xref: /linux/drivers/net/wireless/ath/ath9k/hw.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 
27 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
28 
29 MODULE_AUTHOR("Atheros Communications");
30 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
31 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
32 MODULE_LICENSE("Dual BSD/GPL");
33 
34 static int __init ath9k_init(void)
35 {
36 	return 0;
37 }
38 module_init(ath9k_init);
39 
40 static void __exit ath9k_exit(void)
41 {
42 	return;
43 }
44 module_exit(ath9k_exit);
45 
46 /* Private hardware callbacks */
47 
48 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
49 {
50 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
51 }
52 
53 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
54 {
55 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
56 }
57 
58 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
59 					struct ath9k_channel *chan)
60 {
61 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
62 }
63 
64 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
65 {
66 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
67 		return;
68 
69 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
70 }
71 
72 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
73 {
74 	/* You will not have this callback if using the old ANI */
75 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
76 		return;
77 
78 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
79 }
80 
81 /********************/
82 /* Helper Functions */
83 /********************/
84 
85 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
86 {
87 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
88 	struct ath_common *common = ath9k_hw_common(ah);
89 	unsigned int clockrate;
90 
91 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
92 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
93 		clockrate = 117;
94 	else if (!ah->curchan) /* should really check for CCK instead */
95 		clockrate = ATH9K_CLOCK_RATE_CCK;
96 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
97 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
98 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
99 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
100 	else
101 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
102 
103 	if (conf_is_ht40(conf))
104 		clockrate *= 2;
105 
106 	if (ah->curchan) {
107 		if (IS_CHAN_HALF_RATE(ah->curchan))
108 			clockrate /= 2;
109 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
110 			clockrate /= 4;
111 	}
112 
113 	common->clockrate = clockrate;
114 }
115 
116 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
117 {
118 	struct ath_common *common = ath9k_hw_common(ah);
119 
120 	return usecs * common->clockrate;
121 }
122 
123 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
124 {
125 	int i;
126 
127 	BUG_ON(timeout < AH_TIME_QUANTUM);
128 
129 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
130 		if ((REG_READ(ah, reg) & mask) == val)
131 			return true;
132 
133 		udelay(AH_TIME_QUANTUM);
134 	}
135 
136 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
137 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
138 		timeout, reg, REG_READ(ah, reg), mask, val);
139 
140 	return false;
141 }
142 EXPORT_SYMBOL(ath9k_hw_wait);
143 
144 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
145 			  int column, unsigned int *writecnt)
146 {
147 	int r;
148 
149 	ENABLE_REGWRITE_BUFFER(ah);
150 	for (r = 0; r < array->ia_rows; r++) {
151 		REG_WRITE(ah, INI_RA(array, r, 0),
152 			  INI_RA(array, r, column));
153 		DO_DELAY(*writecnt);
154 	}
155 	REGWRITE_BUFFER_FLUSH(ah);
156 }
157 
158 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
159 {
160 	u32 retval;
161 	int i;
162 
163 	for (i = 0, retval = 0; i < n; i++) {
164 		retval = (retval << 1) | (val & 1);
165 		val >>= 1;
166 	}
167 	return retval;
168 }
169 
170 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171 			   u8 phy, int kbps,
172 			   u32 frameLen, u16 rateix,
173 			   bool shortPreamble)
174 {
175 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176 
177 	if (kbps == 0)
178 		return 0;
179 
180 	switch (phy) {
181 	case WLAN_RC_PHY_CCK:
182 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
183 		if (shortPreamble)
184 			phyTime >>= 1;
185 		numBits = frameLen << 3;
186 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
187 		break;
188 	case WLAN_RC_PHY_OFDM:
189 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
190 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
191 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
192 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
193 			txTime = OFDM_SIFS_TIME_QUARTER
194 				+ OFDM_PREAMBLE_TIME_QUARTER
195 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
196 		} else if (ah->curchan &&
197 			   IS_CHAN_HALF_RATE(ah->curchan)) {
198 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
199 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
200 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
201 			txTime = OFDM_SIFS_TIME_HALF +
202 				OFDM_PREAMBLE_TIME_HALF
203 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
204 		} else {
205 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
206 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
207 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
208 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
209 				+ (numSymbols * OFDM_SYMBOL_TIME);
210 		}
211 		break;
212 	default:
213 		ath_err(ath9k_hw_common(ah),
214 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
215 		txTime = 0;
216 		break;
217 	}
218 
219 	return txTime;
220 }
221 EXPORT_SYMBOL(ath9k_hw_computetxtime);
222 
223 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
224 				  struct ath9k_channel *chan,
225 				  struct chan_centers *centers)
226 {
227 	int8_t extoff;
228 
229 	if (!IS_CHAN_HT40(chan)) {
230 		centers->ctl_center = centers->ext_center =
231 			centers->synth_center = chan->channel;
232 		return;
233 	}
234 
235 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
236 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
237 		centers->synth_center =
238 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
239 		extoff = 1;
240 	} else {
241 		centers->synth_center =
242 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
243 		extoff = -1;
244 	}
245 
246 	centers->ctl_center =
247 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
248 	/* 25 MHz spacing is supported by hw but not on upper layers */
249 	centers->ext_center =
250 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
251 }
252 
253 /******************/
254 /* Chip Revisions */
255 /******************/
256 
257 static void ath9k_hw_read_revisions(struct ath_hw *ah)
258 {
259 	u32 val;
260 
261 	switch (ah->hw_version.devid) {
262 	case AR5416_AR9100_DEVID:
263 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
264 		break;
265 	case AR9300_DEVID_AR9330:
266 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
267 		if (ah->get_mac_revision) {
268 			ah->hw_version.macRev = ah->get_mac_revision();
269 		} else {
270 			val = REG_READ(ah, AR_SREV);
271 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272 		}
273 		return;
274 	case AR9300_DEVID_AR9340:
275 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
276 		val = REG_READ(ah, AR_SREV);
277 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
278 		return;
279 	}
280 
281 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
282 
283 	if (val == 0xFF) {
284 		val = REG_READ(ah, AR_SREV);
285 		ah->hw_version.macVersion =
286 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
287 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
288 
289 		if (AR_SREV_9462(ah))
290 			ah->is_pciexpress = true;
291 		else
292 			ah->is_pciexpress = (val &
293 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
294 	} else {
295 		if (!AR_SREV_9100(ah))
296 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
297 
298 		ah->hw_version.macRev = val & AR_SREV_REVISION;
299 
300 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
301 			ah->is_pciexpress = true;
302 	}
303 }
304 
305 /************************************/
306 /* HW Attach, Detach, Init Routines */
307 /************************************/
308 
309 static void ath9k_hw_disablepcie(struct ath_hw *ah)
310 {
311 	if (!AR_SREV_5416(ah))
312 		return;
313 
314 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
315 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
316 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
317 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
318 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
319 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
320 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
321 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
322 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
323 
324 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
325 }
326 
327 static void ath9k_hw_aspm_init(struct ath_hw *ah)
328 {
329 	struct ath_common *common = ath9k_hw_common(ah);
330 
331 	if (common->bus_ops->aspm_init)
332 		common->bus_ops->aspm_init(common);
333 }
334 
335 /* This should work for all families including legacy */
336 static bool ath9k_hw_chip_test(struct ath_hw *ah)
337 {
338 	struct ath_common *common = ath9k_hw_common(ah);
339 	u32 regAddr[2] = { AR_STA_ID0 };
340 	u32 regHold[2];
341 	static const u32 patternData[4] = {
342 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
343 	};
344 	int i, j, loop_max;
345 
346 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
347 		loop_max = 2;
348 		regAddr[1] = AR_PHY_BASE + (8 << 2);
349 	} else
350 		loop_max = 1;
351 
352 	for (i = 0; i < loop_max; i++) {
353 		u32 addr = regAddr[i];
354 		u32 wrData, rdData;
355 
356 		regHold[i] = REG_READ(ah, addr);
357 		for (j = 0; j < 0x100; j++) {
358 			wrData = (j << 16) | j;
359 			REG_WRITE(ah, addr, wrData);
360 			rdData = REG_READ(ah, addr);
361 			if (rdData != wrData) {
362 				ath_err(common,
363 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
364 					addr, wrData, rdData);
365 				return false;
366 			}
367 		}
368 		for (j = 0; j < 4; j++) {
369 			wrData = patternData[j];
370 			REG_WRITE(ah, addr, wrData);
371 			rdData = REG_READ(ah, addr);
372 			if (wrData != rdData) {
373 				ath_err(common,
374 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
375 					addr, wrData, rdData);
376 				return false;
377 			}
378 		}
379 		REG_WRITE(ah, regAddr[i], regHold[i]);
380 	}
381 	udelay(100);
382 
383 	return true;
384 }
385 
386 static void ath9k_hw_init_config(struct ath_hw *ah)
387 {
388 	int i;
389 
390 	ah->config.dma_beacon_response_time = 2;
391 	ah->config.sw_beacon_response_time = 10;
392 	ah->config.additional_swba_backoff = 0;
393 	ah->config.ack_6mb = 0x0;
394 	ah->config.cwm_ignore_extcca = 0;
395 	ah->config.pcie_clock_req = 0;
396 	ah->config.pcie_waen = 0;
397 	ah->config.analog_shiftreg = 1;
398 	ah->config.enable_ani = true;
399 
400 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
401 		ah->config.spurchans[i][0] = AR_NO_SPUR;
402 		ah->config.spurchans[i][1] = AR_NO_SPUR;
403 	}
404 
405 	/* PAPRD needs some more work to be enabled */
406 	ah->config.paprd_disable = 1;
407 
408 	ah->config.rx_intr_mitigation = true;
409 	ah->config.pcieSerDesWrite = true;
410 
411 	/*
412 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
413 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
414 	 * This means we use it for all AR5416 devices, and the few
415 	 * minor PCI AR9280 devices out there.
416 	 *
417 	 * Serialization is required because these devices do not handle
418 	 * well the case of two concurrent reads/writes due to the latency
419 	 * involved. During one read/write another read/write can be issued
420 	 * on another CPU while the previous read/write may still be working
421 	 * on our hardware, if we hit this case the hardware poops in a loop.
422 	 * We prevent this by serializing reads and writes.
