xref: /linux/drivers/net/wireless/ath/ath9k/hw.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 
27 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
28 
29 MODULE_AUTHOR("Atheros Communications");
30 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
31 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
32 MODULE_LICENSE("Dual BSD/GPL");
33 
34 static int __init ath9k_init(void)
35 {
36 	return 0;
37 }
38 module_init(ath9k_init);
39 
40 static void __exit ath9k_exit(void)
41 {
42 	return;
43 }
44 module_exit(ath9k_exit);
45 
46 /* Private hardware callbacks */
47 
48 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
49 {
50 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
51 }
52 
53 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
54 {
55 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
56 }
57 
58 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
59 					struct ath9k_channel *chan)
60 {
61 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
62 }
63 
64 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
65 {
66 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
67 		return;
68 
69 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
70 }
71 
72 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
73 {
74 	/* You will not have this callback if using the old ANI */
75 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
76 		return;
77 
78 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
79 }
80 
81 /********************/
82 /* Helper Functions */
83 /********************/
84 
85 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
86 {
87 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
88 	struct ath_common *common = ath9k_hw_common(ah);
89 	unsigned int clockrate;
90 
91 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
92 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
93 		clockrate = 117;
94 	else if (!ah->curchan) /* should really check for CCK instead */
95 		clockrate = ATH9K_CLOCK_RATE_CCK;
96 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
97 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
98 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
99 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
100 	else
101 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
102 
103 	if (conf_is_ht40(conf))
104 		clockrate *= 2;
105 
106 	if (ah->curchan) {
107 		if (IS_CHAN_HALF_RATE(ah->curchan))
108 			clockrate /= 2;
109 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
110 			clockrate /= 4;
111 	}
112 
113 	common->clockrate = clockrate;
114 }
115 
116 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
117 {
118 	struct ath_common *common = ath9k_hw_common(ah);
119 
120 	return usecs * common->clockrate;
121 }
122 
123 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
124 {
125 	int i;
126 
127 	BUG_ON(timeout < AH_TIME_QUANTUM);
128 
129 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
130 		if ((REG_READ(ah, reg) & mask) == val)
131 			return true;
132 
133 		udelay(AH_TIME_QUANTUM);
134 	}
135 
136 	ath_dbg(ath9k_hw_common(ah), ANY,
137 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
138 		timeout, reg, REG_READ(ah, reg), mask, val);
139 
140 	return false;
141 }
142 EXPORT_SYMBOL(ath9k_hw_wait);
143 
144 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
145 			  int column, unsigned int *writecnt)
146 {
147 	int r;
148 
149 	ENABLE_REGWRITE_BUFFER(ah);
150 	for (r = 0; r < array->ia_rows; r++) {
151 		REG_WRITE(ah, INI_RA(array, r, 0),
152 			  INI_RA(array, r, column));
153 		DO_DELAY(*writecnt);
154 	}
155 	REGWRITE_BUFFER_FLUSH(ah);
156 }
157 
158 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
159 {
160 	u32 retval;
161 	int i;
162 
163 	for (i = 0, retval = 0; i < n; i++) {
164 		retval = (retval << 1) | (val & 1);
165 		val >>= 1;
166 	}
167 	return retval;
168 }
169 
170 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171 			   u8 phy, int kbps,
172 			   u32 frameLen, u16 rateix,
173 			   bool shortPreamble)
174 {
175 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176 
177 	if (kbps == 0)
178 		return 0;
179 
180 	switch (phy) {
181 	case WLAN_RC_PHY_CCK:
182 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
183 		if (shortPreamble)
184 			phyTime >>= 1;
185 		numBits = frameLen << 3;
186 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
187 		break;
188 	case WLAN_RC_PHY_OFDM:
189 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
190 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
191 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
192 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
193 			txTime = OFDM_SIFS_TIME_QUARTER
194 				+ OFDM_PREAMBLE_TIME_QUARTER
195 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
196 		} else if (ah->curchan &&
197 			   IS_CHAN_HALF_RATE(ah->curchan)) {
198 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
199 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
200 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
201 			txTime = OFDM_SIFS_TIME_HALF +
202 				OFDM_PREAMBLE_TIME_HALF
203 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
204 		} else {
205 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
206 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
207 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
208 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
209 				+ (numSymbols * OFDM_SYMBOL_TIME);
210 		}
211 		break;
212 	default:
213 		ath_err(ath9k_hw_common(ah),
214 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
215 		txTime = 0;
216 		break;
217 	}
218 
219 	return txTime;
220 }
221 EXPORT_SYMBOL(ath9k_hw_computetxtime);
222 
223 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
224 				  struct ath9k_channel *chan,
225 				  struct chan_centers *centers)
226 {
227 	int8_t extoff;
228 
229 	if (!IS_CHAN_HT40(chan)) {
230 		centers->ctl_center = centers->ext_center =
231 			centers->synth_center = chan->channel;
232 		return;
233 	}
234 
235 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
236 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
237 		centers->synth_center =
238 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
239 		extoff = 1;
240 	} else {
241 		centers->synth_center =
242 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
243 		extoff = -1;
244 	}
245 
246 	centers->ctl_center =
247 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
248 	/* 25 MHz spacing is supported by hw but not on upper layers */
249 	centers->ext_center =
250 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
251 }
252 
253 /******************/
254 /* Chip Revisions */
255 /******************/
256 
257 static void ath9k_hw_read_revisions(struct ath_hw *ah)
258 {
259 	u32 val;
260 
261 	switch (ah->hw_version.devid) {
262 	case AR5416_AR9100_DEVID:
263 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
264 		break;
265 	case AR9300_DEVID_AR9330:
266 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
267 		if (ah->get_mac_revision) {
268 			ah->hw_version.macRev = ah->get_mac_revision();
269 		} else {
270 			val = REG_READ(ah, AR_SREV);
271 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272 		}
273 		return;
274 	case AR9300_DEVID_AR9340:
275 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
276 		val = REG_READ(ah, AR_SREV);
277 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
278 		return;
279 	}
280 
281 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
282 
283 	if (val == 0xFF) {
284 		val = REG_READ(ah, AR_SREV);
285 		ah->hw_version.macVersion =
286 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
287 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
288 
289 		if (AR_SREV_9462(ah))
290 			ah->is_pciexpress = true;
291 		else
292 			ah->is_pciexpress = (val &
293 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
294 	} else {
295 		if (!AR_SREV_9100(ah))
296 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
297 
298 		ah->hw_version.macRev = val & AR_SREV_REVISION;
299 
300 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
301 			ah->is_pciexpress = true;
302 	}
303 }
304 
305 /************************************/
306 /* HW Attach, Detach, Init Routines */
307 /************************************/
308 
309 static void ath9k_hw_disablepcie(struct ath_hw *ah)
310 {
311 	if (!AR_SREV_5416(ah))
312 		return;
313 
314 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
315 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
316 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
317 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
318 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
319 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
320 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
321 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
322 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
323 
324 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
325 }
326 
327 static void ath9k_hw_aspm_init(struct ath_hw *ah)
328 {
329 	struct ath_common *common = ath9k_hw_common(ah);
330 
331 	if (common->bus_ops->aspm_init)
332 		common->bus_ops->aspm_init(common);
333 }
334 
335 /* This should work for all families including legacy */
336 static bool ath9k_hw_chip_test(struct ath_hw *ah)
337 {
338 	struct ath_common *common = ath9k_hw_common(ah);
339 	u32 regAddr[2] = { AR_STA_ID0 };
340 	u32 regHold[2];
341 	static const u32 patternData[4] = {
342 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
343 	};
344 	int i, j, loop_max;
345 
346 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
347 		loop_max = 2;
348 		regAddr[1] = AR_PHY_BASE + (8 << 2);
349 	} else
350 		loop_max = 1;
351 
352 	for (i = 0; i < loop_max; i++) {
353 		u32 addr = regAddr[i];
354 		u32 wrData, rdData;
355 
356 		regHold[i] = REG_READ(ah, addr);
357 		for (j = 0; j < 0x100; j++) {
358 			wrData = (j << 16) | j;
359 			REG_WRITE(ah, addr, wrData);
360 			rdData = REG_READ(ah, addr);
361 			if (rdData != wrData) {
362 				ath_err(common,
363 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
364 					addr, wrData, rdData);
365 				return false;
366 			}
367 		}
368 		for (j = 0; j < 4; j++) {
369 			wrData = patternData[j];
370 			REG_WRITE(ah, addr, wrData);
371 			rdData = REG_READ(ah, addr);
372 			if (wrData != rdData) {
373 				ath_err(common,
374 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
375 					addr, wrData, rdData);
376 				return false;
377 			}
378 		}
379 		REG_WRITE(ah, regAddr[i], regHold[i]);
380 	}
381 	udelay(100);
382 
383 	return true;
384 }
385 
386 static void ath9k_hw_init_config(struct ath_hw *ah)
387 {
388 	int i;
389 
390 	ah->config.dma_beacon_response_time = 2;
391 	ah->config.sw_beacon_response_time = 10;
392 	ah->config.additional_swba_backoff = 0;
393 	ah->config.ack_6mb = 0x0;
394 	ah->config.cwm_ignore_extcca = 0;
395 	ah->config.pcie_clock_req = 0;
396 	ah->config.pcie_waen = 0;
397 	ah->config.analog_shiftreg = 1;
398 	ah->config.enable_ani = true;
399 
400 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
401 		ah->config.spurchans[i][0] = AR_NO_SPUR;
402 		ah->config.spurchans[i][1] = AR_NO_SPUR;
403 	}
404 
405 	/* PAPRD needs some more work to be enabled */
406 	ah->config.paprd_disable = 1;
407 
408 	ah->config.rx_intr_mitigation = true;
409 	ah->config.pcieSerDesWrite = true;
410 
411 	/*
412 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
413 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
414 	 * This means we use it for all AR5416 devices, and the few
415 	 * minor PCI AR9280 devices out there.
416 	 *
417 	 * Serialization is required because these devices do not handle
418 	 * well the case of two concurrent reads/writes due to the latency
419 	 * involved. During one read/write another read/write can be issued
420 	 * on another CPU while the previous read/write may still be working
421 	 * on our hardware, if we hit this case the hardware poops in a loop.
422 	 * We prevent this by serializing reads and writes.
423 	 *
424 	 * This issue is not present on PCI-Express devices or pre-AR5416
425 	 * devices (legacy, 802.11abg).
