1 /* 2 * Copyright (c) 2012 Neratec Solutions AG 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 20 #include "dfs_pattern_detector.h" 21 #include "dfs_pri_detector.h" 22 #include "ath.h" 23 24 /** 25 * struct radar_types - contains array of patterns defined for one DFS domain 26 * @domain: DFS regulatory domain 27 * @num_radar_types: number of radar types to follow 28 * @radar_types: radar types array 29 */ 30 struct radar_types { 31 enum nl80211_dfs_regions region; 32 u32 num_radar_types; 33 const struct radar_detector_specs *radar_types; 34 }; 35 36 /* percentage on ppb threshold to trigger detection */ 37 #define MIN_PPB_THRESH 50 38 #define PPB_THRESH_RATE(PPB, RATE) ((PPB * RATE + 100 - RATE) / 100) 39 #define PPB_THRESH(PPB) PPB_THRESH_RATE(PPB, MIN_PPB_THRESH) 40 #define PRF2PRI(PRF) ((1000000 + PRF / 2) / PRF) 41 /* percentage of pulse width tolerance */ 42 #define WIDTH_TOLERANCE 5 43 #define WIDTH_LOWER(X) ((X*(100-WIDTH_TOLERANCE)+50)/100) 44 #define WIDTH_UPPER(X) ((X*(100+WIDTH_TOLERANCE)+50)/100) 45 46 #define ETSI_PATTERN(ID, WMIN, WMAX, PMIN, PMAX, PRF, PPB, CHIRP) \ 47 { \ 48 ID, WIDTH_LOWER(WMIN), WIDTH_UPPER(WMAX), \ 49 (PRF2PRI(PMAX) - PRI_TOLERANCE), \ 50 (PRF2PRI(PMIN) * PRF + PRI_TOLERANCE), PRF, PPB * PRF, \ 51 PPB_THRESH(PPB), PRI_TOLERANCE, CHIRP \ 52 } 53 54 /* radar types as defined by ETSI EN-301-893 v1.5.1 */ 55 static const struct radar_detector_specs etsi_radar_ref_types_v15[] = { 56 ETSI_PATTERN(0, 0, 1, 700, 700, 1, 18, false), 57 ETSI_PATTERN(1, 0, 5, 200, 1000, 1, 10, false), 58 ETSI_PATTERN(2, 0, 15, 200, 1600, 1, 15, false), 59 ETSI_PATTERN(3, 0, 15, 2300, 4000, 1, 25, false), 60 ETSI_PATTERN(4, 20, 30, 2000, 4000, 1, 20, false), 61 ETSI_PATTERN(5, 0, 2, 300, 400, 3, 10, false), 62 ETSI_PATTERN(6, 0, 2, 400, 1200, 3, 15, false), 63 }; 64 65 static const struct radar_types etsi_radar_types_v15 = { 66 .region = NL80211_DFS_ETSI, 67 .num_radar_types = ARRAY_SIZE(etsi_radar_ref_types_v15), 68 .radar_types = etsi_radar_ref_types_v15, 69 }; 70 71 #define FCC_PATTERN(ID, WMIN, WMAX, PMIN, PMAX, PRF, PPB, CHIRP) \ 72 { \ 73 ID, WIDTH_LOWER(WMIN), WIDTH_UPPER(WMAX), \ 74 PMIN - PRI_TOLERANCE, \ 75 PMAX * PRF + PRI_TOLERANCE, PRF, PPB * PRF, \ 76 PPB_THRESH(PPB), PRI_TOLERANCE, CHIRP \ 77 } 78 79 /* radar types released on August 14, 2014 80 * type 1 PRI values randomly selected within the range of 518 and 3066. 81 * divide it to 3 groups is good enough for both of radar detection and 82 * avoiding false detection based on practical test results 83 * collected for more than a year. 84 */ 85 static const struct radar_detector_specs fcc_radar_ref_types[] = { 86 FCC_PATTERN(0, 0, 1, 1428, 1428, 1, 18, false), 87 FCC_PATTERN(101, 0, 1, 518, 938, 1, 57, false), 88 FCC_PATTERN(102, 0, 1, 938, 2000, 1, 27, false), 89 FCC_PATTERN(103, 0, 1, 2000, 3066, 1, 18, false), 90 FCC_PATTERN(2, 0, 5, 150, 230, 1, 23, false), 91 FCC_PATTERN(3, 6, 10, 200, 500, 1, 16, false), 92 FCC_PATTERN(4, 11, 20, 200, 500, 1, 12, false), 93 FCC_PATTERN(5, 50, 100, 1000, 2000, 1, 1, true), 94 FCC_PATTERN(6, 0, 1, 333, 333, 1, 9, false), 95 }; 96 97 static const struct radar_types fcc_radar_types = { 98 .region = NL80211_DFS_FCC, 99 .num_radar_types = ARRAY_SIZE(fcc_radar_ref_types), 100 .radar_types = fcc_radar_ref_types, 101 }; 102 103 #define JP_PATTERN(ID, WMIN, WMAX, PMIN, PMAX, PRF, PPB, RATE, CHIRP) \ 104 { \ 105 ID, WIDTH_LOWER(WMIN), WIDTH_UPPER(WMAX), \ 106 PMIN - PRI_TOLERANCE, \ 107 PMAX * PRF + PRI_TOLERANCE, PRF, PPB * PRF, \ 108 PPB_THRESH_RATE(PPB, RATE), PRI_TOLERANCE, CHIRP \ 109 } 110 static const struct radar_detector_specs jp_radar_ref_types[] = { 111 JP_PATTERN(0, 0, 1, 1428, 1428, 1, 18, 29, false), 112 JP_PATTERN(1, 2, 3, 3846, 3846, 1, 18, 29, false), 113 JP_PATTERN(2, 0, 1, 1388, 1388, 1, 