1 /* 2 * Atheros CARL9170 driver 3 * 4 * 802.11 xmit & status routines 5 * 6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, see 21 * http://www.gnu.org/licenses/. 22 * 23 * This file incorporates work covered by the following copyright and 24 * permission notice: 25 * Copyright (c) 2007-2008 Atheros Communications, Inc. 26 * 27 * Permission to use, copy, modify, and/or distribute this software for any 28 * purpose with or without fee is hereby granted, provided that the above 29 * copyright notice and this permission notice appear in all copies. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 38 */ 39 40 #include <linux/init.h> 41 #include <linux/slab.h> 42 #include <linux/module.h> 43 #include <linux/etherdevice.h> 44 #include <net/mac80211.h> 45 #include "carl9170.h" 46 #include "hw.h" 47 #include "cmd.h" 48 49 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar, 50 unsigned int queue) 51 { 52 if (unlikely(modparam_noht)) { 53 return queue; 54 } else { 55 /* 56 * This is just another workaround, until 57 * someone figures out how to get QoS and 58 * AMPDU to play nicely together. 59 */ 60 61 return 2; /* AC_BE */ 62 } 63 } 64 65 static inline unsigned int carl9170_get_queue(struct ar9170 *ar, 66 struct sk_buff *skb) 67 { 68 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb)); 69 } 70 71 static bool is_mem_full(struct ar9170 *ar) 72 { 73 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) > 74 atomic_read(&ar->mem_free_blocks)); 75 } 76 77 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb) 78 { 79 int queue, i; 80 bool mem_full; 81 82 atomic_inc(&ar->tx_total_queued); 83 84 queue = skb_get_queue_mapping(skb); 85 spin_lock_bh(&ar->tx_stats_lock); 86 87 /* 88 * The driver has to accept the frame, regardless if the queue is 89 * full to the brim, or not. We have to do the queuing internally, 90 * since mac80211 assumes that a driver which can operate with 91 * aggregated frames does not reject frames for this reason. 92 */ 93 ar->tx_stats[queue].len++; 94 ar->tx_stats[queue].count++; 95 96 mem_full = is_mem_full(ar); 97 for (i = 0; i < ar->hw->queues; i++) { 98 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) { 99 ieee80211_stop_queue(ar->hw, i); 100 ar->queue_stop_timeout[i] = jiffies; 101 } 102 } 103 104 spin_unlock_bh(&ar->tx_stats_lock); 105 } 106 107 /* needs rcu_read_lock */ 108 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar, 109 struct sk_buff *skb) 110 { 111 struct _carl9170_tx_superframe *super = (void *) skb->data; 112 struct ieee80211_hdr *hdr = (void *) super->frame_data; 113 struct ieee80211_vif *vif; 114 unsigned int vif_id; 115 116 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >> 117 CARL9170_TX_SUPER_MISC_VIF_ID_S; 118 119 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC)) 120 return NULL; 121 122 vif = rcu_dereference(ar->vif_priv[vif_id].vif); 123 if (unlikely(!vif)) 124 return NULL; 125 126 /* 127 * Normally we should use wrappers like ieee80211_get_DA to get 128 * the correct peer ieee80211_sta. 129 * 130 * But there is a problem with indirect traffic (broadcasts, or 131 * data which is designated for other stations) in station mode. 132 * The frame will be directed to the AP for distribution and not 133 * to the actual destination. 134 */ 135 136 return ieee80211_find_sta(vif, hdr->addr1); 137 } 138 139 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb) 140 { 141 struct ieee80211_sta *sta; 142 struct carl9170_sta_info *sta_info; 143 144 rcu_read_lock(); 145 sta = __carl9170_get_tx_sta(ar, skb); 146 if (unlikely(!sta)) 147 goto out_rcu; 148 149 sta_info = (struct carl9170_sta_info *) sta->drv_priv; 150 if (atomic_dec_return(&sta_info->pending_frames) == 0) 151 ieee80211_sta_block_awake(ar->hw, sta, false); 152 153 out_rcu: 154 rcu_read_unlock(); 155 } 156 157 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb) 158 { 159 int queue; 160 161 queue = skb_get_queue_mapping(skb); 162 163 spin_lock_bh(&ar->tx_stats_lock); 164 165 ar->tx_stats[queue].len--; 166 167 if (!is_mem_full(ar)) { 168 unsigned int i; 169 for (i = 0; i < ar->hw->queues; i++) { 170 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT) 171 continue; 172 173 if (ieee80211_queue_stopped(ar->hw, i)) { 174 unsigned long tmp; 175 176 tmp = jiffies - ar->queue_stop_timeout[i]; 177 if (tmp > ar->max_queue_stop_timeout[i]) 178 ar->max_queue_stop_timeout[i] = tmp; 179 } 180 181 ieee80211_wake_queue(ar->hw, i); 182 } 183 } 184 185 spin_unlock_bh(&ar->tx_stats_lock); 186 187 if (atomic_dec_and_test(&ar->tx_total_queued)) 188 complete(&ar->tx_flush); 189 } 190 191 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb) 192 { 193 struct _carl9170_tx_superframe *super = (void *) skb->data; 194 unsigned int chunks; 195 int cookie = -1; 196 197 atomic_inc(&ar->mem_allocs); 198 199 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size); 200 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) { 201 atomic_add(chunks, &ar->mem_free_blocks); 202 return -ENOSPC; 203 } 204 205 spin_lock_bh(&ar->mem_lock); 206 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0); 207 spin_unlock_bh(&ar->mem_lock); 208 209 if (unlikely(cookie < 0)) { 210 atomic_add(chunks, &ar->mem_free_blocks); 211 return -ENOSPC; 212 } 213 214 super = (void *) skb->data; 215 216 /* 217 * Cookie #0 serves two special purposes: 218 * 1. The firmware might use it generate BlockACK frames 219 * in responds of an incoming BlockAckReqs. 