xref: /linux/drivers/net/wireless/ath/key.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * Copyright (c) 2009 Atheros Communications Inc.
3  * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <asm/unaligned.h>
19 #include <net/mac80211.h>
20 
21 #include "ath.h"
22 #include "reg.h"
23 #include "debug.h"
24 
25 #define REG_READ			(common->ops->read)
26 #define REG_WRITE(_ah, _reg, _val)	(common->ops->write)(_ah, _val, _reg)
27 
28 #define IEEE80211_WEP_NKID      4       /* number of key ids */
29 
30 /************************/
31 /* Key Cache Management */
32 /************************/
33 
34 bool ath_hw_keyreset(struct ath_common *common, u16 entry)
35 {
36 	u32 keyType;
37 	void *ah = common->ah;
38 
39 	if (entry >= common->keymax) {
40 		ath_print(common, ATH_DBG_FATAL,
41 			  "keychache entry %u out of range\n", entry);
42 		return false;
43 	}
44 
45 	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
46 
47 	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
48 	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
49 	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
50 	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
51 	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
52 	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
53 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
54 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
55 
56 	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
57 		u16 micentry = entry + 64;
58 
59 		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
60 		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
61 		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
62 		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
63 
64 	}
65 
66 	return true;
67 }
68 EXPORT_SYMBOL(ath_hw_keyreset);
69 
70 bool ath_hw_keysetmac(struct ath_common *common, u16 entry, const u8 *mac)
71 {
72 	u32 macHi, macLo;
73 	u32 unicast_flag = AR_KEYTABLE_VALID;
74 	void *ah = common->ah;
75 
76 	if (entry >= common->keymax) {
77 		ath_print(common, ATH_DBG_FATAL,
78 			  "keychache entry %u out of range\n", entry);
79 		return false;
80 	}
81 
82 	if (mac != NULL) {
83 		/*
84 		 * AR_KEYTABLE_VALID indicates that the address is a unicast
85 		 * address, which must match the transmitter address for
86 		 * decrypting frames.
87 		 * Not setting this bit allows the hardware to use the key
88 		 * for multicast frame decryption.
89 		 */
90 		if (mac[0] & 0x01)
91 			unicast_flag = 0;
92 
93 		macHi = (mac[5] << 8) | mac[4];
94 		macLo = (mac[3] << 24) |
95 			(mac[2] << 16) |
96 			(mac[1] << 8) |
97 			mac[0];
98 		macLo >>= 1;
99 		macLo |= (macHi & 1) << 31;
100 		macHi >>= 1;
101 	} else {
102 		macLo = macHi = 0;
103 	}
104 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
105 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
106 
107 	return true;
108 }
109 
110 bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
111 				 const struct ath_keyval *k,
112 				 const u8 *mac)
113 {
114 	void *ah = common->ah;
115 	u32 key0, key1, key2, key3, key4;
116 	u32 keyType;
117 
118 	if (entry >= common->keymax) {
119 		ath_print(common, ATH_DBG_FATAL,
120 			  "keycache entry %u out of range\n", entry);
121 		return false;
122 	}
123 
124 	switch (k->kv_type) {
125 	case ATH_CIPHER_AES_OCB:
126 		keyType = AR_KEYTABLE_TYPE_AES;
127 		break;
128 	case ATH_CIPHER_AES_CCM:
129 		if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
130 			ath_print(common, ATH_DBG_ANY,
131 				  "AES-CCM not supported by this mac rev\n");
132 			return false;
133 		}
134 		keyType = AR_KEYTABLE_TYPE_CCM;
135 		break;
136 	case ATH_CIPHER_TKIP:
137 		keyType = AR_KEYTABLE_TYPE_TKIP;
138 		if (entry + 64 >= common->keymax) {
139 			ath_print(common, ATH_DBG_ANY,
140 				  "entry %u inappropriate for TKIP\n", entry);
141 			return false;
142 		}
143 		break;
144 	case ATH_CIPHER_WEP:
145 		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
146 			ath_print(common, ATH_DBG_ANY,
147 				  "WEP key length %u too small\n", k->kv_len);
148 			return false;
149 		}
150 		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
151 			keyType = AR_KEYTABLE_TYPE_40;
152 		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
153 			keyType = AR_KEYTABLE_TYPE_104;
154 		else
155 			keyType = AR_KEYTABLE_TYPE_128;
156 		break;
157 	case ATH_CIPHER_CLR:
158 		keyType = AR_KEYTABLE_TYPE_CLR;
159 		break;
160 	default:
161 		ath_print(common, ATH_DBG_FATAL,
162 			  "cipher %u not supported\n", k->kv_type);
163 		return false;
164 	}
165 
166 	key0 = get_unaligned_le32(k->kv_val + 0);
167 	key1 = get_unaligned_le16(k->kv_val + 4);
168 	key2 = get_unaligned_le32(k->kv_val + 6);
169 	key3 = get_unaligned_le16(k->kv_val + 10);
170 	key4 = get_unaligned_le32(k->kv_val + 12);
171 	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
172 		key4 &= 0xff;
173 
174 	/*
175 	 * Note: Key cache registers access special memory area that requires
176 	 * two 32-bit writes to actually update the values in the internal
177 	 * memory. Consequently, the exact order and pairs used here must be
178 	 * maintained.