18, 50, false), 114 JP_PATTERN(3, 1, 2, 4000, 4000, 1, 18, 50, false), 115 JP_PATTERN(4, 0, 5, 150, 230, 1, 23, 50, false), 116 JP_PATTERN(5, 6, 10, 200, 500, 1, 16, 50, false), 117 JP_PATTERN(6, 11, 20, 200, 500, 1, 12, 50, false), 118 JP_PATTERN(7, 50, 100, 1000, 2000, 1, 3, 50, false), 119 JP_PATTERN(5, 0, 1, 333, 333, 1, 9, 50, false), 120 }; 121 122 static const struct radar_types jp_radar_types = { 123 .region = NL80211_DFS_JP, 124 .num_radar_types = ARRAY_SIZE(jp_radar_ref_types), 125 .radar_types = jp_radar_ref_types, 126 }; 127 128 static const struct radar_types *dfs_domains[] = { 129 &etsi_radar_types_v15, 130 &fcc_radar_types, 131 &jp_radar_types, 132 }; 133 134 /** 135 * get_dfs_domain_radar_types() - get radar types for a given DFS domain 136 * @param domain DFS domain 137 * @return radar_types ptr on success, NULL if DFS domain is not supported 138 */ 139 static const struct radar_types * 140 get_dfs_domain_radar_types(enum nl80211_dfs_regions region) 141 { 142 u32 i; 143 for (i = 0; i < ARRAY_SIZE(dfs_domains); i++) { 144 if (dfs_domains[i]->region == region) 145 return dfs_domains[i]; 146 } 147 return NULL; 148 } 149 150 /** 151 * struct channel_detector - detector elements for a DFS channel 152 * @head: list_head 153 * @freq: frequency for this channel detector in MHz 154 * @detectors: array of dynamically created detector elements for this freq 155 * 156 * Channel detectors are required to provide multi-channel DFS detection, e.g. 157 * to support off-channel scanning. A pattern detector has a list of channels 158 * radar pulses have been reported for in the past. 159 */ 160 struct channel_detector { 161 struct list_head head; 162 u16 freq; 163 struct pri_detector **detectors; 164 }; 165 166 /* channel_detector_reset() - reset detector lines for a given channel */ 167 static void channel_detector_reset(struct dfs_pattern_detector *dpd, 168 struct channel_detector *cd) 169 { 170 u32 i; 171 if (cd == NULL) 172 return; 173 for (i = 0; i < dpd->num_radar_types; i++) 174 cd->detectors[i]->reset(cd->detectors[i], dpd->last_pulse_ts); 175 } 176 177 /* channel_detector_exit() - destructor */ 178 static void channel_detector_exit(struct dfs_pattern_detector *dpd, 179 struct channel_detector *cd) 180 { 181 u32 i; 182 if (cd == NULL) 183 return; 184 list_del(&cd->head); 185 for (i = 0; i < dpd->num_radar_types; i++) { 186 struct pri_detector *de = cd->detectors[i]; 187 if (de != NULL) 188 de->exit(de); 189 } 190 kfree(cd->detectors); 191 kfree(cd); 192 } 193 194 static struct channel_detector * 195 channel_detector_create(struct dfs_pattern_detector *dpd, u16 freq) 196 { 197 u32 sz, i; 198 struct channel_detector *cd; 199 200 cd = kmalloc(sizeof(*cd), GFP_ATOMIC); 201 if (cd == NULL) 202 goto fail; 203 204 INIT_LIST_HEAD(&cd->head); 205 cd->freq = freq; 206 sz = sizeof(cd->detectors) * dpd->num_radar_types; 207 cd->detectors = kzalloc(sz, GFP_ATOMIC); 208 if (cd->detectors == NULL) 209 goto fail; 210 211 for (i = 0; i < dpd->num_radar_types; i++) { 212 const struct radar_detector_specs *rs = &dpd->radar_spec[i]; 213 struct pri_detector *de = pri_detector_init(rs); 214 if (de == NULL) 215 goto fail; 216 cd->detectors[i] = de; 217 } 218 list_add(&cd->head, &dpd->channel_detectors); 219 return cd; 220 221 fail: 222 ath_dbg(dpd->common, DFS, 223 "failed to allocate channel_detector for freq=%d\n", freq); 224 channel_detector_exit(dpd, cd); 225 return NULL; 226 } 227 228 /** 229 * channel_detector_get() - get channel detector for given frequency 230 * @param dpd instance pointer 231 * @param freq frequency in MHz 232 * @return pointer to channel detector on success, NULL otherwise 233 * 234 * Return existing channel detector for the given frequency or return a 235 * newly create one. 236 */ 237 static struct