1 /* 2 * Atheros CARL9170 driver 3 * 4 * 802.11 xmit & status routines 5 * 6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, see 21 * http://www.gnu.org/licenses/. 22 * 23 * This file incorporates work covered by the following copyright and 24 * permission notice: 25 * Copyright (c) 2007-2008 Atheros Communications, Inc. 26 * 27 * Permission to use, copy, modify, and/or distribute this software for any 28 * purpose with or without fee is hereby granted, provided that the above 29 * copyright notice and this permission notice appear in all copies. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 38 */ 39 40 #include <linux/slab.h> 41 #include <linux/module.h> 42 #include <linux/etherdevice.h> 43 #include <net/mac80211.h> 44 #include "carl9170.h" 45 #include "hw.h" 46 #include "cmd.h" 47 48 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar, 49 unsigned int queue) 50 { 51 if (unlikely(modparam_noht)) { 52 return queue; 53 } else { 54 /* 55 * This is just another workaround, until 56 * someone figures out how to get QoS and 57 * AMPDU to play nicely together. 58 */ 59 60 return 2; /* AC_BE */ 61 } 62 } 63 64 static inline unsigned int carl9170_get_queue(struct ar9170 *ar, 65 struct sk_buff *skb) 66 { 67 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb)); 68 } 69 70 static bool is_mem_full(struct ar9170 *ar) 71 { 72 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) > 73 atomic_read(&ar->mem_free_blocks)); 74 } 75 76 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb) 77 { 78 int queue, i; 79 bool mem_full; 80 81 atomic_inc(&ar->tx_total_queued); 82 83 queue = skb_get_queue_mapping(skb); 84 spin_lock_bh(&ar->tx_stats_lock); 85 86 /* 87 * The driver has to accept the frame, regardless if the queue is 88 * full to the brim, or not. We have to do the queuing internally, 89 * since mac80211 assumes that a driver which can operate with 90 * aggregated frames does not reject frames for this reason. 91 */ 92 ar->tx_stats[queue].len++; 93 ar->tx_stats[queue].count++; 94 95 mem_full = is_mem_full(ar); 96 for (i = 0; i < ar->hw->queues; i++) { 97 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) { 98 ieee80211_stop_queue(ar->hw, i); 99 ar->queue_stop_timeout[i] = jiffies; 100 } 101 } 102 103 spin_unlock_bh(&ar->tx_stats_lock); 104 } 105 106 /* needs rcu_read_lock */ 107 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar, 108 struct sk_buff *skb) 109 { 110 struct _carl9170_tx_superframe *super = (void *) skb->data; 111 struct ieee80211_hdr *hdr = (void *) super->frame_data; 112 struct ieee80211_vif *vif; 113 unsigned int vif_id; 114 115 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >> 116 CARL9170_TX_SUPER_MISC_VIF_ID_S; 117 118 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC)) 119 return NULL; 120 121 vif = rcu_dereference(ar->vif_priv[vif_id].vif); 122 if (unlikely(!vif)) 123 return NULL; 124 125 /* 126 * Normally we should use wrappers like ieee80211_get_DA to get 127 * the correct peer ieee80211_sta. 128 * 129 * But there is a problem with indirect traffic (broadcasts, or 130 * data which is designated for other stations) in station mode. 131 * The frame will be directed to the AP for distribution and not 132 * to the actual destination. 133 */ 134 135 return ieee80211_find_sta(vif, hdr->addr1); 136 } 137 138 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb) 139 { 140 struct ieee80211_sta *sta; 141 struct carl9170_sta_info *sta_info; 142 143 rcu_read_lock(); 144 sta = __carl9170_get_tx_sta(ar, skb); 145 if (unlikely(!sta)) 146 goto out_rcu; 147 148 sta_info = (struct carl9170_sta_info *) sta->drv_priv; 149 if (atomic_dec_return(&sta_info->pending_frames) == 0) 150 ieee80211_sta_block_awake(ar->hw, sta, false); 151 152 out_rcu: 153 rcu_read_unlock(); 154 } 155 156 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb) 157 { 158 int queue; 159 160 queue = skb_get_queue_mapping(skb); 161 162 spin_lock_bh(&ar->tx_stats_lock); 163 164 ar->tx_stats[queue].len--; 165 166 if (!is_mem_full(ar)) { 167 unsigned int i; 168 for (i = 0; i < ar->hw->queues; i++) { 169 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT) 170 continue; 171 172 if (ieee80211_queue_stopped(ar->hw, i)) { 173 unsigned long tmp; 174 175 tmp = jiffies - ar->queue_stop_timeout[i]; 176 if (tmp > ar->max_queue_stop_timeout[i]) 177 ar->max_queue_stop_timeout[i] = tmp; 178 } 179 180 ieee80211_wake_queue(ar->hw, i); 181 } 182 } 183 184 spin_unlock_bh(&ar->tx_stats_lock); 185 186 if (atomic_dec_and_test(&ar->tx_total_queued)) 187 complete(&ar->tx_flush); 188 } 189 190 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb) 191 { 192 struct _carl9170_tx_superframe *super; 193 unsigned int chunks; 194 int cookie = -1; 195 196 atomic_inc(&ar->mem_allocs); 197 198 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size); 199 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) { 200 atomic_add(chunks, &ar->mem_free_blocks); 201 return -ENOSPC; 202 } 203 204 spin_lock_bh(&ar->mem_lock); 205 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0); 206 spin_unlock_bh(&ar->mem_lock); 207 208 if (unlikely(cookie < 0)) { 209 atomic_add(chunks, &ar->mem_free_blocks); 210 return -ENOSPC; 211 } 212 213 super = (void *) skb->data; 214 215 /* 216 * Cookie #0 serves two special purposes: 217 * 1. The firmware might use it generate BlockACK frames 218 * in responds of an incoming BlockAckReqs. 219 * 220 * 2. Prevent double-free bugs. 221 */ 222 super->s.cookie = (u8) cookie + 1; 223 return 0; 224 } 225 226 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb) 227 { 228 struct _carl9170_tx_superframe *super = (void *) skb->data; 229 int cookie; 230 231 /* make a local copy of the cookie */ 232 cookie = super->s.cookie; 233 /* invalidate cookie */ 234 super->s.cookie = 0; 235 236 /* 237 * Do a out-of-bounds check on the cookie: 238 * 239 * * cookie "0" is reserved and won't be assigned to any 240 * out-going frame. Internally however, it is used to 241 * mark no longer/un-accounted frames and serves as a 242 * cheap way of preventing frames from being freed 243 * twice by _accident_. NB: There is a tiny race... 244 * 245 * * obviously, cookie number is limited by the amount 246 * of available memory blocks, so the number can 247 * never execeed the mem_blocks count. 