[mid];
504 
505 	if (unlikely(!vif)) {
506 		wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
507 			     mid);
508 		kfree_skb(skb);
509 		goto again;
510 	}
511 	ndev = vif_to_ndev(vif);
512 	if (unlikely(dmalen > sz)) {
513 		wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n",
514 				    dmalen);
515 		kfree_skb(skb);
516 		goto again;
517 	}
518 	skb_trim(skb, dmalen);
519 
520 	prefetch(skb->data);
521 
522 	wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
523 			  skb->data, skb_headlen(skb), false);
524 
525 	cid = wil_rx_get_cid_by_skb(wil, skb);
526 	if (cid == -ENOENT) {
527 		kfree_skb(skb);
528 		goto again;
529 	}
530 	wil_skb_set_cid(skb, (u8)cid);
531 	stats = &wil->sta[cid].stats;
532 
533 	stats->last_mcs_rx = wil_rxdesc_mcs(d);
534 	if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
535 		stats->rx_per_mcs[stats->last_mcs_rx]++;
536 
537 	/* use radiotap header only if required */
538 	if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
539 		wil_rx_add_radiotap_header(wil, skb);
540 
541 	/* no extra checks if in sniffer mode */
542 	if (ndev->type != ARPHRD_ETHER)
543 		return skb;
544 	/* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
545 	 * Driver should recognize it by frame type, that is found
546 	 * in Rx descriptor. If type is not data, it is 802.11 frame as is
547 	 */
548 	ftype = wil_rxdesc_ftype(d) << 2;
549 	if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
550 		u8 fc1 = wil_rxdesc_fc1(d);
551 		int tid = wil_rxdesc_tid(d);
552 		u16 seq = wil_rxdesc_seq(d);
553 
554 		wil_dbg_txrx(wil,
555 			     "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
556 			     fc1, mid, cid, tid, seq);
557 		stats->rx_non_data_frame++;
558 		if (wil_is_back_req(fc1)) {
559 			wil_dbg_txrx(wil,
560 				     "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
561 				     mid, cid, tid, seq);
562 			wil_rx_bar(wil, vif, cid, tid, seq);
563 		} else {
564 			/* print again all info. One can enable only this
565 			 * without overhead for printing every Rx frame
566 			 */
567 			wil_dbg_txrx(wil,
568 				     "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
569 				     fc1, mid, cid, tid, seq);
570 			wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
571 					  (const void *)d, sizeof(*d), false);
572 			wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
573 					  skb->data, skb_headlen(skb), false);
574 		}
575 		kfree_skb(skb);
576 		goto again;
577 	}
578 
579 	/* L4 IDENT is on when HW calculated checksum, check status
580 	 * and in case of error drop the packet
581 	 * higher stack layers will handle retransmission (if required)
582 	 */
583 	if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
584 		/* L4 protocol identified, csum calculated */
585 		if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
586 			skb->ip_summed = CHECKSUM_UNNECESSARY;
587 		/* If HW reports bad checksum, let IP stack re-check it
588 		 * For example, HW don't understand Microsoft IP stack that
589 		 * mis-calculates TCP checksum - if it should be 0x0,
590 		 * it writes 0xffff in violation of RFC 1624
591 		 */
592 		else
593 			stats->rx_csum_err++;
594 	}
595 
596 	if (snaplen) {
597 		/* Packet layout
598 		 * +-------+-------+---------+------------+------+
599 		 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
600 		 * +-------+-------+---------+------------+------+
601 		 * Need to remove SNAP, shifting SA and DA forward
602 		 */
603 		memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
604 		skb_pull(skb, snaplen);
605 	}
606 
607 	return skb;
608 }
609 
610 /**
611  * allocate and fill up to @count buffers in rx ring
612  * buffers posted at @swtail
613  * Note: we have a single RX queue for servicing all VIFs, but we
614  * allocate skbs with headroom according to main interface only. This
615  * means it will not work with monitor interface together with other VIFs.
616  * Currently we only support monitor interface on its own without other VIFs,
617  * and we will need to fix this code once we add support.
618  */
619 static int wil_rx_refill(struct wil6210_priv *wil, int count)
620 {
621 	struct net_device *ndev = wil->main_ndev;
622 	struct wil_ring *v = &wil->ring_rx;
623 	u32 next_tail;
624 	int rc = 0;
625 	int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
626 			WIL6210_RTAP_SIZE : 0;
627 
628 	for (; next_tail = wil_ring_next_tail(v),
629 	     (next_tail != v->swhead) && (count-- > 0);
630 	     v->swtail = next_tail) {
631 		rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
632 		if (unlikely(rc)) {
633 			wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
634 					    rc, v->swtail);
635 			break;
636 		}
637 	}
638 
639 	/* make sure all writes to descriptors (shared memory) are done before
640 	 * committing them to HW
641 	 */
642 	wmb();
643 
644 	wil_w(wil, v->hwtail, v->swtail);
645 
646 	return rc;
647 }
648 
649 /**
650  * reverse_memcmp - Compare two areas of memory, in reverse order
651  * @cs: One area of memory
652  * @ct: Another area of memory
653  * @count: The size of the area.
654  *
655  * Cut'n'paste from original memcmp (see lib/string.c)
656  * with minimal modifications
657  */
658 int reverse_memcmp(const void *cs, const void *ct, size_t count)
659 {
660 	const unsigned char *su1, *su2;
661 	int res = 0;
662 
663 	for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
664 	     --su1, --su2, count--) {
665 		res = *su1 - *su2;
666 		if (res)
667 			break;
668 	}
669 	return res;
670 }
671 
672 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
673 {
674 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
675 	int cid = wil_skb_get_cid(skb);
676 	int tid = wil_rxdesc_tid(d);
677 	int key_id = wil_rxdesc_key_id(d);
678 	int mc = wil_rxdesc_mcast(d);
679 	struct wil_sta_info *s = &wil->sta[cid];
680 	struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
681 				      &s->tid_crypto_rx[tid];
682 	struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
683 	const u8 *pn = (u8 *)&d->mac.pn_15_0;
684 
685 	if (!cc->key_set) {
686 		wil_err_ratelimited(wil,
687 				    "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
688 				    cid, tid, mc, key_id);
689 		return -EINVAL;
690 	}
691 
692 	if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
693 		wil_err_ratelimited(wil,
694 				    "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
695 				    cid, tid, mc, key_id, pn, cc->pn);
696 		return -EINVAL;
697 	}
698 	memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
699 
700 	return 0;
701 }
702 
703 static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
704 			      struct wil_net_stats *stats)
705 {
706 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
707 
708 	if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
709 	    (d->dma.error & RX_DMA_ERROR_MIC)) {
710 		stats->rx_mic_error++;
711 		wil_dbg_txrx(wil, "MIC error, dropping packet\n");
712 		return -EFAULT;
713 	}
714 
715 	return 0;
716 }
717 
718 static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
719 				    int *security)
720 {
721 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
722 
723 	*cid = wil_skb_get_cid(skb);
724 	*security = wil_rxdesc_security(d);
725 }
726 
727 /*
728  * Pass Rx packet to the netif. Update statistics.
729  * Called in softirq context (NAPI poll).
