xref: /linux/drivers/net/wireless/ath/ath9k/hw.c (revision a508da6cc0093171833efb8376b00473f24221b9)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "debug.h"
28 #include "ath9k.h"
29 
30 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
31 
32 MODULE_AUTHOR("Atheros Communications");
33 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
34 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
35 MODULE_LICENSE("Dual BSD/GPL");
36 
37 static int __init ath9k_init(void)
38 {
39 	return 0;
40 }
41 module_init(ath9k_init);
42 
43 static void __exit ath9k_exit(void)
44 {
45 	return;
46 }
47 module_exit(ath9k_exit);
48 
49 /* Private hardware callbacks */
50 
51 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
52 {
53 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
54 }
55 
56 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
57 {
58 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
59 }
60 
61 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
62 					struct ath9k_channel *chan)
63 {
64 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
65 }
66 
67 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
68 {
69 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
70 		return;
71 
72 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
73 }
74 
75 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
76 {
77 	/* You will not have this callback if using the old ANI */
78 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
79 		return;
80 
81 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
82 }
83 
84 /********************/
85 /* Helper Functions */
86 /********************/
87 
88 #ifdef CONFIG_ATH9K_DEBUGFS
89 
90 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
91 {
92 	struct ath_softc *sc = common->priv;
93 	if (sync_cause)
94 		sc->debug.stats.istats.sync_cause_all++;
95 	if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
96 		sc->debug.stats.istats.sync_rtc_irq++;
97 	if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
98 		sc->debug.stats.istats.sync_mac_irq++;
99 	if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
100 		sc->debug.stats.istats.eeprom_illegal_access++;
101 	if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
102 		sc->debug.stats.istats.apb_timeout++;
103 	if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
104 		sc->debug.stats.istats.pci_mode_conflict++;
105 	if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
106 		sc->debug.stats.istats.host1_fatal++;
107 	if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
108 		sc->debug.stats.istats.host1_perr++;
109 	if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
110 		sc->debug.stats.istats.trcv_fifo_perr++;
111 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
112 		sc->debug.stats.istats.radm_cpl_ep++;
113 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
114 		sc->debug.stats.istats.radm_cpl_dllp_abort++;
115 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
116 		sc->debug.stats.istats.radm_cpl_tlp_abort++;
117 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
118 		sc->debug.stats.istats.radm_cpl_ecrc_err++;
119 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
120 		sc->debug.stats.istats.radm_cpl_timeout++;
121 	if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
122 		sc->debug.stats.istats.local_timeout++;
123 	if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
124 		sc->debug.stats.istats.pm_access++;
125 	if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
126 		sc->debug.stats.istats.mac_awake++;
127 	if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
128 		sc->debug.stats.istats.mac_asleep++;
129 	if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
130 		sc->debug.stats.istats.mac_sleep_access++;
131 }
132 #endif
133 
134 
135 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
136 {
137 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
138 	struct ath_common *common = ath9k_hw_common(ah);
139 	unsigned int clockrate;
140 
141 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
142 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
143 		clockrate = 117;
144 	else if (!ah->curchan) /* should really check for CCK instead */
145 		clockrate = ATH9K_CLOCK_RATE_CCK;
146 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
147 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
148 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
149 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
150 	else
151 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
152 
153 	if (conf_is_ht40(conf))
154 		clockrate *= 2;
155 
156 	if (ah->curchan) {
157 		if (IS_CHAN_HALF_RATE(ah->curchan))
158 			clockrate /= 2;
159 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
160 			clockrate /= 4;
161 	}
162 
163 	common->clockrate = clockrate;
164 }
165 
166 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
