1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/io.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/bitops.h> 22 #include <linux/etherdevice.h> 23 #include <linux/gpio.h> 24 #include <asm/unaligned.h> 25 26 #include "hw.h" 27 #include "hw-ops.h" 28 #include "ar9003_mac.h" 29 #include "ar9003_mci.h" 30 #include "ar9003_phy.h" 31 #include "ath9k.h" 32 33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); 34 35 MODULE_AUTHOR("Atheros Communications"); 36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); 37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); 38 MODULE_LICENSE("Dual BSD/GPL"); 39 40 static void ath9k_hw_set_clockrate(struct ath_hw *ah) 41 { 42 struct ath_common *common = ath9k_hw_common(ah); 43 struct ath9k_channel *chan = ah->curchan; 44 unsigned int clockrate; 45 46 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */ 47 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) 48 clockrate = 117; 49 else if (!chan) /* should really check for CCK instead */ 50 clockrate = ATH9K_CLOCK_RATE_CCK; 51 else if (IS_CHAN_2GHZ(chan)) 52 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM; 53 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) 54 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; 55 else 56 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM; 57 58 if (chan) { 59 if (IS_CHAN_HT40(chan)) 60 clockrate *= 2; 61 if (IS_CHAN_HALF_RATE(chan)) 62 clockrate /= 2; 63 if (IS_CHAN_QUARTER_RATE(chan)) 64 clockrate /= 4; 65 } 66 67 common->clockrate = clockrate; 68 } 69 70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) 71 { 72 struct ath_common *common = ath9k_hw_common(ah); 73 74 return usecs * common->clockrate; 75 } 76 77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) 78 { 79 int i; 80 81 BUG_ON(timeout < AH_TIME_QUANTUM); 82 83 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { 84 if ((REG_READ(ah, reg) & mask) == val) 85 return true; 86 87 udelay(AH_TIME_QUANTUM); 88 } 89 90 ath_dbg(ath9k_hw_common(ah), ANY, 91 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", 92 timeout, reg, REG_READ(ah, reg), mask, val); 93 94 return false; 95 } 96 EXPORT_SYMBOL(ath9k_hw_wait); 97 98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan, 99 int hw_delay) 100 { 101 hw_delay /= 10; 102 103 if (IS_CHAN_HALF_RATE(chan)) 104 hw_delay *= 2; 105 else if (IS_CHAN_QUARTER_RATE(chan)) 106 hw_delay *= 4; 107 108 udelay(hw_delay + BASE_ACTIVATE_DELAY); 109 } 110 111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array, 112 int column, unsigned int *writecnt) 113 { 114 int r; 115 116 ENABLE_REGWRITE_BUFFER(ah); 117 for (r = 0; r < array->ia_rows; r++) { 118 REG_WRITE(ah, INI_RA(array, r, 0), 119 INI_RA(array, r, column)); 120 DO_DELAY(*writecnt); 121 } 122 REGWRITE_BUFFER_FLUSH(ah); 123 } 124 125 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size) 126 { 127 u32 *tmp_reg_list, *tmp_data; 128 int i; 129 130 tmp_reg_list = kmalloc(size * sizeof(u32), GFP_KERNEL); 131 if (!tmp_reg_list) { 132 dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__); 133 return; 134 } 135 136 tmp_data = kmalloc(size * sizeof(u32), GFP_KERNEL); 137 if (!tmp_data) { 138 dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__); 139 goto error_tmp_data; 140 } 141 142 for (i = 0; i < size; i++) 143 tmp_reg_list[i] = array[i][0]; 144 145 REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size); 146 147 for (i = 0; i < size; i++) 148 array[i][1] = tmp_data[i]; 149 150 kfree(tmp_data); 151 error_tmp_data: 152 kfree(tmp_reg_list); 153 } 154 155 u32 ath9k_hw_reverse_bits(u32 val, u32 n) 156 { 157 u32 retval; 158 int i; 159 160 for (i = 0, retval = 0; i < n; i++) { 161 retval = (retval << 1) | (val & 1); 162 val >>= 1; 163 } 164 return retval; 165 } 166 167 u16 ath9k_hw_computetxtime(struct ath_hw *ah, 168 u8 phy, int kbps, 169 u32 frameLen, u16 rateix, 170 bool shortPreamble) 171 { 172 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; 173 174 if (kbps == 0) 175 return 0; 176 177 switch (phy) { 178 case WLAN_RC_PHY_CCK: 179 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; 180 if (shortPreamble) 181 phyTime >>= 1; 182 numBits = frameLen << 3; 183 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); 184 break; 185 case WLAN_RC_PHY_OFDM: 186 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { 187 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; 188 numBits = OFDM_PLCP_BITS + (frameLen << 3); 189 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 190 txTime = OFDM_SIFS_TIME_QUARTER 191 + OFDM_PREAMBLE_TIME_QUARTER 192 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); 193 } else if (ah->curchan && 194 IS_CHAN_HALF_RATE(ah->curchan)) { 195 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; 196 numBits = OFDM_PLCP_BITS + (frameLen << 3); 197 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 198 txTime = OFDM_SIFS_TIME_HALF + 199 OFDM_PREAMBLE_TIME_HALF 200 + (numSymbols * OFDM_SYMBOL_TIME_HALF); 201 } else { 202 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; 203 numBits = OFDM_PLCP_BITS + (frameLen << 3); 204 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 205 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME 206 + (numSymbols * OFDM_SYMBOL_TIME); 207 } 208 break; 209 default: 210 ath_err(ath9k_hw_common(ah), 211 "Unknown phy %u (rate ix %u)\n", phy, rateix); 212 txTime = 0; 213 break; 214 } 215 216 return txTime; 217 } 218 EXPORT_SYMBOL(ath9k_hw_computetxtime); 219 220 void ath9k_hw_get_channel_centers(struct ath_hw *ah, 221 struct ath9k_channel *chan, 222 struct chan_centers *centers) 223 { 224 int8_t extoff; 225 226 if (!IS_CHAN_HT40(chan)) { 227 centers->ctl_center = centers->ext_center = 228 centers->synth_center = chan->channel; 229 return; 230 } 231 232 if (IS_CHAN_HT40PLUS(chan)) { 233 centers->synth_center = 234 chan->channel + HT40_CHANNEL_CENTER_SHIFT; 235 extoff = 1; 236 } else { 237 centers->synth_center = 238 chan->channel - HT40_CHANNEL_CENTER_SHIFT; 239 extoff = -1; 240 } 241 242 centers->ctl_center = 243 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); 244 /* 25 MHz spacing is supported by hw but not on upper layers */ 245 centers->ext_center = 246 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); 247 } 248 249 /******************/ 250 /* Chip Revisions */ 251 /******************/ 252 253 static void ath9k_hw_read_revisions(struct ath_hw *ah) 254 { 255 u32 val; 256 257 if (ah->get_mac_revision) 258 ah->hw_version.macRev = ah->get_mac_revision(); 259 260 switch (ah->hw_version.devid) { 261 case AR5416_AR9100_DEVID: 262 ah->hw_version.macVersion = AR_SREV_VERSION_9100; 263 break; 264 case AR9300_DEVID_AR9330: 265 ah->hw_version.macVersion = AR_SREV_VERSION_9330; 266 if (!ah->get_mac_revision) { 267 val = REG_READ(ah, AR_SREV); 268 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 269 } 270 return; 271 case AR9300_DEVID_AR9340: 272 ah->hw_version.macVersion = AR_SREV_VERSION_9340; 273 return; 274 case AR9300_DEVID_QCA955X: 275 ah->hw_version.macVersion = AR_SREV_VERSION_9550; 276 return; 277 case AR9300_DEVID_AR953X: 278 ah->hw_version.macVersion = AR_SREV_VERSION_9531; 279 return; 280 case AR9300_DEVID_QCA956X: 281 ah->hw_version.macVersion = AR_SREV_VERSION_9561; 282 return; 283 } 284 285 val = REG_READ(ah, AR_SREV) & AR_SREV_ID; 286 287 if (val == 0xFF) { 288 val = REG_READ(ah, AR_SREV); 289 ah->hw_version.macVersion = 290 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; 291 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 292 293 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 294 ah->is_pciexpress = true; 295 else 296 ah->is_pciexpress = (val & 297 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; 298 } else { 299 if (!AR_SREV_9100(ah)) 300 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); 301 302 ah->hw_version.macRev = val & AR_SREV_REVISION; 303 304 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) 305 ah->is_pciexpress = true; 306 } 307 } 308 309 /************************************/ 310 /* HW Attach, Detach, Init Routines */ 311 /************************************/ 312 313 static void ath9k_hw_disablepcie(struct ath_hw *ah) 314 { 315 if (!AR_SREV_5416(ah)) 316 return; 317 318 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); 319 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); 320 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); 321 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); 322 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); 323 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); 324 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); 325 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); 326 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); 327 328 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); 329 } 330 331 /* This should work for all families including legacy */ 332 static bool ath9k_hw_chip_test(struct ath_hw *ah) 333 { 334 struct ath_common *common = ath9k_hw_common(ah); 335 u32 regAddr[2] = { AR_STA_ID0 }; 336 u32 regHold[2]; 337 static const u32 patternData[4] = { 338 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 339 }; 340 int i, j, loop_max; 341 342 if (!AR_SREV_9300_20_OR_LATER(ah)) { 343 loop_max = 2; 344 regAddr[1] = AR_PHY_BASE + (8 << 2); 345 } else 346 loop_max = 1; 347 348 for (i = 0; i < loop_max; i++) { 349 u32 addr = regAddr[i]; 350 u32 wrData, rdData; 351 352 regHold[i] = REG_READ(ah, addr); 353 for (j = 0; j < 0x100; j++) { 354 wrData = (j << 16) | j; 355 REG_WRITE(ah, addr, wrData); 356 rdData = REG_READ(ah, addr); 357 if (rdData != wrData) { 358 ath_err(common, 359 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 360 addr, wrData, rdData); 361 return false; 362 } 363 } 364 for (j = 0; j < 4; j++) { 365 wrData = patternData[j]; 366 REG_WRITE(ah, addr, wrData); 367 rdData = REG_READ(ah, addr); 368 if (wrData != rdData) { 369 ath_err(common, 370 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 371 addr, wrData, rdData); 372 return false; 373 } 374 } 375 REG_WRITE(ah, regAddr[i], regHold[i]); 376 } 377 udelay(100); 378 379 return true; 380 } 381 382 static void ath9k_hw_init_config(struct ath_hw *ah) 383 { 384 struct ath_common *common = ath9k_hw_common(ah); 385 386 ah->config.dma_beacon_response_time = 1; 387 ah->config.sw_beacon_response_time = 6; 388 ah->config.cwm_ignore_extcca = 0; 389 ah->config.analog_shiftreg = 1; 390 391 ah->config.rx_intr_mitigation = true; 392 393 if (AR_SREV_9300_20_OR_LATER(ah)) { 394 ah->config.rimt_last = 500; 395 ah->config.rimt_first = 2000; 396 } else { 397 ah->config.rimt_last = 250; 398 ah->config.rimt_first = 700; 399 } 400 401 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 402 ah->config.pll_pwrsave = 7; 403 404 /* 405 * We need this for PCI devices only (Cardbus, PCI, miniPCI) 406 * _and_ if on non-uniprocessor systems (Multiprocessor/HT). 407 * This means we use it for all AR5416 devices, and the few 408 * minor PCI AR9280 devices out there. 409 * 410 * Serialization is required because these devices do not handle 411 * well the case of two concurrent reads/writes due to the latency 412 * involved. During one read/write another read/write can be issued 413 * on another CPU while the previous read/write may still be working 414 * on our hardware, if we hit this case the hardware poops in a loop. 415 * We prevent this by serializing reads and writes. 416 * 417 * This issue is not present on PCI-Express devices or pre-AR5416 418 * devices (legacy, 802.11abg). 