1 /* 2 * Atheros CARL9170 driver 3 * 4 * 802.11 xmit & status routines 5 * 6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, see 21 * http://www.gnu.org/licenses/. 22 * 23 * This file incorporates work covered by the following copyright and 24 * permission notice: 25 * Copyright (c) 2007-2008 Atheros Communications, Inc. 26 * 27 * Permission to use, copy, modify, and/or distribute this software for any 28 * purpose with or without fee is hereby granted, provided that the above 29 * copyright notice and this permission notice appear in all copies. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 38 */ 39 40 #include <linux/slab.h> 41 #include <linux/module.h> 42 #include <linux/etherdevice.h> 43 #include <net/mac80211.h> 44 #include "carl9170.h" 45 #include "hw.h" 46 #include "cmd.h" 47 48 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar, 49 unsigned int queue) 50 { 51 if (unlikely(modparam_noht)) { 52 return queue; 53 } else { 54 /* 55 * This is just another workaround, until 56 * someone figures out how to get QoS and 57 * AMPDU to play nicely together. 58 */ 59 60 return 2; /* AC_BE */ 61 } 62 } 63 64 static inline unsigned int carl9170_get_queue(struct ar9170 *ar, 65 struct sk_buff *skb) 66 { 67 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb)); 68 } 69 70 static bool is_mem_full(struct ar9170 *ar) 71 { 72 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) > 73 atomic_read(&ar->mem_free_blocks)); 74 } 75 76 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb) 77 { 78 int queue, i; 79 bool mem_full; 80 81 atomic_inc(&ar->tx_total_queued); 82 83 queue = skb_get_queue_mapping(skb); 84 spin_lock_bh(&ar->tx_stats_lock); 85 86 /* 87 * The driver has to accept the frame, regardless if the queue is 88 * full to the brim, or not. We have to do the queuing internally, 89 * since mac80211 assumes that a driver which can operate with 90 * aggregated frames does not reject frames for this reason. 91 */ 92 ar->tx_stats[queue].len++; 93 ar->tx_stats[queue].count++; 94 95 mem_full = is_mem_full(ar); 96 for (i = 0; i < ar->hw->queues; i++) { 97 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) { 98 ieee80211_stop_queue(ar->hw, i); 99 ar->queue_stop_timeout[i] = jiffies; 100 } 101 } 102 103 spin_unlock_bh(&ar->tx_stats_lock); 104 } 105 106 /* needs rcu_read_lock */ 107 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar, 108 struct sk_buff *skb) 109 { 110 struct _carl9170_tx_superframe *super = (void *) skb->data; 111 struct ieee80211_hdr *hdr = (void *) super->frame_data; 112 struct ieee80211_vif *vif; 113 unsigned int vif_id; 114 115 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >> 116 CARL9170_TX_SUPER_MISC_VIF_ID_S; 117 118 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC)) 119 return NULL; 120 121 vif = rcu_dereference(ar->vif_priv[vif_id].vif); 122 if (unlikely(!vif)) 123 return NULL; 124 125 /* 126 * Normally we should use wrappers like ieee80211_get_DA to get 127 * the correct peer ieee80211_sta. 128 * 129 * But there is a problem with indirect traffic (broadcasts, or 130 * data which is designated for other stations) in station mode. 131 * The frame will be directed to the AP for distribution and not 132 * to the actual destination. 133 */ 134 135 return ieee80211_find_sta(vif, hdr->addr1); 136 } 137 138 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb) 139 { 140 struct ieee80211_sta *sta; 141 struct carl9170_sta_info *sta_info; 142 143 rcu_read_lock(); 144 sta = __carl9170_get_tx_sta(ar, skb); 145 if (unlikely(!sta)) 146 goto out_rcu; 147 148 sta_info = (struct carl9170_sta_info *) sta->drv_priv; 149 if (atomic_dec_return(&sta_info->pending_frames) == 0) 150 ieee80211_sta_block_awake(ar->hw, sta, false); 151 152 out_rcu: 153 rcu_read_unlock(); 154 } 155 156 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb) 157 { 158 int queue; 159 160 queue = skb_get_queue_mapping(skb); 161 162 spin_lock_bh(&ar->tx_stats_lock); 163 164 ar->tx_stats[queue].len--; 165 166 if (!is_mem_full(ar)) { 167 unsigned int i; 168 for (i = 0; i < ar->hw->queues; i++) { 169 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT) 170 continue; 171 172 if (ieee80211_queue_stopped(ar->hw, i)) { 173 unsigned long tmp; 174 175 tmp = jiffies - ar->queue_stop_timeout[i]; 176 if (tmp > ar->max_queue_stop_timeout[i]) 177 ar->max_queue_stop_timeout[i] = tmp; 178 } 179 180 ieee80211_wake_queue(ar->hw, i); 181 } 182 } 183 184 spin_unlock_bh(&ar->tx_stats_lock); 185 186 if (atomic_dec_and_test(&ar->tx_total_queued)) 187 complete(&ar->tx_flush); 188 } 189 190 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb) 191 { 192 struct _carl9170_tx_superframe *super; 193 unsigned int chunks; 194 int cookie = -1; 195 196 atomic_inc(&ar->mem_allocs); 197 198 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size); 199 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) { 200 atomic_add(chunks, &ar->mem_free_blocks); 201 return -ENOSPC; 202 } 203 204 spin_lock_bh(&ar->mem_lock); 205 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0); 206 spin_unlock_bh(&ar->mem_lock); 207 208 if (unlikely(cookie < 0)) { 209 atomic_add(chunks, &ar->mem_free_blocks); 210 return -ENOSPC; 211 } 212 213 super = (void *) skb->data; 214 215 /* 216 * Cookie #0 serves two special purposes: 217 * 1. The firmware might use it generate BlockACK frames 218 * in responds of an incoming BlockAckReqs. 219 * 220 * 2. Prevent double-free bugs. 221 */ 222 super->s.cookie = (u8) cookie + 1; 223 return 0; 224 } 225 226 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb) 227 { 228 struct _carl9170_tx_superframe *super = (void *) skb->data; 229 int cookie; 230 231 /* make a local copy of the cookie */ 232 cookie = super->s.cookie; 233 /* invalidate cookie */ 234 super->s.cookie = 0; 235 236 /* 237 * Do a out-of-bounds check on the cookie: 238 * 239 * * cookie "0" is reserved and won't be assigned to any 240 * out-going frame. Internally however, it is used to 241 * mark no longer/un-accounted frames and serves as a 242 * cheap way of preventing frames from being freed 243 * twice by _accident_. NB: There is a tiny race... 244 * 245 * * obviously, cookie number is limited by the amount 246 * of available memory blocks, so the number can 247 * never execeed the mem_blocks count. 