xref: /linux/drivers/net/wireless/ath/ath9k/hw.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "ar9003_phy.h"
28 #include "debug.h"
29 #include "ath9k.h"
30 
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37 
38 static int __init ath9k_init(void)
39 {
40 	return 0;
41 }
42 module_init(ath9k_init);
43 
44 static void __exit ath9k_exit(void)
45 {
46 	return;
47 }
48 module_exit(ath9k_exit);
49 
50 /* Private hardware callbacks */
51 
52 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
55 }
56 
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 #ifdef CONFIG_ATH9K_DEBUGFS
85 
86 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
87 {
88 	struct ath_softc *sc = common->priv;
89 	if (sync_cause)
90 		sc->debug.stats.istats.sync_cause_all++;
91 	if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
92 		sc->debug.stats.istats.sync_rtc_irq++;
93 	if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
94 		sc->debug.stats.istats.sync_mac_irq++;
95 	if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
96 		sc->debug.stats.istats.eeprom_illegal_access++;
97 	if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
98 		sc->debug.stats.istats.apb_timeout++;
99 	if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
100 		sc->debug.stats.istats.pci_mode_conflict++;
101 	if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
102 		sc->debug.stats.istats.host1_fatal++;
103 	if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
104 		sc->debug.stats.istats.host1_perr++;
105 	if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
106 		sc->debug.stats.istats.trcv_fifo_perr++;
107 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
108 		sc->debug.stats.istats.radm_cpl_ep++;
109 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
110 		sc->debug.stats.istats.radm_cpl_dllp_abort++;
111 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
112 		sc->debug.stats.istats.radm_cpl_tlp_abort++;
113 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
114 		sc->debug.stats.istats.radm_cpl_ecrc_err++;
115 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
116 		sc->debug.stats.istats.radm_cpl_timeout++;
117 	if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
118 		sc->debug.stats.istats.local_timeout++;
119 	if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
120 		sc->debug.stats.istats.pm_access++;
121 	if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
122 		sc->debug.stats.istats.mac_awake++;
123 	if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
124 		sc->debug.stats.istats.mac_asleep++;
125 	if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
126 		sc->debug.stats.istats.mac_sleep_access++;
127 }
128 #endif
129 
130 
131 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
132 {
133 	struct ath_common *common = ath9k_hw_common(ah);
134 	struct ath9k_channel *chan = ah->curchan;
135 	unsigned int clockrate;
136 
137 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
138 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
139 		clockrate = 117;
140 	else if (!chan) /* should really check for CCK instead */
141 		clockrate = ATH9K_CLOCK_RATE_CCK;
142 	else if (IS_CHAN_2GHZ(chan))
143 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
144 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
145 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
146 	else
147 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
148 
149 	if (chan) {
150 		if (IS_CHAN_HT40(chan))
151 			clockrate *= 2;
152 		if (IS_CHAN_HALF_RATE(chan))
153 			clockrate /= 2;
154 		if (IS_CHAN_QUARTER_RATE(chan))
155 			clockrate /= 4;
156 	}
157 
158 	common->clockrate = clockrate;
159 }
160 
161 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
162 {
163 	struct ath_common *common = ath9k_hw_common(ah);
164 
165 	return usecs * common->clockrate;
166 }
167 
168 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
169 {
170 	int i;
171 
172 	BUG_ON(timeout < AH_TIME_QUANTUM);
173 
174 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
175 		if ((REG_READ(ah, reg) & mask) == val)
176 			return true;
177 
178 		udelay(AH_TIME_QUANTUM);
179 	}
180 
181 	ath_dbg(ath9k_hw_common(ah), ANY,
182 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
183 		timeout, reg, REG_READ(ah, reg), mask, val);
184 
185 	return false;
186 }
187 EXPORT_SYMBOL(ath9k_hw_wait);
188 
189 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
190 			  int hw_delay)
191 {
192 	hw_delay /= 10;
193 
194 	if (IS_CHAN_HALF_RATE(chan))
195 		hw_delay *= 2;
196 	else if (IS_CHAN_QUARTER_RATE(chan))
197 		hw_delay *= 4;
198 
199 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
200 }
201 
202 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
203 			  int column, unsigned int *writecnt)
204 {
205 	int r;
206 
207 	ENABLE_REGWRITE_BUFFER(ah);
208 	for (r = 0; r < array->ia_rows; r++) {
209 		REG_WRITE(ah, INI_RA(array, r, 0),
210 			  INI_RA(array, r, column));
211 		DO_DELAY(*writecnt);
212 	}
213 	REGWRITE_BUFFER_FLUSH(ah);
214 }
215 
216 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
217 {
218 	u32 retval;
219 	int i;
220 
221 	for (i = 0, retval = 0; i < n; i++) {
222 		retval = (retval << 1) | (val & 1);
223 		val >>= 1;
224 	}
225 	return retval;
226 }
227 
228 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
229 			   u8 phy, int kbps,
230 			   u32 frameLen, u16 rateix,
231 			   bool shortPreamble)
232 {
233 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
234 
235 	if (kbps == 0)
236 		return 0;
237 
238 	switch (phy) {
239 	case WLAN_RC_PHY_CCK:
240 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
241 		if (shortPreamble)
242 			phyTime >>= 1;
243 		numBits = frameLen << 3;
244 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
245 		break;
246 	case WLAN_RC_PHY_OFDM:
247 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
248 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
249 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
250 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
251 			txTime = OFDM_SIFS_TIME_QUARTER
252 				+ OFDM_PREAMBLE_TIME_QUARTER
253 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
254 		} else if (ah->curchan &&
255 			   IS_CHAN_HALF_RATE(ah->curchan)) {
256 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
257 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
258 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
259 			txTime = OFDM_SIFS_TIME_HALF +
260 				OFDM_PREAMBLE_TIME_HALF
261 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
262 		} else {
263 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
264 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
265 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
266 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
267 				+ (numSymbols * OFDM_SYMBOL_TIME);
268 		}
269 		break;
270 	default:
271 		ath_err(ath9k_hw_common(ah),
272 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
273 		txTime = 0;
274 		break;
275 	}
276 
277 	return txTime;
278 }
279 EXPORT_SYMBOL(ath9k_hw_computetxtime);
280 
281 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
282 				  struct ath9k_channel *chan,
283 				  struct chan_centers *centers)
284 {
285 	int8_t extoff;
286 
287 	if (!IS_CHAN_HT40(chan)) {
288 		centers->ctl_center = centers->ext_center =
289 			centers->synth_center = chan->channel;
290 		return;
291 	}
292 
293 	if (IS_CHAN_HT40PLUS(chan)) {
294 		centers->synth_center =
295 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
296 		extoff = 1;
297 	} else {
298 		centers->synth_center =
299 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
300 		extoff = -1;
301 	}
302 
303 	centers->ctl_center =
304 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
305 	/* 25 MHz spacing is supported by hw but not on upper layers */
306 	centers->ext_center =
307 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
308 }
309 
310 /******************/
311 /* Chip Revisions */
312 /******************/
313 
314 static void ath9k_hw_read_revisions(struct ath_hw *ah)
315 {
316 	u32 val;
317 
318 	switch (ah->hw_version.devid) {
319 	case AR5416_AR9100_DEVID:
320 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
321 		break;
322 	case AR9300_DEVID_AR9330:
323 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
324 		if (ah->get_mac_revision) {
325 			ah->hw_version.macRev = ah->get_mac_revision();
326 		} else {
327 			val = REG_READ(ah, AR_SREV);
328 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
329 		}
330 		return;
331 	case AR9300_DEVID_AR9340:
332 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
333 		val = REG_READ(ah, AR_SREV);
334 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
335 		return;
336 	case AR9300_DEVID_QCA955X:
337 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
338 		return;
339 	}
340 
341 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
342 
343 	if (val == 0xFF) {
344 		val = REG_READ(ah, AR_SREV);
345 		ah->hw_version.macVersion =
346 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
347 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
348 
349 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
350 			ah->is_pciexpress = true;
351 		else
352 			ah->is_pciexpress = (val &
353 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
354 	} else {
355 		if (!AR_SREV_9100(ah))
356 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
357 
358 		ah->hw_version.macRev = val & AR_SREV_REVISION;
359 
360 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
361 			ah->is_pciexpress = true;
362 	}
363 }
364 
365 /************************************/
366 /* HW Attach, Detach, Init Routines */
367 /************************************/
368 
369 static void ath9k_hw_disablepcie(struct ath_hw *ah)
370 {
371 	if (!AR_SREV_5416(ah))
372 		return;
373 
374 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
375 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
376 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
377 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
378 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
379 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
380 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
381 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
382 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
383 
384 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
385 }
386 
387 /* This should work for all families including legacy */
388 static bool ath9k_hw_chip_test(struct ath_hw *ah)
389 {
390 	struct ath_common *common = ath9k_hw_common(ah);
391 	u32 regAddr[2] = { AR_STA_ID0 };
392 	u32 regHold[2];
393 	static const u32 patternData[4] = {
394 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
395 	};
396 	int i, j, loop_max;
397 
398 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
399 		loop_max = 2;
400 		regAddr[1] = AR_PHY_BASE + (8 << 2);
401 	} else
402 		loop_max = 1;
403 
404 	for (i = 0; i < loop_max; i++) {
405 		u32 addr = regAddr[i];
406 		u32 wrData, rdData;
407 
408 		regHold[i] = REG_READ(ah, addr);
409 		for (j = 0; j < 0x100; j++) {
410 			wrData = (j << 16) | j;
411 			REG_WRITE(ah, addr, wrData);
412 			rdData = REG_READ(ah, addr);
413 			if (rdData != wrData) {
414 				ath_err(common,
415 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
416 					addr, wrData, rdData);
417 				return false;
418 			}
419 		}
420 		for (j = 0; j < 4; j++) {
421 			wrData = patternData[j];
422 			REG_WRITE(ah, addr, wrData);
423 			rdData = REG_READ(ah, addr);
424 			if (wrData != rdData) {
425 				ath_err(common,
426 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
427 					addr, wrData, rdData);
428 				return false;
429 			}
430 		}
431 		REG_WRITE(ah, regAddr[i], regHold[i]);
432 	}
433 	udelay(100);
434 
435 	return true;
436 }
437 
438 static void ath9k_hw_init_config(struct ath_hw *ah)
439 {
440 	int i;
441 
442 	ah->config.dma_beacon_response_time = 1;
443 	ah->config.sw_beacon_response_time = 6;
444 	ah->config.additional_swba_backoff = 0;
445 	ah->config.ack_6mb = 0x0;
446 	ah->config.cwm_ignore_extcca = 0;
447 	ah->config.pcie_clock_req = 0;
448 	ah->config.analog_shiftreg = 1;
449 
450 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
451 		ah->config.spurchans[i][0] = AR_NO_SPUR;
452 		ah->config.spurchans[i][1] = AR_NO_SPUR;
453 	}
454 
455 	ah->config.rx_intr_mitigation = true;
456 	ah->config.pcieSerDesWrite = true;
457 
458 	/*
459 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
460 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
461 	 * This means we use it for all AR5416 devices, and the few
462 	 * minor PCI AR9280 devices out there.