730  */
731 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
732 {
733 	gro_result_t rc = GRO_NORMAL;
734 	struct wil6210_vif *vif = ndev_to_vif(ndev);
735 	struct wil6210_priv *wil = ndev_to_wil(ndev);
736 	struct wireless_dev *wdev = vif_to_wdev(vif);
737 	unsigned int len = skb->len;
738 	int cid;
739 	int security;
740 	u8 *sa, *da = wil_skb_get_da(skb);
741 	/* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
742 	 * is not suitable, need to look at data
743 	 */
744 	int mcast = is_multicast_ether_addr(da);
745 	struct wil_net_stats *stats;
746 	struct sk_buff *xmit_skb = NULL;
747 	static const char * const gro_res_str[] = {
748 		[GRO_MERGED]		= "GRO_MERGED",
749 		[GRO_MERGED_FREE]	= "GRO_MERGED_FREE",
750 		[GRO_HELD]		= "GRO_HELD",
751 		[GRO_NORMAL]		= "GRO_NORMAL",
752 		[GRO_DROP]		= "GRO_DROP",
753 		[GRO_CONSUMED]		= "GRO_CONSUMED",
754 	};
755 
756 	wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
757 
758 	stats = &wil->sta[cid].stats;
759 
760 	skb_orphan(skb);
761 
762 	if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
763 		rc = GRO_DROP;
764 		dev_kfree_skb(skb);
765 		stats->rx_replay++;
766 		goto stats;
767 	}
768 
769 	/* check errors reported by HW and update statistics */
770 	if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
771 		dev_kfree_skb(skb);
772 		return;
773 	}
774 
775 	if (wdev->iftype == NL80211_IFTYPE_STATION) {
776 		sa = wil_skb_get_sa(skb);
777 		if (mcast && ether_addr_equal(sa, ndev->dev_addr)) {
778 			/* mcast packet looped back to us */
779 			rc = GRO_DROP;
780 			dev_kfree_skb(skb);
781 			goto stats;
782 		}
783 	} else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
784 		if (mcast) {
785 			/* send multicast frames both to higher layers in
786 			 * local net stack and back to the wireless medium
787 			 */
788 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
789 		} else {
790 			int xmit_cid = wil_find_cid(wil, vif->mid, da);
791 
792 			if (xmit_cid >= 0) {
793 				/* The destination station is associated to
794 				 * this AP (in this VLAN), so send the frame
795 				 * directly to it and do not pass it to local
796 				 * net stack.
797 				 */
798 				xmit_skb = skb;
799 				skb = NULL;
800 			}
801 		}
802 	}
803 	if (xmit_skb) {
804 		/* Send to wireless media and increase priority by 256 to
805 		 * keep the received priority instead of reclassifying
806 		 * the frame (see cfg80211_classify8021d).
807 		 */
808 		xmit_skb->dev = ndev;
809 		xmit_skb->priority += 256;
810 		xmit_skb->protocol = htons(ETH_P_802_3);
811 		skb_reset_network_header(xmit_skb);
812 		skb_reset_mac_header(xmit_skb);
813 		wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
814 		dev_queue_xmit(xmit_skb);
815 	}
816 
817 	if (skb) { /* deliver to local stack */
818 		skb->protocol = eth_type_trans(skb, ndev);
819 		skb->dev = ndev;
820 		rc = napi_gro_receive(&wil->napi_rx, skb);
821 		wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
822 			     len, gro_res_str[rc]);
823 	}
824 stats:
825 	/* statistics. rc set to GRO_NORMAL for AP bridging */
826 	if (unlikely(rc == GRO_DROP)) {
827 		ndev->stats.rx_dropped++;
828 		stats->rx_dropped++;
829 		wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
830 	} else {
831 		ndev->stats.rx_packets++;
832 		stats->rx_packets++;
833 		ndev->stats.rx_bytes += len;
834 		stats->rx_bytes += len;
835 		if (mcast)
836 			ndev->stats.multicast++;
837 	}
838 }
839 
840 /**
841  * Proceed all completed skb's from Rx VRING
842  *
843  * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
844  */
845 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
846 {
847 	struct net_device *ndev = wil->main_ndev;
848 	struct wireless_dev *wdev = ndev->ieee80211_ptr;
849 	struct wil_ring *v = &wil->ring_rx;
850 	struct sk_buff *skb;
851 
852 	if (unlikely(!v->va)) {
853 		wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
854 		return;
855 	}
856 	wil_dbg_txrx(wil, "rx_handle\n");
857 	while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
858 		(*quota)--;
859 
860 		/* monitor is currently supported on main interface only */
861 		if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
862 			skb->dev = ndev;
863 			skb_reset_mac_header(skb);
864 			skb->ip_summed = CHECKSUM_UNNECESSARY;
865 			skb->pkt_type = PACKET_OTHERHOST;
866 			skb->protocol = htons(ETH_P_802_2);
867 			wil_netif_rx_any(skb, ndev);
868 		} else {
869 			wil_rx_reorder(wil, skb);
870 		}
871 	}
872 	wil_rx_refill(wil, v->size);
873 }
874 
875 static void wil_rx_buf_len_init(struct wil6210_priv *wil)
876 {
877 	wil->rx_buf_len = rx_large_buf ?
878 		WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
879 	if (mtu_max > wil->rx_buf_len) {
880 		/* do not allow RX buffers to be smaller than mtu_max, for
881 		 * backward compatibility (mtu_max parameter was also used
882 		 * to support receiving large packets)
883 		 */
884 		wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
885 		wil->rx_buf_len = mtu_max;
886 	}
887 }
888 
889 static int wil_rx_init(struct wil6210_priv *wil, uint order)
890 {
891 	struct wil_ring *vring = &wil->ring_rx;
892 	int rc;
893 
894 	wil_dbg_misc(wil, "rx_init\n");
895 
896 	if (vring->va) {
897 		wil_err(wil, "Rx ring already allocated\n");
898 		return -EINVAL;
899 	}
900 
901 	wil_rx_buf_len_init(wil);
902 
903 	vring->size = 1 << order;
904 	vring->is_rx = true;
905 	rc = wil_vring_alloc(wil, vring);
906 	if (rc)
907 		return rc;
908 
909 	rc = wmi_rx_chain_add(wil, vring);
910 	if (rc)
911 		goto err_free;
912 
913 	rc = wil_rx_refill(wil, vring->size);
914 	if (rc)
915 		goto err_free;
916 
917 	return 0;
918  err_free:
919 	wil_vring_free(wil, vring);
920 
921 	return rc;
922 }
923 
924 static void wil_rx_fini(struct wil6210_priv *wil)
925 {
926 	struct wil_ring *vring = &wil->ring_rx;
927 
928 	wil_dbg_misc(wil, "rx_fini\n");
929 
930 	if (vring->va)
931 		wil_vring_free(wil, vring);
932 }
933 
934 static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
935 			   u32 len, int vring_index)
936 {
937 	struct vring_tx_desc *d = &desc->legacy;
938 
939 	wil_desc_addr_set(&d->dma.addr, pa);
940 	d->dma.ip_length = 0;
941 	/* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
942 	d->dma.b11 = 0/*14 | BIT(7)*/;
943 	d->dma.error = 0;
944 	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
945 	d->dma.length = cpu_to_le16((u16)len);
946 	d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
947 	d->mac.d[0] = 0;
948 	d->mac.d[1] = 0;
949 	d->mac.d[2] = 0;
950 	d->mac.ucode_cmd = 0;
951 	/* translation type:  0 - bypass; 1 - 802.3; 2 - native wifi */
952 	d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
953 		      (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
954 
955 	return 0;
956 }
957 
958 void wil_tx_data_init(struct wil_ring_tx_data *txdata)
959 {
960 	spin_lock_bh(&txdata->lock);
961 	txdata->dot1x_open = 0;
962 	txdata->enabled = 0;
963 	txdata->idle = 0;
964 	txdata->last_idle = 0;
965 	txdata->begin = 0;
966 	txdata->agg_wsize = 0;
967 	txdata->agg_timeout = 0;
968 	txdata->agg_amsdu = 0;
969 	txdata->addba_in_progress = false;
970 	txdata->mid = U8_MAX;
971 	spin_unlock_bh(&txdata->lock);
972 }
973 
974 static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
975 			     int cid, int tid)
976 {
977 	struct wil6210_priv *wil = vif_to_wil(vif);
978 	int rc;
979 	struct wmi_vring_cfg_cmd cmd = {
980 		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
981 		.vring_cfg = {
982 			.tx_sw_ring = {
983 				.max_mpdu_size =
984 					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
985 				.ring_size = cpu_to_le16(size),
986 			},
987 			.ringid = id,
988 			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
989 			.mac_ctrl = 0,
990 			.to_resolution = 0,
991 			.agg_max_wsize = 0,
992 			.schd_params = {
993 				.priority = cpu_to_le16(0),
994 				.timeslot_us = cpu_to_le16(0xfff),
995 			},
996 		},
997 	};
998 	struct {
999 		struct wmi_cmd_hdr wmi;
1000 		struct wmi_vring_cfg_done_event cmd;
1001 	} __packed reply = {
1002 		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1003 	};
1004 	struct wil_ring *vring = &wil->ring_tx[id];
1005 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1006 
1007 	if (cid >= WIL6210_RX_DESC_MAX_CID) {
1008 		cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID;
1009 		cmd.vring_cfg.cid = cid;