248 */ 249 if (WARN_ON_ONCE(cookie == 0) || 250 WARN_ON_ONCE(cookie > ar->fw.mem_blocks)) 251 return; 252 253 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size), 254 &ar->mem_free_blocks); 255 256 spin_lock_bh(&ar->mem_lock); 257 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0); 258 spin_unlock_bh(&ar->mem_lock); 259 } 260 261 /* Called from any context */ 262 static void carl9170_tx_release(struct kref *ref) 263 { 264 struct ar9170 *ar; 265 struct carl9170_tx_info *arinfo; 266 struct ieee80211_tx_info *txinfo; 267 struct sk_buff *skb; 268 269 arinfo = container_of(ref, struct carl9170_tx_info, ref); 270 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info, 271 rate_driver_data); 272 skb = container_of((void *) txinfo, struct sk_buff, cb); 273 274 ar = arinfo->ar; 275 if (WARN_ON_ONCE(!ar)) 276 return; 277 278 /* 279 * This does not call ieee80211_tx_info_clear_status() because 280 * carl9170_tx_fill_rateinfo() has filled the rate information 281 * before we get to this point. 282 */ 283 memset_after(&txinfo->status, 0, rates); 284 285 if (atomic_read(&ar->tx_total_queued)) 286 ar->tx_schedule = true; 287 288 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) { 289 if (!atomic_read(&ar->tx_ampdu_upload)) 290 ar->tx_ampdu_schedule = true; 291 292 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) { 293 struct _carl9170_tx_superframe *super; 294 295 super = (void *)skb->data; 296 txinfo->status.ampdu_len = super->s.rix; 297 txinfo->status.ampdu_ack_len = super->s.cnt; 298 } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) && 299 !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) { 300 /* 301 * drop redundant tx_status reports: 302 * 303 * 1. ampdu_ack_len of the final tx_status does 304 * include the feedback of this particular frame. 305 * 306 * 2. tx_status_irqsafe only queues up to 128 307 * tx feedback reports and discards the rest. 308 * 309 * 3. minstrel_ht is picky, it only accepts 310 * reports of frames with the TX_STATUS_AMPDU flag. 311 * 312 * 4. mac80211 is not particularly interested in 313 * feedback either [CTL_REQ_TX_STATUS not set] 314 */ 315 316 ieee80211_free_txskb(ar->hw, skb); 317 return; 318 } else { 319 /* 320 * Either the frame transmission has failed or 321 * mac80211 requested tx status. 322 */ 323 } 324 } 325 326 skb_pull(skb, sizeof(struct _carl9170_tx_superframe)); 327 ieee80211_tx_status_irqsafe(ar->hw, skb); 328 } 329 330 void carl9170_tx_get_skb(struct sk_buff *skb) 331 { 332 struct carl9170_tx_info *arinfo = (void *) 333 (IEEE80211_SKB_CB(skb))->rate_driver_data; 334 kref_get(&arinfo->ref); 335 } 336 337 int carl9170_tx_put_skb(struct sk_buff *skb) 338 { 339 struct carl9170_tx_info *arinfo = (void *) 340 (IEEE80211_SKB_CB(skb))->rate_driver_data; 341 342 return kref_put(&arinfo->ref, carl9170_tx_release); 343 } 344 345 /* Caller must hold the tid_info->lock & rcu_read_lock */ 346 static void carl9170_tx_shift_bm(struct ar9170 *ar, 347 struct carl9170_sta_tid *tid_info, u16 seq) 348 { 349 u16 off; 350 351 off = SEQ_DIFF(seq, tid_info->bsn); 352 353 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 354 return; 355 356 /* 357 * Sanity check. For each MPDU we set the bit in bitmap and 358 * clear it once we received the tx_status. 359 * But if the bit is already cleared then we've been bitten 360 * by a bug. 361 */ 362 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap)); 363 364 off = SEQ_DIFF(tid_info->snx, tid_info->bsn); 365 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 366 return; 367 368 if (!bitmap_empty(tid_info->bitmap, off)) 369 off = find_first_bit(tid_info->bitmap, off); 370 371 tid_info->bsn += off; 372 tid_info->bsn &= 0x0fff; 373 374 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap, 375 off, CARL9170_BAW_BITS); 376 } 377 378 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar, 379 struct sk_buff *skb, struct ieee80211_tx_info *txinfo) 380 { 381 struct _carl9170_tx_superframe *super = (void *) skb->data; 382 struct ieee80211_hdr *hdr = (void *) super->frame_data; 383 struct ieee80211_sta *sta; 384 struct carl9170_sta_info *sta_info; 385 struct carl9170_sta_tid *tid_info; 386 u8 tid; 387 388 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) || 389 txinfo->flags & IEEE80211_TX_CTL_INJECTED) 390 return; 391 392 rcu_read_lock(); 393 sta = __carl9170_get_tx_sta(ar, skb); 394 if (unlikely(!sta)) 395 goto out_rcu; 396 397 tid = ieee80211_get_tid(hdr); 398 399 sta_info = (void *) sta->drv_priv; 400 tid_info = rcu_dereference(sta_info->agg[tid]); 401 if (!tid_info) 402 goto out_rcu; 403 404 spin_lock_bh(&tid_info->lock); 405 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE)) 406 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr)); 407 408 if (sta_info->stats[tid].clear) { 409 sta_info->stats[tid].clear = false; 410 sta_info->stats[tid].req = false; 411 sta_info->stats[tid].ampdu_len = 0; 412 sta_info->stats[tid].ampdu_ack_len = 0; 413 } 414 415 sta_info->stats[tid].ampdu_len++; 416 if (txinfo->status.rates[0].count == 1) 417 sta_info->stats[tid].ampdu_ack_len++; 418 419 if (!