423 	 *
424 	 * This issue is not present on PCI-Express devices or pre-AR5416
425 	 * devices (legacy, 802.11abg).
426 	 */
427 	if (num_possible_cpus() > 1)
428 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
429 }
430 
431 static void ath9k_hw_init_defaults(struct ath_hw *ah)
432 {
433 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
434 
435 	regulatory->country_code = CTRY_DEFAULT;
436 	regulatory->power_limit = MAX_RATE_POWER;
437 
438 	ah->hw_version.magic = AR5416_MAGIC;
439 	ah->hw_version.subvendorid = 0;
440 
441 	ah->atim_window = 0;
442 	ah->sta_id1_defaults =
443 		AR_STA_ID1_CRPT_MIC_ENABLE |
444 		AR_STA_ID1_MCAST_KSRCH;
445 	if (AR_SREV_9100(ah))
446 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
447 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
448 	ah->slottime = ATH9K_SLOT_TIME_9;
449 	ah->globaltxtimeout = (u32) -1;
450 	ah->power_mode = ATH9K_PM_UNDEFINED;
451 }
452 
453 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
454 {
455 	struct ath_common *common = ath9k_hw_common(ah);
456 	u32 sum;
457 	int i;
458 	u16 eeval;
459 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
460 
461 	sum = 0;
462 	for (i = 0; i < 3; i++) {
463 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
464 		sum += eeval;
465 		common->macaddr[2 * i] = eeval >> 8;
466 		common->macaddr[2 * i + 1] = eeval & 0xff;
467 	}
468 	if (sum == 0 || sum == 0xffff * 3)
469 		return -EADDRNOTAVAIL;
470 
471 	return 0;
472 }
473 
474 static int ath9k_hw_post_init(struct ath_hw *ah)
475 {
476 	struct ath_common *common = ath9k_hw_common(ah);
477 	int ecode;
478 
479 	if (common->bus_ops->ath_bus_type != ATH_USB) {
480 		if (!ath9k_hw_chip_test(ah))
481 			return -ENODEV;
482 	}
483 
484 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
485 		ecode = ar9002_hw_rf_claim(ah);
486 		if (ecode != 0)
487 			return ecode;
488 	}
489 
490 	ecode = ath9k_hw_eeprom_init(ah);
491 	if (ecode != 0)
492 		return ecode;
493 
494 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
495 		"Eeprom VER: %d, REV: %d\n",
496 		ah->eep_ops->get_eeprom_ver(ah),
497 		ah->eep_ops->get_eeprom_rev(ah));
498 
499 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
500 	if (ecode) {
501 		ath_err(ath9k_hw_common(ah),
502 			"Failed allocating banks for external radio\n");
503 		ath9k_hw_rf_free_ext_banks(ah);
504 		return ecode;
505 	}
506 
507 	if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
508 		ath9k_hw_ani_setup(ah);
509 		ath9k_hw_ani_init(ah);
510 	}
511 
512 	return 0;
513 }
514 
515 static void ath9k_hw_attach_ops(struct ath_hw *ah)
516 {
517 	if (AR_SREV_9300_20_OR_LATER(ah))
518 		ar9003_hw_attach_ops(ah);
519 	else
520 		ar9002_hw_attach_ops(ah);
521 }
522 
523 /* Called for all hardware families */
524 static int __ath9k_hw_init(struct ath_hw *ah)
525 {
526 	struct ath_common *common = ath9k_hw_common(ah);
527 	int r = 0;
528 
529 	ath9k_hw_read_revisions(ah);
530 
531 	/*
532 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
533 	 * We need to do this to avoid RMW of this register. We cannot
534 	 * read the reg when chip is asleep.
535 	 */
536 	ah->WARegVal = REG_READ(ah, AR_WA);
537 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
538 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
539 
540 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
541 		ath_err(common, "Couldn't reset chip\n");
542 		return -EIO;
543 	}
544 
545 	if (AR_SREV_9462(ah))
546 		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
547 
548 	ath9k_hw_init_defaults(ah);
549 	ath9k_hw_init_config(ah);
550 
551 	ath9k_hw_attach_ops(ah);
552 
553 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
554 		ath_err(common, "Couldn't wakeup chip\n");
555 		return -EIO;
556 	}
557 
558 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
559 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
560 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
561 		     !ah->is_pciexpress)) {
562 			ah->config.serialize_regmode =
563 				SER_REG_MODE_ON;
564 		} else {
565 			ah->config.serialize_regmode =
566 				SER_REG_MODE_OFF;
567 		}
568 	}
569 
570 	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
571 		ah->config.serialize_regmode);
572 
573 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
574 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
575 	else
576 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
577 
578 	switch (ah->hw_version.macVersion) {
579 	case AR_SREV_VERSION_5416_PCI:
580 	case AR_SREV_VERSION_5416_PCIE:
581 	case AR_SREV_VERSION_9160:
582 	case AR_SREV_VERSION_9100:
583 	case AR_SREV_VERSION_9280:
584 	case AR_SREV_VERSION_9285:
585 	case AR_SREV_VERSION_9287:
586 	case AR_SREV_VERSION_9271:
587 	case AR_SREV_VERSION_9300:
588 	case AR_SREV_VERSION_9330:
589 	case AR_SREV_VERSION_9485:
590 	case AR_SREV_VERSION_9340:
591 	case AR_SREV_VERSION_9462:
592 		break;
593 	default:
594 		ath_err(common,
595 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
596 			ah->hw_version.macVersion, ah->hw_version.macRev);
597 		return -EOPNOTSUPP;
598 	}
599 
600 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
601 	    AR_SREV_9330(ah))
602 		ah->is_pciexpress = false;
603 
604 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
605 	ath9k_hw_init_cal_settings(ah);
606 
607 	ah->ani_function = ATH9K_ANI_ALL;
608 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
609 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
610 	if (!AR_SREV_9300_20_OR_LATER(ah))
611 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
612 
613 	ath9k_hw_init_mode_regs(ah);
614 
615 	if (!ah->is_pciexpress)
616 		ath9k_hw_disablepcie(ah);
617 
618 	if (!AR_SREV_9300_20_OR_LATER(ah))
619 		ar9002_hw_cck_chan14_spread(ah);
620 
621 	r = ath9k_hw_post_init(ah);
622 	if (r)
623 		return r;
624 
625 	ath9k_hw_init_mode_gain_regs(ah);
626 	r = ath9k_hw_fill_cap_info(ah);
627 	if (r)
628 		return r;
629 
630 	if (ah->is_pciexpress)
631 		ath9k_hw_aspm_init(ah);
632 
633 	r = ath9k_hw_init_macaddr(ah);
634 	if (r) {
635 		ath_err(common, "Failed to initialize MAC address\n");
636 		return r;
637 	}
638 
639 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
640 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
641 	else
642 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
643 
644 	if (AR_SREV_9330(ah))
645 		ah->bb_watchdog_timeout_ms = 85;
646 	else
647 		ah->bb_watchdog_timeout_ms = 25;
648 
649 	common->state = ATH_HW_INITIALIZED;
650 
651 	return 0;
652 }
653 
654 int ath9k_hw_init(struct ath_hw *ah)
655 {
656 	int ret;
657 	struct ath_common *common = ath9k_hw_common(ah);
658 
659 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
660 	switch (ah->hw_version.devid) {
661 	case AR5416_DEVID_PCI:
662 	case AR5416_DEVID_PCIE:
663 	case AR5416_AR9100_DEVID:
664 	case AR9160_DEVID_PCI:
665 	case AR9280_DEVID_PCI:
666 	case AR9280_DEVID_PCIE:
667 	case AR9285_DEVID_PCIE:
668 	case AR9287_DEVID_PCI:
669 	case AR9287_DEVID_PCIE:
670 	case AR2427_DEVID_PCIE:
671 	case AR9300_DEVID_PCIE:
672 	case AR9300_DEVID_AR9485_PCIE:
673 	case AR9300_DEVID_AR9330:
674 	case AR9300_DEVID_AR9340:
675 	case AR9300_DEVID_AR9580:
676 	case AR9300_DEVID_AR9462:
677 		break;
678 	default:
679 		if (common->bus_ops->ath_bus_type == ATH_USB)
680 			break;
681 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
682 			ah->hw_version.devid);
683 		return -EOPNOTSUPP;
684 	}
685 
686 	ret = __ath9k_hw_init(ah);
687 	if (ret) {
688 		ath_err(common,
689 			"Unable to initialize hardware; initialization status: %d\n",
690 			ret);
691 		return ret;
692 	}
693 
694 	return 0;
695 }
696 EXPORT_SYMBOL(ath9k_hw_init);
697 
698 static void ath9k_hw_init_qos(struct ath_hw *ah)
699 {
700 	ENABLE_REGWRITE_BUFFER(ah);
701 
702 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
703 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
704 
705 	REG_WRITE(ah, AR_QOS_NO_ACK,
706 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
707 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
708 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
709 
710 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
711 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
712 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
713 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
714 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
715 
716 	REGWRITE_BUFFER_FLUSH(ah);
717 }
718 
719 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
720 {
721 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
722 	udelay(100);
723 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
724 
725 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
726 		udelay(100);
727 
728 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
729 }
730 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
731 
732 static void ath9k_hw_init_pll(struct ath_hw *ah,
733 			      struct ath9k_channel *chan)
734 {
735 	u32 pll;
736 
737 	if (AR_SREV_9485(ah)) {
738 
739 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
740 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
741 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
742 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
743 			      AR_CH0_DPLL2_KD, 0x40);
744 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
745 			      AR_CH0_DPLL2_KI, 0x4);
746 
747 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
748 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
749 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
750 			      AR_CH0_BB_DPLL1_NINI, 0x58);
751 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
752 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
753 
754 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
755 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
756 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
757 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
758 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
759 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
760 
761 		/* program BB PLL phase_shift to 0x6 */
762 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
763 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
764 
765 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
766 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
767 		udelay(1000);
768 	} else if (AR_SREV_9330(ah)) {
769 		u32 ddr_dpll2, pll_control2, kd;
770 
771 		if (ah->is_clk_25mhz) {
772 			ddr_dpll2 = 0x18e82f01;
773 			pll_control2 = 0xe04a3d;
774 			kd = 0x1d;
775 		} else {
776 			ddr_dpll2 = 0x19e82f01;
777 			pll_control2 = 0x886666;
778 			kd = 0x3d;
779 		}
780 
781 		/* program DDR PLL ki and kd value */
782 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
783 
784 		/* program DDR PLL phase_shift */
785 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
786 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
787 
788 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
