1 /* 2 * Copyright (c) 2012-2015 Qualcomm Atheros, Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/etherdevice.h> 18 #include <net/ieee80211_radiotap.h> 19 #include <linux/if_arp.h> 20 #include <linux/moduleparam.h> 21 #include <linux/ip.h> 22 #include <linux/ipv6.h> 23 #include <net/ipv6.h> 24 #include <linux/prefetch.h> 25 26 #include "wil6210.h" 27 #include "wmi.h" 28 #include "txrx.h" 29 #include "trace.h" 30 31 static bool rtap_include_phy_info; 32 module_param(rtap_include_phy_info, bool, S_IRUGO); 33 MODULE_PARM_DESC(rtap_include_phy_info, 34 " Include PHY info in the radiotap header, default - no"); 35 36 bool rx_align_2; 37 module_param(rx_align_2, bool, S_IRUGO); 38 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no"); 39 40 static inline uint wil_rx_snaplen(void) 41 { 42 return rx_align_2 ? 6 : 0; 43 } 44 45 static inline int wil_vring_is_empty(struct vring *vring) 46 { 47 return vring->swhead == vring->swtail; 48 } 49 50 static inline u32 wil_vring_next_tail(struct vring *vring) 51 { 52 return (vring->swtail + 1) % vring->size; 53 } 54 55 static inline void wil_vring_advance_head(struct vring *vring, int n) 56 { 57 vring->swhead = (vring->swhead + n) % vring->size; 58 } 59 60 static inline int wil_vring_is_full(struct vring *vring) 61 { 62 return wil_vring_next_tail(vring) == vring->swhead; 63 } 64 65 /* Used space in Tx Vring */ 66 static inline int wil_vring_used_tx(struct vring *vring) 67 { 68 u32 swhead = vring->swhead; 69 u32 swtail = vring->swtail; 70 return (vring->size + swhead - swtail) % vring->size; 71 } 72 73 /* Available space in Tx Vring */ 74 static inline int wil_vring_avail_tx(struct vring *vring) 75 { 76 return vring->size - wil_vring_used_tx(vring) - 1; 77 } 78 79 /* wil_vring_wmark_low - low watermark for available descriptor space */ 80 static inline int wil_vring_wmark_low(struct vring *vring) 81 { 82 return vring->size/8; 83 } 84 85 /* wil_vring_wmark_high - high watermark for available descriptor space */ 86 static inline int wil_vring_wmark_high(struct vring *vring) 87 { 88 return vring->size/4; 89 } 90 91 /* wil_val_in_range - check if value in [min,max) */ 92 static inline bool wil_val_in_range(int val, int min, int max) 93 { 94 return val >= min && val < max; 95 } 96 97 static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring) 98 { 99 struct device *dev = wil_to_dev(wil); 100 size_t sz = vring->size * sizeof(vring->va[0]); 101 uint i; 102 103 wil_dbg_misc(wil, "%s()\n", __func__); 104 105 BUILD_BUG_ON(sizeof(vring->va[0]) != 32); 106 107 vring->swhead = 0; 108 vring->swtail = 0; 109 vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL); 110 if (!vring->ctx) { 111 vring->va = NULL; 112 return -ENOMEM; 113 } 114 /* vring->va should be aligned on its size rounded up to power of 2 115 * This is granted by the dma_alloc_coherent 116 */ 117 vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL); 118 if (!vring->va) { 119 kfree(vring->ctx); 120 vring->ctx = NULL; 121 return -ENOMEM; 122 } 123 /* initially, all descriptors are SW owned 124 * For Tx and Rx, ownership bit is at the same location, thus 125 * we can use any 126 */ 127 for (i = 0; i < vring->size; i++) { 128 volatile struct vring_tx_desc *_d = &vring->va[i].tx; 129 130 _d->dma.status = TX_DMA_STATUS_DU; 131 } 132 133 wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size, 134 vring->va, &vring->pa, vring->ctx); 135 136 return 0; 137 } 138 139 static void wil_txdesc_unmap(struct device *dev, struct vring_tx_desc *d, 140 struct wil_ctx *ctx) 141 { 142 dma_addr_t pa = wil_desc_addr(&d->dma.addr); 143 u16 dmalen = le16_to_cpu(d->dma.length); 144 145 switch (ctx->mapped_as) { 146 case wil_mapped_as_single: 147 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE); 148 break; 149 case wil_mapped_as_page: 150 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE); 151 break; 152 default: 153 break; 154 } 155 } 156 157 static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring, 158 int tx) 159 { 160 struct device *dev = wil_to_dev(wil); 161 size_t sz = vring->size * sizeof(vring->va[0]); 162 163 if (tx) { 164 int vring_index = vring - wil->vring_tx; 165 166 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n", 167 vring_index, vring->size, vring->va, 168 &vring->pa, vring->ctx); 169 } else { 170 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n", 171 vring->size, vring->va, 172 &vring->pa, vring->ctx); 173 } 174 175 while (!wil_vring_is_empty(vring)) { 176 dma_addr_t pa; 177 u16 dmalen; 178 struct wil_ctx *ctx; 179 180 if (tx) { 181 struct vring_tx_desc dd, *d = ⅆ 182 volatile struct vring_tx_desc *_d = 183 &vring->va[vring->swtail].tx; 184 185 ctx = &vring->ctx[vring->swtail]; 186 *d = *_d; 187 wil_txdesc_unmap(dev, d, ctx); 188 if (ctx->skb) 189 dev_kfree_skb_any(ctx->skb); 190 vring->swtail = wil_vring_next_tail(vring); 191 } else { /* rx */ 192 struct vring_rx_desc dd, *d = ⅆ 193 volatile struct vring_rx_desc *_d = 194 &vring->va[vring->swhead].rx; 195 196 ctx = &vring->ctx[vring->swhead]; 197 *d = *_d; 198 pa = wil_desc_addr(&d->dma.addr); 199 dmalen = le16_to_cpu(d->dma.length); 200 dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE); 201 kfree_skb(ctx->skb); 202 wil_vring_advance_head(vring, 