(txinfo->flags & IEEE80211_TX_STAT_ACK)) 420 sta_info->stats[tid].req = true; 421 422 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) { 423 super->s.rix = sta_info->stats[tid].ampdu_len; 424 super->s.cnt = sta_info->stats[tid].ampdu_ack_len; 425 txinfo->flags |= IEEE80211_TX_STAT_AMPDU; 426 if (sta_info->stats[tid].req) 427 txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 428 429 sta_info->stats[tid].clear = true; 430 } 431 spin_unlock_bh(&tid_info->lock); 432 433 out_rcu: 434 rcu_read_unlock(); 435 } 436 437 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb, 438 struct ieee80211_tx_info *tx_info) 439 { 440 struct _carl9170_tx_superframe *super = (void *) skb->data; 441 struct ieee80211_bar *bar = (void *) super->frame_data; 442 443 /* 444 * Unlike all other frames, the status report for BARs does 445 * not directly come from the hardware as it is incapable of 446 * matching a BA to a previously send BAR. 447 * Instead the RX-path will scan for incoming BAs and set the 448 * IEEE80211_TX_STAT_ACK if it sees one that was likely 449 * caused by a BAR from us. 450 */ 451 452 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 453 !(tx_info->flags & IEEE80211_TX_STAT_ACK)) { 454 struct carl9170_bar_list_entry *entry; 455 int queue = skb_get_queue_mapping(skb); 456 457 rcu_read_lock(); 458 list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) { 459 if (entry->skb == skb) { 460 spin_lock_bh(&ar->bar_list_lock[queue]); 461 list_del_rcu(&entry->list); 462 spin_unlock_bh(&ar->bar_list_lock[queue]); 463 kfree_rcu(entry, head); 464 goto out; 465 } 466 } 467 468 WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n", 469 queue, bar->ra, bar->ta, bar->control, 470 bar->start_seq_num); 471 out: 472 rcu_read_unlock(); 473 } 474 } 475 476 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb, 477 const bool success) 478 { 479 struct ieee80211_tx_info *txinfo; 480 481 carl9170_tx_accounting_free(ar, skb); 482 483 txinfo = IEEE80211_SKB_CB(skb); 484 485 carl9170_tx_bar_status(ar, skb, txinfo); 486 487 if (success) 488 txinfo->flags |= IEEE80211_TX_STAT_ACK; 489 else 490 ar->tx_ack_failures++; 491 492 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 493 carl9170_tx_status_process_ampdu(ar, skb, txinfo); 494 495 carl9170_tx_ps_unblock(ar, skb); 496 carl9170_tx_put_skb(skb); 497 } 498 499 /* This function may be called form any context */ 500 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb) 501 { 502 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb); 503 504 atomic_dec(&ar->tx_total_pending); 505 506 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 507 atomic_dec(&ar->tx_ampdu_upload); 508 509 if (carl9170_tx_put_skb(skb)) 510 tasklet_hi_schedule(&ar->usb_tasklet); 511 } 512 513 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie, 514 struct sk_buff_head *queue) 515 { 516 struct sk_buff *skb; 517 518 spin_lock_bh(&queue->lock); 519 skb_queue_walk(queue, skb) { 520 struct _carl9170_tx_superframe *txc = (void *) skb->data; 521 522 if (txc->s.cookie != cookie) 523 continue; 524 525 __skb_unlink(skb, queue); 526 spin_unlock_bh(&queue->lock); 527 528 carl9170_release_dev_space(ar, skb); 529 return skb; 530 } 531 spin_unlock_bh(&queue->lock); 532 533 return NULL; 534 } 535 536 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix, 537 unsigned int tries, struct ieee80211_tx_info *txinfo) 538 { 539 unsigned int i; 540 541 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 542 if (txinfo->status.rates[i].idx < 0) 543 break; 544 545 if (i == rix) { 546 txinfo->status.rates[i].count = tries; 547 i++; 548 break; 549 } 550 } 551 552 for (; i < IEEE80211_TX_MAX_RATES; i++) { 553 txinfo->status.rates[i].idx = -1; 554 txinfo->status.rates[i].count = 0; 555 } 556 } 557 558 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar) 559 { 560 int i; 561 struct sk_buff *skb; 562 struct ieee80211_tx_info *txinfo; 563 struct carl9170_tx_info *arinfo; 564 bool restart = false; 565 566 for (i = 0; i < ar->hw->queues; i++) { 567 spin_lock_bh(&ar->tx_status[i].lock); 568 569 skb = skb_peek(&ar->tx_status[i]); 570 571 if (!skb) 572 goto next; 573 574 txinfo = IEEE80211_SKB_CB(skb); 575 arinfo = (void *) txinfo->rate_driver_data; 576 577 if (time_is_before_jiffies(arinfo->timeout + 578 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true) 579 restart = true; 580 581 next: 582 spin_unlock_bh(&ar->tx_status[i].lock); 583 } 584 585 if (restart) { 586 /* 587 * At least one queue has been stuck for long enough. 588 * Give the device a kick and hope it gets back to 589 * work. 590 * 591 * possible reasons may include: 592 * - frames got lost/corrupted (bad connection to the device) 593 * - stalled rx processing/usb controller hiccups 594 * - firmware errors/bugs 595 * - every bug you can think of. 596 * - all bugs you can't... 597 * - ... 598 */ 599 carl9170_restart(ar, CARL9170_RR_STUCK_TX); 600 } 601 } 602 603 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar) 604 { 605 struct carl9170_sta_tid *iter; 606 struct sk_buff *skb; 607 struct ieee80211_tx_info *txinfo; 608 struct carl9170_tx_info *arinfo; 609 struct ieee80211_sta *sta; 610 611 rcu_read_lock(); 612 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) { 613 if (iter->state < CARL9170_TID_STATE_IDLE) 614 continue; 615 616 spin_lock_bh(&iter->lock); 617 skb = skb_peek(&iter->queue); 618 if (!skb) 619 goto unlock; 620 621 txinfo = IEEE80211_SKB_CB(skb); 622 arinfo = (void *)txinfo->rate_driver_data; 623 if (time_is_after_jiffies(arinfo->timeout + 624 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT))) 625 goto unlock; 626 627 sta = iter->sta; 628 if (WARN_ON(!sta)) 629 goto unlock; 630 631 ieee80211_stop_tx_ba_session(sta, iter->tid); 632 unlock: 633 spin_unlock_bh(&iter->lock); 634 635 } 636 rcu_read_unlock(); 637 } 638 639 void carl9170_tx_janitor(struct work_struct *work) 640 { 641 struct ar9170 *ar = container_of(work, struct ar9170, 642 tx_janitor.work); 643 if (!IS_STARTED(ar)) 644 return; 645 646 ar->tx_janitor_last_run = jiffies; 647 648 carl9170_check_queue_stop_timeout(ar); 649 carl9170_tx_ampdu_timeout(ar); 650 651 if (!atomic_read(&ar->tx_total_queued)) 652 return; 653 654 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 655 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 656 } 657 658 static void __carl9170_tx_process_status(struct ar9170 *ar, 659 const uint8_t cookie, const uint8_t info) 660 { 661 struct sk_buff *skb; 662 struct ieee80211_tx_info *txinfo; 663 unsigned int r, t, q; 664 bool success = true; 665 666 q = ar9170_qmap(info & CARL9170_TX_STATUS_QUEUE); 667 668 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]); 669 if (!skb) { 670 /* 671 * We have lost the race to another thread. 