789 		udelay(1000);
790 
791 		/* program refdiv, nint, frac to RTC register */
792 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
793 
794 		/* program BB PLL kd and ki value */
795 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
796 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
797 
798 		/* program BB PLL phase_shift */
799 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
800 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
801 	} else if (AR_SREV_9340(ah)) {
802 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
803 
804 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
805 		udelay(1000);
806 
807 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
808 		udelay(100);
809 
810 		if (ah->is_clk_25mhz) {
811 			pll2_divint = 0x54;
812 			pll2_divfrac = 0x1eb85;
813 			refdiv = 3;
814 		} else {
815 			pll2_divint = 88;
816 			pll2_divfrac = 0;
817 			refdiv = 5;
818 		}
819 
820 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
821 		regval |= (0x1 << 16);
822 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
823 		udelay(100);
824 
825 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
826 			  (pll2_divint << 18) | pll2_divfrac);
827 		udelay(100);
828 
829 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
830 		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
831 			 (0x4 << 26) | (0x18 << 19);
832 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
833 		REG_WRITE(ah, AR_PHY_PLL_MODE,
834 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
835 		udelay(1000);
836 	}
837 
838 	pll = ath9k_hw_compute_pll_control(ah, chan);
839 
840 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
841 
842 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
843 		udelay(1000);
844 
845 	/* Switch the core clock for ar9271 to 117Mhz */
846 	if (AR_SREV_9271(ah)) {
847 		udelay(500);
848 		REG_WRITE(ah, 0x50040, 0x304);
849 	}
850 
851 	udelay(RTC_PLL_SETTLE_DELAY);
852 
853 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
854 
855 	if (AR_SREV_9340(ah)) {
856 		if (ah->is_clk_25mhz) {
857 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
858 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
859 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
860 		} else {
861 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
862 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
863 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
864 		}
865 		udelay(100);
866 	}
867 }
868 
869 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
870 					  enum nl80211_iftype opmode)
871 {
872 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
873 	u32 imr_reg = AR_IMR_TXERR |
874 		AR_IMR_TXURN |
875 		AR_IMR_RXERR |
876 		AR_IMR_RXORN |
877 		AR_IMR_BCNMISC;
878 
879 	if (AR_SREV_9340(ah))
880 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
881 
882 	if (AR_SREV_9300_20_OR_LATER(ah)) {
883 		imr_reg |= AR_IMR_RXOK_HP;
884 		if (ah->config.rx_intr_mitigation)
885 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
886 		else
887 			imr_reg |= AR_IMR_RXOK_LP;
888 
889 	} else {
890 		if (ah->config.rx_intr_mitigation)
891 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
892 		else
893 			imr_reg |= AR_IMR_RXOK;
894 	}
895 
896 	if (ah->config.tx_intr_mitigation)
897 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
898 	else
899 		imr_reg |= AR_IMR_TXOK;
900 
901 	if (opmode == NL80211_IFTYPE_AP)
902 		imr_reg |= AR_IMR_MIB;
903 
904 	ENABLE_REGWRITE_BUFFER(ah);
905 
906 	REG_WRITE(ah, AR_IMR, imr_reg);
907 	ah->imrs2_reg |= AR_IMR_S2_GTT;
908 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
909 
910 	if (!AR_SREV_9100(ah)) {
911 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
912 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
913 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
914 	}
915 
916 	REGWRITE_BUFFER_FLUSH(ah);
917 
918 	if (AR_SREV_9300_20_OR_LATER(ah)) {
919 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
920 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
921 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
922 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
923 	}
924 }
925 
926 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
927 {
928 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
929 	val = min(val, (u32) 0xFFFF);
930 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
931 }
932 
933 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
934 {
935 	u32 val = ath9k_hw_mac_to_clks(ah, us);
936 	val = min(val, (u32) 0xFFFF);
937 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
938 }
939 
940 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
941 {
942 	u32 val = ath9k_hw_mac_to_clks(ah, us);
943 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
944 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
945 }
946 
947 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
948 {
949 	u32 val = ath9k_hw_mac_to_clks(ah, us);
950 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
951 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
952 }
953 
954 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
955 {
956 	if (tu > 0xFFFF) {
957 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
958 			"bad global tx timeout %u\n", tu);
959 		ah->globaltxtimeout = (u32) -1;
960 		return false;
961 	} else {
962 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
963 		ah->globaltxtimeout = tu;
964 		return true;
965 	}
966 }
967 
968 void ath9k_hw_init_global_settings(struct ath_hw *ah)
969 {
970 	struct ath_common *common = ath9k_hw_common(ah);
971 	struct ieee80211_conf *conf = &common->hw->conf;
972 	const struct ath9k_channel *chan = ah->curchan;
973 	int acktimeout, ctstimeout;
974 	int slottime;
975 	int sifstime;
976 	int rx_lat = 0, tx_lat = 0, eifs = 0;
977 	u32 reg;
978 
979 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
980 		ah->misc_mode);
981 
982 	if (!chan)
983 		return;
984 
985 	if (ah->misc_mode != 0)
986 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
987 
988 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
989 		rx_lat = 41;
990 	else
991 		rx_lat = 37;
992 	tx_lat = 54;
993 
994 	if (IS_CHAN_HALF_RATE(chan)) {
995 		eifs = 175;
996 		rx_lat *= 2;
997 		tx_lat *= 2;
998 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
999 		    tx_lat += 11;
1000 
1001 		slottime = 13;
1002 		sifstime = 32;
1003 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1004 		eifs = 340;
1005 		rx_lat = (rx_lat * 4) - 1;
1006 		tx_lat *= 4;
1007 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1008 		    tx_lat += 22;
1009 
1010 		slottime = 21;
1011 		sifstime = 64;
1012 	} else {
1013 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1014 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1015 			reg = AR_USEC_ASYNC_FIFO;
1016 		} else {
1017 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1018 				common->clockrate;
1019 			reg = REG_READ(ah, AR_USEC);
1020 		}
1021 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1022 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1023 
1024 		slottime = ah->slottime;
1025 		if (IS_CHAN_5GHZ(chan))
1026 			sifstime = 16;
1027 		else
1028 			sifstime = 10;
1029 	}
1030 
1031 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1032 	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1033 	ctstimeout = acktimeout;
1034 
1035 	/*
1036 	 * Workaround for early ACK timeouts, add an offset to match the
1037 	 * initval's 64us ack timeout value.
1038 	 * This was initially only meant to work around an issue with delayed
1039 	 * BA frames in some implementations, but it has been found to fix ACK
1040 	 * timeout issues in other cases as well.
1041 	 */
1042 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1043 		acktimeout += 64 - sifstime - ah->slottime;
1044 
1045 	ath9k_hw_set_sifs_time(ah, sifstime);
1046 	ath9k_hw_setslottime(ah, slottime);
1047 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1048 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1049 	if (ah->globaltxtimeout != (u32) -1)
1050 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1051 
1052 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1053 	REG_RMW(ah, AR_USEC,
1054 		(common->clockrate - 1) |
1055 		SM(rx_lat, AR_USEC_RX_LAT) |
1056 		SM(tx_lat, AR_USEC_TX_LAT),
1057 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1058 
1059 }
1060 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1061 
1062 void ath9k_hw_deinit(struct ath_hw *ah)
1063 {
1064 	struct ath_common *common = ath9k_hw_common(ah);
1065 
1066 	if (common->state < ATH_HW_INITIALIZED)
1067 		goto free_hw;
1068 
1069 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1070 
1071 free_hw:
1072 	ath9k_hw_rf_free_ext_banks(ah);
1073 }
1074 EXPORT_SYMBOL(ath9k_hw_deinit);
1075 
1076 /*******/
1077 /* INI */
1078 /*******/
1079 
1080 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1081 {
1082 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1083 
1084 	if (IS_CHAN_B(chan))
1085 		ctl |= CTL_11B;
1086 	else if (IS_CHAN_G(chan))
1087 		ctl |= CTL_11G;
1088 	else
1089 		ctl |= CTL_11A;
1090 
1091 	return ctl;
1092 }
1093 
1094 /****************************************/
1095 /* Reset and Channel Switching Routines */
1096 /****************************************/
1097 
1098 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1099 {
1100 	struct ath_common *common = ath9k_hw_common(ah);
1101 
1102 	ENABLE_REGWRITE_BUFFER(ah);
1103 
1104 	/*
1105 	 * set AHB_MODE not to do cacheline prefetches
1106 	*/
1107 	if (!AR_SREV_9300_20_OR_LATER(ah))
1108 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1109 
1110 	/*
1111 	 * let mac dma reads be in 128 byte chunks
1112 	 */
1113 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1114 
1115 	REGWRITE_BUFFER_FLUSH(ah);
1116 
1117 	/*
1118 	 * Restore TX Trigger Level to its pre-reset value.
1119 	 * The initial value depends on whether aggregation is enabled, and is
1120 	 * adjusted whenever underruns are detected.
1121 	 */
1122 	if (!AR_SREV_9300_20_OR_LATER(ah))
1123 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1124 
1125 	ENABLE_REGWRITE_BUFFER(ah);
1126 
1127 	/*
1128 	 * let mac dma writes be in 128 byte chunks
1129 	 */
1130 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1131 
1132 	/*
1133 	 * Setup receive FIFO threshold to hold off TX activities
1134 	 */
1135 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1136 
1137 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1138 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1139 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1140 
1141 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1142 			ah->caps.rx_status_len);
1143 	}
1144 
1145 	/*
1146 	 * reduce the number of usable entries in PCU TXBUF to avoid
1147 	 * wrap around issues.
1148 	 */
1149 	if (AR_SREV_9285(ah)) {
1150 		/* For AR9285 the number of Fifos are reduced to half.