1010 		cmd.vring_cfg.tid = tid;
1011 	} else {
1012 		cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid);
1013 	}
1014 
1015 	wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
1016 		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1017 	lockdep_assert_held(&wil->mutex);
1018 
1019 	if (vring->va) {
1020 		wil_err(wil, "Tx ring [%d] already allocated\n", id);
1021 		rc = -EINVAL;
1022 		goto out;
1023 	}
1024 
1025 	wil_tx_data_init(txdata);
1026 	vring->is_rx = false;
1027 	vring->size = size;
1028 	rc = wil_vring_alloc(wil, vring);
1029 	if (rc)
1030 		goto out;
1031 
1032 	wil->ring2cid_tid[id][0] = cid;
1033 	wil->ring2cid_tid[id][1] = tid;
1034 
1035 	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1036 
1037 	if (!vif->privacy)
1038 		txdata->dot1x_open = true;
1039 	rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1040 		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
1041 	if (rc)
1042 		goto out_free;
1043 
1044 	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1045 		wil_err(wil, "Tx config failed, status 0x%02x\n",
1046 			reply.cmd.status);
1047 		rc = -EINVAL;
1048 		goto out_free;
1049 	}
1050 
1051 	spin_lock_bh(&txdata->lock);
1052 	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1053 	txdata->mid = vif->mid;
1054 	txdata->enabled = 1;
1055 	spin_unlock_bh(&txdata->lock);
1056 
1057 	if (txdata->dot1x_open && (agg_wsize >= 0))
1058 		wil_addba_tx_request(wil, id, agg_wsize);
1059 
1060 	return 0;
1061  out_free:
1062 	spin_lock_bh(&txdata->lock);
1063 	txdata->dot1x_open = false;
1064 	txdata->enabled = 0;
1065 	spin_unlock_bh(&txdata->lock);
1066 	wil_vring_free(wil, vring);
1067 	wil->ring2cid_tid[id][0] = wil->max_assoc_sta;
1068 	wil->ring2cid_tid[id][1] = 0;
1069 
1070  out:
1071 
1072 	return rc;
1073 }
1074 
1075 static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid,
1076 			       int tid)
1077 {
1078 	struct wil6210_priv *wil = vif_to_wil(vif);
1079 	int rc;
1080 	struct wmi_vring_cfg_cmd cmd = {
1081 		.action = cpu_to_le32(WMI_VRING_CMD_MODIFY),
1082 		.vring_cfg = {
1083 			.tx_sw_ring = {
1084 				.max_mpdu_size =
1085 					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1086 				.ring_size = 0,
1087 			},
1088 			.ringid = ring_id,
1089 			.cidxtid = mk_cidxtid(cid, tid),
1090 			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1091 			.mac_ctrl = 0,
1092 			.to_resolution = 0,
1093 			.agg_max_wsize = 0,
1094 			.schd_params = {
1095 				.priority = cpu_to_le16(0),
1096 				.timeslot_us = cpu_to_le16(0xfff),
1097 			},
1098 		},
1099 	};
1100 	struct {
1101 		struct wmi_cmd_hdr wmi;
1102 		struct wmi_vring_cfg_done_event cmd;
1103 	} __packed reply = {
1104 		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1105 	};
1106 	struct wil_ring *vring = &wil->ring_tx[ring_id];
1107 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
1108 
1109 	wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id,
1110 		     cid, tid);
1111 	lockdep_assert_held(&wil->mutex);
1112 
1113 	if (!vring->va) {
1114 		wil_err(wil, "Tx ring [%d] not allocated\n", ring_id);
1115 		return -EINVAL;
1116 	}
1117 
1118 	if (wil->ring2cid_tid[ring_id][0] != cid ||
1119 	    wil->ring2cid_tid[ring_id][1] != tid) {
1120 		wil_err(wil, "ring info does not match cid=%u tid=%u\n",
1121 			wil->ring2cid_tid[ring_id][0],
1122 			wil->ring2cid_tid[ring_id][1]);
1123 	}
1124 
1125 	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1126 
1127 	rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1128 		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
1129 	if (rc)
1130 		goto fail;
1131 
1132 	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1133 		wil_err(wil, "Tx modify failed, status 0x%02x\n",
1134 			reply.cmd.status);
1135 		rc = -EINVAL;
1136 		goto fail;
1137 	}
1138 
1139 	/* set BA aggregation window size to 0 to force a new BA with the
1140 	 * new AP
1141 	 */
1142 	txdata->agg_wsize = 0;
1143 	if (txdata->dot1x_open && agg_wsize >= 0)
1144 		wil_addba_tx_request(wil, ring_id, agg_wsize);
1145 
1146 	return 0;
1147 fail:
1148 	spin_lock_bh(&txdata->lock);
1149 	txdata->dot1x_open = false;
1150 	txdata->enabled = 0;
1151 	spin_unlock_bh(&txdata->lock);
1152 	wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta;
1153 	wil->ring2cid_tid[ring_id][1] = 0;
1154 	return rc;
1155 }
1156 
1157 int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
1158 {
1159 	struct wil6210_priv *wil = vif_to_wil(vif);
1160 	int rc;
1161 	struct wmi_bcast_vring_cfg_cmd cmd = {
1162 		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
1163 		.vring_cfg = {
1164 			.tx_sw_ring = {
1165 				.max_mpdu_size =
1166 					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1167 				.ring_size = cpu_to_le16(size),
1168 			},
1169 			.ringid = id,
1170 			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1171 		},
1172 	};
1173 	struct {
1174 		struct wmi_cmd_hdr wmi;
1175 		struct wmi_vring_cfg_done_event cmd;
1176 	} __packed reply = {
1177 		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1178 	};
1179 	struct wil_ring *vring = &wil->ring_tx[id];
1180 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1181 
1182 	wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
1183 		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1184 	lockdep_assert_held(&wil->mutex);
1185 
1186 	if (vring->va) {
1187 		wil_err(wil, "Tx ring [%d] already allocated\n", id);
1188 		rc = -EINVAL;
1189 		goto out;
1190 	}
1191 
1192 	wil_tx_data_init(txdata);
1193 	vring->is_rx = false;
1194 	vring->size = size;
1195 	rc = wil_vring_alloc(wil, vring);
1196 	if (rc)
1197 		goto out;
1198 
1199 	wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */
1200 	wil->ring2cid_tid[id][1] = 0; /* TID */
1201 
1202 	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1203 
1204 	if (!vif->privacy)
1205 		txdata->dot1x_open = true;
1206 	rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
1207 		      &cmd, sizeof(cmd),
1208 		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
1209 	if (rc)
1210 		goto out_free;
1211 
1212 	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1213 		wil_err(wil, "Tx config failed, status 0x%02x\n",
1214 			reply.cmd.status);
1215 		rc = -EINVAL;
1216 		goto out_free;
1217 	}
1218 
1219 	spin_lock_bh(&txdata->lock);
1220 	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1221 	txdata->mid = vif->mid;
1222 	txdata->enabled = 1;
1223 	spin_unlock_bh(&txdata->lock);
1224 
1225 	return 0;
1226  out_free:
1227 	spin_lock_bh(&txdata->lock);
1228 	txdata->enabled = 0;
1229 	txdata->dot1x_open = false;
1230 	spin_unlock_bh(&txdata->lock);
1231 	wil_vring_free(wil, vring);
1232  out:
1233 
1234 	return rc;
1235 }
1236 
1237 static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
1238 					  struct wil6210_vif *vif,
1239 					  struct sk_buff *skb)
1240 {
1241 	int i, cid;
1242 	const u8 *da = wil_skb_get_da(skb);
1243 	int min_ring_id = wil_get_min_tx_ring_id(wil);
1244 
1245 	cid = wil_find_cid(wil, vif->mid, da);
1246 
1247 	if (cid < 0 || cid >= wil->max_assoc_sta)
1248 		return NULL;
1249 
1250 	/* TODO: fix for multiple TID */
1251 	for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
1252 		if (!wil->ring_tx_data[i].dot1x_open &&
1253 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1254 			continue;
1255 		if (wil->ring2cid_tid[i][0] == cid) {
1256 			struct wil_ring *v = &wil->ring_tx[i];
1257 			struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
1258 
1259 			wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1260 				     da, i);
1261 			if (v->va && txdata->enabled) {
1262 				return v;
1263 			} else {
1264 				wil_dbg_txrx(wil,
1265 					     "find_tx_ucast: vring[%d] not valid\n",
1266 					     i);
1267 				return NULL;
1268 			}
1269 		}
1270 	}
1271 
1272 	return NULL;
1273 }
1274 
1275 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1276 		       struct wil_ring *ring, struct sk_buff *skb);
1277 
1278 static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
1279 					     struct wil6210_vif *vif,
1280 					     struct sk_buff *skb)
1281 {
1282 	struct wil_ring *ring;
1283 	int i;
1284 	u8 cid;
1285 	struct wil_ring_tx_data  *txdata;
1286 	int min_ring_id = wil_get_min_tx_ring_id(wil);
1287 
1288 	/* In the STA mode, it is expected to have only 1 VRING
1289 	 * for the AP we connected to.