426 	 */
427 	if (num_possible_cpus() > 1)
428 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
429 }
430 
431 static void ath9k_hw_init_defaults(struct ath_hw *ah)
432 {
433 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
434 
435 	regulatory->country_code = CTRY_DEFAULT;
436 	regulatory->power_limit = MAX_RATE_POWER;
437 
438 	ah->hw_version.magic = AR5416_MAGIC;
439 	ah->hw_version.subvendorid = 0;
440 
441 	ah->atim_window = 0;
442 	ah->sta_id1_defaults =
443 		AR_STA_ID1_CRPT_MIC_ENABLE |
444 		AR_STA_ID1_MCAST_KSRCH;
445 	if (AR_SREV_9100(ah))
446 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
447 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
448 	ah->slottime = ATH9K_SLOT_TIME_9;
449 	ah->globaltxtimeout = (u32) -1;
450 	ah->power_mode = ATH9K_PM_UNDEFINED;
451 }
452 
453 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
454 {
455 	struct ath_common *common = ath9k_hw_common(ah);
456 	u32 sum;
457 	int i;
458 	u16 eeval;
459 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
460 
461 	sum = 0;
462 	for (i = 0; i < 3; i++) {
463 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
464 		sum += eeval;
465 		common->macaddr[2 * i] = eeval >> 8;
466 		common->macaddr[2 * i + 1] = eeval & 0xff;
467 	}
468 	if (sum == 0 || sum == 0xffff * 3)
469 		return -EADDRNOTAVAIL;
470 
471 	return 0;
472 }
473 
474 static int ath9k_hw_post_init(struct ath_hw *ah)
475 {
476 	struct ath_common *common = ath9k_hw_common(ah);
477 	int ecode;
478 
479 	if (common->bus_ops->ath_bus_type != ATH_USB) {
480 		if (!ath9k_hw_chip_test(ah))
481 			return -ENODEV;
482 	}
483 
484 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
485 		ecode = ar9002_hw_rf_claim(ah);
486 		if (ecode != 0)
487 			return ecode;
488 	}
489 
490 	ecode = ath9k_hw_eeprom_init(ah);
491 	if (ecode != 0)
492 		return ecode;
493 
494 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
495 		ah->eep_ops->get_eeprom_ver(ah),
496 		ah->eep_ops->get_eeprom_rev(ah));
497 
498 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
499 	if (ecode) {
500 		ath_err(ath9k_hw_common(ah),
501 			"Failed allocating banks for external radio\n");
502 		ath9k_hw_rf_free_ext_banks(ah);
503 		return ecode;
504 	}
505 
506 	if (ah->config.enable_ani) {
507 		ath9k_hw_ani_setup(ah);
508 		ath9k_hw_ani_init(ah);
509 	}
510 
511 	return 0;
512 }
513 
514 static void ath9k_hw_attach_ops(struct ath_hw *ah)
515 {
516 	if (AR_SREV_9300_20_OR_LATER(ah))
517 		ar9003_hw_attach_ops(ah);
518 	else
519 		ar9002_hw_attach_ops(ah);
520 }
521 
522 /* Called for all hardware families */
523 static int __ath9k_hw_init(struct ath_hw *ah)
524 {
525 	struct ath_common *common = ath9k_hw_common(ah);
526 	int r = 0;
527 
528 	ath9k_hw_read_revisions(ah);
529 
530 	/*
531 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
532 	 * We need to do this to avoid RMW of this register. We cannot
533 	 * read the reg when chip is asleep.
534 	 */
535 	ah->WARegVal = REG_READ(ah, AR_WA);
536 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
537 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
538 
539 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
540 		ath_err(common, "Couldn't reset chip\n");
541 		return -EIO;
542 	}
543 
544 	if (AR_SREV_9462(ah))
545 		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
546 
547 	ath9k_hw_init_defaults(ah);
548 	ath9k_hw_init_config(ah);
549 
550 	ath9k_hw_attach_ops(ah);
551 
552 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
553 		ath_err(common, "Couldn't wakeup chip\n");
554 		return -EIO;
555 	}
556 
557 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
558 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
559 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
560 		     !ah->is_pciexpress)) {
561 			ah->config.serialize_regmode =
562 				SER_REG_MODE_ON;
563 		} else {
564 			ah->config.serialize_regmode =
565 				SER_REG_MODE_OFF;
566 		}
567 	}
568 
569 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
570 		ah->config.serialize_regmode);
571 
572 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
573 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
574 	else
575 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
576 
577 	switch (ah->hw_version.macVersion) {
578 	case AR_SREV_VERSION_5416_PCI:
579 	case AR_SREV_VERSION_5416_PCIE:
580 	case AR_SREV_VERSION_9160:
581 	case AR_SREV_VERSION_9100:
582 	case AR_SREV_VERSION_9280:
583 	case AR_SREV_VERSION_9285:
584 	case AR_SREV_VERSION_9287:
585 	case AR_SREV_VERSION_9271:
586 	case AR_SREV_VERSION_9300:
587 	case AR_SREV_VERSION_9330:
588 	case AR_SREV_VERSION_9485:
589 	case AR_SREV_VERSION_9340:
590 	case AR_SREV_VERSION_9462:
591 		break;
592 	default:
593 		ath_err(common,
594 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
595 			ah->hw_version.macVersion, ah->hw_version.macRev);
596 		return -EOPNOTSUPP;
597 	}
598 
599 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
600 	    AR_SREV_9330(ah))
601 		ah->is_pciexpress = false;
602 
603 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
604 	ath9k_hw_init_cal_settings(ah);
605 
606 	ah->ani_function = ATH9K_ANI_ALL;
607 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
608 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
609 	if (!AR_SREV_9300_20_OR_LATER(ah))
610 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
611 
612 	/* disable ANI for 9340 */
613 	if (AR_SREV_9340(ah))
614 		ah->config.enable_ani = false;
615 
616 	ath9k_hw_init_mode_regs(ah);
617 
618 	if (!ah->is_pciexpress)
619 		ath9k_hw_disablepcie(ah);
620 
621 	if (!AR_SREV_9300_20_OR_LATER(ah))
622 		ar9002_hw_cck_chan14_spread(ah);
623 
624 	r = ath9k_hw_post_init(ah);
625 	if (r)
626 		return r;
627 
628 	ath9k_hw_init_mode_gain_regs(ah);
629 	r = ath9k_hw_fill_cap_info(ah);
630 	if (r)
631 		return r;
632 
633 	if (ah->is_pciexpress)
634 		ath9k_hw_aspm_init(ah);
635 
636 	r = ath9k_hw_init_macaddr(ah);
637 	if (r) {
638 		ath_err(common, "Failed to initialize MAC address\n");
639 		return r;
640 	}
641 
642 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
643 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
644 	else
645 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
646 
647 	if (AR_SREV_9330(ah))
648 		ah->bb_watchdog_timeout_ms = 85;
649 	else
650 		ah->bb_watchdog_timeout_ms = 25;
651 
652 	common->state = ATH_HW_INITIALIZED;
653 
654 	return 0;
655 }
656 
657 int ath9k_hw_init(struct ath_hw *ah)
658 {
659 	int ret;
660 	struct ath_common *common = ath9k_hw_common(ah);
661 
662 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
663 	switch (ah->hw_version.devid) {
664 	case AR5416_DEVID_PCI:
665 	case AR5416_DEVID_PCIE:
666 	case AR5416_AR9100_DEVID:
667 	case AR9160_DEVID_PCI:
668 	case AR9280_DEVID_PCI:
669 	case AR9280_DEVID_PCIE:
670 	case AR9285_DEVID_PCIE:
671 	case AR9287_DEVID_PCI:
672 	case AR9287_DEVID_PCIE:
673 	case AR2427_DEVID_PCIE:
674 	case AR9300_DEVID_PCIE:
675 	case AR9300_DEVID_AR9485_PCIE:
676 	case AR9300_DEVID_AR9330:
677 	case AR9300_DEVID_AR9340:
678 	case AR9300_DEVID_AR9580:
679 	case AR9300_DEVID_AR9462:
680 		break;
681 	default:
682 		if (common->bus_ops->ath_bus_type == ATH_USB)
683 			break;
684 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
685 			ah->hw_version.devid);
686 		return -EOPNOTSUPP;
687 	}
688 
689 	ret = __ath9k_hw_init(ah);
690 	if (ret) {
691 		ath_err(common,
692 			"Unable to initialize hardware; initialization status: %d\n",
693 			ret);
694 		return ret;
695 	}
696 
697 	return 0;
698 }
699 EXPORT_SYMBOL(ath9k_hw_init);
700 
701 static void ath9k_hw_init_qos(struct ath_hw *ah)
702 {
703 	ENABLE_REGWRITE_BUFFER(ah);
704 
705 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
706 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
707 
708 	REG_WRITE(ah, AR_QOS_NO_ACK,
709 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
710 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
711 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
712 
713 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
714 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
715 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
716 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
717 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
718 
719 	REGWRITE_BUFFER_FLUSH(ah);
720 }
721 
722 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
723 {
724 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
725 	udelay(100);
726 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
727 
728 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
729 		udelay(100);
730 
731 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
732 }
733 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
734 
735 static void ath9k_hw_init_pll(struct ath_hw *ah,
736 			      struct ath9k_channel *chan)
737 {
738 	u32 pll;
739 
740 	if (AR_SREV_9485(ah)) {
741 
742 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
743 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
744 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
745 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
746 			      AR_CH0_DPLL2_KD, 0x40);
747 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
748 			      AR_CH0_DPLL2_KI, 0x4);
749 
750 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
751 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
752 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
753 			      AR_CH0_BB_DPLL1_NINI, 0x58);
754 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
755 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
756 
757 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
758 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
759 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
760 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
761 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
762 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
763 
764 		/* program BB PLL phase_shift to 0x6 */
765 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
766 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
767 
768 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
769 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
770 		udelay(1000);
771 	} else if (AR_SREV_9330(ah)) {
772 		u32 ddr_dpll2, pll_control2, kd;
773 
774 		if (ah->is_clk_25mhz) {
775 			ddr_dpll2 = 0x18e82f01;
776 			pll_control2 = 0xe04a3d;
777 			kd = 0x1d;
778 		} else {
779 			ddr_dpll2 = 0x19e82f01;
780 			pll_control2 = 0x886666;
781 			kd = 0x3d;
782 		}
783 
784 		/* program DDR PLL ki and kd value */
785 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
786 
787 		/* program DDR PLL phase_shift */
788 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
789 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
790 
791 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
792 		udelay(1000);
