1 /* 2 * Atheros CARL9170 driver 3 * 4 * 802.11 xmit & status routines 5 * 6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, see 21 * http://www.gnu.org/licenses/. 22 * 23 * This file incorporates work covered by the following copyright and 24 * permission notice: 25 * Copyright (c) 2007-2008 Atheros Communications, Inc. 26 * 27 * Permission to use, copy, modify, and/or distribute this software for any 28 * purpose with or without fee is hereby granted, provided that the above 29 * copyright notice and this permission notice appear in all copies. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 38 */ 39 40 #include <linux/init.h> 41 #include <linux/slab.h> 42 #include <linux/module.h> 43 #include <linux/etherdevice.h> 44 #include <net/mac80211.h> 45 #include "carl9170.h" 46 #include "hw.h" 47 #include "cmd.h" 48 49 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar, 50 unsigned int queue) 51 { 52 if (unlikely(modparam_noht)) { 53 return queue; 54 } else { 55 /* 56 * This is just another workaround, until 57 * someone figures out how to get QoS and 58 * AMPDU to play nicely together. 59 */ 60 61 return 2; /* AC_BE */ 62 } 63 } 64 65 static inline unsigned int carl9170_get_queue(struct ar9170 *ar, 66 struct sk_buff *skb) 67 { 68 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb)); 69 } 70 71 static bool is_mem_full(struct ar9170 *ar) 72 { 73 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) > 74 atomic_read(&ar->mem_free_blocks)); 75 } 76 77 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb) 78 { 79 int queue, i; 80 bool mem_full; 81 82 atomic_inc(&ar->tx_total_queued); 83 84 queue = skb_get_queue_mapping(skb); 85 spin_lock_bh(&ar->tx_stats_lock); 86 87 /* 88 * The driver has to accept the frame, regardless if the queue is 89 * full to the brim, or not. We have to do the queuing internally, 90 * since mac80211 assumes that a driver which can operate with 91 * aggregated frames does not reject frames for this reason. 92 */ 93 ar->tx_stats[queue].len++; 94 ar->tx_stats[queue].count++; 95 96 mem_full = is_mem_full(ar); 97 for (i = 0; i < ar->hw->queues; i++) { 98 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) { 99 ieee80211_stop_queue(ar->hw, i); 100 ar->queue_stop_timeout[i] = jiffies; 101 } 102 } 103 104 spin_unlock_bh(&ar->tx_stats_lock); 105 } 106 107 /* needs rcu_read_lock */ 108 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar, 109 struct sk_buff *skb) 110 { 111 struct _carl9170_tx_superframe *super = (void *) skb->data; 112 struct ieee80211_hdr *hdr = (void *) super->frame_data; 113 struct ieee80211_vif *vif; 114 unsigned int vif_id; 115 116 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >> 117 CARL9170_TX_SUPER_MISC_VIF_ID_S; 118 119 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC)) 120 return NULL; 121 122 vif = rcu_dereference(ar->vif_priv[vif_id].vif); 123 if (unlikely(!vif)) 124 return NULL; 125 126 /* 127 * Normally we should use wrappers like ieee80211_get_DA to get 128 * the correct peer ieee80211_sta. 129 * 130 * But there is a problem with indirect traffic (broadcasts, or 131 * data which is designated for other stations) in station mode. 132 * The frame will be directed to the AP for distribution and not 133 * to the actual destination. 134 */ 135 136 return ieee80211_find_sta(vif, hdr->addr1); 137 } 138 139 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb) 140 { 141 struct ieee80211_sta *sta; 142 struct carl9170_sta_info *sta_info; 143 144 rcu_read_lock(); 145 sta = __carl9170_get_tx_sta(ar, skb); 146 if (unlikely(!sta)) 147 goto out_rcu; 148 149 sta_info = (struct carl9170_sta_info *) sta->drv_priv; 150 if (atomic_dec_return(&sta_info->pending_frames) == 0) 151 ieee80211_sta_block_awake(ar->hw, sta, false); 152 153 out_rcu: 154 rcu_read_unlock(); 155 } 156 157 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb) 158 { 159 int queue; 160 161 queue = skb_get_queue_mapping(skb); 162 163 spin_lock_bh(&ar->tx_stats_lock); 164 165 ar->tx_stats[queue].len--; 166 167 if (!is_mem_full(ar)) { 168 unsigned int i; 169 for (i = 0; i < ar->hw->queues; i++) { 170 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT) 171 continue; 172 173 if (ieee80211_queue_stopped(ar->hw, i)) { 174 unsigned long tmp; 175 176 tmp = jiffies - ar->queue_stop_timeout[i]; 177 if (tmp > ar->max_queue_stop_timeout[i]) 178 ar->max_queue_stop_timeout[i] = tmp; 179 } 180 181 ieee80211_wake_queue(ar->hw, i); 182 } 183 } 184 185 spin_unlock_bh(&ar->tx_stats_lock); 186 187 if (atomic_dec_and_test(&ar->tx_total_queued)) 188 complete(&ar->tx_flush); 189 } 190 191 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb) 192 { 193 struct _carl9170_tx_superframe *super = (void *) skb->data; 194 unsigned int chunks; 195 int cookie = -1; 196 197 atomic_inc(&ar->mem_allocs); 198 199 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size); 200 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) { 201 atomic_add(chunks, &ar->mem_free_blocks); 202 return -ENOSPC; 203 } 204 205 spin_lock_bh(&ar->mem_lock); 206 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0); 207 spin_unlock_bh(&ar->mem_lock); 208 209 if (unlikely(cookie < 0)) { 210 atomic_add(chunks, &ar->mem_free_blocks); 211 return -ENOSPC; 212 } 213 214 super = (void *) skb->data; 215 216 /* 217 * Cookie #0 serves two special purposes: 218 * 1. The firmware might use it generate BlockACK frames 219 * in responds of an incoming BlockAckReqs. 