419 */ 420 if (num_possible_cpus() > 1) 421 ah->config.serialize_regmode = SER_REG_MODE_AUTO; 422 423 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) { 424 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || 425 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) && 426 !ah->is_pciexpress)) { 427 ah->config.serialize_regmode = SER_REG_MODE_ON; 428 } else { 429 ah->config.serialize_regmode = SER_REG_MODE_OFF; 430 } 431 } 432 433 ath_dbg(common, RESET, "serialize_regmode is %d\n", 434 ah->config.serialize_regmode); 435 436 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 437 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; 438 else 439 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; 440 } 441 442 static void ath9k_hw_init_defaults(struct ath_hw *ah) 443 { 444 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 445 446 regulatory->country_code = CTRY_DEFAULT; 447 regulatory->power_limit = MAX_RATE_POWER; 448 449 ah->hw_version.magic = AR5416_MAGIC; 450 ah->hw_version.subvendorid = 0; 451 452 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE | 453 AR_STA_ID1_MCAST_KSRCH; 454 if (AR_SREV_9100(ah)) 455 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX; 456 457 ah->slottime = ATH9K_SLOT_TIME_9; 458 ah->globaltxtimeout = (u32) -1; 459 ah->power_mode = ATH9K_PM_UNDEFINED; 460 ah->htc_reset_init = true; 461 462 ah->tpc_enabled = false; 463 464 ah->ani_function = ATH9K_ANI_ALL; 465 if (!AR_SREV_9300_20_OR_LATER(ah)) 466 ah->ani_function &= ~ATH9K_ANI_MRC_CCK; 467 468 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 469 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); 470 else 471 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); 472 } 473 474 static int ath9k_hw_init_macaddr(struct ath_hw *ah) 475 { 476 struct ath_common *common = ath9k_hw_common(ah); 477 u32 sum; 478 int i; 479 u16 eeval; 480 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; 481 482 sum = 0; 483 for (i = 0; i < 3; i++) { 484 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); 485 sum += eeval; 486 common->macaddr[2 * i] = eeval >> 8; 487 common->macaddr[2 * i + 1] = eeval & 0xff; 488 } 489 if (!is_valid_ether_addr(common->macaddr)) { 490 ath_err(common, 491 "eeprom contains invalid mac address: %pM\n", 492 common->macaddr); 493 494 random_ether_addr(common->macaddr); 495 ath_err(common, 496 "random mac address will be used: %pM\n", 497 common->macaddr); 498 } 499 500 return 0; 501 } 502 503 static int ath9k_hw_post_init(struct ath_hw *ah) 504 { 505 struct ath_common *common = ath9k_hw_common(ah); 506 int ecode; 507 508 if (common->bus_ops->ath_bus_type != ATH_USB) { 509 if (!ath9k_hw_chip_test(ah)) 510 return -ENODEV; 511 } 512 513 if (!AR_SREV_9300_20_OR_LATER(ah)) { 514 ecode = ar9002_hw_rf_claim(ah); 515 if (ecode != 0) 516 return ecode; 517 } 518 519 ecode = ath9k_hw_eeprom_init(ah); 520 if (ecode != 0) 521 return ecode; 522 523 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n", 524 ah->eep_ops->get_eeprom_ver(ah), 525 ah->eep_ops->get_eeprom_rev(ah)); 526 527 ath9k_hw_ani_init(ah); 528 529 /* 530 * EEPROM needs to be initialized before we do this. 531 * This is required for regulatory compliance. 532 */ 533 if (AR_SREV_9300_20_OR_LATER(ah)) { 534 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 535 if ((regdmn & 0xF0) == CTL_FCC) { 536 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ; 537 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ; 538 } 539 } 540 541 return 0; 542 } 543 544 static int ath9k_hw_attach_ops(struct ath_hw *ah) 545 { 546 if (!AR_SREV_9300_20_OR_LATER(ah)) 547 return ar9002_hw_attach_ops(ah); 548 549 ar9003_hw_attach_ops(ah); 550 return 0; 551 } 552 553 /* Called for all hardware families */ 554 static int __ath9k_hw_init(struct ath_hw *ah) 555 { 556 struct ath_common *common = ath9k_hw_common(ah); 557 int r = 0; 558 559 ath9k_hw_read_revisions(ah); 560 561 switch (ah->hw_version.macVersion) { 562 case AR_SREV_VERSION_5416_PCI: 563 case AR_SREV_VERSION_5416_PCIE: 564 case AR_SREV_VERSION_9160: 565 case AR_SREV_VERSION_9100: 566 case AR_SREV_VERSION_9280: 567 case AR_SREV_VERSION_9285: 568 case AR_SREV_VERSION_9287: 569 case AR_SREV_VERSION_9271: 570 case AR_SREV_VERSION_9300: 571 case AR_SREV_VERSION_9330: 572 case AR_SREV_VERSION_9485: 573 case AR_SREV_VERSION_9340: 574 case AR_SREV_VERSION_9462: 575 case AR_SREV_VERSION_9550: 576 case AR_SREV_VERSION_9565: 577 case AR_SREV_VERSION_9531: 578 case AR_SREV_VERSION_9561: 579 break; 580 default: 581 ath_err(common, 582 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n", 583 ah->hw_version.macVersion, ah->hw_version.macRev); 584 return -EOPNOTSUPP; 585 } 586 587 /* 588 * Read back AR_WA into a permanent copy and set bits 14 and 17. 589 * We need to do this to avoid RMW of this register. We cannot 590 * read the reg when chip is asleep. 591 */ 592 if (AR_SREV_9300_20_OR_LATER(ah)) { 593 ah->WARegVal = REG_READ(ah, AR_WA); 594 ah->WARegVal |= (AR_WA_D3_L1_DISABLE | 595 AR_WA_ASPM_TIMER_BASED_DISABLE); 596 } 597 598 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 599 ath_err(common, "Couldn't reset chip\n"); 600 return -EIO; 601 } 602 603 if (AR_SREV_9565(ah)) { 604 ah->WARegVal |= AR_WA_BIT22; 605 REG_WRITE(ah, AR_WA, ah->WARegVal); 606 } 607 608 ath9k_hw_init_defaults(ah); 609 ath9k_hw_init_config(ah); 610 611 r = ath9k_hw_attach_ops(ah); 612 if (r) 613 return r; 614 615 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { 616 ath_err(common, "Couldn't wakeup chip\n"); 617 return -EIO; 618 } 619 620 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) || 621 AR_SREV_9330(ah) || AR_SREV_9550(ah)) 622 ah->is_pciexpress = false; 623 624 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); 625 ath9k_hw_init_cal_settings(ah); 626 627 if (!ah->is_pciexpress) 628 ath9k_hw_disablepcie(ah); 629 630 r = ath9k_hw_post_init(ah); 631 if (r) 632 return r; 633 634 ath9k_hw_init_mode_gain_regs(ah); 635 r = ath9k_hw_fill_cap_info(ah); 636 if (r) 637 return r; 638 639 r = ath9k_hw_init_macaddr(ah); 640 if (r) { 641 ath_err(common, "Failed to initialize MAC address\n"); 642 return r; 643 } 644 645 ath9k_hw_init_hang_checks(ah); 646 647 common->state = ATH_HW_INITIALIZED; 648 649 return 0; 650 } 651 652 int ath9k_hw_init(struct ath_hw *ah) 653 { 654 int ret; 655 struct ath_common *common = ath9k_hw_common(ah); 656 657 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */ 658 switch (ah->hw_version.devid) { 659 case AR5416_DEVID_PCI: 660 case AR5416_DEVID_PCIE: 661 case AR5416_AR9100_DEVID: 662 case AR9160_DEVID_PCI: 663 case AR9280_DEVID_PCI: 664 case AR9280_DEVID_PCIE: 665 case AR9285_DEVID_PCIE: 666 case AR9287_DEVID_PCI: 667 case AR9287_DEVID_PCIE: 668 case AR2427_DEVID_PCIE: 669 case AR9300_DEVID_PCIE: 670 case AR9300_DEVID_AR9485_PCIE: 671 case AR9300_DEVID_AR9330: 672 case AR9300_DEVID_AR9340: 673 case AR9300_DEVID_QCA955X: 674 case AR9300_DEVID_AR9580: 675 case AR9300_DEVID_AR9462: 676 case AR9485_DEVID_AR1111: 677 case AR9300_DEVID_AR9565: 678 case AR9300_DEVID_AR953X: 679 case AR9300_DEVID_QCA956X: 680 break; 681 default: 682 if (common->bus_ops->ath_bus_type == ATH_USB) 683 break; 684 ath_err(common, "Hardware device ID 0x%04x not supported\n", 685 ah->hw_version.devid); 686 return -EOPNOTSUPP; 687 } 688 689 ret = __ath9k_hw_init(ah); 690 if (ret) { 691 ath_err(common, 692 "Unable to initialize hardware; initialization status: %d\n", 693 ret); 694 return ret; 695 } 696 697 ath_dynack_init(ah); 698 699 return 0; 700 } 701 EXPORT_SYMBOL(ath9k_hw_init); 702 703 static void ath9k_hw_init_qos(struct ath_hw *ah) 704 { 705 ENABLE_REGWRITE_BUFFER(ah); 706 707 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); 708 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); 709 710 REG_WRITE(ah, AR_QOS_NO_ACK, 711 SM(2, AR_QOS_NO_ACK_TWO_BIT) | 712 SM(5, AR_QOS_NO_ACK_BIT_OFF) | 713 SM(0, AR_QOS_NO_ACK_BYTE_OFF)); 714 715 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 716 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 717 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 718 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 719 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 720 721 REGWRITE_BUFFER_FLUSH(ah); 722 } 723 724 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah) 725 { 726 struct ath_common *common = ath9k_hw_common(ah); 727 int i = 0; 728 729 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 730 udelay(100); 731 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 732 733 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) { 734 735 udelay(100); 736 737 if (WARN_ON_ONCE(i >= 100)) { 738 ath_err(common, "PLL4 meaurement not done\n"); 739 break; 740 } 741 742 i++; 743 } 744 745 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3; 746 } 747 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc); 748 749 static void ath9k_hw_init_pll(struct ath_hw *ah, 750 struct ath9k_channel *chan) 751 { 752 u32 pll; 753 754 pll = ath9k_hw_compute_pll_control(ah, chan); 755 756 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 757 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */ 758 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 759 AR_CH0_BB_DPLL2_PLL_PWD, 0x1); 760 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 761 AR_CH0_DPLL2_KD, 0x40); 762 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 763 AR_CH0_DPLL2_KI, 0x4); 764 765 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 766 AR_CH0_BB_DPLL1_REFDIV, 0x5); 767 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 768 AR_CH0_BB_DPLL1_NINI, 0x58); 769 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 770 AR_CH0_BB_DPLL1_NFRAC, 0x0); 771 772 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 773 AR_CH0_BB_DPLL2_OUTDIV, 0x1); 774 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 775 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1); 776 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 777 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1); 778 779 /* program BB PLL phase_shift to 0x6 */ 780 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 781 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6); 782 783 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 784 AR_CH0_BB_DPLL2_PLL_PWD, 0x0); 785 udelay(1000); 786 } else if (AR_SREV_9330(ah)) { 787 u32 ddr_dpll2, pll_control2, kd; 788 789 if (ah->is_clk_25mhz) { 790 ddr_dpll2 = 0x18e82f01; 791 pll_control2 = 0xe04a3d; 792 kd = 0x1d; 793 } else { 794 ddr_dpll2 = 0x19e82f01; 795 pll_control2 = 0x886666; 796 kd = 0x3d; 797 } 798 799 /* program DDR PLL ki and kd value */ 800 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2); 801 802 /* program DDR PLL phase_shift */ 803 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3, 804 AR_CH0_DPLL3_PHASE_SHIFT, 0x1); 805 806 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 807 pll | AR_RTC_9300_PLL_BYPASS); 808 udelay(1000); 809 810 /* program refdiv, nint, frac to RTC register */ 811 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2); 812 813 /* program BB PLL kd and ki value */ 814 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd); 815 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06); 816 817 /* program BB PLL phase_shift */ 818 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 819 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1); 820 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) || 821 AR_SREV_9561(ah)) { 822 u32 regval, pll2_divint, pll2_divfrac, refdiv; 823 824 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 825 pll | AR_RTC_9300_SOC_PLL_BYPASS); 826 udelay(1000); 827 828 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16); 829 udelay(100); 830 831 if (ah->is_clk_25mhz) { 832 if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) { 833 pll2_divint = 0x1c; 834 pll2_divfrac = 0xa3d2; 835 refdiv = 1; 836 } else { 837 pll2_divint = 0x54; 838 pll2_divfrac = 0x1eb85; 839 refdiv = 3; 840 } 841 } else { 842 if (AR_SREV_9340(ah)) { 843 pll2_divint = 88; 844 pll2_divfrac = 0; 845 refdiv = 5; 846 } else { 847 pll2_divint = 0x11; 848 pll2_divfrac = (AR_SREV_9531(ah) || 849 AR_SREV_9561(ah)) ? 