463 	 *
464 	 * Serialization is required because these devices do not handle
465 	 * well the case of two concurrent reads/writes due to the latency
466 	 * involved. During one read/write another read/write can be issued
467 	 * on another CPU while the previous read/write may still be working
468 	 * on our hardware, if we hit this case the hardware poops in a loop.
469 	 * We prevent this by serializing reads and writes.
470 	 *
471 	 * This issue is not present on PCI-Express devices or pre-AR5416
472 	 * devices (legacy, 802.11abg).
473 	 */
474 	if (num_possible_cpus() > 1)
475 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
476 }
477 
478 static void ath9k_hw_init_defaults(struct ath_hw *ah)
479 {
480 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
481 
482 	regulatory->country_code = CTRY_DEFAULT;
483 	regulatory->power_limit = MAX_RATE_POWER;
484 
485 	ah->hw_version.magic = AR5416_MAGIC;
486 	ah->hw_version.subvendorid = 0;
487 
488 	ah->atim_window = 0;
489 	ah->sta_id1_defaults =
490 		AR_STA_ID1_CRPT_MIC_ENABLE |
491 		AR_STA_ID1_MCAST_KSRCH;
492 	if (AR_SREV_9100(ah))
493 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
494 	ah->slottime = ATH9K_SLOT_TIME_9;
495 	ah->globaltxtimeout = (u32) -1;
496 	ah->power_mode = ATH9K_PM_UNDEFINED;
497 	ah->htc_reset_init = true;
498 }
499 
500 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
501 {
502 	struct ath_common *common = ath9k_hw_common(ah);
503 	u32 sum;
504 	int i;
505 	u16 eeval;
506 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
507 
508 	sum = 0;
509 	for (i = 0; i < 3; i++) {
510 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
511 		sum += eeval;
512 		common->macaddr[2 * i] = eeval >> 8;
513 		common->macaddr[2 * i + 1] = eeval & 0xff;
514 	}
515 	if (sum == 0 || sum == 0xffff * 3)
516 		return -EADDRNOTAVAIL;
517 
518 	return 0;
519 }
520 
521 static int ath9k_hw_post_init(struct ath_hw *ah)
522 {
523 	struct ath_common *common = ath9k_hw_common(ah);
524 	int ecode;
525 
526 	if (common->bus_ops->ath_bus_type != ATH_USB) {
527 		if (!ath9k_hw_chip_test(ah))
528 			return -ENODEV;
529 	}
530 
531 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
532 		ecode = ar9002_hw_rf_claim(ah);
533 		if (ecode != 0)
534 			return ecode;
535 	}
536 
537 	ecode = ath9k_hw_eeprom_init(ah);
538 	if (ecode != 0)
539 		return ecode;
540 
541 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
542 		ah->eep_ops->get_eeprom_ver(ah),
543 		ah->eep_ops->get_eeprom_rev(ah));
544 
545 	ath9k_hw_ani_init(ah);
546 
547 	/*
548 	 * EEPROM needs to be initialized before we do this.
549 	 * This is required for regulatory compliance.
550 	 */
551 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
552 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
553 		if ((regdmn & 0xF0) == CTL_FCC) {
554 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9462_FCC_2GHZ;
555 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9462_FCC_5GHZ;
556 		}
557 	}
558 
559 	return 0;
560 }
561 
562 static int ath9k_hw_attach_ops(struct ath_hw *ah)
563 {
564 	if (!AR_SREV_9300_20_OR_LATER(ah))
565 		return ar9002_hw_attach_ops(ah);
566 
567 	ar9003_hw_attach_ops(ah);
568 	return 0;
569 }
570 
571 /* Called for all hardware families */
572 static int __ath9k_hw_init(struct ath_hw *ah)
573 {
574 	struct ath_common *common = ath9k_hw_common(ah);
575 	int r = 0;
576 
577 	ath9k_hw_read_revisions(ah);
578 
579 	/*
580 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
581 	 * We need to do this to avoid RMW of this register. We cannot
582 	 * read the reg when chip is asleep.
583 	 */
584 	if (AR_SREV_9300_20_OR_LATER(ah)) {
585 		ah->WARegVal = REG_READ(ah, AR_WA);
586 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
587 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
588 	}
589 
590 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
591 		ath_err(common, "Couldn't reset chip\n");
592 		return -EIO;
593 	}
594 
595 	if (AR_SREV_9565(ah)) {
596 		ah->WARegVal |= AR_WA_BIT22;
597 		REG_WRITE(ah, AR_WA, ah->WARegVal);
598 	}
599 
600 	ath9k_hw_init_defaults(ah);
601 	ath9k_hw_init_config(ah);
602 
603 	r = ath9k_hw_attach_ops(ah);
604 	if (r)
605 		return r;
606 
607 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
608 		ath_err(common, "Couldn't wakeup chip\n");
609 		return -EIO;
610 	}
611 
612 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
613 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
614 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
615 		     !ah->is_pciexpress)) {
616 			ah->config.serialize_regmode =
617 				SER_REG_MODE_ON;
618 		} else {
619 			ah->config.serialize_regmode =
620 				SER_REG_MODE_OFF;
621 		}
622 	}
623 
624 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
625 		ah->config.serialize_regmode);
626 
627 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
628 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
629 	else
630 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
631 
632 	switch (ah->hw_version.macVersion) {
633 	case AR_SREV_VERSION_5416_PCI:
634 	case AR_SREV_VERSION_5416_PCIE:
635 	case AR_SREV_VERSION_9160:
636 	case AR_SREV_VERSION_9100:
637 	case AR_SREV_VERSION_9280:
638 	case AR_SREV_VERSION_9285:
639 	case AR_SREV_VERSION_9287:
640 	case AR_SREV_VERSION_9271:
641 	case AR_SREV_VERSION_9300:
642 	case AR_SREV_VERSION_9330:
643 	case AR_SREV_VERSION_9485:
644 	case AR_SREV_VERSION_9340:
645 	case AR_SREV_VERSION_9462:
646 	case AR_SREV_VERSION_9550:
647 	case AR_SREV_VERSION_9565:
648 		break;
649 	default:
650 		ath_err(common,
651 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
652 			ah->hw_version.macVersion, ah->hw_version.macRev);
653 		return -EOPNOTSUPP;
654 	}
655 
656 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
657 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
658 		ah->is_pciexpress = false;
659 
660 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
661 	ath9k_hw_init_cal_settings(ah);
662 
663 	ah->ani_function = ATH9K_ANI_ALL;
664 	if (!AR_SREV_9300_20_OR_LATER(ah))
665 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
666 
667 	if (!ah->is_pciexpress)
668 		ath9k_hw_disablepcie(ah);
669 
670 	r = ath9k_hw_post_init(ah);
671 	if (r)
672 		return r;
673 
674 	ath9k_hw_init_mode_gain_regs(ah);
675 	r = ath9k_hw_fill_cap_info(ah);
676 	if (r)
677 		return r;
678 
679 	r = ath9k_hw_init_macaddr(ah);
680 	if (r) {
681 		ath_err(common, "Failed to initialize MAC address\n");
682 		return r;
683 	}
684 
685 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
686 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
687 	else
688 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
689 
690 	if (AR_SREV_9330(ah))
691 		ah->bb_watchdog_timeout_ms = 85;
692 	else
693 		ah->bb_watchdog_timeout_ms = 25;
694 
695 	common->state = ATH_HW_INITIALIZED;
696 
697 	return 0;
698 }
699 
700 int ath9k_hw_init(struct ath_hw *ah)
701 {
702 	int ret;
703 	struct ath_common *common = ath9k_hw_common(ah);
704 
705 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
706 	switch (ah->hw_version.devid) {
707 	case AR5416_DEVID_PCI:
708 	case AR5416_DEVID_PCIE:
709 	case AR5416_AR9100_DEVID:
710 	case AR9160_DEVID_PCI:
711 	case AR9280_DEVID_PCI:
712 	case AR9280_DEVID_PCIE:
713 	case AR9285_DEVID_PCIE:
714 	case AR9287_DEVID_PCI:
715 	case AR9287_DEVID_PCIE:
716 	case AR2427_DEVID_PCIE:
717 	case AR9300_DEVID_PCIE:
718 	case AR9300_DEVID_AR9485_PCIE:
719 	case AR9300_DEVID_AR9330:
720 	case AR9300_DEVID_AR9340:
721 	case AR9300_DEVID_QCA955X:
722 	case AR9300_DEVID_AR9580:
723 	case AR9300_DEVID_AR9462:
724 	case AR9485_DEVID_AR1111:
725 	case AR9300_DEVID_AR9565:
726 		break;
727 	default:
728 		if (common->bus_ops->ath_bus_type == ATH_USB)
729 			break;
730 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
731 			ah->hw_version.devid);
732 		return -EOPNOTSUPP;
733 	}
734 
735 	ret = __ath9k_hw_init(ah);
736 	if (ret) {
737 		ath_err(common,
738 			"Unable to initialize hardware; initialization status: %d\n",
739 			ret);
740 		return ret;
741 	}
742 
743 	return 0;
744 }
745 EXPORT_SYMBOL(ath9k_hw_init);
746 
747 static void ath9k_hw_init_qos(struct ath_hw *ah)
748 {
749 	ENABLE_REGWRITE_BUFFER(ah);
750 
751 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
752 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
753 
754 	REG_WRITE(ah, AR_QOS_NO_ACK,
755 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
756 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
757 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
758 
759 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
760 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
761 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
762 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
763 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
764 
765 	REGWRITE_BUFFER_FLUSH(ah);
766 }
767 
768 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
769 {
770 	struct ath_common *common = ath9k_hw_common(ah);
771 	int i = 0;
772 
773 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
774 	udelay(100);
775 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
776 
777 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
778 
779 		udelay(100);
780 
781 		if (WARN_ON_ONCE(i >= 100)) {
782 			ath_err(common, "PLL4 meaurement not done\n");
783 			break;
784 		}
785 
786 		i++;
787 	}
788 
789 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
790 }
791 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
792 
793 static void ath9k_hw_init_pll(struct ath_hw *ah,
794 			      struct ath9k_channel *chan)
795 {
796 	u32 pll;
797 
798 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
799 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
800 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
801 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
802 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
803 			      AR_CH0_DPLL2_KD, 0x40);
804 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
805 			      AR_CH0_DPLL2_KI, 0x4);
806 
807 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
808 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
809 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
810 			      AR_CH0_BB_DPLL1_NINI, 0x58);
811 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
812 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
813 
814 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
815 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
816 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
817 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
818 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
819 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
820 
821 		/* program BB PLL phase_shift to 0x6 */
822 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
823 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
824 
825 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
826 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
827 		udelay(1000);
828 	} else if (AR_SREV_9330(ah)) {
829 		u32 ddr_dpll2, pll_control2, kd;
830 
831 		if (ah->is_clk_25mhz) {
832 			ddr_dpll2 = 0x18e82f01;
833 			pll_control2 = 0xe04a3d;
834 			kd = 0x1d;
835 		} else {
836 			ddr_dpll2 = 0x19e82f01;
837 			pll_control2 = 0x886666;
838 			kd = 0x3d;
839 		}
840 
841 		/* program DDR PLL ki and kd value */
842 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
843 
844 		/* program DDR PLL phase_shift */
845 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
