1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/io.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/bitops.h> 22 #include <linux/etherdevice.h> 23 #include <linux/gpio.h> 24 #include <asm/unaligned.h> 25 26 #include "hw.h" 27 #include "hw-ops.h" 28 #include "ar9003_mac.h" 29 #include "ar9003_mci.h" 30 #include "ar9003_phy.h" 31 #include "ath9k.h" 32 33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); 34 35 MODULE_AUTHOR("Atheros Communications"); 36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); 37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); 38 MODULE_LICENSE("Dual BSD/GPL"); 39 40 static void ath9k_hw_set_clockrate(struct ath_hw *ah) 41 { 42 struct ath_common *common = ath9k_hw_common(ah); 43 struct ath9k_channel *chan = ah->curchan; 44 unsigned int clockrate; 45 46 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */ 47 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) 48 clockrate = 117; 49 else if (!chan) /* should really check for CCK instead */ 50 clockrate = ATH9K_CLOCK_RATE_CCK; 51 else if (IS_CHAN_2GHZ(chan)) 52 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM; 53 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) 54 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; 55 else 56 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM; 57 58 if (chan) { 59 if (IS_CHAN_HT40(chan)) 60 clockrate *= 2; 61 if (IS_CHAN_HALF_RATE(chan)) 62 clockrate /= 2; 63 if (IS_CHAN_QUARTER_RATE(chan)) 64 clockrate /= 4; 65 } 66 67 common->clockrate = clockrate; 68 } 69 70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) 71 { 72 struct ath_common *common = ath9k_hw_common(ah); 73 74 return usecs * common->clockrate; 75 } 76 77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) 78 { 79 int i; 80 81 BUG_ON(timeout < AH_TIME_QUANTUM); 82 83 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { 84 if ((REG_READ(ah, reg) & mask) == val) 85 return true; 86 87 udelay(AH_TIME_QUANTUM); 88 } 89 90 ath_dbg(ath9k_hw_common(ah), ANY, 91 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", 92 timeout, reg, REG_READ(ah, reg), mask, val); 93 94 return false; 95 } 96 EXPORT_SYMBOL(ath9k_hw_wait); 97 98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan, 99 int hw_delay) 100 { 101 hw_delay /= 10; 102 103 if (IS_CHAN_HALF_RATE(chan)) 104 hw_delay *= 2; 105 else if (IS_CHAN_QUARTER_RATE(chan)) 106 hw_delay *= 4; 107 108 udelay(hw_delay + BASE_ACTIVATE_DELAY); 109 } 110 111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array, 112 int column, unsigned int *writecnt) 113 { 114 int r; 115 116 ENABLE_REGWRITE_BUFFER(ah); 117 for (r = 0; r < array->ia_rows; r++) { 118 REG_WRITE(ah, INI_RA(array, r, 0), 119 INI_RA(array, r, column)); 120 DO_DELAY(*writecnt); 121 } 122 REGWRITE_BUFFER_FLUSH(ah); 123 } 124 125 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size) 126 { 127 u32 *tmp_reg_list, *tmp_data; 128 int i; 129 130 tmp_reg_list = kmalloc(size * sizeof(u32), GFP_KERNEL); 131 if (!tmp_reg_list) { 132 dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__); 133 return; 134 } 135 136 tmp_data = kmalloc(size * sizeof(u32), GFP_KERNEL); 137 if (!tmp_data) { 138 dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__); 139 goto error_tmp_data; 140 } 141 142 for (i = 0; i < size; i++) 143 tmp_reg_list[i] = array[i][0]; 144 145 REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size); 146 147 for (i = 0; i < size; i++) 148 array[i][1] = tmp_data[i]; 149 150 kfree(tmp_data); 151 error_tmp_data: 152 kfree(tmp_reg_list); 153 } 154 155 u32 ath9k_hw_reverse_bits(u32 val, u32 n) 156 { 157 u32 retval; 158 int i; 159 160 for (i = 0, retval = 0; i < n; i++) { 161 retval = (retval << 1) | (val & 1); 162 val >>= 1; 163 } 164 return retval; 165 } 166 167 u16 ath9k_hw_computetxtime(struct ath_hw *ah, 168 u8 phy, int kbps, 169 u32 frameLen, u16 rateix, 170 bool shortPreamble) 171 { 172 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; 173 174 if (kbps == 0) 175 return 0; 176 177 switch (phy) { 178 case WLAN_RC_PHY_CCK: 179 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; 180 if (shortPreamble) 181 phyTime >>= 1; 182 numBits = frameLen << 3; 183 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); 184 break; 185 case WLAN_RC_PHY_OFDM: 186 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { 187 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; 188 numBits = OFDM_PLCP_BITS + (frameLen << 3); 189 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 190 txTime = OFDM_SIFS_TIME_QUARTER 191 + OFDM_PREAMBLE_TIME_QUARTER 192 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); 193 } else if (ah->curchan && 194 IS_CHAN_HALF_RATE(ah->curchan)) { 195 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; 196 numBits = OFDM_PLCP_BITS + (frameLen << 3); 197 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 198 txTime = OFDM_SIFS_TIME_HALF + 199 OFDM_PREAMBLE_TIME_HALF 200 + (numSymbols * OFDM_SYMBOL_TIME_HALF); 201 } else { 202 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; 203 numBits = OFDM_PLCP_BITS + (frameLen << 3); 204 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 205 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME 206 + (numSymbols * OFDM_SYMBOL_TIME); 207 } 208 break; 209 default: 210 ath_err(ath9k_hw_common(ah), 211 "Unknown phy %u (rate ix %u)\n", phy, rateix); 212 txTime = 0; 213 break; 214 } 215 216 return txTime; 217 } 218 EXPORT_SYMBOL(ath9k_hw_computetxtime); 219 220 void ath9k_hw_get_channel_centers(struct ath_hw *ah, 221 struct ath9k_channel *chan, 222 struct chan_centers *centers) 223 { 224 int8_t extoff; 225 226 if (!IS_CHAN_HT40(chan)) { 227 centers->ctl_center = centers->ext_center = 228 centers->synth_center = chan->channel; 229 return; 230 } 231 232 if (IS_CHAN_HT40PLUS(chan)) { 233 centers->synth_center = 234 chan->channel + HT40_CHANNEL_CENTER_SHIFT; 235 extoff = 1; 236 } else { 237 centers->synth_center = 238 chan->channel - HT40_CHANNEL_CENTER_SHIFT; 239 extoff = -1; 240 } 241 242 centers->ctl_center = 243 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); 244 /* 25 MHz spacing is supported by hw but not on upper layers */ 245 centers->ext_center = 246 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); 247 } 248 249 /******************/ 250 /* Chip Revisions */ 251 /******************/ 252 253 static void ath9k_hw_read_revisions(struct ath_hw *ah) 254 { 255 u32 val; 256 257 if (ah->get_mac_revision) 258 ah->hw_version.macRev = ah->get_mac_revision(); 259 260 switch (ah->hw_version.devid) { 261 case AR5416_AR9100_DEVID: 262 ah->hw_version.macVersion = AR_SREV_VERSION_9100; 263 break; 264 case AR9300_DEVID_AR9330: 265 ah->hw_version.macVersion = AR_SREV_VERSION_9330; 266 if (!ah->get_mac_revision) { 267 val = REG_READ(ah, AR_SREV); 268 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 269 } 270 return; 271 case AR9300_DEVID_AR9340: 272 ah->hw_version.macVersion = AR_SREV_VERSION_9340; 273 return; 274 case AR9300_DEVID_QCA955X: 275 ah->hw_version.macVersion = AR_SREV_VERSION_9550; 276 return; 277 case AR9300_DEVID_AR953X: 278 ah->hw_version.macVersion = AR_SREV_VERSION_9531; 279 return; 280 case AR9300_DEVID_QCA956X: 281 ah->hw_version.macVersion = AR_SREV_VERSION_9561; 282 return; 283 } 284 285 val = REG_READ(ah, AR_SREV) & AR_SREV_ID; 286 287 if (val == 0xFF) { 288 val = REG_READ(ah, AR_SREV); 289 ah->hw_version.macVersion = 290 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; 291 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 292 293 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 294 ah->is_pciexpress = true; 295 else 296 ah->is_pciexpress = (val & 297 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; 298 } else { 299 if (!AR_SREV_9100(ah)) 300 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); 301 302 ah->hw_version.macRev = val & AR_SREV_REVISION; 303 304 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) 305 ah->is_pciexpress = true; 306 } 307 } 308 309 /************************************/ 310 /* HW Attach, Detach, Init Routines */ 311 /************************************/ 312 313 static void ath9k_hw_disablepcie(struct ath_hw *ah) 314 { 315 if (!AR_SREV_5416(ah)) 316 return; 317 318 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); 319 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); 320 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); 321 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); 322 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); 323 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); 324 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); 325 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); 326 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); 327 328 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); 329 } 330 331 /* This should work for all families including legacy */ 332 static bool ath9k_hw_chip_test(struct ath_hw *ah) 333 { 334 struct ath_common *common = ath9k_hw_common(ah); 335 u32 regAddr[2] = { AR_STA_ID0 }; 336 u32 regHold[2]; 337 static const u32 patternData[4] = { 338 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 339 }; 340 int i, j, loop_max; 341 342 if (!AR_SREV_9300_20_OR_LATER(ah)) { 343 loop_max = 2; 344 regAddr[1] = AR_PHY_BASE + (8 << 2); 345 } else 346 loop_max = 1; 347 348 for (i = 0; i < loop_max; i++) { 349 u32 addr = regAddr[i]; 350 u32 wrData, rdData; 351 352 regHold[i] = REG_READ(ah, addr); 353 for (j = 0; j < 0x100; j++) { 354 wrData = (j << 16) | j; 355 REG_WRITE(ah, addr, wrData); 356 rdData = REG_READ(ah, addr); 357 if (rdData != wrData) { 358 ath_err(common, 359 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 360 addr, wrData, rdData); 361 return false; 362 } 363 } 364 for (j = 0; j < 4; j++) { 365 wrData = patternData[j]; 366 REG_WRITE(ah, addr, wrData); 367 rdData = REG_READ(ah, addr); 368 if (wrData != rdData) { 369 ath_err(common, 370 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 371 addr, wrData, rdData); 372 return false; 373 } 374 } 375 REG_WRITE(ah, regAddr[i], regHold[i]); 376 } 377 udelay(100); 378 379 return true; 380 } 381 382 static void ath9k_hw_init_config(struct ath_hw *ah) 383 { 384 struct ath_common *common = ath9k_hw_common(ah); 385 386 ah->config.dma_beacon_response_time = 1; 387 ah->config.sw_beacon_response_time = 6; 388 ah->config.cwm_ignore_extcca = false; 389 ah->config.analog_shiftreg = 1; 390 391 ah->config.rx_intr_mitigation = true; 392 393 if (AR_SREV_9300_20_OR_LATER(ah)) { 394 ah->config.rimt_last = 500; 395 ah->config.rimt_first = 2000; 396 } else { 397 ah->config.rimt_last = 250; 398 ah->config.rimt_first = 700; 399 } 400 401 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 402 ah->config.pll_pwrsave = 7; 403 404 /* 405 * We need this for PCI devices only (Cardbus, PCI, miniPCI) 406 * _and_ if on non-uniprocessor systems (Multiprocessor/HT). 407 * This means we use it for all AR5416 devices, and the few 408 * minor PCI AR9280 devices out there. 409 * 410 * Serialization is required because these devices do not handle 411 * well the case of two concurrent reads/writes due to the latency 412 * involved. During one read/write another read/write can be issued 413 * on another CPU while the previous read/write may still be working 414 * on our hardware, if we hit this case the hardware poops in a loop. 415 * We prevent this by serializing reads and writes. 416 * 417 * This issue is not present on PCI-Express devices or pre-AR5416 418 * devices (legacy, 802.11abg). 