1); 203 } 204 } 205 dma_free_coherent(dev, sz, (void *)vring->va, vring->pa); 206 kfree(vring->ctx); 207 vring->pa = 0; 208 vring->va = NULL; 209 vring->ctx = NULL; 210 } 211 212 /** 213 * Allocate one skb for Rx VRING 214 * 215 * Safe to call from IRQ 216 */ 217 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring, 218 u32 i, int headroom) 219 { 220 struct device *dev = wil_to_dev(wil); 221 unsigned int sz = mtu_max + ETH_HLEN + wil_rx_snaplen(); 222 struct vring_rx_desc dd, *d = ⅆ 223 volatile struct vring_rx_desc *_d = &vring->va[i].rx; 224 dma_addr_t pa; 225 struct sk_buff *skb = dev_alloc_skb(sz + headroom); 226 227 if (unlikely(!skb)) 228 return -ENOMEM; 229 230 skb_reserve(skb, headroom); 231 skb_put(skb, sz); 232 233 pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE); 234 if (unlikely(dma_mapping_error(dev, pa))) { 235 kfree_skb(skb); 236 return -ENOMEM; 237 } 238 239 d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT; 240 wil_desc_addr_set(&d->dma.addr, pa); 241 /* ip_length don't care */ 242 /* b11 don't care */ 243 /* error don't care */ 244 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ 245 d->dma.length = cpu_to_le16(sz); 246 *_d = *d; 247 vring->ctx[i].skb = skb; 248 249 return 0; 250 } 251 252 /** 253 * Adds radiotap header 254 * 255 * Any error indicated as "Bad FCS" 256 * 257 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of: 258 * - Rx descriptor: 32 bytes 259 * - Phy info 260 */ 261 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil, 262 struct sk_buff *skb) 263 { 264 struct wireless_dev *wdev = wil->wdev; 265 struct wil6210_rtap { 266 struct ieee80211_radiotap_header rthdr; 267 /* fields should be in the order of bits in rthdr.it_present */ 268 /* flags */ 269 u8 flags; 270 /* channel */ 271 __le16 chnl_freq __aligned(2); 272 __le16 chnl_flags; 273 /* MCS */ 274 u8 mcs_present; 275 u8 mcs_flags; 276 u8 mcs_index; 277 } __packed; 278 struct wil6210_rtap_vendor { 279 struct wil6210_rtap rtap; 280 /* vendor */ 281 u8 vendor_oui[3] __aligned(2); 282 u8 vendor_ns; 283 __le16 vendor_skip; 284 u8 vendor_data[0]; 285 } __packed; 286 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 287 struct wil6210_rtap_vendor *rtap_vendor; 288 int rtap_len = sizeof(struct wil6210_rtap); 289 int phy_length = 0; /* phy info header size, bytes */ 290 static char phy_data[128]; 291 struct ieee80211_channel *ch = wdev->preset_chandef.chan; 292 293 if (rtap_include_phy_info) { 294 rtap_len = sizeof(*rtap_vendor) + sizeof(*d); 295 /* calculate additional length */ 296 if (d->dma.status & RX_DMA_STATUS_PHY_INFO) { 297 /** 298 * PHY info starts from 8-byte boundary 299 * there are 8-byte lines, last line may be partially 300 * written (HW bug), thus FW configures for last line 301 * to be excessive. Driver skips this last line. 302 */ 303 int len = min_t(int, 8 + sizeof(phy_data), 304 wil_rxdesc_phy_length(d)); 305 306 if (len > 8) { 307 void *p = skb_tail_pointer(skb); 308 void *pa = PTR_ALIGN(p, 8); 309 310 if (skb_tailroom(skb) >= len + (pa - p)) { 311 phy_length = len - 8; 312 memcpy(phy_data, pa, phy_length); 313 } 314 } 315 } 316 rtap_len += phy_length; 317 } 318 319 if (skb_headroom(skb) < rtap_len && 320 pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) { 321 wil_err(wil, "Unable to expand headrom to %d\n", rtap_len); 322 return; 323 } 324 325 rtap_vendor = (void *)skb_push(skb, rtap_len); 326 memset(rtap_vendor, 0, rtap_len); 327 328 rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION; 329 rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len); 330 rtap_vendor->rtap.rthdr.it_present = cpu_to_le32( 331 (1 << IEEE80211_RADIOTAP_FLAGS) | 332 (1 << IEEE80211_RADIOTAP_CHANNEL) | 333 (1 << IEEE80211_RADIOTAP_MCS)); 334 if (d->dma.status & RX_DMA_STATUS_ERROR) 335 rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS; 336 337 rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320); 338 rtap_vendor->rtap.chnl_flags = cpu_to_le16(0); 339 340 rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS; 341 rtap_vendor->rtap.mcs_flags = 0; 342 rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d); 343 344 if (rtap_include_phy_info) { 345 rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 << 346 IEEE80211_RADIOTAP_VENDOR_NAMESPACE); 347 /* OUI for Wilocity 04:ce:14 */ 348 rtap_vendor->vendor_oui[0] = 0x04; 349 rtap_vendor->vendor_oui[1] = 0xce; 350 rtap_vendor->vendor_oui[2] = 0x14; 351 rtap_vendor->vendor_ns = 1; 352 /* Rx descriptor + PHY data */ 353 rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) + 354 phy_length); 355 memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d)); 356 memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data, 357 phy_length); 358 } 359 } 360 361 /** 362 * reap 1 frame from @swhead 363 * 364 * Rx descriptor copied to skb->cb 365 * 366 * Safe to call from IRQ 367 */ 368 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil, 369 struct vring *vring) 370 { 371 struct device *dev = wil_to_dev(wil); 372 struct net_device *ndev = wil_to_ndev(wil); 373 volatile struct vring_rx_desc *_d; 374 struct vring_rx_desc *d; 375 struct sk_buff *skb; 376 dma_addr_t pa; 377 unsigned int snaplen = wil_rx_snaplen(); 378 unsigned int