1290 	 * find 1-st vring eligible for this skb and use it.
1291 	 */
1292 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1293 		ring = &wil->ring_tx[i];
1294 		txdata = &wil->ring_tx_data[i];
1295 		if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
1296 			continue;
1297 
1298 		cid = wil->ring2cid_tid[i][0];
1299 		if (cid >= wil->max_assoc_sta) /* skip BCAST */
1300 			continue;
1301 
1302 		if (!wil->ring_tx_data[i].dot1x_open &&
1303 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1304 			continue;
1305 
1306 		wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1307 
1308 		return ring;
1309 	}
1310 
1311 	wil_dbg_txrx(wil, "Tx while no rings active?\n");
1312 
1313 	return NULL;
1314 }
1315 
1316 /* Use one of 2 strategies:
1317  *
1318  * 1. New (real broadcast):
1319  *    use dedicated broadcast vring
1320  * 2. Old (pseudo-DMS):
1321  *    Find 1-st vring and return it;
1322  *    duplicate skb and send it to other active vrings;
1323  *    in all cases override dest address to unicast peer's address
1324  * Use old strategy when new is not supported yet:
1325  *  - for PBSS
1326  */
1327 static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1328 					    struct wil6210_vif *vif,
1329 					    struct sk_buff *skb)
1330 {
1331 	struct wil_ring *v;
1332 	struct wil_ring_tx_data *txdata;
1333 	int i = vif->bcast_ring;
1334 
1335 	if (i < 0)
1336 		return NULL;
1337 	v = &wil->ring_tx[i];
1338 	txdata = &wil->ring_tx_data[i];
1339 	if (!v->va || !txdata->enabled)
1340 		return NULL;
1341 	if (!wil->ring_tx_data[i].dot1x_open &&
1342 	    skb->protocol != cpu_to_be16(ETH_P_PAE))
1343 		return NULL;
1344 
1345 	return v;
1346 }
1347 
1348 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1349 				 struct sk_buff *skb, int vring_index)
1350 {
1351 	u8 *da = wil_skb_get_da(skb);
1352 	int cid = wil->ring2cid_tid[vring_index][0];
1353 
1354 	ether_addr_copy(da, wil->sta[cid].addr);
1355 }
1356 
1357 static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1358 					    struct wil6210_vif *vif,
1359 					    struct sk_buff *skb)
1360 {
1361 	struct wil_ring *v, *v2;
1362 	struct sk_buff *skb2;
1363 	int i;
1364 	u8 cid;
1365 	const u8 *src = wil_skb_get_sa(skb);
1366 	struct wil_ring_tx_data *txdata, *txdata2;
1367 	int min_ring_id = wil_get_min_tx_ring_id(wil);
1368 
1369 	/* find 1-st vring eligible for data */
1370 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1371 		v = &wil->ring_tx[i];
1372 		txdata = &wil->ring_tx_data[i];
1373 		if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
1374 			continue;
1375 
1376 		cid = wil->ring2cid_tid[i][0];
1377 		if (cid >= wil->max_assoc_sta) /* skip BCAST */
1378 			continue;
1379 		if (!wil->ring_tx_data[i].dot1x_open &&
1380 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1381 			continue;
1382 
1383 		/* don't Tx back to source when re-routing Rx->Tx at the AP */
1384 		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1385 			continue;
1386 
1387 		goto found;
1388 	}
1389 
1390 	wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1391 
1392 	return NULL;
1393 
1394 found:
1395 	wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1396 	wil_set_da_for_vring(wil, skb, i);
1397 
1398 	/* find other active vrings and duplicate skb for each */
1399 	for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1400 		v2 = &wil->ring_tx[i];
1401 		txdata2 = &wil->ring_tx_data[i];
1402 		if (!v2->va || txdata2->mid != vif->mid)
1403 			continue;
1404 		cid = wil->ring2cid_tid[i][0];
1405 		if (cid >= wil->max_assoc_sta) /* skip BCAST */
1406 			continue;
1407 		if (!wil->ring_tx_data[i].dot1x_open &&
1408 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1409 			continue;
1410 
1411 		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1412 			continue;
1413 
1414 		skb2 = skb_copy(skb, GFP_ATOMIC);
1415 		if (skb2) {
1416 			wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1417 			wil_set_da_for_vring(wil, skb2, i);
1418 			wil_tx_ring(wil, vif, v2, skb2);
1419 			/* successful call to wil_tx_ring takes skb2 ref */
1420 			dev_kfree_skb_any(skb2);
1421 		} else {
1422 			wil_err(wil, "skb_copy failed\n");
1423 		}
1424 	}
1425 
1426 	return v;
1427 }
1428 
1429 static inline
1430 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1431 {
1432 	d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1433 }
1434 
1435 /**
1436  * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1437  * @skb is used to obtain the protocol and headers length.
1438  * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1439  * 2 - middle, 3 - last descriptor.
1440  */
1441 
1442 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1443 					  struct sk_buff *skb,
1444 					  int tso_desc_type, bool is_ipv4,
1445 					  int tcp_hdr_len, int skb_net_hdr_len)
1446 {
1447 	d->dma.b11 = ETH_HLEN; /* MAC header length */
1448 	d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1449 
1450 	d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1451 	/* L4 header len: TCP header length */
1452 	d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1453 
1454 	/* Setup TSO: bit and desc type */
1455 	d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1456 		(tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1457 	d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1458 
1459 	d->dma.ip_length = skb_net_hdr_len;
1460 	/* Enable TCP/UDP checksum */
1461 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1462 	/* Calculate pseudo-header */
1463 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1464 }
1465 
1466 /**
1467  * Sets the descriptor @d up for csum. The corresponding
1468  * @skb is used to obtain the protocol and headers length.
1469  * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1470  * Note, if d==NULL, the function only returns the protocol result.
1471  *
1472  * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1473  * is "if unrolling" to optimize the critical path.