channel_detector * 238 channel_detector_get(struct dfs_pattern_detector *dpd, u16 freq) 239 { 240 struct channel_detector *cd; 241 list_for_each_entry(cd, &dpd->channel_detectors, head) { 242 if (cd->freq == freq) 243 return cd; 244 } 245 return channel_detector_create(dpd, freq); 246 } 247 248 /* 249 * DFS Pattern Detector 250 */ 251 252 /* dpd_reset(): reset all channel detectors */ 253 static void dpd_reset(struct dfs_pattern_detector *dpd) 254 { 255 struct channel_detector *cd; 256 if (!list_empty(&dpd->channel_detectors)) 257 list_for_each_entry(cd, &dpd->channel_detectors, head) 258 channel_detector_reset(dpd, cd); 259 260 } 261 static void dpd_exit(struct dfs_pattern_detector *dpd) 262 { 263 struct channel_detector *cd, *cd0; 264 if (!list_empty(&dpd->channel_detectors)) 265 list_for_each_entry_safe(cd, cd0, &dpd->channel_detectors, head) 266 channel_detector_exit(dpd, cd); 267 kfree(dpd); 268 } 269 270 static bool 271 dpd_add_pulse(struct dfs_pattern_detector *dpd, struct pulse_event *event) 272 { 273 u32 i; 274 struct channel_detector *cd; 275 276 /* 277 * pulses received for a non-supported or un-initialized 278 * domain are treated as detected radars for fail-safety 279 */ 280 if (dpd->region == NL80211_DFS_UNSET) 281 return true; 282 283 cd = channel_detector_get(dpd, event->freq); 284 if (cd == NULL) 285 return false; 286 287 /* reset detector on time stamp wraparound, caused by TSF reset */ 288 if (event->ts < dpd->last_pulse_ts) 289 dpd_reset(dpd); 290 dpd->last_pulse_ts = event->ts; 291 292 /* do type individual pattern matching */ 293 for (i = 0; i < dpd->num_radar_types; i++) { 294 struct pri_detector *pd = cd->detectors[i]; 295 struct pri_sequence *ps = pd->add_pulse(pd, event); 296 if (ps != NULL) { 297 ath_dbg(dpd->common, DFS, 298 "DFS: radar found on freq=%d: id=%d, pri=%d, " 299 "count=%d, count_false=%d\n", 300 event->freq, pd->rs->type_id, 301 ps->pri, ps->count, ps->count_falses); 302 pd->reset(pd, dpd->last_pulse_ts); 303 return true; 304 } 305 } 306 return false; 307 } 308 309 static struct ath_dfs_pool_stats 310 dpd_get_stats(struct dfs_pattern_detector *dpd) 311 { 312 return global_dfs_pool_stats; 313 } 314 315 static bool dpd_set_domain(struct dfs_pattern_detector *dpd, 316 enum nl80211_dfs_regions region) 317 { 318 const struct radar_types *rt; 319 struct channel_detector *cd, *cd0; 320 321 if (dpd->region == region) 322 return true; 323 324 dpd->region = NL80211_DFS_UNSET; 325 326 rt = get_dfs_domain_radar_types(region); 327 if (rt == NULL) 328 return false; 329 330 /* delete all channel detectors for previous DFS domain */ 331 if (!list_empty(&dpd->channel_detectors)) 332 list_for_each_entry_safe(cd, cd0, &dpd->channel_detectors, head) 333 channel_detector_exit(dpd, cd); 334 dpd->radar_spec = rt->radar_types; 335 dpd->num_radar_types = rt->num_radar_types; 336 337 dpd->region = region; 338 return true; 339 } 340 341 static const struct dfs_pattern_detector default_dpd = { 342 .exit = dpd_exit, 343 .set_dfs_domain = dpd_set_domain, 344 .add_pulse = dpd_add_pulse, 345 .get_stats = dpd_get_stats, 346 .region = NL80211_DFS_UNSET, 347 }; 348 349 struct dfs_pattern_detector * 350 dfs_pattern_detector_init(struct ath_common *common, 351 enum nl80211_dfs_regions region) 352 { 353 struct dfs_pattern_detector *dpd; 354 355 if (!IS_ENABLED(CONFIG_CFG80211_CERTIFICATION_ONUS)) 356 return NULL; 357 358 dpd = kmalloc(sizeof(*dpd), GFP_KERNEL); 359 if (dpd == NULL) 360 return NULL; 361 362 *dpd = default_dpd; 363 INIT_LIST_HEAD(&dpd->channel_detectors); 364 365 dpd->common = common; 366 if (dpd->set_dfs_domain(dpd, region)) 367 return dpd; 368 369 ath_dbg(common, DFS,"Could not set DFS domain to %d", region); 370 kfree(dpd); 371 return NULL; 372 } 373 EXPORT_SYMBOL(dfs_pattern_detector_init); 374