sz = mtu_max + ETH_HLEN + snaplen; 379 u16 dmalen; 380 u8 ftype; 381 int cid; 382 int i = (int)vring->swhead; 383 struct wil_net_stats *stats; 384 385 BUILD_BUG_ON(sizeof(struct vring_rx_desc) > sizeof(skb->cb)); 386 387 if (unlikely(wil_vring_is_empty(vring))) 388 return NULL; 389 390 _d = &vring->va[i].rx; 391 if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) { 392 /* it is not error, we just reached end of Rx done area */ 393 return NULL; 394 } 395 396 skb = vring->ctx[i].skb; 397 vring->ctx[i].skb = NULL; 398 wil_vring_advance_head(vring, 1); 399 if (!skb) { 400 wil_err(wil, "No Rx skb at [%d]\n", i); 401 return NULL; 402 } 403 d = wil_skb_rxdesc(skb); 404 *d = *_d; 405 pa = wil_desc_addr(&d->dma.addr); 406 407 dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE); 408 dmalen = le16_to_cpu(d->dma.length); 409 410 trace_wil6210_rx(i, d); 411 wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen); 412 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_NONE, 32, 4, 413 (const void *)d, sizeof(*d), false); 414 415 if (unlikely(dmalen > sz)) { 416 wil_err(wil, "Rx size too large: %d bytes!\n", dmalen); 417 kfree_skb(skb); 418 return NULL; 419 } 420 skb_trim(skb, dmalen); 421 422 prefetch(skb->data); 423 424 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, 425 skb->data, skb_headlen(skb), false); 426 427 cid = wil_rxdesc_cid(d); 428 stats = &wil->sta[cid].stats; 429 stats->last_mcs_rx = wil_rxdesc_mcs(d); 430 if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs)) 431 stats->rx_per_mcs[stats->last_mcs_rx]++; 432 433 /* use radiotap header only if required */ 434 if (ndev->type == ARPHRD_IEEE80211_RADIOTAP) 435 wil_rx_add_radiotap_header(wil, skb); 436 437 /* no extra checks if in sniffer mode */ 438 if (ndev->type != ARPHRD_ETHER) 439 return skb; 440 /* 441 * Non-data frames may be delivered through Rx DMA channel (ex: BAR) 442 * Driver should recognize it by frame type, that is found 443 * in Rx descriptor. If type is not data, it is 802.11 frame as is 444 */ 445 ftype = wil_rxdesc_ftype(d) << 2; 446 if (unlikely(ftype != IEEE80211_FTYPE_DATA)) { 447 wil_dbg_txrx(wil, "Non-data frame ftype 0x%08x\n", ftype); 448 /* TODO: process it */ 449 kfree_skb(skb); 450 return NULL; 451 } 452 453 if (unlikely(skb->len < ETH_HLEN + snaplen)) { 454 wil_err(wil, "Short frame, len = %d\n", skb->len); 455 /* TODO: process it (i.e. BAR) */ 456 kfree_skb(skb); 457 return NULL; 458 } 459 460 /* L4 IDENT is on when HW calculated checksum, check status 461 * and in case of error drop the packet 462 * higher stack layers will handle retransmission (if required) 463 */ 464 if (likely(d->dma.status & RX_DMA_STATUS_L4I)) { 465 /* L4 protocol identified, csum calculated */ 466 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0)) 467 skb->ip_summed = CHECKSUM_UNNECESSARY; 468 /* If HW reports bad checksum, let IP stack re-check it 469 * For example, HW don't understand Microsoft IP stack that 470 * mis-calculates TCP checksum - if it should be 0x0, 471 * it writes 0xffff in violation of RFC 1624 472 */ 473 } 474 475 if (snaplen) { 476 /* Packet layout 477 * +-------+-------+---------+------------+------+ 478 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA | 479 * +-------+-------+---------+------------+------+ 480 * Need to remove SNAP, shifting SA and DA forward 481 */ 482 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN); 483 skb_pull(skb, snaplen); 484 } 485 486 return skb; 487 } 488 489 /** 490 * allocate and fill up to @count buffers in rx ring 491 * buffers posted at @swtail 492 */ 493 static int wil_rx_refill(struct wil6210_priv *wil, int count) 494 { 495 struct net_device *ndev = wil_to_ndev(wil); 496 struct vring *v = &wil->vring_rx; 497 u32 next_tail; 498 int rc = 0; 499 int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ? 500 WIL6210_RTAP_SIZE : 0; 501 502 for (; next_tail = wil_vring_next_tail(v), 503 (next_tail != v->swhead) && (count-- > 0); 504 v->swtail = next_tail) { 505 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom); 506 if (unlikely(rc)) { 507 wil_err(wil, "Error %d in wil_rx_refill[%d]\n", 508 rc, v->swtail); 509 break; 510 } 511 } 512 iowrite32(v->swtail, wil->csr + HOSTADDR(v->hwtail)); 513 514 return rc; 515 } 516 517 /* 518 * Pass Rx packet to the netif. Update statistics. 519 * Called in softirq context (NAPI poll). 520 */ 521 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev) 522 { 523 gro_result_t rc = GRO_NORMAL; 524 struct wil6210_priv *wil = ndev_to_wil(ndev); 525 struct wireless_dev *wdev = wil_to_wdev(wil); 526 unsigned int len = skb->len; 527 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 528 int cid = wil_rxdesc_cid(d); /* always 0..7, no need to check */ 529 struct ethhdr *eth = (void *)skb->data; 530 /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication 531 * is not suitable, need to look at data 532 */ 533 int mcast = is_multicast_ether_addr(eth->h_dest); 534 struct wil_net_stats *stats = &wil->sta[cid].stats; 535 struct sk_buff *xmit_skb = NULL; 536 static const char * const gro_res_str[] = { 537 [GRO_MERGED] = "GRO_MERGED", 538 [GRO_MERGED_FREE] = "GRO_MERGED_FREE", 539 [GRO_HELD] = "GRO_HELD", 540 [GRO_NORMAL] = "GRO_NORMAL", 541 [GRO_DROP] = "GRO_DROP", 542 }; 543 544 skb_orphan(skb); 545 546 if (wdev->iftype == NL80211_IFTYPE_AP && !wil->ap_isolate) { 547 if (mcast) { 548 /* send multicast frames both to higher layers in 549 * local net stack and back to the wireless medium 550 */ 551 xmit_skb = skb_copy(skb, GFP_ATOMIC); 552 } else { 553 int xmit_cid = wil_find_cid(wil, eth->h_dest); 554 555 if (xmit_cid >= 0) { 556 /* The destination station is associated to 557 * this AP (in this VLAN), so send the frame 558 * directly to it and do not pass it to local 559 * net stack. 