672 */ 673 674 return ; 675 } 676 677 txinfo = IEEE80211_SKB_CB(skb); 678 679 if (!(info & CARL9170_TX_STATUS_SUCCESS)) 680 success = false; 681 682 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S; 683 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S; 684 685 carl9170_tx_fill_rateinfo(ar, r, t, txinfo); 686 carl9170_tx_status(ar, skb, success); 687 } 688 689 void carl9170_tx_process_status(struct ar9170 *ar, 690 const struct carl9170_rsp *cmd) 691 { 692 unsigned int i; 693 694 for (i = 0; i < cmd->hdr.ext; i++) { 695 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) { 696 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE, 697 (void *) cmd, cmd->hdr.len + 4); 698 break; 699 } 700 701 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie, 702 cmd->_tx_status[i].info); 703 } 704 } 705 706 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar, 707 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate, 708 unsigned int *phyrate, unsigned int *tpc, unsigned int *chains) 709 { 710 struct ieee80211_rate *rate = NULL; 711 u8 *txpower; 712 unsigned int idx; 713 714 idx = txrate->idx; 715 *tpc = 0; 716 *phyrate = 0; 717 718 if (txrate->flags & IEEE80211_TX_RC_MCS) { 719 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 720 /* +1 dBm for HT40 */ 721 *tpc += 2; 722 723 if (info->band == NL80211_BAND_2GHZ) 724 txpower = ar->power_2G_ht40; 725 else 726 txpower = ar->power_5G_ht40; 727 } else { 728 if (info->band == NL80211_BAND_2GHZ) 729 txpower = ar->power_2G_ht20; 730 else 731 txpower = ar->power_5G_ht20; 732 } 733 734 *phyrate = txrate->idx; 735 *tpc += txpower[idx & 7]; 736 } else { 737 if (info->band == NL80211_BAND_2GHZ) { 738 if (idx < 4) 739 txpower = ar->power_2G_cck; 740 else 741 txpower = ar->power_2G_ofdm; 742 } else { 743 txpower = ar->power_5G_leg; 744 idx += 4; 745 } 746 747 rate = &__carl9170_ratetable[idx]; 748 *tpc += txpower[(rate->hw_value & 0x30) >> 4]; 749 *phyrate = rate->hw_value & 0xf; 750 } 751 752 if (ar->eeprom.tx_mask == 1) { 753 *chains = AR9170_TX_PHY_TXCHAIN_1; 754 } else { 755 if (!(txrate->flags & IEEE80211_TX_RC_MCS) && 756 rate && rate->bitrate >= 360) 757 *chains = AR9170_TX_PHY_TXCHAIN_1; 758 else 759 *chains = AR9170_TX_PHY_TXCHAIN_2; 760 } 761 762 *tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2); 763 } 764 765 static __le32 carl9170_tx_physet(struct ar9170 *ar, 766 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate) 767 { 768 unsigned int power = 0, chains = 0, phyrate = 0; 769 __le32 tmp; 770 771 tmp = cpu_to_le32(0); 772 773 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 774 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ << 775 AR9170_TX_PHY_BW_S); 776 /* this works because 40 MHz is 2 and dup is 3 */ 777 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA) 778 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP << 779 AR9170_TX_PHY_BW_S); 780 781 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) 782 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI); 783 784 if (txrate->flags & IEEE80211_TX_RC_MCS) { 785 SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx); 786 787 /* heavy clip control */ 788 tmp |= cpu_to_le32((txrate->idx & 0x7) << 789 AR9170_TX_PHY_TX_HEAVY_CLIP_S); 790 791 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT); 792 793 /* 794 * green field preamble does not work. 795 * 796 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) 797 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD); 798 */ 799 } else { 800 if (info->band == NL80211_BAND_2GHZ) { 801 if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M) 802 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK); 803 else 804 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 805 } else { 806 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 807 } 808 809 /* 810 * short preamble seems to be broken too. 811 * 812 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 813 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE); 814 */ 815 } 816 carl9170_tx_rate_tpc_chains(ar, info, txrate, 817 &phyrate, &power, &chains); 818 819 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate)); 820 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power)); 821 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains)); 822 return tmp; 823 } 824 825 static bool carl9170_tx_rts_check(struct ar9170 *ar, 826 struct ieee80211_tx_rate *rate, 827 bool ampdu, bool multi) 828 { 829 switch (ar->erp_mode) { 830 case CARL9170_ERP_AUTO: 831 if (ampdu) 832 break; 833 fallthrough; 834 835 case CARL9170_ERP_MAC80211: 836 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)) 837 break; 838 fallthrough; 839 840 case CARL9170_ERP_RTS: 841 if (likely(!multi)) 842 return true; 843 break; 844 845 default: 846 break; 847 } 848 849 return false; 850 } 851 852 static bool carl9170_tx_cts_check(struct ar9170 *ar, 853 struct ieee80211_tx_rate *rate) 854 { 855 switch (ar->erp_mode) { 856 case CARL9170_ERP_AUTO: 857 case CARL9170_ERP_MAC80211: 858 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)) 859 break; 860 fallthrough; 861 862 case CARL9170_ERP_CTS: 863 return true; 864 865 default: 866 break; 867 } 868 869 return false; 870 } 871 872 static void carl9170_tx_get_rates(struct ar9170 *ar, 873 struct ieee80211_vif *vif, 874 struct ieee80211_sta *sta, 875 struct sk_buff *skb) 876 { 877 struct ieee80211_tx_info *info; 878 879 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES); 880 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES > IEEE80211_TX_RATE_TABLE_SIZE); 881 882 info = IEEE80211_SKB_CB(skb); 883 884 ieee80211_get_tx_rates(vif, sta, skb, 885 info->control.rates, 886 IEEE80211_TX_MAX_RATES); 887 } 888 889 static void carl9170_tx_apply_rateset(struct ar9170 *ar, 890 struct ieee80211_tx_info *sinfo, 891 struct sk_buff *skb) 892 { 893 struct ieee80211_tx_rate *txrate; 894 struct ieee80211_tx_info *info; 895 struct _carl9170_tx_superframe *txc = (void *) skb->data; 896 int i; 897 bool ampdu; 898 bool no_ack; 899 900 info = IEEE80211_SKB_CB(skb); 901 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU); 902 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK); 903 904 /* Set the rate control probe flag for all (sub-) frames. 