846 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
847 
848 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
849 		udelay(1000);
850 
851 		/* program refdiv, nint, frac to RTC register */
852 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
853 
854 		/* program BB PLL kd and ki value */
855 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
856 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
857 
858 		/* program BB PLL phase_shift */
859 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
860 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
861 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
862 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
863 
864 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
865 		udelay(1000);
866 
867 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
868 		udelay(100);
869 
870 		if (ah->is_clk_25mhz) {
871 			pll2_divint = 0x54;
872 			pll2_divfrac = 0x1eb85;
873 			refdiv = 3;
874 		} else {
875 			if (AR_SREV_9340(ah)) {
876 				pll2_divint = 88;
877 				pll2_divfrac = 0;
878 				refdiv = 5;
879 			} else {
880 				pll2_divint = 0x11;
881 				pll2_divfrac = 0x26666;
882 				refdiv = 1;
883 			}
884 		}
885 
886 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
887 		regval |= (0x1 << 16);
888 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
889 		udelay(100);
890 
891 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
892 			  (pll2_divint << 18) | pll2_divfrac);
893 		udelay(100);
894 
895 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
896 		if (AR_SREV_9340(ah))
897 			regval = (regval & 0x80071fff) | (0x1 << 30) |
898 				 (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
899 		else
900 			regval = (regval & 0x80071fff) | (0x3 << 30) |
901 				 (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
902 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
903 		REG_WRITE(ah, AR_PHY_PLL_MODE,
904 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
905 		udelay(1000);
906 	}
907 
908 	pll = ath9k_hw_compute_pll_control(ah, chan);
909 	if (AR_SREV_9565(ah))
910 		pll |= 0x40000;
911 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
912 
913 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
914 	    AR_SREV_9550(ah))
915 		udelay(1000);
916 
917 	/* Switch the core clock for ar9271 to 117Mhz */
918 	if (AR_SREV_9271(ah)) {
919 		udelay(500);
920 		REG_WRITE(ah, 0x50040, 0x304);
921 	}
922 
923 	udelay(RTC_PLL_SETTLE_DELAY);
924 
925 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
926 
927 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
928 		if (ah->is_clk_25mhz) {
929 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
930 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
931 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
932 		} else {
933 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
934 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
935 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
936 		}
937 		udelay(100);
938 	}
939 }
940 
941 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
942 					  enum nl80211_iftype opmode)
943 {
944 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
945 	u32 imr_reg = AR_IMR_TXERR |
946 		AR_IMR_TXURN |
947 		AR_IMR_RXERR |
948 		AR_IMR_RXORN |
949 		AR_IMR_BCNMISC;
950 
951 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
952 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
953 
954 	if (AR_SREV_9300_20_OR_LATER(ah)) {
955 		imr_reg |= AR_IMR_RXOK_HP;
956 		if (ah->config.rx_intr_mitigation)
957 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
958 		else
959 			imr_reg |= AR_IMR_RXOK_LP;
960 
961 	} else {
962 		if (ah->config.rx_intr_mitigation)
963 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
964 		else
965 			imr_reg |= AR_IMR_RXOK;
966 	}
967 
968 	if (ah->config.tx_intr_mitigation)
969 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
970 	else
971 		imr_reg |= AR_IMR_TXOK;
972 
973 	ENABLE_REGWRITE_BUFFER(ah);
974 
975 	REG_WRITE(ah, AR_IMR, imr_reg);
976 	ah->imrs2_reg |= AR_IMR_S2_GTT;
977 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
978 
979 	if (!AR_SREV_9100(ah)) {
980 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
981 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
982 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
983 	}
984 
985 	REGWRITE_BUFFER_FLUSH(ah);
986 
987 	if (AR_SREV_9300_20_OR_LATER(ah)) {
988 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
989 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
990 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
991 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
992 	}
993 }
994 
995 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
996 {
997 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
998 	val = min(val, (u32) 0xFFFF);
999 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1000 }
1001 
1002 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1003 {
1004 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1005 	val = min(val, (u32) 0xFFFF);
1006 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1007 }
1008 
1009 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1010 {
1011 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1012 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1013 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1014 }
1015 
1016 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1017 {
1018 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1019 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1020 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1021 }
1022 
1023 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1024 {
1025 	if (tu > 0xFFFF) {
1026 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1027 			tu);
1028 		ah->globaltxtimeout = (u32) -1;
1029 		return false;
1030 	} else {
1031 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1032 		ah->globaltxtimeout = tu;
1033 		return true;
1034 	}
1035 }
1036 
1037 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1038 {
1039 	struct ath_common *common = ath9k_hw_common(ah);
1040 	const struct ath9k_channel *chan = ah->curchan;
1041 	int acktimeout, ctstimeout, ack_offset = 0;
1042 	int slottime;
1043 	int sifstime;
1044 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1045 	u32 reg;
1046 
1047 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1048 		ah->misc_mode);
1049 
1050 	if (!chan)
1051 		return;
1052 
1053 	if (ah->misc_mode != 0)
1054 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1055 
1056 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1057 		rx_lat = 41;
1058 	else
1059 		rx_lat = 37;
1060 	tx_lat = 54;
1061 
1062 	if (IS_CHAN_5GHZ(chan))
1063 		sifstime = 16;
1064 	else
1065 		sifstime = 10;
1066 
1067 	if (IS_CHAN_HALF_RATE(chan)) {
1068 		eifs = 175;
1069 		rx_lat *= 2;
1070 		tx_lat *= 2;
1071 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1072 		    tx_lat += 11;
1073 
1074 		sifstime = 32;
1075 		ack_offset = 16;
1076 		slottime = 13;
1077 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1078 		eifs = 340;
1079 		rx_lat = (rx_lat * 4) - 1;
1080 		tx_lat *= 4;
1081 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1082 		    tx_lat += 22;
1083 
1084 		sifstime = 64;
1085 		ack_offset = 32;
1086 		slottime = 21;
1087 	} else {
1088 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1089 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1090 			reg = AR_USEC_ASYNC_FIFO;
1091 		} else {
1092 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1093 				common->clockrate;
1094 			reg = REG_READ(ah, AR_USEC);
1095 		}
1096 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1097 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1098 
1099 		slottime = ah->slottime;
1100 	}
1101 
1102 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1103 	slottime += 3 * ah->coverage_class;
1104 	acktimeout = slottime + sifstime + ack_offset;
1105 	ctstimeout = acktimeout;
1106 
1107 	/*
1108 	 * Workaround for early ACK timeouts, add an offset to match the
1109 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1110 	 * This was initially only meant to work around an issue with delayed
1111 	 * BA frames in some implementations, but it has been found to fix ACK
1112 	 * timeout issues in other cases as well.
1113 	 */
1114 	if (IS_CHAN_2GHZ(chan) &&
1115 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1116 		acktimeout += 64 - sifstime - ah->slottime;
1117 		ctstimeout += 48 - sifstime - ah->slottime;
1118 	}
1119 
1120 	ath9k_hw_set_sifs_time(ah, sifstime);
1121 	ath9k_hw_setslottime(ah, slottime);
1122 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1123 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1124 	if (ah->globaltxtimeout != (u32) -1)
1125 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1126 
1127 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1128 	REG_RMW(ah, AR_USEC,
1129 		(common->clockrate - 1) |
1130 		SM(rx_lat, AR_USEC_RX_LAT) |
1131 		SM(tx_lat, AR_USEC_TX_LAT),
1132 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1133 
1134 }
1135 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1136 
1137 void ath9k_hw_deinit(struct ath_hw *ah)
1138 {
1139 	struct ath_common *common = ath9k_hw_common(ah);
1140 
1141 	if (common->state < ATH_HW_INITIALIZED)
1142 		return;
1143 
1144 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1145 }
1146 EXPORT_SYMBOL(ath9k_hw_deinit);
1147 
1148 /*******/
1149 /* INI */
1150 /*******/
1151 
1152 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1153 {
1154 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1155 
1156 	if (IS_CHAN_2GHZ(chan))
1157 		ctl |= CTL_11G;
1158 	else
1159 		ctl |= CTL_11A;
1160 
1161 	return ctl;
1162 }
1163 
1164 /****************************************/
1165 /* Reset and Channel Switching Routines */
1166 /****************************************/
1167 
1168 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1169 {
1170 	struct ath_common *common = ath9k_hw_common(ah);
1171 	int txbuf_size;
1172 
1173 	ENABLE_REGWRITE_BUFFER(ah);
1174 
1175 	/*
1176 	 * set AHB_MODE not to do cacheline prefetches
1177 	*/
1178 	if (!AR_SREV_9300_20_OR_LATER(ah))
1179 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1180 
1181 	/*
1182 	 * let mac dma reads be in 128 byte chunks
1183 	 */
1184 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1185 
1186 	REGWRITE_BUFFER_FLUSH(ah);
1187 
1188 	/*
1189 	 * Restore TX Trigger Level to its pre-reset value.
1190 	 * The initial value depends on whether aggregation is enabled, and is
1191 	 * adjusted whenever underruns are detected.
1192 	 */
1193 	if (!AR_SREV_9300_20_OR_LATER(ah))
1194 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1195 
1196 	ENABLE_REGWRITE_BUFFER(ah);
1197 
1198 	/*
1199 	 * let mac dma writes be in 128 byte chunks
1200 	 */
1201 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1202 
1203 	/*
1204 	 * Setup receive FIFO threshold to hold off TX activities
1205 	 */
1206 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1207 
1208 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1209 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1210 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1211 
1212 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1213 			ah->caps.rx_status_len);
1214 	}
1215 
1216 	/*
1217 	 * reduce the number of usable entries in PCU TXBUF to avoid
1218 	 * wrap around issues.
1219 	 */
1220 	if (AR_SREV_9285(ah)) {
1221 		/* For AR9285 the number of Fifos are reduced to half.