179 	 */
180 
181 	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
182 		u16 micentry = entry + 64;
183 
184 		/*
185 		 * Write inverted key[47:0] first to avoid Michael MIC errors
186 		 * on frames that could be sent or received at the same time.
187 		 * The correct key will be written in the end once everything
188 		 * else is ready.
189 		 */
190 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
191 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
192 
193 		/* Write key[95:48] */
194 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
195 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
196 
197 		/* Write key[127:96] and key type */
198 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
199 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
200 
201 		/* Write MAC address for the entry */
202 		(void) ath_hw_keysetmac(common, entry, mac);
203 
204 		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
205 			/*
206 			 * TKIP uses two key cache entries:
207 			 * Michael MIC TX/RX keys in the same key cache entry
208 			 * (idx = main index + 64):
209 			 * key0 [31:0] = RX key [31:0]
210 			 * key1 [15:0] = TX key [31:16]
211 			 * key1 [31:16] = reserved
212 			 * key2 [31:0] = RX key [63:32]
213 			 * key3 [15:0] = TX key [15:0]
214 			 * key3 [31:16] = reserved
215 			 * key4 [31:0] = TX key [63:32]
216 			 */
217 			u32 mic0, mic1, mic2, mic3, mic4;
218 
219 			mic0 = get_unaligned_le32(k->kv_mic + 0);
220 			mic2 = get_unaligned_le32(k->kv_mic + 4);
221 			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
222 			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
223 			mic4 = get_unaligned_le32(k->kv_txmic + 4);
224 
225 			/* Write RX[31:0] and TX[31:16] */
226 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
227 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
228 
229 			/* Write RX[63:32] and TX[15:0] */
230 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
231 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
232 
233 			/* Write TX[63:32] and keyType(reserved) */
234 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
235 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
236 				  AR_KEYTABLE_TYPE_CLR);
237 
238 		} else {
239 			/*
240 			 * TKIP uses four key cache entries (two for group
241 			 * keys):
242 			 * Michael MIC TX/RX keys are in different key cache
243 			 * entries (idx = main index + 64 for TX and
244 			 * main index + 32 + 96 for RX):
245 			 * key0 [31:0] = TX/RX MIC key [31:0]
246 			 * key1 [31:0] = reserved
247 			 * key2 [31:0] = TX/RX MIC key [63:32]
248 			 * key3 [31:0] = reserved
249 			 * key4 [31:0] = reserved
250 			 *
251 			 * Upper layer code will call this function separately
252 			 * for TX and RX keys when these registers offsets are
253 			 * used.
254 			 */
255 			u32 mic0, mic2;
256 
257 			mic0 = get_unaligned_le32(k->kv_mic + 0);
258 			mic2 = get_unaligned_le32(k->kv_mic + 4);
259 
260 			/* Write MIC key[31:0] */
261 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
262 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
263 
264 			/* Write MIC key[63:32] */
265 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
266 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
267 
268 			/* Write TX[63:32] and keyType(reserved) */
269 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
270 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
271 				  AR_KEYTABLE_TYPE_CLR);
272 		}
273 
274 		/* MAC address registers are reserved for the MIC entry */
275 		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
276 		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
277 
278 		/*
279 		 * Write the correct (un-inverted) key[47:0] last to enable
280 		 * TKIP now that all other registers are set with correct
281 		 * values.