905 * This is because the TX_STATS_AMPDU flag is only set on 906 * the last frame, so it has to be inherited. 907 */ 908 info->flags |= (sinfo->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 909 910 /* NOTE: For the first rate, the ERP & AMPDU flags are directly 911 * taken from mac_control. For all fallback rate, the firmware 912 * updates the mac_control flags from the rate info field. 913 */ 914 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) { 915 __le32 phy_set; 916 917 txrate = &sinfo->control.rates[i]; 918 if (txrate->idx < 0) 919 break; 920 921 phy_set = carl9170_tx_physet(ar, info, txrate); 922 if (i == 0) { 923 __le16 mac_tmp = cpu_to_le16(0); 924 925 /* first rate - part of the hw's frame header */ 926 txc->f.phy_control = phy_set; 927 928 if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS) 929 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR); 930 931 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 932 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS); 933 else if (carl9170_tx_cts_check(ar, txrate)) 934 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS); 935 936 txc->f.mac_control |= mac_tmp; 937 } else { 938 /* fallback rates are stored in the firmware's 939 * retry rate set array. 940 */ 941 txc->s.rr[i - 1] = phy_set; 942 } 943 944 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i], 945 txrate->count); 946 947 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 948 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS << 949 CARL9170_TX_SUPER_RI_ERP_PROT_S); 950 else if (carl9170_tx_cts_check(ar, txrate)) 951 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS << 952 CARL9170_TX_SUPER_RI_ERP_PROT_S); 953 954 if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS)) 955 txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU; 956 } 957 } 958 959 static int carl9170_tx_prepare(struct ar9170 *ar, 960 struct ieee80211_sta *sta, 961 struct sk_buff *skb) 962 { 963 struct ieee80211_hdr *hdr; 964 struct _carl9170_tx_superframe *txc; 965 struct carl9170_vif_info *cvif; 966 struct ieee80211_tx_info *info; 967 struct carl9170_tx_info *arinfo; 968 unsigned int hw_queue; 969 __le16 mac_tmp; 970 u16 len; 971 972 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 973 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) != 974 CARL9170_TX_SUPERDESC_LEN); 975 976 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) != 977 AR9170_TX_HWDESC_LEN); 978 979 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC > 980 ((CARL9170_TX_SUPER_MISC_VIF_ID >> 981 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1)); 982 983 hw_queue = ar9170_qmap(carl9170_get_queue(ar, skb)); 984 985 hdr = (void *)skb->data; 986 info = IEEE80211_SKB_CB(skb); 987 len = skb->len; 988 989 /* 990 * Note: If the frame was sent through a monitor interface, 991 * the ieee80211_vif pointer can be NULL. 992 */ 993 if (likely(info->control.vif)) 994 cvif = (void *) info->control.vif->drv_priv; 995 else 996 cvif = NULL; 997 998 txc = skb_push(skb, sizeof(*txc)); 999 memset(txc, 0, sizeof(*txc)); 1000 1001 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue); 1002 1003 if (likely(cvif)) 1004 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id); 1005 1006 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)) 1007 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB; 1008 1009 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 1010 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ; 1011 1012 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) 1013 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF; 1014 1015 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION | 1016 AR9170_TX_MAC_BACKOFF); 1017 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) & 1018 AR9170_TX_MAC_QOS); 1019 1020 if (unlikely(info->flags & IEEE80211_TX_CTL_NO_ACK)) 1021 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK); 1022 1023 if (info->control.hw_key) { 1024 len += info->control.hw_key->icv_len; 1025 1026 switch (info->control.hw_key->cipher) { 1027 case WLAN_CIPHER_SUITE_WEP40: 1028 case WLAN_CIPHER_SUITE_WEP104: 1029 case WLAN_CIPHER_SUITE_TKIP: 1030 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4); 1031 break; 1032 case WLAN_CIPHER_SUITE_CCMP: 1033 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES); 1034 break; 1035 default: 1036 WARN_ON(1); 1037 goto err_out; 1038 } 1039 } 1040 1041 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1042 unsigned int density, factor; 1043 1044 if (unlikely(!sta || !cvif)) 1045 goto err_out; 1046 1047 factor = min_t(unsigned int, 1u, 1048 sta->deflink.ht_cap.ampdu_factor); 1049 density = sta->deflink.ht_cap.ampdu_density; 1050 1051 if (density) { 1052 /* 1053 * Watch out! 1054 * 1055 * Otus uses slightly different density values than 1056 * those from the 802.11n spec. 1057 */ 1058 1059 density = max_t(unsigned int, density + 1, 7u); 1060 } 1061 1062 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY, 1063 txc->s.ampdu_settings, density); 1064 1065 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR, 1066 txc->s.ampdu_settings, factor); 1067 } 1068 1069 txc->s.len = cpu_to_le16(skb->len); 1070 txc->f.length = cpu_to_le16(len + FCS_LEN); 1071 txc->f.mac_control = mac_tmp; 1072 1073 arinfo = (void *)info->rate_driver_data; 1074 arinfo->timeout = jiffies; 1075 arinfo->ar = ar; 1076 kref_init(&arinfo->ref); 1077 return 0; 1078 1079 err_out: 1080 skb_pull(skb, sizeof(*txc)); 1081 return -EINVAL; 1082 } 1083 1084 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb) 1085 { 1086 struct _carl9170_tx_superframe *super; 1087 1088 super = (void *) skb->data; 1089 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA); 1090 } 1091 1092 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb) 1093 { 1094 struct _carl9170_tx_superframe *super; 1095 int tmp; 1096 1097 super = (void *) skb->data; 1098 1099 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) << 1100 CARL9170_TX_SUPER_AMPDU_DENSITY_S; 1101 1102 /* 1103 * If you haven't noticed carl9170_tx_prepare has already filled 1104 * in all ampdu spacing & factor parameters. 