1222 		 * So set the usable tx buf size also to half to
1223 		 * avoid data/delimiter underruns
1224 		 */
1225 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1226 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1227 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1228 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1229 	} else {
1230 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1231 	}
1232 
1233 	if (!AR_SREV_9271(ah))
1234 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1235 
1236 	REGWRITE_BUFFER_FLUSH(ah);
1237 
1238 	if (AR_SREV_9300_20_OR_LATER(ah))
1239 		ath9k_hw_reset_txstatus_ring(ah);
1240 }
1241 
1242 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1243 {
1244 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1245 	u32 set = AR_STA_ID1_KSRCH_MODE;
1246 
1247 	switch (opmode) {
1248 	case NL80211_IFTYPE_ADHOC:
1249 		set |= AR_STA_ID1_ADHOC;
1250 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1251 		break;
1252 	case NL80211_IFTYPE_MESH_POINT:
1253 	case NL80211_IFTYPE_AP:
1254 		set |= AR_STA_ID1_STA_AP;
1255 		/* fall through */
1256 	case NL80211_IFTYPE_STATION:
1257 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1258 		break;
1259 	default:
1260 		if (!ah->is_monitoring)
1261 			set = 0;
1262 		break;
1263 	}
1264 	REG_RMW(ah, AR_STA_ID1, set, mask);
1265 }
1266 
1267 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1268 				   u32 *coef_mantissa, u32 *coef_exponent)
1269 {
1270 	u32 coef_exp, coef_man;
1271 
1272 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1273 		if ((coef_scaled >> coef_exp) & 0x1)
1274 			break;
1275 
1276 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1277 
1278 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1279 
1280 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1281 	*coef_exponent = coef_exp - 16;
1282 }
1283 
1284 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1285 {
1286 	u32 rst_flags;
1287 	u32 tmpReg;
1288 
1289 	if (AR_SREV_9100(ah)) {
1290 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1291 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1292 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1293 	}
1294 
1295 	ENABLE_REGWRITE_BUFFER(ah);
1296 
1297 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1298 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1299 		udelay(10);
1300 	}
1301 
1302 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1303 		  AR_RTC_FORCE_WAKE_ON_INT);
1304 
1305 	if (AR_SREV_9100(ah)) {
1306 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1307 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1308 	} else {
1309 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1310 		if (AR_SREV_9340(ah))
1311 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1312 		else
1313 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1314 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1315 
1316 		if (tmpReg) {
1317 			u32 val;
1318 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1319 
1320 			val = AR_RC_HOSTIF;
1321 			if (!AR_SREV_9300_20_OR_LATER(ah))
1322 				val |= AR_RC_AHB;
1323 			REG_WRITE(ah, AR_RC, val);
1324 
1325 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1326 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1327 
1328 		rst_flags = AR_RTC_RC_MAC_WARM;
1329 		if (type == ATH9K_RESET_COLD)
1330 			rst_flags |= AR_RTC_RC_MAC_COLD;
1331 	}
1332 
1333 	if (AR_SREV_9330(ah)) {
1334 		int npend = 0;
1335 		int i;
1336 
1337 		/* AR9330 WAR:
1338 		 * call external reset function to reset WMAC if:
1339 		 * - doing a cold reset
1340 		 * - we have pending frames in the TX queues
1341 		 */
1342 
1343 		for (i = 0; i < AR_NUM_QCU; i++) {
1344 			npend = ath9k_hw_numtxpending(ah, i);
1345 			if (npend)
1346 				break;
1347 		}
1348 
1349 		if (ah->external_reset &&
1350 		    (npend || type == ATH9K_RESET_COLD)) {
1351 			int reset_err = 0;
1352 
1353 			ath_dbg(ath9k_hw_common(ah), RESET,
1354 				"reset MAC via external reset\n");
1355 
1356 			reset_err = ah->external_reset();
1357 			if (reset_err) {
1358 				ath_err(ath9k_hw_common(ah),
1359 					"External reset failed, err=%d\n",
1360 					reset_err);
1361 				return false;
1362 			}
1363 
1364 			REG_WRITE(ah, AR_RTC_RESET, 1);
1365 		}
1366 	}
1367 
1368 	if (ath9k_hw_mci_is_enabled(ah))
1369 		ar9003_mci_check_gpm_offset(ah);
1370 
1371 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1372 
1373 	REGWRITE_BUFFER_FLUSH(ah);
1374 
1375 	udelay(50);
1376 
1377 	REG_WRITE(ah, AR_RTC_RC, 0);
1378 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1379 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1380 		return false;
1381 	}
1382 
1383 	if (!AR_SREV_9100(ah))
1384 		REG_WRITE(ah, AR_RC, 0);
1385 
1386 	if (AR_SREV_9100(ah))
1387 		udelay(50);
1388 
1389 	return true;
1390 }
1391 
1392 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1393 {
1394 	ENABLE_REGWRITE_BUFFER(ah);
1395 
1396 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1397 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1398 		udelay(10);
1399 	}
1400 
1401 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1402 		  AR_RTC_FORCE_WAKE_ON_INT);
1403 
1404 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1405 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1406 
1407 	REG_WRITE(ah, AR_RTC_RESET, 0);
1408 
1409 	REGWRITE_BUFFER_FLUSH(ah);
1410 
1411 	if (!AR_SREV_9300_20_OR_LATER(ah))
1412 		udelay(2);
1413 
1414 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1415 		REG_WRITE(ah, AR_RC, 0);
1416 
1417 	REG_WRITE(ah, AR_RTC_RESET, 1);
1418 
1419 	if (!ath9k_hw_wait(ah,
1420 			   AR_RTC_STATUS,
1421 			   AR_RTC_STATUS_M,
1422 			   AR_RTC_STATUS_ON,
1423 			   AH_WAIT_TIMEOUT)) {
1424 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1425 		return false;
1426 	}
1427 
1428 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1429 }
1430 
1431 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1432 {
1433 	bool ret = false;
1434 
1435 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1436 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1437 		udelay(10);
1438 	}
1439 
1440 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1441 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1442 
1443 	if (!ah->reset_power_on)
1444 		type = ATH9K_RESET_POWER_ON;
1445 
1446 	switch (type) {
1447 	case ATH9K_RESET_POWER_ON:
1448 		ret = ath9k_hw_set_reset_power_on(ah);
1449 		if (ret)
1450 			ah->reset_power_on = true;
1451 		break;
1452 	case ATH9K_RESET_WARM:
1453 	case ATH9K_RESET_COLD:
1454 		ret = ath9k_hw_set_reset(ah, type);
1455 		break;
1456 	default:
1457 		break;
1458 	}
1459 
1460 	return ret;
1461 }
1462 
1463 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1464 				struct ath9k_channel *chan)
1465 {
1466 	int reset_type = ATH9K_RESET_WARM;
1467 
1468 	if (AR_SREV_9280(ah)) {
1469 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1470 			reset_type = ATH9K_RESET_POWER_ON;
1471 		else
1472 			reset_type = ATH9K_RESET_COLD;
1473 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1474 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1475 		reset_type = ATH9K_RESET_COLD;
1476 
1477 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1478 		return false;
1479 
1480 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1481 		return false;
1482 
1483 	ah->chip_fullsleep = false;
1484 
1485 	if (AR_SREV_9330(ah))
1486 		ar9003_hw_internal_regulator_apply(ah);
1487 	ath9k_hw_init_pll(ah, chan);
1488 	ath9k_hw_set_rfmode(ah, chan);
1489 
1490 	return true;
1491 }
1492 
1493 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1494 				    struct ath9k_channel *chan)
1495 {
1496 	struct ath_common *common = ath9k_hw_common(ah);
1497 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1498 	bool band_switch = false, mode_diff = false;
1499 	u8 ini_reloaded = 0;
1500 	u32 qnum;
1501 	int r;
1502 
1503 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1504 		band_switch = IS_CHAN_5GHZ(ah->curchan) != IS_CHAN_5GHZ(chan);
1505 		mode_diff = (chan->channelFlags != ah->curchan->channelFlags);
1506 	}
1507 
1508 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1509 		if (ath9k_hw_numtxpending(ah, qnum)) {
1510 			ath_dbg(common, QUEUE,
1511 				"Transmit frames pending on queue %d\n", qnum);
1512 			return false;
1513 		}
1514 	}
1515 
1516 	if (!ath9k_hw_rfbus_req(ah)) {
1517 		ath_err(common, "Could not kill baseband RX\n");
1518 		return false;
1519 	}
1520 
1521 	if (band_switch || mode_diff) {
1522 		ath9k_hw_mark_phy_inactive(ah);
1523 		udelay(5);
1524 
1525 		if (band_switch)
1526 			ath9k_hw_init_pll(ah, chan);
1527 
1528 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1529 			ath_err(common, "Failed to do fast channel change\n");
1530 			return false;
1531 		}
1532 	}
1533 
1534 	ath9k_hw_set_channel_regs(ah, chan);
1535 
1536 	r = ath9k_hw_rf_set_freq(ah, chan);
1537 	if (r) {
1538 		ath_err(common, "Failed to set channel\n");
1539 		return false;
1540 	}
1541 	ath9k_hw_set_clockrate(ah);
1542 	ath9k_hw_apply_txpower(ah, chan, false);
1543 
1544 	ath9k_hw_set_delta_slope(ah, chan);
1545 	ath9k_hw_spur_mitigate_freq(ah, chan);
1546 
1547 	if (band_switch || ini_reloaded)
1548 		ah->eep_ops->set_board_values(ah, chan);
1549 
1550 	ath9k_hw_init_bb(ah, chan);
1551 	ath9k_hw_rfbus_done(ah);
1552 
1553 	if (band_switch || ini_reloaded) {
1554 		ah->ah_flags |= AH_FASTCC;
1555 		ath9k_hw_init_cal(ah, chan);
1556 		ah->ah_flags &= ~AH_FASTCC;
1557 	}
1558 
1559 	return true;
1560 }
1561 
1562 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1563 {
1564 	u32 gpio_mask = ah->gpio_mask;
1565 	int i;
1566 
1567 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1568 		if (!(gpio_mask & 1))
1569 			continue;
1570 
1571 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1572 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1573 	}
1574 }
1575 
1576 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1577 			       int *hang_state, int *hang_pos)
1578 {
1579 	static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1580 	u32 chain_state, dcs_pos, i;
1581 
1582 	for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1583 		chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1584 		for (i = 0; i < 3; i++) {
1585 			if (chain_state == dcu_chain_state[i]) {
1586 				*hang_state = chain_state;
1587 				*hang_pos = dcs_pos;
1588 				return true;
1589 			}
1590 		}
1591 	}
1592 	return false;
1593 }
1594 
1595 #define DCU_COMPLETE_STATE        1
1596 #define DCU_COMPLETE_STATE_MASK 0x3
1597 #define NUM_STATUS_READS         50
1598 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1599 {
1600 	u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1601 	u32 i, hang_pos, hang_state, num_state = 6;
1602 
1603 	comp_state = REG_READ(ah, AR_DMADBG_6);
1604 
1605 	if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1606 		ath_dbg(ath9k_hw_common(ah), RESET,
1607 			"MAC Hang signature not found at DCU complete\n");
1608 		return false;
1609 	}
1610 
1611 	chain_state = REG_READ(ah, dcs_reg);
1612 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1613 		goto hang_check_iter;
1614 
1615 	dcs_reg = AR_DMADBG_5;
1616 	num_state = 4;
1617 	chain_state = REG_READ(ah, dcs_reg);
1618 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1619 		goto hang_check_iter;
1620 
1621 	ath_dbg(ath9k_hw_common(ah), RESET,
1622 		"MAC Hang signature 1 not found\n");
1623 	return false;
1624 
1625 hang_check_iter:
1626 	ath_dbg(ath9k_hw_common(ah), RESET,
1627 		"DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1628 		chain_state, comp_state, hang_state, hang_pos);
1629 
1630 	for (i = 0; i < NUM_STATUS_READS; i++) {
1631 		chain_state = REG_READ(ah, dcs_reg);
1632 		chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1633 		comp_state = REG_READ(ah, AR_DMADBG_6);
1634 
1635 		if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1636 					DCU_COMPLETE_STATE) ||
1637 		    (chain_state != hang_state))
1638 			return false;
1639 	}
1640 
1641 	ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1642 
1643 	return true;
1644 }
1645 
1646 void ath9k_hw_check_nav(struct ath_hw *ah)
1647 {
1648 	struct ath_common *common = ath9k_hw_common(ah);
1649 	u32 val;
1650 
1651 	val = REG_READ(ah, AR_NAV);
1652 	if (val != 0xdeadbeef && val > 0x7fff) {