419 */ 420 if (num_possible_cpus() > 1) 421 ah->config.serialize_regmode = SER_REG_MODE_AUTO; 422 423 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) { 424 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || 425 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) && 426 !ah->is_pciexpress)) { 427 ah->config.serialize_regmode = SER_REG_MODE_ON; 428 } else { 429 ah->config.serialize_regmode = SER_REG_MODE_OFF; 430 } 431 } 432 433 ath_dbg(common, RESET, "serialize_regmode is %d\n", 434 ah->config.serialize_regmode); 435 436 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 437 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; 438 else 439 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; 440 } 441 442 static void ath9k_hw_init_defaults(struct ath_hw *ah) 443 { 444 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 445 446 regulatory->country_code = CTRY_DEFAULT; 447 regulatory->power_limit = MAX_RATE_POWER; 448 449 ah->hw_version.magic = AR5416_MAGIC; 450 ah->hw_version.subvendorid = 0; 451 452 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE | 453 AR_STA_ID1_MCAST_KSRCH; 454 if (AR_SREV_9100(ah)) 455 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX; 456 457 ah->slottime = 9; 458 ah->globaltxtimeout = (u32) -1; 459 ah->power_mode = ATH9K_PM_UNDEFINED; 460 ah->htc_reset_init = true; 461 462 ah->tpc_enabled = false; 463 464 ah->ani_function = ATH9K_ANI_ALL; 465 if (!AR_SREV_9300_20_OR_LATER(ah)) 466 ah->ani_function &= ~ATH9K_ANI_MRC_CCK; 467 468 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 469 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); 470 else 471 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); 472 } 473 474 static void ath9k_hw_init_macaddr(struct ath_hw *ah) 475 { 476 struct ath_common *common = ath9k_hw_common(ah); 477 int i; 478 u16 eeval; 479 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; 480 481 /* MAC address may already be loaded via ath9k_platform_data */ 482 if (is_valid_ether_addr(common->macaddr)) 483 return; 484 485 for (i = 0; i < 3; i++) { 486 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); 487 common->macaddr[2 * i] = eeval >> 8; 488 common->macaddr[2 * i + 1] = eeval & 0xff; 489 } 490 491 if (is_valid_ether_addr(common->macaddr)) 492 return; 493 494 ath_err(common, "eeprom contains invalid mac address: %pM\n", 495 common->macaddr); 496 497 random_ether_addr(common->macaddr); 498 ath_err(common, "random mac address will be used: %pM\n", 499 common->macaddr); 500 501 return; 502 } 503 504 static int ath9k_hw_post_init(struct ath_hw *ah) 505 { 506 struct ath_common *common = ath9k_hw_common(ah); 507 int ecode; 508 509 if (common->bus_ops->ath_bus_type != ATH_USB) { 510 if (!ath9k_hw_chip_test(ah)) 511 return -ENODEV; 512 } 513 514 if (!AR_SREV_9300_20_OR_LATER(ah)) { 515 ecode = ar9002_hw_rf_claim(ah); 516 if (ecode != 0) 517 return ecode; 518 } 519 520 ecode = ath9k_hw_eeprom_init(ah); 521 if (ecode != 0) 522 return ecode; 523 524 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n", 525 ah->eep_ops->get_eeprom_ver(ah), 526 ah->eep_ops->get_eeprom_rev(ah)); 527 528 ath9k_hw_ani_init(ah); 529 530 /* 531 * EEPROM needs to be initialized before we do this. 532 * This is required for regulatory compliance. 533 */ 534 if (AR_SREV_9300_20_OR_LATER(ah)) { 535 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 536 if ((regdmn & 0xF0) == CTL_FCC) { 537 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ; 538 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ; 539 } 540 } 541 542 return 0; 543 } 544 545 static int ath9k_hw_attach_ops(struct ath_hw *ah) 546 { 547 if (!AR_SREV_9300_20_OR_LATER(ah)) 548 return ar9002_hw_attach_ops(ah); 549 550 ar9003_hw_attach_ops(ah); 551 return 0; 552 } 553 554 /* Called for all hardware families */ 555 static int __ath9k_hw_init(struct ath_hw *ah) 556 { 557 struct ath_common *common = ath9k_hw_common(ah); 558 int r = 0; 559 560 ath9k_hw_read_revisions(ah); 561 562 switch (ah->hw_version.macVersion) { 563 case AR_SREV_VERSION_5416_PCI: 564 case AR_SREV_VERSION_5416_PCIE: 565 case AR_SREV_VERSION_9160: 566 case AR_SREV_VERSION_9100: 567 case AR_SREV_VERSION_9280: 568 case AR_SREV_VERSION_9285: 569 case AR_SREV_VERSION_9287: 570 case AR_SREV_VERSION_9271: 571 case AR_SREV_VERSION_9300: 572 case AR_SREV_VERSION_9330: 573 case AR_SREV_VERSION_9485: 574 case AR_SREV_VERSION_9340: 575 case AR_SREV_VERSION_9462: 576 case AR_SREV_VERSION_9550: 577 case AR_SREV_VERSION_9565: 578 case AR_SREV_VERSION_9531: 579 case AR_SREV_VERSION_9561: 580 break; 581 default: 582 ath_err(common, 583 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n", 584 ah->hw_version.macVersion, ah->hw_version.macRev); 585 return -EOPNOTSUPP; 586 } 587 588 /* 589 * Read back AR_WA into a permanent copy and set bits 14 and 17. 590 * We need to do this to avoid RMW of this register. We cannot 591 * read the reg when chip is asleep. 592 */ 593 if (AR_SREV_9300_20_OR_LATER(ah)) { 594 ah->WARegVal = REG_READ(ah, AR_WA); 595 ah->WARegVal |= (AR_WA_D3_L1_DISABLE | 596 AR_WA_ASPM_TIMER_BASED_DISABLE); 597 } 598 599 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 600 ath_err(common, "Couldn't reset chip\n"); 601 return -EIO; 602 } 603 604 if (AR_SREV_9565(ah)) { 605 ah->WARegVal |= AR_WA_BIT22; 606 REG_WRITE(ah, AR_WA, ah->WARegVal); 607 } 608 609 ath9k_hw_init_defaults(ah); 610 ath9k_hw_init_config(ah); 611 612 r = ath9k_hw_attach_ops(ah); 613 if (r) 614 return r; 615 616 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { 617 ath_err(common, "Couldn't wakeup chip\n"); 618 return -EIO; 619 } 620 621 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) || 622 AR_SREV_9330(ah) || AR_SREV_9550(ah)) 623 ah->is_pciexpress = false; 624 625 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); 626 ath9k_hw_init_cal_settings(ah); 627 628 if (!ah->is_pciexpress) 629 ath9k_hw_disablepcie(ah); 630 631 r = ath9k_hw_post_init(ah); 632 if (r) 633 return r; 634 635 ath9k_hw_init_mode_gain_regs(ah); 636 r = ath9k_hw_fill_cap_info(ah); 637 if (r) 638 return r; 639 640 ath9k_hw_init_macaddr(ah); 641 ath9k_hw_init_hang_checks(ah); 642 643 common->state = ATH_HW_INITIALIZED; 644 645 return 0; 646 } 647 648 int ath9k_hw_init(struct ath_hw *ah) 649 { 650 int ret; 651 struct ath_common *common = ath9k_hw_common(ah); 652 653 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */ 654 switch (ah->hw_version.devid) { 655 case AR5416_DEVID_PCI: 656 case AR5416_DEVID_PCIE: 657 case AR5416_AR9100_DEVID: 658 case AR9160_DEVID_PCI: 659 case AR9280_DEVID_PCI: 660 case AR9280_DEVID_PCIE: 661 case AR9285_DEVID_PCIE: 662 case AR9287_DEVID_PCI: 663 case AR9287_DEVID_PCIE: 664 case AR2427_DEVID_PCIE: 665 case AR9300_DEVID_PCIE: 666 case AR9300_DEVID_AR9485_PCIE: 667 case AR9300_DEVID_AR9330: 668 case AR9300_DEVID_AR9340: 669 case AR9300_DEVID_QCA955X: 670 case AR9300_DEVID_AR9580: 671 case AR9300_DEVID_AR9462: 672 case AR9485_DEVID_AR1111: 673 case AR9300_DEVID_AR9565: 674 case AR9300_DEVID_AR953X: 675 case AR9300_DEVID_QCA956X: 676 break; 677 default: 678 if (common->bus_ops->ath_bus_type == ATH_USB) 679 break; 680 ath_err(common, "Hardware device ID 0x%04x not supported\n", 681 ah->hw_version.devid); 682 return -EOPNOTSUPP; 683 } 684 685 ret = __ath9k_hw_init(ah); 686 if (ret) { 687 ath_err(common, 688 "Unable to initialize hardware; initialization status: %d\n", 689 ret); 690 return ret; 691 } 692 693 ath_dynack_init(ah); 694 695 return 0; 696 } 697 EXPORT_SYMBOL(ath9k_hw_init); 698 699 static void ath9k_hw_init_qos(struct ath_hw *ah) 700 { 701 ENABLE_REGWRITE_BUFFER(ah); 702 703 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); 704 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); 705 706 REG_WRITE(ah, AR_QOS_NO_ACK, 707 SM(2, AR_QOS_NO_ACK_TWO_BIT) | 708 SM(5, AR_QOS_NO_ACK_BIT_OFF) | 709 SM(0, AR_QOS_NO_ACK_BYTE_OFF)); 710 711 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 712 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 713 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 714 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 715 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 716 717 REGWRITE_BUFFER_FLUSH(ah); 718 } 719 720 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah) 721 { 722 struct ath_common *common = ath9k_hw_common(ah); 723 int i = 0; 724 725 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 726 udelay(100); 727 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 728 729 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) { 730 731 udelay(100); 732 733 if (WARN_ON_ONCE(i >= 100)) { 734 ath_err(common, "PLL4 measurement not done\n"); 735 break; 736 } 737 738 i++; 739 } 740 741 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3; 742 } 743 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc); 744 745 static void ath9k_hw_init_pll(struct ath_hw *ah, 746 struct ath9k_channel *chan) 747 { 748 u32 pll; 749 750 pll = ath9k_hw_compute_pll_control(ah, chan); 751 752 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 753 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */ 754 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 755 AR_CH0_BB_DPLL2_PLL_PWD, 0x1); 756 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 757 AR_CH0_DPLL2_KD, 0x40); 758 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 759 AR_CH0_DPLL2_KI, 0x4); 760 761 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 762 AR_CH0_BB_DPLL1_REFDIV, 0x5); 763 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 764 AR_CH0_BB_DPLL1_NINI, 0x58); 765 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 766 AR_CH0_BB_DPLL1_NFRAC, 0x0); 767 768 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 769 AR_CH0_BB_DPLL2_OUTDIV, 0x1); 770 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 771 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1); 772 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 773 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1); 774 775 /* program BB PLL phase_shift to 0x6 */ 776 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 777 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6); 778 779 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 780 AR_CH0_BB_DPLL2_PLL_PWD, 0x0); 781 udelay(1000); 782 } else if (AR_SREV_9330(ah)) { 783 u32 ddr_dpll2, pll_control2, kd; 784 785 if (ah->is_clk_25mhz) { 786 ddr_dpll2 = 0x18e82f01; 787 pll_control2 = 0xe04a3d; 788 kd = 0x1d; 789 } else { 790 ddr_dpll2 = 0x19e82f01; 791 pll_control2 = 0x886666; 792 kd = 0x3d; 793 } 794 795 /* program DDR PLL ki and kd value */ 796 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2); 797 798 /* program DDR PLL phase_shift */ 799 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3, 800 AR_CH0_DPLL3_PHASE_SHIFT, 0x1); 801 802 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 803 pll | AR_RTC_9300_PLL_BYPASS); 804 udelay(1000); 805 806 /* program refdiv, nint, frac to RTC register */ 807 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2); 808 809 /* program BB PLL kd and ki value */ 810 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd); 811 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06); 812 813 /* program BB PLL phase_shift */ 814 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 815 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1); 816 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) || 817 AR_SREV_9561(ah)) { 818 u32 regval, pll2_divint, pll2_divfrac, refdiv; 819 820 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 821 pll | AR_RTC_9300_SOC_PLL_BYPASS); 822 udelay(1000); 823 824 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16); 825 udelay(100); 826 827 if (ah->is_clk_25mhz) { 828 if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) { 829 pll2_divint = 0x1c; 830 pll2_divfrac = 0xa3d2; 831 refdiv = 1; 832 } else { 833 pll2_divint = 0x54; 834 pll2_divfrac = 0x1eb85; 835 refdiv = 3; 836 } 837 } else { 838 if (AR_SREV_9340(ah)) { 839 pll2_divint = 88; 840 pll2_divfrac = 0; 841 refdiv = 5; 842 } else { 843 pll2_divint = 0x11; 844 pll2_divfrac = (AR_SREV_9531(ah) || 845 AR_SREV_9561(ah)) ? 