220 * 221 * 2. Prevent double-free bugs. 222 */ 223 super->s.cookie = (u8) cookie + 1; 224 return 0; 225 } 226 227 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb) 228 { 229 struct _carl9170_tx_superframe *super = (void *) skb->data; 230 int cookie; 231 232 /* make a local copy of the cookie */ 233 cookie = super->s.cookie; 234 /* invalidate cookie */ 235 super->s.cookie = 0; 236 237 /* 238 * Do a out-of-bounds check on the cookie: 239 * 240 * * cookie "0" is reserved and won't be assigned to any 241 * out-going frame. Internally however, it is used to 242 * mark no longer/un-accounted frames and serves as a 243 * cheap way of preventing frames from being freed 244 * twice by _accident_. NB: There is a tiny race... 245 * 246 * * obviously, cookie number is limited by the amount 247 * of available memory blocks, so the number can 248 * never execeed the mem_blocks count. 249 */ 250 if (unlikely(WARN_ON_ONCE(cookie == 0) || 251 WARN_ON_ONCE(cookie > ar->fw.mem_blocks))) 252 return; 253 254 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size), 255 &ar->mem_free_blocks); 256 257 spin_lock_bh(&ar->mem_lock); 258 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0); 259 spin_unlock_bh(&ar->mem_lock); 260 } 261 262 /* Called from any context */ 263 static void carl9170_tx_release(struct kref *ref) 264 { 265 struct ar9170 *ar; 266 struct carl9170_tx_info *arinfo; 267 struct ieee80211_tx_info *txinfo; 268 struct sk_buff *skb; 269 270 arinfo = container_of(ref, struct carl9170_tx_info, ref); 271 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info, 272 rate_driver_data); 273 skb = container_of((void *) txinfo, struct sk_buff, cb); 274 275 ar = arinfo->ar; 276 if (WARN_ON_ONCE(!ar)) 277 return; 278 279 BUILD_BUG_ON( 280 offsetof(struct ieee80211_tx_info, status.ack_signal) != 20); 281 282 memset(&txinfo->status.ack_signal, 0, 283 sizeof(struct ieee80211_tx_info) - 284 offsetof(struct ieee80211_tx_info, status.ack_signal)); 285 286 if (atomic_read(&ar->tx_total_queued)) 287 ar->tx_schedule = true; 288 289 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) { 290 if (!atomic_read(&ar->tx_ampdu_upload)) 291 ar->tx_ampdu_schedule = true; 292 293 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) { 294 struct _carl9170_tx_superframe *super; 295 296 super = (void *)skb->data; 297 txinfo->status.ampdu_len = super->s.rix; 298 txinfo->status.ampdu_ack_len = super->s.cnt; 299 } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) && 300 !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) { 301 /* 302 * drop redundant tx_status reports: 303 * 304 * 1. ampdu_ack_len of the final tx_status does 305 * include the feedback of this particular frame. 306 * 307 * 2. tx_status_irqsafe only queues up to 128 308 * tx feedback reports and discards the rest. 309 * 310 * 3. minstrel_ht is picky, it only accepts 311 * reports of frames with the TX_STATUS_AMPDU flag. 312 * 313 * 4. mac80211 is not particularly interested in 314 * feedback either [CTL_REQ_TX_STATUS not set] 315 */ 316 317 ieee80211_free_txskb(ar->hw, skb); 318 return; 319 } else { 320 /* 321 * Either the frame transmission has failed or 322 * mac80211 requested tx status. 323 */ 324 } 325 } 326 327 skb_pull(skb, sizeof(struct _carl9170_tx_superframe)); 328 ieee80211_tx_status_irqsafe(ar->hw, skb); 329 } 330 331 void carl9170_tx_get_skb(struct sk_buff *skb) 332 { 333 struct carl9170_tx_info *arinfo = (void *) 334 (IEEE80211_SKB_CB(skb))->rate_driver_data; 335 kref_get(&arinfo->ref); 336 } 337 338 int carl9170_tx_put_skb(struct sk_buff *skb) 339 { 340 struct carl9170_tx_info *arinfo = (void *) 341 (IEEE80211_SKB_CB(skb))->rate_driver_data; 342 343 return kref_put(&arinfo->ref, carl9170_tx_release); 344 } 345 346 /* Caller must hold the tid_info->lock & rcu_read_lock */ 347 static void carl9170_tx_shift_bm(struct ar9170 *ar, 348 struct carl9170_sta_tid *tid_info, u16 seq) 349 { 350 u16 off; 351 352 off = SEQ_DIFF(seq, tid_info->bsn); 353 354 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 355 return; 356 357 /* 358 * Sanity check. For each MPDU we set the bit in bitmap and 359 * clear it once we received the tx_status. 360 * But if the bit is already cleared then we've been bitten 361 * by a bug. 362 */ 363 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap)); 364 365 off = SEQ_DIFF(tid_info->snx, tid_info->bsn); 366 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 367 return; 368 369 if (!bitmap_empty(tid_info->bitmap, off)) 370 off = find_first_bit(tid_info->bitmap, off); 371 372 tid_info->bsn += off; 373 tid_info->bsn &= 0x0fff; 374 375 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap, 376 off, CARL9170_BAW_BITS); 377 } 378 379 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar, 380 struct sk_buff *skb, struct ieee80211_tx_info *txinfo) 381 { 382 struct _carl9170_tx_superframe *super = (void *) skb->data; 383 struct ieee80211_hdr *hdr = (void *) super->frame_data; 384 struct ieee80211_sta *sta; 385 struct carl9170_sta_info *sta_info; 386 struct carl9170_sta_tid *tid_info; 387 u8 tid; 388 389 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) || 390 txinfo->flags & IEEE80211_TX_CTL_INJECTED) 391 return; 392 393 rcu_read_lock(); 394 sta = __carl9170_get_tx_sta(ar, skb); 395 if (unlikely(!sta)) 396 goto out_rcu; 397 398 tid = get_tid_h(hdr); 399 400 sta_info = (void *) sta->drv_priv; 401 tid_info = rcu_dereference(sta_info->agg[tid]); 402 if (!tid_info) 403 goto out_rcu; 404 405 spin_lock_bh(&tid_info->lock); 406 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE)) 407 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr)); 408 409 if (sta_info->stats[tid].clear) { 410 sta_info->stats[tid].clear = false; 411 sta_info->stats[tid].req = false; 412 sta_info->stats[tid].ampdu_len = 0; 413 sta_info->stats[tid].ampdu_ack_len = 0; 414 } 415 416 sta_info->stats[tid].ampdu_len++; 417 if (txinfo->status.rates[0].count == 1) 418 sta_info->stats[tid].ampdu_ack_len++; 419 420 if (!