1474  */
1475 
1476 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1477 				     struct sk_buff *skb){
1478 	int protocol;
1479 
1480 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1481 		return 0;
1482 
1483 	d->dma.b11 = ETH_HLEN; /* MAC header length */
1484 
1485 	switch (skb->protocol) {
1486 	case cpu_to_be16(ETH_P_IP):
1487 		protocol = ip_hdr(skb)->protocol;
1488 		d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1489 		break;
1490 	case cpu_to_be16(ETH_P_IPV6):
1491 		protocol = ipv6_hdr(skb)->nexthdr;
1492 		break;
1493 	default:
1494 		return -EINVAL;
1495 	}
1496 
1497 	switch (protocol) {
1498 	case IPPROTO_TCP:
1499 		d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1500 		/* L4 header len: TCP header length */
1501 		d->dma.d0 |=
1502 		(tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1503 		break;
1504 	case IPPROTO_UDP:
1505 		/* L4 header len: UDP header length */
1506 		d->dma.d0 |=
1507 		(sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1508 		break;
1509 	default:
1510 		return -EINVAL;
1511 	}
1512 
1513 	d->dma.ip_length = skb_network_header_len(skb);
1514 	/* Enable TCP/UDP checksum */
1515 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1516 	/* Calculate pseudo-header */
1517 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1518 
1519 	return 0;
1520 }
1521 
1522 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1523 {
1524 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1525 	      BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1526 	      BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1527 }
1528 
1529 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1530 {
1531 	d->dma.d0 |= wil_tso_type_lst <<
1532 		  DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1533 }
1534 
1535 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
1536 			      struct wil_ring *vring, struct sk_buff *skb)
1537 {
1538 	struct device *dev = wil_to_dev(wil);
1539 
1540 	/* point to descriptors in shared memory */
1541 	volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1542 				      *_first_desc = NULL;
1543 
1544 	/* pointers to shadow descriptors */
1545 	struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1546 			     *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1547 			     *first_desc = &first_desc_mem;
1548 
1549 	/* pointer to shadow descriptors' context */
1550 	struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1551 
1552 	int descs_used = 0; /* total number of used descriptors */
1553 	int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1554 
1555 	u32 swhead = vring->swhead;
1556 	int used, avail = wil_ring_avail_tx(vring);
1557 	int nr_frags = skb_shinfo(skb)->nr_frags;
1558 	int min_desc_required = nr_frags + 1;
1559 	int mss = skb_shinfo(skb)->gso_size;	/* payload size w/o headers */
1560 	int f, len, hdrlen, headlen;
1561 	int vring_index = vring - wil->ring_tx;
1562 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
1563 	uint i = swhead;
1564 	dma_addr_t pa;
1565 	const skb_frag_t *frag = NULL;
1566 	int rem_data = mss;
1567 	int lenmss;
1568 	int hdr_compensation_need = true;
1569 	int desc_tso_type = wil_tso_type_first;
1570 	bool is_ipv4;
1571 	int tcp_hdr_len;
1572 	int skb_net_hdr_len;
1573 	int gso_type;
1574 	int rc = -EINVAL;
1575 
1576 	wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1577 		     vring_index);
1578 
1579 	if (unlikely(!txdata->enabled))
1580 		return -EINVAL;
1581 
1582 	/* A typical page 4K is 3-4 payloads, we assume each fragment
1583 	 * is a full payload, that's how min_desc_required has been
1584 	 * calculated. In real we might need more or less descriptors,
1585 	 * this is the initial check only.
1586 	 */
1587 	if (unlikely(avail < min_desc_required)) {
1588 		wil_err_ratelimited(wil,
1589 				    "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1590 				    vring_index, min_desc_required);
1591 		return -ENOMEM;
1592 	}
1593 
1594 	/* Header Length = MAC header len + IP header len + TCP header len*/
1595 	hdrlen = ETH_HLEN +
1596 		(int)skb_network_header_len(skb) +
1597 		tcp_hdrlen(skb);
1598 
1599 	gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1600 	switch (gso_type) {
1601 	case SKB_GSO_TCPV4:
1602 		/* TCP v4, zero out the IP length and IPv4 checksum fields
1603 		 * as required by the offloading doc
1604 		 */
1605 		ip_hdr(skb)->tot_len = 0;
1606 		ip_hdr(skb)->check = 0;
1607 		is_ipv4 = true;
1608 		break;
1609 	case SKB_GSO_TCPV6:
1610 		/* TCP v6, zero out the payload length */
1611 		ipv6_hdr(skb)->payload_len = 0;
1612 		is_ipv4 = false;
1613 		break;
1614 	default:
1615 		/* other than TCPv4 or TCPv6 types are not supported for TSO.
1616 		 * It is also illegal for both to be set simultaneously
1617 		 */
1618 		return -EINVAL;
1619 	}
1620 
1621 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1622 		return -EINVAL;
1623 
1624 	/* tcp header length and skb network header length are fixed for all
1625 	 * packet's descriptors - read then once here
1626 	 */
1627 	tcp_hdr_len = tcp_hdrlen(skb);
1628 	skb_net_hdr_len = skb_network_header_len(skb);
1629 
1630 	_hdr_desc = &vring->va[i].tx.legacy;
1631 
1632 	pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1633 	if (unlikely(dma_mapping_error(dev, pa))) {
1634 		wil_err(wil, "TSO: Skb head DMA map error\n");
1635 		goto err_exit;
1636 	}
1637 
1638 	wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
1639 				  hdrlen, vring_index);
1640 	wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1641 				      tcp_hdr_len, skb_net_hdr_len);
1642 	wil_tx_last_desc(hdr_desc);
1643 
1644 	vring->ctx[i].mapped_as = wil_mapped_as_single;
1645 	hdr_ctx = &vring->ctx[i];
1646 
1647 	descs_used++;
1648 	headlen = skb_headlen(skb) - hdrlen;
1649 
1650 	for (f = headlen ? -1 : 0; f < nr_frags; f++)  {
1651 		if (headlen) {
1652 			len = headlen;
1653 			wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1654 				     len);
1655 		} else {
1656 			frag = &skb_shinfo(skb)->frags[f];
1657 			len = frag->size;
1658 			wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1659 		}
1660 
1661 		while (len) {
1662 			wil_dbg_txrx(wil,
1663 				     "TSO: len %d, rem_data %d, descs_used %d\n",
1664 				     len, rem_data, descs_used);
1665 
1666 			if (descs_used == avail)  {
1667 				wil_err_ratelimited(wil, "TSO: ring overflow\n");
1668 				rc = -ENOMEM;
1669 				goto mem_error;
1670 			}
1671 
1672 			lenmss = min_t(int, rem_data, len);
1673 			i = (swhead + descs_used) % vring->size;
1674 			wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1675 
1676 			if (!headlen) {
1677 				pa = skb_frag_dma_map(dev, frag,
1678 						      frag->size - len, lenmss,
1679 						      DMA_TO_DEVICE);
1680 				vring->ctx[i].mapped_as = wil_mapped_as_page;
1681 			} else {
1682 				pa = dma_map_single(dev,
1683 						    skb->data +
1684 						    skb_headlen(skb) - headlen,
1685 						    lenmss,
1686 						    DMA_TO_DEVICE);
1687 				vring->ctx[i].mapped_as = wil_mapped_as_single;
1688 				headlen -= lenmss;
1689 			}
1690 
1691 			if (unlikely(dma_mapping_error(dev, pa))) {
1692 				wil_err(wil, "TSO: DMA map page error\n");
1693 				goto mem_error;
1694 			}
1695 
1696 			_desc = &vring->va[i].tx.legacy;
1697 
1698 			if (!_first_desc) {
1699 				_first_desc = _desc;
1700 				first_ctx = &vring->ctx[i];
1701 				d = first_desc;
1702 			} else {
1703 				d = &desc_mem;
1704 			}
1705 
1706 			wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1707 						  pa, lenmss, vring_index);
1708 			wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1709 						      is_ipv4, tcp_hdr_len,
1710 						      skb_net_hdr_len);
1711 
1712 			/* use tso_type_first only once */
1713 			desc_tso_type = wil_tso_type_mid;
1714 
1715 			descs_used++;  /* desc used so far */
1716 			sg_desc_cnt++; /* desc used for this segment */
1717 			len -= lenmss;
1718 			rem_data -= lenmss;
1719 
1720 			wil_dbg_txrx(wil,
1721 				     "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1722 				     len, rem_data, descs_used, sg_desc_cnt);
1723 
1724 			/* Close the segment if reached mss size or last frag*/
1725 			if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1726 				if (hdr_compensation_need) {
1727 					/* first segment include hdr desc for
1728 					 * release
1729 					 */
1730 					hdr_ctx->nr_frags = sg_desc_cnt;
1731 					wil_tx_desc_set_nr_frags(first_desc,
1732 								 sg_desc_cnt +
1733 								 1);
1734 					hdr_compensation_need = false;
1735 				} else {
1736 					wil_tx_desc_set_nr_frags(first_desc,
1737 								 sg_desc_cnt);
1738 				}
1739 				first_ctx->nr_frags = sg_desc_cnt - 1;
1740 
1741 				wil_tx_last_desc(d);
1742 
1743 				/* first descriptor may also be the last
1744 				 * for this mss - make sure not to copy
1745 				 * it twice
1746 				 */
1747 				if (first_desc != d)
1748 					*_first_desc = *first_desc;
1749 
1750 				/*last descriptor will be copied at the end
1751 				 * of this TS processing
1752 				 */
1753 				if (f < nr_frags - 1 || len > 0)
1754 					*_desc = *d;
1755 
1756 				rem_data = mss;
1757 				_first_desc = NULL;
1758 				sg_desc_cnt = 0;
1759 			} else if (first_desc != d) /* update mid descriptor */
1760 					*_desc = *d;
1761 		}
1762 	}
1763 
1764 	if (!_desc)
1765 		goto mem_error;
1766 
1767 	/* first descriptor may also be the last.