850 0x26665 : 0x26666; 851 refdiv = 1; 852 } 853 } 854 855 regval = REG_READ(ah, AR_PHY_PLL_MODE); 856 if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) 857 regval |= (0x1 << 22); 858 else 859 regval |= (0x1 << 16); 860 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 861 udelay(100); 862 863 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) | 864 (pll2_divint << 18) | pll2_divfrac); 865 udelay(100); 866 867 regval = REG_READ(ah, AR_PHY_PLL_MODE); 868 if (AR_SREV_9340(ah)) 869 regval = (regval & 0x80071fff) | 870 (0x1 << 30) | 871 (0x1 << 13) | 872 (0x4 << 26) | 873 (0x18 << 19); 874 else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) { 875 regval = (regval & 0x01c00fff) | 876 (0x1 << 31) | 877 (0x2 << 29) | 878 (0xa << 25) | 879 (0x1 << 19); 880 881 if (AR_SREV_9531(ah)) 882 regval |= (0x6 << 12); 883 } else 884 regval = (regval & 0x80071fff) | 885 (0x3 << 30) | 886 (0x1 << 13) | 887 (0x4 << 26) | 888 (0x60 << 19); 889 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 890 891 if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) 892 REG_WRITE(ah, AR_PHY_PLL_MODE, 893 REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff); 894 else 895 REG_WRITE(ah, AR_PHY_PLL_MODE, 896 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff); 897 898 udelay(1000); 899 } 900 901 if (AR_SREV_9565(ah)) 902 pll |= 0x40000; 903 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 904 905 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) || 906 AR_SREV_9550(ah)) 907 udelay(1000); 908 909 /* Switch the core clock for ar9271 to 117Mhz */ 910 if (AR_SREV_9271(ah)) { 911 udelay(500); 912 REG_WRITE(ah, 0x50040, 0x304); 913 } 914 915 udelay(RTC_PLL_SETTLE_DELAY); 916 917 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); 918 } 919 920 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, 921 enum nl80211_iftype opmode) 922 { 923 u32 sync_default = AR_INTR_SYNC_DEFAULT; 924 u32 imr_reg = AR_IMR_TXERR | 925 AR_IMR_TXURN | 926 AR_IMR_RXERR | 927 AR_IMR_RXORN | 928 AR_IMR_BCNMISC; 929 930 if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) || 931 AR_SREV_9561(ah)) 932 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL; 933 934 if (AR_SREV_9300_20_OR_LATER(ah)) { 935 imr_reg |= AR_IMR_RXOK_HP; 936 if (ah->config.rx_intr_mitigation) 937 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 938 else 939 imr_reg |= AR_IMR_RXOK_LP; 940 941 } else { 942 if (ah->config.rx_intr_mitigation) 943 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 944 else 945 imr_reg |= AR_IMR_RXOK; 946 } 947 948 if (ah->config.tx_intr_mitigation) 949 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; 950 else 951 imr_reg |= AR_IMR_TXOK; 952 953 ENABLE_REGWRITE_BUFFER(ah); 954 955 REG_WRITE(ah, AR_IMR, imr_reg); 956 ah->imrs2_reg |= AR_IMR_S2_GTT; 957 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); 958 959 if (!AR_SREV_9100(ah)) { 960 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 961 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default); 962 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 963 } 964 965 REGWRITE_BUFFER_FLUSH(ah); 966 967 if (AR_SREV_9300_20_OR_LATER(ah)) { 968 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); 969 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); 970 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); 971 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); 972 } 973 } 974 975 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us) 976 { 977 u32 val = ath9k_hw_mac_to_clks(ah, us - 2); 978 val = min(val, (u32) 0xFFFF); 979 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val); 980 } 981 982 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) 983 { 984 u32 val = ath9k_hw_mac_to_clks(ah, us); 985 val = min(val, (u32) 0xFFFF); 986 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); 987 } 988 989 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) 990 { 991 u32 val = ath9k_hw_mac_to_clks(ah, us); 992 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); 993 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); 994 } 995 996 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) 997 { 998 u32 val = ath9k_hw_mac_to_clks(ah, us); 999 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); 1000 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); 1001 } 1002 1003 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) 1004 { 1005 if (tu > 0xFFFF) { 1006 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n", 1007 tu); 1008 ah->globaltxtimeout = (u32) -1; 1009 return false; 1010 } else { 1011 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 1012 ah->globaltxtimeout = tu; 1013 return true; 1014 } 1015 } 1016 1017 void ath9k_hw_init_global_settings(struct ath_hw *ah) 1018 { 1019 struct ath_common *common = ath9k_hw_common(ah); 1020 const struct ath9k_channel *chan = ah->curchan; 1021 int acktimeout, ctstimeout, ack_offset = 0; 1022 int slottime; 1023 int sifstime; 1024 int rx_lat = 0, tx_lat = 0, eifs = 0; 1025 u32 reg; 1026 1027 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n", 1028 ah->misc_mode); 1029 1030 if (!chan) 1031 return; 1032 1033 if (ah->misc_mode != 0) 1034 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode); 1035 1036 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1037 rx_lat = 41; 1038 else 1039 rx_lat = 37; 1040 tx_lat = 54; 1041 1042 if (IS_CHAN_5GHZ(chan)) 1043 sifstime = 16; 1044 else 1045 sifstime = 10; 1046 1047 if (IS_CHAN_HALF_RATE(chan)) { 1048 eifs = 175; 1049 rx_lat *= 2; 1050 tx_lat *= 2; 1051 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1052 tx_lat += 11; 1053 1054 sifstime = 32; 1055 ack_offset = 16; 1056 slottime = 13; 1057 } else if (IS_CHAN_QUARTER_RATE(chan)) { 1058 eifs = 340; 1059 rx_lat = (rx_lat * 4) - 1; 1060 tx_lat *= 4; 1061 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1062 tx_lat += 22; 1063 1064 sifstime = 64; 1065 ack_offset = 32; 1066 slottime = 21; 1067 } else { 1068 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1069 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO; 1070 reg = AR_USEC_ASYNC_FIFO; 1071 } else { 1072 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/ 1073 common->clockrate; 1074 reg = REG_READ(ah, AR_USEC); 1075 } 1076 rx_lat = MS(reg, AR_USEC_RX_LAT); 1077 tx_lat = MS(reg, AR_USEC_TX_LAT); 1078 1079 slottime = ah->slottime; 1080 } 1081 1082 /* As defined by IEEE 802.11-2007 17.3.8.6 */ 1083 slottime += 3 * ah->coverage_class; 1084 acktimeout = slottime + sifstime + ack_offset; 1085 ctstimeout = acktimeout; 1086 1087 /* 1088 * Workaround for early ACK timeouts, add an offset to match the 1089 * initval's 64us ack timeout value. Use 48us for the CTS timeout. 1090 * This was initially only meant to work around an issue with delayed 1091 * BA frames in some implementations, but it has been found to fix ACK 1092 * timeout issues in other cases as well. 1093 */ 1094 if (IS_CHAN_2GHZ(chan) && 1095 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) { 1096 acktimeout += 64 - sifstime - ah->slottime; 1097 ctstimeout += 48 - sifstime - ah->slottime; 1098 } 1099 1100 if (ah->dynack.enabled) { 1101 acktimeout = ah->dynack.ackto; 1102 ctstimeout = acktimeout; 1103 slottime = (acktimeout - 3) / 2; 1104 } else { 1105 ah->dynack.ackto = acktimeout; 1106 } 1107 1108 ath9k_hw_set_sifs_time(ah, sifstime); 1109 ath9k_hw_setslottime(ah, slottime); 1110 ath9k_hw_set_ack_timeout(ah, acktimeout); 1111 ath9k_hw_set_cts_timeout(ah, ctstimeout); 1112 if (ah->globaltxtimeout != (u32) -1) 1113 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); 1114 1115 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs)); 1116 REG_RMW(ah, AR_USEC, 1117 (common->clockrate - 1) | 1118 SM(rx_lat, AR_USEC_RX_LAT) | 1119 SM(tx_lat, AR_USEC_TX_LAT), 1120 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC); 1121 1122 } 1123 EXPORT_SYMBOL(ath9k_hw_init_global_settings); 1124 1125 void ath9k_hw_deinit(struct ath_hw *ah) 1126 { 1127 struct ath_common *common = ath9k_hw_common(ah); 1128 1129 if (common->state < ATH_HW_INITIALIZED) 1130 return; 1131 1132 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); 1133 } 1134 EXPORT_SYMBOL(ath9k_hw_deinit); 1135 1136 /*******/ 1137 /* INI */ 1138 /*******/ 1139 1140 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) 1141 { 1142 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); 1143 1144 if (IS_CHAN_2GHZ(chan)) 1145 ctl |= CTL_11G; 1146 else 1147 ctl |= CTL_11A; 1148 1149 return ctl; 1150 } 1151 1152 /****************************************/ 1153 /* Reset and Channel Switching Routines */ 1154 /****************************************/ 1155 1156 static inline void ath9k_hw_set_dma(struct ath_hw *ah) 1157 { 1158 struct ath_common *common = ath9k_hw_common(ah); 1159 int txbuf_size; 1160 1161 ENABLE_REGWRITE_BUFFER(ah); 1162 1163 /* 1164 * set AHB_MODE not to do cacheline prefetches 1165 */ 1166 if (!AR_SREV_9300_20_OR_LATER(ah)) 1167 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); 1168 1169 /* 1170 * let mac dma reads be in 128 byte chunks 1171 */ 1172 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK); 1173 1174 REGWRITE_BUFFER_FLUSH(ah); 1175 1176 /* 1177 * Restore TX Trigger Level to its pre-reset value. 1178 * The initial value depends on whether aggregation is enabled, and is 1179 * adjusted whenever underruns are detected. 1180 */ 1181 if (!AR_SREV_9300_20_OR_LATER(ah)) 1182 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); 1183 1184 ENABLE_REGWRITE_BUFFER(ah); 1185 1186 /* 1187 * let mac dma writes be in 128 byte chunks 1188 */ 1189 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK); 1190 1191 /* 1192 * Setup receive FIFO threshold to hold off TX activities 1193 */ 1194 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 1195 1196 if (AR_SREV_9300_20_OR_LATER(ah)) { 1197 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); 1198 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); 1199 1200 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 1201 ah->caps.rx_status_len); 1202 } 1203 1204 /* 1205 * reduce the number of usable entries in PCU TXBUF to avoid 1206 * wrap around issues. 1207 */ 1208 if (AR_SREV_9285(ah)) { 1209 /* For AR9285 the number of Fifos are reduced to half. 1210 * So set the usable tx buf size also to half to 1211 * avoid data/delimiter underruns 1212 */ 1213 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE; 1214 } else if (AR_SREV_9340_13_OR_LATER(ah)) { 1215 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */ 1216 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE; 1217 } else { 1218 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE; 1219 } 1220 1221 if (!AR_SREV_9271(ah)) 1222 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size); 1223 1224 REGWRITE_BUFFER_FLUSH(ah); 1225 1226 if (AR_SREV_9300_20_OR_LATER(ah)) 1227 ath9k_hw_reset_txstatus_ring(ah); 1228 } 1229 1230 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) 1231 { 1232 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC; 1233 u32 set = AR_STA_ID1_KSRCH_MODE; 1234 1235 ENABLE_REG_RMW_BUFFER(ah); 1236 switch (opmode) { 1237 case NL80211_IFTYPE_ADHOC: 1238 if (!AR_SREV_9340_13(ah)) { 1239 set |= AR_STA_ID1_ADHOC; 1240 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1241 break; 1242 } 1243 /* fall through */ 1244 case NL80211_IFTYPE_MESH_POINT: 1245 case NL80211_IFTYPE_AP: 1246 set |= AR_STA_ID1_STA_AP; 1247 /* fall through */ 1248 case NL80211_IFTYPE_STATION: 1249 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1250 break; 1251 default: 1252 if (!ah->is_monitoring) 1253 set = 0; 1254 break; 1255 } 1256 REG_RMW(ah, AR_STA_ID1, set, mask); 1257 REG_RMW_BUFFER_FLUSH(ah); 1258 } 1259 1260 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, 1261 u32 *coef_mantissa, u32 *coef_exponent) 1262 { 1263 u32 coef_exp, coef_man; 1264 1265 for (coef_exp = 31; coef_exp > 0; coef_exp--) 1266 if ((coef_scaled >> coef_exp) & 0x1) 1267 break; 1268 1269 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 1270 1271 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 1272 1273 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 1274 *coef_exponent = coef_exp - 16; 1275 } 1276 1277 /* AR9330 WAR: 1278 * call external reset function to reset WMAC if: 1279 * - doing a cold reset 1280 * - we have pending frames in the TX queues. 