(txinfo->flags & IEEE80211_TX_STAT_ACK)) 421 sta_info->stats[tid].req = true; 422 423 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) { 424 super->s.rix = sta_info->stats[tid].ampdu_len; 425 super->s.cnt = sta_info->stats[tid].ampdu_ack_len; 426 txinfo->flags |= IEEE80211_TX_STAT_AMPDU; 427 if (sta_info->stats[tid].req) 428 txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 429 430 sta_info->stats[tid].clear = true; 431 } 432 spin_unlock_bh(&tid_info->lock); 433 434 out_rcu: 435 rcu_read_unlock(); 436 } 437 438 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb, 439 struct ieee80211_tx_info *tx_info) 440 { 441 struct _carl9170_tx_superframe *super = (void *) skb->data; 442 struct ieee80211_bar *bar = (void *) super->frame_data; 443 444 /* 445 * Unlike all other frames, the status report for BARs does 446 * not directly come from the hardware as it is incapable of 447 * matching a BA to a previously send BAR. 448 * Instead the RX-path will scan for incoming BAs and set the 449 * IEEE80211_TX_STAT_ACK if it sees one that was likely 450 * caused by a BAR from us. 451 */ 452 453 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 454 !(tx_info->flags & IEEE80211_TX_STAT_ACK)) { 455 struct carl9170_bar_list_entry *entry; 456 int queue = skb_get_queue_mapping(skb); 457 458 rcu_read_lock(); 459 list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) { 460 if (entry->skb == skb) { 461 spin_lock_bh(&ar->bar_list_lock[queue]); 462 list_del_rcu(&entry->list); 463 spin_unlock_bh(&ar->bar_list_lock[queue]); 464 kfree_rcu(entry, head); 465 goto out; 466 } 467 } 468 469 WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n", 470 queue, bar->ra, bar->ta, bar->control, 471 bar->start_seq_num); 472 out: 473 rcu_read_unlock(); 474 } 475 } 476 477 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb, 478 const bool success) 479 { 480 struct ieee80211_tx_info *txinfo; 481 482 carl9170_tx_accounting_free(ar, skb); 483 484 txinfo = IEEE80211_SKB_CB(skb); 485 486 carl9170_tx_bar_status(ar, skb, txinfo); 487 488 if (success) 489 txinfo->flags |= IEEE80211_TX_STAT_ACK; 490 else 491 ar->tx_ack_failures++; 492 493 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 494 carl9170_tx_status_process_ampdu(ar, skb, txinfo); 495 496 carl9170_tx_ps_unblock(ar, skb); 497 carl9170_tx_put_skb(skb); 498 } 499 500 /* This function may be called form any context */ 501 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb) 502 { 503 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb); 504 505 atomic_dec(&ar->tx_total_pending); 506 507 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 508 atomic_dec(&ar->tx_ampdu_upload); 509 510 if (carl9170_tx_put_skb(skb)) 511 tasklet_hi_schedule(&ar->usb_tasklet); 512 } 513 514 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie, 515 struct sk_buff_head *queue) 516 { 517 struct sk_buff *skb; 518 519 spin_lock_bh(&queue->lock); 520 skb_queue_walk(queue, skb) { 521 struct _carl9170_tx_superframe *txc = (void *) skb->data; 522 523 if (txc->s.cookie != cookie) 524 continue; 525 526 __skb_unlink(skb, queue); 527 spin_unlock_bh(&queue->lock); 528 529 carl9170_release_dev_space(ar, skb); 530 return skb; 531 } 532 spin_unlock_bh(&queue->lock); 533 534 return NULL; 535 } 536 537 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix, 538 unsigned int tries, struct ieee80211_tx_info *txinfo) 539 { 540 unsigned int i; 541 542 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 543 if (txinfo->status.rates[i].idx < 0) 544 break; 545 546 if (i == rix) { 547 txinfo->status.rates[i].count = tries; 548 i++; 549 break; 550 } 551 } 552 553 for (; i < IEEE80211_TX_MAX_RATES; i++) { 554 txinfo->status.rates[i].idx = -1; 555 txinfo->status.rates[i].count = 0; 556 } 557 } 558 559 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar) 560 { 561 int i; 562 struct sk_buff *skb; 563 struct ieee80211_tx_info *txinfo; 564 struct carl9170_tx_info *arinfo; 565 bool restart = false; 566 567 for (i = 0; i < ar->hw->queues; i++) { 568 spin_lock_bh(&ar->tx_status[i].lock); 569 570 skb = skb_peek(&ar->tx_status[i]); 571 572 if (!skb) 573 goto next; 574 575 txinfo = IEEE80211_SKB_CB(skb); 576 arinfo = (void *) txinfo->rate_driver_data; 577 578 if (time_is_before_jiffies(arinfo->timeout + 579 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true) 580 restart = true; 581 582 next: 583 spin_unlock_bh(&ar->tx_status[i].lock); 584 } 585 586 if (restart) { 587 /* 588 * At least one queue has been stuck for long enough. 589 * Give the device a kick and hope it gets back to 590 * work. 591 * 592 * possible reasons may include: 593 * - frames got lost/corrupted (bad connection to the device) 594 * - stalled rx processing/usb controller hiccups 595 * - firmware errors/bugs 596 * - every bug you can think of. 597 * - all bugs you can't... 598 * - ... 599 */ 600 carl9170_restart(ar, CARL9170_RR_STUCK_TX); 601 } 602 } 603 604 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar) 605 { 606 struct carl9170_sta_tid *iter; 607 struct sk_buff *skb; 608 struct ieee80211_tx_info *txinfo; 609 struct carl9170_tx_info *arinfo; 610 struct ieee80211_sta *sta; 611 612 rcu_read_lock(); 613 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) { 614 if (iter->state < CARL9170_TID_STATE_IDLE) 615 continue; 616 617 spin_lock_bh(&iter->lock); 618 skb = skb_peek(&iter->queue); 619 if (!skb) 620 goto unlock; 621 622 txinfo = IEEE80211_SKB_CB(skb); 623 arinfo = (void *)txinfo->rate_driver_data; 624 if (time_is_after_jiffies(arinfo->timeout + 625 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT))) 626 goto unlock; 627 628 sta = __carl9170_get_tx_sta(ar, skb); 629 if (WARN_ON(!sta)) 630 goto unlock; 631 632 ieee80211_stop_tx_ba_session(sta, iter->tid); 633 unlock: 634 spin_unlock_bh(&iter->lock); 635 636 } 637 rcu_read_unlock(); 638 } 639 640 void carl9170_tx_janitor(struct work_struct *work) 641 { 642 struct ar9170 *ar = container_of(work, struct ar9170, 643 tx_janitor.work); 644 if (!IS_STARTED(ar)) 645 return; 646 647 ar->tx_janitor_last_run = jiffies; 648 649 carl9170_check_queue_stop_timeout(ar); 650 carl9170_tx_ampdu_timeout(ar); 651 652 if (!atomic_read(&ar->tx_total_queued)) 653 return; 654 655 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 656 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 657 } 658 659 static void __carl9170_tx_process_status(struct ar9170 *ar, 660 const uint8_t cookie, const uint8_t info) 661 { 662 struct sk_buff *skb; 663 struct ieee80211_tx_info *txinfo; 664 unsigned int r, t, q; 665 bool success = true; 666 667 q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE]; 668 669 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]); 670 if (!skb) { 671 /* 672 * We have lost the race to another thread. 