248 */ 249 if (WARN_ON_ONCE(cookie == 0) || 250 WARN_ON_ONCE(cookie > ar->fw.mem_blocks)) 251 return; 252 253 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size), 254 &ar->mem_free_blocks); 255 256 spin_lock_bh(&ar->mem_lock); 257 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0); 258 spin_unlock_bh(&ar->mem_lock); 259 } 260 261 /* Called from any context */ 262 static void carl9170_tx_release(struct kref *ref) 263 { 264 struct ar9170 *ar; 265 struct carl9170_tx_info *arinfo; 266 struct ieee80211_tx_info *txinfo; 267 struct sk_buff *skb; 268 269 arinfo = container_of(ref, struct carl9170_tx_info, ref); 270 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info, 271 rate_driver_data); 272 skb = container_of((void *) txinfo, struct sk_buff, cb); 273 274 ar = arinfo->ar; 275 if (WARN_ON_ONCE(!ar)) 276 return; 277 278 /* 279 * This does not call ieee80211_tx_info_clear_status() because 280 * carl9170_tx_fill_rateinfo() has filled the rate information 281 * before we get to this point. 282 */ 283 memset(&txinfo->pad, 0, sizeof(txinfo->pad)); 284 memset(&txinfo->rate_driver_data, 0, sizeof(txinfo->rate_driver_data)); 285 286 if (atomic_read(&ar->tx_total_queued)) 287 ar->tx_schedule = true; 288 289 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) { 290 if (!atomic_read(&ar->tx_ampdu_upload)) 291 ar->tx_ampdu_schedule = true; 292 293 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) { 294 struct _carl9170_tx_superframe *super; 295 296 super = (void *)skb->data; 297 txinfo->status.ampdu_len = super->s.rix; 298 txinfo->status.ampdu_ack_len = super->s.cnt; 299 } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) && 300 !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) { 301 /* 302 * drop redundant tx_status reports: 303 * 304 * 1. ampdu_ack_len of the final tx_status does 305 * include the feedback of this particular frame. 306 * 307 * 2. tx_status_irqsafe only queues up to 128 308 * tx feedback reports and discards the rest. 309 * 310 * 3. minstrel_ht is picky, it only accepts 311 * reports of frames with the TX_STATUS_AMPDU flag. 312 * 313 * 4. mac80211 is not particularly interested in 314 * feedback either [CTL_REQ_TX_STATUS not set] 315 */ 316 317 ieee80211_free_txskb(ar->hw, skb); 318 return; 319 } else { 320 /* 321 * Either the frame transmission has failed or 322 * mac80211 requested tx status. 323 */ 324 } 325 } 326 327 skb_pull(skb, sizeof(struct _carl9170_tx_superframe)); 328 ieee80211_tx_status_irqsafe(ar->hw, skb); 329 } 330 331 void carl9170_tx_get_skb(struct sk_buff *skb) 332 { 333 struct carl9170_tx_info *arinfo = (void *) 334 (IEEE80211_SKB_CB(skb))->rate_driver_data; 335 kref_get(&arinfo->ref); 336 } 337 338 int carl9170_tx_put_skb(struct sk_buff *skb) 339 { 340 struct carl9170_tx_info *arinfo = (void *) 341 (IEEE80211_SKB_CB(skb))->rate_driver_data; 342 343 return kref_put(&arinfo->ref, carl9170_tx_release); 344 } 345 346 /* Caller must hold the tid_info->lock & rcu_read_lock */ 347 static void carl9170_tx_shift_bm(struct ar9170 *ar, 348 struct carl9170_sta_tid *tid_info, u16 seq) 349 { 350 u16 off; 351 352 off = SEQ_DIFF(seq, tid_info->bsn); 353 354 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 355 return; 356 357 /* 358 * Sanity check. For each MPDU we set the bit in bitmap and 359 * clear it once we received the tx_status. 360 * But if the bit is already cleared then we've been bitten 361 * by a bug. 362 */ 363 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap)); 364 365 off = SEQ_DIFF(tid_info->snx, tid_info->bsn); 366 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 367 return; 368 369 if (!bitmap_empty(tid_info->bitmap, off)) 370 off = find_first_bit(tid_info->bitmap, off); 371 372 tid_info->bsn += off; 373 tid_info->bsn &= 0x0fff; 374 375 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap, 376 off, CARL9170_BAW_BITS); 377 } 378 379 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar, 380 struct sk_buff *skb, struct ieee80211_tx_info *txinfo) 381 { 382 struct _carl9170_tx_superframe *super = (void *) skb->data; 383 struct ieee80211_hdr *hdr = (void *) super->frame_data; 384 struct ieee80211_sta *sta; 385 struct carl9170_sta_info *sta_info; 386 struct carl9170_sta_tid *tid_info; 387 u8 tid; 388 389 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) || 390 txinfo->flags & IEEE80211_TX_CTL_INJECTED) 391 return; 392 393 rcu_read_lock(); 394 sta = __carl9170_get_tx_sta(ar, skb); 395 if (unlikely(!sta)) 396 goto out_rcu; 397 398 tid = ieee80211_get_tid(hdr); 399 400 sta_info = (void *) sta->drv_priv; 401 tid_info = rcu_dereference(sta_info->agg[tid]); 402 if (!tid_info) 403 goto out_rcu; 404 405 spin_lock_bh(&tid_info->lock); 406 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE)) 407 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr)); 408 409 if (sta_info->stats[tid].clear) { 410 sta_info->stats[tid].clear = false; 411 sta_info->stats[tid].req = false; 412 sta_info->stats[tid].ampdu_len = 0; 413 sta_info->stats[tid].ampdu_ack_len = 0; 414 } 415 416 sta_info->stats[tid].ampdu_len++; 417 if (txinfo->status.rates[0].count == 1) 418 sta_info->stats[tid].ampdu_ack_len++; 419 420 if (!