1281 */ 1282 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type) 1283 { 1284 int i, npend = 0; 1285 1286 for (i = 0; i < AR_NUM_QCU; i++) { 1287 npend = ath9k_hw_numtxpending(ah, i); 1288 if (npend) 1289 break; 1290 } 1291 1292 if (ah->external_reset && 1293 (npend || type == ATH9K_RESET_COLD)) { 1294 int reset_err = 0; 1295 1296 ath_dbg(ath9k_hw_common(ah), RESET, 1297 "reset MAC via external reset\n"); 1298 1299 reset_err = ah->external_reset(); 1300 if (reset_err) { 1301 ath_err(ath9k_hw_common(ah), 1302 "External reset failed, err=%d\n", 1303 reset_err); 1304 return false; 1305 } 1306 1307 REG_WRITE(ah, AR_RTC_RESET, 1); 1308 } 1309 1310 return true; 1311 } 1312 1313 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) 1314 { 1315 u32 rst_flags; 1316 u32 tmpReg; 1317 1318 if (AR_SREV_9100(ah)) { 1319 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK, 1320 AR_RTC_DERIVED_CLK_PERIOD, 1); 1321 (void)REG_READ(ah, AR_RTC_DERIVED_CLK); 1322 } 1323 1324 ENABLE_REGWRITE_BUFFER(ah); 1325 1326 if (AR_SREV_9300_20_OR_LATER(ah)) { 1327 REG_WRITE(ah, AR_WA, ah->WARegVal); 1328 udelay(10); 1329 } 1330 1331 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1332 AR_RTC_FORCE_WAKE_ON_INT); 1333 1334 if (AR_SREV_9100(ah)) { 1335 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1336 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1337 } else { 1338 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); 1339 if (AR_SREV_9340(ah)) 1340 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT; 1341 else 1342 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT | 1343 AR_INTR_SYNC_RADM_CPL_TIMEOUT; 1344 1345 if (tmpReg) { 1346 u32 val; 1347 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1348 1349 val = AR_RC_HOSTIF; 1350 if (!AR_SREV_9300_20_OR_LATER(ah)) 1351 val |= AR_RC_AHB; 1352 REG_WRITE(ah, AR_RC, val); 1353 1354 } else if (!AR_SREV_9300_20_OR_LATER(ah)) 1355 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1356 1357 rst_flags = AR_RTC_RC_MAC_WARM; 1358 if (type == ATH9K_RESET_COLD) 1359 rst_flags |= AR_RTC_RC_MAC_COLD; 1360 } 1361 1362 if (AR_SREV_9330(ah)) { 1363 if (!ath9k_hw_ar9330_reset_war(ah, type)) 1364 return false; 1365 } 1366 1367 if (ath9k_hw_mci_is_enabled(ah)) 1368 ar9003_mci_check_gpm_offset(ah); 1369 1370 REG_WRITE(ah, AR_RTC_RC, rst_flags); 1371 1372 REGWRITE_BUFFER_FLUSH(ah); 1373 1374 if (AR_SREV_9300_20_OR_LATER(ah)) 1375 udelay(50); 1376 else if (AR_SREV_9100(ah)) 1377 mdelay(10); 1378 else 1379 udelay(100); 1380 1381 REG_WRITE(ah, AR_RTC_RC, 0); 1382 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { 1383 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n"); 1384 return false; 1385 } 1386 1387 if (!AR_SREV_9100(ah)) 1388 REG_WRITE(ah, AR_RC, 0); 1389 1390 if (AR_SREV_9100(ah)) 1391 udelay(50); 1392 1393 return true; 1394 } 1395 1396 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) 1397 { 1398 ENABLE_REGWRITE_BUFFER(ah); 1399 1400 if (AR_SREV_9300_20_OR_LATER(ah)) { 1401 REG_WRITE(ah, AR_WA, ah->WARegVal); 1402 udelay(10); 1403 } 1404 1405 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1406 AR_RTC_FORCE_WAKE_ON_INT); 1407 1408 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1409 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1410 1411 REG_WRITE(ah, AR_RTC_RESET, 0); 1412 1413 REGWRITE_BUFFER_FLUSH(ah); 1414 1415 udelay(2); 1416 1417 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1418 REG_WRITE(ah, AR_RC, 0); 1419 1420 REG_WRITE(ah, AR_RTC_RESET, 1); 1421 1422 if (!ath9k_hw_wait(ah, 1423 AR_RTC_STATUS, 1424 AR_RTC_STATUS_M, 1425 AR_RTC_STATUS_ON, 1426 AH_WAIT_TIMEOUT)) { 1427 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n"); 1428 return false; 1429 } 1430 1431 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); 1432 } 1433 1434 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) 1435 { 1436 bool ret = false; 1437 1438 if (AR_SREV_9300_20_OR_LATER(ah)) { 1439 REG_WRITE(ah, AR_WA, ah->WARegVal); 1440 udelay(10); 1441 } 1442 1443 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1444 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1445 1446 if (!ah->reset_power_on) 1447 type = ATH9K_RESET_POWER_ON; 1448 1449 switch (type) { 1450 case ATH9K_RESET_POWER_ON: 1451 ret = ath9k_hw_set_reset_power_on(ah); 1452 if (ret) 1453 ah->reset_power_on = true; 1454 break; 1455 case ATH9K_RESET_WARM: 1456 case ATH9K_RESET_COLD: 1457 ret = ath9k_hw_set_reset(ah, type); 1458 break; 1459 default: 1460 break; 1461 } 1462 1463 return ret; 1464 } 1465 1466 static bool ath9k_hw_chip_reset(struct ath_hw *ah, 1467 struct ath9k_channel *chan) 1468 { 1469 int reset_type = ATH9K_RESET_WARM; 1470 1471 if (AR_SREV_9280(ah)) { 1472 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) 1473 reset_type = ATH9K_RESET_POWER_ON; 1474 else 1475 reset_type = ATH9K_RESET_COLD; 1476 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) || 1477 (REG_READ(ah, AR_CR) & AR_CR_RXE)) 1478 reset_type = ATH9K_RESET_COLD; 1479 1480 if (!ath9k_hw_set_reset_reg(ah, reset_type)) 1481 return false; 1482 1483 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1484 return false; 1485 1486 ah->chip_fullsleep = false; 1487 1488 if (AR_SREV_9330(ah)) 1489 ar9003_hw_internal_regulator_apply(ah); 1490 ath9k_hw_init_pll(ah, chan); 1491 1492 return true; 1493 } 1494 1495 static bool ath9k_hw_channel_change(struct ath_hw *ah, 1496 struct ath9k_channel *chan) 1497 { 1498 struct ath_common *common = ath9k_hw_common(ah); 1499 struct ath9k_hw_capabilities *pCap = &ah->caps; 1500 bool band_switch = false, mode_diff = false; 1501 u8 ini_reloaded = 0; 1502 u32 qnum; 1503 int r; 1504 1505 if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) { 1506 u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags; 1507 band_switch = !!(flags_diff & CHANNEL_5GHZ); 1508 mode_diff = !!(flags_diff & ~CHANNEL_HT); 1509 } 1510 1511 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { 1512 if (ath9k_hw_numtxpending(ah, qnum)) { 1513 ath_dbg(common, QUEUE, 1514 "Transmit frames pending on queue %d\n", qnum); 1515 return false; 1516 } 1517 } 1518 1519 if (!ath9k_hw_rfbus_req(ah)) { 1520 ath_err(common, "Could not kill baseband RX\n"); 1521 return false; 1522 } 1523 1524 if (band_switch || mode_diff) { 1525 ath9k_hw_mark_phy_inactive(ah); 1526 udelay(5); 1527 1528 if (band_switch) 1529 ath9k_hw_init_pll(ah, chan); 1530 1531 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) { 1532 ath_err(common, "Failed to do fast channel change\n"); 1533 return false; 1534 } 1535 } 1536 1537 ath9k_hw_set_channel_regs(ah, chan); 1538 1539 r = ath9k_hw_rf_set_freq(ah, chan); 1540 if (r) { 1541 ath_err(common, "Failed to set channel\n"); 1542 return false; 1543 } 1544 ath9k_hw_set_clockrate(ah); 1545 ath9k_hw_apply_txpower(ah, chan, false); 1546 1547 ath9k_hw_set_delta_slope(ah, chan); 1548 ath9k_hw_spur_mitigate_freq(ah, chan); 1549 1550 if (band_switch || ini_reloaded) 1551 ah->eep_ops->set_board_values(ah, chan); 1552 1553 ath9k_hw_init_bb(ah, chan); 1554 ath9k_hw_rfbus_done(ah); 1555 1556 if (band_switch || ini_reloaded) { 1557 ah->ah_flags |= AH_FASTCC; 1558 ath9k_hw_init_cal(ah, chan); 1559 ah->ah_flags &= ~AH_FASTCC; 1560 } 1561 1562 return true; 1563 } 1564 1565 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah) 1566 { 1567 u32 gpio_mask = ah->gpio_mask; 1568 int i; 1569 1570 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) { 1571 if (!(gpio_mask & 1)) 1572 continue; 1573 1574 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); 1575 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i))); 1576 } 1577 } 1578 1579 void ath9k_hw_check_nav(struct ath_hw *ah) 1580 { 1581 struct ath_common *common = ath9k_hw_common(ah); 1582 u32 val; 1583 1584 val = REG_READ(ah, AR_NAV); 1585 if (val != 0xdeadbeef && val > 0x7fff) { 1586 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val); 1587 REG_WRITE(ah, AR_NAV, 0); 1588 } 1589 } 1590 EXPORT_SYMBOL(ath9k_hw_check_nav); 1591 1592 bool ath9k_hw_check_alive(struct ath_hw *ah) 1593 { 1594 int count = 50; 1595 u32 reg, last_val; 1596 1597 if (AR_SREV_9300(ah)) 1598 return !ath9k_hw_detect_mac_hang(ah); 1599 1600 if (AR_SREV_9285_12_OR_LATER(ah)) 1601 return true; 1602 1603 last_val = REG_READ(ah, AR_OBS_BUS_1); 1604 do { 1605 reg = REG_READ(ah, AR_OBS_BUS_1); 1606 if (reg != last_val) 1607 return true; 1608 1609 udelay(1); 1610 last_val = reg; 1611 if ((reg & 0x7E7FFFEF) == 0x00702400) 1612 continue; 1613 1614 switch (reg & 0x7E000B00) { 1615 case 0x1E000000: 1616 case 0x52000B00: 1617 case 0x18000B00: 1618 continue; 1619 default: 1620 return true; 1621 } 1622 } while (count-- > 0); 1623 1624 return false; 1625 } 1626 EXPORT_SYMBOL(ath9k_hw_check_alive); 1627 1628 static void ath9k_hw_init_mfp(struct ath_hw *ah) 1629 { 1630 /* Setup MFP options for CCMP */ 1631 if (AR_SREV_9280_20_OR_LATER(ah)) { 1632 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt 1633 * frames when constructing CCMP AAD. */ 1634 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 1635 0xc7ff); 1636 if (AR_SREV_9271(ah) || AR_DEVID_7010(ah)) 1637 ah->sw_mgmt_crypto_tx = true; 1638 else 1639 ah->sw_mgmt_crypto_tx = false; 1640 ah->sw_mgmt_crypto_rx = false; 1641 } else if (AR_SREV_9160_10_OR_LATER(ah)) { 1642 /* Disable hardware crypto for management frames */ 1643 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, 1644 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); 1645 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1646 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); 1647 ah->sw_mgmt_crypto_tx = true; 1648 ah->sw_mgmt_crypto_rx = true; 1649 } else { 1650 ah->sw_mgmt_crypto_tx = true; 1651 ah->sw_mgmt_crypto_rx = true; 1652 } 1653 } 1654 1655 static void ath9k_hw_reset_opmode(struct ath_hw *ah, 1656 u32 macStaId1, u32 saveDefAntenna) 1657 { 1658 struct ath_common *common = ath9k_hw_common(ah); 1659 1660 ENABLE_REGWRITE_BUFFER(ah); 1661 1662 REG_RMW(ah, AR_STA_ID1, macStaId1 1663 | AR_STA_ID1_RTS_USE_DEF 1664 | ah->sta_id1_defaults, 1665 ~AR_STA_ID1_SADH_MASK); 1666 ath_hw_setbssidmask(common); 1667 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 1668 ath9k_hw_write_associd(ah); 1669 REG_WRITE(ah, AR_ISR, ~0); 1670 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); 1671 1672 REGWRITE_BUFFER_FLUSH(ah); 1673 1674 ath9k_hw_set_operating_mode(ah, ah->opmode); 1675 } 1676 1677 static void ath9k_hw_init_queues(struct ath_hw *ah) 1678 { 1679 int i; 1680 1681 ENABLE_REGWRITE_BUFFER(ah); 1682 1683 for (i = 0; i < AR_NUM_DCU; i++) 1684 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 1685 1686 REGWRITE_BUFFER_FLUSH(ah); 1687 1688 ah->intr_txqs = 0; 1689 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) 1690 ath9k_hw_resettxqueue(ah, i); 1691 } 1692 1693 /* 1694 * For big endian systems turn on swapping for descriptors 1695 */ 1696 static void ath9k_hw_init_desc(struct ath_hw *ah) 1697 { 1698 struct ath_common *common = ath9k_hw_common(ah); 1699 1700 if (AR_SREV_9100(ah)) { 1701 u32 mask; 1702 mask = REG_READ(ah, AR_CFG); 1703 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1704 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n", 1705 mask); 1706 } else { 1707 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1708 REG_WRITE(ah, AR_CFG, mask); 1709 ath_dbg(common, RESET, "Setting CFG 0x%x\n", 1710 REG_READ(ah, AR_CFG)); 1711 } 1712 } else { 1713 if (common->bus_ops->ath_bus_type == ATH_USB) { 1714 /* Configure AR9271 target WLAN */ 1715 if (AR_SREV_9271(ah)) 1716 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); 1717 else 1718 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1719 } 1720 #ifdef __BIG_ENDIAN 1721 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) || 1722 AR_SREV_9550(ah) || AR_SREV_9531(ah) || 1723 AR_SREV_9561(ah)) 1724 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0); 1725 else 1726 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1727 #endif 1728 } 1729 } 1730 1731 /* 1732 * Fast channel change: 1733 * (Change synthesizer based on channel freq without resetting chip) 1734 */ 1735 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan) 1736 { 1737 struct ath_common *common = ath9k_hw_common(ah); 1738 struct ath9k_hw_capabilities *pCap = &ah->caps; 1739 int ret; 1740 1741 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI) 1742 goto fail; 1743 1744 if (ah->chip_fullsleep) 1745 goto fail; 1746 1747 if (!ah->curchan) 1748 goto fail; 1749 1750 if (chan->channel == ah->curchan->channel) 1751 goto fail; 1752 1753 if ((ah->curchan->channelFlags | chan->channelFlags) & 1754 (CHANNEL_HALF | CHANNEL_QUARTER)) 1755 goto fail; 1756 1757 /* 1758 * If cross-band fcc is not supoprted, bail out if channelFlags differ. 