673 */ 674 675 return ; 676 } 677 678 txinfo = IEEE80211_SKB_CB(skb); 679 680 if (!(info & CARL9170_TX_STATUS_SUCCESS)) 681 success = false; 682 683 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S; 684 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S; 685 686 carl9170_tx_fill_rateinfo(ar, r, t, txinfo); 687 carl9170_tx_status(ar, skb, success); 688 } 689 690 void carl9170_tx_process_status(struct ar9170 *ar, 691 const struct carl9170_rsp *cmd) 692 { 693 unsigned int i; 694 695 for (i = 0; i < cmd->hdr.ext; i++) { 696 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) { 697 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE, 698 (void *) cmd, cmd->hdr.len + 4); 699 break; 700 } 701 702 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie, 703 cmd->_tx_status[i].info); 704 } 705 } 706 707 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar, 708 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate, 709 unsigned int *phyrate, unsigned int *tpc, unsigned int *chains) 710 { 711 struct ieee80211_rate *rate = NULL; 712 u8 *txpower; 713 unsigned int idx; 714 715 idx = txrate->idx; 716 *tpc = 0; 717 *phyrate = 0; 718 719 if (txrate->flags & IEEE80211_TX_RC_MCS) { 720 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 721 /* +1 dBm for HT40 */ 722 *tpc += 2; 723 724 if (info->band == IEEE80211_BAND_2GHZ) 725 txpower = ar->power_2G_ht40; 726 else 727 txpower = ar->power_5G_ht40; 728 } else { 729 if (info->band == IEEE80211_BAND_2GHZ) 730 txpower = ar->power_2G_ht20; 731 else 732 txpower = ar->power_5G_ht20; 733 } 734 735 *phyrate = txrate->idx; 736 *tpc += txpower[idx & 7]; 737 } else { 738 if (info->band == IEEE80211_BAND_2GHZ) { 739 if (idx < 4) 740 txpower = ar->power_2G_cck; 741 else 742 txpower = ar->power_2G_ofdm; 743 } else { 744 txpower = ar->power_5G_leg; 745 idx += 4; 746 } 747 748 rate = &__carl9170_ratetable[idx]; 749 *tpc += txpower[(rate->hw_value & 0x30) >> 4]; 750 *phyrate = rate->hw_value & 0xf; 751 } 752 753 if (ar->eeprom.tx_mask == 1) { 754 *chains = AR9170_TX_PHY_TXCHAIN_1; 755 } else { 756 if (!(txrate->flags & IEEE80211_TX_RC_MCS) && 757 rate && rate->bitrate >= 360) 758 *chains = AR9170_TX_PHY_TXCHAIN_1; 759 else 760 *chains = AR9170_TX_PHY_TXCHAIN_2; 761 } 762 763 *tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2); 764 } 765 766 static __le32 carl9170_tx_physet(struct ar9170 *ar, 767 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate) 768 { 769 unsigned int power = 0, chains = 0, phyrate = 0; 770 __le32 tmp; 771 772 tmp = cpu_to_le32(0); 773 774 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 775 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ << 776 AR9170_TX_PHY_BW_S); 777 /* this works because 40 MHz is 2 and dup is 3 */ 778 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA) 779 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP << 780 AR9170_TX_PHY_BW_S); 781 782 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) 783 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI); 784 785 if (txrate->flags & IEEE80211_TX_RC_MCS) { 786 SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx); 787 788 /* heavy clip control */ 789 tmp |= cpu_to_le32((txrate->idx & 0x7) << 790 AR9170_TX_PHY_TX_HEAVY_CLIP_S); 791 792 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT); 793 794 /* 795 * green field preamble does not work. 796 * 797 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) 798 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD); 799 */ 800 } else { 801 if (info->band == IEEE80211_BAND_2GHZ) { 802 if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M) 803 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK); 804 else 805 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 806 } else { 807 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 808 } 809 810 /* 811 * short preamble seems to be broken too. 812 * 813 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 814 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE); 815 */ 816 } 817 carl9170_tx_rate_tpc_chains(ar, info, txrate, 818 &phyrate, &power, &chains); 819 820 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate)); 821 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power)); 822 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains)); 823 return tmp; 824 } 825 826 static bool carl9170_tx_rts_check(struct ar9170 *ar, 827 struct ieee80211_tx_rate *rate, 828 bool ampdu, bool multi) 829 { 830 switch (ar->erp_mode) { 831 case CARL9170_ERP_AUTO: 832 if (ampdu) 833 break; 834 835 case CARL9170_ERP_MAC80211: 836 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)) 837 break; 838 839 case CARL9170_ERP_RTS: 840 if (likely(!multi)) 841 return true; 842 843 default: 844 break; 845 } 846 847 return false; 848 } 849 850 static bool carl9170_tx_cts_check(struct ar9170 *ar, 851 struct ieee80211_tx_rate *rate) 852 { 853 switch (ar->erp_mode) { 854 case CARL9170_ERP_AUTO: 855 case CARL9170_ERP_MAC80211: 856 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)) 857 break; 858 859 case CARL9170_ERP_CTS: 860 return