220 * 221 * 2. Prevent double-free bugs. 222 */ 223 super->s.cookie = (u8) cookie + 1; 224 return 0; 225 } 226 227 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb) 228 { 229 struct _carl9170_tx_superframe *super = (void *) skb->data; 230 int cookie; 231 232 /* make a local copy of the cookie */ 233 cookie = super->s.cookie; 234 /* invalidate cookie */ 235 super->s.cookie = 0; 236 237 /* 238 * Do a out-of-bounds check on the cookie: 239 * 240 * * cookie "0" is reserved and won't be assigned to any 241 * out-going frame. Internally however, it is used to 242 * mark no longer/un-accounted frames and serves as a 243 * cheap way of preventing frames from being freed 244 * twice by _accident_. NB: There is a tiny race... 245 * 246 * * obviously, cookie number is limited by the amount 247 * of available memory blocks, so the number can 248 * never execeed the mem_blocks count. 249 */ 250 if (unlikely(WARN_ON_ONCE(cookie == 0) || 251 WARN_ON_ONCE(cookie > ar->fw.mem_blocks))) 252 return; 253 254 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size), 255 &ar->mem_free_blocks); 256 257 spin_lock_bh(&ar->mem_lock); 258 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0); 259 spin_unlock_bh(&ar->mem_lock); 260 } 261 262 /* Called from any context */ 263 static void carl9170_tx_release(struct kref *ref) 264 { 265 struct ar9170 *ar; 266 struct carl9170_tx_info *arinfo; 267 struct ieee80211_tx_info *txinfo; 268 struct sk_buff *skb; 269 270 arinfo = container_of(ref, struct carl9170_tx_info, ref); 271 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info, 272 rate_driver_data); 273 skb = container_of((void *) txinfo, struct sk_buff, cb); 274 275 ar = arinfo->ar; 276 if (WARN_ON_ONCE(!ar)) 277 return; 278 279 BUILD_BUG_ON( 280 offsetof(struct ieee80211_tx_info, status.ack_signal) != 20); 281 282 memset(&txinfo->status.ack_signal, 0, 283 sizeof(struct ieee80211_tx_info) - 284 offsetof(struct ieee80211_tx_info, status.ack_signal)); 285 286 if (atomic_read(&ar->tx_total_queued)) 287 ar->tx_schedule = true; 288 289 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) { 290 if (!atomic_read(&ar->tx_ampdu_upload)) 291 ar->tx_ampdu_schedule = true; 292 293 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) { 294 struct _carl9170_tx_superframe *super; 295 296 super = (void *)skb->data; 297 txinfo->status.ampdu_len = super->s.rix; 298 txinfo->status.ampdu_ack_len = super->s.cnt; 299 } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) && 300 !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) { 301 /* 302 * drop redundant tx_status reports: 303 * 304 * 1. ampdu_ack_len of the final tx_status does 305 * include the feedback of this particular frame. 306 * 307 * 2. tx_status_irqsafe only queues up to 128 308 * tx feedback reports and discards the rest. 309 * 310 * 3. minstrel_ht is picky, it only accepts 311 * reports of frames with the TX_STATUS_AMPDU flag. 312 * 313 * 4. mac80211 is not particularly interested in 314 * feedback either [CTL_REQ_TX_STATUS not set] 315 */ 316 317 ieee80211_free_txskb(ar->hw, skb); 318 return; 319 } else { 320 /* 321 * Either the frame transmission has failed or 322 * mac80211 requested tx status. 323 */ 324 } 325 } 326 327 skb_pull(skb, sizeof(struct _carl9170_tx_superframe)); 328 ieee80211_tx_status_irqsafe(ar->hw, skb); 329 } 330 331 void carl9170_tx_get_skb(struct sk_buff *skb) 332 { 333 struct carl9170_tx_info *arinfo = (void *) 334 (IEEE80211_SKB_CB(skb))->rate_driver_data; 335 kref_get(&arinfo->ref); 336 } 337 338 int carl9170_tx_put_skb(struct sk_buff *skb) 339 { 340 struct carl9170_tx_info *arinfo = (void *) 341 (IEEE80211_SKB_CB(skb))->rate_driver_data; 342 343 return kref_put(&arinfo->ref, carl9170_tx_release); 344 } 345 346 /* Caller must hold the tid_info->lock & rcu_read_lock */ 347 static void carl9170_tx_shift_bm(struct ar9170 *ar, 348 struct carl9170_sta_tid *tid_info, u16 seq) 349 { 350 u16 off; 351 352 off = SEQ_DIFF(seq, tid_info->bsn); 353 354 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 355 return; 356 357 /* 358 * Sanity check. For each MPDU we set the bit in bitmap and 359 * clear it once we received the tx_status. 360 * But if the bit is already cleared then we've been bitten 361 * by a bug. 362 */ 363 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap)); 364 365 off = SEQ_DIFF(tid_info->snx, tid_info->bsn); 366 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 367 return; 368 369 if (!bitmap_empty(tid_info->bitmap, off)) 370 off = find_first_bit(tid_info->bitmap, off); 371 372 tid_info->bsn += off; 373 tid_info->bsn &= 0x0fff; 374 375 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap, 376 off, CARL9170_BAW_BITS); 377 } 378 379 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar, 380 struct sk_buff *skb, struct ieee80211_tx_info *txinfo) 381 { 382 struct _carl9170_tx_superframe *super = (void *) skb->data; 383 struct ieee80211_hdr *hdr = (void *) super->frame_data; 384 struct ieee80211_sta *sta; 385 struct carl9170_sta_info *sta_info; 386 struct carl9170_sta_tid *tid_info; 387 u8 tid; 388 389 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) || 390 txinfo->flags & IEEE80211_TX_CTL_INJECTED || 391 (!(super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_AGGR)))) 392 return; 393 394 rcu_read_lock(); 395 sta = __carl9170_get_tx_sta(ar, skb); 396 if (unlikely(!sta)) 397 goto out_rcu; 398 399 tid = get_tid_h(hdr); 400 401 sta_info = (void *) sta->drv_priv; 402 tid_info = rcu_dereference(sta_info->agg[tid]); 403 if (!tid_info) 404 goto out_rcu; 405 406 spin_lock_bh(&tid_info->lock); 407 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE)) 408 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr)); 409 410 if (sta_info->stats[tid].clear) { 411 sta_info->stats[tid].clear = false; 412 sta_info->stats[tid].req = false; 413 sta_info->stats[tid].ampdu_len = 0; 414 sta_info->stats[tid].ampdu_ack_len = 0; 415 } 416 417 sta_info->stats[tid].ampdu_len++; 418 if (txinfo->status.rates[0].count == 1) 419 sta_info->stats[tid].ampdu_ack_len++; 420 421 if (!