(txinfo->flags & IEEE80211_TX_STAT_ACK)) 421 sta_info->stats[tid].req = true; 422 423 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) { 424 super->s.rix = sta_info->stats[tid].ampdu_len; 425 super->s.cnt = sta_info->stats[tid].ampdu_ack_len; 426 txinfo->flags |= IEEE80211_TX_STAT_AMPDU; 427 if (sta_info->stats[tid].req) 428 txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 429 430 sta_info->stats[tid].clear = true; 431 } 432 spin_unlock_bh(&tid_info->lock); 433 434 out_rcu: 435 rcu_read_unlock(); 436 } 437 438 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb, 439 struct ieee80211_tx_info *tx_info) 440 { 441 struct _carl9170_tx_superframe *super = (void *) skb->data; 442 struct ieee80211_bar *bar = (void *) super->frame_data; 443 444 /* 445 * Unlike all other frames, the status report for BARs does 446 * not directly come from the hardware as it is incapable of 447 * matching a BA to a previously send BAR. 448 * Instead the RX-path will scan for incoming BAs and set the 449 * IEEE80211_TX_STAT_ACK if it sees one that was likely 450 * caused by a BAR from us. 451 */ 452 453 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 454 !(tx_info->flags & IEEE80211_TX_STAT_ACK)) { 455 struct carl9170_bar_list_entry *entry; 456 int queue = skb_get_queue_mapping(skb); 457 458 rcu_read_lock(); 459 list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) { 460 if (entry->skb == skb) { 461 spin_lock_bh(&ar->bar_list_lock[queue]); 462 list_del_rcu(&entry->list); 463 spin_unlock_bh(&ar->bar_list_lock[queue]); 464 kfree_rcu(entry, head); 465 goto out; 466 } 467 } 468 469 WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n", 470 queue, bar->ra, bar->ta, bar->control, 471 bar->start_seq_num); 472 out: 473 rcu_read_unlock(); 474 } 475 } 476 477 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb, 478 const bool success) 479 { 480 struct ieee80211_tx_info *txinfo; 481 482 carl9170_tx_accounting_free(ar, skb); 483 484 txinfo = IEEE80211_SKB_CB(skb); 485 486 carl9170_tx_bar_status(ar, skb, txinfo); 487 488 if (success) 489 txinfo->flags |= IEEE80211_TX_STAT_ACK; 490 else 491 ar->tx_ack_failures++; 492 493 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 494 carl9170_tx_status_process_ampdu(ar, skb, txinfo); 495 496 carl9170_tx_ps_unblock(ar, skb); 497 carl9170_tx_put_skb(skb); 498 } 499 500 /* This function may be called form any context */ 501 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb) 502 { 503 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb); 504 505 atomic_dec(&ar->tx_total_pending); 506 507 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 508 atomic_dec(&ar->tx_ampdu_upload); 509 510 if (carl9170_tx_put_skb(skb)) 511 tasklet_hi_schedule(&ar->usb_tasklet); 512 } 513 514 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie, 515 struct sk_buff_head *queue) 516 { 517 struct sk_buff *skb; 518 519 spin_lock_bh(&queue->lock); 520 skb_queue_walk(queue, skb) { 521 struct _carl9170_tx_superframe *txc = (void *) skb->data; 522 523 if (txc->s.cookie != cookie) 524 continue; 525 526 __skb_unlink(skb, queue); 527 spin_unlock_bh(&queue->lock); 528 529 carl9170_release_dev_space(ar, skb); 530 return skb; 531 } 532 spin_unlock_bh(&queue->lock); 533 534 return NULL; 535 } 536 537 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix, 538 unsigned int tries, struct ieee80211_tx_info *txinfo) 539 { 540 unsigned int i; 541 542 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 543 if (txinfo->status.rates[i].idx < 0) 544 break; 545 546 if (i == rix) { 547 txinfo->status.rates[i].count = tries; 548 i++; 549 break; 550 } 551 } 552 553 for (; i < IEEE80211_TX_MAX_RATES; i++) { 554 txinfo->status.rates[i].idx = -1; 555 txinfo->status.rates[i].count = 0; 556 } 557 } 558 559 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar) 560 { 561 int i; 562 struct sk_buff *skb; 563 struct ieee80211_tx_info *txinfo; 564 struct carl9170_tx_info *arinfo; 565 bool restart = false; 566 567 for (i = 0; i < ar->hw->queues; i++) { 568 spin_lock_bh(&ar->tx_status[i].lock); 569 570 skb = skb_peek(&ar->tx_status[i]); 571 572 if (!skb) 573 goto next; 574 575 txinfo = IEEE80211_SKB_CB(skb); 576 arinfo = (void *) txinfo->rate_driver_data; 577 578 if (time_is_before_jiffies(arinfo->timeout + 579 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true) 580 restart = true; 581 582 next: 583 spin_unlock_bh(&ar->tx_status[i].lock); 584 } 585 586 if (restart) { 587 /* 588 * At least one queue has been stuck for long enough. 589 * Give the device a kick and hope it gets back to 590 * work. 591 * 592 * possible reasons may include: 593 * - frames got lost/corrupted (bad connection to the device) 594 * - stalled rx processing/usb controller hiccups 595 * - firmware errors/bugs 596 * - every bug you can think of. 597 * - all bugs you can't... 598 * - ... 599 */ 600 carl9170_restart(ar, CARL9170_RR_STUCK_TX); 601 } 602 } 603 604 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar) 605 { 606 struct carl9170_sta_tid *iter; 607 struct sk_buff *skb; 608 struct ieee80211_tx_info *txinfo; 609 struct carl9170_tx_info *arinfo; 610 struct ieee80211_sta *sta; 611 612 rcu_read_lock(); 613 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) { 614 if (iter->state < CARL9170_TID_STATE_IDLE) 615 continue; 616 617 spin_lock_bh(&iter->lock); 618 skb = skb_peek(&iter->queue); 619 if (!skb) 620 goto unlock; 621 622 txinfo = IEEE80211_SKB_CB(skb); 623 arinfo = (void *)txinfo->rate_driver_data; 624 if (time_is_after_jiffies(arinfo->timeout + 625 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT))) 626 goto unlock; 627 628 sta = iter->sta; 629 if (WARN_ON(!sta)) 630 goto unlock; 631 632 ieee80211_stop_tx_ba_session(sta, iter->tid); 633 unlock: 634 spin_unlock_bh(&iter->lock); 635 636 } 637 rcu_read_unlock(); 638 } 639 640 void carl9170_tx_janitor(struct work_struct *work) 641 { 642 struct ar9170 *ar = container_of(work, struct ar9170, 643 tx_janitor.work); 644 if (!IS_STARTED(ar)) 645 return; 646 647 ar->tx_janitor_last_run = jiffies; 648 649 carl9170_check_queue_stop_timeout(ar); 650 carl9170_tx_ampdu_timeout(ar); 651 652 if (!atomic_read(&ar->tx_total_queued)) 653 return; 654 655 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 656 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 657 } 658 659 static void __carl9170_tx_process_status(struct ar9170 *ar, 660 const uint8_t cookie, const uint8_t info) 661 { 662 struct sk_buff *skb; 663 struct ieee80211_tx_info *txinfo; 664 unsigned int r, t, q; 665 bool success = true; 666 667 q = ar9170_qmap(info & CARL9170_TX_STATUS_QUEUE); 668 669 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]); 670 if (!skb) { 671 /* 672 * We have lost the race to another thread. 