1653 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1654 		REG_WRITE(ah, AR_NAV, 0);
1655 	}
1656 }
1657 EXPORT_SYMBOL(ath9k_hw_check_nav);
1658 
1659 bool ath9k_hw_check_alive(struct ath_hw *ah)
1660 {
1661 	int count = 50;
1662 	u32 reg;
1663 
1664 	if (AR_SREV_9300(ah))
1665 		return !ath9k_hw_detect_mac_hang(ah);
1666 
1667 	if (AR_SREV_9285_12_OR_LATER(ah))
1668 		return true;
1669 
1670 	do {
1671 		reg = REG_READ(ah, AR_OBS_BUS_1);
1672 
1673 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1674 			continue;
1675 
1676 		switch (reg & 0x7E000B00) {
1677 		case 0x1E000000:
1678 		case 0x52000B00:
1679 		case 0x18000B00:
1680 			continue;
1681 		default:
1682 			return true;
1683 		}
1684 	} while (count-- > 0);
1685 
1686 	return false;
1687 }
1688 EXPORT_SYMBOL(ath9k_hw_check_alive);
1689 
1690 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1691 {
1692 	/* Setup MFP options for CCMP */
1693 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1694 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1695 		 * frames when constructing CCMP AAD. */
1696 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1697 			      0xc7ff);
1698 		ah->sw_mgmt_crypto = false;
1699 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1700 		/* Disable hardware crypto for management frames */
1701 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1702 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1703 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1704 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1705 		ah->sw_mgmt_crypto = true;
1706 	} else {
1707 		ah->sw_mgmt_crypto = true;
1708 	}
1709 }
1710 
1711 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1712 				  u32 macStaId1, u32 saveDefAntenna)
1713 {
1714 	struct ath_common *common = ath9k_hw_common(ah);
1715 
1716 	ENABLE_REGWRITE_BUFFER(ah);
1717 
1718 	REG_RMW(ah, AR_STA_ID1, macStaId1
1719 		  | AR_STA_ID1_RTS_USE_DEF
1720 		  | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1721 		  | ah->sta_id1_defaults,
1722 		  ~AR_STA_ID1_SADH_MASK);
1723 	ath_hw_setbssidmask(common);
1724 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1725 	ath9k_hw_write_associd(ah);
1726 	REG_WRITE(ah, AR_ISR, ~0);
1727 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1728 
1729 	REGWRITE_BUFFER_FLUSH(ah);
1730 
1731 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1732 }
1733 
1734 static void ath9k_hw_init_queues(struct ath_hw *ah)
1735 {
1736 	int i;
1737 
1738 	ENABLE_REGWRITE_BUFFER(ah);
1739 
1740 	for (i = 0; i < AR_NUM_DCU; i++)
1741 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1742 
1743 	REGWRITE_BUFFER_FLUSH(ah);
1744 
1745 	ah->intr_txqs = 0;
1746 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1747 		ath9k_hw_resettxqueue(ah, i);
1748 }
1749 
1750 /*
1751  * For big endian systems turn on swapping for descriptors
1752  */
1753 static void ath9k_hw_init_desc(struct ath_hw *ah)
1754 {
1755 	struct ath_common *common = ath9k_hw_common(ah);
1756 
1757 	if (AR_SREV_9100(ah)) {
1758 		u32 mask;
1759 		mask = REG_READ(ah, AR_CFG);
1760 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1761 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1762 				mask);
1763 		} else {
1764 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1765 			REG_WRITE(ah, AR_CFG, mask);
1766 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1767 				REG_READ(ah, AR_CFG));
1768 		}
1769 	} else {
1770 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1771 			/* Configure AR9271 target WLAN */
1772 			if (AR_SREV_9271(ah))
1773 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1774 			else
1775 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1776 		}
1777 #ifdef __BIG_ENDIAN
1778 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1779 			 AR_SREV_9550(ah))
1780 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1781 		else
1782 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1783 #endif
1784 	}
1785 }
1786 
1787 /*
1788  * Fast channel change:
1789  * (Change synthesizer based on channel freq without resetting chip)
1790  */
1791 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1792 {
1793 	struct ath_common *common = ath9k_hw_common(ah);
1794 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1795 	int ret;
1796 
1797 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1798 		goto fail;
1799 
1800 	if (ah->chip_fullsleep)
1801 		goto fail;
1802 
1803 	if (!ah->curchan)
1804 		goto fail;
1805 
1806 	if (chan->channel == ah->curchan->channel)
1807 		goto fail;
1808 
1809 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1810 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1811 		goto fail;
1812 
1813 	/*
1814 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1815 	 */
1816 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1817 	    chan->channelFlags != ah->curchan->channelFlags)
1818 		goto fail;
1819 
1820 	if (!ath9k_hw_check_alive(ah))
1821 		goto fail;
1822 
1823 	/*
1824 	 * For AR9462, make sure that calibration data for
1825 	 * re-using are present.
1826 	 */
1827 	if (AR_SREV_9462(ah) && (ah->caldata &&
1828 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1829 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1830 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1831 		goto fail;
1832 
1833 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1834 		ah->curchan->channel, chan->channel);
1835 
1836 	ret = ath9k_hw_channel_change(ah, chan);
1837 	if (!ret)
1838 		goto fail;
1839 
1840 	if (ath9k_hw_mci_is_enabled(ah))
1841 		ar9003_mci_2g5g_switch(ah, false);
1842 
1843 	ath9k_hw_loadnf(ah, ah->curchan);
1844 	ath9k_hw_start_nfcal(ah, true);
1845 
1846 	if (AR_SREV_9271(ah))
1847 		ar9002_hw_load_ani_reg(ah, chan);
1848 
1849 	return 0;
1850 fail:
1851 	return -EINVAL;
1852 }
1853 
1854 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1855 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1856 {
1857 	struct ath_common *common = ath9k_hw_common(ah);
1858 	u32 saveLedState;
1859 	u32 saveDefAntenna;
1860 	u32 macStaId1;
1861 	u64 tsf = 0;
1862 	int r;
1863 	bool start_mci_reset = false;
1864 	bool save_fullsleep = ah->chip_fullsleep;
1865 
1866 	if (ath9k_hw_mci_is_enabled(ah)) {
1867 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1868 		if (start_mci_reset)
1869 			return 0;
1870 	}
1871 
1872 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1873 		return -EIO;
1874 
1875 	if (ah->curchan && !ah->chip_fullsleep)
1876 		ath9k_hw_getnf(ah, ah->curchan);
1877 
1878 	ah->caldata = caldata;
1879 	if (caldata && (chan->channel != caldata->channel ||
1880 			chan->channelFlags != caldata->channelFlags)) {
1881 		/* Operating channel changed, reset channel calibration data */
1882 		memset(caldata, 0, sizeof(*caldata));
1883 		ath9k_init_nfcal_hist_buffer(ah, chan);
1884 	} else if (caldata) {
1885 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1886 	}
1887 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1888 
1889 	if (fastcc) {
1890 		r = ath9k_hw_do_fastcc(ah, chan);
1891 		if (!r)
1892 			return r;
1893 	}
1894 
1895 	if (ath9k_hw_mci_is_enabled(ah))
1896 		ar9003_mci_stop_bt(ah, save_fullsleep);
1897 
1898 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1899 	if (saveDefAntenna == 0)
1900 		saveDefAntenna = 1;
1901 
1902 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1903 
1904 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1905 	if (AR_SREV_9100(ah) ||
1906 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1907 		tsf = ath9k_hw_gettsf64(ah);
1908 
1909 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1910 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1911 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1912 
1913 	ath9k_hw_mark_phy_inactive(ah);
1914 
1915 	ah->paprd_table_write_done = false;
1916 
1917 	/* Only required on the first reset */
1918 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1919 		REG_WRITE(ah,
1920 			  AR9271_RESET_POWER_DOWN_CONTROL,
1921 			  AR9271_RADIO_RF_RST);
1922 		udelay(50);
1923 	}
1924 
1925 	if (!ath9k_hw_chip_reset(ah, chan)) {
1926 		ath_err(common, "Chip reset failed\n");
1927 		return -EINVAL;
1928 	}
1929 
1930 	/* Only required on the first reset */
1931 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1932 		ah->htc_reset_init = false;
1933 		REG_WRITE(ah,
1934 			  AR9271_RESET_POWER_DOWN_CONTROL,
1935 			  AR9271_GATE_MAC_CTL);
1936 		udelay(50);
1937 	}
1938 
1939 	/* Restore TSF */
1940 	if (tsf)
1941 		ath9k_hw_settsf64(ah, tsf);
1942 
1943 	if (AR_SREV_9280_20_OR_LATER(ah))
1944 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1945 
1946 	if (!AR_SREV_9300_20_OR_LATER(ah))
1947 		ar9002_hw_enable_async_fifo(ah);
1948 
1949 	r = ath9k_hw_process_ini(ah, chan);
1950 	if (r)
1951 		return r;
1952 
1953 	if (ath9k_hw_mci_is_enabled(ah))
1954 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1955 
1956 	/*
1957 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1958 	 * right after the chip reset. When that happens, write a new
1959 	 * value after the initvals have been applied, with an offset
1960 	 * based on measured time difference
1961 	 */
1962 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1963 		tsf += 1500;
1964 		ath9k_hw_settsf64(ah, tsf);
1965 	}
1966 
1967 	ath9k_hw_init_mfp(ah);
1968 
1969 	ath9k_hw_set_delta_slope(ah, chan);
1970 	ath9k_hw_spur_mitigate_freq(ah, chan);
1971 	ah->eep_ops->set_board_values(ah, chan);
1972 
1973 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1974 
1975 	r = ath9k_hw_rf_set_freq(ah, chan);
1976 	if (r)
1977 		return r;
1978 
1979 	ath9k_hw_set_clockrate(ah);
1980 
1981 	ath9k_hw_init_queues(ah);
1982 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1983 	ath9k_hw_ani_cache_ini_regs(ah);
1984 	ath9k_hw_init_qos(ah);
1985 
1986 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1987 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1988 
1989 	ath9k_hw_init_global_settings(ah);
1990 
1991 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1992 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1993 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1994 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1995 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1996 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1997 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1998 	}
1999 
2000 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2001 
2002 	ath9k_hw_set_dma(ah);
2003 
2004 	if (!ath9k_hw_mci_is_enabled(ah))
2005 		REG_WRITE(ah, AR_OBS, 8);
2006 
2007 	if (ah->config.rx_intr_mitigation) {
2008 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2009 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2010 	}
2011 
2012 	if (ah->config.tx_intr_mitigation) {
2013 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2014 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2015 	}
2016 
2017 	ath9k_hw_init_bb(ah, chan);
2018 
2019 	if (caldata) {
2020 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2021 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2022 	}
2023 	if (!ath9k_hw_init_cal(ah, chan))
2024 		return -EIO;
2025 
2026 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2027 		return -EIO;
2028 
2029 	ENABLE_REGWRITE_BUFFER(ah);
2030 
2031 	ath9k_hw_restore_chainmask(ah);
2032 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2033 
2034 	REGWRITE_BUFFER_FLUSH(ah);
2035 
2036 	ath9k_hw_init_desc(ah);
2037 
2038 	if (ath9k_hw_btcoex_is_enabled(ah))
2039 		ath9k_hw_btcoex_enable(ah);
2040 
2041 	if (ath9k_hw_mci_is_enabled(ah))
2042 		ar9003_mci_check_bt(ah);
2043 
2044 	ath9k_hw_loadnf(ah, chan);
2045 	ath9k_hw_start_nfcal(ah, true);
2046 
2047 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2048 		ar9003_hw_bb_watchdog_config(ah);
2049 		ar9003_hw_disable_phy_restart(ah);
2050 	}
2051 
2052 	ath9k_hw_apply_gpio_override(ah);
2053 
2054 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2055 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2056 
2057 	return 0;
2058 }
2059 EXPORT_SYMBOL(ath9k_hw_reset);
2060 
2061 /******************************/
2062 /* Power Management (Chipset) */
2063 /******************************/
2064 
2065 /*
2066  * Notify Power Mgt is disabled in self-generated frames.