167 {
168 	struct ath_common *common = ath9k_hw_common(ah);
169 
170 	return usecs * common->clockrate;
171 }
172 
173 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
174 {
175 	int i;
176 
177 	BUG_ON(timeout < AH_TIME_QUANTUM);
178 
179 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
180 		if ((REG_READ(ah, reg) & mask) == val)
181 			return true;
182 
183 		udelay(AH_TIME_QUANTUM);
184 	}
185 
186 	ath_dbg(ath9k_hw_common(ah), ANY,
187 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
188 		timeout, reg, REG_READ(ah, reg), mask, val);
189 
190 	return false;
191 }
192 EXPORT_SYMBOL(ath9k_hw_wait);
193 
194 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
195 			  int hw_delay)
196 {
197 	if (IS_CHAN_B(chan))
198 		hw_delay = (4 * hw_delay) / 22;
199 	else
200 		hw_delay /= 10;
201 
202 	if (IS_CHAN_HALF_RATE(chan))
203 		hw_delay *= 2;
204 	else if (IS_CHAN_QUARTER_RATE(chan))
205 		hw_delay *= 4;
206 
207 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
208 }
209 
210 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
211 			  int column, unsigned int *writecnt)
212 {
213 	int r;
214 
215 	ENABLE_REGWRITE_BUFFER(ah);
216 	for (r = 0; r < array->ia_rows; r++) {
217 		REG_WRITE(ah, INI_RA(array, r, 0),
218 			  INI_RA(array, r, column));
219 		DO_DELAY(*writecnt);
220 	}
221 	REGWRITE_BUFFER_FLUSH(ah);
222 }
223 
224 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
225 {
226 	u32 retval;
227 	int i;
228 
229 	for (i = 0, retval = 0; i < n; i++) {
230 		retval = (retval << 1) | (val & 1);
231 		val >>= 1;
232 	}
233 	return retval;
234 }
235 
236 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
237 			   u8 phy, int kbps,
238 			   u32 frameLen, u16 rateix,
239 			   bool shortPreamble)
240 {
241 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
242 
243 	if (kbps == 0)
244 		return 0;
245 
246 	switch (phy) {
247 	case WLAN_RC_PHY_CCK:
248 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
249 		if (shortPreamble)
250 			phyTime >>= 1;
251 		numBits = frameLen << 3;
252 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
253 		break;
254 	case WLAN_RC_PHY_OFDM:
255 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
256 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
257 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
258 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
259 			txTime = OFDM_SIFS_TIME_QUARTER
260 				+ OFDM_PREAMBLE_TIME_QUARTER
261 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
262 		} else if (ah->curchan &&
263 			   IS_CHAN_HALF_RATE(ah->curchan)) {
264 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
265 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
266 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
267 			txTime = OFDM_SIFS_TIME_HALF +
268 				OFDM_PREAMBLE_TIME_HALF
269 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
270 		} else {
271 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
272 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
273 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
274 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
275 				+ (numSymbols * OFDM_SYMBOL_TIME);
276 		}
277 		break;
278 	default:
279 		ath_err(ath9k_hw_common(ah),
280 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
281 		txTime = 0;
282 		break;
283 	}
284 
285 	return txTime;
286 }
287 EXPORT_SYMBOL(ath9k_hw_computetxtime);
288 
289 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
290 				  struct ath9k_channel *chan,
291 				  struct chan_centers *centers)
292 {
293 	int8_t extoff;
294 
295 	if (!IS_CHAN_HT40(chan)) {
296 		centers->ctl_center = centers->ext_center =
297 			centers->synth_center = chan->channel;
298 		return;
299 	}
300 
301 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
302 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
303 		centers->synth_center =
304 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
305 		extoff = 1;
306 	} else {
307 		centers->synth_center =
308 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
309 		extoff = -1;
310 	}
311 
312 	centers->ctl_center =
313 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
314 	/* 25 MHz spacing is supported by hw but not on upper layers */
315 	centers->ext_center =
316 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
317 }
318 
319 /******************/
320 /* Chip Revisions */
321 /******************/
322 
323 static void ath9k_hw_read_revisions(struct ath_hw *ah)
324 {
325 	u32 val;
326 
327 	switch (ah->hw_version.devid) {
328 	case AR5416_AR9100_DEVID:
329 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
330 		break;
331 	case AR9300_DEVID_AR9330:
332 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
333 		if (ah->get_mac_revision) {
334 			ah->hw_version.macRev = ah->get_mac_revision();
335 		} else {