true; 861 862 default: 863 break; 864 } 865 866 return false; 867 } 868 869 static int carl9170_tx_prepare(struct ar9170 *ar, 870 struct ieee80211_sta *sta, 871 struct sk_buff *skb) 872 { 873 struct ieee80211_hdr *hdr; 874 struct _carl9170_tx_superframe *txc; 875 struct carl9170_vif_info *cvif; 876 struct ieee80211_tx_info *info; 877 struct ieee80211_tx_rate *txrate; 878 struct carl9170_tx_info *arinfo; 879 unsigned int hw_queue; 880 int i; 881 __le16 mac_tmp; 882 u16 len; 883 bool ampdu, no_ack; 884 885 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 886 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) != 887 CARL9170_TX_SUPERDESC_LEN); 888 889 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) != 890 AR9170_TX_HWDESC_LEN); 891 892 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES); 893 894 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC > 895 ((CARL9170_TX_SUPER_MISC_VIF_ID >> 896 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1)); 897 898 hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)]; 899 900 hdr = (void *)skb->data; 901 info = IEEE80211_SKB_CB(skb); 902 len = skb->len; 903 904 /* 905 * Note: If the frame was sent through a monitor interface, 906 * the ieee80211_vif pointer can be NULL. 907 */ 908 if (likely(info->control.vif)) 909 cvif = (void *) info->control.vif->drv_priv; 910 else 911 cvif = NULL; 912 913 txc = (void *)skb_push(skb, sizeof(*txc)); 914 memset(txc, 0, sizeof(*txc)); 915 916 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue); 917 918 if (likely(cvif)) 919 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id); 920 921 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)) 922 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB; 923 924 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 925 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ; 926 927 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) 928 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF; 929 930 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION | 931 AR9170_TX_MAC_BACKOFF); 932 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) & 933 AR9170_TX_MAC_QOS); 934 935 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK); 936 if (unlikely(no_ack)) 937 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK); 938 939 if (info->control.hw_key) { 940 len += info->control.hw_key->icv_len; 941 942 switch (info->control.hw_key->cipher) { 943 case WLAN_CIPHER_SUITE_WEP40: 944 case WLAN_CIPHER_SUITE_WEP104: 945 case WLAN_CIPHER_SUITE_TKIP: 946 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4); 947 break; 948 case WLAN_CIPHER_SUITE_CCMP: 949 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES); 950 break; 951 default: 952 WARN_ON(1); 953 goto err_out; 954 } 955 } 956 957 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU); 958 if (ampdu) { 959 unsigned int density, factor; 960 961 if (unlikely(!sta || !cvif)) 962 goto err_out; 963 964 factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor); 965 density = sta->ht_cap.ampdu_density; 966 967 if (density) { 968 /* 969 * Watch out! 970 * 971 * Otus uses slightly different density values than 972 * those from the 802.11n spec. 973 */ 974 975 density = max_t(unsigned int, density + 1, 7u); 976 } 977 978 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY, 979 txc->s.ampdu_settings, density); 980 981 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR, 982 txc->s.ampdu_settings, factor); 983 } 984 985 /* 986 * NOTE: For the first rate, the ERP & AMPDU flags are directly 987 * taken from mac_control. For all fallback rate, the firmware 988 * updates the mac_control flags from the rate info field. 989 */ 990 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) { 991 __le32 phy_set; 992 txrate = &info->control.rates[i]; 993 if (txrate->idx < 0) 994 break; 995 996 phy_set = carl9170_tx_physet(ar, info, txrate); 997 if (i == 0) { 998 /* first rate - part of the hw's frame header */ 999 txc->f.phy_control = phy_set; 1000 1001 if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS) 1002 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR); 1003 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 1004 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS); 1005 else if (carl9170_tx_cts_check(ar, txrate)) 1006 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS); 1007 1008 } else { 1009 /* fallback rates are stored in the firmware's 1010 * retry rate set array. 1011 */ 1012 txc->s.rr[i - 1] = phy_set; 1013 } 1014 1015 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i], 1016 txrate->count); 1017 1018 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 1019 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS << 1020 CARL9170_TX_SUPER_RI_ERP_PROT_S); 1021 else if (carl9170_tx_cts_check(ar, txrate)) 1022 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS << 1023 CARL9170_TX_SUPER_RI_ERP_PROT_S); 1024 1025 if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS)) 1026 txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU; 1027 } 1028 1029 txc->s.len = cpu_to_le16(skb->len); 1030 txc->f.length = cpu_to_le16(len + FCS_LEN); 1031 txc->f.mac_control = mac_tmp; 1032 1033 arinfo = (void *)info->rate_driver_data; 1034 arinfo->timeout = jiffies; 1035 arinfo->ar = ar; 1036 kref_init(&arinfo->ref); 1037 return 0; 1038 1039 err_out: 1040 skb_pull(skb, sizeof(*txc)); 1041 return -EINVAL; 1042 } 1043 1044 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb) 1045 { 1046 struct _carl9170_tx_superframe *super; 1047 1048 super = (void *) skb->data; 1049 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA); 1050 } 1051 1052 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb) 1053 { 1054 struct _carl9170_tx_superframe *super; 1055 int tmp; 1056 1057 super = (void *) skb->data; 1058 1059 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) << 1060 CARL9170_TX_SUPER_AMPDU_DENSITY_S; 1061 1062 /* 1063 * If you haven't noticed carl9170_tx_prepare has already filled 1064 * in all ampdu spacing & factor parameters. 