1768 	 * in this case d pointer is invalid
1769 	 */
1770 	if (_first_desc == _desc)
1771 		d = first_desc;
1772 
1773 	/* Last data descriptor */
1774 	wil_set_tx_desc_last_tso(d);
1775 	*_desc = *d;
1776 
1777 	/* Fill the total number of descriptors in first desc (hdr)*/
1778 	wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1779 	*_hdr_desc = *hdr_desc;
1780 
1781 	/* hold reference to skb
1782 	 * to prevent skb release before accounting
1783 	 * in case of immediate "tx done"
1784 	 */
1785 	vring->ctx[i].skb = skb_get(skb);
1786 
1787 	/* performance monitoring */
1788 	used = wil_ring_used_tx(vring);
1789 	if (wil_val_in_range(wil->ring_idle_trsh,
1790 			     used, used + descs_used)) {
1791 		txdata->idle += get_cycles() - txdata->last_idle;
1792 		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1793 			     vring_index, used, used + descs_used);
1794 	}
1795 
1796 	/* Make sure to advance the head only after descriptor update is done.
1797 	 * This will prevent a race condition where the completion thread
1798 	 * will see the DU bit set from previous run and will handle the
1799 	 * skb before it was completed.
1800 	 */
1801 	wmb();
1802 
1803 	/* advance swhead */
1804 	wil_ring_advance_head(vring, descs_used);
1805 	wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1806 
1807 	/* make sure all writes to descriptors (shared memory) are done before
1808 	 * committing them to HW
1809 	 */
1810 	wmb();
1811 
1812 	if (wil->tx_latency)
1813 		*(ktime_t *)&skb->cb = ktime_get();
1814 	else
1815 		memset(skb->cb, 0, sizeof(ktime_t));
1816 
1817 	wil_w(wil, vring->hwtail, vring->swhead);
1818 	return 0;
1819 
1820 mem_error:
1821 	while (descs_used > 0) {
1822 		struct wil_ctx *ctx;
1823 
1824 		i = (swhead + descs_used - 1) % vring->size;
1825 		d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
1826 		_desc = &vring->va[i].tx.legacy;
1827 		*d = *_desc;
1828 		_desc->dma.status = TX_DMA_STATUS_DU;
1829 		ctx = &vring->ctx[i];
1830 		wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
1831 		memset(ctx, 0, sizeof(*ctx));
1832 		descs_used--;
1833 	}
1834 err_exit:
1835 	return rc;
1836 }
1837 
1838 static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1839 			 struct wil_ring *ring, struct sk_buff *skb)
1840 {
1841 	struct device *dev = wil_to_dev(wil);
1842 	struct vring_tx_desc dd, *d = &dd;
1843 	volatile struct vring_tx_desc *_d;
1844 	u32 swhead = ring->swhead;
1845 	int avail = wil_ring_avail_tx(ring);
1846 	int nr_frags = skb_shinfo(skb)->nr_frags;
1847 	uint f = 0;
1848 	int ring_index = ring - wil->ring_tx;
1849 	struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[ring_index];
1850 	uint i = swhead;
1851 	dma_addr_t pa;
1852 	int used;
1853 	bool mcast = (ring_index == vif->bcast_ring);
1854 	uint len = skb_headlen(skb);
1855 
1856 	wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
1857 		     skb->len, ring_index, nr_frags);
1858 
1859 	if (unlikely(!txdata->enabled))
1860 		return -EINVAL;
1861 
1862 	if (unlikely(avail < 1 + nr_frags)) {
1863 		wil_err_ratelimited(wil,
1864 				    "Tx ring[%2d] full. No space for %d fragments\n",
1865 				    ring_index, 1 + nr_frags);
1866 		return -ENOMEM;
1867 	}
1868 	_d = &ring->va[i].tx.legacy;
1869 
1870 	pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
1871 
1872 	wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
1873 		     skb_headlen(skb), skb->data, &pa);
1874 	wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
1875 			  skb->data, skb_headlen(skb), false);
1876 
1877 	if (unlikely(dma_mapping_error(dev, pa)))
1878 		return -EINVAL;
1879 	ring->ctx[i].mapped_as = wil_mapped_as_single;
1880 	/* 1-st segment */
1881 	wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
1882 				   ring_index);
1883 	if (unlikely(mcast)) {
1884 		d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
1885 		if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
1886 			d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
1887 	}
1888 	/* Process TCP/UDP checksum offloading */
1889 	if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
1890 		wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
1891 			ring_index);
1892 		goto dma_error;
1893 	}
1894 
1895 	ring->ctx[i].nr_frags = nr_frags;
1896 	wil_tx_desc_set_nr_frags(d, nr_frags + 1);
1897 
1898 	/* middle segments */
1899 	for (; f < nr_frags; f++) {
1900 		const struct skb_frag_struct *frag =
1901 				&skb_shinfo(skb)->frags[f];
1902 		int len = skb_frag_size(frag);
1903 
1904 		*_d = *d;
1905 		wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
1906 		wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1907 				  (const void *)d, sizeof(*d), false);
1908 		i = (swhead + f + 1) % ring->size;
1909 		_d = &ring->va[i].tx.legacy;
1910 		pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
1911 				      DMA_TO_DEVICE);
1912 		if (unlikely(dma_mapping_error(dev, pa))) {
1913 			wil_err(wil, "Tx[%2d] failed to map fragment\n",
1914 				ring_index);
1915 			goto dma_error;
1916 		}
1917 		ring->ctx[i].mapped_as = wil_mapped_as_page;
1918 		wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1919 					   pa, len, ring_index);
1920 		/* no need to check return code -
1921 		 * if it succeeded for 1-st descriptor,
1922 		 * it will succeed here too
1923 		 */
1924 		wil_tx_desc_offload_setup(d, skb);
1925 	}
1926 	/* for the last seg only */
1927 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
1928 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
1929 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1930 	*_d = *d;
1931 	wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
1932 	wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1933 			  (const void *)d, sizeof(*d), false);
1934 
1935 	/* hold reference to skb
1936 	 * to prevent skb release before accounting
1937 	 * in case of immediate "tx done"
1938 	 */
1939 	ring->ctx[i].skb = skb_get(skb);
1940 
1941 	/* performance monitoring */
1942 	used = wil_ring_used_tx(ring);
1943 	if (wil_val_in_range(wil->ring_idle_trsh,
1944 			     used, used + nr_frags + 1)) {
1945 		txdata->idle += get_cycles() - txdata->last_idle;
1946 		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1947 			     ring_index, used, used + nr_frags + 1);
1948 	}
1949 
1950 	/* Make sure to advance the head only after descriptor update is done.
1951 	 * This will prevent a race condition where the completion thread
1952 	 * will see the DU bit set from previous run and will handle the
1953 	 * skb before it was completed.