282 		 */
283 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
284 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
285 	} else {
286 		/* Write key[47:0] */
287 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
288 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
289 
290 		/* Write key[95:48] */
291 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
292 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
293 
294 		/* Write key[127:96] and key type */
295 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
296 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
297 
298 		/* Write MAC address for the entry */
299 		(void) ath_hw_keysetmac(common, entry, mac);
300 	}
301 
302 	return true;
303 }
304 
305 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
306 			   struct ath_keyval *hk, const u8 *addr,
307 			   bool authenticator)
308 {
309 	const u8 *key_rxmic;
310 	const u8 *key_txmic;
311 
312 	key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
313 	key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
314 
315 	if (addr == NULL) {
316 		/*
317 		 * Group key installation - only two key cache entries are used
318 		 * regardless of splitmic capability since group key is only
319 		 * used either for TX or RX.
320 		 */
321 		if (authenticator) {
322 			memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
323 			memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
324 		} else {
325 			memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
326 			memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
327 		}
328 		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
329 	}
330 	if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
331 		/* TX and RX keys share the same key cache entry. */
332 		memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
333 		memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
334 		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
335 	}
336 
337 	/* Separate key cache entries for TX and RX */
338 
339 	/* TX key goes at first index, RX key at +32. */
340 	memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
341 	if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
342 		/* TX MIC entry failed. No need to proceed further */
343 		ath_print(common, ATH_DBG_FATAL,
344 			  "Setting TX MIC Key Failed\n");
345 		return 0;
346 	}
347 
348 	memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
349 	/* XXX delete tx key on failure? */
350 	return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
351 }
352 
353 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
354 {
355 	int i;
356 
357 	for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
358 		if (test_bit(i, common->keymap) ||
359 		    test_bit(i + 64, common->keymap))
360 			continue; /* At least one part of TKIP key allocated */
361 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
362 		    (test_bit(i + 32, common->keymap) ||
363 		     test_bit(i + 64 + 32, common->keymap)))
364 			continue; /* At least one part of TKIP key allocated */
365 
366 		/* Found a free slot for a TKIP key */
367 		return i;
368 	}
369 	return -1;
370 }
371 
372 static int ath_reserve_key_cache_slot(struct ath_common *common,
373 				      u32 cipher)
374 {
375 	int i;
376 
377 	if (cipher == WLAN_CIPHER_SUITE_TKIP)
378 		return ath_reserve_key_cache_slot_tkip(common);
379 
380 	/* First, try to find slots that would not be available for TKIP. */
381 	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
382 		for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
383 			if (!test_bit(i, common->keymap) &&
384 			    (test_bit(i + 32, common->keymap) ||
385 			     test_bit(i + 64, common->keymap) ||
386 			     test_bit(i + 64 + 32, common->keymap)))
387 				return i;
388 			if (!test_bit(i + 32, common->keymap) &&
389 			    (test_bit(i, common->keymap) ||
390 			     test_bit(i + 64, common->keymap) ||
391 			     test_bit(i + 64 + 32, common->keymap)))
392 				return i + 32;
393 			if (!test_bit(i + 64, common->keymap) &&
394 			    (test_bit(i , common->keymap) ||
395 			     test_bit(i + 32, common->keymap) ||
396 			     test_bit(i + 64 + 32, common->keymap)))
397 				return i + 64;
398 			if (!test_bit(i + 64 + 32, common->keymap) &&
399 			    (test_bit(i, common->keymap) ||
400 			     test_bit(i + 32, common->keymap) ||
401 			     test_bit(i + 64, common->keymap)))
402 				return i + 64 + 32;
403 		}
404 	} else {
405 		for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
406 			if (!test_bit(i, common->keymap) &&
407 			    test_bit(i + 64, common->keymap))
408 				return i;
409 			if (test_bit(i, common->keymap) &&
410 			    !test_bit(i + 64, common->keymap))
411 				return i + 64;
412 		}
413 	}
414 
415 	/* No partially used TKIP slots, pick any available slot */
416 	for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
417 		/* Do not allow slots that could be needed for TKIP group keys
418 		 * to be used. This limitation could be removed if we know that
419 		 * TKIP will not be used. */
420 		if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
421 			continue;
422 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
423 			if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
424 				continue;
425 			if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
426 				continue;
427 		}
428 
429 		if (!test_bit(i, common->keymap))
430 			return i; /* Found a free slot for a key */
431 	}
432 
433 	/* No free slot found */
434 	return -1;
435 }
436 
437 /*
438  * Configure encryption in the HW.