1065 * Now it's the time to check whenever the settings have to be 1066 * updated by the firmware, or if everything is still the same. 1067 * 1068 * There's no sane way to handle different density values with 1069 * this hardware, so we may as well just do the compare in the 1070 * driver. 1071 */ 1072 1073 if (tmp != ar->current_density) { 1074 ar->current_density = tmp; 1075 super->s.ampdu_settings |= 1076 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY; 1077 } 1078 1079 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) << 1080 CARL9170_TX_SUPER_AMPDU_FACTOR_S; 1081 1082 if (tmp != ar->current_factor) { 1083 ar->current_factor = tmp; 1084 super->s.ampdu_settings |= 1085 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR; 1086 } 1087 } 1088 1089 static bool carl9170_tx_rate_check(struct ar9170 *ar, struct sk_buff *_dest, 1090 struct sk_buff *_src) 1091 { 1092 struct _carl9170_tx_superframe *dest, *src; 1093 1094 dest = (void *) _dest->data; 1095 src = (void *) _src->data; 1096 1097 /* 1098 * The mac80211 rate control algorithm expects that all MPDUs in 1099 * an AMPDU share the same tx vectors. 1100 * This is not really obvious right now, because the hardware 1101 * does the AMPDU setup according to its own rulebook. 1102 * Our nicely assembled, strictly monotonic increasing mpdu 1103 * chains will be broken up, mashed back together... 1104 */ 1105 1106 return (dest->f.phy_control == src->f.phy_control); 1107 } 1108 1109 static void carl9170_tx_ampdu(struct ar9170 *ar) 1110 { 1111 struct sk_buff_head agg; 1112 struct carl9170_sta_tid *tid_info; 1113 struct sk_buff *skb, *first; 1114 unsigned int i = 0, done_ampdus = 0; 1115 u16 seq, queue, tmpssn; 1116 1117 atomic_inc(&ar->tx_ampdu_scheduler); 1118 ar->tx_ampdu_schedule = false; 1119 1120 if (atomic_read(&ar->tx_ampdu_upload)) 1121 return; 1122 1123 if (!ar->tx_ampdu_list_len) 1124 return; 1125 1126 __skb_queue_head_init(&agg); 1127 1128 rcu_read_lock(); 1129 tid_info = rcu_dereference(ar->tx_ampdu_iter); 1130 if (WARN_ON_ONCE(!tid_info)) { 1131 rcu_read_unlock(); 1132 return; 1133 } 1134 1135 retry: 1136 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) { 1137 i++; 1138 1139 if (tid_info->state < CARL9170_TID_STATE_PROGRESS) 1140 continue; 1141 1142 queue = TID_TO_WME_AC(tid_info->tid); 1143 1144 spin_lock_bh(&tid_info->lock); 1145 if (tid_info->state != CARL9170_TID_STATE_XMIT) 1146 goto processed; 1147 1148 tid_info->counter++; 1149 first = skb_peek(&tid_info->queue); 1150 tmpssn = carl9170_get_seq(first); 1151 seq = tid_info->snx; 1152 1153 if (unlikely(tmpssn != seq)) { 1154 tid_info->state = CARL9170_TID_STATE_IDLE; 1155 1156 goto processed; 1157 } 1158 1159 while ((skb = skb_peek(&tid_info->queue))) { 1160 /* strict 0, 1, ..., n - 1, n frame sequence order */ 1161 if (unlikely(carl9170_get_seq(skb) != seq)) 1162 break; 1163 1164 /* don't upload more than AMPDU FACTOR allows. */ 1165 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >= 1166 (tid_info->max - 1))) 1167 break; 1168 1169 if (!carl9170_tx_rate_check(ar, skb, first)) 1170 break; 1171 1172 atomic_inc(&ar->tx_ampdu_upload); 1173 tid_info->snx = seq = SEQ_NEXT(seq); 1174 __skb_unlink(skb, &tid_info->queue); 1175 1176 __skb_queue_tail(&agg, skb); 1177 1178 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX) 1179 break; 1180 } 1181 1182 if (skb_queue_empty(&tid_info->queue) || 1183 carl9170_get_seq(skb_peek(&tid_info->queue)) != 1184 tid_info->snx) { 1185 /* 1186 * stop TID, if A-MPDU frames are still missing, 1187 * or whenever the queue is empty. 1188 */ 1189 1190 tid_info->state = CARL9170_TID_STATE_IDLE; 1191 } 1192 done_ampdus++; 1193 1194 processed: 1195 spin_unlock_bh(&tid_info->lock); 1196 1197 if (skb_queue_empty(&agg)) 1198 continue; 1199 1200 /* apply ampdu spacing & factor settings */ 1201 carl9170_set_ampdu_params(ar, skb_peek(&agg)); 1202 1203 /* set aggregation push bit */ 1204 carl9170_set_immba(ar, skb_peek_tail(&agg)); 1205 1206 spin_lock_bh(&ar->tx_pending[queue].lock); 1207 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]); 1208 spin_unlock_bh(&ar->tx_pending[queue].lock); 1209 ar->tx_schedule = true; 1210 } 1211 if ((done_ampdus++ == 0) && (i++ == 0)) 1212 goto retry; 1213 1214 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info); 1215 rcu_read_unlock(); 1216 } 1217 1218 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar, 1219 struct sk_buff_head *queue) 1220 { 1221 struct sk_buff *skb; 1222 struct ieee80211_tx_info *info; 1223 struct carl9170_tx_info *arinfo; 1224 1225 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 1226 1227 spin_lock_bh(&queue->lock); 1228 skb = skb_peek(queue); 1229 if (unlikely(!skb)) 1230 goto err_unlock; 1231 1232 if (carl9170_alloc_dev_space(ar, skb)) 1233 goto err_unlock; 1234 1235 __skb_unlink(skb, queue); 1236 spin_unlock_bh(&queue->lock); 1237 1238 info = IEEE80211_SKB_CB(skb); 1239 arinfo = (void *) info->rate_driver_data; 1240 1241 arinfo->timeout = jiffies; 1242 return skb; 1243 1244 err_unlock: 1245 spin_unlock_bh(&queue->lock); 1246 return NULL; 1247 } 1248 1249 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb) 1250 { 1251 struct _carl9170_tx_superframe *super; 1252 uint8_t q = 0; 1253 1254 ar->tx_dropped++; 1255 1256 super = (void *)skb->data; 1257 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q, 1258 ar9170_qmap[carl9170_get_queue(ar, skb)]); 1259 __carl9170_tx_process_status(ar, super->s.cookie, q); 1260 } 1261 1262 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb) 1263 { 1264 struct ieee80211_sta *sta; 1265 struct carl9170_sta_info *sta_info; 1266 struct ieee80211_tx_info *tx_info; 1267 1268 rcu_read_lock(); 1269 sta = __carl9170_get_tx_sta(ar, skb); 1270 if (!sta) 1271 goto out_rcu; 1272 1273 sta_info = (void *) sta->drv_priv; 1274 tx_info = IEEE80211_SKB_CB(skb); 1275 1276 if (unlikely(sta_info->sleeping) && 1277 !