1105 * Now it's the time to check whenever the settings have to be 1106 * updated by the firmware, or if everything is still the same. 1107 * 1108 * There's no sane way to handle different density values with 1109 * this hardware, so we may as well just do the compare in the 1110 * driver. 1111 */ 1112 1113 if (tmp != ar->current_density) { 1114 ar->current_density = tmp; 1115 super->s.ampdu_settings |= 1116 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY; 1117 } 1118 1119 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) << 1120 CARL9170_TX_SUPER_AMPDU_FACTOR_S; 1121 1122 if (tmp != ar->current_factor) { 1123 ar->current_factor = tmp; 1124 super->s.ampdu_settings |= 1125 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR; 1126 } 1127 } 1128 1129 static void carl9170_tx_ampdu(struct ar9170 *ar) 1130 { 1131 struct sk_buff_head agg; 1132 struct carl9170_sta_tid *tid_info; 1133 struct sk_buff *skb, *first; 1134 struct ieee80211_tx_info *tx_info_first; 1135 unsigned int i = 0, done_ampdus = 0; 1136 u16 seq, queue, tmpssn; 1137 1138 atomic_inc(&ar->tx_ampdu_scheduler); 1139 ar->tx_ampdu_schedule = false; 1140 1141 if (atomic_read(&ar->tx_ampdu_upload)) 1142 return; 1143 1144 if (!ar->tx_ampdu_list_len) 1145 return; 1146 1147 __skb_queue_head_init(&agg); 1148 1149 rcu_read_lock(); 1150 tid_info = rcu_dereference(ar->tx_ampdu_iter); 1151 if (WARN_ON_ONCE(!tid_info)) { 1152 rcu_read_unlock(); 1153 return; 1154 } 1155 1156 retry: 1157 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) { 1158 i++; 1159 1160 if (tid_info->state < CARL9170_TID_STATE_PROGRESS) 1161 continue; 1162 1163 queue = TID_TO_WME_AC(tid_info->tid); 1164 1165 spin_lock_bh(&tid_info->lock); 1166 if (tid_info->state != CARL9170_TID_STATE_XMIT) 1167 goto processed; 1168 1169 tid_info->counter++; 1170 first = skb_peek(&tid_info->queue); 1171 tmpssn = carl9170_get_seq(first); 1172 seq = tid_info->snx; 1173 1174 if (unlikely(tmpssn != seq)) { 1175 tid_info->state = CARL9170_TID_STATE_IDLE; 1176 1177 goto processed; 1178 } 1179 1180 tx_info_first = NULL; 1181 while ((skb = skb_peek(&tid_info->queue))) { 1182 /* strict 0, 1, ..., n - 1, n frame sequence order */ 1183 if (unlikely(carl9170_get_seq(skb) != seq)) 1184 break; 1185 1186 /* don't upload more than AMPDU FACTOR allows. */ 1187 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >= 1188 (tid_info->max - 1))) 1189 break; 1190 1191 if (!tx_info_first) { 1192 carl9170_tx_get_rates(ar, tid_info->vif, 1193 tid_info->sta, first); 1194 tx_info_first = IEEE80211_SKB_CB(first); 1195 } 1196 1197 carl9170_tx_apply_rateset(ar, tx_info_first, skb); 1198 1199 atomic_inc(&ar->tx_ampdu_upload); 1200 tid_info->snx = seq = SEQ_NEXT(seq); 1201 __skb_unlink(skb, &tid_info->queue); 1202 1203 __skb_queue_tail(&agg, skb); 1204 1205 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX) 1206 break; 1207 } 1208 1209 if (skb_queue_empty(&tid_info->queue) || 1210 carl9170_get_seq(skb_peek(&tid_info->queue)) != 1211 tid_info->snx) { 1212 /* stop TID, if A-MPDU frames are still missing, 1213 * or whenever the queue is empty. 1214 */ 1215 1216 tid_info->state = CARL9170_TID_STATE_IDLE; 1217 } 1218 done_ampdus++; 1219 1220 processed: 1221 spin_unlock_bh(&tid_info->lock); 1222 1223 if (skb_queue_empty(&agg)) 1224 continue; 1225 1226 /* apply ampdu spacing & factor settings */ 1227 carl9170_set_ampdu_params(ar, skb_peek(&agg)); 1228 1229 /* set aggregation push bit */ 1230 carl9170_set_immba(ar, skb_peek_tail(&agg)); 1231 1232 spin_lock_bh(&ar->tx_pending[queue].lock); 1233 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]); 1234 spin_unlock_bh(&ar->tx_pending[queue].lock); 1235 ar->tx_schedule = true; 1236 } 1237 if ((done_ampdus++ == 0) && (i++ == 0)) 1238 goto retry; 1239 1240 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info); 1241 rcu_read_unlock(); 1242 } 1243 1244 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar, 1245 struct sk_buff_head *queue) 1246 { 1247 struct sk_buff *skb; 1248 struct ieee80211_tx_info *info; 1249 struct carl9170_tx_info *arinfo; 1250 1251 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 1252 1253 spin_lock_bh(&queue->lock); 1254 skb = skb_peek(queue); 1255 if (unlikely(!skb)) 1256 goto err_unlock; 1257 1258 if (carl9170_alloc_dev_space(ar, skb)) 1259 goto err_unlock; 1260 1261 __skb_unlink(skb, queue); 1262 spin_unlock_bh(&queue->lock); 1263 1264 info = IEEE80211_SKB_CB(skb); 1265 arinfo = (void *) info->rate_driver_data; 1266 1267 arinfo->timeout = jiffies; 1268 return skb; 1269 1270 err_unlock: 1271 spin_unlock_bh(&queue->lock); 1272 return NULL; 1273 } 1274 1275 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb) 1276 { 1277 struct _carl9170_tx_superframe *super; 1278 uint8_t q = 0; 1279 1280 ar->tx_dropped++; 1281 1282 super = (void *)skb->data; 1283 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q, 1284 ar9170_qmap(carl9170_get_queue(ar, skb))); 1285 __carl9170_tx_process_status(ar, super->s.cookie, q); 1286 } 1287 1288 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb) 1289 { 1290 struct ieee80211_sta *sta; 1291 struct carl9170_sta_info *sta_info; 1292 struct ieee80211_tx_info *tx_info; 1293 1294 rcu_read_lock(); 1295 sta = __carl9170_get_tx_sta(ar, skb); 1296 if (!sta) 1297 goto out_rcu; 1298 1299 sta_info = (void *) sta->drv_priv; 1300 tx_info = IEEE80211_SKB_CB(skb); 1301 1302 if (unlikely(sta_info->sleeping) && 1303 !