(txinfo->flags & IEEE80211_TX_STAT_ACK)) 422 sta_info->stats[tid].req = true; 423 424 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) { 425 super->s.rix = sta_info->stats[tid].ampdu_len; 426 super->s.cnt = sta_info->stats[tid].ampdu_ack_len; 427 txinfo->flags |= IEEE80211_TX_STAT_AMPDU; 428 if (sta_info->stats[tid].req) 429 txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 430 431 sta_info->stats[tid].clear = true; 432 } 433 spin_unlock_bh(&tid_info->lock); 434 435 out_rcu: 436 rcu_read_unlock(); 437 } 438 439 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb, 440 struct ieee80211_tx_info *tx_info) 441 { 442 struct _carl9170_tx_superframe *super = (void *) skb->data; 443 struct ieee80211_bar *bar = (void *) super->frame_data; 444 445 /* 446 * Unlike all other frames, the status report for BARs does 447 * not directly come from the hardware as it is incapable of 448 * matching a BA to a previously send BAR. 449 * Instead the RX-path will scan for incoming BAs and set the 450 * IEEE80211_TX_STAT_ACK if it sees one that was likely 451 * caused by a BAR from us. 452 */ 453 454 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 455 !(tx_info->flags & IEEE80211_TX_STAT_ACK)) { 456 struct carl9170_bar_list_entry *entry; 457 int queue = skb_get_queue_mapping(skb); 458 459 rcu_read_lock(); 460 list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) { 461 if (entry->skb == skb) { 462 spin_lock_bh(&ar->bar_list_lock[queue]); 463 list_del_rcu(&entry->list); 464 spin_unlock_bh(&ar->bar_list_lock[queue]); 465 kfree_rcu(entry, head); 466 goto out; 467 } 468 } 469 470 WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n", 471 queue, bar->ra, bar->ta, bar->control, 472 bar->start_seq_num); 473 out: 474 rcu_read_unlock(); 475 } 476 } 477 478 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb, 479 const bool success) 480 { 481 struct ieee80211_tx_info *txinfo; 482 483 carl9170_tx_accounting_free(ar, skb); 484 485 txinfo = IEEE80211_SKB_CB(skb); 486 487 carl9170_tx_bar_status(ar, skb, txinfo); 488 489 if (success) 490 txinfo->flags |= IEEE80211_TX_STAT_ACK; 491 else 492 ar->tx_ack_failures++; 493 494 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 495 carl9170_tx_status_process_ampdu(ar, skb, txinfo); 496 497 carl9170_tx_ps_unblock(ar, skb); 498 carl9170_tx_put_skb(skb); 499 } 500 501 /* This function may be called form any context */ 502 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb) 503 { 504 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb); 505 506 atomic_dec(&ar->tx_total_pending); 507 508 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 509 atomic_dec(&ar->tx_ampdu_upload); 510 511 if (carl9170_tx_put_skb(skb)) 512 tasklet_hi_schedule(&ar->usb_tasklet); 513 } 514 515 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie, 516 struct sk_buff_head *queue) 517 { 518 struct sk_buff *skb; 519 520 spin_lock_bh(&queue->lock); 521 skb_queue_walk(queue, skb) { 522 struct _carl9170_tx_superframe *txc = (void *) skb->data; 523 524 if (txc->s.cookie != cookie) 525 continue; 526 527 __skb_unlink(skb, queue); 528 spin_unlock_bh(&queue->lock); 529 530 carl9170_release_dev_space(ar, skb); 531 return skb; 532 } 533 spin_unlock_bh(&queue->lock); 534 535 return NULL; 536 } 537 538 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix, 539 unsigned int tries, struct ieee80211_tx_info *txinfo) 540 { 541 unsigned int i; 542 543 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 544 if (txinfo->status.rates[i].idx < 0) 545 break; 546 547 if (i == rix) { 548 txinfo->status.rates[i].count = tries; 549 i++; 550 break; 551 } 552 } 553 554 for (; i < IEEE80211_TX_MAX_RATES; i++) { 555 txinfo->status.rates[i].idx = -1; 556 txinfo->status.rates[i].count = 0; 557 } 558 } 559 560 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar) 561 { 562 int i; 563 struct sk_buff *skb; 564 struct ieee80211_tx_info *txinfo; 565 struct carl9170_tx_info *arinfo; 566 bool restart = false; 567 568 for (i = 0; i < ar->hw->queues; i++) { 569 spin_lock_bh(&ar->tx_status[i].lock); 570 571 skb = skb_peek(&ar->tx_status[i]); 572 573 if (!skb) 574 goto next; 575 576 txinfo = IEEE80211_SKB_CB(skb); 577 arinfo = (void *) txinfo->rate_driver_data; 578 579 if (time_is_before_jiffies(arinfo->timeout + 580 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true) 581 restart = true; 582 583 next: 584 spin_unlock_bh(&ar->tx_status[i].lock); 585 } 586 587 if (restart) { 588 /* 589 * At least one queue has been stuck for long enough. 590 * Give the device a kick and hope it gets back to 591 * work. 592 * 593 * possible reasons may include: 594 * - frames got lost/corrupted (bad connection to the device) 595 * - stalled rx processing/usb controller hiccups 596 * - firmware errors/bugs 597 * - every bug you can think of. 598 * - all bugs you can't... 599 * - ... 