1954 	 */
1955 	wmb();
1956 
1957 	/* advance swhead */
1958 	wil_ring_advance_head(ring, nr_frags + 1);
1959 	wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
1960 		     ring->swhead);
1961 	trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
1962 
1963 	/* make sure all writes to descriptors (shared memory) are done before
1964 	 * committing them to HW
1965 	 */
1966 	wmb();
1967 
1968 	if (wil->tx_latency)
1969 		*(ktime_t *)&skb->cb = ktime_get();
1970 	else
1971 		memset(skb->cb, 0, sizeof(ktime_t));
1972 
1973 	wil_w(wil, ring->hwtail, ring->swhead);
1974 
1975 	return 0;
1976  dma_error:
1977 	/* unmap what we have mapped */
1978 	nr_frags = f + 1; /* frags mapped + one for skb head */
1979 	for (f = 0; f < nr_frags; f++) {
1980 		struct wil_ctx *ctx;
1981 
1982 		i = (swhead + f) % ring->size;
1983 		ctx = &ring->ctx[i];
1984 		_d = &ring->va[i].tx.legacy;
1985 		*d = *_d;
1986 		_d->dma.status = TX_DMA_STATUS_DU;
1987 		wil->txrx_ops.tx_desc_unmap(dev,
1988 					    (union wil_tx_desc *)d,
1989 					    ctx);
1990 
1991 		memset(ctx, 0, sizeof(*ctx));
1992 	}
1993 
1994 	return -EINVAL;
1995 }
1996 
1997 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1998 		       struct wil_ring *ring, struct sk_buff *skb)
1999 {
2000 	int ring_index = ring - wil->ring_tx;
2001 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
2002 	int rc;
2003 
2004 	spin_lock(&txdata->lock);
2005 
2006 	if (test_bit(wil_status_suspending, wil->status) ||
2007 	    test_bit(wil_status_suspended, wil->status) ||
2008 	    test_bit(wil_status_resuming, wil->status)) {
2009 		wil_dbg_txrx(wil,
2010 			     "suspend/resume in progress. drop packet\n");
2011 		spin_unlock(&txdata->lock);
2012 		return -EINVAL;
2013 	}
2014 
2015 	rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
2016 	     (wil, vif, ring, skb);
2017 
2018 	spin_unlock(&txdata->lock);
2019 
2020 	return rc;
2021 }
2022 
2023 /**
2024  * Check status of tx vrings and stop/wake net queues if needed
2025  * It will start/stop net queues of a specific VIF net_device.
2026  *
2027  * This function does one of two checks:
2028  * In case check_stop is true, will check if net queues need to be stopped. If
2029  * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
2030  * In case check_stop is false, will check if net queues need to be waked. If
2031  * the conditions for waking are met, netif_tx_wake_all_queues() is called.
2032  * vring is the vring which is currently being modified by either adding
2033  * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
2034  * be null when irrelevant (e.g. connect/disconnect events).
2035  *
2036  * The implementation is to stop net queues if modified vring has low
2037  * descriptor availability. Wake if all vrings are not in low descriptor
2038  * availability and modified vring has high descriptor availability.
2039  */
2040 static inline void __wil_update_net_queues(struct wil6210_priv *wil,
2041 					   struct wil6210_vif *vif,
2042 					   struct wil_ring *ring,
2043 					   bool check_stop)
2044 {
2045 	int i;
2046 	int min_ring_id = wil_get_min_tx_ring_id(wil);
2047 
2048 	if (unlikely(!vif))
2049 		return;
2050 
2051 	if (ring)
2052 		wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
2053 			     (int)(ring - wil->ring_tx), vif->mid, check_stop,
2054 			     vif->net_queue_stopped);
2055 	else
2056 		wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
2057 			     check_stop, vif->mid, vif->net_queue_stopped);
2058 
2059 	if (ring && drop_if_ring_full)
2060 		/* no need to stop/wake net queues */
2061 		return;
2062 
2063 	if (check_stop == vif->net_queue_stopped)
2064 		/* net queues already in desired state */
2065 		return;
2066 
2067 	if (check_stop) {
2068 		if (!ring || unlikely(wil_ring_avail_low(ring))) {
2069 			/* not enough room in the vring */
2070 			netif_tx_stop_all_queues(vif_to_ndev(vif));
2071 			vif->net_queue_stopped = true;
2072 			wil_dbg_txrx(wil, "netif_tx_stop called\n");
2073 		}
2074 		return;
2075 	}
2076 
2077 	/* Do not wake the queues in suspend flow */
2078 	if (test_bit(wil_status_suspending, wil->status) ||
2079 	    test_bit(wil_status_suspended, wil->status))
2080 		return;
2081 
2082 	/* check wake */
2083 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
2084 		struct wil_ring *cur_ring = &wil->ring_tx[i];
2085 		struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[i];
2086 
2087 		if (txdata->mid != vif->mid || !cur_ring->va ||
2088 		    !txdata->enabled || cur_ring == ring)
2089 			continue;
2090 
2091 		if (wil_ring_avail_low(cur_ring)) {
2092 			wil_dbg_txrx(wil, "ring %d full, can't wake\n",
2093 				     (int)(cur_ring - wil->ring_tx));
2094 			return;
2095 		}
2096 	}
2097 
2098 	if (!ring || wil_ring_avail_high(ring)) {
2099 		/* enough room in the ring */
2100 		wil_dbg_txrx(wil, "calling netif_tx_wake\n");
2101 		netif_tx_wake_all_queues(vif_to_ndev(vif));
2102 		vif->net_queue_stopped = false;
2103 	}
2104 }
2105 
2106 void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
2107 			   struct wil_ring *ring, bool check_stop)
2108 {
2109 	spin_lock(&wil->net_queue_lock);
2110 	__wil_update_net_queues(wil, vif, ring, check_stop);
2111 	spin_unlock(&wil->net_queue_lock);
2112 }
2113 
2114 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
2115 			      struct wil_ring *ring, bool check_stop)
2116 {
2117 	spin_lock_bh(&wil->net_queue_lock);
2118 	__wil_update_net_queues(wil, vif, ring, check_stop);
2119 	spin_unlock_bh(&wil->net_queue_lock);
2120 }
2121 
2122 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2123 {
2124 	struct wil6210_vif *vif = ndev_to_vif(ndev);
2125 	struct wil6210_priv *wil = vif_to_wil(vif);
2126 	const u8 *da = wil_skb_get_da(skb);
2127 	bool bcast = is_multicast_ether_addr(da);
2128 	struct wil_ring *ring;
2129 	static bool pr_once_fw;
2130 	int rc;
2131 
2132 	wil_dbg_txrx(wil, "start_xmit\n");
2133 	if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
2134 		if (!pr_once_fw) {
2135 			wil_err(wil, "FW not ready\n");
2136 			pr_once_fw = true;
2137 		}
2138 		goto drop;
2139 	}
2140 	if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
2141 		wil_dbg_ratelimited(wil,
2142 				    "VIF not connected, packet dropped\n");
2143 		goto drop;
2144 	}
2145 	if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
2146 		wil_err(wil, "Xmit in monitor mode not supported\n");
2147 		goto drop;
2148 	}
2149 	pr_once_fw = false;
2150 
2151 	/* find vring */
2152 	if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
2153 		/* in STA mode (ESS), all to same VRING (to AP) */
2154 		ring = wil_find_tx_ring_sta(wil, vif, skb);
2155 	} else if (bcast) {
2156 		if (vif->pbss)
2157 			/* in pbss, no bcast VRING - duplicate skb in
2158 			 * all stations VRINGs
2159 			 */
2160 			ring = wil_find_tx_bcast_2(wil, vif, skb);
2161 		else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
2162 			/* AP has a dedicated bcast VRING */
2163 			ring = wil_find_tx_bcast_1(wil, vif, skb);
2164 		else
2165 			/* unexpected combination, fallback to duplicating
2166 			 * the skb in all stations VRINGs
2167 			 */
2168 			ring = wil_find_tx_bcast_2(wil, vif, skb);
2169 	} else {
2170 		/* unicast, find specific VRING by dest. address */
2171 		ring = wil_find_tx_ucast(wil, vif, skb);
2172 	}
2173 	if (unlikely(!ring)) {
2174 		wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da);
2175 		goto drop;