336 			val = REG_READ(ah, AR_SREV);
337 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
338 		}
339 		return;
340 	case AR9300_DEVID_AR9340:
341 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
342 		val = REG_READ(ah, AR_SREV);
343 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
344 		return;
345 	}
346 
347 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
348 
349 	if (val == 0xFF) {
350 		val = REG_READ(ah, AR_SREV);
351 		ah->hw_version.macVersion =
352 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
353 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
354 
355 		if (AR_SREV_9462(ah))
356 			ah->is_pciexpress = true;
357 		else
358 			ah->is_pciexpress = (val &
359 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
360 	} else {
361 		if (!AR_SREV_9100(ah))
362 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
363 
364 		ah->hw_version.macRev = val & AR_SREV_REVISION;
365 
366 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
367 			ah->is_pciexpress = true;
368 	}
369 }
370 
371 /************************************/
372 /* HW Attach, Detach, Init Routines */
373 /************************************/
374 
375 static void ath9k_hw_disablepcie(struct ath_hw *ah)
376 {
377 	if (!AR_SREV_5416(ah))
378 		return;
379 
380 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
381 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
382 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
383 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
384 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
385 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
386 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
387 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
388 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
389 
390 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
391 }
392 
393 static void ath9k_hw_aspm_init(struct ath_hw *ah)
394 {
395 	struct ath_common *common = ath9k_hw_common(ah);
396 
397 	if (common->bus_ops->aspm_init)
398 		common->bus_ops->aspm_init(common);
399 }
400 
401 /* This should work for all families including legacy */
402 static bool ath9k_hw_chip_test(struct ath_hw *ah)
403 {
404 	struct ath_common *common = ath9k_hw_common(ah);
405 	u32 regAddr[2] = { AR_STA_ID0 };
406 	u32 regHold[2];
407 	static const u32 patternData[4] = {
408 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
409 	};
410 	int i, j, loop_max;
411 
412 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
413 		loop_max = 2;
414 		regAddr[1] = AR_PHY_BASE + (8 << 2);
415 	} else
416 		loop_max = 1;
417 
418 	for (i = 0; i < loop_max; i++) {
419 		u32 addr = regAddr[i];
420 		u32 wrData, rdData;
421 
422 		regHold[i] = REG_READ(ah, addr);
423 		for (j = 0; j < 0x100; j++) {
424 			wrData = (j << 16) | j;
425 			REG_WRITE(ah, addr, wrData);
426 			rdData = REG_READ(ah, addr);
427 			if (rdData != wrData) {
428 				ath_err(common,
429 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
430 					addr, wrData, rdData);
431 				return false;
432 			}
433 		}
434 		for (j = 0; j < 4; j++) {
435 			wrData = patternData[j];
436 			REG_WRITE(ah, addr, wrData);
437 			rdData = REG_READ(ah, addr);
438 			if (wrData != rdData) {
439 				ath_err(common,
440 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
441 					addr, wrData, rdData);
442 				return false;
443 			}
444 		}
445 		REG_WRITE(ah, regAddr[i], regHold[i]);
446 	}
447 	udelay(100);
448 
449 	return true;
450 }
451 
452 static void ath9k_hw_init_config(struct ath_hw *ah)
453 {
454 	int i;
455 
456 	ah->config.dma_beacon_response_time = 1;
457 	ah->config.sw_beacon_response_time = 6;
458 	ah->config.additional_swba_backoff = 0;
459 	ah->config.ack_6mb = 0x0;
460 	ah->config.cwm_ignore_extcca = 0;
461 	ah->config.pcie_clock_req = 0;
462 	ah->config.pcie_waen = 0;
463 	ah->config.analog_shiftreg = 1;
464 	ah->config.enable_ani = true;
465 
466 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
467 		ah->config.spurchans[i][0] = AR_NO_SPUR;
468 		ah->config.spurchans[i][1] = AR_NO_SPUR;
469 	}
470 
471 	/* PAPRD needs some more work to be enabled */
472 	ah->config.paprd_disable = 1;
473 
474 	ah->config.rx_intr_mitigation = true;
475 	ah->config.pcieSerDesWrite = true;
476 
477 	/*
478 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
479 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
480 	 * This means we use it for all AR5416 devices, and the few
481 	 * minor PCI AR9280 devices out there.
482 	 *
483 	 * Serialization is required because these devices do not handle
484 	 * well the case of two concurrent reads/writes due to the latency
485 	 * involved. During one read/write another read/write can be issued
486 	 * on another CPU while the previous read/write may still be working
487 	 * on our hardware, if we hit this case the hardware poops in a loop.