1759 */ 1760 if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) && 1761 ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT)) 1762 goto fail; 1763 1764 if (!ath9k_hw_check_alive(ah)) 1765 goto fail; 1766 1767 /* 1768 * For AR9462, make sure that calibration data for 1769 * re-using are present. 1770 */ 1771 if (AR_SREV_9462(ah) && (ah->caldata && 1772 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) || 1773 !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) || 1774 !test_bit(RTT_DONE, &ah->caldata->cal_flags)))) 1775 goto fail; 1776 1777 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n", 1778 ah->curchan->channel, chan->channel); 1779 1780 ret = ath9k_hw_channel_change(ah, chan); 1781 if (!ret) 1782 goto fail; 1783 1784 if (ath9k_hw_mci_is_enabled(ah)) 1785 ar9003_mci_2g5g_switch(ah, false); 1786 1787 ath9k_hw_loadnf(ah, ah->curchan); 1788 ath9k_hw_start_nfcal(ah, true); 1789 1790 if (AR_SREV_9271(ah)) 1791 ar9002_hw_load_ani_reg(ah, chan); 1792 1793 return 0; 1794 fail: 1795 return -EINVAL; 1796 } 1797 1798 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur) 1799 { 1800 struct timespec ts; 1801 s64 usec; 1802 1803 if (!cur) { 1804 getrawmonotonic(&ts); 1805 cur = &ts; 1806 } 1807 1808 usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000; 1809 usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000; 1810 1811 return (u32) usec; 1812 } 1813 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset); 1814 1815 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, 1816 struct ath9k_hw_cal_data *caldata, bool fastcc) 1817 { 1818 struct ath_common *common = ath9k_hw_common(ah); 1819 u32 saveLedState; 1820 u32 saveDefAntenna; 1821 u32 macStaId1; 1822 u64 tsf = 0; 1823 s64 usec = 0; 1824 int r; 1825 bool start_mci_reset = false; 1826 bool save_fullsleep = ah->chip_fullsleep; 1827 1828 if (ath9k_hw_mci_is_enabled(ah)) { 1829 start_mci_reset = ar9003_mci_start_reset(ah, chan); 1830 if (start_mci_reset) 1831 return 0; 1832 } 1833 1834 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1835 return -EIO; 1836 1837 if (ah->curchan && !ah->chip_fullsleep) 1838 ath9k_hw_getnf(ah, ah->curchan); 1839 1840 ah->caldata = caldata; 1841 if (caldata && (chan->channel != caldata->channel || 1842 chan->channelFlags != caldata->channelFlags)) { 1843 /* Operating channel changed, reset channel calibration data */ 1844 memset(caldata, 0, sizeof(*caldata)); 1845 ath9k_init_nfcal_hist_buffer(ah, chan); 1846 } else if (caldata) { 1847 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags); 1848 } 1849 ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor); 1850 1851 if (fastcc) { 1852 r = ath9k_hw_do_fastcc(ah, chan); 1853 if (!r) 1854 return r; 1855 } 1856 1857 if (ath9k_hw_mci_is_enabled(ah)) 1858 ar9003_mci_stop_bt(ah, save_fullsleep); 1859 1860 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); 1861 if (saveDefAntenna == 0) 1862 saveDefAntenna = 1; 1863 1864 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 1865 1866 /* Save TSF before chip reset, a cold reset clears it */ 1867 tsf = ath9k_hw_gettsf64(ah); 1868 usec = ktime_to_us(ktime_get_raw()); 1869 1870 saveLedState = REG_READ(ah, AR_CFG_LED) & 1871 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | 1872 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); 1873 1874 ath9k_hw_mark_phy_inactive(ah); 1875 1876 ah->paprd_table_write_done = false; 1877 1878 /* Only required on the first reset */ 1879 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1880 REG_WRITE(ah, 1881 AR9271_RESET_POWER_DOWN_CONTROL, 1882 AR9271_RADIO_RF_RST); 1883 udelay(50); 1884 } 1885 1886 if (!ath9k_hw_chip_reset(ah, chan)) { 1887 ath_err(common, "Chip reset failed\n"); 1888 return -EINVAL; 1889 } 1890 1891 /* Only required on the first reset */ 1892 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1893 ah->htc_reset_init = false; 1894 REG_WRITE(ah, 1895 AR9271_RESET_POWER_DOWN_CONTROL, 1896 AR9271_GATE_MAC_CTL); 1897 udelay(50); 1898 } 1899 1900 /* Restore TSF */ 1901 usec = ktime_to_us(ktime_get_raw()) - usec; 1902 ath9k_hw_settsf64(ah, tsf + usec); 1903 1904 if (AR_SREV_9280_20_OR_LATER(ah)) 1905 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 1906 1907 if (!AR_SREV_9300_20_OR_LATER(ah)) 1908 ar9002_hw_enable_async_fifo(ah); 1909 1910 r = ath9k_hw_process_ini(ah, chan); 1911 if (r) 1912 return r; 1913 1914 ath9k_hw_set_rfmode(ah, chan); 1915 1916 if (ath9k_hw_mci_is_enabled(ah)) 1917 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep); 1918 1919 /* 1920 * Some AR91xx SoC devices frequently fail to accept TSF writes 1921 * right after the chip reset. When that happens, write a new 1922 * value after the initvals have been applied, with an offset 1923 * based on measured time difference 1924 */ 1925 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) { 1926 tsf += 1500; 1927 ath9k_hw_settsf64(ah, tsf); 1928 } 1929 1930 ath9k_hw_init_mfp(ah); 1931 1932 ath9k_hw_set_delta_slope(ah, chan); 1933 ath9k_hw_spur_mitigate_freq(ah, chan); 1934 ah->eep_ops->set_board_values(ah, chan); 1935 1936 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna); 1937 1938 r = ath9k_hw_rf_set_freq(ah, chan); 1939 if (r) 1940 return r; 1941 1942 ath9k_hw_set_clockrate(ah); 1943 1944 ath9k_hw_init_queues(ah); 1945 ath9k_hw_init_interrupt_masks(ah, ah->opmode); 1946 ath9k_hw_ani_cache_ini_regs(ah); 1947 ath9k_hw_init_qos(ah); 1948 1949 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) 1950 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio); 1951 1952 ath9k_hw_init_global_settings(ah); 1953 1954 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1955 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, 1956 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 1957 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, 1958 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 1959 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1960 AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 1961 } 1962 1963 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM); 1964 1965 ath9k_hw_set_dma(ah); 1966 1967 if (!ath9k_hw_mci_is_enabled(ah)) 1968 REG_WRITE(ah, AR_OBS, 8); 1969 1970 ENABLE_REG_RMW_BUFFER(ah); 1971 if (ah->config.rx_intr_mitigation) { 1972 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last); 1973 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first); 1974 } 1975 1976 if (ah->config.tx_intr_mitigation) { 1977 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); 1978 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); 1979 } 1980 REG_RMW_BUFFER_FLUSH(ah); 1981 1982 ath9k_hw_init_bb(ah, chan); 1983 1984 if (caldata) { 1985 clear_bit(TXIQCAL_DONE, &caldata->cal_flags); 1986 clear_bit(TXCLCAL_DONE, &caldata->cal_flags); 1987 } 1988 if (!ath9k_hw_init_cal(ah, chan)) 1989 return -EIO; 1990 1991 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata)) 1992 return -EIO; 1993 1994 ENABLE_REGWRITE_BUFFER(ah); 1995 1996 ath9k_hw_restore_chainmask(ah); 1997 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); 1998 1999 REGWRITE_BUFFER_FLUSH(ah); 2000 2001 ath9k_hw_gen_timer_start_tsf2(ah); 2002 2003 ath9k_hw_init_desc(ah); 2004 2005 if (ath9k_hw_btcoex_is_enabled(ah)) 2006 ath9k_hw_btcoex_enable(ah); 2007 2008 if (ath9k_hw_mci_is_enabled(ah)) 2009 ar9003_mci_check_bt(ah); 2010 2011 if (AR_SREV_9300_20_OR_LATER(ah)) { 2012 ath9k_hw_loadnf(ah, chan); 2013 ath9k_hw_start_nfcal(ah, true); 2014 } 2015 2016 if (AR_SREV_9300_20_OR_LATER(ah)) 2017 ar9003_hw_bb_watchdog_config(ah); 2018 2019 if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR) 2020 ar9003_hw_disable_phy_restart(ah); 2021 2022 ath9k_hw_apply_gpio_override(ah); 2023 2024 if (AR_SREV_9565(ah) && common->bt_ant_diversity) 2025 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON); 2026 2027 if (ah->hw->conf.radar_enabled) { 2028 /* set HW specific DFS configuration */ 2029 ah->radar_conf.ext_channel = IS_CHAN_HT40(chan); 2030 ath9k_hw_set_radar_params(ah); 2031 } 2032 2033 return 0; 2034 } 2035 EXPORT_SYMBOL(ath9k_hw_reset); 2036 2037 /******************************/ 2038 /* Power Management (Chipset) */ 2039 /******************************/ 2040 2041 /* 2042 * Notify Power Mgt is disabled in self-generated frames. 2043 * If requested, force chip to sleep. 2044 */ 2045 static void ath9k_set_power_sleep(struct ath_hw *ah) 2046 { 2047 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2048 2049 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 2050 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff); 2051 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff); 2052 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff); 2053 /* xxx Required for WLAN only case ? */ 2054 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0); 2055 udelay(100); 2056 } 2057 2058 /* 2059 * Clear the RTC force wake bit to allow the 2060 * mac to go to sleep. 2061 */ 2062 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); 2063 2064 if (ath9k_hw_mci_is_enabled(ah)) 2065 udelay(100); 2066 2067 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 2068 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); 2069 2070 /* Shutdown chip. Active low */ 2071 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) { 2072 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); 2073 udelay(2); 2074 } 2075 2076 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */ 2077 if (AR_SREV_9300_20_OR_LATER(ah)) 2078 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 2079 } 2080 2081 /* 2082 * Notify Power Management is enabled in self-generating 2083 * frames. If request, set power mode of chip to 2084 * auto/normal. Duration in units of 128us (1/8 TU). 2085 */ 2086 static void ath9k_set_power_network_sleep(struct ath_hw *ah) 2087 { 2088 struct ath9k_hw_capabilities *pCap = &ah->caps; 2089 2090 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2091 2092 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { 2093 /* Set WakeOnInterrupt bit; clear ForceWake bit */ 2094 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 2095 AR_RTC_FORCE_WAKE_ON_INT); 2096 } else { 2097 2098 /* When chip goes into network sleep, it could be waken 2099 * up by MCI_INT interrupt caused by BT's HW messages 2100 * (LNA_xxx, CONT_xxx) which chould be in a very fast 2101 * rate (~100us). This will cause chip to leave and 2102 * re-enter network sleep mode frequently, which in 2103 * consequence will have WLAN MCI HW to generate lots of 2104 * SYS_WAKING and SYS_SLEEPING messages which will make 2105 * BT CPU to busy to process. 