1151 		 * So set the usable tx buf size also to half to
1152 		 * avoid data/delimiter underruns
1153 		 */
1154 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1155 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1156 	} else if (!AR_SREV_9271(ah)) {
1157 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1158 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1159 	}
1160 
1161 	REGWRITE_BUFFER_FLUSH(ah);
1162 
1163 	if (AR_SREV_9300_20_OR_LATER(ah))
1164 		ath9k_hw_reset_txstatus_ring(ah);
1165 }
1166 
1167 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1168 {
1169 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1170 	u32 set = AR_STA_ID1_KSRCH_MODE;
1171 
1172 	switch (opmode) {
1173 	case NL80211_IFTYPE_ADHOC:
1174 	case NL80211_IFTYPE_MESH_POINT:
1175 		set |= AR_STA_ID1_ADHOC;
1176 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1177 		break;
1178 	case NL80211_IFTYPE_AP:
1179 		set |= AR_STA_ID1_STA_AP;
1180 		/* fall through */
1181 	case NL80211_IFTYPE_STATION:
1182 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1183 		break;
1184 	default:
1185 		if (!ah->is_monitoring)
1186 			set = 0;
1187 		break;
1188 	}
1189 	REG_RMW(ah, AR_STA_ID1, set, mask);
1190 }
1191 
1192 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1193 				   u32 *coef_mantissa, u32 *coef_exponent)
1194 {
1195 	u32 coef_exp, coef_man;
1196 
1197 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1198 		if ((coef_scaled >> coef_exp) & 0x1)
1199 			break;
1200 
1201 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1202 
1203 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1204 
1205 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1206 	*coef_exponent = coef_exp - 16;
1207 }
1208 
1209 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1210 {
1211 	u32 rst_flags;
1212 	u32 tmpReg;
1213 
1214 	if (AR_SREV_9100(ah)) {
1215 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1216 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1217 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1218 	}
1219 
1220 	ENABLE_REGWRITE_BUFFER(ah);
1221 
1222 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1223 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1224 		udelay(10);
1225 	}
1226 
1227 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1228 		  AR_RTC_FORCE_WAKE_ON_INT);
1229 
1230 	if (AR_SREV_9100(ah)) {
1231 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1232 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1233 	} else {
1234 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1235 		if (tmpReg &
1236 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1237 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1238 			u32 val;
1239 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1240 
1241 			val = AR_RC_HOSTIF;
1242 			if (!AR_SREV_9300_20_OR_LATER(ah))
1243 				val |= AR_RC_AHB;
1244 			REG_WRITE(ah, AR_RC, val);
1245 
1246 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1247 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1248 
1249 		rst_flags = AR_RTC_RC_MAC_WARM;
1250 		if (type == ATH9K_RESET_COLD)
1251 			rst_flags |= AR_RTC_RC_MAC_COLD;
1252 	}
1253 
1254 	if (AR_SREV_9330(ah)) {
1255 		int npend = 0;
1256 		int i;
1257 
1258 		/* AR9330 WAR:
1259 		 * call external reset function to reset WMAC if:
1260 		 * - doing a cold reset
1261 		 * - we have pending frames in the TX queues
1262 		 */
1263 
1264 		for (i = 0; i < AR_NUM_QCU; i++) {
1265 			npend = ath9k_hw_numtxpending(ah, i);
1266 			if (npend)
1267 				break;
1268 		}
1269 
1270 		if (ah->external_reset &&
1271 		    (npend || type == ATH9K_RESET_COLD)) {
1272 			int reset_err = 0;
1273 
1274 			ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1275 				"reset MAC via external reset\n");
1276 
1277 			reset_err = ah->external_reset();
1278 			if (reset_err) {
1279 				ath_err(ath9k_hw_common(ah),
1280 					"External reset failed, err=%d\n",
1281 					reset_err);
1282 				return false;
1283 			}
1284 
1285 			REG_WRITE(ah, AR_RTC_RESET, 1);
1286 		}
1287 	}
1288 
1289 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1290 
1291 	REGWRITE_BUFFER_FLUSH(ah);
1292 
1293 	udelay(50);
1294 
1295 	REG_WRITE(ah, AR_RTC_RC, 0);
1296 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1297 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1298 			"RTC stuck in MAC reset\n");
1299 		return false;
1300 	}
1301 
1302 	if (!AR_SREV_9100(ah))
1303 		REG_WRITE(ah, AR_RC, 0);
1304 
1305 	if (AR_SREV_9100(ah))
1306 		udelay(50);
1307 
1308 	return true;
1309 }
1310 
1311 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1312 {
1313 	ENABLE_REGWRITE_BUFFER(ah);
1314 
1315 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1316 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1317 		udelay(10);
1318 	}
1319 
1320 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1321 		  AR_RTC_FORCE_WAKE_ON_INT);
1322 
1323 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1324 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1325 
1326 	REG_WRITE(ah, AR_RTC_RESET, 0);
1327 
1328 	REGWRITE_BUFFER_FLUSH(ah);
1329 
1330 	if (!AR_SREV_9300_20_OR_LATER(ah))
1331 		udelay(2);
1332 
1333 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1334 		REG_WRITE(ah, AR_RC, 0);
1335 
1336 	REG_WRITE(ah, AR_RTC_RESET, 1);
1337 
1338 	if (!ath9k_hw_wait(ah,
1339 			   AR_RTC_STATUS,
1340 			   AR_RTC_STATUS_M,
1341 			   AR_RTC_STATUS_ON,
1342 			   AH_WAIT_TIMEOUT)) {
1343 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1344 			"RTC not waking up\n");
1345 		return false;
1346 	}
1347 
1348 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1349 }
1350 
1351 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1352 {
1353 
1354 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1355 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1356 		udelay(10);
1357 	}
1358 
1359 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1360 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1361 
1362 	switch (type) {
1363 	case ATH9K_RESET_POWER_ON:
1364 		return ath9k_hw_set_reset_power_on(ah);
1365 	case ATH9K_RESET_WARM:
1366 	case ATH9K_RESET_COLD:
1367 		return ath9k_hw_set_reset(ah, type);
1368 	default:
1369 		return false;
1370 	}
1371 }
1372 
1373 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1374 				struct ath9k_channel *chan)
1375 {
1376 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1377 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1378 			return false;
1379 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1380 		return false;
1381 
1382 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1383 		return false;
1384 
1385 	ah->chip_fullsleep = false;
1386 	ath9k_hw_init_pll(ah, chan);
1387 	ath9k_hw_set_rfmode(ah, chan);
1388 
1389 	return true;
1390 }
1391 
1392 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1393 				    struct ath9k_channel *chan)
1394 {
1395 	struct ath_common *common = ath9k_hw_common(ah);
1396 	u32 qnum;
1397 	int r;
1398 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1399 	bool band_switch, mode_diff;
1400 	u8 ini_reloaded;
1401 
1402 	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1403 		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1404 						    CHANNEL_5GHZ));
1405 	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1406 
1407 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1408 		if (ath9k_hw_numtxpending(ah, qnum)) {
1409 			ath_dbg(common, ATH_DBG_QUEUE,
1410 				"Transmit frames pending on queue %d\n", qnum);
1411 			return false;
1412 		}
1413 	}
1414 
1415 	if (!ath9k_hw_rfbus_req(ah)) {
1416 		ath_err(common, "Could not kill baseband RX\n");
1417 		return false;
1418 	}
1419 
1420 	if (edma && (band_switch || mode_diff)) {
1421 		ath9k_hw_mark_phy_inactive(ah);
1422 		udelay(5);
1423 
1424 		ath9k_hw_init_pll(ah, NULL);
1425 
1426 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1427 			ath_err(common, "Failed to do fast channel change\n");
1428 			return false;
1429 		}
1430 	}
1431 
1432 	ath9k_hw_set_channel_regs(ah, chan);
1433 
1434 	r = ath9k_hw_rf_set_freq(ah, chan);
1435 	if (r) {
1436 		ath_err(common, "Failed to set channel\n");
1437 		return false;
1438 	}
1439 	ath9k_hw_set_clockrate(ah);
1440 	ath9k_hw_apply_txpower(ah, chan);
1441 	ath9k_hw_rfbus_done(ah);
1442 
1443 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1444 		ath9k_hw_set_delta_slope(ah, chan);
1445 
1446 	ath9k_hw_spur_mitigate_freq(ah, chan);
1447 
1448 	if (edma && (band_switch || mode_diff)) {
1449 		ah->ah_flags |= AH_FASTCC;
1450 		if (band_switch || ini_reloaded)
1451 			ah->eep_ops->set_board_values(ah, chan);
1452 
1453 		ath9k_hw_init_bb(ah, chan);
1454 
1455 		if (band_switch || ini_reloaded)
1456 			ath9k_hw_init_cal(ah, chan);
1457 		ah->ah_flags &= ~AH_FASTCC;
1458 	}
1459 
1460 	return true;
1461 }
1462 
1463 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1464 {
1465 	u32 gpio_mask = ah->gpio_mask;
1466 	int i;
1467 
1468 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1469 		if (!(gpio_mask & 1))
1470 			continue;
1471 
1472 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1473 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1474 	}
1475 }
1476 
1477 bool ath9k_hw_check_alive(struct ath_hw *ah)
1478 {
1479 	int count = 50;
1480 	u32 reg;
1481 
1482 	if (AR_SREV_9285_12_OR_LATER(ah))
1483 		return true;
1484 
1485 	do {
1486 		reg = REG_READ(ah, AR_OBS_BUS_1);
1487 
1488 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1489 			continue;
1490 
1491 		switch (reg & 0x7E000B00) {
1492 		case 0x1E000000:
1493 		case 0x52000B00:
1494 		case 0x18000B00:
1495 			continue;
1496 		default:
1497 			return true;
1498 		}
1499 	} while (count-- > 0);
1500 
1501 	return false;
1502 }
1503 EXPORT_SYMBOL(ath9k_hw_check_alive);
1504 
1505 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1506 		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1507 {
1508 	struct ath_common *common = ath9k_hw_common(ah);
1509 	u32 saveLedState;
1510 	struct ath9k_channel *curchan = ah->curchan;
1511 	u32 saveDefAntenna;
1512 	u32 macStaId1;
1513 	u64 tsf = 0;
1514 	int i, r;
1515 	bool allow_fbs = false;
1516 
1517 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1518 		return -EIO;
1519 
1520 	if (curchan && !ah->chip_fullsleep)
1521 		ath9k_hw_getnf(ah, curchan);
1522 
1523 	ah->caldata = caldata;
1524 	if (caldata &&
1525 	    (chan->channel != caldata->channel ||
1526 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1527 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1528 		/* Operating channel changed, reset channel calibration data */
1529 		memset(caldata, 0, sizeof(*caldata));
1530 		ath9k_init_nfcal_hist_buffer(ah, chan);
1531 	}
