xref: /linux/drivers/net/wireless/ath/key.c (revision fcc8487d477a3452a1d0ccbdd4c5e0e1e3cb8bed)
1 /*
2  * Copyright (c) 2009 Atheros Communications Inc.
3  * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/export.h>
19 #include <asm/unaligned.h>
20 #include <net/mac80211.h>
21 
22 #include "ath.h"
23 #include "reg.h"
24 
25 #define REG_READ			(common->ops->read)
26 #define REG_WRITE(_ah, _reg, _val)	(common->ops->write)(_ah, _val, _reg)
27 #define ENABLE_REGWRITE_BUFFER(_ah)			\
28 	if (common->ops->enable_write_buffer)		\
29 		common->ops->enable_write_buffer((_ah));
30 
31 #define REGWRITE_BUFFER_FLUSH(_ah)			\
32 	if (common->ops->write_flush)			\
33 		common->ops->write_flush((_ah));
34 
35 
36 #define IEEE80211_WEP_NKID      4       /* number of key ids */
37 
38 /************************/
39 /* Key Cache Management */
40 /************************/
41 
42 bool ath_hw_keyreset(struct ath_common *common, u16 entry)
43 {
44 	u32 keyType;
45 	void *ah = common->ah;
46 
47 	if (entry >= common->keymax) {
48 		ath_err(common, "keyreset: keycache entry %u out of range\n",
49 			entry);
50 		return false;
51 	}
52 
53 	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
54 
55 	ENABLE_REGWRITE_BUFFER(ah);
56 
57 	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
58 	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
59 	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
60 	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
61 	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
62 	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
63 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
64 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
65 
66 	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
67 		u16 micentry = entry + 64;
68 
69 		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
70 		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
71 		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
72 		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
73 		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
74 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
75 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
76 				  AR_KEYTABLE_TYPE_CLR);
77 		}
78 
79 	}
80 
81 	REGWRITE_BUFFER_FLUSH(ah);
82 
83 	return true;
84 }
85 EXPORT_SYMBOL(ath_hw_keyreset);
86 
87 static bool ath_hw_keysetmac(struct ath_common *common,
88 			     u16 entry, const u8 *mac)
89 {
90 	u32 macHi, macLo;
91 	u32 unicast_flag = AR_KEYTABLE_VALID;
92 	void *ah = common->ah;
93 
94 	if (entry >= common->keymax) {
95 		ath_err(common, "keysetmac: keycache entry %u out of range\n",
96 			entry);
97 		return false;
98 	}
99 
100 	if (mac != NULL) {
101 		/*
102 		 * AR_KEYTABLE_VALID indicates that the address is a unicast
103 		 * address, which must match the transmitter address for
104 		 * decrypting frames.
105 		 * Not setting this bit allows the hardware to use the key
106 		 * for multicast frame decryption.
107 		 */
108 		if (mac[0] & 0x01)
109 			unicast_flag = 0;
110 
111 		macLo = get_unaligned_le32(mac);
112 		macHi = get_unaligned_le16(mac + 4);
113 		macLo >>= 1;
114 		macLo |= (macHi & 1) << 31;
115 		macHi >>= 1;
116 	} else {
117 		macLo = macHi = 0;
118 	}
119 	ENABLE_REGWRITE_BUFFER(ah);
120 
121 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
122 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
123 
124 	REGWRITE_BUFFER_FLUSH(ah);
125 
126 	return true;
127 }
128 
129 static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
130 				      const struct ath_keyval *k,
131 				      const u8 *mac)
132 {
133 	void *ah = common->ah;
134 	u32 key0, key1, key2, key3, key4;
135 	u32 keyType;
136 
137 	if (entry >= common->keymax) {
138 		ath_err(common, "set-entry: keycache entry %u out of range\n",
139 			entry);
140 		return false;
141 	}
142 
143 	switch (k->kv_type) {
144 	case ATH_CIPHER_AES_OCB:
145 		keyType = AR_KEYTABLE_TYPE_AES;
146 		break;
147 	case ATH_CIPHER_AES_CCM:
148 		if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
149 			ath_dbg(common, ANY,
150 				"AES-CCM not supported by this mac rev\n");
151 			return false;
152 		}
153 		keyType = AR_KEYTABLE_TYPE_CCM;
154 		break;
155 	case ATH_CIPHER_TKIP:
156 		keyType = AR_KEYTABLE_TYPE_TKIP;
157 		if (entry + 64 >= common->keymax) {
158 			ath_dbg(common, ANY,
159 				"entry %u inappropriate for TKIP\n", entry);
160 			return false;
161 		}
162 		break;
163 	case ATH_CIPHER_WEP:
164 		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
165 			ath_dbg(common, ANY, "WEP key length %u too small\n",
166 				k->kv_len);
167 			return false;
168 		}
169 		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
170 			keyType = AR_KEYTABLE_TYPE_40;
171 		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
172 			keyType = AR_KEYTABLE_TYPE_104;
173 		else
174 			keyType = AR_KEYTABLE_TYPE_128;
175 		break;
176 	case ATH_CIPHER_CLR:
177 		keyType = AR_KEYTABLE_TYPE_CLR;
178 		break;
179 	default:
180 		ath_err(common, "cipher %u not supported\n", k->kv_type);
181 		return false;
182 	}
183 
184 	key0 = get_unaligned_le32(k->kv_val + 0);
185 	key1 = get_unaligned_le16(k->kv_val + 4);
186 	key2 = get_unaligned_le32(k->kv_val + 6);
187 	key3 = get_unaligned_le16(k->kv_val + 10);
188 	key4 = get_unaligned_le32(k->kv_val + 12);
189 	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
190 		key4 &= 0xff;
191 
192 	/*
193 	 * Note: Key cache registers access special memory area that requires
194 	 * two 32-bit writes to actually update the values in the internal
195 	 * memory. Consequently, the exact order and pairs used here must be
196 	 * maintained.