560 */ 561 xmit_skb = skb; 562 skb = NULL; 563 } 564 } 565 } 566 if (xmit_skb) { 567 /* Send to wireless media and increase priority by 256 to 568 * keep the received priority instead of reclassifying 569 * the frame (see cfg80211_classify8021d). 570 */ 571 xmit_skb->dev = ndev; 572 xmit_skb->priority += 256; 573 xmit_skb->protocol = htons(ETH_P_802_3); 574 skb_reset_network_header(xmit_skb); 575 skb_reset_mac_header(xmit_skb); 576 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len); 577 dev_queue_xmit(xmit_skb); 578 } 579 580 if (skb) { /* deliver to local stack */ 581 582 skb->protocol = eth_type_trans(skb, ndev); 583 rc = napi_gro_receive(&wil->napi_rx, skb); 584 wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n", 585 len, gro_res_str[rc]); 586 } 587 /* statistics. rc set to GRO_NORMAL for AP bridging */ 588 if (unlikely(rc == GRO_DROP)) { 589 ndev->stats.rx_dropped++; 590 stats->rx_dropped++; 591 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len); 592 } else { 593 ndev->stats.rx_packets++; 594 stats->rx_packets++; 595 ndev->stats.rx_bytes += len; 596 stats->rx_bytes += len; 597 if (mcast) 598 ndev->stats.multicast++; 599 } 600 } 601 602 /** 603 * Proceed all completed skb's from Rx VRING 604 * 605 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled 606 */ 607 void wil_rx_handle(struct wil6210_priv *wil, int *quota) 608 { 609 struct net_device *ndev = wil_to_ndev(wil); 610 struct vring *v = &wil->vring_rx; 611 struct sk_buff *skb; 612 613 if (unlikely(!v->va)) { 614 wil_err(wil, "Rx IRQ while Rx not yet initialized\n"); 615 return; 616 } 617 wil_dbg_txrx(wil, "%s()\n", __func__); 618 while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) { 619 (*quota)--; 620 621 if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) { 622 skb->dev = ndev; 623 skb_reset_mac_header(skb); 624 skb->ip_summed = CHECKSUM_UNNECESSARY; 625 skb->pkt_type = PACKET_OTHERHOST; 626 skb->protocol = htons(ETH_P_802_2); 627 wil_netif_rx_any(skb, ndev); 628 } else { 629 wil_rx_reorder(wil, skb); 630 } 631 } 632 wil_rx_refill(wil, v->size); 633 } 634 635 int wil_rx_init(struct wil6210_priv *wil, u16 size) 636 { 637 struct vring *vring = &wil->vring_rx; 638 int rc; 639 640 wil_dbg_misc(wil, "%s()\n", __func__); 641 642 if (vring->va) { 643 wil_err(wil, "Rx ring already allocated\n"); 644 return -EINVAL; 645 } 646 647 vring->size = size; 648 rc = wil_vring_alloc(wil, vring); 649 if (rc) 650 return rc; 651 652 rc = wmi_rx_chain_add(wil, vring); 653 if (rc) 654 goto err_free; 655 656 rc = wil_rx_refill(wil, vring->size); 657 if (rc) 658 goto err_free; 659 660 return 0; 661 err_free: 662 wil_vring_free(wil, vring, 0); 663 664 return rc; 665 } 666 667 void wil_rx_fini(struct wil6210_priv *wil) 668 { 669 struct vring *vring = &wil->vring_rx; 670 671 wil_dbg_misc(wil, "%s()\n", __func__); 672 673 if (vring->va) 674 wil_vring_free(wil, vring, 0); 675 } 676 677 int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size, 678 int cid, int tid) 679 { 680 int rc; 681 struct wmi_vring_cfg_cmd cmd = { 682 .action = cpu_to_le32(WMI_VRING_CMD_ADD), 683 .vring_cfg = { 684 .tx_sw_ring = { 685 .max_mpdu_size = 686 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 687 .ring_size = cpu_to_le16(size), 688 }, 689 .ringid = id, 690 .cidxtid = mk_cidxtid(cid, tid), 691 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 692 .mac_ctrl = 0, 693 .to_resolution = 0, 694 .agg_max_wsize = 0, 695 .schd_params = { 696 .priority = cpu_to_le16(0), 697 .timeslot_us = cpu_to_le16(0xfff), 698 }, 699 }, 700 }; 701 struct { 702 struct wil6210_mbox_hdr_wmi wmi; 703 struct wmi_vring_cfg_done_event cmd; 704 } __packed reply; 705 struct vring *vring = &wil->vring_tx[id]; 706 struct vring_tx_data *txdata = &wil->vring_tx_data[id]; 707 708 wil_dbg_misc(wil, "%s() max_mpdu_size %d\n", __func__, 709 cmd.vring_cfg.tx_sw_ring.max_mpdu_size); 710 711 if (vring->va) { 712 wil_err(wil, "Tx ring [%d] already allocated\n", id); 713 rc = -EINVAL; 714 goto out; 715 } 716 717 memset(txdata, 0, sizeof(*txdata)); 718 spin_lock_init(&txdata->lock); 719 vring->size = size; 720 rc = wil_vring_alloc(wil, vring); 721 if (rc) 722 goto out; 723 724 wil->vring2cid_tid[id][0] = cid; 725 wil->vring2cid_tid[id][1] = tid; 726 727 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 728 729 if (!wil->privacy) 730 txdata->dot1x_open = true; 731 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd), 732 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100); 733 if (rc) 734 goto out_free; 735 736 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 737 wil_err(wil, "Tx config failed, status 0x%02x\n", 738 reply.cmd.status); 739 rc = -EINVAL; 740 goto out_free; 741 } 742 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); 743 744 txdata->enabled = 1; 745 if (txdata->dot1x_open && (agg_wsize >= 0)) 746 wil_addba_tx_request(wil, id, agg_wsize); 747 748 return 0; 749 out_free: 750 txdata->dot1x_open = false; 751 txdata->enabled = 0; 752 wil_vring_free(wil, vring, 1); 753 out: 754 755 return rc; 756 } 757 758 int wil_vring_init_bcast(struct wil6210_priv *wil, int id, int size) 759 { 760 int rc; 761 struct wmi_bcast_vring_cfg_cmd cmd = { 762 .action = cpu_to_le32(WMI_VRING_CMD_ADD), 763 .vring_cfg = { 764 .tx_sw_ring = { 765 .max_mpdu_size = 766 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 767 .ring_size = cpu_to_le16(size), 768 }, 769 .ringid = id, 770 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 771 }, 772 }; 773 struct { 774 struct wil6210_mbox_hdr_wmi wmi; 775 struct wmi_vring_cfg_done_event cmd; 776 } __packed reply; 777 struct vring *vring = &wil->vring_tx[id]; 778 struct vring_tx_data *txdata = &wil->vring_tx_data[id]; 779 780 wil_dbg_misc(wil, "%s() max_mpdu_size %d\n", __func__, 781 cmd.vring_cfg.tx_sw_ring.max_mpdu_size); 782 783 if (vring->va) { 784 wil_err(wil, "Tx ring [%d] already allocated\n", id); 785 rc = -EINVAL; 786 goto out; 787 } 788 789 memset(txdata, 0, sizeof(*txdata)); 790 spin_lock_init(&txdata->lock); 791 vring->size = size; 792 rc = wil_vring_alloc(wil, vring); 793 if (rc) 794 goto out; 795 796 wil->vring2cid_tid[id][0] = WIL6210_MAX_CID; /* CID */ 797 wil->vring2cid_tid[id][1] = 0; /* TID */ 798 799 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 800 801 if (!wil->privacy) 802 txdata->dot1x_open = true; 803 rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, &cmd, sizeof(cmd), 804 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100); 805 if (rc) 806 goto out_free; 807 808 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 809 wil_err(wil, "Tx config failed, status 0x%02x\n", 810 reply.cmd.status); 811 rc = -EINVAL; 812 goto out_free; 813 } 814 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); 815 816 txdata->enabled = 1; 817 818 return 0; 819 out_free: 820 txdata->enabled = 0; 821 txdata->dot1x_open = false; 822 wil_vring_free(wil, vring, 1); 823 out: 824 825 return rc; 826 } 827 828 void wil_vring_fini_tx(struct wil6210_priv *wil, int id) 829 { 830 struct vring *vring = &wil->vring_tx[id]; 831 struct vring_tx_data *txdata = &wil->vring_tx_data[id]; 832 833 WARN_ON(!mutex_is_locked(&wil->mutex)); 834 835 if (!vring->va) 836 return; 837 838 wil_dbg_misc(wil, "%s() id=%d\n", __func__, id); 839 840 spin_lock_bh(&txdata->lock); 841 txdata->dot1x_open = false; 842 txdata->enabled = 0; /* no Tx can be in progress or start anew */ 843 spin_unlock_bh(&txdata->lock); 844 /* make sure NAPI won't touch this vring */ 845 if (test_bit(wil_status_napi_en, wil->status)) 846 napi_synchronize(&wil->napi_tx); 847 848 wil_vring_free(wil, vring, 1); 849 memset(txdata, 0, sizeof(*txdata)); 850 } 851 852 static struct vring *wil_find_tx_ucast(struct wil6210_priv *wil, 853 struct sk_buff *skb) 854 { 855 int i; 856 struct ethhdr *eth = (void *)skb->data; 857 int cid = wil_find_cid(wil, eth->h_dest); 858 859 if (cid < 0) 860 return NULL; 861 862 /* TODO: fix for multiple TID */ 863 for (i = 0; i < ARRAY_SIZE(wil->vring2cid_tid); i++) { 864 if (!wil->vring_tx_data[i].dot1x_open && 865 (skb->protocol != cpu_to_be16(ETH_P_PAE))) 866 continue; 867 if (wil->vring2cid_tid[i][0] == cid) { 868 struct vring *v = &wil->vring_tx[i]; 869 870 wil_dbg_txrx(wil, "%s(%pM) -> [%d]\n", 871 __func__, eth->h_dest, i); 872 if (v->va) { 873 return v; 874 } else { 875 wil_dbg_txrx(wil, "vring[%d] not valid\n", i); 876 return NULL; 877 } 878 } 879 } 880 881 return NULL; 882 } 883 884 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring, 885 struct sk_buff *skb); 886 887 static struct vring *wil_find_tx_vring_sta(struct wil6210_priv *wil, 888 struct sk_buff *skb) 889 { 890 struct vring *v; 891 int i; 892 u8 cid; 893 894 /* In the STA mode, it is expected to have only 1 VRING 895 * for the AP we connected to. 896 * find 1-st vring eligible for this skb and use it. 897 */ 898 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) { 899 v = &wil->vring_tx[i]; 900 if (!v->va) 901 continue; 902 903 cid = wil->vring2cid_tid[i][0]; 904 if (cid >= WIL6210_MAX_CID) /* skip BCAST */ 905 continue; 906 907 if (!wil->vring_tx_data[i].dot1x_open && 908 (skb->protocol != cpu_to_be16(ETH_P_PAE))) 909 continue; 910 911 wil_dbg_txrx(wil, "Tx -> ring %d\n", i); 912 913 return v; 914 } 915 916 wil_dbg_txrx(wil, "Tx while no vrings active?