793 
794 		/* program refdiv, nint, frac to RTC register */
795 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
796 
797 		/* program BB PLL kd and ki value */
798 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
799 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
800 
801 		/* program BB PLL phase_shift */
802 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
803 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
804 	} else if (AR_SREV_9340(ah)) {
805 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
806 
807 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
808 		udelay(1000);
809 
810 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
811 		udelay(100);
812 
813 		if (ah->is_clk_25mhz) {
814 			pll2_divint = 0x54;
815 			pll2_divfrac = 0x1eb85;
816 			refdiv = 3;
817 		} else {
818 			pll2_divint = 88;
819 			pll2_divfrac = 0;
820 			refdiv = 5;
821 		}
822 
823 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
824 		regval |= (0x1 << 16);
825 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
826 		udelay(100);
827 
828 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
829 			  (pll2_divint << 18) | pll2_divfrac);
830 		udelay(100);
831 
832 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
833 		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
834 			 (0x4 << 26) | (0x18 << 19);
835 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
836 		REG_WRITE(ah, AR_PHY_PLL_MODE,
837 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
838 		udelay(1000);
839 	}
840 
841 	pll = ath9k_hw_compute_pll_control(ah, chan);
842 
843 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
844 
845 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
846 		udelay(1000);
847 
848 	/* Switch the core clock for ar9271 to 117Mhz */
849 	if (AR_SREV_9271(ah)) {
850 		udelay(500);
851 		REG_WRITE(ah, 0x50040, 0x304);
852 	}
853 
854 	udelay(RTC_PLL_SETTLE_DELAY);
855 
856 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
857 
858 	if (AR_SREV_9340(ah)) {
859 		if (ah->is_clk_25mhz) {
860 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
861 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
862 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
863 		} else {
864 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
865 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
866 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
867 		}
868 		udelay(100);
869 	}
870 }
871 
872 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
873 					  enum nl80211_iftype opmode)
874 {
875 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
876 	u32 imr_reg = AR_IMR_TXERR |
877 		AR_IMR_TXURN |
878 		AR_IMR_RXERR |
879 		AR_IMR_RXORN |
880 		AR_IMR_BCNMISC;
881 
882 	if (AR_SREV_9340(ah))
883 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
884 
885 	if (AR_SREV_9300_20_OR_LATER(ah)) {
886 		imr_reg |= AR_IMR_RXOK_HP;
887 		if (ah->config.rx_intr_mitigation)
888 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
889 		else
890 			imr_reg |= AR_IMR_RXOK_LP;
891 
892 	} else {
893 		if (ah->config.rx_intr_mitigation)
894 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
895 		else
896 			imr_reg |= AR_IMR_RXOK;
897 	}
898 
899 	if (ah->config.tx_intr_mitigation)
900 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
901 	else
902 		imr_reg |= AR_IMR_TXOK;
903 
904 	if (opmode == NL80211_IFTYPE_AP)
905 		imr_reg |= AR_IMR_MIB;
906 
907 	ENABLE_REGWRITE_BUFFER(ah);
908 
909 	REG_WRITE(ah, AR_IMR, imr_reg);
910 	ah->imrs2_reg |= AR_IMR_S2_GTT;
911 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
912 
913 	if (!AR_SREV_9100(ah)) {
914 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
915 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
916 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
917 	}
918 
919 	REGWRITE_BUFFER_FLUSH(ah);
920 
921 	if (AR_SREV_9300_20_OR_LATER(ah)) {
922 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
923 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
924 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
925 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
926 	}
927 }
928 
929 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
930 {
931 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
932 	val = min(val, (u32) 0xFFFF);
933 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
934 }
935 
936 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
937 {
938 	u32 val = ath9k_hw_mac_to_clks(ah, us);
939 	val = min(val, (u32) 0xFFFF);
940 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
941 }
942 
943 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
944 {
945 	u32 val = ath9k_hw_mac_to_clks(ah, us);
946 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
947 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
948 }
949 
950 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
951 {
952 	u32 val = ath9k_hw_mac_to_clks(ah, us);
953 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
954 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
955 }
956 
957 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
958 {
959 	if (tu > 0xFFFF) {
960 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
961 			tu);
962 		ah->globaltxtimeout = (u32) -1;
963 		return false;
964 	} else {
965 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
966 		ah->globaltxtimeout = tu;
967 		return true;
968 	}
969 }
970 
971 void ath9k_hw_init_global_settings(struct ath_hw *ah)
972 {
973 	struct ath_common *common = ath9k_hw_common(ah);
974 	struct ieee80211_conf *conf = &common->hw->conf;
975 	const struct ath9k_channel *chan = ah->curchan;
976 	int acktimeout, ctstimeout;
977 	int slottime;
978 	int sifstime;
979 	int rx_lat = 0, tx_lat = 0, eifs = 0;
980 	u32 reg;
981 
982 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
983 		ah->misc_mode);
984 
985 	if (!chan)
986 		return;
987 
988 	if (ah->misc_mode != 0)
989 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
990 
991 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
992 		rx_lat = 41;
993 	else
994 		rx_lat = 37;
995 	tx_lat = 54;
996 
997 	if (IS_CHAN_HALF_RATE(chan)) {
998 		eifs = 175;
999 		rx_lat *= 2;
1000 		tx_lat *= 2;
1001 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1002 		    tx_lat += 11;
1003 
1004 		slottime = 13;
1005 		sifstime = 32;
1006 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1007 		eifs = 340;
1008 		rx_lat = (rx_lat * 4) - 1;
1009 		tx_lat *= 4;
1010 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1011 		    tx_lat += 22;
1012 
1013 		slottime = 21;
1014 		sifstime = 64;
1015 	} else {
1016 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1017 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1018 			reg = AR_USEC_ASYNC_FIFO;
1019 		} else {
1020 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1021 				common->clockrate;
1022 			reg = REG_READ(ah, AR_USEC);
1023 		}
1024 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1025 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1026 
1027 		slottime = ah->slottime;
1028 		if (IS_CHAN_5GHZ(chan))
1029 			sifstime = 16;
1030 		else
1031 			sifstime = 10;
1032 	}
1033 
1034 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1035 	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1036 	ctstimeout = acktimeout;
1037 
1038 	/*
1039 	 * Workaround for early ACK timeouts, add an offset to match the
1040 	 * initval's 64us ack timeout value.
1041 	 * This was initially only meant to work around an issue with delayed
1042 	 * BA frames in some implementations, but it has been found to fix ACK
1043 	 * timeout issues in other cases as well.
1044 	 */
1045 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1046 		acktimeout += 64 - sifstime - ah->slottime;
1047 
1048 	ath9k_hw_set_sifs_time(ah, sifstime);
1049 	ath9k_hw_setslottime(ah, slottime);
1050 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1051 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1052 	if (ah->globaltxtimeout != (u32) -1)
1053 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1054 
1055 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1056 	REG_RMW(ah, AR_USEC,
1057 		(common->clockrate - 1) |
1058 		SM(rx_lat, AR_USEC_RX_LAT) |
1059 		SM(tx_lat, AR_USEC_TX_LAT),
1060 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1061 
1062 }
1063 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1064 
1065 void ath9k_hw_deinit(struct ath_hw *ah)
1066 {
1067 	struct ath_common *common = ath9k_hw_common(ah);
1068 
1069 	if (common->state < ATH_HW_INITIALIZED)
1070 		goto free_hw;
1071 
1072 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1073 
1074 free_hw:
1075 	ath9k_hw_rf_free_ext_banks(ah);
1076 }
1077 EXPORT_SYMBOL(ath9k_hw_deinit);
1078 
1079 /*******/
1080 /* INI */
1081 /*******/
1082 
1083 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1084 {
1085 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1086 
1087 	if (IS_CHAN_B(chan))
1088 		ctl |= CTL_11B;
1089 	else if (IS_CHAN_G(chan))
1090 		ctl |= CTL_11G;
1091 	else
1092 		ctl |= CTL_11A;
1093 
1094 	return ctl;
1095 }
1096 
1097 /****************************************/
1098 /* Reset and Channel Switching Routines */
1099 /****************************************/
1100 
1101 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1102 {
1103 	struct ath_common *common = ath9k_hw_common(ah);
1104 
1105 	ENABLE_REGWRITE_BUFFER(ah);
1106 
1107 	/*
1108 	 * set AHB_MODE not to do cacheline prefetches
1109 	*/
1110 	if (!AR_SREV_9300_20_OR_LATER(ah))
1111 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1112 
1113 	/*
1114 	 * let mac dma reads be in 128 byte chunks
1115 	 */
1116 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1117 
1118 	REGWRITE_BUFFER_FLUSH(ah);
1119 
1120 	/*
1121 	 * Restore TX Trigger Level to its pre-reset value.
1122 	 * The initial value depends on whether aggregation is enabled, and is
1123 	 * adjusted whenever underruns are detected.
1124 	 */
1125 	if (!AR_SREV_9300_20_OR_LATER(ah))
1126 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1127 
1128 	ENABLE_REGWRITE_BUFFER(ah);
1129 
1130 	/*
1131 	 * let mac dma writes be in 128 byte chunks
1132 	 */
1133 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1134 
1135 	/*
1136 	 * Setup receive FIFO threshold to hold off TX activities
1137 	 */
1138 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1139 
1140 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1141 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1142 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1143 
1144 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1145 			ah->caps.rx_status_len);
1146 	}
1147 
1148 	/*
1149 	 * reduce the number of usable entries in PCU TXBUF to avoid
1150 	 * wrap around issues.
1151 	 */
1152 	if (AR_SREV_9285(ah)) {
1153 		/* For AR9285 the number of Fifos are reduced to half.