846 0x26665 : 0x26666; 847 refdiv = 1; 848 } 849 } 850 851 regval = REG_READ(ah, AR_PHY_PLL_MODE); 852 if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) 853 regval |= (0x1 << 22); 854 else 855 regval |= (0x1 << 16); 856 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 857 udelay(100); 858 859 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) | 860 (pll2_divint << 18) | pll2_divfrac); 861 udelay(100); 862 863 regval = REG_READ(ah, AR_PHY_PLL_MODE); 864 if (AR_SREV_9340(ah)) 865 regval = (regval & 0x80071fff) | 866 (0x1 << 30) | 867 (0x1 << 13) | 868 (0x4 << 26) | 869 (0x18 << 19); 870 else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) { 871 regval = (regval & 0x01c00fff) | 872 (0x1 << 31) | 873 (0x2 << 29) | 874 (0xa << 25) | 875 (0x1 << 19); 876 877 if (AR_SREV_9531(ah)) 878 regval |= (0x6 << 12); 879 } else 880 regval = (regval & 0x80071fff) | 881 (0x3 << 30) | 882 (0x1 << 13) | 883 (0x4 << 26) | 884 (0x60 << 19); 885 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 886 887 if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) 888 REG_WRITE(ah, AR_PHY_PLL_MODE, 889 REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff); 890 else 891 REG_WRITE(ah, AR_PHY_PLL_MODE, 892 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff); 893 894 udelay(1000); 895 } 896 897 if (AR_SREV_9565(ah)) 898 pll |= 0x40000; 899 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 900 901 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) || 902 AR_SREV_9550(ah)) 903 udelay(1000); 904 905 /* Switch the core clock for ar9271 to 117Mhz */ 906 if (AR_SREV_9271(ah)) { 907 udelay(500); 908 REG_WRITE(ah, 0x50040, 0x304); 909 } 910 911 udelay(RTC_PLL_SETTLE_DELAY); 912 913 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); 914 } 915 916 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, 917 enum nl80211_iftype opmode) 918 { 919 u32 sync_default = AR_INTR_SYNC_DEFAULT; 920 u32 imr_reg = AR_IMR_TXERR | 921 AR_IMR_TXURN | 922 AR_IMR_RXERR | 923 AR_IMR_RXORN | 924 AR_IMR_BCNMISC; 925 926 if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) || 927 AR_SREV_9561(ah)) 928 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL; 929 930 if (AR_SREV_9300_20_OR_LATER(ah)) { 931 imr_reg |= AR_IMR_RXOK_HP; 932 if (ah->config.rx_intr_mitigation) 933 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 934 else 935 imr_reg |= AR_IMR_RXOK_LP; 936 937 } else { 938 if (ah->config.rx_intr_mitigation) 939 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 940 else 941 imr_reg |= AR_IMR_RXOK; 942 } 943 944 if (ah->config.tx_intr_mitigation) 945 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; 946 else 947 imr_reg |= AR_IMR_TXOK; 948 949 ENABLE_REGWRITE_BUFFER(ah); 950 951 REG_WRITE(ah, AR_IMR, imr_reg); 952 ah->imrs2_reg |= AR_IMR_S2_GTT; 953 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); 954 955 if (!AR_SREV_9100(ah)) { 956 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 957 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default); 958 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 959 } 960 961 REGWRITE_BUFFER_FLUSH(ah); 962 963 if (AR_SREV_9300_20_OR_LATER(ah)) { 964 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); 965 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); 966 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); 967 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); 968 } 969 } 970 971 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us) 972 { 973 u32 val = ath9k_hw_mac_to_clks(ah, us - 2); 974 val = min(val, (u32) 0xFFFF); 975 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val); 976 } 977 978 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) 979 { 980 u32 val = ath9k_hw_mac_to_clks(ah, us); 981 val = min(val, (u32) 0xFFFF); 982 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); 983 } 984 985 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) 986 { 987 u32 val = ath9k_hw_mac_to_clks(ah, us); 988 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); 989 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); 990 } 991 992 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) 993 { 994 u32 val = ath9k_hw_mac_to_clks(ah, us); 995 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); 996 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); 997 } 998 999 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) 1000 { 1001 if (tu > 0xFFFF) { 1002 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n", 1003 tu); 1004 ah->globaltxtimeout = (u32) -1; 1005 return false; 1006 } else { 1007 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 1008 ah->globaltxtimeout = tu; 1009 return true; 1010 } 1011 } 1012 1013 void ath9k_hw_init_global_settings(struct ath_hw *ah) 1014 { 1015 struct ath_common *common = ath9k_hw_common(ah); 1016 const struct ath9k_channel *chan = ah->curchan; 1017 int acktimeout, ctstimeout, ack_offset = 0; 1018 int slottime; 1019 int sifstime; 1020 int rx_lat = 0, tx_lat = 0, eifs = 0; 1021 u32 reg; 1022 1023 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n", 1024 ah->misc_mode); 1025 1026 if (!chan) 1027 return; 1028 1029 if (ah->misc_mode != 0) 1030 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode); 1031 1032 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1033 rx_lat = 41; 1034 else 1035 rx_lat = 37; 1036 tx_lat = 54; 1037 1038 if (IS_CHAN_5GHZ(chan)) 1039 sifstime = 16; 1040 else 1041 sifstime = 10; 1042 1043 if (IS_CHAN_HALF_RATE(chan)) { 1044 eifs = 175; 1045 rx_lat *= 2; 1046 tx_lat *= 2; 1047 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1048 tx_lat += 11; 1049 1050 sifstime = 32; 1051 ack_offset = 16; 1052 slottime = 13; 1053 } else if (IS_CHAN_QUARTER_RATE(chan)) { 1054 eifs = 340; 1055 rx_lat = (rx_lat * 4) - 1; 1056 tx_lat *= 4; 1057 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1058 tx_lat += 22; 1059 1060 sifstime = 64; 1061 ack_offset = 32; 1062 slottime = 21; 1063 } else { 1064 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1065 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO; 1066 reg = AR_USEC_ASYNC_FIFO; 1067 } else { 1068 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/ 1069 common->clockrate; 1070 reg = REG_READ(ah, AR_USEC); 1071 } 1072 rx_lat = MS(reg, AR_USEC_RX_LAT); 1073 tx_lat = MS(reg, AR_USEC_TX_LAT); 1074 1075 slottime = ah->slottime; 1076 } 1077 1078 /* As defined by IEEE 802.11-2007 17.3.8.6 */ 1079 slottime += 3 * ah->coverage_class; 1080 acktimeout = slottime + sifstime + ack_offset; 1081 ctstimeout = acktimeout; 1082 1083 /* 1084 * Workaround for early ACK timeouts, add an offset to match the 1085 * initval's 64us ack timeout value. Use 48us for the CTS timeout. 1086 * This was initially only meant to work around an issue with delayed 1087 * BA frames in some implementations, but it has been found to fix ACK 1088 * timeout issues in other cases as well. 1089 */ 1090 if (IS_CHAN_2GHZ(chan) && 1091 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) { 1092 acktimeout += 64 - sifstime - ah->slottime; 1093 ctstimeout += 48 - sifstime - ah->slottime; 1094 } 1095 1096 if (ah->dynack.enabled) { 1097 acktimeout = ah->dynack.ackto; 1098 ctstimeout = acktimeout; 1099 slottime = (acktimeout - 3) / 2; 1100 } else { 1101 ah->dynack.ackto = acktimeout; 1102 } 1103 1104 ath9k_hw_set_sifs_time(ah, sifstime); 1105 ath9k_hw_setslottime(ah, slottime); 1106 ath9k_hw_set_ack_timeout(ah, acktimeout); 1107 ath9k_hw_set_cts_timeout(ah, ctstimeout); 1108 if (ah->globaltxtimeout != (u32) -1) 1109 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); 1110 1111 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs)); 1112 REG_RMW(ah, AR_USEC, 1113 (common->clockrate - 1) | 1114 SM(rx_lat, AR_USEC_RX_LAT) | 1115 SM(tx_lat, AR_USEC_TX_LAT), 1116 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC); 1117 1118 } 1119 EXPORT_SYMBOL(ath9k_hw_init_global_settings); 1120 1121 void ath9k_hw_deinit(struct ath_hw *ah) 1122 { 1123 struct ath_common *common = ath9k_hw_common(ah); 1124 1125 if (common->state < ATH_HW_INITIALIZED) 1126 return; 1127 1128 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); 1129 } 1130 EXPORT_SYMBOL(ath9k_hw_deinit); 1131 1132 /*******/ 1133 /* INI */ 1134 /*******/ 1135 1136 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) 1137 { 1138 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); 1139 1140 if (IS_CHAN_2GHZ(chan)) 1141 ctl |= CTL_11G; 1142 else 1143 ctl |= CTL_11A; 1144 1145 return ctl; 1146 } 1147 1148 /****************************************/ 1149 /* Reset and Channel Switching Routines */ 1150 /****************************************/ 1151 1152 static inline void ath9k_hw_set_dma(struct ath_hw *ah) 1153 { 1154 struct ath_common *common = ath9k_hw_common(ah); 1155 int txbuf_size; 1156 1157 ENABLE_REGWRITE_BUFFER(ah); 1158 1159 /* 1160 * set AHB_MODE not to do cacheline prefetches 1161 */ 1162 if (!AR_SREV_9300_20_OR_LATER(ah)) 1163 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); 1164 1165 /* 1166 * let mac dma reads be in 128 byte chunks 1167 */ 1168 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK); 1169 1170 REGWRITE_BUFFER_FLUSH(ah); 1171 1172 /* 1173 * Restore TX Trigger Level to its pre-reset value. 1174 * The initial value depends on whether aggregation is enabled, and is 1175 * adjusted whenever underruns are detected. 1176 */ 1177 if (!AR_SREV_9300_20_OR_LATER(ah)) 1178 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); 1179 1180 ENABLE_REGWRITE_BUFFER(ah); 1181 1182 /* 1183 * let mac dma writes be in 128 byte chunks 1184 */ 1185 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK); 1186 1187 /* 1188 * Setup receive FIFO threshold to hold off TX activities 1189 */ 1190 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 1191 1192 if (AR_SREV_9300_20_OR_LATER(ah)) { 1193 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); 1194 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); 1195 1196 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 1197 ah->caps.rx_status_len); 1198 } 1199 1200 /* 1201 * reduce the number of usable entries in PCU TXBUF to avoid 1202 * wrap around issues. 1203 */ 1204 if (AR_SREV_9285(ah)) { 1205 /* For AR9285 the number of Fifos are reduced to half. 1206 * So set the usable tx buf size also to half to 1207 * avoid data/delimiter underruns 1208 */ 1209 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE; 1210 } else if (AR_SREV_9340_13_OR_LATER(ah)) { 1211 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */ 1212 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE; 1213 } else { 1214 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE; 1215 } 1216 1217 if (!AR_SREV_9271(ah)) 1218 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size); 1219 1220 REGWRITE_BUFFER_FLUSH(ah); 1221 1222 if (AR_SREV_9300_20_OR_LATER(ah)) 1223 ath9k_hw_reset_txstatus_ring(ah); 1224 } 1225 1226 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) 1227 { 1228 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC; 1229 u32 set = AR_STA_ID1_KSRCH_MODE; 1230 1231 ENABLE_REG_RMW_BUFFER(ah); 1232 switch (opmode) { 1233 case NL80211_IFTYPE_ADHOC: 1234 if (!AR_SREV_9340_13(ah)) { 1235 set |= AR_STA_ID1_ADHOC; 1236 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1237 break; 1238 } 1239 /* fall through */ 1240 case NL80211_IFTYPE_OCB: 1241 case NL80211_IFTYPE_MESH_POINT: 1242 case NL80211_IFTYPE_AP: 1243 set |= AR_STA_ID1_STA_AP; 1244 /* fall through */ 1245 case NL80211_IFTYPE_STATION: 1246 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1247 break; 1248 default: 1249 if (!ah->is_monitoring) 1250 set = 0; 1251 break; 1252 } 1253 REG_RMW(ah, AR_STA_ID1, set, mask); 1254 REG_RMW_BUFFER_FLUSH(ah); 1255 } 1256 1257 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, 1258 u32 *coef_mantissa, u32 *coef_exponent) 1259 { 1260 u32 coef_exp, coef_man; 1261 1262 for (coef_exp = 31; coef_exp > 0; coef_exp--) 1263 if ((coef_scaled >> coef_exp) & 0x1) 1264 break; 1265 1266 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 1267 1268 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 1269 1270 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 1271 *coef_exponent = coef_exp - 16; 1272 } 1273 1274 /* AR9330 WAR: 1275 * call external reset function to reset WMAC if: 1276 * - doing a cold reset 1277 * - we have pending frames in the TX queues. 