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER | 1278 IEEE80211_TX_CTL_CLEAR_PS_FILT))) { 1279 rcu_read_unlock(); 1280 1281 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1282 atomic_dec(&ar->tx_ampdu_upload); 1283 1284 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 1285 carl9170_release_dev_space(ar, skb); 1286 carl9170_tx_status(ar, skb, false); 1287 return true; 1288 } 1289 1290 out_rcu: 1291 rcu_read_unlock(); 1292 return false; 1293 } 1294 1295 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb) 1296 { 1297 struct _carl9170_tx_superframe *super = (void *) skb->data; 1298 struct ieee80211_bar *bar = (void *) super->frame_data; 1299 1300 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 1301 skb->len >= sizeof(struct ieee80211_bar)) { 1302 struct carl9170_bar_list_entry *entry; 1303 unsigned int queue = skb_get_queue_mapping(skb); 1304 1305 entry = kmalloc(sizeof(*entry), GFP_ATOMIC); 1306 if (!WARN_ON_ONCE(!entry)) { 1307 entry->skb = skb; 1308 spin_lock_bh(&ar->bar_list_lock[queue]); 1309 list_add_tail_rcu(&entry->list, &ar->bar_list[queue]); 1310 spin_unlock_bh(&ar->bar_list_lock[queue]); 1311 } 1312 } 1313 } 1314 1315 static void carl9170_tx(struct ar9170 *ar) 1316 { 1317 struct sk_buff *skb; 1318 unsigned int i, q; 1319 bool schedule_garbagecollector = false; 1320 1321 ar->tx_schedule = false; 1322 1323 if (unlikely(!IS_STARTED(ar))) 1324 return; 1325 1326 carl9170_usb_handle_tx_err(ar); 1327 1328 for (i = 0; i < ar->hw->queues; i++) { 1329 while (!skb_queue_empty(&ar->tx_pending[i])) { 1330 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]); 1331 if (unlikely(!skb)) 1332 break; 1333 1334 if (unlikely(carl9170_tx_ps_drop(ar, skb))) 1335 continue; 1336 1337 carl9170_bar_check(ar, skb); 1338 1339 atomic_inc(&ar->tx_total_pending); 1340 1341 q = __carl9170_get_queue(ar, i); 1342 /* 1343 * NB: tx_status[i] vs. tx_status[q], 1344 * TODO: Move into pick_skb or alloc_dev_space. 1345 */ 1346 skb_queue_tail(&ar->tx_status[q], skb); 1347 1348 /* 1349 * increase ref count to "2". 1350 * Ref counting is the easiest way to solve the 1351 * race between the urb's completion routine: 1352 * carl9170_tx_callback 1353 * and wlan tx status functions: 1354 * carl9170_tx_status/janitor. 1355 */ 1356 carl9170_tx_get_skb(skb); 1357 1358 carl9170_usb_tx(ar, skb); 1359 schedule_garbagecollector = true; 1360 } 1361 } 1362 1363 if (!schedule_garbagecollector) 1364 return; 1365 1366 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 1367 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 1368 } 1369 1370 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar, 1371 struct ieee80211_sta *sta, struct sk_buff *skb, 1372 struct ieee80211_tx_info *txinfo) 1373 { 1374 struct carl9170_sta_info *sta_info; 1375 struct carl9170_sta_tid *agg; 1376 struct sk_buff *iter; 1377 u16 tid, seq, qseq, off; 1378 bool run = false; 1379 1380 tid = carl9170_get_tid(skb); 1381 seq = carl9170_get_seq(skb); 1382 sta_info = (void *) sta->drv_priv; 1383 1384 rcu_read_lock(); 1385 agg = rcu_dereference(sta_info->agg[tid]); 1386 1387 if (!agg) 1388 goto err_unlock_rcu; 1389 1390 spin_lock_bh(&agg->lock); 1391 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE)) 1392 goto err_unlock; 1393 1394 /* check if sequence is within the BA window */ 1395 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq))) 1396 goto err_unlock; 1397 1398 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq))) 1399 goto err_unlock; 1400 1401 off = SEQ_DIFF(seq, agg->bsn); 1402 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap))) 1403 goto err_unlock; 1404 1405 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) { 1406 __skb_queue_tail(&agg->queue, skb); 1407 agg->hsn = seq; 1408 goto queued; 1409 } 1410 1411 skb_queue_reverse_walk(&agg->queue, iter) { 1412 qseq = carl9170_get_seq(iter); 1413 1414 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) { 1415 __skb_queue_after(&agg->queue, iter, skb); 1416 goto queued; 1417 } 1418 } 1419 1420 __skb_queue_head(&agg->queue, skb); 1421 queued: 1422 1423 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) { 1424 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) { 1425 agg->state = CARL9170_TID_STATE_XMIT; 1426 run = true; 1427 } 1428 } 1429 1430 spin_unlock_bh(&agg->lock); 1431 rcu_read_unlock(); 1432 1433 return run; 1434 1435 err_unlock: 1436 spin_unlock_bh(&agg->lock); 1437 1438 err_unlock_rcu: 1439 rcu_read_unlock(); 1440 txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU; 1441 carl9170_tx_status(ar, skb, false); 1442 ar->tx_dropped++; 1443 return false; 1444 } 1445 1446 void carl9170_op_tx(struct ieee80211_hw *hw, 1447 struct ieee80211_tx_control *control, 1448 struct sk_buff *skb) 1449 { 1450 struct ar9170 *ar = hw->priv; 1451 struct ieee80211_tx_info *info; 1452 struct ieee80211_sta *sta = control->sta; 1453 bool run; 1454 1455 if (unlikely(!IS_STARTED(ar))) 1456 goto err_free; 1457 1458 info = IEEE80211_SKB_CB(skb); 1459 1460 if (unlikely(carl9170_tx_prepare(ar, sta, skb))) 1461 goto err_free; 1462 1463 carl9170_tx_accounting(ar, skb); 1464 /* 1465 * from now on, one has to use carl9170_tx_status to free 1466 * all ressouces which are associated with the frame. 