2106 */ 2107 if (ath9k_hw_mci_is_enabled(ah)) 2108 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 2109 AR_MCI_INTERRUPT_RX_HW_MSG_MASK); 2110 /* 2111 * Clear the RTC force wake bit to allow the 2112 * mac to go to sleep. 2113 */ 2114 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); 2115 2116 if (ath9k_hw_mci_is_enabled(ah)) 2117 udelay(30); 2118 } 2119 2120 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */ 2121 if (AR_SREV_9300_20_OR_LATER(ah)) 2122 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 2123 } 2124 2125 static bool ath9k_hw_set_power_awake(struct ath_hw *ah) 2126 { 2127 u32 val; 2128 int i; 2129 2130 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */ 2131 if (AR_SREV_9300_20_OR_LATER(ah)) { 2132 REG_WRITE(ah, AR_WA, ah->WARegVal); 2133 udelay(10); 2134 } 2135 2136 if ((REG_READ(ah, AR_RTC_STATUS) & 2137 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { 2138 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 2139 return false; 2140 } 2141 if (!AR_SREV_9300_20_OR_LATER(ah)) 2142 ath9k_hw_init_pll(ah, NULL); 2143 } 2144 if (AR_SREV_9100(ah)) 2145 REG_SET_BIT(ah, AR_RTC_RESET, 2146 AR_RTC_RESET_EN); 2147 2148 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2149 AR_RTC_FORCE_WAKE_EN); 2150 if (AR_SREV_9100(ah)) 2151 mdelay(10); 2152 else 2153 udelay(50); 2154 2155 for (i = POWER_UP_TIME / 50; i > 0; i--) { 2156 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; 2157 if (val == AR_RTC_STATUS_ON) 2158 break; 2159 udelay(50); 2160 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2161 AR_RTC_FORCE_WAKE_EN); 2162 } 2163 if (i == 0) { 2164 ath_err(ath9k_hw_common(ah), 2165 "Failed to wakeup in %uus\n", 2166 POWER_UP_TIME / 20); 2167 return false; 2168 } 2169 2170 if (ath9k_hw_mci_is_enabled(ah)) 2171 ar9003_mci_set_power_awake(ah); 2172 2173 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2174 2175 return true; 2176 } 2177 2178 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) 2179 { 2180 struct ath_common *common = ath9k_hw_common(ah); 2181 int status = true; 2182 static const char *modes[] = { 2183 "AWAKE", 2184 "FULL-SLEEP", 2185 "NETWORK SLEEP", 2186 "UNDEFINED" 2187 }; 2188 2189 if (ah->power_mode == mode) 2190 return status; 2191 2192 ath_dbg(common, RESET, "%s -> %s\n", 2193 modes[ah->power_mode], modes[mode]); 2194 2195 switch (mode) { 2196 case ATH9K_PM_AWAKE: 2197 status = ath9k_hw_set_power_awake(ah); 2198 break; 2199 case ATH9K_PM_FULL_SLEEP: 2200 if (ath9k_hw_mci_is_enabled(ah)) 2201 ar9003_mci_set_full_sleep(ah); 2202 2203 ath9k_set_power_sleep(ah); 2204 ah->chip_fullsleep = true; 2205 break; 2206 case ATH9K_PM_NETWORK_SLEEP: 2207 ath9k_set_power_network_sleep(ah); 2208 break; 2209 default: 2210 ath_err(common, "Unknown power mode %u\n", mode); 2211 return false; 2212 } 2213 ah->power_mode = mode; 2214 2215 /* 2216 * XXX: If this warning never comes up after a while then 2217 * simply keep the ATH_DBG_WARN_ON_ONCE() but make 2218 * ath9k_hw_setpower() return type void. 2219 */ 2220 2221 if (!(ah->ah_flags & AH_UNPLUGGED)) 2222 ATH_DBG_WARN_ON_ONCE(!status); 2223 2224 return status; 2225 } 2226 EXPORT_SYMBOL(ath9k_hw_setpower); 2227 2228 /*******************/ 2229 /* Beacon Handling */ 2230 /*******************/ 2231 2232 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) 2233 { 2234 int flags = 0; 2235 2236 ENABLE_REGWRITE_BUFFER(ah); 2237 2238 switch (ah->opmode) { 2239 case NL80211_IFTYPE_ADHOC: 2240 REG_SET_BIT(ah, AR_TXCFG, 2241 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); 2242 case NL80211_IFTYPE_MESH_POINT: 2243 case NL80211_IFTYPE_AP: 2244 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon); 2245 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon - 2246 TU_TO_USEC(ah->config.dma_beacon_response_time)); 2247 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon - 2248 TU_TO_USEC(ah->config.sw_beacon_response_time)); 2249 flags |= 2250 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; 2251 break; 2252 default: 2253 ath_dbg(ath9k_hw_common(ah), BEACON, 2254 "%s: unsupported opmode: %d\n", __func__, ah->opmode); 2255 return; 2256 break; 2257 } 2258 2259 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period); 2260 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period); 2261 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period); 2262 2263 REGWRITE_BUFFER_FLUSH(ah); 2264 2265 REG_SET_BIT(ah, AR_TIMER_MODE, flags); 2266 } 2267 EXPORT_SYMBOL(ath9k_hw_beaconinit); 2268 2269 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, 2270 const struct ath9k_beacon_state *bs) 2271 { 2272 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; 2273 struct ath9k_hw_capabilities *pCap = &ah->caps; 2274 struct ath_common *common = ath9k_hw_common(ah); 2275 2276 ENABLE_REGWRITE_BUFFER(ah); 2277 2278 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt); 2279 REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval); 2280 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval); 2281 2282 REGWRITE_BUFFER_FLUSH(ah); 2283 2284 REG_RMW_FIELD(ah, AR_RSSI_THR, 2285 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); 2286 2287 beaconintval = bs->bs_intval; 2288 2289 if (bs->bs_sleepduration > beaconintval) 2290 beaconintval = bs->bs_sleepduration; 2291 2292 dtimperiod = bs->bs_dtimperiod; 2293 if (bs->bs_sleepduration > dtimperiod) 2294 dtimperiod = bs->bs_sleepduration; 2295 2296 if (beaconintval == dtimperiod) 2297 nextTbtt = bs->bs_nextdtim; 2298 else 2299 nextTbtt = bs->bs_nexttbtt; 2300 2301 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim); 2302 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt); 2303 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval); 2304 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod); 2305 2306 ENABLE_REGWRITE_BUFFER(ah); 2307 2308 REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP); 2309 REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP); 2310 2311 REG_WRITE(ah, AR_SLEEP1, 2312 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) 2313 | AR_SLEEP1_ASSUME_DTIM); 2314 2315 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) 2316 beacontimeout = (BEACON_TIMEOUT_VAL << 3); 2317 else 2318 beacontimeout = MIN_BEACON_TIMEOUT_VAL; 2319 2320 REG_WRITE(ah, AR_SLEEP2, 2321 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); 2322 2323 REG_WRITE(ah, AR_TIM_PERIOD, beaconintval); 2324 REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod); 2325 2326 REGWRITE_BUFFER_FLUSH(ah); 2327 2328 REG_SET_BIT(ah, AR_TIMER_MODE, 2329 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | 2330 AR_DTIM_TIMER_EN); 2331 2332 /* TSF Out of Range Threshold */ 2333 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); 2334 } 2335 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); 2336 2337 /*******************/ 2338 /* HW Capabilities */ 2339 /*******************/ 2340 2341 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask) 2342 { 2343 eeprom_chainmask &= chip_chainmask; 2344 if (eeprom_chainmask) 2345 return eeprom_chainmask; 2346 else 2347 return chip_chainmask; 2348 } 2349 2350 /** 2351 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset 2352 * @ah: the atheros hardware data structure 2353 * 2354 * We enable DFS support upstream on chipsets which have passed a series 2355 * of tests. The testing requirements are going to be documented. Desired 2356 * test requirements are documented at: 2357 * 2358 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs 2359 * 2360 * Once a new chipset gets properly tested an individual commit can be used 2361 * to document the testing for DFS for that chipset. 2362 */ 2363 static bool ath9k_hw_dfs_tested(struct ath_hw *ah) 2364 { 2365 2366 switch (ah->hw_version.macVersion) { 2367 /* for temporary testing DFS with 9280 */ 2368 case AR_SREV_VERSION_9280: 2369 /* AR9580 will likely be our first target to get testing on */ 2370 case AR_SREV_VERSION_9580: 2371 return true; 2372 default: 2373 return false; 2374 } 2375 } 2376 2377 int ath9k_hw_fill_cap_info(struct ath_hw *ah) 2378 { 2379 struct ath9k_hw_capabilities *pCap = &ah->caps; 2380 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 2381 struct ath_common *common = ath9k_hw_common(ah); 2382 2383 u16 eeval; 2384 u8 ant_div_ctl1, tx_chainmask, rx_chainmask; 2385 2386 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 2387 regulatory->current_rd = eeval; 2388 2389 if (ah->opmode != NL80211_IFTYPE_AP && 2390 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { 2391 if (regulatory->current_rd == 0x64 || 2392 regulatory->current_rd == 0x65) 2393 regulatory->current_rd += 5; 2394 else if (regulatory->current_rd == 0x41) 2395 regulatory->current_rd = 0x43; 2396 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n", 2397 regulatory->current_rd); 2398 } 2399 2400 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); 2401 2402 if (eeval & AR5416_OPFLAGS_11A) { 2403 if (ah->disable_5ghz) 2404 ath_warn(common, "disabling 5GHz band\n"); 2405 else 2406 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ; 2407 } 2408 2409 if (eeval & AR5416_OPFLAGS_11G) { 2410 if (ah->disable_2ghz) 2411 ath_warn(common, "disabling 2GHz band\n"); 2412 else 2413 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ; 2414 } 2415 2416 if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) { 2417 ath_err(common, "both bands are disabled\n"); 2418 return -EINVAL; 2419 } 2420 2421 if (AR_SREV_9485(ah) || 2422 AR_SREV_9285(ah) || 2423 AR_SREV_9330(ah) || 2424 AR_SREV_9565(ah)) 2425 pCap->chip_chainmask = 1; 2426 else if (!AR_SREV_9280_20_OR_LATER(ah)) 2427 pCap->chip_chainmask = 7; 2428 else if (!AR_SREV_9300_20_OR_LATER(ah) || 2429 AR_SREV_9340(ah) || 2430 AR_SREV_9462(ah) || 2431 AR_SREV_9531(ah)) 2432 pCap->chip_chainmask = 3; 2433 else 2434 pCap->chip_chainmask = 7; 2435 2436 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); 2437 /* 2438 * For AR9271 we will temporarilly uses the rx chainmax as read from 2439 * the EEPROM. 2440 */ 2441 if ((ah->hw_version.devid == AR5416_DEVID_PCI) && 2442 !(eeval & AR5416_OPFLAGS_11A) && 2443 !