1278 */ 1279 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type) 1280 { 1281 int i, npend = 0; 1282 1283 for (i = 0; i < AR_NUM_QCU; i++) { 1284 npend = ath9k_hw_numtxpending(ah, i); 1285 if (npend) 1286 break; 1287 } 1288 1289 if (ah->external_reset && 1290 (npend || type == ATH9K_RESET_COLD)) { 1291 int reset_err = 0; 1292 1293 ath_dbg(ath9k_hw_common(ah), RESET, 1294 "reset MAC via external reset\n"); 1295 1296 reset_err = ah->external_reset(); 1297 if (reset_err) { 1298 ath_err(ath9k_hw_common(ah), 1299 "External reset failed, err=%d\n", 1300 reset_err); 1301 return false; 1302 } 1303 1304 REG_WRITE(ah, AR_RTC_RESET, 1); 1305 } 1306 1307 return true; 1308 } 1309 1310 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) 1311 { 1312 u32 rst_flags; 1313 u32 tmpReg; 1314 1315 if (AR_SREV_9100(ah)) { 1316 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK, 1317 AR_RTC_DERIVED_CLK_PERIOD, 1); 1318 (void)REG_READ(ah, AR_RTC_DERIVED_CLK); 1319 } 1320 1321 ENABLE_REGWRITE_BUFFER(ah); 1322 1323 if (AR_SREV_9300_20_OR_LATER(ah)) { 1324 REG_WRITE(ah, AR_WA, ah->WARegVal); 1325 udelay(10); 1326 } 1327 1328 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1329 AR_RTC_FORCE_WAKE_ON_INT); 1330 1331 if (AR_SREV_9100(ah)) { 1332 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1333 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1334 } else { 1335 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); 1336 if (AR_SREV_9340(ah)) 1337 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT; 1338 else 1339 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT | 1340 AR_INTR_SYNC_RADM_CPL_TIMEOUT; 1341 1342 if (tmpReg) { 1343 u32 val; 1344 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1345 1346 val = AR_RC_HOSTIF; 1347 if (!AR_SREV_9300_20_OR_LATER(ah)) 1348 val |= AR_RC_AHB; 1349 REG_WRITE(ah, AR_RC, val); 1350 1351 } else if (!AR_SREV_9300_20_OR_LATER(ah)) 1352 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1353 1354 rst_flags = AR_RTC_RC_MAC_WARM; 1355 if (type == ATH9K_RESET_COLD) 1356 rst_flags |= AR_RTC_RC_MAC_COLD; 1357 } 1358 1359 if (AR_SREV_9330(ah)) { 1360 if (!ath9k_hw_ar9330_reset_war(ah, type)) 1361 return false; 1362 } 1363 1364 if (ath9k_hw_mci_is_enabled(ah)) 1365 ar9003_mci_check_gpm_offset(ah); 1366 1367 /* DMA HALT added to resolve ar9300 and ar9580 bus error during 1368 * RTC_RC reg read 1369 */ 1370 if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) { 1371 REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ); 1372 ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK, 1373 20 * AH_WAIT_TIMEOUT); 1374 REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ); 1375 } 1376 1377 REG_WRITE(ah, AR_RTC_RC, rst_flags); 1378 1379 REGWRITE_BUFFER_FLUSH(ah); 1380 1381 if (AR_SREV_9300_20_OR_LATER(ah)) 1382 udelay(50); 1383 else if (AR_SREV_9100(ah)) 1384 mdelay(10); 1385 else 1386 udelay(100); 1387 1388 REG_WRITE(ah, AR_RTC_RC, 0); 1389 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { 1390 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n"); 1391 return false; 1392 } 1393 1394 if (!AR_SREV_9100(ah)) 1395 REG_WRITE(ah, AR_RC, 0); 1396 1397 if (AR_SREV_9100(ah)) 1398 udelay(50); 1399 1400 return true; 1401 } 1402 1403 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) 1404 { 1405 ENABLE_REGWRITE_BUFFER(ah); 1406 1407 if (AR_SREV_9300_20_OR_LATER(ah)) { 1408 REG_WRITE(ah, AR_WA, ah->WARegVal); 1409 udelay(10); 1410 } 1411 1412 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1413 AR_RTC_FORCE_WAKE_ON_INT); 1414 1415 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1416 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1417 1418 REG_WRITE(ah, AR_RTC_RESET, 0); 1419 1420 REGWRITE_BUFFER_FLUSH(ah); 1421 1422 udelay(2); 1423 1424 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1425 REG_WRITE(ah, AR_RC, 0); 1426 1427 REG_WRITE(ah, AR_RTC_RESET, 1); 1428 1429 if (!ath9k_hw_wait(ah, 1430 AR_RTC_STATUS, 1431 AR_RTC_STATUS_M, 1432 AR_RTC_STATUS_ON, 1433 AH_WAIT_TIMEOUT)) { 1434 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n"); 1435 return false; 1436 } 1437 1438 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); 1439 } 1440 1441 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) 1442 { 1443 bool ret = false; 1444 1445 if (AR_SREV_9300_20_OR_LATER(ah)) { 1446 REG_WRITE(ah, AR_WA, ah->WARegVal); 1447 udelay(10); 1448 } 1449 1450 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1451 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1452 1453 if (!ah->reset_power_on) 1454 type = ATH9K_RESET_POWER_ON; 1455 1456 switch (type) { 1457 case ATH9K_RESET_POWER_ON: 1458 ret = ath9k_hw_set_reset_power_on(ah); 1459 if (ret) 1460 ah->reset_power_on = true; 1461 break; 1462 case ATH9K_RESET_WARM: 1463 case ATH9K_RESET_COLD: 1464 ret = ath9k_hw_set_reset(ah, type); 1465 break; 1466 default: 1467 break; 1468 } 1469 1470 return ret; 1471 } 1472 1473 static bool ath9k_hw_chip_reset(struct ath_hw *ah, 1474 struct ath9k_channel *chan) 1475 { 1476 int reset_type = ATH9K_RESET_WARM; 1477 1478 if (AR_SREV_9280(ah)) { 1479 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) 1480 reset_type = ATH9K_RESET_POWER_ON; 1481 else 1482 reset_type = ATH9K_RESET_COLD; 1483 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) || 1484 (REG_READ(ah, AR_CR) & AR_CR_RXE)) 1485 reset_type = ATH9K_RESET_COLD; 1486 1487 if (!ath9k_hw_set_reset_reg(ah, reset_type)) 1488 return false; 1489 1490 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1491 return false; 1492 1493 ah->chip_fullsleep = false; 1494 1495 if (AR_SREV_9330(ah)) 1496 ar9003_hw_internal_regulator_apply(ah); 1497 ath9k_hw_init_pll(ah, chan); 1498 1499 return true; 1500 } 1501 1502 static bool ath9k_hw_channel_change(struct ath_hw *ah, 1503 struct ath9k_channel *chan) 1504 { 1505 struct ath_common *common = ath9k_hw_common(ah); 1506 struct ath9k_hw_capabilities *pCap = &ah->caps; 1507 bool band_switch = false, mode_diff = false; 1508 u8 ini_reloaded = 0; 1509 u32 qnum; 1510 int r; 1511 1512 if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) { 1513 u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags; 1514 band_switch = !!(flags_diff & CHANNEL_5GHZ); 1515 mode_diff = !!(flags_diff & ~CHANNEL_HT); 1516 } 1517 1518 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { 1519 if (ath9k_hw_numtxpending(ah, qnum)) { 1520 ath_dbg(common, QUEUE, 1521 "Transmit frames pending on queue %d\n", qnum); 1522 return false; 1523 } 1524 } 1525 1526 if (!ath9k_hw_rfbus_req(ah)) { 1527 ath_err(common, "Could not kill baseband RX\n"); 1528 return false; 1529 } 1530 1531 if (band_switch || mode_diff) { 1532 ath9k_hw_mark_phy_inactive(ah); 1533 udelay(5); 1534 1535 if (band_switch) 1536 ath9k_hw_init_pll(ah, chan); 1537 1538 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) { 1539 ath_err(common, "Failed to do fast channel change\n"); 1540 return false; 1541 } 1542 } 1543 1544 ath9k_hw_set_channel_regs(ah, chan); 1545 1546 r = ath9k_hw_rf_set_freq(ah, chan); 1547 if (r) { 1548 ath_err(common, "Failed to set channel\n"); 1549 return false; 1550 } 1551 ath9k_hw_set_clockrate(ah); 1552 ath9k_hw_apply_txpower(ah, chan, false); 1553 1554 ath9k_hw_set_delta_slope(ah, chan); 1555 ath9k_hw_spur_mitigate_freq(ah, chan); 1556 1557 if (band_switch || ini_reloaded) 1558 ah->eep_ops->set_board_values(ah, chan); 1559 1560 ath9k_hw_init_bb(ah, chan); 1561 ath9k_hw_rfbus_done(ah); 1562 1563 if (band_switch || ini_reloaded) { 1564 ah->ah_flags |= AH_FASTCC; 1565 ath9k_hw_init_cal(ah, chan); 1566 ah->ah_flags &= ~AH_FASTCC; 1567 } 1568 1569 return true; 1570 } 1571 1572 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah) 1573 { 1574 u32 gpio_mask = ah->gpio_mask; 1575 int i; 1576 1577 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) { 1578 if (!(gpio_mask & 1)) 1579 continue; 1580 1581 ath9k_hw_gpio_request_out(ah, i, NULL, 1582 AR_GPIO_OUTPUT_MUX_AS_OUTPUT); 1583 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i))); 1584 ath9k_hw_gpio_free(ah, i); 1585 } 1586 } 1587 1588 void ath9k_hw_check_nav(struct ath_hw *ah) 1589 { 1590 struct ath_common *common = ath9k_hw_common(ah); 1591 u32 val; 1592 1593 val = REG_READ(ah, AR_NAV); 1594 if (val != 0xdeadbeef && val > 0x7fff) { 1595 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val); 1596 REG_WRITE(ah, AR_NAV, 0); 1597 } 1598 } 1599 EXPORT_SYMBOL(ath9k_hw_check_nav); 1600 1601 bool ath9k_hw_check_alive(struct ath_hw *ah) 1602 { 1603 int count = 50; 1604 u32 reg, last_val; 1605 1606 /* Check if chip failed to wake up */ 1607 if (REG_READ(ah, AR_CFG) == 0xdeadbeef) 1608 return false; 1609 1610 if (AR_SREV_9300(ah)) 1611 return !ath9k_hw_detect_mac_hang(ah); 1612 1613 if (AR_SREV_9285_12_OR_LATER(ah)) 1614 return true; 1615 1616 last_val = REG_READ(ah, AR_OBS_BUS_1); 1617 do { 1618 reg = REG_READ(ah, AR_OBS_BUS_1); 1619 if (reg != last_val) 1620 return true; 1621 1622 udelay(1); 1623 last_val = reg; 1624 if ((reg & 0x7E7FFFEF) == 0x00702400) 1625 continue; 1626 1627 switch (reg & 0x7E000B00) { 1628 case 0x1E000000: 1629 case 0x52000B00: 1630 case 0x18000B00: 1631 continue; 1632 default: 1633 return true; 1634 } 1635 } while (count-- > 0); 1636 1637 return false; 1638 } 1639 EXPORT_SYMBOL(ath9k_hw_check_alive); 1640 1641 static void ath9k_hw_init_mfp(struct ath_hw *ah) 1642 { 1643 /* Setup MFP options for CCMP */ 1644 if (AR_SREV_9280_20_OR_LATER(ah)) { 1645 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt 1646 * frames when constructing CCMP AAD. */ 1647 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 1648 0xc7ff); 1649 if (AR_SREV_9271(ah) || AR_DEVID_7010(ah)) 1650 ah->sw_mgmt_crypto_tx = true; 1651 else 1652 ah->sw_mgmt_crypto_tx = false; 1653 ah->sw_mgmt_crypto_rx = false; 1654 } else if (AR_SREV_9160_10_OR_LATER(ah)) { 1655 /* Disable hardware crypto for management frames */ 1656 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, 1657 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); 1658 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1659 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); 1660 ah->sw_mgmt_crypto_tx = true; 1661 ah->sw_mgmt_crypto_rx = true; 1662 } else { 1663 ah->sw_mgmt_crypto_tx = true; 1664 ah->sw_mgmt_crypto_rx = true; 1665 } 1666 } 1667 1668 static void ath9k_hw_reset_opmode(struct ath_hw *ah, 1669 u32 macStaId1, u32 saveDefAntenna) 1670 { 1671 struct ath_common *common = ath9k_hw_common(ah); 1672 1673 ENABLE_REGWRITE_BUFFER(ah); 1674 1675 REG_RMW(ah, AR_STA_ID1, macStaId1 1676 | AR_STA_ID1_RTS_USE_DEF 1677 | ah->sta_id1_defaults, 1678 ~AR_STA_ID1_SADH_MASK); 1679 ath_hw_setbssidmask(common); 1680 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 1681 ath9k_hw_write_associd(ah); 1682 REG_WRITE(ah, AR_ISR, ~0); 1683 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); 1684 1685 REGWRITE_BUFFER_FLUSH(ah); 1686 1687 ath9k_hw_set_operating_mode(ah, ah->opmode); 1688 } 1689 1690 static void ath9k_hw_init_queues(struct ath_hw *ah) 1691 { 1692 int i; 1693 1694 ENABLE_REGWRITE_BUFFER(ah); 1695 1696 for (i = 0; i < AR_NUM_DCU; i++) 1697 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 1698 1699 REGWRITE_BUFFER_FLUSH(ah); 1700 1701 ah->intr_txqs = 0; 1702 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) 1703 ath9k_hw_resettxqueue(ah, i); 1704 } 1705 1706 /* 1707 * For big endian systems turn on swapping for descriptors 1708 */ 1709 static void ath9k_hw_init_desc(struct ath_hw *ah) 1710 { 1711 struct ath_common *common = ath9k_hw_common(ah); 1712 1713 if (AR_SREV_9100(ah)) { 1714 u32 mask; 1715 mask = REG_READ(ah, AR_CFG); 1716 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1717 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n", 1718 mask); 1719 } else { 1720 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1721 REG_WRITE(ah, AR_CFG, mask); 1722 ath_dbg(common, RESET, "Setting CFG 0x%x\n", 1723 REG_READ(ah, AR_CFG)); 1724 } 1725 } else { 1726 if (common->bus_ops->ath_bus_type == ATH_USB) { 1727 /* Configure AR9271 target WLAN */ 1728 if (AR_SREV_9271(ah)) 1729 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); 1730 else 1731 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1732 } 1733 #ifdef __BIG_ENDIAN 1734 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) || 1735 AR_SREV_9550(ah) || AR_SREV_9531(ah) || 1736 AR_SREV_9561(ah)) 1737 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0); 1738 else 1739 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1740 #endif 1741 } 1742 } 1743 1744 /* 1745 * Fast channel change: 1746 * (Change synthesizer based on channel freq without resetting chip) 1747 */ 1748 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan) 1749 { 1750 struct ath_common *common = ath9k_hw_common(ah); 1751 struct ath9k_hw_capabilities *pCap = &ah->caps; 1752 int ret; 1753 1754 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI) 1755 goto fail; 1756 1757 if (ah->chip_fullsleep) 1758 goto fail; 1759 1760 if (!ah->curchan) 1761 goto fail; 1762 1763 if (chan->channel == ah->curchan->channel) 1764 goto fail; 1765 1766 if ((ah->curchan->channelFlags | chan->channelFlags) & 1767 (CHANNEL_HALF | CHANNEL_QUARTER)) 1768 goto fail; 1769 1770 /* 1771 * If cross-band fcc is not supoprted, bail out if channelFlags differ. 