673 */ 674 675 return ; 676 } 677 678 txinfo = IEEE80211_SKB_CB(skb); 679 680 if (!(info & CARL9170_TX_STATUS_SUCCESS)) 681 success = false; 682 683 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S; 684 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S; 685 686 carl9170_tx_fill_rateinfo(ar, r, t, txinfo); 687 carl9170_tx_status(ar, skb, success); 688 } 689 690 void carl9170_tx_process_status(struct ar9170 *ar, 691 const struct carl9170_rsp *cmd) 692 { 693 unsigned int i; 694 695 for (i = 0; i < cmd->hdr.ext; i++) { 696 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) { 697 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE, 698 (void *) cmd, cmd->hdr.len + 4); 699 break; 700 } 701 702 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie, 703 cmd->_tx_status[i].info); 704 } 705 } 706 707 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar, 708 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate, 709 unsigned int *phyrate, unsigned int *tpc, unsigned int *chains) 710 { 711 struct ieee80211_rate *rate = NULL; 712 u8 *txpower; 713 unsigned int idx; 714 715 idx = txrate->idx; 716 *tpc = 0; 717 *phyrate = 0; 718 719 if (txrate->flags & IEEE80211_TX_RC_MCS) { 720 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 721 /* +1 dBm for HT40 */ 722 *tpc += 2; 723 724 if (info->band == NL80211_BAND_2GHZ) 725 txpower = ar->power_2G_ht40; 726 else 727 txpower = ar->power_5G_ht40; 728 } else { 729 if (info->band == NL80211_BAND_2GHZ) 730 txpower = ar->power_2G_ht20; 731 else 732 txpower = ar->power_5G_ht20; 733 } 734 735 *phyrate = txrate->idx; 736 *tpc += txpower[idx & 7]; 737 } else { 738 if (info->band == NL80211_BAND_2GHZ) { 739 if (idx < 4) 740 txpower = ar->power_2G_cck; 741 else 742 txpower = ar->power_2G_ofdm; 743 } else { 744 txpower = ar->power_5G_leg; 745 idx += 4; 746 } 747 748 rate = &__carl9170_ratetable[idx]; 749 *tpc += txpower[(rate->hw_value & 0x30) >> 4]; 750 *phyrate = rate->hw_value & 0xf; 751 } 752 753 if (ar->eeprom.tx_mask == 1) { 754 *chains = AR9170_TX_PHY_TXCHAIN_1; 755 } else { 756 if (!(txrate->flags & IEEE80211_TX_RC_MCS) && 757 rate && rate->bitrate >= 360) 758 *chains = AR9170_TX_PHY_TXCHAIN_1; 759 else 760 *chains = AR9170_TX_PHY_TXCHAIN_2; 761 } 762 763 *tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2); 764 } 765 766 static __le32 carl9170_tx_physet(struct ar9170 *ar, 767 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate) 768 { 769 unsigned int power = 0, chains = 0, phyrate = 0; 770 __le32 tmp; 771 772 tmp = cpu_to_le32(0); 773 774 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 775 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ << 776 AR9170_TX_PHY_BW_S); 777 /* this works because 40 MHz is 2 and dup is 3 */ 778 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA) 779 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP << 780 AR9170_TX_PHY_BW_S); 781 782 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) 783 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI); 784 785 if (txrate->flags & IEEE80211_TX_RC_MCS) { 786 SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx); 787 788 /* heavy clip control */ 789 tmp |= cpu_to_le32((txrate->idx & 0x7) << 790 AR9170_TX_PHY_TX_HEAVY_CLIP_S); 791 792 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT); 793 794 /* 795 * green field preamble does not work. 796 * 797 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) 798 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD); 799 */ 800 } else { 801 if (info->band == NL80211_BAND_2GHZ) { 802 if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M) 803 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK); 804 else 805 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 806 } else { 807 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 808 } 809 810 /* 811 * short preamble seems to be broken too. 812 * 813 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 814 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE); 815 */ 816 } 817 carl9170_tx_rate_tpc_chains(ar, info, txrate, 818 &phyrate, &power, &chains); 819 820 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate)); 821 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power)); 822 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains)); 823 return tmp; 824 } 825 826 static bool carl9170_tx_rts_check(struct ar9170 *ar, 827 struct ieee80211_tx_rate *rate, 828 bool ampdu, bool multi) 829 { 830 switch (ar->erp_mode) { 831 case CARL9170_ERP_AUTO: 832 if (ampdu) 833 break; 834 fallthrough; 835 836 case CARL9170_ERP_MAC80211: 837 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)) 838 break; 839 fallthrough; 840 841 case CARL9170_ERP_RTS: 842 if (likely(!multi)) 843 return true; 844 break; 845 846 default: 847 break; 848 } 849 850 return false; 851 } 852 853 static bool carl9170_tx_cts_check(struct ar9170 *ar, 854 struct ieee80211_tx_rate *rate) 855 { 856 switch (ar->erp_mode) { 857 case CARL9170_ERP_AUTO: 858 case CARL9170_ERP_MAC80211: 859 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)) 860 break; 861 fallthrough; 862 863 case CARL9170_ERP_CTS: 864 return true; 865 866 default: 867 break; 868 } 869 870 return false; 871 } 872 873 static void carl9170_tx_get_rates(struct ar9170 *ar, 874 struct ieee80211_vif *vif, 875 struct ieee80211_sta *sta, 876 struct sk_buff *skb) 877 { 878 struct ieee80211_tx_info *info; 879 880 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES); 881 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES > IEEE80211_TX_RATE_TABLE_SIZE); 882 883 info = IEEE80211_SKB_CB(skb); 884 885 ieee80211_get_tx_rates(vif, sta, skb, 886 info->control.rates, 887 IEEE80211_TX_MAX_RATES); 888 } 889 890 static void carl9170_tx_apply_rateset(struct ar9170 *ar, 891 struct ieee80211_tx_info *sinfo, 892 struct sk_buff *skb) 893 { 894 struct ieee80211_tx_rate *txrate; 895 struct ieee80211_tx_info *info; 896 struct _carl9170_tx_superframe *txc = (void *) skb->data; 897 int i; 898 bool ampdu; 899 bool no_ack; 900 901 info = IEEE80211_SKB_CB(skb); 902 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU); 903 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK); 904 905 /* Set the rate control probe flag for all (sub-) frames. 