\n"); 917 918 return NULL; 919 } 920 921 /* Use one of 2 strategies: 922 * 923 * 1. New (real broadcast): 924 * use dedicated broadcast vring 925 * 2. Old (pseudo-DMS): 926 * Find 1-st vring and return it; 927 * duplicate skb and send it to other active vrings; 928 * in all cases override dest address to unicast peer's address 929 * Use old strategy when new is not supported yet: 930 * - for PBSS 931 */ 932 static struct vring *wil_find_tx_bcast_1(struct wil6210_priv *wil, 933 struct sk_buff *skb) 934 { 935 struct vring *v; 936 int i = wil->bcast_vring; 937 938 if (i < 0) 939 return NULL; 940 v = &wil->vring_tx[i]; 941 if (!v->va) 942 return NULL; 943 if (!wil->vring_tx_data[i].dot1x_open && 944 (skb->protocol != cpu_to_be16(ETH_P_PAE))) 945 return NULL; 946 947 return v; 948 } 949 950 static void wil_set_da_for_vring(struct wil6210_priv *wil, 951 struct sk_buff *skb, int vring_index) 952 { 953 struct ethhdr *eth = (void *)skb->data; 954 int cid = wil->vring2cid_tid[vring_index][0]; 955 956 ether_addr_copy(eth->h_dest, wil->sta[cid].addr); 957 } 958 959 static struct vring *wil_find_tx_bcast_2(struct wil6210_priv *wil, 960 struct sk_buff *skb) 961 { 962 struct vring *v, *v2; 963 struct sk_buff *skb2; 964 int i; 965 u8 cid; 966 struct ethhdr *eth = (void *)skb->data; 967 char *src = eth->h_source; 968 969 /* find 1-st vring eligible for data */ 970 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) { 971 v = &wil->vring_tx[i]; 972 if (!v->va) 973 continue; 974 975 cid = wil->vring2cid_tid[i][0]; 976 if (cid >= WIL6210_MAX_CID) /* skip BCAST */ 977 continue; 978 if (!wil->vring_tx_data[i].dot1x_open && 979 (skb->protocol != cpu_to_be16(ETH_P_PAE))) 980 continue; 981 982 /* don't Tx back to source when re-routing Rx->Tx at the AP */ 983 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) 984 continue; 985 986 goto found; 987 } 988 989 wil_dbg_txrx(wil, "Tx while no vrings active?\n"); 990 991 return NULL; 992 993 found: 994 wil_dbg_txrx(wil, "BCAST -> ring %d\n", i); 995 wil_set_da_for_vring(wil, skb, i); 996 997 /* find other active vrings and duplicate skb for each */ 998 for (i++; i < WIL6210_MAX_TX_RINGS; i++) { 999 v2 = &wil->vring_tx[i]; 1000 if (!v2->va) 1001 continue; 1002 cid = wil->vring2cid_tid[i][0]; 1003 if (cid >= WIL6210_MAX_CID) /* skip BCAST */ 1004 continue; 1005 if (!wil->vring_tx_data[i].dot1x_open && 1006 (skb->protocol != cpu_to_be16(ETH_P_PAE))) 1007 continue; 1008 1009 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) 1010 continue; 1011 1012 skb2 = skb_copy(skb, GFP_ATOMIC); 1013 if (skb2) { 1014 wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i); 1015 wil_set_da_for_vring(wil, skb2, i); 1016 wil_tx_vring(wil, v2, skb2); 1017 } else { 1018 wil_err(wil, "skb_copy failed\n"); 1019 } 1020 } 1021 1022 return v; 1023 } 1024 1025 static struct vring *wil_find_tx_bcast(struct wil6210_priv *wil, 1026 struct sk_buff *skb) 1027 { 1028 struct wireless_dev *wdev = wil->wdev; 1029 1030 if (wdev->iftype != NL80211_IFTYPE_AP) 1031 return wil_find_tx_bcast_2(wil, skb); 1032 1033 return wil_find_tx_bcast_1(wil, skb); 1034 } 1035 1036 static int wil_tx_desc_map(struct vring_tx_desc *d, dma_addr_t pa, u32 len, 1037 int vring_index) 1038 { 1039 wil_desc_addr_set(&d->dma.addr, pa); 1040 d->dma.ip_length = 0; 1041 /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/ 1042 d->dma.b11 = 0/*14 | BIT(7)*/; 1043 d->dma.error = 0; 1044 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ 1045 d->dma.length = cpu_to_le16((u16)len); 1046 d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS); 1047 d->mac.d[0] = 0; 1048 d->mac.d[1] = 0; 1049 d->mac.d[2] = 0; 1050 d->mac.ucode_cmd = 0; 1051 /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */ 1052 d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) | 1053 (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS); 1054 1055 return 0; 1056 } 1057 1058 static inline 1059 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags) 1060 { 1061 d->mac.d[2] |= ((nr_frags + 1) << 1062 MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS); 1063 } 1064 1065 static int wil_tx_desc_offload_cksum_set(struct wil6210_priv *wil, 1066 struct vring_tx_desc *d, 1067 struct sk_buff *skb) 1068 { 1069 int protocol; 1070 1071 if (skb->ip_summed != CHECKSUM_PARTIAL) 1072 return 0; 1073 1074 d->dma.b11 = ETH_HLEN; /* MAC header length */ 1075 1076 switch (skb->protocol) { 1077 case cpu_to_be16(ETH_P_IP): 1078 protocol = ip_hdr(skb)->protocol; 1079 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS); 1080 break; 1081 case cpu_to_be16(ETH_P_IPV6): 1082 protocol = ipv6_hdr(skb)->nexthdr; 1083 break; 1084 default: 1085 return -EINVAL; 1086 } 1087 1088 switch (protocol) { 1089 case IPPROTO_TCP: 1090 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS); 1091 /* L4 header len: TCP header length */ 1092 d->dma.d0 |= 1093 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1094 break; 1095 case IPPROTO_UDP: 1096 /* L4 header len: UDP header length */ 1097 d->dma.d0 |= 1098 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1099 break; 1100 default: 1101 return -EINVAL; 1102 } 1103 1104 d->dma.ip_length = skb_network_header_len(skb); 1105 /* Enable TCP/UDP checksum */ 1106 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS); 1107 /* Calculate pseudo-header */ 1108 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS); 1109 1110 return 0; 1111 } 1112 1113 static int __wil_tx_vring(struct wil6210_priv *wil, struct vring *vring, 1114 struct sk_buff *skb) 1115 { 1116 struct device *dev = wil_to_dev(wil); 1117 struct vring_tx_desc dd, *d = ⅆ 1118 volatile struct vring_tx_desc *_d; 1119 u32 swhead = vring->swhead; 1120 int avail = wil_vring_avail_tx(vring); 1121 int nr_frags = skb_shinfo(skb)->nr_frags; 1122 uint f = 0; 1123 int vring_index = vring - wil->vring_tx; 1124 