1772 */ 1773 if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) && 1774 ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT)) 1775 goto fail; 1776 1777 if (!ath9k_hw_check_alive(ah)) 1778 goto fail; 1779 1780 /* 1781 * For AR9462, make sure that calibration data for 1782 * re-using are present. 1783 */ 1784 if (AR_SREV_9462(ah) && (ah->caldata && 1785 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) || 1786 !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) || 1787 !test_bit(RTT_DONE, &ah->caldata->cal_flags)))) 1788 goto fail; 1789 1790 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n", 1791 ah->curchan->channel, chan->channel); 1792 1793 ret = ath9k_hw_channel_change(ah, chan); 1794 if (!ret) 1795 goto fail; 1796 1797 if (ath9k_hw_mci_is_enabled(ah)) 1798 ar9003_mci_2g5g_switch(ah, false); 1799 1800 ath9k_hw_loadnf(ah, ah->curchan); 1801 ath9k_hw_start_nfcal(ah, true); 1802 1803 if (AR_SREV_9271(ah)) 1804 ar9002_hw_load_ani_reg(ah, chan); 1805 1806 return 0; 1807 fail: 1808 return -EINVAL; 1809 } 1810 1811 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur) 1812 { 1813 struct timespec ts; 1814 s64 usec; 1815 1816 if (!cur) { 1817 getrawmonotonic(&ts); 1818 cur = &ts; 1819 } 1820 1821 usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000; 1822 usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000; 1823 1824 return (u32) usec; 1825 } 1826 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset); 1827 1828 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, 1829 struct ath9k_hw_cal_data *caldata, bool fastcc) 1830 { 1831 struct ath_common *common = ath9k_hw_common(ah); 1832 u32 saveLedState; 1833 u32 saveDefAntenna; 1834 u32 macStaId1; 1835 struct timespec tsf_ts; 1836 u32 tsf_offset; 1837 u64 tsf = 0; 1838 int r; 1839 bool start_mci_reset = false; 1840 bool save_fullsleep = ah->chip_fullsleep; 1841 1842 if (ath9k_hw_mci_is_enabled(ah)) { 1843 start_mci_reset = ar9003_mci_start_reset(ah, chan); 1844 if (start_mci_reset) 1845 return 0; 1846 } 1847 1848 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1849 return -EIO; 1850 1851 if (ah->curchan && !ah->chip_fullsleep) 1852 ath9k_hw_getnf(ah, ah->curchan); 1853 1854 ah->caldata = caldata; 1855 if (caldata && (chan->channel != caldata->channel || 1856 chan->channelFlags != caldata->channelFlags)) { 1857 /* Operating channel changed, reset channel calibration data */ 1858 memset(caldata, 0, sizeof(*caldata)); 1859 ath9k_init_nfcal_hist_buffer(ah, chan); 1860 } else if (caldata) { 1861 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags); 1862 } 1863 ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor); 1864 1865 if (fastcc) { 1866 r = ath9k_hw_do_fastcc(ah, chan); 1867 if (!r) 1868 return r; 1869 } 1870 1871 if (ath9k_hw_mci_is_enabled(ah)) 1872 ar9003_mci_stop_bt(ah, save_fullsleep); 1873 1874 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); 1875 if (saveDefAntenna == 0) 1876 saveDefAntenna = 1; 1877 1878 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 1879 1880 /* Save TSF before chip reset, a cold reset clears it */ 1881 getrawmonotonic(&tsf_ts); 1882 tsf = ath9k_hw_gettsf64(ah); 1883 1884 saveLedState = REG_READ(ah, AR_CFG_LED) & 1885 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | 1886 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); 1887 1888 ath9k_hw_mark_phy_inactive(ah); 1889 1890 ah->paprd_table_write_done = false; 1891 1892 /* Only required on the first reset */ 1893 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1894 REG_WRITE(ah, 1895 AR9271_RESET_POWER_DOWN_CONTROL, 1896 AR9271_RADIO_RF_RST); 1897 udelay(50); 1898 } 1899 1900 if (!ath9k_hw_chip_reset(ah, chan)) { 1901 ath_err(common, "Chip reset failed\n"); 1902 return -EINVAL; 1903 } 1904 1905 /* Only required on the first reset */ 1906 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1907 ah->htc_reset_init = false; 1908 REG_WRITE(ah, 1909 AR9271_RESET_POWER_DOWN_CONTROL, 1910 AR9271_GATE_MAC_CTL); 1911 udelay(50); 1912 } 1913 1914 /* Restore TSF */ 1915 tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL); 1916 ath9k_hw_settsf64(ah, tsf + tsf_offset); 1917 1918 if (AR_SREV_9280_20_OR_LATER(ah)) 1919 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 1920 1921 if (!AR_SREV_9300_20_OR_LATER(ah)) 1922 ar9002_hw_enable_async_fifo(ah); 1923 1924 r = ath9k_hw_process_ini(ah, chan); 1925 if (r) 1926 return r; 1927 1928 ath9k_hw_set_rfmode(ah, chan); 1929 1930 if (ath9k_hw_mci_is_enabled(ah)) 1931 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep); 1932 1933 /* 1934 * Some AR91xx SoC devices frequently fail to accept TSF writes 1935 * right after the chip reset. When that happens, write a new 1936 * value after the initvals have been applied. 1937 */ 1938 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) { 1939 tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL); 1940 ath9k_hw_settsf64(ah, tsf + tsf_offset); 1941 } 1942 1943 ath9k_hw_init_mfp(ah); 1944 1945 ath9k_hw_set_delta_slope(ah, chan); 1946 ath9k_hw_spur_mitigate_freq(ah, chan); 1947 ah->eep_ops->set_board_values(ah, chan); 1948 1949 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna); 1950 1951 r = ath9k_hw_rf_set_freq(ah, chan); 1952 if (r) 1953 return r; 1954 1955 ath9k_hw_set_clockrate(ah); 1956 1957 ath9k_hw_init_queues(ah); 1958 ath9k_hw_init_interrupt_masks(ah, ah->opmode); 1959 ath9k_hw_ani_cache_ini_regs(ah); 1960 ath9k_hw_init_qos(ah); 1961 1962 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) 1963 ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill"); 1964 1965 ath9k_hw_init_global_settings(ah); 1966 1967 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1968 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, 1969 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 1970 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, 1971 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 1972 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1973 AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 1974 } 1975 1976 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM); 1977 1978 ath9k_hw_set_dma(ah); 1979 1980 if (!ath9k_hw_mci_is_enabled(ah)) 1981 REG_WRITE(ah, AR_OBS, 8); 1982 1983 ENABLE_REG_RMW_BUFFER(ah); 1984 if (ah->config.rx_intr_mitigation) { 1985 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last); 1986 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first); 1987 } 1988 1989 if (ah->config.tx_intr_mitigation) { 1990 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); 1991 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); 1992 } 1993 REG_RMW_BUFFER_FLUSH(ah); 1994 1995 ath9k_hw_init_bb(ah, chan); 1996 1997 if (caldata) { 1998 clear_bit(TXIQCAL_DONE, &caldata->cal_flags); 1999 clear_bit(TXCLCAL_DONE, &caldata->cal_flags); 2000 } 2001 if (!ath9k_hw_init_cal(ah, chan)) 2002 return -EIO; 2003 2004 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata)) 2005 return -EIO; 2006 2007 ENABLE_REGWRITE_BUFFER(ah); 2008 2009 ath9k_hw_restore_chainmask(ah); 2010 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); 2011 2012 REGWRITE_BUFFER_FLUSH(ah); 2013 2014 ath9k_hw_gen_timer_start_tsf2(ah); 2015 2016 ath9k_hw_init_desc(ah); 2017 2018 if (ath9k_hw_btcoex_is_enabled(ah)) 2019 ath9k_hw_btcoex_enable(ah); 2020 2021 if (ath9k_hw_mci_is_enabled(ah)) 2022 ar9003_mci_check_bt(ah); 2023 2024 if (AR_SREV_9300_20_OR_LATER(ah)) { 2025 ath9k_hw_loadnf(ah, chan); 2026 ath9k_hw_start_nfcal(ah, true); 2027 } 2028 2029 if (AR_SREV_9300_20_OR_LATER(ah)) 2030 ar9003_hw_bb_watchdog_config(ah); 2031 2032 if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR) 2033 ar9003_hw_disable_phy_restart(ah); 2034 2035 ath9k_hw_apply_gpio_override(ah); 2036 2037 if (AR_SREV_9565(ah) && common->bt_ant_diversity) 2038 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON); 2039 2040 if (ah->hw->conf.radar_enabled) { 2041 /* set HW specific DFS configuration */ 2042 ah->radar_conf.ext_channel = IS_CHAN_HT40(chan); 2043 ath9k_hw_set_radar_params(ah); 2044 } 2045 2046 return 0; 2047 } 2048 EXPORT_SYMBOL(ath9k_hw_reset); 2049 2050 /******************************/ 2051 /* Power Management (Chipset) */ 2052 /******************************/ 2053 2054 /* 2055 * Notify Power Mgt is disabled in self-generated frames. 2056 * If requested, force chip to sleep. 2057 */ 2058 static void ath9k_set_power_sleep(struct ath_hw *ah) 2059 { 2060 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2061 2062 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 2063 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff); 2064 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff); 2065 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff); 2066 /* xxx Required for WLAN only case ? */ 2067 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0); 2068 udelay(100); 2069 } 2070 2071 /* 2072 * Clear the RTC force wake bit to allow the 2073 * mac to go to sleep. 2074 */ 2075 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); 2076 2077 if (ath9k_hw_mci_is_enabled(ah)) 2078 udelay(100); 2079 2080 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 2081 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); 2082 2083 /* Shutdown chip. Active low */ 2084 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) { 2085 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); 2086 udelay(2); 2087 } 2088 2089 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */ 2090 if (AR_SREV_9300_20_OR_LATER(ah)) 2091 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 2092 } 2093 2094 /* 2095 * Notify Power Management is enabled in self-generating 2096 * frames. If request, set power mode of chip to 2097 * auto/normal. Duration in units of 128us (1/8 TU). 2098 */ 2099 static void ath9k_set_power_network_sleep(struct ath_hw *ah) 2100 { 2101 struct ath9k_hw_capabilities *pCap = &ah->caps; 2102 2103 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2104 2105 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { 2106 /* Set WakeOnInterrupt bit; clear ForceWake bit */ 2107 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 2108 AR_RTC_FORCE_WAKE_ON_INT); 2109 } else { 2110 2111 /* When chip goes into network sleep, it could be waken 2112 * up by MCI_INT interrupt caused by BT's HW messages 2113 * (LNA_xxx, CONT_xxx) which chould be in a very fast 2114 * rate (~100us). This will cause chip to leave and 2115 * re-enter network sleep mode frequently, which in 2116 * consequence will have WLAN MCI HW to generate lots of 2117 * SYS_WAKING and SYS_SLEEPING messages which will make 2118 * BT CPU to busy to process. 2119 */ 2120 if (ath9k_hw_mci_is_enabled(ah)) 2121 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 2122 AR_MCI_INTERRUPT_RX_HW_MSG_MASK); 2123 /* 2124 * Clear the RTC force wake bit to allow the 2125 * mac to go to sleep. 