906 * This is because the TX_STATS_AMPDU flag is only set on 907 * the last frame, so it has to be inherited. 908 */ 909 info->flags |= (sinfo->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 910 911 /* NOTE: For the first rate, the ERP & AMPDU flags are directly 912 * taken from mac_control. For all fallback rate, the firmware 913 * updates the mac_control flags from the rate info field. 914 */ 915 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) { 916 __le32 phy_set; 917 918 txrate = &sinfo->control.rates[i]; 919 if (txrate->idx < 0) 920 break; 921 922 phy_set = carl9170_tx_physet(ar, info, txrate); 923 if (i == 0) { 924 __le16 mac_tmp = cpu_to_le16(0); 925 926 /* first rate - part of the hw's frame header */ 927 txc->f.phy_control = phy_set; 928 929 if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS) 930 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR); 931 932 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 933 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS); 934 else if (carl9170_tx_cts_check(ar, txrate)) 935 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS); 936 937 txc->f.mac_control |= mac_tmp; 938 } else { 939 /* fallback rates are stored in the firmware's 940 * retry rate set array. 941 */ 942 txc->s.rr[i - 1] = phy_set; 943 } 944 945 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i], 946 txrate->count); 947 948 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 949 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS << 950 CARL9170_TX_SUPER_RI_ERP_PROT_S); 951 else if (carl9170_tx_cts_check(ar, txrate)) 952 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS << 953 CARL9170_TX_SUPER_RI_ERP_PROT_S); 954 955 if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS)) 956 txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU; 957 } 958 } 959 960 static int carl9170_tx_prepare(struct ar9170 *ar, 961 struct ieee80211_sta *sta, 962 struct sk_buff *skb) 963 { 964 struct ieee80211_hdr *hdr; 965 struct _carl9170_tx_superframe *txc; 966 struct carl9170_vif_info *cvif; 967 struct ieee80211_tx_info *info; 968 struct carl9170_tx_info *arinfo; 969 unsigned int hw_queue; 970 __le16 mac_tmp; 971 u16 len; 972 973 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 974 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) != 975 CARL9170_TX_SUPERDESC_LEN); 976 977 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) != 978 AR9170_TX_HWDESC_LEN); 979 980 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC > 981 ((CARL9170_TX_SUPER_MISC_VIF_ID >> 982 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1)); 983 984 hw_queue = ar9170_qmap(carl9170_get_queue(ar, skb)); 985 986 hdr = (void *)skb->data; 987 info = IEEE80211_SKB_CB(skb); 988 len = skb->len; 989 990 /* 991 * Note: If the frame was sent through a monitor interface, 992 * the ieee80211_vif pointer can be NULL. 993 */ 994 if (likely(info->control.vif)) 995 cvif = (void *) info->control.vif->drv_priv; 996 else 997 cvif = NULL; 998 999 txc = skb_push(skb, sizeof(*txc)); 1000 memset(txc, 0, sizeof(*txc)); 1001 1002 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue); 1003 1004 if (likely(cvif)) 1005 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id); 1006 1007 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)) 1008 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB; 1009 1010 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 1011 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ; 1012 1013 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) 1014 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF; 1015 1016 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION | 1017 AR9170_TX_MAC_BACKOFF); 1018 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) & 1019 AR9170_TX_MAC_QOS); 1020 1021 if (unlikely(info->flags & IEEE80211_TX_CTL_NO_ACK)) 1022 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK); 1023 1024 if (info->control.hw_key) { 1025 len += info->control.hw_key->icv_len; 1026 1027 switch (info->control.hw_key->cipher) { 1028 case WLAN_CIPHER_SUITE_WEP40: 1029 case WLAN_CIPHER_SUITE_WEP104: 1030 case WLAN_CIPHER_SUITE_TKIP: 1031 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4); 1032 break; 1033 case WLAN_CIPHER_SUITE_CCMP: 1034 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES); 1035 break; 1036 default: 1037 WARN_ON(1); 1038 goto err_out; 1039 } 1040 } 1041 1042 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1043 unsigned int density, factor; 1044 1045 if (unlikely(!sta || !cvif)) 1046 goto err_out; 1047 1048 factor = min_t(unsigned int, 1u, 1049 sta->deflink.ht_cap.ampdu_factor); 1050 density = sta->deflink.ht_cap.ampdu_density; 1051 1052 if (density) { 1053 /* 1054 * Watch out! 1055 * 1056 * Otus uses slightly different density values than 1057 * those from the 802.11n spec. 1058 */ 1059 1060 density = max_t(unsigned int, density + 1, 7u); 1061 } 1062 1063 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY, 1064 txc->s.ampdu_settings, density); 1065 1066 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR, 1067 txc->s.ampdu_settings, factor); 1068 } 1069 1070 txc->s.len = cpu_to_le16(skb->len); 1071 txc->f.length = cpu_to_le16(len + FCS_LEN); 1072 txc->f.mac_control = mac_tmp; 1073 1074 arinfo = (void *)info->rate_driver_data; 1075 arinfo->timeout = jiffies; 1076 arinfo->ar = ar; 1077 kref_init(&arinfo->ref); 1078 return 0; 1079 1080 err_out: 1081 skb_pull(skb, sizeof(*txc)); 1082 return -EINVAL; 1083 } 1084 1085 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb) 1086 { 1087 struct _carl9170_tx_superframe *super; 1088 1089 super = (void *) skb->data; 1090 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA); 1091 } 1092 1093 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb) 1094 { 1095 struct _carl9170_tx_superframe *super; 1096 int tmp; 1097 1098 super = (void *) skb->data; 1099 1100 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) << 1101 CARL9170_TX_SUPER_AMPDU_DENSITY_S; 1102 1103 /* 1104 * If you haven't noticed carl9170_tx_prepare has already filled 1105 * in all ampdu spacing & factor parameters. 