600 */ 601 carl9170_restart(ar, CARL9170_RR_STUCK_TX); 602 } 603 } 604 605 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar) 606 { 607 struct carl9170_sta_tid *iter; 608 struct sk_buff *skb; 609 struct ieee80211_tx_info *txinfo; 610 struct carl9170_tx_info *arinfo; 611 struct ieee80211_sta *sta; 612 613 rcu_read_lock(); 614 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) { 615 if (iter->state < CARL9170_TID_STATE_IDLE) 616 continue; 617 618 spin_lock_bh(&iter->lock); 619 skb = skb_peek(&iter->queue); 620 if (!skb) 621 goto unlock; 622 623 txinfo = IEEE80211_SKB_CB(skb); 624 arinfo = (void *)txinfo->rate_driver_data; 625 if (time_is_after_jiffies(arinfo->timeout + 626 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT))) 627 goto unlock; 628 629 sta = __carl9170_get_tx_sta(ar, skb); 630 if (WARN_ON(!sta)) 631 goto unlock; 632 633 ieee80211_stop_tx_ba_session(sta, iter->tid); 634 unlock: 635 spin_unlock_bh(&iter->lock); 636 637 } 638 rcu_read_unlock(); 639 } 640 641 void carl9170_tx_janitor(struct work_struct *work) 642 { 643 struct ar9170 *ar = container_of(work, struct ar9170, 644 tx_janitor.work); 645 if (!IS_STARTED(ar)) 646 return; 647 648 ar->tx_janitor_last_run = jiffies; 649 650 carl9170_check_queue_stop_timeout(ar); 651 carl9170_tx_ampdu_timeout(ar); 652 653 if (!atomic_read(&ar->tx_total_queued)) 654 return; 655 656 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 657 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 658 } 659 660 static void __carl9170_tx_process_status(struct ar9170 *ar, 661 const uint8_t cookie, const uint8_t info) 662 { 663 struct sk_buff *skb; 664 struct ieee80211_tx_info *txinfo; 665 unsigned int r, t, q; 666 bool success = true; 667 668 q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE]; 669 670 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]); 671 if (!skb) { 672 /* 673 * We have lost the race to another thread. 674 */ 675 676 return ; 677 } 678 679 txinfo = IEEE80211_SKB_CB(skb); 680 681 if (!(info & CARL9170_TX_STATUS_SUCCESS)) 682 success = false; 683 684 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S; 685 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S; 686 687 carl9170_tx_fill_rateinfo(ar, r, t, txinfo); 688 carl9170_tx_status(ar, skb, success); 689 } 690 691 void carl9170_tx_process_status(struct ar9170 *ar, 692 const struct carl9170_rsp *cmd) 693 { 694 unsigned int i; 695 696 for (i = 0; i < cmd->hdr.ext; i++) { 697 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) { 698 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE, 699 (void *) cmd, cmd->hdr.len + 4); 700 break; 701 } 702 703 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie, 704 cmd->_tx_status[i].info); 705 } 706 } 707 708 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar, 709 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate, 710 unsigned int *phyrate, unsigned int *tpc, unsigned int *chains) 711 { 712 struct ieee80211_rate *rate = NULL; 713 u8 *txpower; 714 unsigned int idx; 715 716 idx = txrate->idx; 717 *tpc = 0; 718 *phyrate = 0; 719 720 if (txrate->flags & IEEE80211_TX_RC_MCS) { 721 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 722 /* +1 dBm for HT40 */ 723 *tpc += 2; 724 725 if (info->band == IEEE80211_BAND_2GHZ) 726 txpower = ar->power_2G_ht40; 727 else 728 txpower = ar->power_5G_ht40; 729 } else { 730 if (info->band == IEEE80211_BAND_2GHZ) 731 txpower = ar->power_2G_ht20; 732 else 733 txpower = ar->power_5G_ht20; 734 } 735 736 *phyrate = txrate->idx; 737 *tpc += txpower[idx & 7]; 738 } else { 739 if (info->band == IEEE80211_BAND_2GHZ) { 740 if (idx < 4) 741 txpower = ar->power_2G_cck; 742 else 743 txpower = ar->power_2G_ofdm; 744 } else { 745 txpower = ar->power_5G_leg; 746 idx += 4; 747 } 748 749 rate = &__carl9170_ratetable[idx]; 750 *tpc += txpower[(rate->hw_value & 0x30) >> 4]; 751 *phyrate = rate->hw_value & 0xf; 752 } 753 754 if (ar->eeprom.tx_mask == 1) { 755 *chains = AR9170_TX_PHY_TXCHAIN_1; 756 } else { 757 if (!(txrate->flags & IEEE80211_TX_RC_MCS) && 758 rate && rate->bitrate >= 360) 759 *chains = AR9170_TX_PHY_TXCHAIN_1; 760 else 761 *chains = AR9170_TX_PHY_TXCHAIN_2; 762 } 763 764 *tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2); 765 } 766 767 static __le32 carl9170_tx_physet(struct ar9170 *ar, 768 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate) 769 { 770 unsigned int power = 0, chains = 0, phyrate = 0; 771 __le32 tmp; 772 773 tmp = cpu_to_le32(0); 774 775 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 776 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ << 777 AR9170_TX_PHY_BW_S); 778 /* this works because 40 MHz is 2 and dup is 3 */ 779 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA) 780 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP << 781 AR9170_TX_PHY_BW_S); 782 783 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) 784 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI); 785 786 if (txrate->flags & IEEE80211_TX_RC_MCS) { 787 SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx); 788 789 /* heavy clip control */ 790 tmp |= cpu_to_le32((txrate->idx & 0x7) << 791 AR9170_TX_PHY_TX_HEAVY_CLIP_S); 792 793 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT); 794 795 /* 796 * green field preamble does not work. 797 * 798 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) 799 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD); 800 */ 801 } else { 802 if (info->band == IEEE80211_BAND_2GHZ) { 803 if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M) 804 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK); 805 else 806 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 807 } else { 808 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 809 } 810 811 /* 812 * short preamble seems to be broken too. 813 * 814 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 815 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE); 816 */ 817 } 818 carl9170_tx_rate_tpc_chains(ar, info, txrate, 819 &phyrate, &power, &chains); 820 821 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate)); 822 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power)); 823 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains)); 824 return tmp; 825 } 826 827 static bool carl9170_tx_rts_check(struct ar9170 *ar, 828 struct ieee80211_tx_rate *rate, 829 bool ampdu, bool multi) 830 { 831 switch (ar->erp_mode) { 832 case CARL9170_ERP_AUTO: 833 if (ampdu) 834 break; 835 836 case CARL9170_ERP_MAC80211: 837 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)) 838 