439  */
440 int ath_key_config(struct ath_common *common,
441 			  struct ieee80211_vif *vif,
442 			  struct ieee80211_sta *sta,
443 			  struct ieee80211_key_conf *key)
444 {
445 	struct ath_keyval hk;
446 	const u8 *mac = NULL;
447 	u8 gmac[ETH_ALEN];
448 	int ret = 0;
449 	int idx;
450 
451 	memset(&hk, 0, sizeof(hk));
452 
453 	switch (key->cipher) {
454 	case WLAN_CIPHER_SUITE_WEP40:
455 	case WLAN_CIPHER_SUITE_WEP104:
456 		hk.kv_type = ATH_CIPHER_WEP;
457 		break;
458 	case WLAN_CIPHER_SUITE_TKIP:
459 		hk.kv_type = ATH_CIPHER_TKIP;
460 		break;
461 	case WLAN_CIPHER_SUITE_CCMP:
462 		hk.kv_type = ATH_CIPHER_AES_CCM;
463 		break;
464 	default:
465 		return -EOPNOTSUPP;
466 	}
467 
468 	hk.kv_len = key->keylen;
469 	memcpy(hk.kv_val, key->key, key->keylen);
470 
471 	if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
472 		switch (vif->type) {
473 		case NL80211_IFTYPE_AP:
474 			memcpy(gmac, vif->addr, ETH_ALEN);
475 			gmac[0] |= 0x01;
476 			mac = gmac;
477 			idx = ath_reserve_key_cache_slot(common, key->cipher);
478 			break;
479 		case NL80211_IFTYPE_ADHOC:
480 			if (!sta) {
481 				idx = key->keyidx;
482 				break;
483 			}
484 			memcpy(gmac, sta->addr, ETH_ALEN);
485 			gmac[0] |= 0x01;
486 			mac = gmac;
487 			idx = ath_reserve_key_cache_slot(common, key->cipher);
488 			break;
489 		default:
490 			idx = key->keyidx;
491 			break;
492 		}
493 	} else if (key->keyidx) {
494 		if (WARN_ON(!sta))
495 			return -EOPNOTSUPP;
496 		mac = sta->addr;
497 
498 		if (vif->type != NL80211_IFTYPE_AP) {
499 			/* Only keyidx 0 should be used with unicast key, but
500 			 * allow this for client mode for now. */
501 			idx = key->keyidx;
502 		} else
503 			return -EIO;
504 	} else {
505 		if (WARN_ON(!sta))
506 			return -EOPNOTSUPP;
507 		mac = sta->addr;
508 
509 		idx = ath_reserve_key_cache_slot(common, key->cipher);
510 	}
511 
512 	if (idx < 0)
513 		return -ENOSPC; /* no free key cache entries */
514 
515 	if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
516 		ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
517 				      vif->type == NL80211_IFTYPE_AP);
518 	else
519 		ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
520 
521 	if (!ret)
522 		return -EIO;
523 
524 	set_bit(idx, common->keymap);
525 	if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
526 		set_bit(idx + 64, common->keymap);
527 		set_bit(idx, common->tkip_keymap);
528 		set_bit(idx + 64, common->tkip_keymap);
529 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
530 			set_bit(idx + 32, common->keymap);
531 			set_bit(idx + 64 + 32, common->keymap);
532 			set_bit(idx + 32, common->tkip_keymap);
533 			set_bit(idx + 64 + 32, common->tkip_keymap);
534 		}
535 	}
536 
537 	return idx;
538 }
539 EXPORT_SYMBOL(ath_key_config);
540 
541 /*
542  * Delete Key.
543  */
544 void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
545 {
546 	ath_hw_keyreset(common, key->hw_key_idx);
547 	if (key->hw_key_idx < IEEE80211_WEP_NKID)
548 		return;
549 
550 	clear_bit(key->hw_key_idx, common->keymap);
551 	if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
552 		return;
553 
554 	clear_bit(key->hw_key_idx + 64, common->keymap);
555 
556 	clear_bit(key->hw_key_idx, common->tkip_keymap);
557 	clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
558 
559 	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
560 		ath_hw_keyreset(common, key->hw_key_idx + 32);
561 		clear_bit(key->hw_key_idx + 32, common->keymap);
562 		clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
563 
564 		clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
565 		clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
566 	}
567 }
568 EXPORT_SYMBOL(ath_key_delete);
569