1106 * Now it's the time to check whenever the settings have to be 1107 * updated by the firmware, or if everything is still the same. 1108 * 1109 * There's no sane way to handle different density values with 1110 * this hardware, so we may as well just do the compare in the 1111 * driver. 1112 */ 1113 1114 if (tmp != ar->current_density) { 1115 ar->current_density = tmp; 1116 super->s.ampdu_settings |= 1117 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY; 1118 } 1119 1120 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) << 1121 CARL9170_TX_SUPER_AMPDU_FACTOR_S; 1122 1123 if (tmp != ar->current_factor) { 1124 ar->current_factor = tmp; 1125 super->s.ampdu_settings |= 1126 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR; 1127 } 1128 } 1129 1130 static void carl9170_tx_ampdu(struct ar9170 *ar) 1131 { 1132 struct sk_buff_head agg; 1133 struct carl9170_sta_tid *tid_info; 1134 struct sk_buff *skb, *first; 1135 struct ieee80211_tx_info *tx_info_first; 1136 unsigned int i = 0, done_ampdus = 0; 1137 u16 seq, queue, tmpssn; 1138 1139 atomic_inc(&ar->tx_ampdu_scheduler); 1140 ar->tx_ampdu_schedule = false; 1141 1142 if (atomic_read(&ar->tx_ampdu_upload)) 1143 return; 1144 1145 if (!ar->tx_ampdu_list_len) 1146 return; 1147 1148 __skb_queue_head_init(&agg); 1149 1150 rcu_read_lock(); 1151 tid_info = rcu_dereference(ar->tx_ampdu_iter); 1152 if (WARN_ON_ONCE(!tid_info)) { 1153 rcu_read_unlock(); 1154 return; 1155 } 1156 1157 retry: 1158 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) { 1159 i++; 1160 1161 if (tid_info->state < CARL9170_TID_STATE_PROGRESS) 1162 continue; 1163 1164 queue = TID_TO_WME_AC(tid_info->tid); 1165 1166 spin_lock_bh(&tid_info->lock); 1167 if (tid_info->state != CARL9170_TID_STATE_XMIT) 1168 goto processed; 1169 1170 tid_info->counter++; 1171 first = skb_peek(&tid_info->queue); 1172 tmpssn = carl9170_get_seq(first); 1173 seq = tid_info->snx; 1174 1175 if (unlikely(tmpssn != seq)) { 1176 tid_info->state = CARL9170_TID_STATE_IDLE; 1177 1178 goto processed; 1179 } 1180 1181 tx_info_first = NULL; 1182 while ((skb = skb_peek(&tid_info->queue))) { 1183 /* strict 0, 1, ..., n - 1, n frame sequence order */ 1184 if (unlikely(carl9170_get_seq(skb) != seq)) 1185 break; 1186 1187 /* don't upload more than AMPDU FACTOR allows. */ 1188 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >= 1189 (tid_info->max - 1))) 1190 break; 1191 1192 if (!tx_info_first) { 1193 carl9170_tx_get_rates(ar, tid_info->vif, 1194 tid_info->sta, first); 1195 tx_info_first = IEEE80211_SKB_CB(first); 1196 } 1197 1198 carl9170_tx_apply_rateset(ar, tx_info_first, skb); 1199 1200 atomic_inc(&ar->tx_ampdu_upload); 1201 tid_info->snx = seq = SEQ_NEXT(seq); 1202 __skb_unlink(skb, &tid_info->queue); 1203 1204 __skb_queue_tail(&agg, skb); 1205 1206 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX) 1207 break; 1208 } 1209 1210 if (skb_queue_empty(&tid_info->queue) || 1211 carl9170_get_seq(skb_peek(&tid_info->queue)) != 1212 tid_info->snx) { 1213 /* stop TID, if A-MPDU frames are still missing, 1214 * or whenever the queue is empty. 1215 */ 1216 1217 tid_info->state = CARL9170_TID_STATE_IDLE; 1218 } 1219 done_ampdus++; 1220 1221 processed: 1222 spin_unlock_bh(&tid_info->lock); 1223 1224 if (skb_queue_empty(&agg)) 1225 continue; 1226 1227 /* apply ampdu spacing & factor settings */ 1228 carl9170_set_ampdu_params(ar, skb_peek(&agg)); 1229 1230 /* set aggregation push bit */ 1231 carl9170_set_immba(ar, skb_peek_tail(&agg)); 1232 1233 spin_lock_bh(&ar->tx_pending[queue].lock); 1234 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]); 1235 spin_unlock_bh(&ar->tx_pending[queue].lock); 1236 ar->tx_schedule = true; 1237 } 1238 if ((done_ampdus++ == 0) && (i++ == 0)) 1239 goto retry; 1240 1241 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info); 1242 rcu_read_unlock(); 1243 } 1244 1245 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar, 1246 struct sk_buff_head *queue) 1247 { 1248 struct sk_buff *skb; 1249 struct ieee80211_tx_info *info; 1250 struct carl9170_tx_info *arinfo; 1251 1252 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 1253 1254 spin_lock_bh(&queue->lock); 1255 skb = skb_peek(queue); 1256 if (unlikely(!skb)) 1257 goto err_unlock; 1258 1259 if (carl9170_alloc_dev_space(ar, skb)) 1260 goto err_unlock; 1261 1262 __skb_unlink(skb, queue); 1263 spin_unlock_bh(&queue->lock); 1264 1265 info = IEEE80211_SKB_CB(skb); 1266 arinfo = (void *) info->rate_driver_data; 1267 1268 arinfo->timeout = jiffies; 1269 return skb; 1270 1271 err_unlock: 1272 spin_unlock_bh(&queue->lock); 1273 return NULL; 1274 } 1275 1276 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb) 1277 { 1278 struct _carl9170_tx_superframe *super; 1279 uint8_t q = 0; 1280 1281 ar->tx_dropped++; 1282 1283 super = (void *)skb->data; 1284 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q, 1285 ar9170_qmap(carl9170_get_queue(ar, skb))); 1286 __carl9170_tx_process_status(ar, super->s.cookie, q); 1287 } 1288 1289 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb) 1290 { 1291 struct ieee80211_sta *sta; 1292 struct carl9170_sta_info *sta_info; 1293 struct ieee80211_tx_info *tx_info; 1294 1295 rcu_read_lock(); 1296 sta = __carl9170_get_tx_sta(ar, skb); 1297 if (!sta) 1298 goto out_rcu; 1299 1300 sta_info = (void *) sta->drv_priv; 1301 tx_info = IEEE80211_SKB_CB(skb); 1302 1303 if (unlikely(sta_info->sleeping) && 1304 !