(AR_SREV_9271(ah))) 2444 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ 2445 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; 2446 else if (AR_SREV_9100(ah)) 2447 pCap->rx_chainmask = 0x7; 2448 else 2449 /* Use rx_chainmask from EEPROM. */ 2450 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); 2451 2452 pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask); 2453 pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask); 2454 ah->txchainmask = pCap->tx_chainmask; 2455 ah->rxchainmask = pCap->rx_chainmask; 2456 2457 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; 2458 2459 /* enable key search for every frame in an aggregate */ 2460 if (AR_SREV_9300_20_OR_LATER(ah)) 2461 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH; 2462 2463 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM; 2464 2465 if (ah->hw_version.devid != AR2427_DEVID_PCIE) 2466 pCap->hw_caps |= ATH9K_HW_CAP_HT; 2467 else 2468 pCap->hw_caps &= ~ATH9K_HW_CAP_HT; 2469 2470 if (AR_SREV_9271(ah)) 2471 pCap->num_gpio_pins = AR9271_NUM_GPIO; 2472 else if (AR_DEVID_7010(ah)) 2473 pCap->num_gpio_pins = AR7010_NUM_GPIO; 2474 else if (AR_SREV_9300_20_OR_LATER(ah)) 2475 pCap->num_gpio_pins = AR9300_NUM_GPIO; 2476 else if (AR_SREV_9287_11_OR_LATER(ah)) 2477 pCap->num_gpio_pins = AR9287_NUM_GPIO; 2478 else if (AR_SREV_9285_12_OR_LATER(ah)) 2479 pCap->num_gpio_pins = AR9285_NUM_GPIO; 2480 else if (AR_SREV_9280_20_OR_LATER(ah)) 2481 pCap->num_gpio_pins = AR928X_NUM_GPIO; 2482 else 2483 pCap->num_gpio_pins = AR_NUM_GPIO; 2484 2485 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) 2486 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; 2487 else 2488 pCap->rts_aggr_limit = (8 * 1024); 2489 2490 #ifdef CONFIG_ATH9K_RFKILL 2491 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); 2492 if (ah->rfsilent & EEP_RFSILENT_ENABLED) { 2493 ah->rfkill_gpio = 2494 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); 2495 ah->rfkill_polarity = 2496 MS(ah->rfsilent, EEP_RFSILENT_POLARITY); 2497 2498 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; 2499 } 2500 #endif 2501 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) 2502 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; 2503 else 2504 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; 2505 2506 if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) 2507 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; 2508 else 2509 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; 2510 2511 if (AR_SREV_9300_20_OR_LATER(ah)) { 2512 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK; 2513 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && 2514 !AR_SREV_9561(ah) && !AR_SREV_9565(ah)) 2515 pCap->hw_caps |= ATH9K_HW_CAP_LDPC; 2516 2517 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; 2518 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; 2519 pCap->rx_status_len = sizeof(struct ar9003_rxs); 2520 pCap->tx_desc_len = sizeof(struct ar9003_txc); 2521 pCap->txs_len = sizeof(struct ar9003_txs); 2522 } else { 2523 pCap->tx_desc_len = sizeof(struct ath_desc); 2524 if (AR_SREV_9280_20(ah)) 2525 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; 2526 } 2527 2528 if (AR_SREV_9300_20_OR_LATER(ah)) 2529 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; 2530 2531 if (AR_SREV_9561(ah)) 2532 ah->ent_mode = 0x3BDA000; 2533 else if (AR_SREV_9300_20_OR_LATER(ah)) 2534 ah->ent_mode = REG_READ(ah, AR_ENT_OTP); 2535 2536 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah)) 2537 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; 2538 2539 if (AR_SREV_9285(ah)) { 2540 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) { 2541 ant_div_ctl1 = 2542 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2543 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) { 2544 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2545 ath_info(common, "Enable LNA combining\n"); 2546 } 2547 } 2548 } 2549 2550 if (AR_SREV_9300_20_OR_LATER(ah)) { 2551 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE)) 2552 pCap->hw_caps |= ATH9K_HW_CAP_APM; 2553 } 2554 2555 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 2556 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2557 if ((ant_div_ctl1 >> 0x6) == 0x3) { 2558 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2559 ath_info(common, "Enable LNA combining\n"); 2560 } 2561 } 2562 2563 if (ath9k_hw_dfs_tested(ah)) 2564 pCap->hw_caps |= ATH9K_HW_CAP_DFS; 2565 2566 tx_chainmask = pCap->tx_chainmask; 2567 rx_chainmask = pCap->rx_chainmask; 2568 while (tx_chainmask || rx_chainmask) { 2569 if (tx_chainmask & BIT(0)) 2570 pCap->max_txchains++; 2571 if (rx_chainmask & BIT(0)) 2572 pCap->max_rxchains++; 2573 2574 tx_chainmask >>= 1; 2575 rx_chainmask >>= 1; 2576 } 2577 2578 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 2579 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE)) 2580 pCap->hw_caps |= ATH9K_HW_CAP_MCI; 2581 2582 if (AR_SREV_9462_20_OR_LATER(ah)) 2583 pCap->hw_caps |= ATH9K_HW_CAP_RTT; 2584 } 2585 2586 if (AR_SREV_9300_20_OR_LATER(ah) && 2587 ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) 2588 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; 2589 2590 #ifdef CONFIG_ATH9K_WOW 2591 if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah)) 2592 ah->wow.max_patterns = MAX_NUM_PATTERN; 2593 else 2594 ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY; 2595 #endif 2596 2597 return 0; 2598 } 2599 2600 /****************************/ 2601 /* GPIO / RFKILL / Antennae */ 2602 /****************************/ 2603 2604 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, 2605 u32 gpio, u32 type) 2606 { 2607 int addr; 2608 u32 gpio_shift, tmp; 2609 2610 if (gpio > 11) 2611 addr = AR_GPIO_OUTPUT_MUX3; 2612 else if (gpio > 5) 2613 addr = AR_GPIO_OUTPUT_MUX2; 2614 else 2615 addr = AR_GPIO_OUTPUT_MUX1; 2616 2617 gpio_shift = (gpio % 6) * 5; 2618 2619 if (AR_SREV_9280_20_OR_LATER(ah) 2620 || (addr != AR_GPIO_OUTPUT_MUX1)) { 2621 REG_RMW(ah, addr, (type << gpio_shift), 2622 (0x1f << gpio_shift)); 2623 } else { 2624 tmp = REG_READ(ah, addr); 2625 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); 2626 tmp &= ~(0x1f << gpio_shift); 2627 tmp |= (type << gpio_shift); 2628 REG_WRITE(ah, addr, tmp); 2629 } 2630 } 2631 2632 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) 2633 { 2634 u32 gpio_shift; 2635 2636 BUG_ON(gpio >= ah->caps.num_gpio_pins); 2637 2638 if (AR_DEVID_7010(ah)) { 2639 gpio_shift = gpio; 2640 REG_RMW(ah, AR7010_GPIO_OE, 2641 (AR7010_GPIO_OE_AS_INPUT << gpio_shift), 2642 (AR7010_GPIO_OE_MASK << gpio_shift)); 2643 return; 2644 } 2645 2646 gpio_shift = gpio << 1; 2647 REG_RMW(ah, 2648 AR_GPIO_OE_OUT, 2649 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), 2650 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2651 } 2652 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input); 2653 2654 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) 2655 { 2656 #define MS_REG_READ(x, y) \ 2657 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) 2658 2659 if (gpio >= ah->caps.num_gpio_pins) 2660 return 0xffffffff; 2661 2662 if (AR_DEVID_7010(ah)) { 2663 u32 val; 2664 val = REG_READ(ah, AR7010_GPIO_IN); 2665 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0; 2666 } else if (AR_SREV_9300_20_OR_LATER(ah)) 2667 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) & 2668 AR_GPIO_BIT(gpio)) != 0; 2669 else if (AR_SREV_9271(ah)) 2670 return MS_REG_READ(AR9271, gpio) != 0; 2671 else if (AR_SREV_9287_11_OR_LATER(ah)) 2672 return MS_REG_READ(AR9287, gpio) != 0; 2673 else if (AR_SREV_9285_12_OR_LATER(ah)) 2674 return MS_REG_READ(AR9285, gpio) != 0; 2675 else if (AR_SREV_9280_20_OR_LATER(ah)) 2676 return MS_REG_READ(AR928X, gpio) != 0; 2677 else 2678 return MS_REG_READ(AR, gpio) != 0; 2679 } 2680 EXPORT_SYMBOL(ath9k_hw_gpio_get); 2681 2682 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, 2683 u32 ah_signal_type) 2684 { 2685 u32 gpio_shift; 2686 2687 if (AR_DEVID_7010(ah)) { 2688 gpio_shift = gpio; 2689 REG_RMW(ah, AR7010_GPIO_OE, 2690 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift), 2691 (AR7010_GPIO_OE_MASK << gpio_shift)); 2692 return; 2693 } 2694 2695 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); 2696 gpio_shift = 2 * gpio; 2697 REG_RMW(ah, 2698 AR_GPIO_OE_OUT, 2699 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), 2700 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2701 } 2702 EXPORT_SYMBOL(ath9k_hw_cfg_output); 2703 2704 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) 2705 { 2706 if (AR_DEVID_7010(ah)) { 2707 val = val ? 0 : 1; 2708 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio), 2709 AR_GPIO_BIT(gpio)); 2710 return; 2711 } 2712 2713 if (AR_SREV_9271(ah)) 2714 val = ~val; 2715 2716 if ((1 << gpio) & AR_GPIO_OE_OUT_MASK) 2717 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), 2718 AR_GPIO_BIT(gpio)); 2719 else 2720 gpio_set_value(gpio, val & 1); 2721 } 2722 EXPORT_SYMBOL(ath9k_hw_set_gpio); 2723 2724 void ath9k_hw_request_gpio(struct ath_hw *ah, u32 gpio, const char *label) 2725 { 2726 if (gpio >= ah->caps.num_gpio_pins) 2727 return; 2728 2729 gpio_request_one(gpio, GPIOF_DIR_OUT | GPIOF_INIT_LOW, label); 2730 } 2731 EXPORT_SYMBOL(ath9k_hw_request_gpio); 2732 2733 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) 2734 { 2735 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); 2736 } 2737 EXPORT_SYMBOL(ath9k_hw_setantenna); 2738 2739 /*********************/ 2740 /* General Operation */ 2741 /*********************/ 2742 2743 u32 ath9k_hw_getrxfilter(struct ath_hw *ah) 2744 { 2745 u32 bits = REG_READ(ah, AR_RX_FILTER); 2746 u32 phybits = REG_READ(ah, AR_PHY_ERR); 2747 2748 if (phybits & AR_PHY_ERR_RADAR) 2749 bits |= ATH9K_RX_FILTER_PHYRADAR; 2750 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) 2751 bits |= ATH9K_RX_FILTER_PHYERR; 2752 2753 return bits; 2754 } 2755 EXPORT_SYMBOL(ath9k_hw_getrxfilter); 2756 2757 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) 2758 { 2759 u32 phybits; 2760 2761 ENABLE_REGWRITE_BUFFER(ah); 2762 2763 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 2764 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER; 2765 2766 REG_WRITE(ah, AR_RX_FILTER, bits); 2767 2768 phybits = 0; 2769 if (bits & ATH9K_RX_FILTER_PHYRADAR) 2770 phybits |= AR_PHY_ERR_RADAR; 2771 if (bits & ATH9K_RX_FILTER_PHYERR) 2772 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; 2773 REG_WRITE(ah, AR_PHY_ERR, phybits); 2774 2775 if (phybits) 2776 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2777 else 2778 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2779 2780 REGWRITE_BUFFER_FLUSH(ah); 2781 } 2782 EXPORT_SYMBOL(ath9k_hw_setrxfilter); 2783 2784 bool ath9k_hw_phy_disable(struct ath_hw *ah) 2785 { 2786 if (ath9k_hw_mci_is_enabled(ah)) 2787 ar9003_mci_bt_gain_ctrl(ah); 2788 2789 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 2790 return false; 2791 2792 ath9k_hw_init_pll(ah, NULL); 2793 ah->htc_reset_init = true; 2794 return true; 2795 } 2796 EXPORT_SYMBOL(ath9k_hw_phy_disable); 2797 2798 bool ath9k_hw_disable(struct ath_hw *ah) 2799 { 2800 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 2801 return false; 2802 2803 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) 2804 return false; 2805 2806 ath9k_hw_init_pll(ah, NULL); 2807 return true; 2808 } 2809 EXPORT_SYMBOL(ath9k_hw_disable); 2810 2811 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan) 2812 { 2813 enum eeprom_param gain_param; 2814 2815 if (IS_CHAN_2GHZ(chan)) 2816 gain_param = EEP_ANTENNA_GAIN_2G; 2817 else 2818 gain_param = EEP_ANTENNA_GAIN_5G; 2819 2820 return ah->eep_ops->get_eeprom(ah, gain_param); 2821 } 2822 2823 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan, 2824 bool test) 2825 { 2826 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2827 struct ieee80211_channel *channel; 2828 int chan_pwr, new_pwr, max_gain; 2829 int ant_gain, ant_reduction = 0; 2830 2831 if (!chan) 2832 return; 2833 2834 channel = chan->chan; 2835 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER); 2836 new_pwr = min_t(int, chan_pwr, reg->power_limit); 2837 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2; 2838 2839 ant_gain = get_antenna_gain(ah, chan); 2840 if (ant_gain > max_gain) 2841 ant_reduction = ant_gain - max_gain; 2842 2843 ah->eep_ops->set_txpower(ah, chan, 2844 ath9k_regd_get_ctl(reg, chan), 2845 ant_reduction, new_pwr, test); 2846 } 2847 2848 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test) 2849 { 2850 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2851 struct ath9k_channel *chan = ah->curchan; 2852 struct ieee80211_channel *channel = chan->chan; 2853 2854 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER); 2855 if (test) 2856 channel->max_power = MAX_RATE_POWER / 2; 2857 2858 ath9k_hw_apply_txpower(ah, chan, test); 2859 2860 if (test) 2861 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2); 2862 } 2863 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); 2864 2865 void ath9k_hw_setopmode(struct ath_hw *ah) 2866 { 2867 ath9k_hw_set_operating_mode(ah, ah->opmode); 2868 } 2869 EXPORT_SYMBOL(ath9k_hw_setopmode); 2870 2871 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) 