488 	 * We prevent this by serializing reads and writes.
489 	 *
490 	 * This issue is not present on PCI-Express devices or pre-AR5416
491 	 * devices (legacy, 802.11abg).
492 	 */
493 	if (num_possible_cpus() > 1)
494 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
495 }
496 
497 static void ath9k_hw_init_defaults(struct ath_hw *ah)
498 {
499 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
500 
501 	regulatory->country_code = CTRY_DEFAULT;
502 	regulatory->power_limit = MAX_RATE_POWER;
503 
504 	ah->hw_version.magic = AR5416_MAGIC;
505 	ah->hw_version.subvendorid = 0;
506 
507 	ah->atim_window = 0;
508 	ah->sta_id1_defaults =
509 		AR_STA_ID1_CRPT_MIC_ENABLE |
510 		AR_STA_ID1_MCAST_KSRCH;
511 	if (AR_SREV_9100(ah))
512 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
513 	ah->slottime = ATH9K_SLOT_TIME_9;
514 	ah->globaltxtimeout = (u32) -1;
515 	ah->power_mode = ATH9K_PM_UNDEFINED;
516 	ah->htc_reset_init = true;
517 }
518 
519 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
520 {
521 	struct ath_common *common = ath9k_hw_common(ah);
522 	u32 sum;
523 	int i;
524 	u16 eeval;
525 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
526 
527 	sum = 0;
528 	for (i = 0; i < 3; i++) {
529 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
530 		sum += eeval;
531 		common->macaddr[2 * i] = eeval >> 8;
532 		common->macaddr[2 * i + 1] = eeval & 0xff;
533 	}
534 	if (sum == 0 || sum == 0xffff * 3)
535 		return -EADDRNOTAVAIL;
536 
537 	return 0;
538 }
539 
540 static int ath9k_hw_post_init(struct ath_hw *ah)
541 {
542 	struct ath_common *common = ath9k_hw_common(ah);
543 	int ecode;
544 
545 	if (common->bus_ops->ath_bus_type != ATH_USB) {
546 		if (!ath9k_hw_chip_test(ah))
547 			return -ENODEV;
548 	}
549 
550 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
551 		ecode = ar9002_hw_rf_claim(ah);
552 		if (ecode != 0)
553 			return ecode;
554 	}
555 
556 	ecode = ath9k_hw_eeprom_init(ah);
557 	if (ecode != 0)
558 		return ecode;
559 
560 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
561 		ah->eep_ops->get_eeprom_ver(ah),
562 		ah->eep_ops->get_eeprom_rev(ah));
563 
564 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
565 	if (ecode) {
566 		ath_err(ath9k_hw_common(ah),
567 			"Failed allocating banks for external radio\n");
568 		ath9k_hw_rf_free_ext_banks(ah);
569 		return ecode;
570 	}
571 
572 	if (ah->config.enable_ani) {
573 		ath9k_hw_ani_setup(ah);
574 		ath9k_hw_ani_init(ah);
575 	}
576 
577 	return 0;
578 }
579 
580 static void ath9k_hw_attach_ops(struct ath_hw *ah)
581 {
582 	if (AR_SREV_9300_20_OR_LATER(ah))
583 		ar9003_hw_attach_ops(ah);
584 	else
585 		ar9002_hw_attach_ops(ah);
586 }
587 
588 /* Called for all hardware families */
589 static int __ath9k_hw_init(struct ath_hw *ah)
590 {
591 	struct ath_common *common = ath9k_hw_common(ah);
592 	int r = 0;
593 
594 	ath9k_hw_read_revisions(ah);
595 
596 	/*
597 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
598 	 * We need to do this to avoid RMW of this register. We cannot
599 	 * read the reg when chip is asleep.