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index]; 1125 uint i = swhead; 1126 dma_addr_t pa; 1127 int used; 1128 bool mcast = (vring_index == wil->bcast_vring); 1129 uint len = skb_headlen(skb); 1130 1131 wil_dbg_txrx(wil, "%s()\n", __func__); 1132 1133 if (unlikely(!txdata->enabled)) 1134 return -EINVAL; 1135 1136 if (unlikely(avail < 1 + nr_frags)) { 1137 wil_err_ratelimited(wil, 1138 "Tx ring[%2d] full. No space for %d fragments\n", 1139 vring_index, 1 + nr_frags); 1140 return -ENOMEM; 1141 } 1142 _d = &vring->va[i].tx; 1143 1144 pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 1145 1146 wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", vring_index, 1147 skb_headlen(skb), skb->data, &pa); 1148 wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1, 1149 skb->data, skb_headlen(skb), false); 1150 1151 if (unlikely(dma_mapping_error(dev, pa))) 1152 return -EINVAL; 1153 vring->ctx[i].mapped_as = wil_mapped_as_single; 1154 /* 1-st segment */ 1155 wil_tx_desc_map(d, pa, len, vring_index); 1156 if (unlikely(mcast)) { 1157 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */ 1158 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */ 1159 d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS); 1160 } 1161 /* Process TCP/UDP checksum offloading */ 1162 if (unlikely(wil_tx_desc_offload_cksum_set(wil, d, skb))) { 1163 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n", 1164 vring_index); 1165 goto dma_error; 1166 } 1167 1168 vring->ctx[i].nr_frags = nr_frags; 1169 wil_tx_desc_set_nr_frags(d, nr_frags); 1170 1171 /* middle segments */ 1172 for (; f < nr_frags; f++) { 1173 const struct skb_frag_struct *frag = 1174 &skb_shinfo(skb)->frags[f]; 1175 int len = skb_frag_size(frag); 1176 1177 *_d = *d; 1178 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i); 1179 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, 1180 (const void *)d, sizeof(*d), false); 1181 i = (swhead + f + 1) % vring->size; 1182 _d = &vring->va[i].tx; 1183 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag), 1184 DMA_TO_DEVICE); 1185 if (unlikely(dma_mapping_error(dev, pa))) 1186 goto dma_error; 1187 vring->ctx[i].mapped_as = wil_mapped_as_page; 1188 wil_tx_desc_map(d, pa, len, vring_index); 1189 /* no need to check return code - 1190 * if it succeeded for 1-st descriptor, 1191 * it will succeed here too 1192 */ 1193 wil_tx_desc_offload_cksum_set(wil, d, skb); 1194 } 1195 /* for the last seg only */ 1196 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS); 1197 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS); 1198 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); 1199 *_d = *d; 1200 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i); 1201 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, 1202 (const void *)d, sizeof(*d), false); 1203 1204 /* hold reference to skb 1205 * to prevent skb release before accounting 1206 * in case of immediate "tx done" 1207 */ 1208 vring->ctx[i].skb = skb_get(skb); 1209 1210 /* performance monitoring */ 1211 used = wil_vring_used_tx(vring); 1212 if (wil_val_in_range(vring_idle_trsh, 1213 used, used + nr_frags + 1)) { 1214 txdata->idle += get_cycles() - txdata->last_idle; 1215 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n", 1216 vring_index, used, used + nr_frags + 1); 1217 } 1218 1219 /* advance swhead */ 1220 wil_vring_advance_head(vring, nr_frags + 1); 1221 wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", vring_index, swhead, 1222 vring->swhead); 1223 trace_wil6210_tx(vring_index, swhead, skb->len, nr_frags); 1224 iowrite32(vring->swhead, wil->csr + HOSTADDR(vring->hwtail)); 1225 1226 return 0; 1227 dma_error: 1228 /* unmap what we have mapped */ 1229 nr_frags = f + 1; /* frags mapped + one for skb head */ 1230 for (f = 0; f < nr_frags; f++) { 1231 struct wil_ctx *ctx; 1232 1233 i = (swhead + f) % vring->size; 1234 ctx = &vring->ctx[i]; 1235 _d = &vring->va[i].tx; 1236 *d = *_d; 1237 _d->dma.status = TX_DMA_STATUS_DU; 1238 wil_txdesc_unmap(dev, d, ctx); 1239 1240 if (ctx->skb) 1241 dev_kfree_skb_any(ctx->skb); 1242 1243 memset(ctx, 0, sizeof(*ctx)); 1244 } 1245 1246 return -EINVAL; 1247 } 1248 1249 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring, 1250 struct sk_buff *skb) 1251 { 1252 int vring_index = vring - wil->vring_tx; 1253 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index]; 1254 int rc; 1255 1256 spin_lock(&txdata->lock); 1257 rc = __wil_tx_vring(wil, vring, skb); 1258 spin_unlock(&txdata->lock); 1259 return rc; 1260 } 1261 1262 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1263 { 1264 struct wil6210_priv *wil = ndev_to_wil(ndev); 1265 struct ethhdr *eth = (void *)skb->data; 1266 bool bcast = is_multicast_ether_addr(eth->h_dest); 1267 struct vring *vring; 1268 static bool pr_once_fw; 1269 int rc; 1270 1271 wil_dbg_txrx(wil, "%s()\n", __func__); 1272 if (unlikely(!test_bit(wil_status_fwready, wil->status))) { 1273 if (!pr_once_fw) { 1274 wil_err(wil, "FW not ready\n"); 1275 pr_once_fw = true; 1276 } 1277 goto drop; 1278 } 1279 if (unlikely(!test_bit(wil_status_fwconnected, wil->status))) { 1280 wil_err(wil, "FW not connected\n"); 1281 goto drop; 1282 } 1283 if (unlikely(wil->wdev->iftype == NL80211_IFTYPE_MONITOR)) { 