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER | 1305 IEEE80211_TX_CTL_CLEAR_PS_FILT))) { 1306 rcu_read_unlock(); 1307 1308 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1309 atomic_dec(&ar->tx_ampdu_upload); 1310 1311 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 1312 carl9170_release_dev_space(ar, skb); 1313 carl9170_tx_status(ar, skb, false); 1314 return true; 1315 } 1316 1317 out_rcu: 1318 rcu_read_unlock(); 1319 return false; 1320 } 1321 1322 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb) 1323 { 1324 struct _carl9170_tx_superframe *super = (void *) skb->data; 1325 struct ieee80211_bar *bar = (void *) super->frame_data; 1326 1327 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 1328 skb->len >= sizeof(struct ieee80211_bar)) { 1329 struct carl9170_bar_list_entry *entry; 1330 unsigned int queue = skb_get_queue_mapping(skb); 1331 1332 entry = kmalloc(sizeof(*entry), GFP_ATOMIC); 1333 if (!WARN_ON_ONCE(!entry)) { 1334 entry->skb = skb; 1335 spin_lock_bh(&ar->bar_list_lock[queue]); 1336 list_add_tail_rcu(&entry->list, &ar->bar_list[queue]); 1337 spin_unlock_bh(&ar->bar_list_lock[queue]); 1338 } 1339 } 1340 } 1341 1342 static void carl9170_tx(struct ar9170 *ar) 1343 { 1344 struct sk_buff *skb; 1345 unsigned int i, q; 1346 bool schedule_garbagecollector = false; 1347 1348 ar->tx_schedule = false; 1349 1350 if (unlikely(!IS_STARTED(ar))) 1351 return; 1352 1353 carl9170_usb_handle_tx_err(ar); 1354 1355 for (i = 0; i < ar->hw->queues; i++) { 1356 while (!skb_queue_empty(&ar->tx_pending[i])) { 1357 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]); 1358 if (unlikely(!skb)) 1359 break; 1360 1361 if (unlikely(carl9170_tx_ps_drop(ar, skb))) 1362 continue; 1363 1364 carl9170_bar_check(ar, skb); 1365 1366 atomic_inc(&ar->tx_total_pending); 1367 1368 q = __carl9170_get_queue(ar, i); 1369 /* 1370 * NB: tx_status[i] vs. tx_status[q], 1371 * TODO: Move into pick_skb or alloc_dev_space. 1372 */ 1373 skb_queue_tail(&ar->tx_status[q], skb); 1374 1375 /* 1376 * increase ref count to "2". 1377 * Ref counting is the easiest way to solve the 1378 * race between the urb's completion routine: 1379 * carl9170_tx_callback 1380 * and wlan tx status functions: 1381 * carl9170_tx_status/janitor. 1382 */ 1383 carl9170_tx_get_skb(skb); 1384 1385 carl9170_usb_tx(ar, skb); 1386 schedule_garbagecollector = true; 1387 } 1388 } 1389 1390 if (!schedule_garbagecollector) 1391 return; 1392 1393 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 1394 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 1395 } 1396 1397 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar, 1398 struct ieee80211_sta *sta, struct sk_buff *skb, 1399 struct ieee80211_tx_info *txinfo) 1400 { 1401 struct carl9170_sta_info *sta_info; 1402 struct carl9170_sta_tid *agg; 1403 struct sk_buff *iter; 1404 u16 tid, seq, qseq, off; 1405 bool run = false; 1406 1407 tid = carl9170_get_tid(skb); 1408 seq = carl9170_get_seq(skb); 1409 sta_info = (void *) sta->drv_priv; 1410 1411 rcu_read_lock(); 1412 agg = rcu_dereference(sta_info->agg[tid]); 1413 1414 if (!agg) 1415 goto err_unlock_rcu; 1416 1417 spin_lock_bh(&agg->lock); 1418 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE)) 1419 goto err_unlock; 1420 1421 /* check if sequence is within the BA window */ 1422 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq))) 1423 goto err_unlock; 1424 1425 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq))) 1426 goto err_unlock; 1427 1428 off = SEQ_DIFF(seq, agg->bsn); 1429 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap))) 1430 goto err_unlock; 1431 1432 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) { 1433 __skb_queue_tail(&agg->queue, skb); 1434 agg->hsn = seq; 1435 goto queued; 1436 } 1437 1438 skb_queue_reverse_walk(&agg->queue, iter) { 1439 qseq = carl9170_get_seq(iter); 1440 1441 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) { 1442 __skb_queue_after(&agg->queue, iter, skb); 1443 goto queued; 1444 } 1445 } 1446 1447 __skb_queue_head(&agg->queue, skb); 1448 queued: 1449 1450 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) { 1451 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) { 1452 agg->state = CARL9170_TID_STATE_XMIT; 1453 run = true; 1454 } 1455 } 1456 1457 spin_unlock_bh(&agg->lock); 1458 rcu_read_unlock(); 1459 1460 return run; 1461 1462 err_unlock: 1463 spin_unlock_bh(&agg->lock); 1464 1465 err_unlock_rcu: 1466 rcu_read_unlock(); 1467 txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU; 1468 carl9170_tx_status(ar, skb, false); 1469 ar->tx_dropped++; 1470 return false; 1471 } 1472 1473 void carl9170_op_tx(struct ieee80211_hw *hw, 1474 struct ieee80211_tx_control *control, 1475 struct sk_buff *skb) 1476 { 1477 struct ar9170 *ar = hw->priv; 1478 struct ieee80211_tx_info *info; 1479 struct ieee80211_sta *sta = control->sta; 1480 struct ieee80211_vif *vif; 1481 bool run; 1482 1483 if (unlikely(!IS_STARTED(ar))) 1484 goto err_free; 1485 1486 info = IEEE80211_SKB_CB(skb); 1487 vif = info->control.vif; 1488 1489 if (unlikely(carl9170_tx_prepare(ar, sta, skb))) 1490 goto err_free; 1491 1492 carl9170_tx_accounting(ar, skb); 1493 /* 1494 * from now on, one has to use carl9170_tx_status to free 1495 * all ressouces which are associated with the frame. 