1154 		 * So set the usable tx buf size also to half to
1155 		 * avoid data/delimiter underruns
1156 		 */
1157 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1158 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1159 	} else if (!AR_SREV_9271(ah)) {
1160 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1161 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1162 	}
1163 
1164 	REGWRITE_BUFFER_FLUSH(ah);
1165 
1166 	if (AR_SREV_9300_20_OR_LATER(ah))
1167 		ath9k_hw_reset_txstatus_ring(ah);
1168 }
1169 
1170 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1171 {
1172 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1173 	u32 set = AR_STA_ID1_KSRCH_MODE;
1174 
1175 	switch (opmode) {
1176 	case NL80211_IFTYPE_ADHOC:
1177 	case NL80211_IFTYPE_MESH_POINT:
1178 		set |= AR_STA_ID1_ADHOC;
1179 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1180 		break;
1181 	case NL80211_IFTYPE_AP:
1182 		set |= AR_STA_ID1_STA_AP;
1183 		/* fall through */
1184 	case NL80211_IFTYPE_STATION:
1185 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1186 		break;
1187 	default:
1188 		if (!ah->is_monitoring)
1189 			set = 0;
1190 		break;
1191 	}
1192 	REG_RMW(ah, AR_STA_ID1, set, mask);
1193 }
1194 
1195 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1196 				   u32 *coef_mantissa, u32 *coef_exponent)
1197 {
1198 	u32 coef_exp, coef_man;
1199 
1200 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1201 		if ((coef_scaled >> coef_exp) & 0x1)
1202 			break;
1203 
1204 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1205 
1206 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1207 
1208 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1209 	*coef_exponent = coef_exp - 16;
1210 }
1211 
1212 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1213 {
1214 	u32 rst_flags;
1215 	u32 tmpReg;
1216 
1217 	if (AR_SREV_9100(ah)) {
1218 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1219 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1220 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1221 	}
1222 
1223 	ENABLE_REGWRITE_BUFFER(ah);
1224 
1225 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1226 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1227 		udelay(10);
1228 	}
1229 
1230 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1231 		  AR_RTC_FORCE_WAKE_ON_INT);
1232 
1233 	if (AR_SREV_9100(ah)) {
1234 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1235 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1236 	} else {
1237 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1238 		if (tmpReg &
1239 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1240 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1241 			u32 val;
1242 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1243 
1244 			val = AR_RC_HOSTIF;
1245 			if (!AR_SREV_9300_20_OR_LATER(ah))
1246 				val |= AR_RC_AHB;
1247 			REG_WRITE(ah, AR_RC, val);
1248 
1249 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1250 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1251 
1252 		rst_flags = AR_RTC_RC_MAC_WARM;
1253 		if (type == ATH9K_RESET_COLD)
1254 			rst_flags |= AR_RTC_RC_MAC_COLD;
1255 	}
1256 
1257 	if (AR_SREV_9330(ah)) {
1258 		int npend = 0;
1259 		int i;
1260 
1261 		/* AR9330 WAR:
1262 		 * call external reset function to reset WMAC if:
1263 		 * - doing a cold reset
1264 		 * - we have pending frames in the TX queues
1265 		 */
1266 
1267 		for (i = 0; i < AR_NUM_QCU; i++) {
1268 			npend = ath9k_hw_numtxpending(ah, i);
1269 			if (npend)
1270 				break;
1271 		}
1272 
1273 		if (ah->external_reset &&
1274 		    (npend || type == ATH9K_RESET_COLD)) {
1275 			int reset_err = 0;
1276 
1277 			ath_dbg(ath9k_hw_common(ah), RESET,
1278 				"reset MAC via external reset\n");
1279 
1280 			reset_err = ah->external_reset();
1281 			if (reset_err) {
1282 				ath_err(ath9k_hw_common(ah),
1283 					"External reset failed, err=%d\n",
1284 					reset_err);
1285 				return false;
1286 			}
1287 
1288 			REG_WRITE(ah, AR_RTC_RESET, 1);
1289 		}
1290 	}
1291 
1292 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1293 
1294 	REGWRITE_BUFFER_FLUSH(ah);
1295 
1296 	udelay(50);
1297 
1298 	REG_WRITE(ah, AR_RTC_RC, 0);
1299 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1300 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1301 		return false;
1302 	}
1303 
1304 	if (!AR_SREV_9100(ah))
1305 		REG_WRITE(ah, AR_RC, 0);
1306 
1307 	if (AR_SREV_9100(ah))
1308 		udelay(50);
1309 
1310 	return true;
1311 }
1312 
1313 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1314 {
1315 	ENABLE_REGWRITE_BUFFER(ah);
1316 
1317 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1318 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1319 		udelay(10);
1320 	}
1321 
1322 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1323 		  AR_RTC_FORCE_WAKE_ON_INT);
1324 
1325 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1326 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1327 
1328 	REG_WRITE(ah, AR_RTC_RESET, 0);
1329 
1330 	REGWRITE_BUFFER_FLUSH(ah);
1331 
1332 	if (!AR_SREV_9300_20_OR_LATER(ah))
1333 		udelay(2);
1334 
1335 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1336 		REG_WRITE(ah, AR_RC, 0);
1337 
1338 	REG_WRITE(ah, AR_RTC_RESET, 1);
1339 
1340 	if (!ath9k_hw_wait(ah,
1341 			   AR_RTC_STATUS,
1342 			   AR_RTC_STATUS_M,
1343 			   AR_RTC_STATUS_ON,
1344 			   AH_WAIT_TIMEOUT)) {
1345 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1346 		return false;
1347 	}
1348 
1349 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1350 }
1351 
1352 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1353 {
1354 	bool ret = false;
1355 
1356 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1357 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1358 		udelay(10);
1359 	}
1360 
1361 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1362 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1363 
1364 	switch (type) {
1365 	case ATH9K_RESET_POWER_ON:
1366 		ret = ath9k_hw_set_reset_power_on(ah);
1367 		break;
1368 	case ATH9K_RESET_WARM:
1369 	case ATH9K_RESET_COLD:
1370 		ret = ath9k_hw_set_reset(ah, type);
1371 		break;
1372 	default:
1373 		break;
1374 	}
1375 
1376 	if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
1377 		REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
1378 
1379 	return ret;
1380 }
1381 
1382 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1383 				struct ath9k_channel *chan)
1384 {
1385 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1386 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1387 			return false;
1388 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1389 		return false;
1390 
1391 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1392 		return false;
1393 
1394 	ah->chip_fullsleep = false;
1395 	ath9k_hw_init_pll(ah, chan);
1396 	ath9k_hw_set_rfmode(ah, chan);
1397 
1398 	return true;
1399 }
1400 
1401 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1402 				    struct ath9k_channel *chan)
1403 {
1404 	struct ath_common *common = ath9k_hw_common(ah);
1405 	u32 qnum;
1406 	int r;
1407 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1408 	bool band_switch, mode_diff;
1409 	u8 ini_reloaded;
1410 
1411 	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1412 		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1413 						    CHANNEL_5GHZ));
1414 	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1415 
1416 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1417 		if (ath9k_hw_numtxpending(ah, qnum)) {
1418 			ath_dbg(common, QUEUE,
1419 				"Transmit frames pending on queue %d\n", qnum);
1420 			return false;
1421 		}
1422 	}
1423 
1424 	if (!ath9k_hw_rfbus_req(ah)) {
1425 		ath_err(common, "Could not kill baseband RX\n");
1426 		return false;
1427 	}
1428 
1429 	if (edma && (band_switch || mode_diff)) {
1430 		ath9k_hw_mark_phy_inactive(ah);
1431 		udelay(5);
1432 
1433 		ath9k_hw_init_pll(ah, NULL);
1434 
1435 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1436 			ath_err(common, "Failed to do fast channel change\n");
1437 			return false;
1438 		}
1439 	}
1440 
1441 	ath9k_hw_set_channel_regs(ah, chan);
1442 
1443 	r = ath9k_hw_rf_set_freq(ah, chan);
1444 	if (r) {
1445 		ath_err(common, "Failed to set channel\n");
1446 		return false;
1447 	}
1448 	ath9k_hw_set_clockrate(ah);
1449 	ath9k_hw_apply_txpower(ah, chan);
1450 	ath9k_hw_rfbus_done(ah);
1451 
1452 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1453 		ath9k_hw_set_delta_slope(ah, chan);
1454 
1455 	ath9k_hw_spur_mitigate_freq(ah, chan);
1456 
1457 	if (edma && (band_switch || mode_diff)) {
1458 		ah->ah_flags |= AH_FASTCC;
1459 		if (band_switch || ini_reloaded)
1460 			ah->eep_ops->set_board_values(ah, chan);
1461 
1462 		ath9k_hw_init_bb(ah, chan);
1463 
1464 		if (band_switch || ini_reloaded)
1465 			ath9k_hw_init_cal(ah, chan);
1466 		ah->ah_flags &= ~AH_FASTCC;
1467 	}
1468 
1469 	return true;
1470 }
1471 
1472 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1473 {
1474 	u32 gpio_mask = ah->gpio_mask;
1475 	int i;
1476 
1477 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1478 		if (!(gpio_mask & 1))
1479 			continue;
1480 
1481 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1482 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1483 	}
1484 }
1485 
1486 bool ath9k_hw_check_alive(struct ath_hw *ah)
1487 {
1488 	int count = 50;
1489 	u32 reg;
1490 
1491 	if (AR_SREV_9285_12_OR_LATER(ah))
1492 		return true;
1493 
1494 	do {
1495 		reg = REG_READ(ah, AR_OBS_BUS_1);
1496 
1497 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1498 			continue;
1499 
1500 		switch (reg & 0x7E000B00) {
1501 		case 0x1E000000:
1502 		case 0x52000B00:
1503 		case 0x18000B00:
1504 			continue;
1505 		default:
1506 			return true;
1507 		}
1508 	} while (count-- > 0);
1509 
1510 	return false;
1511 }
1512 EXPORT_SYMBOL(ath9k_hw_check_alive);
1513 
1514 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1515 		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1516 {
1517 	struct ath_common *common = ath9k_hw_common(ah);
1518 	struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
1519 	u32 saveLedState;
1520 	struct ath9k_channel *curchan = ah->curchan;
1521 	u32 saveDefAntenna;
1522 	u32 macStaId1;
1523 	u64 tsf = 0;
1524 	int i, r;
1525 	bool allow_fbs = false;
1526 	bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
1527 	bool save_fullsleep = ah->chip_fullsleep;
1528 
1529 	if (mci) {
1530 
1531 		ar9003_mci_2g5g_changed(ah, IS_CHAN_2GHZ(chan));
1532 
1533 		if (mci_hw->bt_state == MCI_BT_CAL_START) {
1534 			u32 payload[4] = {0, 0, 0, 0};
1535 
1536 			ath_dbg(common, MCI, "MCI stop rx for BT CAL\n");
1537 
1538 			mci_hw->bt_state = MCI_BT_CAL;
1539 
1540 			/*
1541 			 * MCI FIX: disable mci interrupt here. This is to avoid
1542 			 * SW_MSG_DONE or RX_MSG bits to trigger MCI_INT and
1543 			 * lead to mci_intr reentry.