2126 */ 2127 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); 2128 2129 if (ath9k_hw_mci_is_enabled(ah)) 2130 udelay(30); 2131 } 2132 2133 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */ 2134 if (AR_SREV_9300_20_OR_LATER(ah)) 2135 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 2136 } 2137 2138 static bool ath9k_hw_set_power_awake(struct ath_hw *ah) 2139 { 2140 u32 val; 2141 int i; 2142 2143 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */ 2144 if (AR_SREV_9300_20_OR_LATER(ah)) { 2145 REG_WRITE(ah, AR_WA, ah->WARegVal); 2146 udelay(10); 2147 } 2148 2149 if ((REG_READ(ah, AR_RTC_STATUS) & 2150 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { 2151 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 2152 return false; 2153 } 2154 if (!AR_SREV_9300_20_OR_LATER(ah)) 2155 ath9k_hw_init_pll(ah, NULL); 2156 } 2157 if (AR_SREV_9100(ah)) 2158 REG_SET_BIT(ah, AR_RTC_RESET, 2159 AR_RTC_RESET_EN); 2160 2161 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2162 AR_RTC_FORCE_WAKE_EN); 2163 if (AR_SREV_9100(ah)) 2164 mdelay(10); 2165 else 2166 udelay(50); 2167 2168 for (i = POWER_UP_TIME / 50; i > 0; i--) { 2169 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; 2170 if (val == AR_RTC_STATUS_ON) 2171 break; 2172 udelay(50); 2173 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2174 AR_RTC_FORCE_WAKE_EN); 2175 } 2176 if (i == 0) { 2177 ath_err(ath9k_hw_common(ah), 2178 "Failed to wakeup in %uus\n", 2179 POWER_UP_TIME / 20); 2180 return false; 2181 } 2182 2183 if (ath9k_hw_mci_is_enabled(ah)) 2184 ar9003_mci_set_power_awake(ah); 2185 2186 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2187 2188 return true; 2189 } 2190 2191 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) 2192 { 2193 struct ath_common *common = ath9k_hw_common(ah); 2194 int status = true; 2195 static const char *modes[] = { 2196 "AWAKE", 2197 "FULL-SLEEP", 2198 "NETWORK SLEEP", 2199 "UNDEFINED" 2200 }; 2201 2202 if (ah->power_mode == mode) 2203 return status; 2204 2205 ath_dbg(common, RESET, "%s -> %s\n", 2206 modes[ah->power_mode], modes[mode]); 2207 2208 switch (mode) { 2209 case ATH9K_PM_AWAKE: 2210 status = ath9k_hw_set_power_awake(ah); 2211 break; 2212 case ATH9K_PM_FULL_SLEEP: 2213 if (ath9k_hw_mci_is_enabled(ah)) 2214 ar9003_mci_set_full_sleep(ah); 2215 2216 ath9k_set_power_sleep(ah); 2217 ah->chip_fullsleep = true; 2218 break; 2219 case ATH9K_PM_NETWORK_SLEEP: 2220 ath9k_set_power_network_sleep(ah); 2221 break; 2222 default: 2223 ath_err(common, "Unknown power mode %u\n", mode); 2224 return false; 2225 } 2226 ah->power_mode = mode; 2227 2228 /* 2229 * XXX: If this warning never comes up after a while then 2230 * simply keep the ATH_DBG_WARN_ON_ONCE() but make 2231 * ath9k_hw_setpower() return type void. 2232 */ 2233 2234 if (!(ah->ah_flags & AH_UNPLUGGED)) 2235 ATH_DBG_WARN_ON_ONCE(!status); 2236 2237 return status; 2238 } 2239 EXPORT_SYMBOL(ath9k_hw_setpower); 2240 2241 /*******************/ 2242 /* Beacon Handling */ 2243 /*******************/ 2244 2245 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) 2246 { 2247 int flags = 0; 2248 2249 ENABLE_REGWRITE_BUFFER(ah); 2250 2251 switch (ah->opmode) { 2252 case NL80211_IFTYPE_ADHOC: 2253 REG_SET_BIT(ah, AR_TXCFG, 2254 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); 2255 case NL80211_IFTYPE_MESH_POINT: 2256 case NL80211_IFTYPE_AP: 2257 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon); 2258 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon - 2259 TU_TO_USEC(ah->config.dma_beacon_response_time)); 2260 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon - 2261 TU_TO_USEC(ah->config.sw_beacon_response_time)); 2262 flags |= 2263 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; 2264 break; 2265 default: 2266 ath_dbg(ath9k_hw_common(ah), BEACON, 2267 "%s: unsupported opmode: %d\n", __func__, ah->opmode); 2268 return; 2269 break; 2270 } 2271 2272 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period); 2273 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period); 2274 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period); 2275 2276 REGWRITE_BUFFER_FLUSH(ah); 2277 2278 REG_SET_BIT(ah, AR_TIMER_MODE, flags); 2279 } 2280 EXPORT_SYMBOL(ath9k_hw_beaconinit); 2281 2282 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, 2283 const struct ath9k_beacon_state *bs) 2284 { 2285 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; 2286 struct ath9k_hw_capabilities *pCap = &ah->caps; 2287 struct ath_common *common = ath9k_hw_common(ah); 2288 2289 ENABLE_REGWRITE_BUFFER(ah); 2290 2291 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt); 2292 REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval); 2293 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval); 2294 2295 REGWRITE_BUFFER_FLUSH(ah); 2296 2297 REG_RMW_FIELD(ah, AR_RSSI_THR, 2298 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); 2299 2300 beaconintval = bs->bs_intval; 2301 2302 if (bs->bs_sleepduration > beaconintval) 2303 beaconintval = bs->bs_sleepduration; 2304 2305 dtimperiod = bs->bs_dtimperiod; 2306 if (bs->bs_sleepduration > dtimperiod) 2307 dtimperiod = bs->bs_sleepduration; 2308 2309 if (beaconintval == dtimperiod) 2310 nextTbtt = bs->bs_nextdtim; 2311 else 2312 nextTbtt = bs->bs_nexttbtt; 2313 2314 ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim); 2315 ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt); 2316 ath_dbg(common, BEACON, "beacon period %u\n", beaconintval); 2317 ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod); 2318 2319 ENABLE_REGWRITE_BUFFER(ah); 2320 2321 REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP); 2322 REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP); 2323 2324 REG_WRITE(ah, AR_SLEEP1, 2325 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) 2326 | AR_SLEEP1_ASSUME_DTIM); 2327 2328 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) 2329 beacontimeout = (BEACON_TIMEOUT_VAL << 3); 2330 else 2331 beacontimeout = MIN_BEACON_TIMEOUT_VAL; 2332 2333 REG_WRITE(ah, AR_SLEEP2, 2334 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); 2335 2336 REG_WRITE(ah, AR_TIM_PERIOD, beaconintval); 2337 REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod); 2338 2339 REGWRITE_BUFFER_FLUSH(ah); 2340 2341 REG_SET_BIT(ah, AR_TIMER_MODE, 2342 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | 2343 AR_DTIM_TIMER_EN); 2344 2345 /* TSF Out of Range Threshold */ 2346 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); 2347 } 2348 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); 2349 2350 /*******************/ 2351 /* HW Capabilities */ 2352 /*******************/ 2353 2354 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask) 2355 { 2356 eeprom_chainmask &= chip_chainmask; 2357 if (eeprom_chainmask) 2358 return eeprom_chainmask; 2359 else 2360 return chip_chainmask; 2361 } 2362 2363 /** 2364 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset 2365 * @ah: the atheros hardware data structure 2366 * 2367 * We enable DFS support upstream on chipsets which have passed a series 2368 * of tests. The testing requirements are going to be documented. Desired 2369 * test requirements are documented at: 2370 * 2371 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs 2372 * 2373 * Once a new chipset gets properly tested an individual commit can be used 2374 * to document the testing for DFS for that chipset. 2375 */ 2376 static bool ath9k_hw_dfs_tested(struct ath_hw *ah) 2377 { 2378 2379 switch (ah->hw_version.macVersion) { 2380 /* for temporary testing DFS with 9280 */ 2381 case AR_SREV_VERSION_9280: 2382 /* AR9580 will likely be our first target to get testing on */ 2383 case AR_SREV_VERSION_9580: 2384 return true; 2385 default: 2386 return false; 2387 } 2388 } 2389 2390 static void ath9k_gpio_cap_init(struct ath_hw *ah) 2391 { 2392 struct ath9k_hw_capabilities *pCap = &ah->caps; 2393 2394 if (AR_SREV_9271(ah)) { 2395 pCap->num_gpio_pins = AR9271_NUM_GPIO; 2396 pCap->gpio_mask = AR9271_GPIO_MASK; 2397 } else if (AR_DEVID_7010(ah)) { 2398 pCap->num_gpio_pins = AR7010_NUM_GPIO; 2399 pCap->gpio_mask = AR7010_GPIO_MASK; 2400 } else if (AR_SREV_9287(ah)) { 2401 pCap->num_gpio_pins = AR9287_NUM_GPIO; 2402 pCap->gpio_mask = AR9287_GPIO_MASK; 2403 } else if (AR_SREV_9285(ah)) { 2404 pCap->num_gpio_pins = AR9285_NUM_GPIO; 2405 pCap->gpio_mask = AR9285_GPIO_MASK; 2406 } else if (AR_SREV_9280(ah)) { 2407 pCap->num_gpio_pins = AR9280_NUM_GPIO; 2408 pCap->gpio_mask = AR9280_GPIO_MASK; 2409 } else if (AR_SREV_9300(ah)) { 2410 pCap->num_gpio_pins = AR9300_NUM_GPIO; 2411 pCap->gpio_mask = AR9300_GPIO_MASK; 2412 } else if (AR_SREV_9330(ah)) { 2413 pCap->num_gpio_pins = AR9330_NUM_GPIO; 2414 pCap->gpio_mask = AR9330_GPIO_MASK; 2415 } else if (AR_SREV_9340(ah)) { 2416 pCap->num_gpio_pins = AR9340_NUM_GPIO; 2417 pCap->gpio_mask = AR9340_GPIO_MASK; 2418 } else if (AR_SREV_9462(ah)) { 2419 pCap->num_gpio_pins = AR9462_NUM_GPIO; 2420 pCap->gpio_mask = AR9462_GPIO_MASK; 2421 } else if (AR_SREV_9485(ah)) { 2422 pCap->num_gpio_pins = AR9485_NUM_GPIO; 2423 pCap->gpio_mask = AR9485_GPIO_MASK; 2424 } else if (AR_SREV_9531(ah)) { 2425 pCap->num_gpio_pins = AR9531_NUM_GPIO; 2426 pCap->gpio_mask = AR9531_GPIO_MASK; 2427 } else if (AR_SREV_9550(ah)) { 2428 pCap->num_gpio_pins = AR9550_NUM_GPIO; 2429 pCap->gpio_mask = AR9550_GPIO_MASK; 2430 } else if (AR_SREV_9561(ah)) { 2431 pCap->num_gpio_pins = AR9561_NUM_GPIO; 2432 pCap->gpio_mask = AR9561_GPIO_MASK; 2433 } else if (AR_SREV_9565(ah)) { 2434 pCap->num_gpio_pins = AR9565_NUM_GPIO; 2435 pCap->gpio_mask = AR9565_GPIO_MASK; 2436 } else if (AR_SREV_9580(ah)) { 2437 pCap->num_gpio_pins = AR9580_NUM_GPIO; 2438 pCap->gpio_mask = AR9580_GPIO_MASK; 2439 } else { 2440 pCap->num_gpio_pins = AR_NUM_GPIO; 2441 pCap->gpio_mask = AR_GPIO_MASK; 2442 } 2443 } 2444 2445 int ath9k_hw_fill_cap_info(struct ath_hw *ah) 2446 { 2447 struct ath9k_hw_capabilities *pCap = &ah->caps; 2448 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 2449 struct ath_common *common = ath9k_hw_common(ah); 2450 2451 u16 eeval; 2452 u8 ant_div_ctl1, tx_chainmask, rx_chainmask; 2453 2454 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 2455 regulatory->current_rd = eeval; 2456 2457 if (ah->opmode != NL80211_IFTYPE_AP && 2458 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { 2459 if (regulatory->current_rd == 0x64 || 2460 regulatory->current_rd == 0x65) 2461 regulatory->current_rd += 5; 2462 else if (regulatory->current_rd == 0x41) 2463 regulatory->current_rd = 0x43; 2464 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n", 2465 regulatory->current_rd); 2466 } 2467 2468 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); 2469 2470 if (eeval & AR5416_OPFLAGS_11A) { 2471 if (ah->disable_5ghz) 2472 ath_warn(common, "disabling 5GHz band\n"); 2473 else 2474 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ; 2475 } 2476 2477 if (eeval & AR5416_OPFLAGS_11G) { 2478 if (ah->disable_2ghz) 2479 ath_warn(common, "disabling 2GHz band\n"); 2480 else 2481 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ; 2482 } 2483 2484 if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) { 2485 ath_err(common, "both bands are disabled\n"); 2486 return -EINVAL; 2487 } 2488 2489 ath9k_gpio_cap_init(ah); 2490 2491 if (AR_SREV_9485(ah) || 2492 AR_SREV_9285(ah) || 2493 AR_SREV_9330(ah) || 2494 AR_SREV_9565(ah)) 2495 pCap->chip_chainmask = 1; 2496 else if (!AR_SREV_9280_20_OR_LATER(ah)) 2497 pCap->chip_chainmask = 7; 2498 else if (!AR_SREV_9300_20_OR_LATER(ah) || 2499 AR_SREV_9340(ah) || 2500 AR_SREV_9462(ah) || 2501 AR_SREV_9531(ah)) 2502 pCap->chip_chainmask = 3; 2503 else 2504 pCap->chip_chainmask = 7; 2505 2506 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); 2507 /* 2508 * For AR9271 we will temporarilly uses the rx chainmax as read from 2509 * the EEPROM. 2510 */ 2511 if ((ah->hw_version.devid == AR5416_DEVID_PCI) && 2512 !(eeval & AR5416_OPFLAGS_11A) && 2513 !