1532 	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1533 
1534 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1535 		bChannelChange = false;
1536 
1537 	if (caldata &&
1538 	    caldata->done_txiqcal_once &&
1539 	    caldata->done_txclcal_once &&
1540 	    caldata->rtt_hist.num_readings)
1541 		allow_fbs = true;
1542 
1543 	if (bChannelChange &&
1544 	    (ah->chip_fullsleep != true) &&
1545 	    (ah->curchan != NULL) &&
1546 	    (chan->channel != ah->curchan->channel) &&
1547 	    (allow_fbs ||
1548 	     ((chan->channelFlags & CHANNEL_ALL) ==
1549 	      (ah->curchan->channelFlags & CHANNEL_ALL)))) {
1550 		if (ath9k_hw_channel_change(ah, chan)) {
1551 			ath9k_hw_loadnf(ah, ah->curchan);
1552 			ath9k_hw_start_nfcal(ah, true);
1553 			if (AR_SREV_9271(ah))
1554 				ar9002_hw_load_ani_reg(ah, chan);
1555 			return 0;
1556 		}
1557 	}
1558 
1559 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1560 	if (saveDefAntenna == 0)
1561 		saveDefAntenna = 1;
1562 
1563 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1564 
1565 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1566 	if (AR_SREV_9100(ah) ||
1567 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1568 		tsf = ath9k_hw_gettsf64(ah);
1569 
1570 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1571 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1572 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1573 
1574 	ath9k_hw_mark_phy_inactive(ah);
1575 
1576 	ah->paprd_table_write_done = false;
1577 
1578 	/* Only required on the first reset */
1579 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1580 		REG_WRITE(ah,
1581 			  AR9271_RESET_POWER_DOWN_CONTROL,
1582 			  AR9271_RADIO_RF_RST);
1583 		udelay(50);
1584 	}
1585 
1586 	if (!ath9k_hw_chip_reset(ah, chan)) {
1587 		ath_err(common, "Chip reset failed\n");
1588 		return -EINVAL;
1589 	}
1590 
1591 	/* Only required on the first reset */
1592 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1593 		ah->htc_reset_init = false;
1594 		REG_WRITE(ah,
1595 			  AR9271_RESET_POWER_DOWN_CONTROL,
1596 			  AR9271_GATE_MAC_CTL);
1597 		udelay(50);
1598 	}
1599 
1600 	/* Restore TSF */
1601 	if (tsf)
1602 		ath9k_hw_settsf64(ah, tsf);
1603 
1604 	if (AR_SREV_9280_20_OR_LATER(ah))
1605 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1606 
1607 	if (!AR_SREV_9300_20_OR_LATER(ah))
1608 		ar9002_hw_enable_async_fifo(ah);
1609 
1610 	r = ath9k_hw_process_ini(ah, chan);
1611 	if (r)
1612 		return r;
1613 
1614 	/*
1615 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1616 	 * right after the chip reset. When that happens, write a new
1617 	 * value after the initvals have been applied, with an offset
1618 	 * based on measured time difference
1619 	 */
1620 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1621 		tsf += 1500;
1622 		ath9k_hw_settsf64(ah, tsf);
1623 	}
1624 
1625 	/* Setup MFP options for CCMP */
1626 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1627 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1628 		 * frames when constructing CCMP AAD. */
1629 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1630 			      0xc7ff);
1631 		ah->sw_mgmt_crypto = false;
1632 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1633 		/* Disable hardware crypto for management frames */
1634 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1635 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1636 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1637 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1638 		ah->sw_mgmt_crypto = true;
1639 	} else
1640 		ah->sw_mgmt_crypto = true;
1641 
1642 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1643 		ath9k_hw_set_delta_slope(ah, chan);
1644 
1645 	ath9k_hw_spur_mitigate_freq(ah, chan);
1646 	ah->eep_ops->set_board_values(ah, chan);
1647 
1648 	ENABLE_REGWRITE_BUFFER(ah);
1649 
1650 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1651 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1652 		  | macStaId1
1653 		  | AR_STA_ID1_RTS_USE_DEF
1654 		  | (ah->config.
1655 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1656 		  | ah->sta_id1_defaults);
1657 	ath_hw_setbssidmask(common);
1658 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1659 	ath9k_hw_write_associd(ah);
1660 	REG_WRITE(ah, AR_ISR, ~0);
1661 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1662 
1663 	REGWRITE_BUFFER_FLUSH(ah);
1664 
1665 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1666 
1667 	r = ath9k_hw_rf_set_freq(ah, chan);
1668 	if (r)
1669 		return r;
1670 
1671 	ath9k_hw_set_clockrate(ah);
1672 
1673 	ENABLE_REGWRITE_BUFFER(ah);
1674 
1675 	for (i = 0; i < AR_NUM_DCU; i++)
1676 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1677 
1678 	REGWRITE_BUFFER_FLUSH(ah);
1679 
1680 	ah->intr_txqs = 0;
1681 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1682 		ath9k_hw_resettxqueue(ah, i);
1683 
1684 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1685 	ath9k_hw_ani_cache_ini_regs(ah);
1686 	ath9k_hw_init_qos(ah);
1687 
1688 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1689 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1690 
1691 	ath9k_hw_init_global_settings(ah);
1692 
1693 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1694 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1695 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1696 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1697 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1698 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1699 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1700 	}
1701 
1702 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1703 
1704 	ath9k_hw_set_dma(ah);
1705 
1706 	REG_WRITE(ah, AR_OBS, 8);
1707 
1708 	if (ah->config.rx_intr_mitigation) {
1709 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1710 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1711 	}
1712 
1713 	if (ah->config.tx_intr_mitigation) {
1714 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1715 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1716 	}
1717 
1718 	ath9k_hw_init_bb(ah, chan);
1719 
1720 	if (caldata) {
1721 		caldata->done_txiqcal_once = false;
1722 		caldata->done_txclcal_once = false;
1723 		caldata->rtt_hist.num_readings = 0;
1724 	}
1725 	if (!ath9k_hw_init_cal(ah, chan))
1726 		return -EIO;
1727 
1728 	ath9k_hw_loadnf(ah, chan);
1729 	ath9k_hw_start_nfcal(ah, true);
1730 
1731 	ENABLE_REGWRITE_BUFFER(ah);
1732 
1733 	ath9k_hw_restore_chainmask(ah);
1734 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1735 
1736 	REGWRITE_BUFFER_FLUSH(ah);
1737 
1738 	/*
1739 	 * For big endian systems turn on swapping for descriptors
1740 	 */
1741 	if (AR_SREV_9100(ah)) {
1742 		u32 mask;
1743 		mask = REG_READ(ah, AR_CFG);
1744 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1745 			ath_dbg(common, ATH_DBG_RESET,
1746 				"CFG Byte Swap Set 0x%x\n", mask);
1747 		} else {
1748 			mask =
1749 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1750 			REG_WRITE(ah, AR_CFG, mask);
1751 			ath_dbg(common, ATH_DBG_RESET,
1752 				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1753 		}
1754 	} else {
1755 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1756 			/* Configure AR9271 target WLAN */
1757 			if (AR_SREV_9271(ah))
1758 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1759 			else
1760 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1761 		}
1762 #ifdef __BIG_ENDIAN
1763 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1764 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1765 		else
1766 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1767 #endif
1768 	}
1769 
1770 	if (ah->btcoex_hw.enabled)
1771 		ath9k_hw_btcoex_enable(ah);
1772 
1773 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1774 		ar9003_hw_bb_watchdog_config(ah);
1775 
1776 		ar9003_hw_disable_phy_restart(ah);
1777 	}
1778 
1779 	ath9k_hw_apply_gpio_override(ah);
1780 
1781 	return 0;
1782 }
1783 EXPORT_SYMBOL(ath9k_hw_reset);
1784 
1785 /******************************/
1786 /* Power Management (Chipset) */
1787 /******************************/
1788 
1789 /*
1790  * Notify Power Mgt is disabled in self-generated frames.
1791  * If requested, force chip to sleep.
1792  */
1793 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1794 {
1795 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1796 	if (setChip) {
1797 		if (AR_SREV_9462(ah)) {
1798 			REG_WRITE(ah, AR_TIMER_MODE,
1799 				  REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
1800 			REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
1801 				  AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
1802 			REG_WRITE(ah, AR_SLP32_INC,
1803 				  REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
1804 			/* xxx Required for WLAN only case ? */
1805 			REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1806 			udelay(100);
1807 		}
1808 
1809 		/*
1810 		 * Clear the RTC force wake bit to allow the
1811 		 * mac to go to sleep.
1812 		 */
1813 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1814 
1815 		if (AR_SREV_9462(ah))
1816 			udelay(100);
1817 
1818 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1819 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1820 
1821 		/* Shutdown chip. Active low */
1822 		if (!AR_SREV_5416(ah) &&
1823 				!AR_SREV_9271(ah) && !AR_SREV_9462_10(ah)) {
1824 			REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1825 			udelay(2);
1826 		}
1827 	}
1828 
1829 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1830 	REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1831 }
1832 
1833 /*
1834  * Notify Power Management is enabled in self-generating
1835  * frames. If request, set power mode of chip to
1836  * auto/normal.  Duration in units of 128us (1/8 TU).
1837  */
1838 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1839 {
1840 	u32 val;
1841 
1842 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1843 	if (setChip) {
1844 		struct ath9k_hw_capabilities *pCap = &ah->caps;
1845 
1846 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1847 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1848 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1849 				  AR_RTC_FORCE_WAKE_ON_INT);
1850 		} else {
1851 
1852 			/* When chip goes into network sleep, it could be waken
1853 			 * up by MCI_INT interrupt caused by BT's HW messages
1854 			 * (LNA_xxx, CONT_xxx) which chould be in a very fast
1855 			 * rate (~100us). This will cause chip to leave and
1856 			 * re-enter network sleep mode frequently, which in
1857 			 * consequence will have WLAN MCI HW to generate lots of
1858 			 * SYS_WAKING and SYS_SLEEPING messages which will make
1859 			 * BT CPU to busy to process.