2067  * If requested, force chip to sleep.
2068  */
2069 static void ath9k_set_power_sleep(struct ath_hw *ah)
2070 {
2071 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2072 
2073 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2074 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2075 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2076 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2077 		/* xxx Required for WLAN only case ? */
2078 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2079 		udelay(100);
2080 	}
2081 
2082 	/*
2083 	 * Clear the RTC force wake bit to allow the
2084 	 * mac to go to sleep.
2085 	 */
2086 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2087 
2088 	if (ath9k_hw_mci_is_enabled(ah))
2089 		udelay(100);
2090 
2091 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2092 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2093 
2094 	/* Shutdown chip. Active low */
2095 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2096 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2097 		udelay(2);
2098 	}
2099 
2100 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2101 	if (AR_SREV_9300_20_OR_LATER(ah))
2102 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2103 }
2104 
2105 /*
2106  * Notify Power Management is enabled in self-generating
2107  * frames. If request, set power mode of chip to
2108  * auto/normal.  Duration in units of 128us (1/8 TU).
2109  */
2110 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2111 {
2112 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2113 
2114 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2115 
2116 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2117 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2118 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2119 			  AR_RTC_FORCE_WAKE_ON_INT);
2120 	} else {
2121 
2122 		/* When chip goes into network sleep, it could be waken
2123 		 * up by MCI_INT interrupt caused by BT's HW messages
2124 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2125 		 * rate (~100us). This will cause chip to leave and
2126 		 * re-enter network sleep mode frequently, which in
2127 		 * consequence will have WLAN MCI HW to generate lots of
2128 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2129 		 * BT CPU to busy to process.
2130 		 */
2131 		if (ath9k_hw_mci_is_enabled(ah))
2132 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2133 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2134 		/*
2135 		 * Clear the RTC force wake bit to allow the
2136 		 * mac to go to sleep.
2137 		 */
2138 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2139 
2140 		if (ath9k_hw_mci_is_enabled(ah))
2141 			udelay(30);
2142 	}
2143 
2144 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2145 	if (AR_SREV_9300_20_OR_LATER(ah))
2146 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2147 }
2148 
2149 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2150 {
2151 	u32 val;
2152 	int i;
2153 
2154 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2155 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2156 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2157 		udelay(10);
2158 	}
2159 
2160 	if ((REG_READ(ah, AR_RTC_STATUS) &
2161 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2162 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2163 			return false;
2164 		}
2165 		if (!AR_SREV_9300_20_OR_LATER(ah))
2166 			ath9k_hw_init_pll(ah, NULL);
2167 	}
2168 	if (AR_SREV_9100(ah))
2169 		REG_SET_BIT(ah, AR_RTC_RESET,
2170 			    AR_RTC_RESET_EN);
2171 
2172 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2173 		    AR_RTC_FORCE_WAKE_EN);
2174 	udelay(50);
2175 
2176 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2177 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2178 		if (val == AR_RTC_STATUS_ON)
2179 			break;
2180 		udelay(50);
2181 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2182 			    AR_RTC_FORCE_WAKE_EN);
2183 	}
2184 	if (i == 0) {
2185 		ath_err(ath9k_hw_common(ah),
2186 			"Failed to wakeup in %uus\n",
2187 			POWER_UP_TIME / 20);
2188 		return false;
2189 	}
2190 
2191 	if (ath9k_hw_mci_is_enabled(ah))
2192 		ar9003_mci_set_power_awake(ah);
2193 
2194 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2195 
2196 	return true;
2197 }
2198 
2199 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2200 {
2201 	struct ath_common *common = ath9k_hw_common(ah);
2202 	int status = true;
2203 	static const char *modes[] = {
2204 		"AWAKE",
2205 		"FULL-SLEEP",
2206 		"NETWORK SLEEP",
2207 		"UNDEFINED"
2208 	};
2209 
2210 	if (ah->power_mode == mode)
2211 		return status;
2212 
2213 	ath_dbg(common, RESET, "%s -> %s\n",
2214 		modes[ah->power_mode], modes[mode]);
2215 
2216 	switch (mode) {
2217 	case ATH9K_PM_AWAKE:
2218 		status = ath9k_hw_set_power_awake(ah);
2219 		break;
2220 	case ATH9K_PM_FULL_SLEEP:
2221 		if (ath9k_hw_mci_is_enabled(ah))
2222 			ar9003_mci_set_full_sleep(ah);
2223 
2224 		ath9k_set_power_sleep(ah);
2225 		ah->chip_fullsleep = true;
2226 		break;
2227 	case ATH9K_PM_NETWORK_SLEEP:
2228 		ath9k_set_power_network_sleep(ah);
2229 		break;
2230 	default:
2231 		ath_err(common, "Unknown power mode %u\n", mode);
2232 		return false;
2233 	}
2234 	ah->power_mode = mode;
2235 
2236 	/*
2237 	 * XXX: If this warning never comes up after a while then
2238 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2239 	 * ath9k_hw_setpower() return type void.
2240 	 */
2241 
2242 	if (!(ah->ah_flags & AH_UNPLUGGED))
2243 		ATH_DBG_WARN_ON_ONCE(!status);
2244 
2245 	return status;
2246 }
2247 EXPORT_SYMBOL(ath9k_hw_setpower);
2248 
2249 /*******************/
2250 /* Beacon Handling */
2251 /*******************/
2252 
2253 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2254 {
2255 	int flags = 0;
2256 
2257 	ENABLE_REGWRITE_BUFFER(ah);
2258 
2259 	switch (ah->opmode) {
2260 	case NL80211_IFTYPE_ADHOC:
2261 		REG_SET_BIT(ah, AR_TXCFG,
2262 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2263 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2264 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2265 		flags |= AR_NDP_TIMER_EN;
2266 	case NL80211_IFTYPE_MESH_POINT:
2267 	case NL80211_IFTYPE_AP:
2268 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2269 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2270 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2271 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2272 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2273 		flags |=
2274 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2275 		break;
2276 	default:
2277 		ath_dbg(ath9k_hw_common(ah), BEACON,
2278 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2279 		return;
2280 		break;
2281 	}
2282 
2283 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2284 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2285 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2286 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2287 
2288 	REGWRITE_BUFFER_FLUSH(ah);
2289 
2290 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2291 }
2292 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2293 
2294 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2295 				    const struct ath9k_beacon_state *bs)
2296 {
2297 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2298 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2299 	struct ath_common *common = ath9k_hw_common(ah);
2300 
2301 	ENABLE_REGWRITE_BUFFER(ah);
2302 
2303 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2304 
2305 	REG_WRITE(ah, AR_BEACON_PERIOD,
2306 		  TU_TO_USEC(bs->bs_intval));
2307 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2308 		  TU_TO_USEC(bs->bs_intval));
2309 
2310 	REGWRITE_BUFFER_FLUSH(ah);
2311 
2312 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2313 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2314 
2315 	beaconintval = bs->bs_intval;
2316 
2317 	if (bs->bs_sleepduration > beaconintval)
2318 		beaconintval = bs->bs_sleepduration;
2319 
2320 	dtimperiod = bs->bs_dtimperiod;
2321 	if (bs->bs_sleepduration > dtimperiod)
2322 		dtimperiod = bs->bs_sleepduration;
2323 
2324 	if (beaconintval == dtimperiod)
2325 		nextTbtt = bs->bs_nextdtim;
2326 	else
2327 		nextTbtt = bs->bs_nexttbtt;
2328 
2329 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2330 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2331 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2332 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2333 
2334 	ENABLE_REGWRITE_BUFFER(ah);
2335 
2336 	REG_WRITE(ah, AR_NEXT_DTIM,
2337 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2338 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2339 
2340 	REG_WRITE(ah, AR_SLEEP1,
2341 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2342 		  | AR_SLEEP1_ASSUME_DTIM);
2343 
2344 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2345 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2346 	else
2347 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2348 
2349 	REG_WRITE(ah, AR_SLEEP2,
2350 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2351 
2352 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2353 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2354 
2355 	REGWRITE_BUFFER_FLUSH(ah);
2356 
2357 	REG_SET_BIT(ah, AR_TIMER_MODE,
2358 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2359 		    AR_DTIM_TIMER_EN);
2360 
2361 	/* TSF Out of Range Threshold */
2362 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2363 }
2364 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2365 
2366 /*******************/
2367 /* HW Capabilities */
2368 /*******************/
2369 
2370 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2371 {
2372 	eeprom_chainmask &= chip_chainmask;
2373 	if (eeprom_chainmask)
2374 		return eeprom_chainmask;
2375 	else
2376 		return chip_chainmask;
2377 }
2378 
2379 /**
2380  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2381  * @ah: the atheros hardware data structure
2382  *
2383  * We enable DFS support upstream on chipsets which have passed a series
2384  * of tests. The testing requirements are going to be documented. Desired
2385  * test requirements are documented at:
2386  *
2387  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2388  *
2389  * Once a new chipset gets properly tested an individual commit can be used
2390  * to document the testing for DFS for that chipset.
2391  */
2392 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2393 {
2394 
2395 	switch (ah->hw_version.macVersion) {
2396 	/* for temporary testing DFS with 9280 */
2397 	case AR_SREV_VERSION_9280:
2398 	/* AR9580 will likely be our first target to get testing on */
2399 	case AR_SREV_VERSION_9580:
2400 		return true;
2401 	default:
2402 		return false;
2403 	}
2404 }
2405 
2406 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2407 {
2408 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2409 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2410 	struct ath_common *common = ath9k_hw_common(ah);
2411 	unsigned int chip_chainmask;
2412 
2413 	u16 eeval;
2414 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2415 
2416 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2417 	regulatory->current_rd = eeval;
2418 
2419 	if (ah->opmode != NL80211_IFTYPE_AP &&
2420 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2421 		if (regulatory->current_rd == 0x64 ||
2422 		    regulatory->current_rd == 0x65)
2423 			regulatory->current_rd += 5;
2424 		else if (regulatory->current_rd == 0x41)
2425 			regulatory->current_rd = 0x43;
2426 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2427 			regulatory->current_rd);
2428 	}
2429 
2430 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2431 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2432 		ath_err(common,
2433 			"no band has been marked as supported in EEPROM\n");
2434 		return -EINVAL;
2435 	}
2436 
2437 	if (eeval & AR5416_OPFLAGS_11A)
2438 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2439 
2440 	if (eeval & AR5416_OPFLAGS_11G)
2441 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2442 
2443 	if (AR_SREV_9485(ah) ||
2444 	    AR_SREV_9285(ah) ||
2445 	    AR_SREV_9330(ah) ||
2446 	    AR_SREV_9565(ah))
2447 		chip_chainmask = 1;
2448 	else if (AR_SREV_9462(ah))
2449 		chip_chainmask = 3;
2450 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2451 		chip_chainmask = 7;
2452 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2453 		chip_chainmask = 3;
2454 	else
2455 		chip_chainmask = 7;
2456 
2457 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2458 	/*
2459 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2460 	 * the EEPROM.