197 	 */
198 
199 	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
200 		u16 micentry = entry + 64;
201 
202 		/*
203 		 * Write inverted key[47:0] first to avoid Michael MIC errors
204 		 * on frames that could be sent or received at the same time.
205 		 * The correct key will be written in the end once everything
206 		 * else is ready.
207 		 */
208 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
209 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
210 
211 		/* Write key[95:48] */
212 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
213 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
214 
215 		/* Write key[127:96] and key type */
216 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
217 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
218 
219 		/* Write MAC address for the entry */
220 		(void) ath_hw_keysetmac(common, entry, mac);
221 
222 		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
223 			/*
224 			 * TKIP uses two key cache entries:
225 			 * Michael MIC TX/RX keys in the same key cache entry
226 			 * (idx = main index + 64):
227 			 * key0 [31:0] = RX key [31:0]
228 			 * key1 [15:0] = TX key [31:16]
229 			 * key1 [31:16] = reserved
230 			 * key2 [31:0] = RX key [63:32]
231 			 * key3 [15:0] = TX key [15:0]
232 			 * key3 [31:16] = reserved
233 			 * key4 [31:0] = TX key [63:32]
234 			 */
235 			u32 mic0, mic1, mic2, mic3, mic4;
236 
237 			mic0 = get_unaligned_le32(k->kv_mic + 0);
238 			mic2 = get_unaligned_le32(k->kv_mic + 4);
239 			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
240 			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
241 			mic4 = get_unaligned_le32(k->kv_txmic + 4);
242 
243 			ENABLE_REGWRITE_BUFFER(ah);
244 
245 			/* Write RX[31:0] and TX[31:16] */
246 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
247 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
248 
249 			/* Write RX[63:32] and TX[15:0] */
250 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
251 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
252 
253 			/* Write TX[63:32] and keyType(reserved) */
254 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
255 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
256 				  AR_KEYTABLE_TYPE_CLR);
257 
258 			REGWRITE_BUFFER_FLUSH(ah);
259 
260 		} else {
261 			/*
262 			 * TKIP uses four key cache entries (two for group
263 			 * keys):
264 			 * Michael MIC TX/RX keys are in different key cache
265 			 * entries (idx = main index + 64 for TX and
266 			 * main index + 32 + 96 for RX):
267 			 * key0 [31:0] = TX/RX MIC key [31:0]
268 			 * key1 [31:0] = reserved
269 			 * key2 [31:0] = TX/RX MIC key [63:32]
270 			 * key3 [31:0] = reserved
271 			 * key4 [31:0] = reserved
272 			 *
273 			 * Upper layer code will call this function separately
274 			 * for TX and RX keys when these registers offsets are
275 			 * used.
276 			 */
277 			u32 mic0, mic2;
278 
279 			mic0 = get_unaligned_le32(k->kv_mic + 0);
280 			mic2 = get_unaligned_le32(k->kv_mic + 4);
281 
282 			ENABLE_REGWRITE_BUFFER(ah);
283 
284 			/* Write MIC key[31:0] */
285 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
286 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
287 
288 			/* Write MIC key[63:32] */
289 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
290 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
291 
292 			/* Write TX[63:32] and keyType(reserved) */
293 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
294 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
295 				  AR_KEYTABLE_TYPE_CLR);
296 
297 			REGWRITE_BUFFER_FLUSH(ah);
298 		}
299 
300 		ENABLE_REGWRITE_BUFFER(ah);
301 
302 		/* MAC address registers are reserved for the MIC entry */
303 		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
304 		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
305 
306 		/*
307 		 * Write the correct (un-inverted) key[47:0] last to enable
308 		 * TKIP now that all other registers are set with correct
309 		 * values.