1860 			 */
1861 			if (AR_SREV_9462(ah)) {
1862 				val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
1863 					~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
1864 				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
1865 			}
1866 			/*
1867 			 * Clear the RTC force wake bit to allow the
1868 			 * mac to go to sleep.
1869 			 */
1870 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1871 				    AR_RTC_FORCE_WAKE_EN);
1872 
1873 			if (AR_SREV_9462(ah))
1874 				udelay(30);
1875 		}
1876 	}
1877 
1878 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1879 	if (AR_SREV_9300_20_OR_LATER(ah))
1880 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1881 }
1882 
1883 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1884 {
1885 	u32 val;
1886 	int i;
1887 
1888 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1889 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1890 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1891 		udelay(10);
1892 	}
1893 
1894 	if (setChip) {
1895 		if ((REG_READ(ah, AR_RTC_STATUS) &
1896 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1897 			if (ath9k_hw_set_reset_reg(ah,
1898 					   ATH9K_RESET_POWER_ON) != true) {
1899 				return false;
1900 			}
1901 			if (!AR_SREV_9300_20_OR_LATER(ah))
1902 				ath9k_hw_init_pll(ah, NULL);
1903 		}
1904 		if (AR_SREV_9100(ah))
1905 			REG_SET_BIT(ah, AR_RTC_RESET,
1906 				    AR_RTC_RESET_EN);
1907 
1908 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1909 			    AR_RTC_FORCE_WAKE_EN);
1910 		udelay(50);
1911 
1912 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1913 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1914 			if (val == AR_RTC_STATUS_ON)
1915 				break;
1916 			udelay(50);
1917 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1918 				    AR_RTC_FORCE_WAKE_EN);
1919 		}
1920 		if (i == 0) {
1921 			ath_err(ath9k_hw_common(ah),
1922 				"Failed to wakeup in %uus\n",
1923 				POWER_UP_TIME / 20);
1924 			return false;
1925 		}
1926 	}
1927 
1928 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1929 
1930 	return true;
1931 }
1932 
1933 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1934 {
1935 	struct ath_common *common = ath9k_hw_common(ah);
1936 	int status = true, setChip = true;
1937 	static const char *modes[] = {
1938 		"AWAKE",
1939 		"FULL-SLEEP",
1940 		"NETWORK SLEEP",
1941 		"UNDEFINED"
1942 	};
1943 
1944 	if (ah->power_mode == mode)
1945 		return status;
1946 
1947 	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1948 		modes[ah->power_mode], modes[mode]);
1949 
1950 	switch (mode) {
1951 	case ATH9K_PM_AWAKE:
1952 		status = ath9k_hw_set_power_awake(ah, setChip);
1953 		break;
1954 	case ATH9K_PM_FULL_SLEEP:
1955 		ath9k_set_power_sleep(ah, setChip);
1956 		ah->chip_fullsleep = true;
1957 		break;
1958 	case ATH9K_PM_NETWORK_SLEEP:
1959 		ath9k_set_power_network_sleep(ah, setChip);
1960 		break;
1961 	default:
1962 		ath_err(common, "Unknown power mode %u\n", mode);
1963 		return false;
1964 	}
1965 	ah->power_mode = mode;
1966 
1967 	/*
1968 	 * XXX: If this warning never comes up after a while then
1969 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1970 	 * ath9k_hw_setpower() return type void.
1971 	 */
1972 
1973 	if (!(ah->ah_flags & AH_UNPLUGGED))
1974 		ATH_DBG_WARN_ON_ONCE(!status);
1975 
1976 	return status;
1977 }
1978 EXPORT_SYMBOL(ath9k_hw_setpower);
1979 
1980 /*******************/
1981 /* Beacon Handling */
1982 /*******************/
1983 
1984 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1985 {
1986 	int flags = 0;
1987 
1988 	ENABLE_REGWRITE_BUFFER(ah);
1989 
1990 	switch (ah->opmode) {
1991 	case NL80211_IFTYPE_ADHOC:
1992 	case NL80211_IFTYPE_MESH_POINT:
1993 		REG_SET_BIT(ah, AR_TXCFG,
1994 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1995 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
1996 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
1997 		flags |= AR_NDP_TIMER_EN;
1998 	case NL80211_IFTYPE_AP:
1999 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2000 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2001 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2002 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2003 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2004 		flags |=
2005 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2006 		break;
2007 	default:
2008 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
2009 			"%s: unsupported opmode: %d\n",
2010 			__func__, ah->opmode);
2011 		return;
2012 		break;
2013 	}
2014 
2015 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2016 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2017 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2018 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2019 
2020 	REGWRITE_BUFFER_FLUSH(ah);
2021 
2022 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2023 }
2024 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2025 
2026 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2027 				    const struct ath9k_beacon_state *bs)
2028 {
2029 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2030 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2031 	struct ath_common *common = ath9k_hw_common(ah);
2032 
2033 	ENABLE_REGWRITE_BUFFER(ah);
2034 
2035 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2036 
2037 	REG_WRITE(ah, AR_BEACON_PERIOD,
2038 		  TU_TO_USEC(bs->bs_intval));
2039 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2040 		  TU_TO_USEC(bs->bs_intval));
2041 
2042 	REGWRITE_BUFFER_FLUSH(ah);
2043 
2044 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2045 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2046 
2047 	beaconintval = bs->bs_intval;
2048 
2049 	if (bs->bs_sleepduration > beaconintval)
2050 		beaconintval = bs->bs_sleepduration;
2051 
2052 	dtimperiod = bs->bs_dtimperiod;
2053 	if (bs->bs_sleepduration > dtimperiod)
2054 		dtimperiod = bs->bs_sleepduration;
2055 
2056 	if (beaconintval == dtimperiod)
2057 		nextTbtt = bs->bs_nextdtim;
2058 	else
2059 		nextTbtt = bs->bs_nexttbtt;
2060 
2061 	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2062 	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2063 	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2064 	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2065 
2066 	ENABLE_REGWRITE_BUFFER(ah);
2067 
2068 	REG_WRITE(ah, AR_NEXT_DTIM,
2069 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2070 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2071 
2072 	REG_WRITE(ah, AR_SLEEP1,
2073 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2074 		  | AR_SLEEP1_ASSUME_DTIM);
2075 
2076 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2077 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2078 	else
2079 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2080 
2081 	REG_WRITE(ah, AR_SLEEP2,
2082 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2083 
2084 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2085 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2086 
2087 	REGWRITE_BUFFER_FLUSH(ah);
2088 
2089 	REG_SET_BIT(ah, AR_TIMER_MODE,
2090 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2091 		    AR_DTIM_TIMER_EN);
2092 
2093 	/* TSF Out of Range Threshold */
2094 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2095 }
2096 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2097 
2098 /*******************/
2099 /* HW Capabilities */
2100 /*******************/
2101 
2102 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2103 {
2104 	eeprom_chainmask &= chip_chainmask;
2105 	if (eeprom_chainmask)
2106 		return eeprom_chainmask;
2107 	else
2108 		return chip_chainmask;
2109 }
2110 
2111 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2112 {
2113 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2114 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2115 	struct ath_common *common = ath9k_hw_common(ah);
2116 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2117 	unsigned int chip_chainmask;
2118 
2119 	u16 eeval;
2120 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2121 
2122 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2123 	regulatory->current_rd = eeval;
2124 
2125 	if (ah->opmode != NL80211_IFTYPE_AP &&
2126 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2127 		if (regulatory->current_rd == 0x64 ||
2128 		    regulatory->current_rd == 0x65)
2129 			regulatory->current_rd += 5;
2130 		else if (regulatory->current_rd == 0x41)
2131 			regulatory->current_rd = 0x43;
2132 		ath_dbg(common, ATH_DBG_REGULATORY,
2133 			"regdomain mapped to 0x%x\n", regulatory->current_rd);
2134 	}
2135 
2136 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2137 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2138 		ath_err(common,
2139 			"no band has been marked as supported in EEPROM\n");
2140 		return -EINVAL;
2141 	}
2142 
2143 	if (eeval & AR5416_OPFLAGS_11A)
2144 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2145 
2146 	if (eeval & AR5416_OPFLAGS_11G)
2147 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2148 
2149 	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2150 		chip_chainmask = 1;
2151 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2152 		chip_chainmask = 7;
2153 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2154 		chip_chainmask = 3;
2155 	else
2156 		chip_chainmask = 7;
2157 
2158 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2159 	/*
2160 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2161 	 * the EEPROM.