1284 wil_err(wil, "Xmit in monitor mode not supported\n"); 1285 goto drop; 1286 } 1287 pr_once_fw = false; 1288 1289 /* find vring */ 1290 if (wil->wdev->iftype == NL80211_IFTYPE_STATION) { 1291 /* in STA mode (ESS), all to same VRING */ 1292 vring = wil_find_tx_vring_sta(wil, skb); 1293 } else { /* direct communication, find matching VRING */ 1294 vring = bcast ? wil_find_tx_bcast(wil, skb) : 1295 wil_find_tx_ucast(wil, skb); 1296 } 1297 if (unlikely(!vring)) { 1298 wil_dbg_txrx(wil, "No Tx VRING found for %pM\n", eth->h_dest); 1299 goto drop; 1300 } 1301 /* set up vring entry */ 1302 rc = wil_tx_vring(wil, vring, skb); 1303 1304 /* do we still have enough room in the vring? */ 1305 if (unlikely(wil_vring_avail_tx(vring) < wil_vring_wmark_low(vring))) { 1306 netif_tx_stop_all_queues(wil_to_ndev(wil)); 1307 wil_dbg_txrx(wil, "netif_tx_stop : ring full\n"); 1308 } 1309 1310 switch (rc) { 1311 case 0: 1312 /* statistics will be updated on the tx_complete */ 1313 dev_kfree_skb_any(skb); 1314 return NETDEV_TX_OK; 1315 case -ENOMEM: 1316 return NETDEV_TX_BUSY; 1317 default: 1318 break; /* goto drop; */ 1319 } 1320 drop: 1321 ndev->stats.tx_dropped++; 1322 dev_kfree_skb_any(skb); 1323 1324 return NET_XMIT_DROP; 1325 } 1326 1327 static inline bool wil_need_txstat(struct sk_buff *skb) 1328 { 1329 struct ethhdr *eth = (void *)skb->data; 1330 1331 return is_unicast_ether_addr(eth->h_dest) && skb->sk && 1332 (skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS); 1333 } 1334 1335 static inline void wil_consume_skb(struct sk_buff *skb, bool acked) 1336 { 1337 if (unlikely(wil_need_txstat(skb))) 1338 skb_complete_wifi_ack(skb, acked); 1339 else 1340 acked ? dev_consume_skb_any(skb) : dev_kfree_skb_any(skb); 1341 } 1342 1343 /** 1344 * Clean up transmitted skb's from the Tx VRING 1345 * 1346 * Return number of descriptors cleared 1347 * 1348 * Safe to call from IRQ 1349 */ 1350 int wil_tx_complete(struct wil6210_priv *wil, int ringid) 1351 { 1352 struct net_device *ndev = wil_to_ndev(wil); 1353 struct device *dev = wil_to_dev(wil); 1354 struct vring *vring = &wil->vring_tx[ringid]; 1355 struct vring_tx_data *txdata = &wil->vring_tx_data[ringid]; 1356 int done = 0; 1357 int cid = wil->vring2cid_tid[ringid][0]; 1358 struct wil_net_stats *stats = NULL; 1359 volatile struct vring_tx_desc *_d; 1360 int used_before_complete; 1361 int used_new; 1362 1363 if (unlikely(!vring->va)) { 1364 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid); 1365 return 0; 1366 } 1367 1368 if (unlikely(!txdata->enabled)) { 1369 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid); 1370 return 0; 1371 } 1372 1373 wil_dbg_txrx(wil, "%s(%d)\n", __func__, ringid); 1374 1375 used_before_complete = wil_vring_used_tx(vring); 1376 1377 if (cid < WIL6210_MAX_CID) 1378 stats = &wil->sta[cid].stats; 1379 1380 while (!wil_vring_is_empty(vring)) { 1381 int new_swtail; 1382 struct wil_ctx *ctx = &vring->ctx[vring->swtail]; 1383 /** 1384 * For the fragmented skb, HW will set DU bit only for the 1385 * last fragment. look for it 1386 */ 1387 int lf = (vring->swtail + ctx->nr_frags) % vring->size; 1388 /* TODO: check we are not past head */ 1389 1390 _d = &vring->va[lf].tx; 1391 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU))) 1392 break; 1393 1394 new_swtail = (lf + 1) % vring->size; 1395 while (vring->swtail != new_swtail) { 1396 struct vring_tx_desc dd, *d = ⅆ 1397 u16 dmalen; 1398 struct sk_buff *skb; 1399 1400 ctx = &vring->ctx[vring->swtail]; 1401 skb = ctx->skb; 1402 _d = &vring->va[vring->swtail].tx; 1403 1404 *d = *_d; 1405 1406 dmalen = le16_to_cpu(d->dma.length); 1407 trace_wil6210_tx_done(ringid, vring->swtail, dmalen, 1408 d->dma.error); 1409 wil_dbg_txrx(wil, 1410 "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n", 1411 ringid, vring->swtail, dmalen, 1412 d->dma.status, d->dma.error); 1413 wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4, 1414 (const void *)d, sizeof(*d), false); 1415 1416 wil_txdesc_unmap(dev, d, ctx); 1417 1418 if (skb) { 1419 if (likely(d->dma.error == 0)) { 1420 ndev->stats.tx_packets++; 1421 ndev->stats.tx_bytes += skb->len; 1422 if (stats) { 1423 stats->tx_packets++; 1424 stats->tx_bytes += skb->len; 1425 } 1426 } else { 1427 ndev->stats.tx_errors++; 1428 if (stats) 1429 stats->tx_errors++; 1430 } 1431 wil_consume_skb(skb, d->dma.error == 0); 1432 } 1433 memset(ctx, 0, sizeof(*ctx)); 1434 /* There is no need to touch HW descriptor: 1435 * - ststus bit TX_DMA_STATUS_DU is set by design, 1436 * so hardware will not try to process this desc., 1437 * - rest of descriptor will be initialized on Tx. 1438 */ 1439 vring->swtail = wil_vring_next_tail(vring); 1440 done++; 1441 } 1442 } 1443 1444 /* performance monitoring */ 1445 used_new = wil_vring_used_tx(vring); 1446 if (wil_val_in_range(vring_idle_trsh, 1447 used_new, used_before_complete)) { 1448 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n", 1449 ringid, used_before_complete, used_new); 1450 txdata->last_idle = get_cycles(); 1451 } 1452 1453 if (wil_vring_avail_tx(vring) > wil_vring_wmark_high(vring)) { 1454 wil_dbg_txrx(wil, "netif_tx_wake : ring not full\n"); 1455 netif_tx_wake_all_queues(wil_to_ndev(wil)); 1456 } 1457 1458 return done; 1459 } 1460