1496 */ 1497 1498 if (sta) { 1499 struct carl9170_sta_info *stai = (void *) sta->drv_priv; 1500 atomic_inc(&stai->pending_frames); 1501 } 1502 1503 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1504 /* to static code analyzers and reviewers: 1505 * mac80211 guarantees that a valid "sta" 1506 * reference is present, if a frame is to 1507 * be part of an ampdu. Hence any extra 1508 * sta == NULL checks are redundant in this 1509 * special case. 1510 */ 1511 run = carl9170_tx_ampdu_queue(ar, sta, skb, info); 1512 if (run) 1513 carl9170_tx_ampdu(ar); 1514 1515 } else { 1516 unsigned int queue = skb_get_queue_mapping(skb); 1517 1518 carl9170_tx_get_rates(ar, vif, sta, skb); 1519 carl9170_tx_apply_rateset(ar, info, skb); 1520 skb_queue_tail(&ar->tx_pending[queue], skb); 1521 } 1522 1523 carl9170_tx(ar); 1524 return; 1525 1526 err_free: 1527 ar->tx_dropped++; 1528 ieee80211_free_txskb(ar->hw, skb); 1529 } 1530 1531 void carl9170_tx_scheduler(struct ar9170 *ar) 1532 { 1533 1534 if (ar->tx_ampdu_schedule) 1535 carl9170_tx_ampdu(ar); 1536 1537 if (ar->tx_schedule) 1538 carl9170_tx(ar); 1539 } 1540 1541 /* caller has to take rcu_read_lock */ 1542 static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar) 1543 { 1544 struct carl9170_vif_info *cvif; 1545 int i = 1; 1546 1547 /* The AR9170 hardware has no fancy beacon queue or some 1548 * other scheduling mechanism. So, the driver has to make 1549 * due by setting the two beacon timers (pretbtt and tbtt) 1550 * once and then swapping the beacon address in the HW's 1551 * register file each time the pretbtt fires. 1552 */ 1553 1554 cvif = rcu_dereference(ar->beacon_iter); 1555 if (ar->vifs > 0 && cvif) { 1556 do { 1557 list_for_each_entry_continue_rcu(cvif, &ar->vif_list, 1558 list) { 1559 if (cvif->active && cvif->enable_beacon) 1560 goto out; 1561 } 1562 } while (ar->beacon_enabled && i--); 1563 1564 /* no entry found in list */ 1565 return NULL; 1566 } 1567 1568 out: 1569 RCU_INIT_POINTER(ar->beacon_iter, cvif); 1570 return cvif; 1571 } 1572 1573 static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb, 1574 u32 *ht1, u32 *plcp) 1575 { 1576 struct ieee80211_tx_info *txinfo; 1577 struct ieee80211_tx_rate *rate; 1578 unsigned int power, chains; 1579 bool ht_rate; 1580 1581 txinfo = IEEE80211_SKB_CB(skb); 1582 rate = &txinfo->control.rates[0]; 1583 ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS); 1584 carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains); 1585 1586 *ht1 = AR9170_MAC_BCN_HT1_TX_ANT0; 1587 if (chains == AR9170_TX_PHY_TXCHAIN_2) 1588 *ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1; 1589 SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7); 1590 SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power); 1591 SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains); 1592 1593 if (ht_rate) { 1594 *ht1 |= AR9170_MAC_BCN_HT1_HT_EN; 1595 if (rate->flags & IEEE80211_TX_RC_SHORT_GI) 1596 *plcp |= AR9170_MAC_BCN_HT2_SGI; 1597 1598 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 1599 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED; 1600 *plcp |= AR9170_MAC_BCN_HT2_BW40; 1601 } else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) { 1602 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP; 1603 *plcp |= AR9170_MAC_BCN_HT2_BW40; 1604 } 1605 1606 SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN); 1607 } else { 1608 if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M) 1609 *plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400; 1610 else 1611 *plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010; 1612 } 1613 1614 return ht_rate; 1615 } 1616 1617 int carl9170_update_beacon(struct ar9170 *ar, const bool submit) 1618 { 1619 struct sk_buff *skb = NULL; 1620 struct carl9170_vif_info *cvif; 1621 __le32 *data, *old = NULL; 1622 u32 word, ht1, plcp, off, addr, len; 1623 int i = 0, err = 0; 1624 bool ht_rate; 1625 1626 rcu_read_lock(); 1627 cvif = carl9170_pick_beaconing_vif(ar); 1628 if (!cvif) 1629 goto out_unlock; 1630 1631 skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif), 1632 NULL, NULL, 0); 1633 1634 if (!skb) { 1635 err = -ENOMEM; 1636 goto err_free; 1637 } 1638 1639 spin_lock_bh(&ar->beacon_lock); 1640 data = (__le32 *)skb->data; 1641 if (cvif->beacon) 1642 old = (__le32 *)cvif->beacon->data; 1643 1644 off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX; 1645 addr = ar->fw.beacon_addr + off; 1646 len = roundup(skb->len + FCS_LEN, 4); 1647 1648 if ((off + len) > ar->fw.beacon_max_len) { 1649 if (net_ratelimit()) { 1650 wiphy_err(ar->hw->wiphy, "beacon does not " 1651 "fit into device memory!\n"); 1652 } 1653 err = -EINVAL; 1654 goto err_unlock; 1655 } 1656 1657 if (len > AR9170_MAC_BCN_LENGTH_MAX) { 1658 if (net_ratelimit()) { 1659 wiphy_err(ar->hw->wiphy, "no support for beacons " 1660 "bigger than %d (yours:%d).\n", 1661 AR9170_MAC_BCN_LENGTH_MAX, len); 1662 } 1663 1664 err = -EMSGSIZE; 1665 goto err_unlock; 1666 } 1667 1668 ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp); 1669 1670 carl9170_async_regwrite_begin(ar); 1671 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1); 1672 if (ht_rate) 1673 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp); 1674 else 1675 carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp); 1676 1677 for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) { 1678 /* 1679 * XXX: This accesses beyond skb data for up 1680 * to the last 3 bytes!! 1681 */ 1682 1683 if (old && (data[i] == old[i])) 1684 continue; 1685 1686 word = le32_to_cpu(data[i]); 1687 carl9170_async_regwrite(addr + 4 * i, word); 1688 } 1689 carl9170_async_regwrite_finish(); 1690 1691 dev_kfree_skb_any(cvif->beacon); 1692 cvif->beacon = NULL; 1693 1694 err = carl9170_async_regwrite_result(); 1695 if (!err) 1696 cvif->beacon = skb; 1697 spin_unlock_bh(&ar->beacon_lock); 1698 if (err) 1699 goto err_free; 1700 1701 if (submit) { 1702 err = carl9170_bcn_ctrl(ar, cvif->id, 1703 CARL9170_BCN_CTRL_CAB_TRIGGER, 1704 addr, skb->len + FCS_LEN); 1705 1706 if (err) 1707 goto err_free; 1708 } 1709 out_unlock: 1710 rcu_read_unlock(); 1711 return 0; 1712 1713 err_unlock: 1714 spin_unlock_bh(&ar->beacon_lock); 1715 1716 err_free: 1717 rcu_read_unlock(); 1718 dev_kfree_skb_any(skb); 1719 return err; 1720 } 1721