2162 	 */
2163 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2164 	    !(eeval & AR5416_OPFLAGS_11A) &&
2165 	    !(AR_SREV_9271(ah)))
2166 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2167 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2168 	else if (AR_SREV_9100(ah))
2169 		pCap->rx_chainmask = 0x7;
2170 	else
2171 		/* Use rx_chainmask from EEPROM. */
2172 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2173 
2174 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2175 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2176 	ah->txchainmask = pCap->tx_chainmask;
2177 	ah->rxchainmask = pCap->rx_chainmask;
2178 
2179 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2180 
2181 	/* enable key search for every frame in an aggregate */
2182 	if (AR_SREV_9300_20_OR_LATER(ah))
2183 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2184 
2185 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2186 
2187 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2188 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2189 	else
2190 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2191 
2192 	if (AR_SREV_9271(ah))
2193 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2194 	else if (AR_DEVID_7010(ah))
2195 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2196 	else if (AR_SREV_9300_20_OR_LATER(ah))
2197 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2198 	else if (AR_SREV_9287_11_OR_LATER(ah))
2199 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2200 	else if (AR_SREV_9285_12_OR_LATER(ah))
2201 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2202 	else if (AR_SREV_9280_20_OR_LATER(ah))
2203 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2204 	else
2205 		pCap->num_gpio_pins = AR_NUM_GPIO;
2206 
2207 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2208 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2209 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2210 	} else {
2211 		pCap->rts_aggr_limit = (8 * 1024);
2212 	}
2213 
2214 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2215 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2216 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2217 		ah->rfkill_gpio =
2218 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2219 		ah->rfkill_polarity =
2220 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2221 
2222 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2223 	}
2224 #endif
2225 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2226 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2227 	else
2228 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2229 
2230 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2231 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2232 	else
2233 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2234 
2235 	if (common->btcoex_enabled) {
2236 		if (AR_SREV_9300_20_OR_LATER(ah)) {
2237 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2238 			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2239 			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2240 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2241 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2242 			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2243 			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2244 
2245 			if (AR_SREV_9285(ah)) {
2246 				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2247 				btcoex_hw->btpriority_gpio =
2248 						ATH_BTPRIORITY_GPIO_9285;
2249 			} else {
2250 				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2251 			}
2252 		}
2253 	} else {
2254 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2255 	}
2256 
2257 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2258 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2259 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2260 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2261 
2262 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2263 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2264 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2265 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2266 		pCap->txs_len = sizeof(struct ar9003_txs);
2267 		if (!ah->config.paprd_disable &&
2268 		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2269 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2270 	} else {
2271 		pCap->tx_desc_len = sizeof(struct ath_desc);
2272 		if (AR_SREV_9280_20(ah))
2273 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2274 	}
2275 
2276 	if (AR_SREV_9300_20_OR_LATER(ah))
2277 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2278 
2279 	if (AR_SREV_9300_20_OR_LATER(ah))
2280 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2281 
2282 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2283 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2284 
2285 	if (AR_SREV_9285(ah))
2286 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2287 			ant_div_ctl1 =
2288 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2289 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2290 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2291 		}
2292 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2293 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2294 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2295 	}
2296 
2297 
2298 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2299 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2300 		/*
2301 		 * enable the diversity-combining algorithm only when
2302 		 * both enable_lna_div and enable_fast_div are set
2303 		 *		Table for Diversity
2304 		 * ant_div_alt_lnaconf		bit 0-1
2305 		 * ant_div_main_lnaconf		bit 2-3
2306 		 * ant_div_alt_gaintb		bit 4
2307 		 * ant_div_main_gaintb		bit 5
2308 		 * enable_ant_div_lnadiv	bit 6
2309 		 * enable_ant_fast_div		bit 7
2310 		 */
2311 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2312 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2313 	}
2314 
2315 	if (AR_SREV_9485_10(ah)) {
2316 		pCap->pcie_lcr_extsync_en = true;
2317 		pCap->pcie_lcr_offset = 0x80;
2318 	}
2319 
2320 	tx_chainmask = pCap->tx_chainmask;
2321 	rx_chainmask = pCap->rx_chainmask;
2322 	while (tx_chainmask || rx_chainmask) {
2323 		if (tx_chainmask & BIT(0))
2324 			pCap->max_txchains++;
2325 		if (rx_chainmask & BIT(0))
2326 			pCap->max_rxchains++;
2327 
2328 		tx_chainmask >>= 1;
2329 		rx_chainmask >>= 1;
2330 	}
2331 
2332 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2333 		ah->enabled_cals |= TX_IQ_CAL;
2334 		if (!AR_SREV_9330(ah))
2335 			ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2336 	}
2337 	if (AR_SREV_9462(ah))
2338 		pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2339 
2340 	return 0;
2341 }
2342 
2343 /****************************/
2344 /* GPIO / RFKILL / Antennae */
2345 /****************************/
2346 
2347 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2348 					 u32 gpio, u32 type)
2349 {
2350 	int addr;
2351 	u32 gpio_shift, tmp;
2352 
2353 	if (gpio > 11)
2354 		addr = AR_GPIO_OUTPUT_MUX3;
2355 	else if (gpio > 5)
2356 		addr = AR_GPIO_OUTPUT_MUX2;
2357 	else
2358 		addr = AR_GPIO_OUTPUT_MUX1;
2359 
2360 	gpio_shift = (gpio % 6) * 5;
2361 
2362 	if (AR_SREV_9280_20_OR_LATER(ah)
2363 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2364 		REG_RMW(ah, addr, (type << gpio_shift),
2365 			(0x1f << gpio_shift));
2366 	} else {
2367 		tmp = REG_READ(ah, addr);
2368 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2369 		tmp &= ~(0x1f << gpio_shift);
2370 		tmp |= (type << gpio_shift);
2371 		REG_WRITE(ah, addr, tmp);
2372 	}
2373 }
2374 
2375 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2376 {
2377 	u32 gpio_shift;
2378 
2379 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2380 
2381 	if (AR_DEVID_7010(ah)) {
2382 		gpio_shift = gpio;
2383 		REG_RMW(ah, AR7010_GPIO_OE,
2384 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2385 			(AR7010_GPIO_OE_MASK << gpio_shift));
2386 		return;
2387 	}
2388 
2389 	gpio_shift = gpio << 1;
2390 	REG_RMW(ah,
2391 		AR_GPIO_OE_OUT,
2392 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2393 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2394 }
2395 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2396 
2397 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2398 {
2399 #define MS_REG_READ(x, y) \
2400 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2401 
2402 	if (gpio >= ah->caps.num_gpio_pins)
2403 		return 0xffffffff;
2404 
2405 	if (AR_DEVID_7010(ah)) {
2406 		u32 val;
2407 		val = REG_READ(ah, AR7010_GPIO_IN);
2408 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2409 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2410 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2411 			AR_GPIO_BIT(gpio)) != 0;
2412 	else if (AR_SREV_9271(ah))
2413 		return MS_REG_READ(AR9271, gpio) != 0;
2414 	else if (AR_SREV_9287_11_OR_LATER(ah))
2415 		return MS_REG_READ(AR9287, gpio) != 0;
2416 	else if (AR_SREV_9285_12_OR_LATER(ah))
2417 		return MS_REG_READ(AR9285, gpio) != 0;
2418 	else if (AR_SREV_9280_20_OR_LATER(ah))
2419 		return MS_REG_READ(AR928X, gpio) != 0;
2420 	else
2421 		return MS_REG_READ(AR, gpio) != 0;
2422 }
2423 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2424 
2425 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2426 			 u32 ah_signal_type)
2427 {
2428 	u32 gpio_shift;
2429 
2430 	if (AR_DEVID_7010(ah)) {
2431 		gpio_shift = gpio;
2432 		REG_RMW(ah, AR7010_GPIO_OE,
2433 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2434 			(AR7010_GPIO_OE_MASK << gpio_shift));
2435 		return;
2436 	}
2437 
2438 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2439 	gpio_shift = 2 * gpio;
2440 	REG_RMW(ah,
2441 		AR_GPIO_OE_OUT,
2442 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2443 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2444 }
2445 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2446 
2447 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2448 {
2449 	if (AR_DEVID_7010(ah)) {
2450 		val = val ? 0 : 1;
2451 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2452 			AR_GPIO_BIT(gpio));
2453 		return;
2454 	}
2455 
2456 	if (AR_SREV_9271(ah))
2457 		val = ~val;
2458 
2459 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2460 		AR_GPIO_BIT(gpio));
2461 }
2462 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2463 
2464 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2465 {
2466 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2467 }
2468 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2469 
2470 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2471 {
2472 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2473 }
2474 EXPORT_SYMBOL(ath9k_hw_setantenna);
2475 
2476 /*********************/
2477 /* General Operation */
2478 /*********************/
2479 
2480 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2481 {
2482 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2483 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2484 
2485 	if (phybits & AR_PHY_ERR_RADAR)
2486 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2487 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2488 		bits |= ATH9K_RX_FILTER_PHYERR;
2489 
2490 	return bits;
2491 }
2492 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2493 
2494 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2495 {
2496 	u32 phybits;
2497 
2498 	ENABLE_REGWRITE_BUFFER(ah);
2499 
2500 	if (AR_SREV_9462(ah))
2501 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2502 
2503 	REG_WRITE(ah, AR_RX_FILTER, bits);
2504 
2505 	phybits = 0;
2506 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2507 		phybits |= AR_PHY_ERR_RADAR;
2508 	if (bits & ATH9K_RX_FILTER_PHYERR)
2509 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2510 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2511 
2512 	if (phybits)
2513 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2514 	else
2515 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2516 
2517 	REGWRITE_BUFFER_FLUSH(ah);
2518 }
2519 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2520 
2521 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2522 {
2523 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2524 		return false;
2525 
2526 	ath9k_hw_init_pll(ah, NULL);
2527 	return true;
2528 }
2529 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2530 
2531 bool ath9k_hw_disable(struct ath_hw *ah)
2532 {
2533 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2534 		return false;
2535 
2536 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2537 		return false;
2538 
2539 	ath9k_hw_init_pll(ah, NULL);
2540 	return true;
2541 }
2542 EXPORT_SYMBOL(ath9k_hw_disable);
2543 
2544 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2545 {
2546 	enum eeprom_param gain_param;
2547 
2548 	if (IS_CHAN_2GHZ(chan))
2549 		gain_param = EEP_ANTENNA_GAIN_2G;
2550 	else
2551 		gain_param = EEP_ANTENNA_GAIN_5G;
2552 
2553 	return ah->eep_ops->get_eeprom(ah, gain_param);
2554 }
2555 
2556 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan)
2557 {
2558 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2559 	struct ieee80211_channel *channel;
2560 	int chan_pwr, new_pwr, max_gain;
2561 	int ant_gain, ant_reduction = 0;
2562 
2563 	if (!chan)
2564 		return;
2565 
2566 	channel = chan->chan;