1467 */ 1468 1469 if (sta) { 1470 struct carl9170_sta_info *stai = (void *) sta->drv_priv; 1471 atomic_inc(&stai->pending_frames); 1472 } 1473 1474 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1475 /* to static code analyzers and reviewers: 1476 * mac80211 guarantees that a valid "sta" 1477 * reference is present, if a frame is to 1478 * be part of an ampdu. Hence any extra 1479 * sta == NULL checks are redundant in this 1480 * special case. 1481 */ 1482 run = carl9170_tx_ampdu_queue(ar, sta, skb, info); 1483 if (run) 1484 carl9170_tx_ampdu(ar); 1485 1486 } else { 1487 unsigned int queue = skb_get_queue_mapping(skb); 1488 1489 skb_queue_tail(&ar->tx_pending[queue], skb); 1490 } 1491 1492 carl9170_tx(ar); 1493 return; 1494 1495 err_free: 1496 ar->tx_dropped++; 1497 ieee80211_free_txskb(ar->hw, skb); 1498 } 1499 1500 void carl9170_tx_scheduler(struct ar9170 *ar) 1501 { 1502 1503 if (ar->tx_ampdu_schedule) 1504 carl9170_tx_ampdu(ar); 1505 1506 if (ar->tx_schedule) 1507 carl9170_tx(ar); 1508 } 1509 1510 /* caller has to take rcu_read_lock */ 1511 static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar) 1512 { 1513 struct carl9170_vif_info *cvif; 1514 int i = 1; 1515 1516 /* The AR9170 hardware has no fancy beacon queue or some 1517 * other scheduling mechanism. So, the driver has to make 1518 * due by setting the two beacon timers (pretbtt and tbtt) 1519 * once and then swapping the beacon address in the HW's 1520 * register file each time the pretbtt fires. 1521 */ 1522 1523 cvif = rcu_dereference(ar->beacon_iter); 1524 if (ar->vifs > 0 && cvif) { 1525 do { 1526 list_for_each_entry_continue_rcu(cvif, &ar->vif_list, 1527 list) { 1528 if (cvif->active && cvif->enable_beacon) 1529 goto out; 1530 } 1531 } while (ar->beacon_enabled && i--); 1532 } 1533 1534 out: 1535 rcu_assign_pointer(ar->beacon_iter, cvif); 1536 return cvif; 1537 } 1538 1539 static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb, 1540 u32 *ht1, u32 *plcp) 1541 { 1542 struct ieee80211_tx_info *txinfo; 1543 struct ieee80211_tx_rate *rate; 1544 unsigned int power, chains; 1545 bool ht_rate; 1546 1547 txinfo = IEEE80211_SKB_CB(skb); 1548 rate = &txinfo->control.rates[0]; 1549 ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS); 1550 carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains); 1551 1552 *ht1 = AR9170_MAC_BCN_HT1_TX_ANT0; 1553 if (chains == AR9170_TX_PHY_TXCHAIN_2) 1554 *ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1; 1555 SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7); 1556 SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power); 1557 SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains); 1558 1559 if (ht_rate) { 1560 *ht1 |= AR9170_MAC_BCN_HT1_HT_EN; 1561 if (rate->flags & IEEE80211_TX_RC_SHORT_GI) 1562 *plcp |= AR9170_MAC_BCN_HT2_SGI; 1563 1564 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 1565 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED; 1566 *plcp |= AR9170_MAC_BCN_HT2_BW40; 1567 } else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) { 1568 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP; 1569 *plcp |= AR9170_MAC_BCN_HT2_BW40; 1570 } 1571 1572 SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN); 1573 } else { 1574 if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M) 1575 *plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400; 1576 else 1577 *plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010; 1578 } 1579 1580 return ht_rate; 1581 } 1582 1583 int carl9170_update_beacon(struct ar9170 *ar, const bool submit) 1584 { 1585 struct sk_buff *skb = NULL; 1586 struct carl9170_vif_info *cvif; 1587 __le32 *data, *old = NULL; 1588 u32 word, ht1, plcp, off, addr, len; 1589 int i = 0, err = 0; 1590 bool ht_rate; 1591 1592 rcu_read_lock(); 1593 cvif = carl9170_pick_beaconing_vif(ar); 1594 if (!cvif) 1595 goto out_unlock; 1596 1597 skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif), 1598 NULL, NULL); 1599 1600 if (!skb) { 1601 err = -ENOMEM; 1602 goto err_free; 1603 } 1604 1605 spin_lock_bh(&ar->beacon_lock); 1606 data = (__le32 *)skb->data; 1607 if (cvif->beacon) 1608 old = (__le32 *)cvif->beacon->data; 1609 1610 off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX; 1611 addr = ar->fw.beacon_addr + off; 1612 len = roundup(skb->len + FCS_LEN, 4); 1613 1614 if ((off + len) > ar->fw.beacon_max_len) { 1615 if (net_ratelimit()) { 1616 wiphy_err(ar->hw->wiphy, "beacon does not " 1617 "fit into device memory!\n"); 1618 } 1619 err = -EINVAL; 1620 goto err_unlock; 1621 } 1622 1623 if (len > AR9170_MAC_BCN_LENGTH_MAX) { 1624 if (net_ratelimit()) { 1625 wiphy_err(ar->hw->wiphy, "no support for beacons " 1626 "bigger than %d (yours:%d).\n", 1627 AR9170_MAC_BCN_LENGTH_MAX, len); 1628 } 1629 1630 err = -EMSGSIZE; 1631 goto err_unlock; 1632 } 1633 1634 ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp); 1635 1636 carl9170_async_regwrite_begin(ar); 1637 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1); 1638 if (ht_rate) 1639 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp); 1640 else 1641 carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp); 1642 1643 for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) { 1644 /* 1645 * XXX: This accesses beyond skb data for up 1646 * to the last 3 bytes!! 1647 */ 1648 1649 if (old && (data[i] == old[i])) 1650 continue; 1651 1652 word = le32_to_cpu(data[i]); 1653 carl9170_async_regwrite(addr + 4 * i, word); 1654 } 1655 carl9170_async_regwrite_finish(); 1656 1657 dev_kfree_skb_any(cvif->beacon); 1658 cvif->beacon = NULL; 1659 1660 err = carl9170_async_regwrite_result(); 1661 if (!err) 1662 cvif->beacon = skb; 1663 spin_unlock_bh(&ar->beacon_lock); 1664 if (err) 1665 goto err_free; 1666 1667 if (submit) { 1668 err = carl9170_bcn_ctrl(ar, cvif->id, 1669 CARL9170_BCN_CTRL_CAB_TRIGGER, 1670 addr, skb->len + FCS_LEN); 1671 1672 if (err) 1673 goto err_free; 1674 } 1675 out_unlock: 1676 rcu_read_unlock(); 1677 return 0; 1678 1679 err_unlock: 1680 spin_unlock_bh(&ar->beacon_lock); 1681 1682 err_free: 1683 rcu_read_unlock(); 1684 dev_kfree_skb_any(skb); 1685 return err; 1686 } 1687