(AR_SREV_9271(ah))) 2514 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ 2515 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; 2516 else if (AR_SREV_9100(ah)) 2517 pCap->rx_chainmask = 0x7; 2518 else 2519 /* Use rx_chainmask from EEPROM. */ 2520 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); 2521 2522 pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask); 2523 pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask); 2524 ah->txchainmask = pCap->tx_chainmask; 2525 ah->rxchainmask = pCap->rx_chainmask; 2526 2527 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; 2528 2529 /* enable key search for every frame in an aggregate */ 2530 if (AR_SREV_9300_20_OR_LATER(ah)) 2531 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH; 2532 2533 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM; 2534 2535 if (ah->hw_version.devid != AR2427_DEVID_PCIE) 2536 pCap->hw_caps |= ATH9K_HW_CAP_HT; 2537 else 2538 pCap->hw_caps &= ~ATH9K_HW_CAP_HT; 2539 2540 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) 2541 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; 2542 else 2543 pCap->rts_aggr_limit = (8 * 1024); 2544 2545 #ifdef CONFIG_ATH9K_RFKILL 2546 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); 2547 if (ah->rfsilent & EEP_RFSILENT_ENABLED) { 2548 ah->rfkill_gpio = 2549 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); 2550 ah->rfkill_polarity = 2551 MS(ah->rfsilent, EEP_RFSILENT_POLARITY); 2552 2553 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; 2554 } 2555 #endif 2556 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) 2557 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; 2558 else 2559 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; 2560 2561 if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) 2562 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; 2563 else 2564 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; 2565 2566 if (AR_SREV_9300_20_OR_LATER(ah)) { 2567 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK; 2568 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && 2569 !AR_SREV_9561(ah) && !AR_SREV_9565(ah)) 2570 pCap->hw_caps |= ATH9K_HW_CAP_LDPC; 2571 2572 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; 2573 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; 2574 pCap->rx_status_len = sizeof(struct ar9003_rxs); 2575 pCap->tx_desc_len = sizeof(struct ar9003_txc); 2576 pCap->txs_len = sizeof(struct ar9003_txs); 2577 } else { 2578 pCap->tx_desc_len = sizeof(struct ath_desc); 2579 if (AR_SREV_9280_20(ah)) 2580 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; 2581 } 2582 2583 if (AR_SREV_9300_20_OR_LATER(ah)) 2584 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; 2585 2586 if (AR_SREV_9561(ah)) 2587 ah->ent_mode = 0x3BDA000; 2588 else if (AR_SREV_9300_20_OR_LATER(ah)) 2589 ah->ent_mode = REG_READ(ah, AR_ENT_OTP); 2590 2591 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah)) 2592 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; 2593 2594 if (AR_SREV_9285(ah)) { 2595 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) { 2596 ant_div_ctl1 = 2597 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2598 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) { 2599 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2600 ath_info(common, "Enable LNA combining\n"); 2601 } 2602 } 2603 } 2604 2605 if (AR_SREV_9300_20_OR_LATER(ah)) { 2606 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE)) 2607 pCap->hw_caps |= ATH9K_HW_CAP_APM; 2608 } 2609 2610 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 2611 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2612 if ((ant_div_ctl1 >> 0x6) == 0x3) { 2613 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2614 ath_info(common, "Enable LNA combining\n"); 2615 } 2616 } 2617 2618 if (ath9k_hw_dfs_tested(ah)) 2619 pCap->hw_caps |= ATH9K_HW_CAP_DFS; 2620 2621 tx_chainmask = pCap->tx_chainmask; 2622 rx_chainmask = pCap->rx_chainmask; 2623 while (tx_chainmask || rx_chainmask) { 2624 if (tx_chainmask & BIT(0)) 2625 pCap->max_txchains++; 2626 if (rx_chainmask & BIT(0)) 2627 pCap->max_rxchains++; 2628 2629 tx_chainmask >>= 1; 2630 rx_chainmask >>= 1; 2631 } 2632 2633 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 2634 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE)) 2635 pCap->hw_caps |= ATH9K_HW_CAP_MCI; 2636 2637 if (AR_SREV_9462_20_OR_LATER(ah)) 2638 pCap->hw_caps |= ATH9K_HW_CAP_RTT; 2639 } 2640 2641 if (AR_SREV_9300_20_OR_LATER(ah) && 2642 ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) 2643 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; 2644 2645 #ifdef CONFIG_ATH9K_WOW 2646 if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah)) 2647 ah->wow.max_patterns = MAX_NUM_PATTERN; 2648 else 2649 ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY; 2650 #endif 2651 2652 return 0; 2653 } 2654 2655 /****************************/ 2656 /* GPIO / RFKILL / Antennae */ 2657 /****************************/ 2658 2659 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type) 2660 { 2661 int addr; 2662 u32 gpio_shift, tmp; 2663 2664 if (gpio > 11) 2665 addr = AR_GPIO_OUTPUT_MUX3; 2666 else if (gpio > 5) 2667 addr = AR_GPIO_OUTPUT_MUX2; 2668 else 2669 addr = AR_GPIO_OUTPUT_MUX1; 2670 2671 gpio_shift = (gpio % 6) * 5; 2672 2673 if (AR_SREV_9280_20_OR_LATER(ah) || 2674 (addr != AR_GPIO_OUTPUT_MUX1)) { 2675 REG_RMW(ah, addr, (type << gpio_shift), 2676 (0x1f << gpio_shift)); 2677 } else { 2678 tmp = REG_READ(ah, addr); 2679 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); 2680 tmp &= ~(0x1f << gpio_shift); 2681 tmp |= (type << gpio_shift); 2682 REG_WRITE(ah, addr, tmp); 2683 } 2684 } 2685 2686 /* BSP should set the corresponding MUX register correctly. 2687 */ 2688 static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out, 2689 const char *label) 2690 { 2691 if (ah->caps.gpio_requested & BIT(gpio)) 2692 return; 2693 2694 /* may be requested by BSP, free anyway */ 2695 gpio_free(gpio); 2696 2697 if (gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label)) 2698 return; 2699 2700 ah->caps.gpio_requested |= BIT(gpio); 2701 } 2702 2703 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out, 2704 u32 ah_signal_type) 2705 { 2706 u32 gpio_set, gpio_shift = gpio; 2707 2708 if (AR_DEVID_7010(ah)) { 2709 gpio_set = out ? 2710 AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT; 2711 REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift, 2712 AR7010_GPIO_OE_MASK << gpio_shift); 2713 } else if (AR_SREV_SOC(ah)) { 2714 gpio_set = out ? 1 : 0; 2715 REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift, 2716 gpio_set << gpio_shift); 2717 } else { 2718 gpio_shift = gpio << 1; 2719 gpio_set = out ? 2720 AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO; 2721 REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift, 2722 AR_GPIO_OE_OUT_DRV << gpio_shift); 2723 2724 if (out) 2725 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); 2726 } 2727 } 2728 2729 static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out, 2730 const char *label, u32 ah_signal_type) 2731 { 2732 WARN_ON(gpio >= ah->caps.num_gpio_pins); 2733 2734 if (BIT(gpio) & ah->caps.gpio_mask) 2735 ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type); 2736 else if (AR_SREV_SOC(ah)) 2737 ath9k_hw_gpio_cfg_soc(ah, gpio, out, label); 2738 else 2739 WARN_ON(1); 2740 } 2741 2742 void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label) 2743 { 2744 ath9k_hw_gpio_request(ah, gpio, false, label, 0); 2745 } 2746 EXPORT_SYMBOL(ath9k_hw_gpio_request_in); 2747 2748 void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label, 2749 u32 ah_signal_type) 2750 { 2751 ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type); 2752 } 2753 EXPORT_SYMBOL(ath9k_hw_gpio_request_out); 2754 2755 void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio) 2756 { 2757 if (!AR_SREV_SOC(ah)) 2758 return; 2759 2760 WARN_ON(gpio >= ah->caps.num_gpio_pins); 2761 2762 if (ah->caps.gpio_requested & BIT(gpio)) { 2763 gpio_free(gpio); 2764 ah->caps.gpio_requested &= ~BIT(gpio); 2765 } 2766 } 2767 EXPORT_SYMBOL(ath9k_hw_gpio_free); 2768 2769 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) 2770 { 2771 u32 val = 0xffffffff; 2772 2773 #define MS_REG_READ(x, y) \ 2774 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y)) 2775 2776 WARN_ON(gpio >= ah->caps.num_gpio_pins); 2777 2778 if (BIT(gpio) & ah->caps.gpio_mask) { 2779 if (AR_SREV_9271(ah)) 2780 val = MS_REG_READ(AR9271, gpio); 2781 else if (AR_SREV_9287(ah)) 2782 val = MS_REG_READ(AR9287, gpio); 2783 else if (AR_SREV_9285(ah)) 2784 val = MS_REG_READ(AR9285, gpio); 2785 else if (AR_SREV_9280(ah)) 2786 val = MS_REG_READ(AR928X, gpio); 2787 else if (AR_DEVID_7010(ah)) 2788 val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio); 2789 else if (AR_SREV_9300_20_OR_LATER(ah)) 2790 val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio); 2791 else 2792 val = MS_REG_READ(AR, gpio); 2793 } else if (BIT(gpio) & ah->caps.gpio_requested) { 2794 val = gpio_get_value(gpio) & BIT(gpio); 2795 } else { 2796 WARN_ON(1); 2797 } 2798 2799 return !!val; 2800 } 2801 EXPORT_SYMBOL(ath9k_hw_gpio_get); 2802 2803 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) 2804 { 2805 WARN_ON(gpio >= ah->caps.num_gpio_pins); 2806 2807 if (AR_DEVID_7010(ah) || AR_SREV_9271(ah)) 2808 val = !val; 2809 else 2810 val = !!val; 2811 2812 if (BIT(gpio) & ah->caps.gpio_mask) { 2813 u32 out_addr = AR_DEVID_7010(ah) ? 2814 AR7010_GPIO_OUT : AR_GPIO_IN_OUT; 2815 2816 REG_RMW(ah, out_addr, val << gpio, BIT(gpio)); 2817 } else if (BIT(gpio) & ah->caps.gpio_requested) { 2818 gpio_set_value(gpio, val); 2819 } else { 2820 WARN_ON(1); 2821 } 2822 } 2823 EXPORT_SYMBOL(ath9k_hw_set_gpio); 2824 2825 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) 2826 { 2827 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); 2828 } 2829 EXPORT_SYMBOL(ath9k_hw_setantenna); 2830 2831 /*********************/ 2832 /* General Operation */ 2833 /*********************/ 2834 2835 u32 ath9k_hw_getrxfilter(struct ath_hw *ah) 2836 { 2837 u32 bits = REG_READ(ah, AR_RX_FILTER); 2838 u32 phybits = REG_READ(ah, AR_PHY_ERR); 2839 2840 if (phybits & AR_PHY_ERR_RADAR) 2841 bits |= ATH9K_RX_FILTER_PHYRADAR; 2842 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) 2843 bits |= ATH9K_RX_FILTER_PHYERR; 2844 2845 return bits; 2846 } 2847 EXPORT_SYMBOL(ath9k_hw_getrxfilter); 2848 2849 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) 2850 { 2851 u32 phybits; 2852 2853 ENABLE_REGWRITE_BUFFER(ah); 2854 2855 REG_WRITE(ah, AR_RX_FILTER, bits); 2856 2857 phybits = 0; 2858 if (bits & ATH9K_RX_FILTER_PHYRADAR) 2859 phybits |= AR_PHY_ERR_RADAR; 2860 if (bits & ATH9K_RX_FILTER_PHYERR) 2861 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; 2862 REG_WRITE(ah, AR_PHY_ERR, phybits); 2863 2864 if (phybits) 2865 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2866 else 2867 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2868 2869 REGWRITE_BUFFER_FLUSH(ah); 2870 } 2871 EXPORT_SYMBOL(ath9k_hw_setrxfilter); 2872 2873 bool ath9k_hw_phy_disable(struct ath_hw *ah) 2874 { 2875 if (ath9k_hw_mci_is_enabled(ah)) 2876 ar9003_mci_bt_gain_ctrl(ah); 2877 2878 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 2879 return false; 2880 2881 ath9k_hw_init_pll(ah, NULL); 2882 ah->htc_reset_init = true; 2883 return true; 2884 } 2885 EXPORT_SYMBOL(ath9k_hw_phy_disable); 2886 2887 bool ath9k_hw_disable(struct ath_hw *ah) 2888 { 2889 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 2890 return false; 2891 2892 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) 2893 return false; 2894 2895 ath9k_hw_init_pll(ah, NULL); 2896 return true; 2897 } 2898 EXPORT_SYMBOL(ath9k_hw_disable); 2899 2900 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan) 2901 { 2902 enum eeprom_param gain_param; 2903 2904 if (IS_CHAN_2GHZ(chan)) 2905 gain_param = EEP_ANTENNA_GAIN_2G; 2906 else 2907 gain_param = EEP_ANTENNA_GAIN_5G; 2908 2909 return ah->eep_ops->get_eeprom(ah, gain_param); 2910 } 2911 2912 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan, 2913 bool test) 2914 { 2915 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2916 struct ieee80211_channel *channel; 2917 int chan_pwr, new_pwr; 2918 2919 if (!chan) 2920 return; 2921 2922 channel = chan->chan; 2923 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER); 2924 new_pwr = min_t(int, chan_pwr, reg->power_limit); 2925 2926 ah->eep_ops->set_txpower(ah, chan, 2927 ath9k_regd_get_ctl(reg, chan), 2928 get_antenna_gain(ah, chan), new_pwr, test); 2929 } 2930 2931 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test) 2932 { 2933 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2934 struct ath9k_channel *chan = ah->curchan; 2935 struct ieee80211_channel *channel = chan->chan; 2936 2937 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER); 2938 if (test) 2939 channel->max_power = MAX_RATE_POWER / 2; 2940 2941 ath9k_hw_apply_txpower(ah, chan, test); 2942 2943 if (test) 2944 