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER | 1304 IEEE80211_TX_CTL_CLEAR_PS_FILT))) { 1305 rcu_read_unlock(); 1306 1307 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1308 atomic_dec(&ar->tx_ampdu_upload); 1309 1310 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 1311 carl9170_release_dev_space(ar, skb); 1312 carl9170_tx_status(ar, skb, false); 1313 return true; 1314 } 1315 1316 out_rcu: 1317 rcu_read_unlock(); 1318 return false; 1319 } 1320 1321 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb) 1322 { 1323 struct _carl9170_tx_superframe *super = (void *) skb->data; 1324 struct ieee80211_bar *bar = (void *) super->frame_data; 1325 1326 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 1327 skb->len >= sizeof(struct ieee80211_bar)) { 1328 struct carl9170_bar_list_entry *entry; 1329 unsigned int queue = skb_get_queue_mapping(skb); 1330 1331 entry = kmalloc(sizeof(*entry), GFP_ATOMIC); 1332 if (!WARN_ON_ONCE(!entry)) { 1333 entry->skb = skb; 1334 spin_lock_bh(&ar->bar_list_lock[queue]); 1335 list_add_tail_rcu(&entry->list, &ar->bar_list[queue]); 1336 spin_unlock_bh(&ar->bar_list_lock[queue]); 1337 } 1338 } 1339 } 1340 1341 static void carl9170_tx(struct ar9170 *ar) 1342 { 1343 struct sk_buff *skb; 1344 unsigned int i, q; 1345 bool schedule_garbagecollector = false; 1346 1347 ar->tx_schedule = false; 1348 1349 if (unlikely(!IS_STARTED(ar))) 1350 return; 1351 1352 carl9170_usb_handle_tx_err(ar); 1353 1354 for (i = 0; i < ar->hw->queues; i++) { 1355 while (!skb_queue_empty(&ar->tx_pending[i])) { 1356 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]); 1357 if (unlikely(!skb)) 1358 break; 1359 1360 if (unlikely(carl9170_tx_ps_drop(ar, skb))) 1361 continue; 1362 1363 carl9170_bar_check(ar, skb); 1364 1365 atomic_inc(&ar->tx_total_pending); 1366 1367 q = __carl9170_get_queue(ar, i); 1368 /* 1369 * NB: tx_status[i] vs. tx_status[q], 1370 * TODO: Move into pick_skb or alloc_dev_space. 1371 */ 1372 skb_queue_tail(&ar->tx_status[q], skb); 1373 1374 /* 1375 * increase ref count to "2". 1376 * Ref counting is the easiest way to solve the 1377 * race between the urb's completion routine: 1378 * carl9170_tx_callback 1379 * and wlan tx status functions: 1380 * carl9170_tx_status/janitor. 1381 */ 1382 carl9170_tx_get_skb(skb); 1383 1384 carl9170_usb_tx(ar, skb); 1385 schedule_garbagecollector = true; 1386 } 1387 } 1388 1389 if (!schedule_garbagecollector) 1390 return; 1391 1392 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 1393 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 1394 } 1395 1396 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar, 1397 struct ieee80211_sta *sta, struct sk_buff *skb, 1398 struct ieee80211_tx_info *txinfo) 1399 { 1400 struct carl9170_sta_info *sta_info; 1401 struct carl9170_sta_tid *agg; 1402 struct sk_buff *iter; 1403 u16 tid, seq, qseq, off; 1404 bool run = false; 1405 1406 tid = carl9170_get_tid(skb); 1407 seq = carl9170_get_seq(skb); 1408 sta_info = (void *) sta->drv_priv; 1409 1410 rcu_read_lock(); 1411 agg = rcu_dereference(sta_info->agg[tid]); 1412 1413 if (!agg) 1414 goto err_unlock_rcu; 1415 1416 spin_lock_bh(&agg->lock); 1417 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE)) 1418 goto err_unlock; 1419 1420 /* check if sequence is within the BA window */ 1421 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq))) 1422 goto err_unlock; 1423 1424 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq))) 1425 goto err_unlock; 1426 1427 off = SEQ_DIFF(seq, agg->bsn); 1428 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap))) 1429 goto err_unlock; 1430 1431 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) { 1432 __skb_queue_tail(&agg->queue, skb); 1433 agg->hsn = seq; 1434 goto queued; 1435 } 1436 1437 skb_queue_reverse_walk(&agg->queue, iter) { 1438 qseq = carl9170_get_seq(iter); 1439 1440 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) { 1441 __skb_queue_after(&agg->queue, iter, skb); 1442 goto queued; 1443 } 1444 } 1445 1446 __skb_queue_head(&agg->queue, skb); 1447 queued: 1448 1449 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) { 1450 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) { 1451 agg->state = CARL9170_TID_STATE_XMIT; 1452 run = true; 1453 } 1454 } 1455 1456 spin_unlock_bh(&agg->lock); 1457 rcu_read_unlock(); 1458 1459 return run; 1460 1461 err_unlock: 1462 spin_unlock_bh(&agg->lock); 1463 1464 err_unlock_rcu: 1465 rcu_read_unlock(); 1466 txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU; 1467 carl9170_tx_status(ar, skb, false); 1468 ar->tx_dropped++; 1469 return false; 1470 } 1471 1472 void carl9170_op_tx(struct ieee80211_hw *hw, 1473 struct ieee80211_tx_control *control, 1474 struct sk_buff *skb) 1475 { 1476 struct ar9170 *ar = hw->priv; 1477 struct ieee80211_tx_info *info; 1478 struct ieee80211_sta *sta = control->sta; 1479 struct ieee80211_vif *vif; 1480 bool run; 1481 1482 if (unlikely(!IS_STARTED(ar))) 1483 goto err_free; 1484 1485 info = IEEE80211_SKB_CB(skb); 1486 vif = info->control.vif; 1487 1488 if (unlikely(carl9170_tx_prepare(ar, sta, skb))) 1489 goto err_free; 1490 1491 carl9170_tx_accounting(ar, skb); 1492 /* 1493 * from now on, one has to use carl9170_tx_status to free 1494 * all ressouces which are associated with the frame. 