310 		 */
311 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
312 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
313 
314 		REGWRITE_BUFFER_FLUSH(ah);
315 	} else {
316 		ENABLE_REGWRITE_BUFFER(ah);
317 
318 		/* Write key[47:0] */
319 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
320 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
321 
322 		/* Write key[95:48] */
323 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
324 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
325 
326 		/* Write key[127:96] and key type */
327 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
328 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
329 
330 		REGWRITE_BUFFER_FLUSH(ah);
331 
332 		/* Write MAC address for the entry */
333 		(void) ath_hw_keysetmac(common, entry, mac);
334 	}
335 
336 	return true;
337 }
338 
339 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
340 			   struct ath_keyval *hk, const u8 *addr,
341 			   bool authenticator)
342 {
343 	const u8 *key_rxmic;
344 	const u8 *key_txmic;
345 
346 	key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
347 	key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
348 
349 	if (addr == NULL) {
350 		/*
351 		 * Group key installation - only two key cache entries are used
352 		 * regardless of splitmic capability since group key is only
353 		 * used either for TX or RX.
354 		 */
355 		if (authenticator) {
356 			memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
357 			memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
358 		} else {
359 			memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
360 			memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
361 		}
362 		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
363 	}
364 	if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
365 		/* TX and RX keys share the same key cache entry. */
366 		memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
367 		memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
368 		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
369 	}
370 
371 	/* Separate key cache entries for TX and RX */
372 
373 	/* TX key goes at first index, RX key at +32. */
374 	memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
375 	if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
376 		/* TX MIC entry failed. No need to proceed further */
377 		ath_err(common, "Setting TX MIC Key Failed\n");
378 		return 0;
379 	}
380 
381 	memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
382 	/* XXX delete tx key on failure? */
383 	return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
384 }
385 
386 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
387 {
388 	int i;
389 
390 	for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
391 		if (test_bit(i, common->keymap) ||
392 		    test_bit(i + 64, common->keymap))
393 			continue; /* At least one part of TKIP key allocated */
394 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
395 		    (test_bit(i + 32, common->keymap) ||
396 		     test_bit(i + 64 + 32, common->keymap)))
397 			continue; /* At least one part of TKIP key allocated */
398 
399 		/* Found a free slot for a TKIP key */
400 		return i;
401 	}
402 	return -1;
403 }
404 
405 static int ath_reserve_key_cache_slot(struct ath_common *common,
406 				      u32 cipher)
407 {
408 	int i;
409 
410 	if (cipher == WLAN_CIPHER_SUITE_TKIP)
411 		return ath_reserve_key_cache_slot_tkip(common);
412 
413 	/* First, try to find slots that would not be available for TKIP. */
414 	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
415 		for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
416 			if (!test_bit(i, common->keymap) &&
417 			    (test_bit(i + 32, common->keymap) ||
418 			     test_bit(i + 64, common->keymap) ||
419 			     test_bit(i + 64 + 32, common->keymap)))
420 				return i;
421 			if (!test_bit(i + 32, common->keymap) &&
422 			    (test_bit(i, common->keymap) ||
423 			     test_bit(i + 64, common->keymap) ||
424 			     test_bit(i + 64 + 32, common->keymap)))
425 				return i + 32;
426 			if (!test_bit(i + 64, common->keymap) &&
427 			    (test_bit(i , common->keymap) ||
428 			     test_bit(i + 32, common->keymap) ||
429 			     test_bit(i + 64 + 32, common->keymap)))
430 				return i + 64;
431 			if (!test_bit(i + 64 + 32, common->keymap) &&
432 			    (test_bit(i, common->keymap) ||
433 			     test_bit(i + 32, common->keymap) ||
434 			     test_bit(i + 64, common->keymap)))
435 				return i + 64 + 32;
436 		}
437 	} else {
438 		for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
439 			if (!test_bit(i, common->keymap) &&
440 			    test_bit(i + 64, common->keymap))
441 				return i;
442 			if (test_bit(i, common->keymap) &&
443 			    !test_bit(i + 64, common->keymap))
444 				return i + 64;
445 		}
446 	}
447 
448 	/* No partially used TKIP slots, pick any available slot */
449 	for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
450 		/* Do not allow slots that could be needed for TKIP group keys
451 		 * to be used. This limitation could be removed if we know that
452 		 * TKIP will not be used. */
453 		if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
454 			continue;
455 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
456 			if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
457 				continue;
458 			if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
459 				continue;
460 		}
461 
462 		if (!test_bit(i, common->keymap))
463 			return i; /* Found a free slot for a key */
464 	}
465 
466 	/* No free slot found */
467 	return -1;
468 }
469 
470 /*
471  * Configure encryption in the HW.