break; 839 840 case CARL9170_ERP_RTS: 841 if (likely(!multi)) 842 return true; 843 844 default: 845 break; 846 } 847 848 return false; 849 } 850 851 static bool carl9170_tx_cts_check(struct ar9170 *ar, 852 struct ieee80211_tx_rate *rate) 853 { 854 switch (ar->erp_mode) { 855 case CARL9170_ERP_AUTO: 856 case CARL9170_ERP_MAC80211: 857 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)) 858 break; 859 860 case CARL9170_ERP_CTS: 861 return true; 862 863 default: 864 break; 865 } 866 867 return false; 868 } 869 870 static int carl9170_tx_prepare(struct ar9170 *ar, struct sk_buff *skb) 871 { 872 struct ieee80211_hdr *hdr; 873 struct _carl9170_tx_superframe *txc; 874 struct carl9170_vif_info *cvif; 875 struct ieee80211_tx_info *info; 876 struct ieee80211_tx_rate *txrate; 877 struct ieee80211_sta *sta; 878 struct carl9170_tx_info *arinfo; 879 unsigned int hw_queue; 880 int i; 881 __le16 mac_tmp; 882 u16 len; 883 bool ampdu, no_ack; 884 885 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 886 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) != 887 CARL9170_TX_SUPERDESC_LEN); 888 889 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) != 890 AR9170_TX_HWDESC_LEN); 891 892 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES); 893 894 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC > 895 ((CARL9170_TX_SUPER_MISC_VIF_ID >> 896 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1)); 897 898 hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)]; 899 900 hdr = (void *)skb->data; 901 info = IEEE80211_SKB_CB(skb); 902 len = skb->len; 903 904 /* 905 * Note: If the frame was sent through a monitor interface, 906 * the ieee80211_vif pointer can be NULL. 907 */ 908 if (likely(info->control.vif)) 909 cvif = (void *) info->control.vif->drv_priv; 910 else 911 cvif = NULL; 912 913 sta = info->control.sta; 914 915 txc = (void *)skb_push(skb, sizeof(*txc)); 916 memset(txc, 0, sizeof(*txc)); 917 918 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue); 919 920 if (likely(cvif)) 921 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id); 922 923 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)) 924 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB; 925 926 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 927 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ; 928 929 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) 930 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF; 931 932 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION | 933 AR9170_TX_MAC_BACKOFF); 934 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) & 935 AR9170_TX_MAC_QOS); 936 937 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK); 938 if (unlikely(no_ack)) 939 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK); 940 941 if (info->control.hw_key) { 942 len += info->control.hw_key->icv_len; 943 944 switch (info->control.hw_key->cipher) { 945 case WLAN_CIPHER_SUITE_WEP40: 946 case WLAN_CIPHER_SUITE_WEP104: 947 case WLAN_CIPHER_SUITE_TKIP: 948 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4); 949 break; 950 case WLAN_CIPHER_SUITE_CCMP: 951 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES); 952 break; 953 default: 954 WARN_ON(1); 955 goto err_out; 956 } 957 } 958 959 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU); 960 if (ampdu) { 961 unsigned int density, factor; 962 963 if (unlikely(!sta || !cvif)) 964 goto err_out; 965 966 factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor); 967 density = sta->ht_cap.ampdu_density; 968 969 if (density) { 970 /* 971 * Watch out! 972 * 973 * Otus uses slightly different density values than 974 * those from the 802.11n spec. 975 */ 976 977 density = max_t(unsigned int, density + 1, 7u); 978 } 979 980 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY, 981 txc->s.ampdu_settings, density); 982 983 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR, 984 txc->s.ampdu_settings, factor); 985 986 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) { 987 txrate = &info->control.rates[i]; 988 if (txrate->idx >= 0) { 989 txc->s.ri[i] = 990 CARL9170_TX_SUPER_RI_AMPDU; 991 992 if (WARN_ON(!(txrate->flags & 993 IEEE80211_TX_RC_MCS))) { 994 /* 995 * Not sure if it's even possible 996 * to aggregate non-ht rates with 997 * this HW. 998 */ 999 goto err_out; 1000 } 1001 continue; 1002 } 1003 1004 txrate->idx = 0; 1005 txrate->count = ar->hw->max_rate_tries; 1006 } 1007 1008 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR); 1009 } 1010 1011 /* 1012 * NOTE: For the first rate, the ERP & AMPDU flags are directly 1013 * taken from mac_control. For all fallback rate, the firmware 1014 * updates the mac_control flags from the rate info field. 1015 */ 1016 for (i = 1; i < CARL9170_TX_MAX_RATES; i++) { 1017 txrate = &info->control.rates[i]; 1018 if (txrate->idx < 0) 1019 break; 1020 1021 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i], 1022 txrate->count); 1023 1024 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 1025 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS << 1026 CARL9170_TX_SUPER_RI_ERP_PROT_S); 1027 else if (carl9170_tx_cts_check(ar, txrate)) 1028 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS << 1029 CARL9170_TX_SUPER_RI_ERP_PROT_S); 1030 1031 txc->s.rr[i - 1] = carl9170_tx_physet(ar, info, txrate); 1032 } 1033 1034 txrate = &info->control.rates[0]; 1035 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[0], txrate->count); 1036 1037 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 1038 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS); 1039 else if (carl9170_tx_cts_check(ar, txrate)) 1040 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS); 1041 1042 txc->s.len = cpu_to_le16(skb->len); 