1495 */ 1496 1497 if (sta) { 1498 struct carl9170_sta_info *stai = (void *) sta->drv_priv; 1499 atomic_inc(&stai->pending_frames); 1500 } 1501 1502 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1503 /* to static code analyzers and reviewers: 1504 * mac80211 guarantees that a valid "sta" 1505 * reference is present, if a frame is to 1506 * be part of an ampdu. Hence any extra 1507 * sta == NULL checks are redundant in this 1508 * special case. 1509 */ 1510 run = carl9170_tx_ampdu_queue(ar, sta, skb, info); 1511 if (run) 1512 carl9170_tx_ampdu(ar); 1513 1514 } else { 1515 unsigned int queue = skb_get_queue_mapping(skb); 1516 1517 carl9170_tx_get_rates(ar, vif, sta, skb); 1518 carl9170_tx_apply_rateset(ar, info, skb); 1519 skb_queue_tail(&ar->tx_pending[queue], skb); 1520 } 1521 1522 carl9170_tx(ar); 1523 return; 1524 1525 err_free: 1526 ar->tx_dropped++; 1527 ieee80211_free_txskb(ar->hw, skb); 1528 } 1529 1530 void carl9170_tx_scheduler(struct ar9170 *ar) 1531 { 1532 1533 if (ar->tx_ampdu_schedule) 1534 carl9170_tx_ampdu(ar); 1535 1536 if (ar->tx_schedule) 1537 carl9170_tx(ar); 1538 } 1539 1540 /* caller has to take rcu_read_lock */ 1541 static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar) 1542 { 1543 struct carl9170_vif_info *cvif; 1544 int i = 1; 1545 1546 /* The AR9170 hardware has no fancy beacon queue or some 1547 * other scheduling mechanism. So, the driver has to make 1548 * due by setting the two beacon timers (pretbtt and tbtt) 1549 * once and then swapping the beacon address in the HW's 1550 * register file each time the pretbtt fires. 1551 */ 1552 1553 cvif = rcu_dereference(ar->beacon_iter); 1554 if (ar->vifs > 0 && cvif) { 1555 do { 1556 list_for_each_entry_continue_rcu(cvif, &ar->vif_list, 1557 list) { 1558 if (cvif->active && cvif->enable_beacon) 1559 goto out; 1560 } 1561 } while (ar->beacon_enabled && i--); 1562 1563 /* no entry found in list */ 1564 return NULL; 1565 } 1566 1567 out: 1568 RCU_INIT_POINTER(ar->beacon_iter, cvif); 1569 return cvif; 1570 } 1571 1572 static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb, 1573 u32 *ht1, u32 *plcp) 1574 { 1575 struct ieee80211_tx_info *txinfo; 1576 struct ieee80211_tx_rate *rate; 1577 unsigned int power, chains; 1578 bool ht_rate; 1579 1580 txinfo = IEEE80211_SKB_CB(skb); 1581 rate = &txinfo->control.rates[0]; 1582 ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS); 1583 carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains); 1584 1585 *ht1 = AR9170_MAC_BCN_HT1_TX_ANT0; 1586 if (chains == AR9170_TX_PHY_TXCHAIN_2) 1587 *ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1; 1588 SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7); 1589 SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power); 1590 SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains); 1591 1592 if (ht_rate) { 1593 *ht1 |= AR9170_MAC_BCN_HT1_HT_EN; 1594 if (rate->flags & IEEE80211_TX_RC_SHORT_GI) 1595 *plcp |= AR9170_MAC_BCN_HT2_SGI; 1596 1597 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 1598 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED; 1599 *plcp |= AR9170_MAC_BCN_HT2_BW40; 1600 } else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) { 1601 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP; 1602 *plcp |= AR9170_MAC_BCN_HT2_BW40; 1603 } 1604 1605 SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN); 1606 } else { 1607 if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M) 1608 *plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400; 1609 else 1610 *plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010; 1611 } 1612 1613 return ht_rate; 1614 } 1615 1616 int carl9170_update_beacon(struct ar9170 *ar, const bool submit) 1617 { 1618 struct sk_buff *skb = NULL; 1619 struct carl9170_vif_info *cvif; 1620 __le32 *data, *old = NULL; 1621 u32 word, ht1, plcp, off, addr, len; 1622 int i = 0, err = 0; 1623 bool ht_rate; 1624 1625 rcu_read_lock(); 1626 cvif = carl9170_pick_beaconing_vif(ar); 1627 if (!cvif) 1628 goto out_unlock; 1629 1630 skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif), 1631 NULL, NULL, 0); 1632 1633 if (!skb) { 1634 err = -ENOMEM; 1635 goto err_free; 1636 } 1637 1638 spin_lock_bh(&ar->beacon_lock); 1639 data = (__le32 *)skb->data; 1640 if (cvif->beacon) 1641 old = (__le32 *)cvif->beacon->data; 1642 1643 off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX; 1644 addr = ar->fw.beacon_addr + off; 1645 len = roundup(skb->len + FCS_LEN, 4); 1646 1647 if ((off + len) > ar->fw.beacon_max_len) { 1648 if (net_ratelimit()) { 1649 wiphy_err(ar->hw->wiphy, "beacon does not " 1650 "fit into device memory!\n"); 1651 } 1652 err = -EINVAL; 1653 goto err_unlock; 1654 } 1655 1656 if (len > AR9170_MAC_BCN_LENGTH_MAX) { 1657 if (net_ratelimit()) { 1658 wiphy_err(ar->hw->wiphy, "no support for beacons " 1659 "bigger than %d (yours:%d).\n", 1660 AR9170_MAC_BCN_LENGTH_MAX, len); 1661 } 1662 1663 err = -EMSGSIZE; 1664 goto err_unlock; 1665 } 1666 1667 ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp); 1668 1669 carl9170_async_regwrite_begin(ar); 1670 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1); 1671 if (ht_rate) 1672 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp); 1673 else 1674 carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp); 1675 1676 for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) { 1677 /* 1678 * XXX: This accesses beyond skb data for up 1679 * to the last 3 bytes!! 1680 */ 1681 1682 if (old && (data[i] == old[i])) 1683 continue; 1684 1685 word = le32_to_cpu(data[i]); 1686 carl9170_async_regwrite(addr + 4 * i, word); 1687 } 1688 carl9170_async_regwrite_finish(); 1689 1690 dev_kfree_skb_any(cvif->beacon); 1691 cvif->beacon = NULL; 1692 1693 err = carl9170_async_regwrite_result(); 1694 if (!err) 1695 cvif->beacon = skb; 1696 spin_unlock_bh(&ar->beacon_lock); 1697 if (err) 1698 goto err_free; 1699 1700 if (submit) { 1701 err = carl9170_bcn_ctrl(ar, cvif->id, 1702 CARL9170_BCN_CTRL_CAB_TRIGGER, 1703 addr, skb->len + FCS_LEN); 1704 1705 if (err) 1706 goto err_free; 1707 } 1708 out_unlock: 1709 rcu_read_unlock(); 1710 return 0; 1711 1712 err_unlock: 1713 spin_unlock_bh(&ar->beacon_lock); 1714 1715 err_free: 1716 rcu_read_unlock(); 1717 dev_kfree_skb_any(skb); 1718 return err; 1719 } 1720