2176 	}
2177 	/* set up vring entry */
2178 	rc = wil_tx_ring(wil, vif, ring, skb);
2179 
2180 	switch (rc) {
2181 	case 0:
2182 		/* shall we stop net queues? */
2183 		wil_update_net_queues_bh(wil, vif, ring, true);
2184 		/* statistics will be updated on the tx_complete */
2185 		dev_kfree_skb_any(skb);
2186 		return NETDEV_TX_OK;
2187 	case -ENOMEM:
2188 		if (drop_if_ring_full)
2189 			goto drop;
2190 		return NETDEV_TX_BUSY;
2191 	default:
2192 		break; /* goto drop; */
2193 	}
2194  drop:
2195 	ndev->stats.tx_dropped++;
2196 	dev_kfree_skb_any(skb);
2197 
2198 	return NET_XMIT_DROP;
2199 }
2200 
2201 void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
2202 			 struct wil_sta_info *sta)
2203 {
2204 	int skb_time_us;
2205 	int bin;
2206 
2207 	if (!wil->tx_latency)
2208 		return;
2209 
2210 	if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
2211 		return;
2212 
2213 	skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
2214 	bin = skb_time_us / wil->tx_latency_res;
2215 	bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
2216 
2217 	wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
2218 	sta->tx_latency_bins[bin]++;
2219 	sta->stats.tx_latency_total_us += skb_time_us;
2220 	if (skb_time_us < sta->stats.tx_latency_min_us)
2221 		sta->stats.tx_latency_min_us = skb_time_us;
2222 	if (skb_time_us > sta->stats.tx_latency_max_us)
2223 		sta->stats.tx_latency_max_us = skb_time_us;
2224 }
2225 
2226 /**
2227  * Clean up transmitted skb's from the Tx VRING
2228  *
2229  * Return number of descriptors cleared
2230  *
2231  * Safe to call from IRQ
2232  */
2233 int wil_tx_complete(struct wil6210_vif *vif, int ringid)
2234 {
2235 	struct wil6210_priv *wil = vif_to_wil(vif);
2236 	struct net_device *ndev = vif_to_ndev(vif);
2237 	struct device *dev = wil_to_dev(wil);
2238 	struct wil_ring *vring = &wil->ring_tx[ringid];
2239 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
2240 	int done = 0;
2241 	int cid = wil->ring2cid_tid[ringid][0];
2242 	struct wil_net_stats *stats = NULL;
2243 	volatile struct vring_tx_desc *_d;
2244 	int used_before_complete;
2245 	int used_new;
2246 
2247 	if (unlikely(!vring->va)) {
2248 		wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2249 		return 0;
2250 	}
2251 
2252 	if (unlikely(!txdata->enabled)) {
2253 		wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2254 		return 0;
2255 	}
2256 
2257 	wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2258 
2259 	used_before_complete = wil_ring_used_tx(vring);
2260 
2261 	if (cid < wil->max_assoc_sta)
2262 		stats = &wil->sta[cid].stats;
2263 
2264 	while (!wil_ring_is_empty(vring)) {
2265 		int new_swtail;
2266 		struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2267 		/**
2268 		 * For the fragmented skb, HW will set DU bit only for the
2269 		 * last fragment. look for it.
2270 		 * In TSO the first DU will include hdr desc
2271 		 */
2272 		int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2273 		/* TODO: check we are not past head */
2274 
2275 		_d = &vring->va[lf].tx.legacy;
2276 		if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2277 			break;
2278 
2279 		new_swtail = (lf + 1) % vring->size;
2280 		while (vring->swtail != new_swtail) {
2281 			struct vring_tx_desc dd, *d = &dd;
2282 			u16 dmalen;
2283 			struct sk_buff *skb;
2284 
2285 			ctx = &vring->ctx[vring->swtail];
2286 			skb = ctx->skb;
2287 			_d = &vring->va[vring->swtail].tx.legacy;
2288 
2289 			*d = *_d;
2290 
2291 			dmalen = le16_to_cpu(d->dma.length);
2292 			trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2293 					      d->dma.error);
2294 			wil_dbg_txrx(wil,
2295 				     "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2296 				     ringid, vring->swtail, dmalen,
2297 				     d->dma.status, d->dma.error);
2298 			wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2299 					  (const void *)d, sizeof(*d), false);
2300 
2301 			wil->txrx_ops.tx_desc_unmap(dev,
2302 						    (union wil_tx_desc *)d,
2303 						    ctx);
2304 
2305 			if (skb) {
2306 				if (likely(d->dma.error == 0)) {
2307 					ndev->stats.tx_packets++;
2308 					ndev->stats.tx_bytes += skb->len;
2309 					if (stats) {
2310 						stats->tx_packets++;
2311 						stats->tx_bytes += skb->len;
2312 
2313 						wil_tx_latency_calc(wil, skb,
2314 							&wil->sta[cid]);
2315 					}
2316 				} else {
2317 					ndev->stats.tx_errors++;
2318 					if (stats)
2319 						stats->tx_errors++;
2320 				}
2321 				wil_consume_skb(skb, d->dma.error == 0);
2322 			}
2323 			memset(ctx, 0, sizeof(*ctx));
2324 			/* Make sure the ctx is zeroed before updating the tail
2325 			 * to prevent a case where wil_tx_ring will see
2326 			 * this descriptor as used and handle it before ctx zero
2327 			 * is completed.
2328 			 */
2329 			wmb();
2330 			/* There is no need to touch HW descriptor:
2331 			 * - ststus bit TX_DMA_STATUS_DU is set by design,
2332 			 *   so hardware will not try to process this desc.,
2333 			 * - rest of descriptor will be initialized on Tx.
2334 			 */
2335 			vring->swtail = wil_ring_next_tail(vring);
2336 			done++;
2337 		}
2338 	}
2339 
2340 	/* performance monitoring */
2341 	used_new = wil_ring_used_tx(vring);
2342 	if (wil_val_in_range(wil->ring_idle_trsh,
2343 			     used_new, used_before_complete)) {
2344 		wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2345 			     ringid, used_before_complete, used_new);
2346 		txdata->last_idle = get_cycles();
2347 	}
2348 
2349 	/* shall we wake net queues? */
2350 	if (done)
2351 		wil_update_net_queues(wil, vif, vring, false);
2352 
2353 	return done;
2354 }
2355 
2356 static inline int wil_tx_init(struct wil6210_priv *wil)
2357 {
2358 	return 0;
2359 }
2360 
2361 static inline void wil_tx_fini(struct wil6210_priv *wil) {}
2362 
2363 static void wil_get_reorder_params(struct wil6210_priv *wil,
2364 				   struct sk_buff *skb, int *tid, int *cid,
2365 				   int *mid, u16 *seq, int *mcast, int *retry)
2366 {
2367 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
2368 
2369 	*tid = wil_rxdesc_tid(d);
2370 	*cid = wil_skb_get_cid(skb);
2371 	*mid = wil_rxdesc_mid(d);
2372 	*seq = wil_rxdesc_seq(d);
2373 	*mcast = wil_rxdesc_mcast(d);
2374 	*retry = wil_rxdesc_retry(d);
2375 }
2376 
2377 void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
2378 {
2379 	wil->txrx_ops.configure_interrupt_moderation =
2380 		wil_configure_interrupt_moderation;
2381 	/* TX ops */
2382 	wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
2383 	wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
2384 	wil->txrx_ops.tx_ring_tso =  __wil_tx_vring_tso;
2385 	wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
2386 	wil->txrx_ops.ring_fini_tx = wil_vring_free;
2387 	wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
2388 	wil->txrx_ops.tx_init = wil_tx_init;
2389 	wil->txrx_ops.tx_fini = wil_tx_fini;
2390 	wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify;
2391 	/* RX ops */
2392 	wil->txrx_ops.rx_init = wil_rx_init;
2393 	wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
2394 	wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
2395 	wil->txrx_ops.get_netif_rx_params =
2396 		wil_get_netif_rx_params;
2397 	wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
2398 	wil->txrx_ops.rx_error_check = wil_rx_error_check;
2399 	wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
2400 	wil->txrx_ops.rx_fini = wil_rx_fini;
2401 }
2402