1544 			 */
1545 
1546 			ar9003_mci_disable_interrupt(ah);
1547 
1548 			ath_dbg(common, MCI, "send WLAN_CAL_GRANT\n");
1549 			MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT);
1550 			ar9003_mci_send_message(ah, MCI_GPM, 0, payload,
1551 						16, true, false);
1552 
1553 			ath_dbg(common, MCI, "\nMCI BT is calibrating\n");
1554 
1555 			/* Wait BT calibration to be completed for 25ms */
1556 
1557 			if (ar9003_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_DONE,
1558 								  0, 25000))
1559 				ath_dbg(common, MCI,
1560 					"MCI got BT_CAL_DONE\n");
1561 			else
1562 				ath_dbg(common, MCI,
1563 					"MCI ### BT cal takes to long, force bt_state to be bt_awake\n");
1564 			mci_hw->bt_state = MCI_BT_AWAKE;
1565 			/* MCI FIX: enable mci interrupt here */
1566 			ar9003_mci_enable_interrupt(ah);
1567 
1568 			return true;
1569 		}
1570 	}
1571 
1572 
1573 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1574 		return -EIO;
1575 
1576 	if (curchan && !ah->chip_fullsleep)
1577 		ath9k_hw_getnf(ah, curchan);
1578 
1579 	ah->caldata = caldata;
1580 	if (caldata &&
1581 	    (chan->channel != caldata->channel ||
1582 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1583 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1584 		/* Operating channel changed, reset channel calibration data */
1585 		memset(caldata, 0, sizeof(*caldata));
1586 		ath9k_init_nfcal_hist_buffer(ah, chan);
1587 	}
1588 	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1589 
1590 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1591 		bChannelChange = false;
1592 
1593 	if (caldata &&
1594 	    caldata->done_txiqcal_once &&
1595 	    caldata->done_txclcal_once &&
1596 	    caldata->rtt_hist.num_readings)
1597 		allow_fbs = true;
1598 
1599 	if (bChannelChange &&
1600 	    (ah->chip_fullsleep != true) &&
1601 	    (ah->curchan != NULL) &&
1602 	    (chan->channel != ah->curchan->channel) &&
1603 	    (allow_fbs ||
1604 	     ((chan->channelFlags & CHANNEL_ALL) ==
1605 	      (ah->curchan->channelFlags & CHANNEL_ALL)))) {
1606 		if (ath9k_hw_channel_change(ah, chan)) {
1607 			ath9k_hw_loadnf(ah, ah->curchan);
1608 			ath9k_hw_start_nfcal(ah, true);
1609 			if (mci && mci_hw->ready)
1610 				ar9003_mci_2g5g_switch(ah, true);
1611 
1612 			if (AR_SREV_9271(ah))
1613 				ar9002_hw_load_ani_reg(ah, chan);
1614 			return 0;
1615 		}
1616 	}
1617 
1618 	if (mci) {
1619 		ar9003_mci_disable_interrupt(ah);
1620 
1621 		if (mci_hw->ready && !save_fullsleep) {
1622 			ar9003_mci_mute_bt(ah);
1623 			udelay(20);
1624 			REG_WRITE(ah, AR_BTCOEX_CTRL, 0);
1625 		}
1626 
1627 		mci_hw->bt_state = MCI_BT_SLEEP;
1628 		mci_hw->ready = false;
1629 	}
1630 
1631 
1632 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1633 	if (saveDefAntenna == 0)
1634 		saveDefAntenna = 1;
1635 
1636 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1637 
1638 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1639 	if (AR_SREV_9100(ah) ||
1640 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1641 		tsf = ath9k_hw_gettsf64(ah);
1642 
1643 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1644 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1645 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1646 
1647 	ath9k_hw_mark_phy_inactive(ah);
1648 
1649 	ah->paprd_table_write_done = false;
1650 
1651 	/* Only required on the first reset */
1652 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1653 		REG_WRITE(ah,
1654 			  AR9271_RESET_POWER_DOWN_CONTROL,
1655 			  AR9271_RADIO_RF_RST);
1656 		udelay(50);
1657 	}
1658 
1659 	if (!ath9k_hw_chip_reset(ah, chan)) {
1660 		ath_err(common, "Chip reset failed\n");
1661 		return -EINVAL;
1662 	}
1663 
1664 	/* Only required on the first reset */
1665 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1666 		ah->htc_reset_init = false;
1667 		REG_WRITE(ah,
1668 			  AR9271_RESET_POWER_DOWN_CONTROL,
1669 			  AR9271_GATE_MAC_CTL);
1670 		udelay(50);
1671 	}
1672 
1673 	/* Restore TSF */
1674 	if (tsf)
1675 		ath9k_hw_settsf64(ah, tsf);
1676 
1677 	if (AR_SREV_9280_20_OR_LATER(ah))
1678 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1679 
1680 	if (!AR_SREV_9300_20_OR_LATER(ah))
1681 		ar9002_hw_enable_async_fifo(ah);
1682 
1683 	r = ath9k_hw_process_ini(ah, chan);
1684 	if (r)
1685 		return r;
1686 
1687 	if (mci)
1688 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1689 
1690 	/*
1691 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1692 	 * right after the chip reset. When that happens, write a new
1693 	 * value after the initvals have been applied, with an offset
1694 	 * based on measured time difference
1695 	 */
1696 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1697 		tsf += 1500;
1698 		ath9k_hw_settsf64(ah, tsf);
1699 	}
1700 
1701 	/* Setup MFP options for CCMP */
1702 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1703 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1704 		 * frames when constructing CCMP AAD. */
1705 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1706 			      0xc7ff);
1707 		ah->sw_mgmt_crypto = false;
1708 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1709 		/* Disable hardware crypto for management frames */
1710 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1711 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1712 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1713 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1714 		ah->sw_mgmt_crypto = true;
1715 	} else
1716 		ah->sw_mgmt_crypto = true;
1717 
1718 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1719 		ath9k_hw_set_delta_slope(ah, chan);
1720 
1721 	ath9k_hw_spur_mitigate_freq(ah, chan);
1722 	ah->eep_ops->set_board_values(ah, chan);
1723 
1724 	ENABLE_REGWRITE_BUFFER(ah);
1725 
1726 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1727 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1728 		  | macStaId1
1729 		  | AR_STA_ID1_RTS_USE_DEF
1730 		  | (ah->config.
1731 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1732 		  | ah->sta_id1_defaults);
1733 	ath_hw_setbssidmask(common);
1734 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1735 	ath9k_hw_write_associd(ah);
1736 	REG_WRITE(ah, AR_ISR, ~0);
1737 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1738 
1739 	REGWRITE_BUFFER_FLUSH(ah);
1740 
1741 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1742 
1743 	r = ath9k_hw_rf_set_freq(ah, chan);
1744 	if (r)
1745 		return r;
1746 
1747 	ath9k_hw_set_clockrate(ah);
1748 
1749 	ENABLE_REGWRITE_BUFFER(ah);
1750 
1751 	for (i = 0; i < AR_NUM_DCU; i++)
1752 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1753 
1754 	REGWRITE_BUFFER_FLUSH(ah);
1755 
1756 	ah->intr_txqs = 0;
1757 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1758 		ath9k_hw_resettxqueue(ah, i);
1759 
1760 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1761 	ath9k_hw_ani_cache_ini_regs(ah);
1762 	ath9k_hw_init_qos(ah);
1763 
1764 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1765 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1766 
1767 	ath9k_hw_init_global_settings(ah);
1768 
1769 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1770 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1771 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1772 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1773 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1774 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1775 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1776 	}
1777 
1778 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1779 
1780 	ath9k_hw_set_dma(ah);
1781 
1782 	REG_WRITE(ah, AR_OBS, 8);
1783 
1784 	if (ah->config.rx_intr_mitigation) {
1785 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1786 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1787 	}
1788 
1789 	if (ah->config.tx_intr_mitigation) {
1790 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1791 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1792 	}
1793 
1794 	ath9k_hw_init_bb(ah, chan);
1795 
1796 	if (caldata) {
1797 		caldata->done_txiqcal_once = false;
1798 		caldata->done_txclcal_once = false;
1799 		caldata->rtt_hist.num_readings = 0;
1800 	}
1801 	if (!ath9k_hw_init_cal(ah, chan))
1802 		return -EIO;
1803 
1804 	ath9k_hw_loadnf(ah, chan);
1805 	ath9k_hw_start_nfcal(ah, true);
1806 
1807 	if (mci && mci_hw->ready) {
1808 
1809 		if (IS_CHAN_2GHZ(chan) &&
1810 		    (mci_hw->bt_state == MCI_BT_SLEEP)) {
1811 
1812 			if (ar9003_mci_check_int(ah,
1813 			    AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) ||
1814 			    ar9003_mci_check_int(ah,
1815 			    AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)) {
1816 
1817 				/*
1818 				 * BT is sleeping. Check if BT wakes up during
1819 				 * WLAN calibration. If BT wakes up during
1820 				 * WLAN calibration, need to go through all
1821 				 * message exchanges again and recal.
1822 				 */
1823 
1824 				ath_dbg(common, MCI,
1825 					"MCI BT wakes up during WLAN calibration\n");
1826 
1827 				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
1828 					  AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET |
1829 					  AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE);
1830 				ath_dbg(common, MCI, "MCI send REMOTE_RESET\n");
1831 				ar9003_mci_remote_reset(ah, true);
1832 				ar9003_mci_send_sys_waking(ah, true);
1833 				udelay(1);
1834 				if (IS_CHAN_2GHZ(chan))
1835 					ar9003_mci_send_lna_transfer(ah, true);
1836 
1837 				mci_hw->bt_state = MCI_BT_AWAKE;
1838 
1839 				ath_dbg(common, MCI, "MCI re-cal\n");
1840 
1841 				if (caldata) {
1842 					caldata->done_txiqcal_once = false;
1843 					caldata->done_txclcal_once = false;
1844 					caldata->rtt_hist.num_readings = 0;
1845 				}
1846 
1847 				if (!ath9k_hw_init_cal(ah, chan))
1848 					return -EIO;
1849 
1850 			}
1851 		}
1852 		ar9003_mci_enable_interrupt(ah);
1853 	}
1854 
1855 	ENABLE_REGWRITE_BUFFER(ah);
1856 
1857 	ath9k_hw_restore_chainmask(ah);
1858 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1859 
1860 	REGWRITE_BUFFER_FLUSH(ah);
1861 
1862 	/*
1863 	 * For big endian systems turn on swapping for descriptors
1864 	 */
1865 	if (AR_SREV_9100(ah)) {
1866 		u32 mask;
1867 		mask = REG_READ(ah, AR_CFG);
1868 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1869 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1870 				mask);
1871 		} else {
1872 			mask =
1873 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1874 			REG_WRITE(ah, AR_CFG, mask);
1875 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1876 				REG_READ(ah, AR_CFG));
1877 		}
1878 	} else {
1879 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1880 			/* Configure AR9271 target WLAN */
1881 			if (AR_SREV_9271(ah))
1882 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1883 			else
1884 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1885 		}
1886 #ifdef __BIG_ENDIAN
1887 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1888 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1889 		else
1890 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1891 #endif
1892 	}
1893 
1894 	if (ah->btcoex_hw.enabled &&
1895 	    ath9k_hw_get_btcoex_scheme(ah) != ATH_BTCOEX_CFG_NONE)
1896 		ath9k_hw_btcoex_enable(ah);
1897 
1898 	if (mci && mci_hw->ready) {
1899 		/*
1900 		 * check BT state again to make
1901 		 * sure it's not changed.
1902 		 */
1903 
1904 		ar9003_mci_sync_bt_state(ah);
1905 		ar9003_mci_2g5g_switch(ah, true);
1906 
1907 		if ((mci_hw->bt_state == MCI_BT_AWAKE) &&
1908 				(mci_hw->query_bt == true)) {
1909 			mci_hw->need_flush_btinfo = true;
1910 		}
1911 	}
1912 
1913 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1914 		ar9003_hw_bb_watchdog_config(ah);
1915 
1916 		ar9003_hw_disable_phy_restart(ah);
1917 	}
1918 
1919 	ath9k_hw_apply_gpio_override(ah);
1920 
1921 	return 0;
1922 }
1923 EXPORT_SYMBOL(ath9k_hw_reset);
1924 
1925 /******************************/
1926 /* Power Management (Chipset) */
1927 /******************************/
1928 
1929 /*
1930  * Notify Power Mgt is disabled in self-generated frames.
1931  * If requested, force chip to sleep.
1932  */
1933 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1934 {
1935 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1936 	if (setChip) {
1937 		if (AR_SREV_9462(ah)) {
1938 			REG_WRITE(ah, AR_TIMER_MODE,
1939 				  REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
1940 			REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
1941 				  AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
1942 			REG_WRITE(ah, AR_SLP32_INC,
1943 				  REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
1944 			/* xxx Required for WLAN only case ? */
1945 			REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1946 			udelay(100);
1947 		}
1948 
1949 		/*
1950 		 * Clear the RTC force wake bit to allow the
1951 		 * mac to go to sleep.
1952 		 */
1953 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1954 
1955 		if (AR_SREV_9462(ah))
1956 			udelay(100);
1957 
1958 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1959 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1960 
1961 		/* Shutdown chip. Active low */
1962 		if (!AR_SREV_5416(ah) &&
1963 				!AR_SREV_9271(ah) && !AR_SREV_9462_10(ah)) {
1964 			REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1965 			udelay(2);
1966 		}
1967 	}
1968 
1969 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1970 	if (AR_SREV_9300_20_OR_LATER(ah))
1971 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1972 }
1973 
1974 /*
1975  * Notify Power Management is enabled in self-generating
1976  * frames. If request, set power mode of chip to
1977  * auto/normal.  Duration in units of 128us (1/8 TU).