2567 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2568 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2569 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2570 
2571 	ant_gain = get_antenna_gain(ah, chan);
2572 	if (ant_gain > max_gain)
2573 		ant_reduction = ant_gain - max_gain;
2574 
2575 	ah->eep_ops->set_txpower(ah, chan,
2576 				 ath9k_regd_get_ctl(reg, chan),
2577 				 ant_reduction, new_pwr, false);
2578 }
2579 
2580 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2581 {
2582 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2583 	struct ath9k_channel *chan = ah->curchan;
2584 	struct ieee80211_channel *channel = chan->chan;
2585 
2586 	reg->power_limit = min_t(int, limit, MAX_RATE_POWER);
2587 	if (test)
2588 		channel->max_power = MAX_RATE_POWER / 2;
2589 
2590 	ath9k_hw_apply_txpower(ah, chan);
2591 
2592 	if (test)
2593 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2594 }
2595 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2596 
2597 void ath9k_hw_setopmode(struct ath_hw *ah)
2598 {
2599 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2600 }
2601 EXPORT_SYMBOL(ath9k_hw_setopmode);
2602 
2603 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2604 {
2605 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2606 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2607 }
2608 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2609 
2610 void ath9k_hw_write_associd(struct ath_hw *ah)
2611 {
2612 	struct ath_common *common = ath9k_hw_common(ah);
2613 
2614 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2615 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2616 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2617 }
2618 EXPORT_SYMBOL(ath9k_hw_write_associd);
2619 
2620 #define ATH9K_MAX_TSF_READ 10
2621 
2622 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2623 {
2624 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2625 	int i;
2626 
2627 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2628 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2629 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2630 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2631 		if (tsf_upper2 == tsf_upper1)
2632 			break;
2633 		tsf_upper1 = tsf_upper2;
2634 	}
2635 
2636 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2637 
2638 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2639 }
2640 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2641 
2642 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2643 {
2644 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2645 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2646 }
2647 EXPORT_SYMBOL(ath9k_hw_settsf64);
2648 
2649 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2650 {
2651 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2652 			   AH_TSF_WRITE_TIMEOUT))
2653 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2654 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2655 
2656 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2657 }
2658 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2659 
2660 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2661 {
2662 	if (setting)
2663 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2664 	else
2665 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2666 }
2667 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2668 
2669 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2670 {
2671 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2672 	u32 macmode;
2673 
2674 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2675 		macmode = AR_2040_JOINED_RX_CLEAR;
2676 	else
2677 		macmode = 0;
2678 
2679 	REG_WRITE(ah, AR_2040_MODE, macmode);
2680 }
2681 
2682 /* HW Generic timers configuration */
2683 
2684 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2685 {
2686 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2687 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2688 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2689 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2690 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2691 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2692 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2693 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2694 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2695 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2696 				AR_NDP2_TIMER_MODE, 0x0002},
2697 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2698 				AR_NDP2_TIMER_MODE, 0x0004},
2699 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2700 				AR_NDP2_TIMER_MODE, 0x0008},
2701 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2702 				AR_NDP2_TIMER_MODE, 0x0010},
2703 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2704 				AR_NDP2_TIMER_MODE, 0x0020},
2705 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2706 				AR_NDP2_TIMER_MODE, 0x0040},
2707 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2708 				AR_NDP2_TIMER_MODE, 0x0080}
2709 };
2710 
2711 /* HW generic timer primitives */
2712 
2713 /* compute and clear index of rightmost 1 */
2714 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2715 {
2716 	u32 b;
2717 
2718 	b = *mask;
2719 	b &= (0-b);
2720 	*mask &= ~b;
2721 	b *= debruijn32;
2722 	b >>= 27;
2723 
2724 	return timer_table->gen_timer_index[b];
2725 }
2726 
2727 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2728 {
2729 	return REG_READ(ah, AR_TSF_L32);
2730 }
2731 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2732 
2733 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2734 					  void (*trigger)(void *),
2735 					  void (*overflow)(void *),
2736 					  void *arg,
2737 					  u8 timer_index)
2738 {
2739 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2740 	struct ath_gen_timer *timer;
2741 
2742 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2743 
2744 	if (timer == NULL) {
2745 		ath_err(ath9k_hw_common(ah),
2746 			"Failed to allocate memory for hw timer[%d]\n",
2747 			timer_index);
2748 		return NULL;
2749 	}
2750 
2751 	/* allocate a hardware generic timer slot */
2752 	timer_table->timers[timer_index] = timer;
2753 	timer->index = timer_index;
2754 	timer->trigger = trigger;
2755 	timer->overflow = overflow;
2756 	timer->arg = arg;
2757 
2758 	return timer;
2759 }
2760 EXPORT_SYMBOL(ath_gen_timer_alloc);
2761 
2762 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2763 			      struct ath_gen_timer *timer,
2764 			      u32 trig_timeout,
2765 			      u32 timer_period)
2766 {
2767 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2768 	u32 tsf, timer_next;
2769 
2770 	BUG_ON(!timer_period);
2771 
2772 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2773 
2774 	tsf = ath9k_hw_gettsf32(ah);
2775 
2776 	timer_next = tsf + trig_timeout;
2777 
2778 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2779 		"current tsf %x period %x timer_next %x\n",
2780 		tsf, timer_period, timer_next);
2781 
2782 	/*
2783 	 * Program generic timer registers
2784 	 */
2785 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2786 		 timer_next);
2787 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2788 		  timer_period);
2789 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2790 		    gen_tmr_configuration[timer->index].mode_mask);
2791 
2792 	if (AR_SREV_9462(ah)) {
2793 		/*
2794 		 * Starting from AR9462, each generic timer can select which tsf
2795 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2796 		 * 8 - 15  use tsf2.
2797 		 */
2798 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2799 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2800 				       (1 << timer->index));
2801 		else
2802 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2803 				       (1 << timer->index));
2804 	}
2805 
2806 	/* Enable both trigger and thresh interrupt masks */
2807 	REG_SET_BIT(ah, AR_IMR_S5,
2808 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2809 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2810 }
2811 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2812 
2813 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2814 {
2815 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2816 
2817 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2818 		(timer->index >= ATH_MAX_GEN_TIMER)) {
2819 		return;
2820 	}
2821 
2822 	/* Clear generic timer enable bits. */
2823 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2824 			gen_tmr_configuration[timer->index].mode_mask);
2825 
2826 	/* Disable both trigger and thresh interrupt masks */
2827 	REG_CLR_BIT(ah, AR_IMR_S5,
2828 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2829 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2830 
2831 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2832 }
2833 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2834 
2835 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2836 {
2837 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2838 
2839 	/* free the hardware generic timer slot */
2840 	timer_table->timers[timer->index] = NULL;
2841 	kfree(timer);
2842 }
2843 EXPORT_SYMBOL(ath_gen_timer_free);
2844 
2845 /*
2846  * Generic Timer Interrupts handling
2847  */
2848 void ath_gen_timer_isr(struct ath_hw *ah)
2849 {
2850 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2851 	struct ath_gen_timer *timer;
2852 	struct ath_common *common = ath9k_hw_common(ah);
2853 	u32 trigger_mask, thresh_mask, index;
2854 
2855 	/* get hardware generic timer interrupt status */
2856 	trigger_mask = ah->intr_gen_timer_trigger;
2857 	thresh_mask = ah->intr_gen_timer_thresh;
2858 	trigger_mask &= timer_table->timer_mask.val;
2859 	thresh_mask &= timer_table->timer_mask.val;
2860 
2861 	trigger_mask &= ~thresh_mask;
2862 
2863 	while (thresh_mask) {
2864 		index = rightmost_index(timer_table, &thresh_mask);
2865 		timer = timer_table->timers[index];
2866 		BUG_ON(!timer);
2867 		ath_dbg(common, ATH_DBG_HWTIMER,
2868 			"TSF overflow for Gen timer %d\n", index);
2869 		timer->overflow(timer->arg);
2870 	}
2871 
2872 	while (trigger_mask) {
2873 		index = rightmost_index(timer_table, &trigger_mask);
2874 		timer = timer_table->timers[index];
2875 		BUG_ON(!timer);
2876 		ath_dbg(common, ATH_DBG_HWTIMER,
2877 			"Gen timer[%d] trigger\n", index);
2878 		timer->trigger(timer->arg);
2879 	}
2880 }
2881 EXPORT_SYMBOL(ath_gen_timer_isr);
2882 
2883 /********/
2884 /* HTC  */
2885 /********/
2886 
2887 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2888 {
2889 	ah->htc_reset_init = true;
2890 }
2891 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2892 
2893 static struct {
2894 	u32 version;
2895 	const char * name;
2896 } ath_mac_bb_names[] = {
2897 	/* Devices with external radios */
2898 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2899 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2900 	{ AR_SREV_VERSION_9100,		"9100" },
2901 	{ AR_SREV_VERSION_9160,		"9160" },
2902 	/* Single-chip solutions */
2903 	{ AR_SREV_VERSION_9280,		"9280" },
2904 	{ AR_SREV_VERSION_9285,		"9285" },
2905 	{ AR_SREV_VERSION_9287,         "9287" },
2906 	{ AR_SREV_VERSION_9271,         "9271" },
2907 	{ AR_SREV_VERSION_9300,         "9300" },
2908 	{ AR_SREV_VERSION_9330,         "9330" },
2909 	{ AR_SREV_VERSION_9340,		"9340" },
2910 	{ AR_SREV_VERSION_9485,         "9485" },
2911 	{ AR_SREV_VERSION_9462,         "9462" },
2912 };
2913 
2914 /* For devices with external radios */
2915 static struct {
2916 	u16 version;
2917 	const char * name;
2918 } ath_rf_names[] = {
2919 	{ 0,				"5133" },
2920 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2921 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2922 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2923 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2924 };
2925 
2926 /*
2927  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2928  */
2929 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2930 {
2931 	int i;
2932 
2933 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2934 		if (ath_mac_bb_names[i].version == mac_bb_version) {
2935 			return ath_mac_bb_names[i].name;
2936 		}
2937 	}
2938 
2939 	return "????";
2940 }
2941 
2942 /*
2943  * Return the RF name. "????" is returned if the RF is unknown.
2944  * Used for devices with external radios.
2945  */
2946 static const char *ath9k_hw_rf_name(u16 rf_version)
2947 {
2948 	int i;
2949 
2950 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2951 		if (ath_rf_names[i].version == rf_version) {
2952 			return ath_rf_names[i].name;
2953 		}
2954 	}
2955 
2956 	return "????";
2957 }
2958 
2959 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2960 {
2961 	int used;
2962 
2963 	/* chipsets >= AR9280 are single-chip */
2964 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2965 		used = snprintf(hw_name, len,
2966 			       "Atheros AR%s Rev:%x",
2967 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2968 			       ah->hw_version.macRev);
2969 	}
2970 	else {
2971 		used = snprintf(hw_name, len,
2972 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2973 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2974 			       ah->hw_version.macRev,
2975 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2976 						AR_RADIO_SREV_MAJOR)),
2977 			       ah->hw_version.phyRev);
2978 	}
2979 
2980 	hw_name[used] = '\0';
2981 }
2982 EXPORT_SYMBOL(ath9k_hw_name);
2983