1043 txc->f.length = cpu_to_le16(len + FCS_LEN); 1044 txc->f.mac_control = mac_tmp; 1045 txc->f.phy_control = carl9170_tx_physet(ar, info, txrate); 1046 1047 arinfo = (void *)info->rate_driver_data; 1048 arinfo->timeout = jiffies; 1049 arinfo->ar = ar; 1050 kref_init(&arinfo->ref); 1051 return 0; 1052 1053 err_out: 1054 skb_pull(skb, sizeof(*txc)); 1055 return -EINVAL; 1056 } 1057 1058 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb) 1059 { 1060 struct _carl9170_tx_superframe *super; 1061 1062 super = (void *) skb->data; 1063 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA); 1064 } 1065 1066 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb) 1067 { 1068 struct _carl9170_tx_superframe *super; 1069 int tmp; 1070 1071 super = (void *) skb->data; 1072 1073 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) << 1074 CARL9170_TX_SUPER_AMPDU_DENSITY_S; 1075 1076 /* 1077 * If you haven't noticed carl9170_tx_prepare has already filled 1078 * in all ampdu spacing & factor parameters. 1079 * Now it's the time to check whenever the settings have to be 1080 * updated by the firmware, or if everything is still the same. 1081 * 1082 * There's no sane way to handle different density values with 1083 * this hardware, so we may as well just do the compare in the 1084 * driver. 1085 */ 1086 1087 if (tmp != ar->current_density) { 1088 ar->current_density = tmp; 1089 super->s.ampdu_settings |= 1090 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY; 1091 } 1092 1093 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) << 1094 CARL9170_TX_SUPER_AMPDU_FACTOR_S; 1095 1096 if (tmp != ar->current_factor) { 1097 ar->current_factor = tmp; 1098 super->s.ampdu_settings |= 1099 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR; 1100 } 1101 } 1102 1103 static bool carl9170_tx_rate_check(struct ar9170 *ar, struct sk_buff *_dest, 1104 struct sk_buff *_src) 1105 { 1106 struct _carl9170_tx_superframe *dest, *src; 1107 1108 dest = (void *) _dest->data; 1109 src = (void *) _src->data; 1110 1111 /* 1112 * The mac80211 rate control algorithm expects that all MPDUs in 1113 * an AMPDU share the same tx vectors. 1114 * This is not really obvious right now, because the hardware 1115 * does the AMPDU setup according to its own rulebook. 1116 * Our nicely assembled, strictly monotonic increasing mpdu 1117 * chains will be broken up, mashed back together... 1118 */ 1119 1120 return (dest->f.phy_control == src->f.phy_control); 1121 } 1122 1123 static void carl9170_tx_ampdu(struct ar9170 *ar) 1124 { 1125 struct sk_buff_head agg; 1126 struct carl9170_sta_tid *tid_info; 1127 struct sk_buff *skb, *first; 1128 unsigned int i = 0, done_ampdus = 0; 1129 u16 seq, queue, tmpssn; 1130 1131 atomic_inc(&ar->tx_ampdu_scheduler); 1132 ar->tx_ampdu_schedule = false; 1133 1134 if (atomic_read(&ar->tx_ampdu_upload)) 1135 return; 1136 1137 if (!ar->tx_ampdu_list_len) 1138 return; 1139 1140 __skb_queue_head_init(&agg); 1141 1142 rcu_read_lock(); 1143 tid_info = rcu_dereference(ar->tx_ampdu_iter); 1144 if (WARN_ON_ONCE(!tid_info)) { 1145 rcu_read_unlock(); 1146 return; 1147 } 1148 1149 retry: 1150 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) { 1151 i++; 1152 1153 if (tid_info->state < CARL9170_TID_STATE_PROGRESS) 1154 continue; 1155 1156 queue = TID_TO_WME_AC(tid_info->tid); 1157 1158 spin_lock_bh(&tid_info->lock); 1159 if (tid_info->state != CARL9170_TID_STATE_XMIT) 1160 goto processed; 1161 1162 tid_info->counter++; 1163 first = skb_peek(&tid_info->queue); 1164 tmpssn = carl9170_get_seq(first); 1165 seq = tid_info->snx; 1166 1167 if (unlikely(tmpssn != seq)) { 1168 tid_info->state = CARL9170_TID_STATE_IDLE; 1169 1170 goto processed; 1171 } 1172 1173 while ((skb = skb_peek(&tid_info->queue))) { 1174 /* strict 0, 1, ..., n - 1, n frame sequence order */ 1175 if (unlikely(carl9170_get_seq(skb) != seq)) 1176 break; 1177 1178 /* don't upload more than AMPDU FACTOR allows. */ 1179 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >= 1180 (tid_info->max - 1))) 1181 break; 1182 1183 if (!carl9170_tx_rate_check(ar, skb, first)) 1184 break; 1185 1186 atomic_inc(&ar->tx_ampdu_upload); 1187 tid_info->snx = seq = SEQ_NEXT(seq); 1188 __skb_unlink(skb, &tid_info->queue); 1189 1190 __skb_queue_tail(&agg, skb); 1191 1192 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX) 1193 break; 1194 } 1195 1196 if (skb_queue_empty(&tid_info->queue) || 1197 carl9170_get_seq(skb_peek(&tid_info->queue)) != 1198 tid_info->snx) { 1199 /* 1200 * stop TID, if A-MPDU frames are still missing, 1201 * or whenever the queue is empty. 1202 */ 1203 1204 tid_info->state = CARL9170_TID_STATE_IDLE; 1205 } 1206 done_ampdus++; 1207 1208 processed: 1209 spin_unlock_bh(&tid_info->lock); 1210 1211 if (skb_queue_empty(&agg)) 1212 continue; 1213 1214 /* apply ampdu spacing & factor settings */ 1215 carl9170_set_ampdu_params(ar, skb_peek(&agg)); 1216 1217 /* set aggregation push bit */ 1218 carl9170_set_immba(ar, skb_peek_tail(&agg)); 1219 1220 spin_lock_bh(&ar->tx_pending[queue].lock); 1221 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]); 1222 spin_unlock_bh(&ar->tx_pending[queue].lock); 1223 ar->tx_schedule = true; 1224 } 1225 if ((done_ampdus++ == 0) && (i++ == 0)) 1226 goto retry; 1227 1228 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info); 1229 rcu_read_unlock(); 1230 } 1231 1232 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar, 1233 struct sk_buff_head *queue) 1234 { 1235 struct sk_buff *skb; 1236 struct ieee80211_tx_info *info; 1237 struct carl9170_tx_info *arinfo; 1238 1239 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 1240 1241 spin_lock_bh(&queue->lock); 1242 skb = skb_peek(queue); 1243 if (unlikely(!skb)) 1244 goto err_unlock; 