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2); 2945 } 2946 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); 2947 2948 void ath9k_hw_setopmode(struct ath_hw *ah) 2949 { 2950 ath9k_hw_set_operating_mode(ah, ah->opmode); 2951 } 2952 EXPORT_SYMBOL(ath9k_hw_setopmode); 2953 2954 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) 2955 { 2956 REG_WRITE(ah, AR_MCAST_FIL0, filter0); 2957 REG_WRITE(ah, AR_MCAST_FIL1, filter1); 2958 } 2959 EXPORT_SYMBOL(ath9k_hw_setmcastfilter); 2960 2961 void ath9k_hw_write_associd(struct ath_hw *ah) 2962 { 2963 struct ath_common *common = ath9k_hw_common(ah); 2964 2965 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); 2966 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | 2967 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); 2968 } 2969 EXPORT_SYMBOL(ath9k_hw_write_associd); 2970 2971 #define ATH9K_MAX_TSF_READ 10 2972 2973 u64 ath9k_hw_gettsf64(struct ath_hw *ah) 2974 { 2975 u32 tsf_lower, tsf_upper1, tsf_upper2; 2976 int i; 2977 2978 tsf_upper1 = REG_READ(ah, AR_TSF_U32); 2979 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { 2980 tsf_lower = REG_READ(ah, AR_TSF_L32); 2981 tsf_upper2 = REG_READ(ah, AR_TSF_U32); 2982 if (tsf_upper2 == tsf_upper1) 2983 break; 2984 tsf_upper1 = tsf_upper2; 2985 } 2986 2987 WARN_ON( i == ATH9K_MAX_TSF_READ ); 2988 2989 return (((u64)tsf_upper1 << 32) | tsf_lower); 2990 } 2991 EXPORT_SYMBOL(ath9k_hw_gettsf64); 2992 2993 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) 2994 { 2995 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); 2996 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); 2997 } 2998 EXPORT_SYMBOL(ath9k_hw_settsf64); 2999 3000 void ath9k_hw_reset_tsf(struct ath_hw *ah) 3001 { 3002 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, 3003 AH_TSF_WRITE_TIMEOUT)) 3004 ath_dbg(ath9k_hw_common(ah), RESET, 3005 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); 3006 3007 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); 3008 } 3009 EXPORT_SYMBOL(ath9k_hw_reset_tsf); 3010 3011 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set) 3012 { 3013 if (set) 3014 ah->misc_mode |= AR_PCU_TX_ADD_TSF; 3015 else 3016 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; 3017 } 3018 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); 3019 3020 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan) 3021 { 3022 u32 macmode; 3023 3024 if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca) 3025 macmode = AR_2040_JOINED_RX_CLEAR; 3026 else 3027 macmode = 0; 3028 3029 REG_WRITE(ah, AR_2040_MODE, macmode); 3030 } 3031 3032 /* HW Generic timers configuration */ 3033 3034 static const struct ath_gen_timer_configuration gen_tmr_configuration[] = 3035 { 3036 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3037 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3038 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3039 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3040 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3041 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3042 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3043 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3044 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, 3045 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, 3046 AR_NDP2_TIMER_MODE, 0x0002}, 3047 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, 3048 AR_NDP2_TIMER_MODE, 0x0004}, 3049 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, 3050 AR_NDP2_TIMER_MODE, 0x0008}, 3051 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, 3052 AR_NDP2_TIMER_MODE, 0x0010}, 3053 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, 3054 AR_NDP2_TIMER_MODE, 0x0020}, 3055 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, 3056 AR_NDP2_TIMER_MODE, 0x0040}, 3057 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, 3058 AR_NDP2_TIMER_MODE, 0x0080} 3059 }; 3060 3061 /* HW generic timer primitives */ 3062 3063 u32 ath9k_hw_gettsf32(struct ath_hw *ah) 3064 { 3065 return REG_READ(ah, AR_TSF_L32); 3066 } 3067 EXPORT_SYMBOL(ath9k_hw_gettsf32); 3068 3069 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah) 3070 { 3071 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3072 3073 if (timer_table->tsf2_enabled) { 3074 REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN); 3075 REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE); 3076 } 3077 } 3078 3079 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, 3080 void (*trigger)(void *), 3081 void (*overflow)(void *), 3082 void *arg, 3083 u8 timer_index) 3084 { 3085 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3086 struct ath_gen_timer *timer; 3087 3088 if ((timer_index < AR_FIRST_NDP_TIMER) || 3089 (timer_index >= ATH_MAX_GEN_TIMER)) 3090 return NULL; 3091 3092 if ((timer_index > AR_FIRST_NDP_TIMER) && 3093 !AR_SREV_9300_20_OR_LATER(ah)) 3094 return NULL; 3095 3096 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); 3097 if (timer == NULL) 3098 return NULL; 3099 3100 /* allocate a hardware generic timer slot */ 3101 timer_table->timers[timer_index] = timer; 3102 timer->index = timer_index; 3103 timer->trigger = trigger; 3104 timer->overflow = overflow; 3105 timer->arg = arg; 3106 3107 if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) { 3108 timer_table->tsf2_enabled = true; 3109 ath9k_hw_gen_timer_start_tsf2(ah); 3110 } 3111 3112 return timer; 3113 } 3114 EXPORT_SYMBOL(ath_gen_timer_alloc); 3115 3116 void ath9k_hw_gen_timer_start(struct ath_hw *ah, 3117 struct ath_gen_timer *timer, 3118 u32 timer_next, 3119 u32 timer_period) 3120 { 3121 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3122 u32 mask = 0; 3123 3124 timer_table->timer_mask |= BIT(timer->index); 3125 3126 /* 3127 * Program generic timer registers 3128 */ 3129 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, 3130 timer_next); 3131 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, 3132 timer_period); 3133 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 3134 gen_tmr_configuration[timer->index].mode_mask); 3135 3136 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 3137 /* 3138 * Starting from AR9462, each generic timer can select which tsf 3139 * to use. But we still follow the old rule, 0 - 7 use tsf and 3140 * 8 - 15 use tsf2. 3141 */ 3142 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN)) 3143 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3144 (1 << timer->index)); 3145 else 3146 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3147 (1 << timer->index)); 3148 } 3149 3150 if (timer->trigger) 3151 mask |= SM(AR_GENTMR_BIT(timer->index), 3152 AR_IMR_S5_GENTIMER_TRIG); 3153 if (timer->overflow) 3154 mask |= SM(AR_GENTMR_BIT(timer->index), 3155 AR_IMR_S5_GENTIMER_THRESH); 3156 3157 REG_SET_BIT(ah, AR_IMR_S5, mask); 3158 3159 if ((ah->imask & ATH9K_INT_GENTIMER) == 0) { 3160 ah->imask |= ATH9K_INT_GENTIMER; 3161 ath9k_hw_set_interrupts(ah); 3162 } 3163 } 3164 EXPORT_SYMBOL(ath9k_hw_gen_timer_start); 3165 3166 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) 3167 { 3168 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3169 3170 /* Clear generic timer enable bits. */ 3171 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 3172 gen_tmr_configuration[timer->index].mode_mask); 3173 3174 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 3175 /* 3176 * Need to switch back to TSF if it was using TSF2. 3177 */ 3178 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) { 3179 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3180 (1 << timer->index)); 3181 } 3182 } 3183 3184 /* Disable both trigger and thresh interrupt masks */ 3185 REG_CLR_BIT(ah, AR_IMR_S5, 3186 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 3187 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 3188 3189 timer_table->timer_mask &= ~BIT(timer->index); 3190 3191 if (timer_table->timer_mask == 0) { 3192 ah->imask &= ~ATH9K_INT_GENTIMER; 3193 ath9k_hw_set_interrupts(ah); 3194 } 3195 } 3196 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); 3197 3198 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) 3199 { 3200 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3201 3202 /* free the hardware generic timer slot */ 3203 timer_table->timers[timer->index] = NULL; 3204 kfree(timer); 3205 } 3206 EXPORT_SYMBOL(ath_gen_timer_free); 3207 3208 /* 3209 * Generic Timer Interrupts handling 3210 */ 3211 void ath_gen_timer_isr(struct ath_hw *ah) 3212 { 3213 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3214 struct ath_gen_timer *timer; 3215 unsigned long trigger_mask, thresh_mask; 3216 unsigned int index; 3217 3218 /* get hardware generic timer interrupt status */ 3219 trigger_mask = ah->intr_gen_timer_trigger; 3220 thresh_mask = ah->intr_gen_timer_thresh; 3221 trigger_mask &= timer_table->timer_mask; 3222 thresh_mask &= timer_table->timer_mask; 3223 3224 for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) { 3225 timer = timer_table->timers[index]; 3226 if (!timer) 3227 continue; 3228 if (!timer->overflow) 3229 continue; 3230 3231 trigger_mask &= ~BIT(index); 3232 timer->overflow(timer->arg); 3233 } 3234 3235 for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) { 3236 timer = timer_table->timers[index]; 3237 if (!timer) 3238 continue; 3239 if (!timer->trigger) 3240 continue; 3241 timer->trigger(timer->arg); 3242 } 3243 } 3244 EXPORT_SYMBOL(ath_gen_timer_isr); 3245 3246 /********/ 3247 /* HTC */ 3248 /********/ 3249 3250 static struct { 3251 u32 version; 3252 const char * name; 3253 } ath_mac_bb_names[] = { 3254 /* Devices with external radios */ 3255 { AR_SREV_VERSION_5416_PCI, "5416" }, 3256 { AR_SREV_VERSION_5416_PCIE, "5418" }, 3257 { AR_SREV_VERSION_9100, "9100" }, 3258 { AR_SREV_VERSION_9160, "9160" }, 3259 /* Single-chip solutions */ 3260 { AR_SREV_VERSION_9280, "9280" }, 3261 { AR_SREV_VERSION_9285, "9285" }, 3262 { AR_SREV_VERSION_9287, "9287" }, 3263 { AR_SREV_VERSION_9271, "9271" }, 3264 { AR_SREV_VERSION_9300, "9300" }, 3265 { AR_SREV_VERSION_9330, "9330" }, 3266 { AR_SREV_VERSION_9340, "9340" }, 3267 { AR_SREV_VERSION_9485, "9485" }, 3268 { AR_SREV_VERSION_9462, "9462" }, 3269 { AR_SREV_VERSION_9550, "9550" }, 3270 { AR_SREV_VERSION_9565, "9565" }, 3271 { AR_SREV_VERSION_9531, "9531" }, 3272 { AR_SREV_VERSION_9561, "9561" }, 3273 }; 3274 3275 /* For devices with external radios */ 3276 static struct { 3277 u16 version; 3278 const char * name; 3279 } ath_rf_names[] = { 3280 { 0, "5133" }, 3281 { AR_RAD5133_SREV_MAJOR, "5133" }, 3282 { AR_RAD5122_SREV_MAJOR, "5122" }, 3283 { AR_RAD2133_SREV_MAJOR, "2133" }, 3284 { AR_RAD2122_SREV_MAJOR, "2122" } 3285 }; 3286 3287 /* 3288 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. 3289 */ 3290 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) 3291 { 3292 int i; 3293 3294 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { 3295 if (ath_mac_bb_names[i].version == mac_bb_version) { 3296 return ath_mac_bb_names[i].name; 3297 } 3298 } 3299 3300 return "????"; 3301 } 3302 3303 /* 3304 * Return the RF name. "????" is returned if the RF is unknown. 3305 * Used for devices with external radios. 3306 */ 3307 static const char *ath9k_hw_rf_name(u16 rf_version) 3308 { 3309 int i; 3310 3311 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { 3312 if (ath_rf_names[i].version == rf_version) { 3313 return ath_rf_names[i].name; 3314 } 3315 } 3316 3317 return "????"; 3318 } 3319 3320 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) 3321 { 3322 int used; 3323 3324 /* chipsets >= AR9280 are single-chip */ 3325 if (AR_SREV_9280_20_OR_LATER(ah)) { 3326 used = scnprintf(hw_name, len, 3327 "Atheros AR%s Rev:%x", 3328 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3329 ah->hw_version.macRev); 3330 } 3331 else { 3332 used = scnprintf(hw_name, len, 3333 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", 3334 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3335 ah->hw_version.macRev, 3336 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev 3337 & AR_RADIO_SREV_MAJOR)), 3338 ah->hw_version.phyRev); 3339 } 3340 3341 hw_name[used] = '\0'; 3342 } 3343 EXPORT_SYMBOL(ath9k_hw_name); 3344