600 	 */
601 	ah->WARegVal = REG_READ(ah, AR_WA);
602 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
603 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
604 
605 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
606 		ath_err(common, "Couldn't reset chip\n");
607 		return -EIO;
608 	}
609 
610 	if (AR_SREV_9462(ah))
611 		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
612 
613 	ath9k_hw_init_defaults(ah);
614 	ath9k_hw_init_config(ah);
615 
616 	ath9k_hw_attach_ops(ah);
617 
618 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
619 		ath_err(common, "Couldn't wakeup chip\n");
620 		return -EIO;
621 	}
622 
623 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
624 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
625 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
626 		     !ah->is_pciexpress)) {
627 			ah->config.serialize_regmode =
628 				SER_REG_MODE_ON;
629 		} else {
630 			ah->config.serialize_regmode =
631 				SER_REG_MODE_OFF;
632 		}
633 	}
634 
635 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
636 		ah->config.serialize_regmode);
637 
638 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
639 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
640 	else
641 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
642 
643 	switch (ah->hw_version.macVersion) {
644 	case AR_SREV_VERSION_5416_PCI:
645 	case AR_SREV_VERSION_5416_PCIE:
646 	case AR_SREV_VERSION_9160:
647 	case AR_SREV_VERSION_9100:
648 	case AR_SREV_VERSION_9280:
649 	case AR_SREV_VERSION_9285:
650 	case AR_SREV_VERSION_9287:
651 	case AR_SREV_VERSION_9271:
652 	case AR_SREV_VERSION_9300:
653 	case AR_SREV_VERSION_9330:
654 	case AR_SREV_VERSION_9485:
655 	case AR_SREV_VERSION_9340:
656 	case AR_SREV_VERSION_9462:
657 		break;
658 	default:
659 		ath_err(common,
660 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
661 			ah->hw_version.macVersion, ah->hw_version.macRev);
662 		return -EOPNOTSUPP;
663 	}
664 
665 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
666 	    AR_SREV_9330(ah))
667 		ah->is_pciexpress = false;
668 
669 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
670 	ath9k_hw_init_cal_settings(ah);
671 
672 	ah->ani_function = ATH9K_ANI_ALL;
673 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
674 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
675 	if (!AR_SREV_9300_20_OR_LATER(ah))
676 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
677 
678 	/* disable ANI for 9340 */
679 	if (AR_SREV_9340(ah))
680 		ah->config.enable_ani = false;
681 
682 	ath9k_hw_init_mode_regs(ah);
683 
684 	if (!ah->is_pciexpress)
685 		ath9k_hw_disablepcie(ah);
686 
687 	r = ath9k_hw_post_init(ah);
688 	if (r)
689 		return r;
690 
691 	ath9k_hw_init_mode_gain_regs(ah);
692 	r = ath9k_hw_fill_cap_info(ah);
693 	if (r)
694 		return r;
695 
696 	if (ah->is_pciexpress)
697 		ath9k_hw_aspm_init(ah);
698 
699 	r = ath9k_hw_init_macaddr(ah);
700 	if (r) {
701 		ath_err(common, "Failed to initialize MAC address\n");
702 		return r;
703 	}
704 
705 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
706 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
707 	else
708 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
709 
710 	if (AR_SREV_9330(ah))
711 		ah->bb_watchdog_timeout_ms = 85;
712 	else
713 		ah->bb_watchdog_timeout_ms = 25;
714 
715 	common->state = ATH_HW_INITIALIZED;
716 
717 	return 0;
718 }
719 
720 int ath9k_hw_init(struct ath_hw *ah)
721 {
722 	int ret;
723 	struct ath_common *common = ath9k_hw_common(ah);
724 
725 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
726 	switch (ah->hw_version.devid) {
727 	case AR5416_DEVID_PCI:
728 	case AR5416_DEVID_PCIE:
729 	case AR5416_AR9100_DEVID:
730 	case AR9160_DEVID_PCI:
731 	case AR9280_DEVID_PCI:
732 	case AR9280_DEVID_PCIE:
733 	case AR9285_DEVID_PCIE:
734 	case AR9287_DEVID_PCI:
735 	case AR9287_DEVID_PCIE:
736 	case AR2427_DEVID_PCIE:
737 	case AR9300_DEVID_PCIE:
738 	case AR9300_DEVID_AR9485_PCIE:
739 	case AR9300_DEVID_AR9330:
740 	case AR9300_DEVID_AR9340:
741 	case AR9300_DEVID_AR9580:
742 	case AR9300_DEVID_AR9462:
743 		break;
744 	default:
745 		if (common->bus_ops->ath_bus_type == ATH_USB)
746 			break;
747 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
748 			ah->hw_version.devid);
749 		return -EOPNOTSUPP;
750 	}
751 
752 	ret = __ath9k_hw_init(ah);
753 	if (ret) {
754 		ath_err(common,
755 			"Unable to initialize hardware; initialization status: %d\n",
756 			ret);
757 		return ret;
758 	}
759 
760 	return 0;
761 }
762 EXPORT_SYMBOL(ath9k_hw_init);
763 
764 static void ath9k_hw_init_qos(struct ath_hw *ah)
765 {
766 	ENABLE_REGWRITE_BUFFER(ah);
767 
768 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
769 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
770 
771 	REG_WRITE(ah, AR_QOS_NO_ACK,
772 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
773 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
774 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