472  */
473 int ath_key_config(struct ath_common *common,
474 			  struct ieee80211_vif *vif,
475 			  struct ieee80211_sta *sta,
476 			  struct ieee80211_key_conf *key)
477 {
478 	struct ath_keyval hk;
479 	const u8 *mac = NULL;
480 	u8 gmac[ETH_ALEN];
481 	int ret = 0;
482 	int idx;
483 
484 	memset(&hk, 0, sizeof(hk));
485 
486 	switch (key->cipher) {
487 	case 0:
488 		hk.kv_type = ATH_CIPHER_CLR;
489 		break;
490 	case WLAN_CIPHER_SUITE_WEP40:
491 	case WLAN_CIPHER_SUITE_WEP104:
492 		hk.kv_type = ATH_CIPHER_WEP;
493 		break;
494 	case WLAN_CIPHER_SUITE_TKIP:
495 		hk.kv_type = ATH_CIPHER_TKIP;
496 		break;
497 	case WLAN_CIPHER_SUITE_CCMP:
498 		hk.kv_type = ATH_CIPHER_AES_CCM;
499 		break;
500 	default:
501 		return -EOPNOTSUPP;
502 	}
503 
504 	hk.kv_len = key->keylen;
505 	if (key->keylen)
506 		memcpy(hk.kv_val, key->key, key->keylen);
507 
508 	if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
509 		switch (vif->type) {
510 		case NL80211_IFTYPE_AP:
511 			memcpy(gmac, vif->addr, ETH_ALEN);
512 			gmac[0] |= 0x01;
513 			mac = gmac;
514 			idx = ath_reserve_key_cache_slot(common, key->cipher);
515 			break;
516 		case NL80211_IFTYPE_ADHOC:
517 			if (!sta) {
518 				idx = key->keyidx;
519 				break;
520 			}
521 			memcpy(gmac, sta->addr, ETH_ALEN);
522 			gmac[0] |= 0x01;
523 			mac = gmac;
524 			idx = ath_reserve_key_cache_slot(common, key->cipher);
525 			break;
526 		default:
527 			idx = key->keyidx;
528 			break;
529 		}
530 	} else if (key->keyidx) {
531 		if (WARN_ON(!sta))
532 			return -EOPNOTSUPP;
533 		mac = sta->addr;
534 
535 		if (vif->type != NL80211_IFTYPE_AP) {
536 			/* Only keyidx 0 should be used with unicast key, but
537 			 * allow this for client mode for now. */
538 			idx = key->keyidx;
539 		} else
540 			return -EIO;
541 	} else {
542 		if (WARN_ON(!sta))
543 			return -EOPNOTSUPP;
544 		mac = sta->addr;
545 
546 		idx = ath_reserve_key_cache_slot(common, key->cipher);
547 	}
548 
549 	if (idx < 0)
550 		return -ENOSPC; /* no free key cache entries */
551 
552 	if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
553 		ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
554 				      vif->type == NL80211_IFTYPE_AP);
555 	else
556 		ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
557 
558 	if (!ret)
559 		return -EIO;
560 
561 	set_bit(idx, common->keymap);
562 	if (key->cipher == WLAN_CIPHER_SUITE_CCMP)
563 		set_bit(idx, common->ccmp_keymap);
564 
565 	if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
566 		set_bit(idx + 64, common->keymap);
567 		set_bit(idx, common->tkip_keymap);
568 		set_bit(idx + 64, common->tkip_keymap);
569 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
570 			set_bit(idx + 32, common->keymap);
571 			set_bit(idx + 64 + 32, common->keymap);
572 			set_bit(idx + 32, common->tkip_keymap);
573 			set_bit(idx + 64 + 32, common->tkip_keymap);
574 		}
575 	}
576 
577 	return idx;
578 }
579 EXPORT_SYMBOL(ath_key_config);
580 
581 /*
582  * Delete Key.
583  */
584 void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
585 {
586 	ath_hw_keyreset(common, key->hw_key_idx);
587 	if (key->hw_key_idx < IEEE80211_WEP_NKID)
588 		return;
589 
590 	clear_bit(key->hw_key_idx, common->keymap);
591 	clear_bit(key->hw_key_idx, common->ccmp_keymap);
592 	if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
593 		return;
594 
595 	clear_bit(key->hw_key_idx + 64, common->keymap);
596 
597 	clear_bit(key->hw_key_idx, common->tkip_keymap);
598 	clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
599 
600 	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
601 		ath_hw_keyreset(common, key->hw_key_idx + 32);
602 		clear_bit(key->hw_key_idx + 32, common->keymap);
603 		clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
604 
605 		clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
606 		clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
607 	}
608 }
609 EXPORT_SYMBOL(ath_key_delete);
610