2872 { 2873 REG_WRITE(ah, AR_MCAST_FIL0, filter0); 2874 REG_WRITE(ah, AR_MCAST_FIL1, filter1); 2875 } 2876 EXPORT_SYMBOL(ath9k_hw_setmcastfilter); 2877 2878 void ath9k_hw_write_associd(struct ath_hw *ah) 2879 { 2880 struct ath_common *common = ath9k_hw_common(ah); 2881 2882 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); 2883 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | 2884 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); 2885 } 2886 EXPORT_SYMBOL(ath9k_hw_write_associd); 2887 2888 #define ATH9K_MAX_TSF_READ 10 2889 2890 u64 ath9k_hw_gettsf64(struct ath_hw *ah) 2891 { 2892 u32 tsf_lower, tsf_upper1, tsf_upper2; 2893 int i; 2894 2895 tsf_upper1 = REG_READ(ah, AR_TSF_U32); 2896 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { 2897 tsf_lower = REG_READ(ah, AR_TSF_L32); 2898 tsf_upper2 = REG_READ(ah, AR_TSF_U32); 2899 if (tsf_upper2 == tsf_upper1) 2900 break; 2901 tsf_upper1 = tsf_upper2; 2902 } 2903 2904 WARN_ON( i == ATH9K_MAX_TSF_READ ); 2905 2906 return (((u64)tsf_upper1 << 32) | tsf_lower); 2907 } 2908 EXPORT_SYMBOL(ath9k_hw_gettsf64); 2909 2910 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) 2911 { 2912 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); 2913 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); 2914 } 2915 EXPORT_SYMBOL(ath9k_hw_settsf64); 2916 2917 void ath9k_hw_reset_tsf(struct ath_hw *ah) 2918 { 2919 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, 2920 AH_TSF_WRITE_TIMEOUT)) 2921 ath_dbg(ath9k_hw_common(ah), RESET, 2922 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); 2923 2924 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); 2925 } 2926 EXPORT_SYMBOL(ath9k_hw_reset_tsf); 2927 2928 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set) 2929 { 2930 if (set) 2931 ah->misc_mode |= AR_PCU_TX_ADD_TSF; 2932 else 2933 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; 2934 } 2935 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); 2936 2937 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan) 2938 { 2939 u32 macmode; 2940 2941 if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca) 2942 macmode = AR_2040_JOINED_RX_CLEAR; 2943 else 2944 macmode = 0; 2945 2946 REG_WRITE(ah, AR_2040_MODE, macmode); 2947 } 2948 2949 /* HW Generic timers configuration */ 2950 2951 static const struct ath_gen_timer_configuration gen_tmr_configuration[] = 2952 { 2953 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2954 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2955 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2956 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2957 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2958 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2959 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2960 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2961 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, 2962 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, 2963 AR_NDP2_TIMER_MODE, 0x0002}, 2964 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, 2965 AR_NDP2_TIMER_MODE, 0x0004}, 2966 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, 2967 AR_NDP2_TIMER_MODE, 0x0008}, 2968 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, 2969 AR_NDP2_TIMER_MODE, 0x0010}, 2970 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, 2971 AR_NDP2_TIMER_MODE, 0x0020}, 2972 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, 2973 AR_NDP2_TIMER_MODE, 0x0040}, 2974 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, 2975 AR_NDP2_TIMER_MODE, 0x0080} 2976 }; 2977 2978 /* HW generic timer primitives */ 2979 2980 u32 ath9k_hw_gettsf32(struct ath_hw *ah) 2981 { 2982 return REG_READ(ah, AR_TSF_L32); 2983 } 2984 EXPORT_SYMBOL(ath9k_hw_gettsf32); 2985 2986 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah) 2987 { 2988 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2989 2990 if (timer_table->tsf2_enabled) { 2991 REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN); 2992 REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE); 2993 } 2994 } 2995 2996 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, 2997 void (*trigger)(void *), 2998 void (*overflow)(void *), 2999 void *arg, 3000 u8 timer_index) 3001 { 3002 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3003 struct ath_gen_timer *timer; 3004 3005 if ((timer_index < AR_FIRST_NDP_TIMER) || 3006 (timer_index >= ATH_MAX_GEN_TIMER)) 3007 return NULL; 3008 3009 if ((timer_index > AR_FIRST_NDP_TIMER) && 3010 !AR_SREV_9300_20_OR_LATER(ah)) 3011 return NULL; 3012 3013 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); 3014 if (timer == NULL) 3015 return NULL; 3016 3017 /* allocate a hardware generic timer slot */ 3018 timer_table->timers[timer_index] = timer; 3019 timer->index = timer_index; 3020 timer->trigger = trigger; 3021 timer->overflow = overflow; 3022 timer->arg = arg; 3023 3024 if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) { 3025 timer_table->tsf2_enabled = true; 3026 ath9k_hw_gen_timer_start_tsf2(ah); 3027 } 3028 3029 return timer; 3030 } 3031 EXPORT_SYMBOL(ath_gen_timer_alloc); 3032 3033 void ath9k_hw_gen_timer_start(struct ath_hw *ah, 3034 struct ath_gen_timer *timer, 3035 u32 timer_next, 3036 u32 timer_period) 3037 { 3038 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3039 u32 mask = 0; 3040 3041 timer_table->timer_mask |= BIT(timer->index); 3042 3043 /* 3044 * Program generic timer registers 3045 */ 3046 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, 3047 timer_next); 3048 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, 3049 timer_period); 3050 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 3051 gen_tmr_configuration[timer->index].mode_mask); 3052 3053 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 3054 /* 3055 * Starting from AR9462, each generic timer can select which tsf 3056 * to use. But we still follow the old rule, 0 - 7 use tsf and 3057 * 8 - 15 use tsf2. 3058 */ 3059 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN)) 3060 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3061 (1 << timer->index)); 3062 else 3063 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3064 (1 << timer->index)); 3065 } 3066 3067 if (timer->trigger) 3068 mask |= SM(AR_GENTMR_BIT(timer->index), 3069 AR_IMR_S5_GENTIMER_TRIG); 3070 if (timer->overflow) 3071 mask |= SM(AR_GENTMR_BIT(timer->index), 3072 AR_IMR_S5_GENTIMER_THRESH); 3073 3074 REG_SET_BIT(ah, AR_IMR_S5, mask); 3075 3076 if ((ah->imask & ATH9K_INT_GENTIMER) == 0) { 3077 ah->imask |= ATH9K_INT_GENTIMER; 3078 ath9k_hw_set_interrupts(ah); 3079 } 3080 } 3081 EXPORT_SYMBOL(ath9k_hw_gen_timer_start); 3082 3083 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) 3084 { 3085 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3086 3087 /* Clear generic timer enable bits. */ 3088 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 3089 gen_tmr_configuration[timer->index].mode_mask); 3090 3091 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 3092 /* 3093 * Need to switch back to TSF if it was using TSF2. 3094 */ 3095 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) { 3096 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3097 (1 << timer->index)); 3098 } 3099 } 3100 3101 /* Disable both trigger and thresh interrupt masks */ 3102 REG_CLR_BIT(ah, AR_IMR_S5, 3103 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 3104 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 3105 3106 timer_table->timer_mask &= ~BIT(timer->index); 3107 3108 if (timer_table->timer_mask == 0) { 3109 ah->imask &= ~ATH9K_INT_GENTIMER; 3110 ath9k_hw_set_interrupts(ah); 3111 } 3112 } 3113 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); 3114 3115 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) 3116 { 3117 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3118 3119 /* free the hardware generic timer slot */ 3120 timer_table->timers[timer->index] = NULL; 3121 kfree(timer); 3122 } 3123 EXPORT_SYMBOL(ath_gen_timer_free); 3124 3125 /* 3126 * Generic Timer Interrupts handling 3127 */ 3128 void ath_gen_timer_isr(struct ath_hw *ah) 3129 { 3130 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3131 struct ath_gen_timer *timer; 3132 unsigned long trigger_mask, thresh_mask; 3133 unsigned int index; 3134 3135 /* get hardware generic timer interrupt status */ 3136 trigger_mask = ah->intr_gen_timer_trigger; 3137 thresh_mask = ah->intr_gen_timer_thresh; 3138 trigger_mask &= timer_table->timer_mask; 3139 thresh_mask &= timer_table->timer_mask; 3140 3141 for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) { 3142 timer = timer_table->timers[index]; 3143 if (!timer) 3144 continue; 3145 if (!timer->overflow) 3146 continue; 3147 3148 trigger_mask &= ~BIT(index); 3149 timer->overflow(timer->arg); 3150 } 3151 3152 for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) { 3153 timer = timer_table->timers[index]; 3154 if (!timer) 3155 continue; 3156 if (!timer->trigger) 3157 continue; 3158 timer->trigger(timer->arg); 3159 } 3160 } 3161 EXPORT_SYMBOL(ath_gen_timer_isr); 3162 3163 /********/ 3164 /* HTC */ 3165 /********/ 3166 3167 static struct { 3168 u32 version; 3169 const char * name; 3170 } ath_mac_bb_names[] = { 3171 /* Devices with external radios */ 3172 { AR_SREV_VERSION_5416_PCI, "5416" }, 3173 { AR_SREV_VERSION_5416_PCIE, "5418" }, 3174 { AR_SREV_VERSION_9100, "9100" }, 3175 { AR_SREV_VERSION_9160, "9160" }, 3176 /* Single-chip solutions */ 3177 { AR_SREV_VERSION_9280, "9280" }, 3178 { AR_SREV_VERSION_9285, "9285" }, 3179 { AR_SREV_VERSION_9287, "9287" }, 3180 { AR_SREV_VERSION_9271, "9271" }, 3181 { AR_SREV_VERSION_9300, "9300" }, 3182 { AR_SREV_VERSION_9330, "9330" }, 3183 { AR_SREV_VERSION_9340, "9340" }, 3184 { AR_SREV_VERSION_9485, "9485" }, 3185 { AR_SREV_VERSION_9462, "9462" }, 3186 { AR_SREV_VERSION_9550, "9550" }, 3187 { AR_SREV_VERSION_9565, "9565" }, 3188 { AR_SREV_VERSION_9531, "9531" }, 3189 }; 3190 3191 /* For devices with external radios */ 3192 static struct { 3193 u16 version; 3194 const char * name; 3195 } ath_rf_names[] = { 3196 { 0, "5133" }, 3197 { AR_RAD5133_SREV_MAJOR, "5133" }, 3198 { AR_RAD5122_SREV_MAJOR, "5122" }, 3199 { AR_RAD2133_SREV_MAJOR, "2133" }, 3200 { AR_RAD2122_SREV_MAJOR, "2122" } 3201 }; 3202 3203 /* 3204 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. 3205 */ 3206 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) 3207 { 3208 int i; 3209 3210 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { 3211 if (ath_mac_bb_names[i].version == mac_bb_version) { 3212 return ath_mac_bb_names[i].name; 3213 } 3214 } 3215 3216 return "????"; 3217 } 3218 3219 /* 3220 * Return the RF name. "????" is returned if the RF is unknown. 3221 * Used for devices with external radios. 3222 */ 3223 static const char *ath9k_hw_rf_name(u16 rf_version) 3224 { 3225 int i; 3226 3227 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { 3228 if (ath_rf_names[i].version == rf_version) { 3229 return ath_rf_names[i].name; 3230 } 3231 } 3232 3233 return "????"; 3234 } 3235 3236 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) 3237 { 3238 int used; 3239 3240 /* chipsets >= AR9280 are single-chip */ 3241 if (AR_SREV_9280_20_OR_LATER(ah)) { 3242 used = scnprintf(hw_name, len, 3243 "Atheros AR%s Rev:%x", 3244 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3245 ah->hw_version.macRev); 3246 } 3247 else { 3248 used = scnprintf(hw_name, len, 3249 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", 3250 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3251 ah->hw_version.macRev, 3252 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev 3253 & AR_RADIO_SREV_MAJOR)), 3254 ah->hw_version.phyRev); 3255 } 3256 3257 hw_name[used] = '\0'; 3258 } 3259 EXPORT_SYMBOL(ath9k_hw_name); 3260