1245 1246 if (carl9170_alloc_dev_space(ar, skb)) 1247 goto err_unlock; 1248 1249 __skb_unlink(skb, queue); 1250 spin_unlock_bh(&queue->lock); 1251 1252 info = IEEE80211_SKB_CB(skb); 1253 arinfo = (void *) info->rate_driver_data; 1254 1255 arinfo->timeout = jiffies; 1256 return skb; 1257 1258 err_unlock: 1259 spin_unlock_bh(&queue->lock); 1260 return NULL; 1261 } 1262 1263 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb) 1264 { 1265 struct _carl9170_tx_superframe *super; 1266 uint8_t q = 0; 1267 1268 ar->tx_dropped++; 1269 1270 super = (void *)skb->data; 1271 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q, 1272 ar9170_qmap[carl9170_get_queue(ar, skb)]); 1273 __carl9170_tx_process_status(ar, super->s.cookie, q); 1274 } 1275 1276 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb) 1277 { 1278 struct ieee80211_sta *sta; 1279 struct carl9170_sta_info *sta_info; 1280 struct ieee80211_tx_info *tx_info; 1281 1282 rcu_read_lock(); 1283 sta = __carl9170_get_tx_sta(ar, skb); 1284 if (!sta) 1285 goto out_rcu; 1286 1287 sta_info = (void *) sta->drv_priv; 1288 tx_info = IEEE80211_SKB_CB(skb); 1289 1290 if (unlikely(sta_info->sleeping) && 1291 !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER | 1292 IEEE80211_TX_CTL_CLEAR_PS_FILT))) { 1293 rcu_read_unlock(); 1294 1295 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1296 atomic_dec(&ar->tx_ampdu_upload); 1297 1298 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 1299 carl9170_release_dev_space(ar, skb); 1300 carl9170_tx_status(ar, skb, false); 1301 return true; 1302 } 1303 1304 out_rcu: 1305 rcu_read_unlock(); 1306 return false; 1307 } 1308 1309 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb) 1310 { 1311 struct _carl9170_tx_superframe *super = (void *) skb->data; 1312 struct ieee80211_bar *bar = (void *) super->frame_data; 1313 1314 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 1315 skb->len >= sizeof(struct ieee80211_bar)) { 1316 struct carl9170_bar_list_entry *entry; 1317 unsigned int queue = skb_get_queue_mapping(skb); 1318 1319 entry = kmalloc(sizeof(*entry), GFP_ATOMIC); 1320 if (!WARN_ON_ONCE(!entry)) { 1321 entry->skb = skb; 1322 spin_lock_bh(&ar->bar_list_lock[queue]); 1323 list_add_tail_rcu(&entry->list, &ar->bar_list[queue]); 1324 spin_unlock_bh(&ar->bar_list_lock[queue]); 1325 } 1326 } 1327 } 1328 1329 static void carl9170_tx(struct ar9170 *ar) 1330 { 1331 struct sk_buff *skb; 1332 unsigned int i, q; 1333 bool schedule_garbagecollector = false; 1334 1335 ar->tx_schedule = false; 1336 1337 if (unlikely(!IS_STARTED(ar))) 1338 return; 1339 1340 carl9170_usb_handle_tx_err(ar); 1341 1342 for (i = 0; i < ar->hw->queues; i++) { 1343 while (!skb_queue_empty(&ar->tx_pending[i])) { 1344 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]); 1345 if (unlikely(!skb)) 1346 break; 1347 1348 if (unlikely(carl9170_tx_ps_drop(ar, skb))) 1349 continue; 1350 1351 carl9170_bar_check(ar, skb); 1352 1353 atomic_inc(&ar->tx_total_pending); 1354 1355 q = __carl9170_get_queue(ar, i); 1356 /* 1357 * NB: tx_status[i] vs. tx_status[q], 1358 * TODO: Move into pick_skb or alloc_dev_space. 1359 */ 1360 skb_queue_tail(&ar->tx_status[q], skb); 1361 1362 /* 1363 * increase ref count to "2". 1364 * Ref counting is the easiest way to solve the 1365 * race between the urb's completion routine: 1366 * carl9170_tx_callback 1367 * and wlan tx status functions: 1368 * carl9170_tx_status/janitor. 1369 */ 1370 carl9170_tx_get_skb(skb); 1371 1372 carl9170_usb_tx(ar, skb); 1373 schedule_garbagecollector = true; 1374 } 1375 } 1376 1377 if (!schedule_garbagecollector) 1378 return; 1379 1380 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 1381 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 1382 } 1383 1384 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar, 1385 struct ieee80211_sta *sta, struct sk_buff *skb) 1386 { 1387 struct _carl9170_tx_superframe *super = (void *) skb->data; 1388 struct carl9170_sta_info *sta_info; 1389 struct carl9170_sta_tid *agg; 1390 struct sk_buff *iter; 1391 u16 tid, seq, qseq, off; 1392 bool run = false; 1393 1394 tid = carl9170_get_tid(skb); 1395 seq = carl9170_get_seq(skb); 1396 sta_info = (void *) sta->drv_priv; 1397 1398 rcu_read_lock(); 1399 agg = rcu_dereference(sta_info->agg[tid]); 1400 1401 if (!agg) 1402 goto err_unlock_rcu; 1403 1404 spin_lock_bh(&agg->lock); 1405 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE)) 1406 goto err_unlock; 1407 1408 /* check if sequence is within the BA window */ 1409 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq))) 1410 goto err_unlock; 1411 1412 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq))) 1413 goto err_unlock; 1414 1415 off = SEQ_DIFF(seq, agg->bsn); 1416 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap))) 1417 goto err_unlock; 1418 1419 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) { 1420 __skb_queue_tail(&agg->queue, skb); 1421 agg->hsn = seq; 1422 goto queued; 1423 } 1424 1425 skb_queue_reverse_walk(&agg->queue, iter) { 1426 qseq = carl9170_get_seq(iter); 1427 1428 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) { 1429 __skb_queue_after(&agg->queue, iter, skb); 1430 goto queued; 1431 } 1432 } 1433 1434 __skb_queue_head(&agg->queue, skb); 1435 queued: 1436 1437 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) { 1438 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) { 1439 agg->state = CARL9170_TID_STATE_XMIT; 1440 run = true; 1441 } 1442 } 1443 1444 spin_unlock_bh(&agg->lock); 1445 rcu_read_unlock(); 1446 1447 return run; 1448 1449 err_unlock: 1450 spin_unlock_bh(&agg->lock); 1451 1452 err_unlock_rcu: 1453 rcu_read_unlock(); 1454 super->f.mac_control &= ~cpu_to_le16(AR9170_TX_MAC_AGGR); 1455 carl9170_tx_status(ar, skb, false); 1456 ar->tx_dropped++; 1457 return false; 1458 } 1459 1460 void carl9170_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb) 1461 { 1462 struct ar9170 *ar = hw->priv; 1463 struct ieee80211_tx_info *info; 1464 struct ieee80211_sta *sta; 1465 bool run; 1466 1467 if (unlikely(!IS_STARTED(ar))) 1468 goto err_free; 1469 1470 info = IEEE80211_SKB_CB(skb); 1471 sta = info->control.sta; 1472 1473 if (unlikely(carl9170_tx_prepare(ar, skb))) 1474 goto err_free; 1475 1476 carl9170_tx_accounting(ar, skb); 1477 /* 1478 * from now on, one has to use carl9170_tx_status to free 1479 * all ressouces which are associated with the frame. 