1978  */
1979 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1980 {
1981 	u32 val;
1982 
1983 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1984 	if (setChip) {
1985 		struct ath9k_hw_capabilities *pCap = &ah->caps;
1986 
1987 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1988 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1989 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1990 				  AR_RTC_FORCE_WAKE_ON_INT);
1991 		} else {
1992 
1993 			/* When chip goes into network sleep, it could be waken
1994 			 * up by MCI_INT interrupt caused by BT's HW messages
1995 			 * (LNA_xxx, CONT_xxx) which chould be in a very fast
1996 			 * rate (~100us). This will cause chip to leave and
1997 			 * re-enter network sleep mode frequently, which in
1998 			 * consequence will have WLAN MCI HW to generate lots of
1999 			 * SYS_WAKING and SYS_SLEEPING messages which will make
2000 			 * BT CPU to busy to process.
2001 			 */
2002 			if (AR_SREV_9462(ah)) {
2003 				val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
2004 					~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
2005 				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
2006 			}
2007 			/*
2008 			 * Clear the RTC force wake bit to allow the
2009 			 * mac to go to sleep.
2010 			 */
2011 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2012 				    AR_RTC_FORCE_WAKE_EN);
2013 
2014 			if (AR_SREV_9462(ah))
2015 				udelay(30);
2016 		}
2017 	}
2018 
2019 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2020 	if (AR_SREV_9300_20_OR_LATER(ah))
2021 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2022 }
2023 
2024 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2025 {
2026 	u32 val;
2027 	int i;
2028 
2029 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2030 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2031 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2032 		udelay(10);
2033 	}
2034 
2035 	if (setChip) {
2036 		if ((REG_READ(ah, AR_RTC_STATUS) &
2037 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2038 			if (ath9k_hw_set_reset_reg(ah,
2039 					   ATH9K_RESET_POWER_ON) != true) {
2040 				return false;
2041 			}
2042 			if (!AR_SREV_9300_20_OR_LATER(ah))
2043 				ath9k_hw_init_pll(ah, NULL);
2044 		}
2045 		if (AR_SREV_9100(ah))
2046 			REG_SET_BIT(ah, AR_RTC_RESET,
2047 				    AR_RTC_RESET_EN);
2048 
2049 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2050 			    AR_RTC_FORCE_WAKE_EN);
2051 		udelay(50);
2052 
2053 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2054 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2055 			if (val == AR_RTC_STATUS_ON)
2056 				break;
2057 			udelay(50);
2058 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2059 				    AR_RTC_FORCE_WAKE_EN);
2060 		}
2061 		if (i == 0) {
2062 			ath_err(ath9k_hw_common(ah),
2063 				"Failed to wakeup in %uus\n",
2064 				POWER_UP_TIME / 20);
2065 			return false;
2066 		}
2067 	}
2068 
2069 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2070 
2071 	return true;
2072 }
2073 
2074 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2075 {
2076 	struct ath_common *common = ath9k_hw_common(ah);
2077 	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
2078 	int status = true, setChip = true;
2079 	static const char *modes[] = {
2080 		"AWAKE",
2081 		"FULL-SLEEP",
2082 		"NETWORK SLEEP",
2083 		"UNDEFINED"
2084 	};
2085 
2086 	if (ah->power_mode == mode)
2087 		return status;
2088 
2089 	ath_dbg(common, RESET, "%s -> %s\n",
2090 		modes[ah->power_mode], modes[mode]);
2091 
2092 	switch (mode) {
2093 	case ATH9K_PM_AWAKE:
2094 		status = ath9k_hw_set_power_awake(ah, setChip);
2095 
2096 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2097 			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2098 
2099 		break;
2100 	case ATH9K_PM_FULL_SLEEP:
2101 
2102 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI) {
2103 			if (ar9003_mci_state(ah, MCI_STATE_ENABLE, NULL) &&
2104 				(mci->bt_state != MCI_BT_SLEEP) &&
2105 				!mci->halted_bt_gpm) {
2106 				ath_dbg(common, MCI,
2107 					"MCI halt BT GPM (full_sleep)\n");
2108 				ar9003_mci_send_coex_halt_bt_gpm(ah,
2109 								 true, true);
2110 			}
2111 
2112 			mci->ready = false;
2113 			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2114 		}
2115 
2116 		ath9k_set_power_sleep(ah, setChip);
2117 		ah->chip_fullsleep = true;
2118 		break;
2119 	case ATH9K_PM_NETWORK_SLEEP:
2120 
2121 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2122 			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2123 
2124 		ath9k_set_power_network_sleep(ah, setChip);
2125 		break;
2126 	default:
2127 		ath_err(common, "Unknown power mode %u\n", mode);
2128 		return false;
2129 	}
2130 	ah->power_mode = mode;
2131 
2132 	/*
2133 	 * XXX: If this warning never comes up after a while then
2134 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2135 	 * ath9k_hw_setpower() return type void.
2136 	 */
2137 
2138 	if (!(ah->ah_flags & AH_UNPLUGGED))
2139 		ATH_DBG_WARN_ON_ONCE(!status);
2140 
2141 	return status;
2142 }
2143 EXPORT_SYMBOL(ath9k_hw_setpower);
2144 
2145 /*******************/
2146 /* Beacon Handling */
2147 /*******************/
2148 
2149 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2150 {
2151 	int flags = 0;
2152 
2153 	ENABLE_REGWRITE_BUFFER(ah);
2154 
2155 	switch (ah->opmode) {
2156 	case NL80211_IFTYPE_ADHOC:
2157 	case NL80211_IFTYPE_MESH_POINT:
2158 		REG_SET_BIT(ah, AR_TXCFG,
2159 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2160 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2161 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2162 		flags |= AR_NDP_TIMER_EN;
2163 	case NL80211_IFTYPE_AP:
2164 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2165 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2166 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2167 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2168 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2169 		flags |=
2170 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2171 		break;
2172 	default:
2173 		ath_dbg(ath9k_hw_common(ah), BEACON,
2174 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2175 		return;
2176 		break;
2177 	}
2178 
2179 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2180 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2181 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2182 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2183 
2184 	REGWRITE_BUFFER_FLUSH(ah);
2185 
2186 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2187 }
2188 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2189 
2190 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2191 				    const struct ath9k_beacon_state *bs)
2192 {
2193 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2194 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2195 	struct ath_common *common = ath9k_hw_common(ah);
2196 
2197 	ENABLE_REGWRITE_BUFFER(ah);
2198 
2199 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2200 
2201 	REG_WRITE(ah, AR_BEACON_PERIOD,
2202 		  TU_TO_USEC(bs->bs_intval));
2203 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2204 		  TU_TO_USEC(bs->bs_intval));
2205 
2206 	REGWRITE_BUFFER_FLUSH(ah);
2207 
2208 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2209 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2210 
2211 	beaconintval = bs->bs_intval;
2212 
2213 	if (bs->bs_sleepduration > beaconintval)
2214 		beaconintval = bs->bs_sleepduration;
2215 
2216 	dtimperiod = bs->bs_dtimperiod;
2217 	if (bs->bs_sleepduration > dtimperiod)
2218 		dtimperiod = bs->bs_sleepduration;
2219 
2220 	if (beaconintval == dtimperiod)
2221 		nextTbtt = bs->bs_nextdtim;
2222 	else
2223 		nextTbtt = bs->bs_nexttbtt;
2224 
2225 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2226 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2227 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2228 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2229 
2230 	ENABLE_REGWRITE_BUFFER(ah);
2231 
2232 	REG_WRITE(ah, AR_NEXT_DTIM,
2233 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2234 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2235 
2236 	REG_WRITE(ah, AR_SLEEP1,
2237 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2238 		  | AR_SLEEP1_ASSUME_DTIM);
2239 
2240 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2241 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2242 	else
2243 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2244 
2245 	REG_WRITE(ah, AR_SLEEP2,
2246 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2247 
2248 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2249 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2250 
2251 	REGWRITE_BUFFER_FLUSH(ah);
2252 
2253 	REG_SET_BIT(ah, AR_TIMER_MODE,
2254 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2255 		    AR_DTIM_TIMER_EN);
2256 
2257 	/* TSF Out of Range Threshold */
2258 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2259 }
2260 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2261 
2262 /*******************/
2263 /* HW Capabilities */
2264 /*******************/
2265 
2266 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2267 {
2268 	eeprom_chainmask &= chip_chainmask;
2269 	if (eeprom_chainmask)
2270 		return eeprom_chainmask;
2271 	else
2272 		return chip_chainmask;
2273 }
2274 
2275 /**
2276  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2277  * @ah: the atheros hardware data structure
2278  *
2279  * We enable DFS support upstream on chipsets which have passed a series
2280  * of tests. The testing requirements are going to be documented. Desired
2281  * test requirements are documented at:
2282  *
2283  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2284  *
2285  * Once a new chipset gets properly tested an individual commit can be used
2286  * to document the testing for DFS for that chipset.
2287  */
2288 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2289 {
2290 
2291 	switch (ah->hw_version.macVersion) {
2292 	/* AR9580 will likely be our first target to get testing on */
2293 	case AR_SREV_VERSION_9580:
2294 	default:
2295 		return false;
2296 	}
2297 }
2298 
2299 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2300 {
2301 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2302 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2303 	struct ath_common *common = ath9k_hw_common(ah);
2304 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2305 	unsigned int chip_chainmask;
2306 
2307 	u16 eeval;
2308 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2309 
2310 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2311 	regulatory->current_rd = eeval;
2312 
2313 	if (ah->opmode != NL80211_IFTYPE_AP &&
2314 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2315 		if (regulatory->current_rd == 0x64 ||
2316 		    regulatory->current_rd == 0x65)
2317 			regulatory->current_rd += 5;
2318 		else if (regulatory->current_rd == 0x41)
2319 			regulatory->current_rd = 0x43;
2320 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2321 			regulatory->current_rd);
2322 	}
2323 
2324 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2325 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2326 		ath_err(common,
2327 			"no band has been marked as supported in EEPROM\n");
2328 		return -EINVAL;
2329 	}
2330 
2331 	if (eeval & AR5416_OPFLAGS_11A)
2332 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2333 
2334 	if (eeval & AR5416_OPFLAGS_11G)
2335 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2336 
2337 	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2338 		chip_chainmask = 1;
2339 	else if (AR_SREV_9462(ah))
2340 		chip_chainmask = 3;
2341 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2342 		chip_chainmask = 7;
2343 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2344 		chip_chainmask = 3;
2345 	else
2346 		chip_chainmask = 7;
2347 
2348 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2349 	/*
2350 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2351 	 * the EEPROM.