2461 	 */
2462 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2463 	    !(eeval & AR5416_OPFLAGS_11A) &&
2464 	    !(AR_SREV_9271(ah)))
2465 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2466 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2467 	else if (AR_SREV_9100(ah))
2468 		pCap->rx_chainmask = 0x7;
2469 	else
2470 		/* Use rx_chainmask from EEPROM. */
2471 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2472 
2473 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2474 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2475 	ah->txchainmask = pCap->tx_chainmask;
2476 	ah->rxchainmask = pCap->rx_chainmask;
2477 
2478 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2479 
2480 	/* enable key search for every frame in an aggregate */
2481 	if (AR_SREV_9300_20_OR_LATER(ah))
2482 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2483 
2484 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2485 
2486 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2487 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2488 	else
2489 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2490 
2491 	if (AR_SREV_9271(ah))
2492 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2493 	else if (AR_DEVID_7010(ah))
2494 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2495 	else if (AR_SREV_9300_20_OR_LATER(ah))
2496 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2497 	else if (AR_SREV_9287_11_OR_LATER(ah))
2498 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2499 	else if (AR_SREV_9285_12_OR_LATER(ah))
2500 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2501 	else if (AR_SREV_9280_20_OR_LATER(ah))
2502 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2503 	else
2504 		pCap->num_gpio_pins = AR_NUM_GPIO;
2505 
2506 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2507 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2508 	else
2509 		pCap->rts_aggr_limit = (8 * 1024);
2510 
2511 #ifdef CONFIG_ATH9K_RFKILL
2512 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2513 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2514 		ah->rfkill_gpio =
2515 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2516 		ah->rfkill_polarity =
2517 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2518 
2519 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2520 	}
2521 #endif
2522 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2523 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2524 	else
2525 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2526 
2527 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2528 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2529 	else
2530 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2531 
2532 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2533 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2534 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2535 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2536 
2537 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2538 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2539 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2540 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2541 		pCap->txs_len = sizeof(struct ar9003_txs);
2542 	} else {
2543 		pCap->tx_desc_len = sizeof(struct ath_desc);
2544 		if (AR_SREV_9280_20(ah))
2545 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2546 	}
2547 
2548 	if (AR_SREV_9300_20_OR_LATER(ah))
2549 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2550 
2551 	if (AR_SREV_9300_20_OR_LATER(ah))
2552 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2553 
2554 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2555 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2556 
2557 	if (AR_SREV_9285(ah)) {
2558 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2559 			ant_div_ctl1 =
2560 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2561 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2562 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2563 				ath_info(common, "Enable LNA combining\n");
2564 			}
2565 		}
2566 	}
2567 
2568 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2569 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2570 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2571 	}
2572 
2573 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2574 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2575 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2576 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2577 			ath_info(common, "Enable LNA combining\n");
2578 		}
2579 	}
2580 
2581 	if (ath9k_hw_dfs_tested(ah))
2582 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2583 
2584 	tx_chainmask = pCap->tx_chainmask;
2585 	rx_chainmask = pCap->rx_chainmask;
2586 	while (tx_chainmask || rx_chainmask) {
2587 		if (tx_chainmask & BIT(0))
2588 			pCap->max_txchains++;
2589 		if (rx_chainmask & BIT(0))
2590 			pCap->max_rxchains++;
2591 
2592 		tx_chainmask >>= 1;
2593 		rx_chainmask >>= 1;
2594 	}
2595 
2596 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2597 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2598 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2599 
2600 		if (AR_SREV_9462_20_OR_LATER(ah))
2601 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2602 	}
2603 
2604 	if (AR_SREV_9462(ah))
2605 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2606 
2607 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2608 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2609 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2610 
2611 	/*
2612 	 * Fast channel change across bands is available
2613 	 * only for AR9462 and AR9565.
2614 	 */
2615 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2616 		pCap->hw_caps |= ATH9K_HW_CAP_FCC_BAND_SWITCH;
2617 
2618 	return 0;
2619 }
2620 
2621 /****************************/
2622 /* GPIO / RFKILL / Antennae */
2623 /****************************/
2624 
2625 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2626 					 u32 gpio, u32 type)
2627 {
2628 	int addr;
2629 	u32 gpio_shift, tmp;
2630 
2631 	if (gpio > 11)
2632 		addr = AR_GPIO_OUTPUT_MUX3;
2633 	else if (gpio > 5)
2634 		addr = AR_GPIO_OUTPUT_MUX2;
2635 	else
2636 		addr = AR_GPIO_OUTPUT_MUX1;
2637 
2638 	gpio_shift = (gpio % 6) * 5;
2639 
2640 	if (AR_SREV_9280_20_OR_LATER(ah)
2641 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2642 		REG_RMW(ah, addr, (type << gpio_shift),
2643 			(0x1f << gpio_shift));
2644 	} else {
2645 		tmp = REG_READ(ah, addr);
2646 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2647 		tmp &= ~(0x1f << gpio_shift);
2648 		tmp |= (type << gpio_shift);
2649 		REG_WRITE(ah, addr, tmp);
2650 	}
2651 }
2652 
2653 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2654 {
2655 	u32 gpio_shift;
2656 
2657 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2658 
2659 	if (AR_DEVID_7010(ah)) {
2660 		gpio_shift = gpio;
2661 		REG_RMW(ah, AR7010_GPIO_OE,
2662 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2663 			(AR7010_GPIO_OE_MASK << gpio_shift));
2664 		return;
2665 	}
2666 
2667 	gpio_shift = gpio << 1;
2668 	REG_RMW(ah,
2669 		AR_GPIO_OE_OUT,
2670 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2671 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2672 }
2673 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2674 
2675 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2676 {
2677 #define MS_REG_READ(x, y) \
2678 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2679 
2680 	if (gpio >= ah->caps.num_gpio_pins)
2681 		return 0xffffffff;
2682 
2683 	if (AR_DEVID_7010(ah)) {
2684 		u32 val;
2685 		val = REG_READ(ah, AR7010_GPIO_IN);
2686 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2687 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2688 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2689 			AR_GPIO_BIT(gpio)) != 0;
2690 	else if (AR_SREV_9271(ah))
2691 		return MS_REG_READ(AR9271, gpio) != 0;
2692 	else if (AR_SREV_9287_11_OR_LATER(ah))
2693 		return MS_REG_READ(AR9287, gpio) != 0;
2694 	else if (AR_SREV_9285_12_OR_LATER(ah))
2695 		return MS_REG_READ(AR9285, gpio) != 0;
2696 	else if (AR_SREV_9280_20_OR_LATER(ah))
2697 		return MS_REG_READ(AR928X, gpio) != 0;
2698 	else
2699 		return MS_REG_READ(AR, gpio) != 0;
2700 }
2701 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2702 
2703 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2704 			 u32 ah_signal_type)
2705 {
2706 	u32 gpio_shift;
2707 
2708 	if (AR_DEVID_7010(ah)) {
2709 		gpio_shift = gpio;
2710 		REG_RMW(ah, AR7010_GPIO_OE,
2711 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2712 			(AR7010_GPIO_OE_MASK << gpio_shift));
2713 		return;
2714 	}
2715 
2716 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2717 	gpio_shift = 2 * gpio;
2718 	REG_RMW(ah,
2719 		AR_GPIO_OE_OUT,
2720 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2721 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2722 }
2723 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2724 
2725 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2726 {
2727 	if (AR_DEVID_7010(ah)) {
2728 		val = val ? 0 : 1;
2729 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2730 			AR_GPIO_BIT(gpio));
2731 		return;
2732 	}
2733 
2734 	if (AR_SREV_9271(ah))
2735 		val = ~val;
2736 
2737 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2738 		AR_GPIO_BIT(gpio));
2739 }
2740 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2741 
2742 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2743 {
2744 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2745 }
2746 EXPORT_SYMBOL(ath9k_hw_setantenna);
2747 
2748 /*********************/
2749 /* General Operation */
2750 /*********************/
2751 
2752 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2753 {
2754 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2755 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2756 
2757 	if (phybits & AR_PHY_ERR_RADAR)
2758 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2759 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2760 		bits |= ATH9K_RX_FILTER_PHYERR;
2761 
2762 	return bits;
2763 }
2764 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2765 
2766 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2767 {
2768 	u32 phybits;
2769 
2770 	ENABLE_REGWRITE_BUFFER(ah);
2771 
2772 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2773 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2774 
2775 	REG_WRITE(ah, AR_RX_FILTER, bits);
2776 
2777 	phybits = 0;
2778 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2779 		phybits |= AR_PHY_ERR_RADAR;
2780 	if (bits & ATH9K_RX_FILTER_PHYERR)
2781 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2782 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2783 
2784 	if (phybits)
2785 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2786 	else
2787 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2788 
2789 	REGWRITE_BUFFER_FLUSH(ah);
2790 }
2791 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2792 
2793 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2794 {
2795 	if (ath9k_hw_mci_is_enabled(ah))
2796 		ar9003_mci_bt_gain_ctrl(ah);
2797 
2798 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2799 		return false;
2800 
2801 	ath9k_hw_init_pll(ah, NULL);
2802 	ah->htc_reset_init = true;
2803 	return true;
2804 }
2805 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2806 
2807 bool ath9k_hw_disable(struct ath_hw *ah)
2808 {
2809 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2810 		return false;
2811 
2812 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2813 		return false;
2814 
2815 	ath9k_hw_init_pll(ah, NULL);
2816 	return true;
2817 }
2818 EXPORT_SYMBOL(ath9k_hw_disable);
2819 
2820 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2821 {
2822 	enum eeprom_param gain_param;
2823 
2824 	if (IS_CHAN_2GHZ(chan))
2825 		gain_param = EEP_ANTENNA_GAIN_2G;
2826 	else
2827 		gain_param = EEP_ANTENNA_GAIN_5G;
2828 
2829 	return ah->eep_ops->get_eeprom(ah, gain_param);
2830 }
2831 
2832 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2833 			    bool test)
2834 {
2835 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2836 	struct ieee80211_channel *channel;
2837 	int chan_pwr, new_pwr, max_gain;
2838 	int ant_gain, ant_reduction = 0;
2839 
2840 	if (!chan)
2841 		return;
2842 
2843 	channel = chan->chan;
2844 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2845 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2846 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2847 
2848 	ant_gain = get_antenna_gain(ah, chan);
2849 	if (ant_gain > max_gain)
2850 		ant_reduction = ant_gain - max_gain;
2851 
2852 	ah->eep_ops->set_txpower(ah, chan,
2853 				 ath9k_regd_get_ctl(reg, chan),
2854 				 ant_reduction, new_pwr, test);
2855 }
2856 
2857 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2858 {