1480 */ 1481 1482 if (sta) { 1483 struct carl9170_sta_info *stai = (void *) sta->drv_priv; 1484 atomic_inc(&stai->pending_frames); 1485 } 1486 1487 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1488 run = carl9170_tx_ampdu_queue(ar, sta, skb); 1489 if (run) 1490 carl9170_tx_ampdu(ar); 1491 1492 } else { 1493 unsigned int queue = skb_get_queue_mapping(skb); 1494 1495 skb_queue_tail(&ar->tx_pending[queue], skb); 1496 } 1497 1498 carl9170_tx(ar); 1499 return; 1500 1501 err_free: 1502 ar->tx_dropped++; 1503 ieee80211_free_txskb(ar->hw, skb); 1504 } 1505 1506 void carl9170_tx_scheduler(struct ar9170 *ar) 1507 { 1508 1509 if (ar->tx_ampdu_schedule) 1510 carl9170_tx_ampdu(ar); 1511 1512 if (ar->tx_schedule) 1513 carl9170_tx(ar); 1514 } 1515 1516 int carl9170_update_beacon(struct ar9170 *ar, const bool submit) 1517 { 1518 struct sk_buff *skb = NULL; 1519 struct carl9170_vif_info *cvif; 1520 struct ieee80211_tx_info *txinfo; 1521 struct ieee80211_tx_rate *rate; 1522 __le32 *data, *old = NULL; 1523 unsigned int plcp, power, chains; 1524 u32 word, ht1, off, addr, len; 1525 int i = 0, err = 0; 1526 1527 rcu_read_lock(); 1528 cvif = rcu_dereference(ar->beacon_iter); 1529 retry: 1530 if (ar->vifs == 0 || !cvif) 1531 goto out_unlock; 1532 1533 list_for_each_entry_continue_rcu(cvif, &ar->vif_list, list) { 1534 if (cvif->active && cvif->enable_beacon) 1535 goto found; 1536 } 1537 1538 if (!ar->beacon_enabled || i++) 1539 goto out_unlock; 1540 1541 goto retry; 1542 1543 found: 1544 rcu_assign_pointer(ar->beacon_iter, cvif); 1545 1546 skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif), 1547 NULL, NULL); 1548 1549 if (!skb) { 1550 err = -ENOMEM; 1551 goto err_free; 1552 } 1553 1554 txinfo = IEEE80211_SKB_CB(skb); 1555 spin_lock_bh(&ar->beacon_lock); 1556 data = (__le32 *)skb->data; 1557 if (cvif->beacon) 1558 old = (__le32 *)cvif->beacon->data; 1559 1560 off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX; 1561 addr = ar->fw.beacon_addr + off; 1562 len = roundup(skb->len + FCS_LEN, 4); 1563 1564 if ((off + len) > ar->fw.beacon_max_len) { 1565 if (net_ratelimit()) { 1566 wiphy_err(ar->hw->wiphy, "beacon does not " 1567 "fit into device memory!\n"); 1568 } 1569 err = -EINVAL; 1570 goto err_unlock; 1571 } 1572 1573 if (len > AR9170_MAC_BCN_LENGTH_MAX) { 1574 if (net_ratelimit()) { 1575 wiphy_err(ar->hw->wiphy, "no support for beacons " 1576 "bigger than %d (yours:%d).\n", 1577 AR9170_MAC_BCN_LENGTH_MAX, len); 1578 } 1579 1580 err = -EMSGSIZE; 1581 goto err_unlock; 1582 } 1583 1584 ht1 = AR9170_MAC_BCN_HT1_TX_ANT0; 1585 rate = &txinfo->control.rates[0]; 1586 carl9170_tx_rate_tpc_chains(ar, txinfo, rate, &plcp, &power, &chains); 1587 if (!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS)) { 1588 if (plcp <= AR9170_TX_PHY_RATE_CCK_11M) 1589 plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400; 1590 else 1591 plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010; 1592 } else { 1593 ht1 |= AR9170_MAC_BCN_HT1_HT_EN; 1594 if (rate->flags & IEEE80211_TX_RC_SHORT_GI) 1595 plcp |= AR9170_MAC_BCN_HT2_SGI; 1596 1597 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 1598 ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED; 1599 plcp |= AR9170_MAC_BCN_HT2_BW40; 1600 } 1601 if (rate->flags & IEEE80211_TX_RC_DUP_DATA) { 1602 ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP; 1603 plcp |= AR9170_MAC_BCN_HT2_BW40; 1604 } 1605 1606 SET_VAL(AR9170_MAC_BCN_HT2_LEN, plcp, skb->len + FCS_LEN); 1607 } 1608 1609 SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, ht1, 7); 1610 SET_VAL(AR9170_MAC_BCN_HT1_TPC, ht1, power); 1611 SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, ht1, chains); 1612 if (chains == AR9170_TX_PHY_TXCHAIN_2) 1613 ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1; 1614 1615 carl9170_async_regwrite_begin(ar); 1616 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1); 1617 if (!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS)) 1618 carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp); 1619 else 1620 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp); 1621 1622 for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) { 1623 /* 1624 * XXX: This accesses beyond skb data for up 1625 * to the last 3 bytes!! 1626 */ 1627 1628 if (old && (data[i] == old[i])) 1629 continue; 1630 1631 word = le32_to_cpu(data[i]); 1632 carl9170_async_regwrite(addr + 4 * i, word); 1633 } 1634 carl9170_async_regwrite_finish(); 1635 1636 dev_kfree_skb_any(cvif->beacon); 1637 cvif->beacon = NULL; 1638 1639 err = carl9170_async_regwrite_result(); 1640 if (!err) 1641 cvif->beacon = skb; 1642 spin_unlock_bh(&ar->beacon_lock); 1643 if (err) 1644 goto err_free; 1645 1646 if (submit) { 1647 err = carl9170_bcn_ctrl(ar, cvif->id, 1648 CARL9170_BCN_CTRL_CAB_TRIGGER, 1649 addr, skb->len + FCS_LEN); 1650 1651 if (err) 1652 goto err_free; 1653 } 1654 out_unlock: 1655 rcu_read_unlock(); 1656 return 0; 1657 1658 err_unlock: 1659 spin_unlock_bh(&ar->beacon_lock); 1660 1661 err_free: 1662 rcu_read_unlock(); 1663 dev_kfree_skb_any(skb); 1664 return err; 1665 } 1666