2352 	 */
2353 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2354 	    !(eeval & AR5416_OPFLAGS_11A) &&
2355 	    !(AR_SREV_9271(ah)))
2356 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2357 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2358 	else if (AR_SREV_9100(ah))
2359 		pCap->rx_chainmask = 0x7;
2360 	else
2361 		/* Use rx_chainmask from EEPROM. */
2362 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2363 
2364 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2365 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2366 	ah->txchainmask = pCap->tx_chainmask;
2367 	ah->rxchainmask = pCap->rx_chainmask;
2368 
2369 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2370 
2371 	/* enable key search for every frame in an aggregate */
2372 	if (AR_SREV_9300_20_OR_LATER(ah))
2373 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2374 
2375 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2376 
2377 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2378 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2379 	else
2380 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2381 
2382 	if (AR_SREV_9271(ah))
2383 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2384 	else if (AR_DEVID_7010(ah))
2385 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2386 	else if (AR_SREV_9300_20_OR_LATER(ah))
2387 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2388 	else if (AR_SREV_9287_11_OR_LATER(ah))
2389 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2390 	else if (AR_SREV_9285_12_OR_LATER(ah))
2391 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2392 	else if (AR_SREV_9280_20_OR_LATER(ah))
2393 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2394 	else
2395 		pCap->num_gpio_pins = AR_NUM_GPIO;
2396 
2397 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2398 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2399 	else
2400 		pCap->rts_aggr_limit = (8 * 1024);
2401 
2402 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2403 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2404 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2405 		ah->rfkill_gpio =
2406 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2407 		ah->rfkill_polarity =
2408 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2409 
2410 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2411 	}
2412 #endif
2413 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2414 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2415 	else
2416 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2417 
2418 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2419 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2420 	else
2421 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2422 
2423 	if (common->btcoex_enabled) {
2424 		if (AR_SREV_9462(ah))
2425 			btcoex_hw->scheme = ATH_BTCOEX_CFG_MCI;
2426 		else if (AR_SREV_9300_20_OR_LATER(ah)) {
2427 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2428 			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2429 			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2430 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2431 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2432 			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2433 			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2434 
2435 			if (AR_SREV_9285(ah)) {
2436 				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2437 				btcoex_hw->btpriority_gpio =
2438 						ATH_BTPRIORITY_GPIO_9285;
2439 			} else {
2440 				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2441 			}
2442 		}
2443 	} else {
2444 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2445 	}
2446 
2447 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2448 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2449 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2450 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2451 
2452 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2453 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2454 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2455 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2456 		pCap->txs_len = sizeof(struct ar9003_txs);
2457 		if (!ah->config.paprd_disable &&
2458 		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2459 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2460 	} else {
2461 		pCap->tx_desc_len = sizeof(struct ath_desc);
2462 		if (AR_SREV_9280_20(ah))
2463 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2464 	}
2465 
2466 	if (AR_SREV_9300_20_OR_LATER(ah))
2467 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2468 
2469 	if (AR_SREV_9300_20_OR_LATER(ah))
2470 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2471 
2472 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2473 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2474 
2475 	if (AR_SREV_9285(ah))
2476 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2477 			ant_div_ctl1 =
2478 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2479 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2480 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2481 		}
2482 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2483 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2484 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2485 	}
2486 
2487 
2488 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2489 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2490 		/*
2491 		 * enable the diversity-combining algorithm only when
2492 		 * both enable_lna_div and enable_fast_div are set
2493 		 *		Table for Diversity
2494 		 * ant_div_alt_lnaconf		bit 0-1
2495 		 * ant_div_main_lnaconf		bit 2-3
2496 		 * ant_div_alt_gaintb		bit 4
2497 		 * ant_div_main_gaintb		bit 5
2498 		 * enable_ant_div_lnadiv	bit 6
2499 		 * enable_ant_fast_div		bit 7
2500 		 */
2501 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2502 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2503 	}
2504 
2505 	if (AR_SREV_9485_10(ah)) {
2506 		pCap->pcie_lcr_extsync_en = true;
2507 		pCap->pcie_lcr_offset = 0x80;
2508 	}
2509 
2510 	if (ath9k_hw_dfs_tested(ah))
2511 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2512 
2513 	tx_chainmask = pCap->tx_chainmask;
2514 	rx_chainmask = pCap->rx_chainmask;
2515 	while (tx_chainmask || rx_chainmask) {
2516 		if (tx_chainmask & BIT(0))
2517 			pCap->max_txchains++;
2518 		if (rx_chainmask & BIT(0))
2519 			pCap->max_rxchains++;
2520 
2521 		tx_chainmask >>= 1;
2522 		rx_chainmask >>= 1;
2523 	}
2524 
2525 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2526 		ah->enabled_cals |= TX_IQ_CAL;
2527 		if (AR_SREV_9485_OR_LATER(ah))
2528 			ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2529 	}
2530 	if (AR_SREV_9462(ah))
2531 		pCap->hw_caps |= ATH9K_HW_CAP_RTT | ATH9K_HW_CAP_MCI;
2532 
2533 	return 0;
2534 }
2535 
2536 /****************************/
2537 /* GPIO / RFKILL / Antennae */
2538 /****************************/
2539 
2540 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2541 					 u32 gpio, u32 type)
2542 {
2543 	int addr;
2544 	u32 gpio_shift, tmp;
2545 
2546 	if (gpio > 11)
2547 		addr = AR_GPIO_OUTPUT_MUX3;
2548 	else if (gpio > 5)
2549 		addr = AR_GPIO_OUTPUT_MUX2;
2550 	else
2551 		addr = AR_GPIO_OUTPUT_MUX1;
2552 
2553 	gpio_shift = (gpio % 6) * 5;
2554 
2555 	if (AR_SREV_9280_20_OR_LATER(ah)
2556 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2557 		REG_RMW(ah, addr, (type << gpio_shift),
2558 			(0x1f << gpio_shift));
2559 	} else {
2560 		tmp = REG_READ(ah, addr);
2561 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2562 		tmp &= ~(0x1f << gpio_shift);
2563 		tmp |= (type << gpio_shift);
2564 		REG_WRITE(ah, addr, tmp);
2565 	}
2566 }
2567 
2568 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2569 {
2570 	u32 gpio_shift;
2571 
2572 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2573 
2574 	if (AR_DEVID_7010(ah)) {
2575 		gpio_shift = gpio;
2576 		REG_RMW(ah, AR7010_GPIO_OE,
2577 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2578 			(AR7010_GPIO_OE_MASK << gpio_shift));
2579 		return;
2580 	}
2581 
2582 	gpio_shift = gpio << 1;
2583 	REG_RMW(ah,
2584 		AR_GPIO_OE_OUT,
2585 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2586 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2587 }
2588 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2589 
2590 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2591 {
2592 #define MS_REG_READ(x, y) \
2593 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2594 
2595 	if (gpio >= ah->caps.num_gpio_pins)
2596 		return 0xffffffff;
2597 
2598 	if (AR_DEVID_7010(ah)) {
2599 		u32 val;
2600 		val = REG_READ(ah, AR7010_GPIO_IN);
2601 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2602 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2603 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2604 			AR_GPIO_BIT(gpio)) != 0;
2605 	else if (AR_SREV_9271(ah))
2606 		return MS_REG_READ(AR9271, gpio) != 0;
2607 	else if (AR_SREV_9287_11_OR_LATER(ah))
2608 		return MS_REG_READ(AR9287, gpio) != 0;
2609 	else if (AR_SREV_9285_12_OR_LATER(ah))
2610 		return MS_REG_READ(AR9285, gpio) != 0;
2611 	else if (AR_SREV_9280_20_OR_LATER(ah))
2612 		return MS_REG_READ(AR928X, gpio) != 0;
2613 	else
2614 		return MS_REG_READ(AR, gpio) != 0;
2615 }
2616 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2617 
2618 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2619 			 u32 ah_signal_type)
2620 {
2621 	u32 gpio_shift;
2622 
2623 	if (AR_DEVID_7010(ah)) {
2624 		gpio_shift = gpio;
2625 		REG_RMW(ah, AR7010_GPIO_OE,
2626 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2627 			(AR7010_GPIO_OE_MASK << gpio_shift));
2628 		return;
2629 	}
2630 
2631 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2632 	gpio_shift = 2 * gpio;
2633 	REG_RMW(ah,
2634 		AR_GPIO_OE_OUT,
2635 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2636 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2637 }
2638 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2639 
2640 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2641 {
2642 	if (AR_DEVID_7010(ah)) {
2643 		val = val ? 0 : 1;
2644 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2645 			AR_GPIO_BIT(gpio));
2646 		return;
2647 	}
2648 
2649 	if (AR_SREV_9271(ah))
2650 		val = ~val;
2651 
2652 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2653 		AR_GPIO_BIT(gpio));
2654 }
2655 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2656 
2657 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2658 {
2659 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2660 }
2661 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2662 
2663 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2664 {
2665 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2666 }
2667 EXPORT_SYMBOL(ath9k_hw_setantenna);
2668 
2669 /*********************/
2670 /* General Operation */
2671 /*********************/
2672 
2673 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2674 {
2675 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2676 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2677 
2678 	if (phybits & AR_PHY_ERR_RADAR)
2679 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2680 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2681 		bits |= ATH9K_RX_FILTER_PHYERR;
2682 
2683 	return bits;
2684 }
2685 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2686 
2687 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2688 {
2689 	u32 phybits;
2690 
2691 	ENABLE_REGWRITE_BUFFER(ah);
2692 
2693 	if (AR_SREV_9462(ah))
2694 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2695 
2696 	REG_WRITE(ah, AR_RX_FILTER, bits);
2697 
2698 	phybits = 0;
2699 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2700 		phybits |= AR_PHY_ERR_RADAR;
2701 	if (bits & ATH9K_RX_FILTER_PHYERR)
2702 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2703 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2704 
2705 	if (phybits)
2706 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2707 	else
2708 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2709 
2710 	REGWRITE_BUFFER_FLUSH(ah);
2711 }
2712 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2713 
2714 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2715 {
2716 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2717 		return false;
2718 
2719 	ath9k_hw_init_pll(ah, NULL);
2720 	return true;
2721 }
2722 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2723 
2724 bool ath9k_hw_disable(struct ath_hw *ah)
2725 {
2726 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2727 		return false;
2728 
2729 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2730 		return false;
2731 
2732 	ath9k_hw_init_pll(ah, NULL);
2733 	return true;
2734 }
2735 EXPORT_SYMBOL(ath9k_hw_disable);
2736 
2737 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2738 {
2739 	enum eeprom_param gain_param;
2740 
2741 	if (IS_CHAN_2GHZ(chan))
2742 		gain_param = EEP_ANTENNA_GAIN_2G;
2743 	else
2744 		gain_param = EEP_ANTENNA_GAIN_5G;
2745 
2746 	return ah->eep_ops->get_eeprom(ah, gain_param);
2747 }
2748 
2749 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan)
2750 {
2751 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2752 	struct ieee80211_channel *channel;
2753 	int chan_pwr, new_pwr, max_gain;
2754 	int ant_gain, ant_reduction = 0;
2755 
2756 	if (!chan)