2859 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2860 	struct ath9k_channel *chan = ah->curchan;
2861 	struct ieee80211_channel *channel = chan->chan;
2862 
2863 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2864 	if (test)
2865 		channel->max_power = MAX_RATE_POWER / 2;
2866 
2867 	ath9k_hw_apply_txpower(ah, chan, test);
2868 
2869 	if (test)
2870 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2871 }
2872 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2873 
2874 void ath9k_hw_setopmode(struct ath_hw *ah)
2875 {
2876 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2877 }
2878 EXPORT_SYMBOL(ath9k_hw_setopmode);
2879 
2880 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2881 {
2882 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2883 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2884 }
2885 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2886 
2887 void ath9k_hw_write_associd(struct ath_hw *ah)
2888 {
2889 	struct ath_common *common = ath9k_hw_common(ah);
2890 
2891 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2892 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2893 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2894 }
2895 EXPORT_SYMBOL(ath9k_hw_write_associd);
2896 
2897 #define ATH9K_MAX_TSF_READ 10
2898 
2899 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2900 {
2901 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2902 	int i;
2903 
2904 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2905 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2906 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2907 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2908 		if (tsf_upper2 == tsf_upper1)
2909 			break;
2910 		tsf_upper1 = tsf_upper2;
2911 	}
2912 
2913 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2914 
2915 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2916 }
2917 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2918 
2919 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2920 {
2921 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2922 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2923 }
2924 EXPORT_SYMBOL(ath9k_hw_settsf64);
2925 
2926 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2927 {
2928 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2929 			   AH_TSF_WRITE_TIMEOUT))
2930 		ath_dbg(ath9k_hw_common(ah), RESET,
2931 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2932 
2933 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2934 }
2935 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2936 
2937 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2938 {
2939 	if (set)
2940 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2941 	else
2942 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2943 }
2944 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2945 
2946 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2947 {
2948 	u32 macmode;
2949 
2950 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2951 		macmode = AR_2040_JOINED_RX_CLEAR;
2952 	else
2953 		macmode = 0;
2954 
2955 	REG_WRITE(ah, AR_2040_MODE, macmode);
2956 }
2957 
2958 /* HW Generic timers configuration */
2959 
2960 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2961 {
2962 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2963 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2964 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2965 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2966 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2967 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2968 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2969 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2970 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2971 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2972 				AR_NDP2_TIMER_MODE, 0x0002},
2973 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2974 				AR_NDP2_TIMER_MODE, 0x0004},
2975 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2976 				AR_NDP2_TIMER_MODE, 0x0008},
2977 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2978 				AR_NDP2_TIMER_MODE, 0x0010},
2979 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2980 				AR_NDP2_TIMER_MODE, 0x0020},
2981 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2982 				AR_NDP2_TIMER_MODE, 0x0040},
2983 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2984 				AR_NDP2_TIMER_MODE, 0x0080}
2985 };
2986 
2987 /* HW generic timer primitives */
2988 
2989 /* compute and clear index of rightmost 1 */
2990 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2991 {
2992 	u32 b;
2993 
2994 	b = *mask;
2995 	b &= (0-b);
2996 	*mask &= ~b;
2997 	b *= debruijn32;
2998 	b >>= 27;
2999 
3000 	return timer_table->gen_timer_index[b];
3001 }
3002 
3003 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3004 {
3005 	return REG_READ(ah, AR_TSF_L32);
3006 }
3007 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3008 
3009 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3010 					  void (*trigger)(void *),
3011 					  void (*overflow)(void *),
3012 					  void *arg,
3013 					  u8 timer_index)
3014 {
3015 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3016 	struct ath_gen_timer *timer;
3017 
3018 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3019 	if (timer == NULL)
3020 		return NULL;
3021 
3022 	/* allocate a hardware generic timer slot */
3023 	timer_table->timers[timer_index] = timer;
3024 	timer->index = timer_index;
3025 	timer->trigger = trigger;
3026 	timer->overflow = overflow;
3027 	timer->arg = arg;
3028 
3029 	return timer;
3030 }
3031 EXPORT_SYMBOL(ath_gen_timer_alloc);
3032 
3033 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3034 			      struct ath_gen_timer *timer,
3035 			      u32 trig_timeout,
3036 			      u32 timer_period)
3037 {
3038 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3039 	u32 tsf, timer_next;
3040 
3041 	BUG_ON(!timer_period);
3042 
3043 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3044 
3045 	tsf = ath9k_hw_gettsf32(ah);
3046 
3047 	timer_next = tsf + trig_timeout;
3048 
3049 	ath_dbg(ath9k_hw_common(ah), BTCOEX,
3050 		"current tsf %x period %x timer_next %x\n",
3051 		tsf, timer_period, timer_next);
3052 
3053 	/*
3054 	 * Program generic timer registers
3055 	 */
3056 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3057 		 timer_next);
3058 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3059 		  timer_period);
3060 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3061 		    gen_tmr_configuration[timer->index].mode_mask);
3062 
3063 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3064 		/*
3065 		 * Starting from AR9462, each generic timer can select which tsf
3066 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3067 		 * 8 - 15  use tsf2.
3068 		 */
3069 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3070 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3071 				       (1 << timer->index));
3072 		else
3073 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3074 				       (1 << timer->index));
3075 	}
3076 
3077 	/* Enable both trigger and thresh interrupt masks */
3078 	REG_SET_BIT(ah, AR_IMR_S5,
3079 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3080 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3081 }
3082 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3083 
3084 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3085 {
3086 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3087 
3088 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3089 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3090 		return;
3091 	}
3092 
3093 	/* Clear generic timer enable bits. */
3094 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3095 			gen_tmr_configuration[timer->index].mode_mask);
3096 
3097 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3098 		/*
3099 		 * Need to switch back to TSF if it was using TSF2.
3100 		 */
3101 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3102 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3103 				    (1 << timer->index));
3104 		}
3105 	}
3106 
3107 	/* Disable both trigger and thresh interrupt masks */
3108 	REG_CLR_BIT(ah, AR_IMR_S5,
3109 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3110 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3111 
3112 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3113 }
3114 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3115 
3116 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3117 {
3118 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3119 
3120 	/* free the hardware generic timer slot */
3121 	timer_table->timers[timer->index] = NULL;
3122 	kfree(timer);
3123 }
3124 EXPORT_SYMBOL(ath_gen_timer_free);
3125 
3126 /*
3127  * Generic Timer Interrupts handling
3128  */
3129 void ath_gen_timer_isr(struct ath_hw *ah)
3130 {
3131 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3132 	struct ath_gen_timer *timer;
3133 	struct ath_common *common = ath9k_hw_common(ah);
3134 	u32 trigger_mask, thresh_mask, index;
3135 
3136 	/* get hardware generic timer interrupt status */
3137 	trigger_mask = ah->intr_gen_timer_trigger;
3138 	thresh_mask = ah->intr_gen_timer_thresh;
3139 	trigger_mask &= timer_table->timer_mask.val;
3140 	thresh_mask &= timer_table->timer_mask.val;
3141 
3142 	trigger_mask &= ~thresh_mask;
3143 
3144 	while (thresh_mask) {
3145 		index = rightmost_index(timer_table, &thresh_mask);
3146 		timer = timer_table->timers[index];
3147 		BUG_ON(!timer);
3148 		ath_dbg(common, BTCOEX, "TSF overflow for Gen timer %d\n",
3149 			index);
3150 		timer->overflow(timer->arg);
3151 	}
3152 
3153 	while (trigger_mask) {
3154 		index = rightmost_index(timer_table, &trigger_mask);
3155 		timer = timer_table->timers[index];
3156 		BUG_ON(!timer);
3157 		ath_dbg(common, BTCOEX,
3158 			"Gen timer[%d] trigger\n", index);
3159 		timer->trigger(timer->arg);
3160 	}
3161 }
3162 EXPORT_SYMBOL(ath_gen_timer_isr);
3163 
3164 /********/
3165 /* HTC  */
3166 /********/
3167 
3168 static struct {
3169 	u32 version;
3170 	const char * name;
3171 } ath_mac_bb_names[] = {
3172 	/* Devices with external radios */
3173 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3174 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3175 	{ AR_SREV_VERSION_9100,		"9100" },
3176 	{ AR_SREV_VERSION_9160,		"9160" },
3177 	/* Single-chip solutions */
3178 	{ AR_SREV_VERSION_9280,		"9280" },
3179 	{ AR_SREV_VERSION_9285,		"9285" },
3180 	{ AR_SREV_VERSION_9287,         "9287" },
3181 	{ AR_SREV_VERSION_9271,         "9271" },
3182 	{ AR_SREV_VERSION_9300,         "9300" },
3183 	{ AR_SREV_VERSION_9330,         "9330" },
3184 	{ AR_SREV_VERSION_9340,		"9340" },
3185 	{ AR_SREV_VERSION_9485,         "9485" },
3186 	{ AR_SREV_VERSION_9462,         "9462" },
3187 	{ AR_SREV_VERSION_9550,         "9550" },
3188 	{ AR_SREV_VERSION_9565,         "9565" },
3189 };
3190 
3191 /* For devices with external radios */
3192 static struct {
3193 	u16 version;
3194 	const char * name;
3195 } ath_rf_names[] = {
3196 	{ 0,				"5133" },
3197 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3198 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3199 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3200 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3201 };
3202 
3203 /*
3204  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3205  */
3206 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3207 {
3208 	int i;
3209 
3210 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3211 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3212 			return ath_mac_bb_names[i].name;
3213 		}
3214 	}
3215 
3216 	return "????";
3217 }
3218 
3219 /*
3220  * Return the RF name. "????" is returned if the RF is unknown.
3221  * Used for devices with external radios.
3222  */
3223 static const char *ath9k_hw_rf_name(u16 rf_version)
3224 {
3225 	int i;
3226 
3227 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3228 		if (ath_rf_names[i].version == rf_version) {
3229 			return ath_rf_names[i].name;
3230 		}
3231 	}
3232 
3233 	return "????";
3234 }
3235 
3236 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3237 {
3238 	int used;
3239 
3240 	/* chipsets >= AR9280 are single-chip */
3241 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3242 		used = scnprintf(hw_name, len,
3243 				 "Atheros AR%s Rev:%x",
3244 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3245 				 ah->hw_version.macRev);
3246 	}
3247 	else {
3248 		used = scnprintf(hw_name, len,
3249 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3250 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3251 				 ah->hw_version.macRev,
3252 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3253 						  & AR_RADIO_SREV_MAJOR)),
3254 				 ah->hw_version.phyRev);
3255 	}
3256 
3257 	hw_name[used] = '\0';
3258 }
3259 EXPORT_SYMBOL(ath9k_hw_name);
3260