2757 		return;
2758 
2759 	channel = chan->chan;
2760 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2761 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2762 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2763 
2764 	ant_gain = get_antenna_gain(ah, chan);
2765 	if (ant_gain > max_gain)
2766 		ant_reduction = ant_gain - max_gain;
2767 
2768 	ah->eep_ops->set_txpower(ah, chan,
2769 				 ath9k_regd_get_ctl(reg, chan),
2770 				 ant_reduction, new_pwr, false);
2771 }
2772 
2773 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2774 {
2775 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2776 	struct ath9k_channel *chan = ah->curchan;
2777 	struct ieee80211_channel *channel = chan->chan;
2778 
2779 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2780 	if (test)
2781 		channel->max_power = MAX_RATE_POWER / 2;
2782 
2783 	ath9k_hw_apply_txpower(ah, chan);
2784 
2785 	if (test)
2786 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2787 }
2788 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2789 
2790 void ath9k_hw_setopmode(struct ath_hw *ah)
2791 {
2792 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2793 }
2794 EXPORT_SYMBOL(ath9k_hw_setopmode);
2795 
2796 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2797 {
2798 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2799 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2800 }
2801 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2802 
2803 void ath9k_hw_write_associd(struct ath_hw *ah)
2804 {
2805 	struct ath_common *common = ath9k_hw_common(ah);
2806 
2807 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2808 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2809 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2810 }
2811 EXPORT_SYMBOL(ath9k_hw_write_associd);
2812 
2813 #define ATH9K_MAX_TSF_READ 10
2814 
2815 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2816 {
2817 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2818 	int i;
2819 
2820 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2821 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2822 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2823 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2824 		if (tsf_upper2 == tsf_upper1)
2825 			break;
2826 		tsf_upper1 = tsf_upper2;
2827 	}
2828 
2829 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2830 
2831 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2832 }
2833 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2834 
2835 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2836 {
2837 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2838 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2839 }
2840 EXPORT_SYMBOL(ath9k_hw_settsf64);
2841 
2842 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2843 {
2844 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2845 			   AH_TSF_WRITE_TIMEOUT))
2846 		ath_dbg(ath9k_hw_common(ah), RESET,
2847 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2848 
2849 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2850 }
2851 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2852 
2853 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2854 {
2855 	if (setting)
2856 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2857 	else
2858 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2859 }
2860 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2861 
2862 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2863 {
2864 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2865 	u32 macmode;
2866 
2867 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2868 		macmode = AR_2040_JOINED_RX_CLEAR;
2869 	else
2870 		macmode = 0;
2871 
2872 	REG_WRITE(ah, AR_2040_MODE, macmode);
2873 }
2874 
2875 /* HW Generic timers configuration */
2876 
2877 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2878 {
2879 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2880 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2881 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2882 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2883 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2884 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2885 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2886 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2887 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2888 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2889 				AR_NDP2_TIMER_MODE, 0x0002},
2890 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2891 				AR_NDP2_TIMER_MODE, 0x0004},
2892 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2893 				AR_NDP2_TIMER_MODE, 0x0008},
2894 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2895 				AR_NDP2_TIMER_MODE, 0x0010},
2896 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2897 				AR_NDP2_TIMER_MODE, 0x0020},
2898 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2899 				AR_NDP2_TIMER_MODE, 0x0040},
2900 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2901 				AR_NDP2_TIMER_MODE, 0x0080}
2902 };
2903 
2904 /* HW generic timer primitives */
2905 
2906 /* compute and clear index of rightmost 1 */
2907 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2908 {
2909 	u32 b;
2910 
2911 	b = *mask;
2912 	b &= (0-b);
2913 	*mask &= ~b;
2914 	b *= debruijn32;
2915 	b >>= 27;
2916 
2917 	return timer_table->gen_timer_index[b];
2918 }
2919 
2920 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2921 {
2922 	return REG_READ(ah, AR_TSF_L32);
2923 }
2924 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2925 
2926 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2927 					  void (*trigger)(void *),
2928 					  void (*overflow)(void *),
2929 					  void *arg,
2930 					  u8 timer_index)
2931 {
2932 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2933 	struct ath_gen_timer *timer;
2934 
2935 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2936 
2937 	if (timer == NULL) {
2938 		ath_err(ath9k_hw_common(ah),
2939 			"Failed to allocate memory for hw timer[%d]\n",
2940 			timer_index);
2941 		return NULL;
2942 	}
2943 
2944 	/* allocate a hardware generic timer slot */
2945 	timer_table->timers[timer_index] = timer;
2946 	timer->index = timer_index;
2947 	timer->trigger = trigger;
2948 	timer->overflow = overflow;
2949 	timer->arg = arg;
2950 
2951 	return timer;
2952 }
2953 EXPORT_SYMBOL(ath_gen_timer_alloc);
2954 
2955 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2956 			      struct ath_gen_timer *timer,
2957 			      u32 trig_timeout,
2958 			      u32 timer_period)
2959 {
2960 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2961 	u32 tsf, timer_next;
2962 
2963 	BUG_ON(!timer_period);
2964 
2965 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2966 
2967 	tsf = ath9k_hw_gettsf32(ah);
2968 
2969 	timer_next = tsf + trig_timeout;
2970 
2971 	ath_dbg(ath9k_hw_common(ah), HWTIMER,
2972 		"current tsf %x period %x timer_next %x\n",
2973 		tsf, timer_period, timer_next);
2974 
2975 	/*
2976 	 * Program generic timer registers
2977 	 */
2978 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2979 		 timer_next);
2980 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2981 		  timer_period);
2982 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2983 		    gen_tmr_configuration[timer->index].mode_mask);
2984 
2985 	if (AR_SREV_9462(ah)) {
2986 		/*
2987 		 * Starting from AR9462, each generic timer can select which tsf
2988 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2989 		 * 8 - 15  use tsf2.
2990 		 */
2991 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2992 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2993 				       (1 << timer->index));
2994 		else
2995 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2996 				       (1 << timer->index));
2997 	}
2998 
2999 	/* Enable both trigger and thresh interrupt masks */
3000 	REG_SET_BIT(ah, AR_IMR_S5,
3001 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3002 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3003 }
3004 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3005 
3006 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3007 {
3008 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3009 
3010 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3011 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3012 		return;
3013 	}
3014 
3015 	/* Clear generic timer enable bits. */
3016 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3017 			gen_tmr_configuration[timer->index].mode_mask);
3018 
3019 	/* Disable both trigger and thresh interrupt masks */
3020 	REG_CLR_BIT(ah, AR_IMR_S5,
3021 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3022 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3023 
3024 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3025 }
3026 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3027 
3028 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3029 {
3030 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3031 
3032 	/* free the hardware generic timer slot */
3033 	timer_table->timers[timer->index] = NULL;
3034 	kfree(timer);
3035 }
3036 EXPORT_SYMBOL(ath_gen_timer_free);
3037 
3038 /*
3039  * Generic Timer Interrupts handling
3040  */
3041 void ath_gen_timer_isr(struct ath_hw *ah)
3042 {
3043 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3044 	struct ath_gen_timer *timer;
3045 	struct ath_common *common = ath9k_hw_common(ah);
3046 	u32 trigger_mask, thresh_mask, index;
3047 
3048 	/* get hardware generic timer interrupt status */
3049 	trigger_mask = ah->intr_gen_timer_trigger;
3050 	thresh_mask = ah->intr_gen_timer_thresh;
3051 	trigger_mask &= timer_table->timer_mask.val;
3052 	thresh_mask &= timer_table->timer_mask.val;
3053 
3054 	trigger_mask &= ~thresh_mask;
3055 
3056 	while (thresh_mask) {
3057 		index = rightmost_index(timer_table, &thresh_mask);
3058 		timer = timer_table->timers[index];
3059 		BUG_ON(!timer);
3060 		ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3061 			index);
3062 		timer->overflow(timer->arg);
3063 	}
3064 
3065 	while (trigger_mask) {
3066 		index = rightmost_index(timer_table, &trigger_mask);
3067 		timer = timer_table->timers[index];
3068 		BUG_ON(!timer);
3069 		ath_dbg(common, HWTIMER,
3070 			"Gen timer[%d] trigger\n", index);
3071 		timer->trigger(timer->arg);
3072 	}
3073 }
3074 EXPORT_SYMBOL(ath_gen_timer_isr);
3075 
3076 /********/
3077 /* HTC  */
3078 /********/
3079 
3080 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
3081 {
3082 	ah->htc_reset_init = true;
3083 }
3084 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
3085 
3086 static struct {
3087 	u32 version;
3088 	const char * name;
3089 } ath_mac_bb_names[] = {
3090 	/* Devices with external radios */
3091 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3092 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3093 	{ AR_SREV_VERSION_9100,		"9100" },
3094 	{ AR_SREV_VERSION_9160,		"9160" },
3095 	/* Single-chip solutions */
3096 	{ AR_SREV_VERSION_9280,		"9280" },
3097 	{ AR_SREV_VERSION_9285,		"9285" },
3098 	{ AR_SREV_VERSION_9287,         "9287" },
3099 	{ AR_SREV_VERSION_9271,         "9271" },
3100 	{ AR_SREV_VERSION_9300,         "9300" },
3101 	{ AR_SREV_VERSION_9330,         "9330" },
3102 	{ AR_SREV_VERSION_9340,		"9340" },
3103 	{ AR_SREV_VERSION_9485,         "9485" },
3104 	{ AR_SREV_VERSION_9462,         "9462" },
3105 };
3106 
3107 /* For devices with external radios */
3108 static struct {
3109 	u16 version;
3110 	const char * name;
3111 } ath_rf_names[] = {
3112 	{ 0,				"5133" },
3113 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3114 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3115 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3116 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3117 };
3118 
3119 /*
3120  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3121  */
3122 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3123 {
3124 	int i;
3125 
3126 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3127 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3128 			return ath_mac_bb_names[i].name;
3129 		}
3130 	}
3131 
3132 	return "????";
3133 }
3134 
3135 /*
3136  * Return the RF name. "????" is returned if the RF is unknown.
3137  * Used for devices with external radios.
3138  */
3139 static const char *ath9k_hw_rf_name(u16 rf_version)
3140 {
3141 	int i;
3142 
3143 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3144 		if (ath_rf_names[i].version == rf_version) {
3145 			return ath_rf_names[i].name;
3146 		}
3147 	}
3148 
3149 	return "????";
3150 }
3151 
3152 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3153 {
3154 	int used;
3155 
3156 	/* chipsets >= AR9280 are single-chip */
3157 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3158 		used = snprintf(hw_name, len,
3159 			       "Atheros AR%s Rev:%x",
3160 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3161 			       ah->hw_version.macRev);
3162 	}
3163 	else {
3164 		used = snprintf(hw_name, len,
3165 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3166 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3167 			       ah->hw_version.macRev,
3168 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3169 						AR_RADIO_SREV_MAJOR)),
3170 			       ah->hw_version.phyRev);
3171 	}
3172 
3173 	hw_name[used] = '\0';
3174 }
3175 EXPORT_SYMBOL(ath9k_hw_name);
3176