775 
776 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
777 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
778 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
779 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
780 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
781 
782 	REGWRITE_BUFFER_FLUSH(ah);
783 }
784 
785 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
786 {
787 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
788 	udelay(100);
789 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
790 
791 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
792 		udelay(100);
793 
794 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
795 }
796 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
797 
798 static void ath9k_hw_init_pll(struct ath_hw *ah,
799 			      struct ath9k_channel *chan)
800 {
801 	u32 pll;
802 
803 	if (AR_SREV_9485(ah)) {
804 
805 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
806 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
807 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
808 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
809 			      AR_CH0_DPLL2_KD, 0x40);
810 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
811 			      AR_CH0_DPLL2_KI, 0x4);
812 
813 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
814 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
815 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
816 			      AR_CH0_BB_DPLL1_NINI, 0x58);
817 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
818 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
819 
820 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
821 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
822 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
823 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
824 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
825 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
826 
827 		/* program BB PLL phase_shift to 0x6 */
828 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
829 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
830 
831 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
832 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
833 		udelay(1000);
834 	} else if (AR_SREV_9330(ah)) {
835 		u32 ddr_dpll2, pll_control2, kd;
836 
837 		if (ah->is_clk_25mhz) {
838 			ddr_dpll2 = 0x18e82f01;
839 			pll_control2 = 0xe04a3d;
840 			kd = 0x1d;
841 		} else {
842 			ddr_dpll2 = 0x19e82f01;
843 			pll_control2 = 0x886666;
844 			kd = 0x3d;
845 		}
846 
847 		/* program DDR PLL ki and kd value */
848 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
849 
850 		/* program DDR PLL phase_shift */
851 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
852 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
853 
854 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
855 		udelay(1000);
856 
857 		/* program refdiv, nint, frac to RTC register */
858 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
859 
860 		/* program BB PLL kd and ki value */
861 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
862 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
863 
864 		/* program BB PLL phase_shift */
865 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
866 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
867 	} else if (AR_SREV_9340(ah)) {
868 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
869 
870 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
871 		udelay(1000);
872 
873 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
874 		udelay(100);
875 
876 		if (ah->is_clk_25mhz) {
877 			pll2_divint = 0x54;
878 			pll2_divfrac = 0x1eb85;
879 			refdiv = 3;
880 		} else {
881 			pll2_divint = 88;
882 			pll2_divfrac = 0;
883 			refdiv = 5;
884 		}
885 
886 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
887 		regval |= (0x1 << 16);
888 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
889 		udelay(100);
890 
891 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
892 			  (pll2_divint << 18) | pll2_divfrac);
893 		udelay(100);
894 
895 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
896 		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
897 			 (0x4 << 26) | (0x18 << 19);
898 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
899 		REG_WRITE(ah, AR_PHY_PLL_MODE,
900 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
901 		udelay(1000);
902 	}
903 
904 	pll = ath9k_hw_compute_pll_control(ah, chan);
905 
906 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
907 
908 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
909 		udelay(1000);
910 
911 	/* Switch the core clock for ar9271 to 117Mhz */
912 	if (AR_SREV_9271(ah)) {
913 		udelay(500);
914 		REG_WRITE(ah, 0x50040, 0x304);
915 	}
916 
917 	udelay(RTC_PLL_SETTLE_DELAY);
918 
919 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
920 
921 	if (AR_SREV_9340(ah)) {
922 		if (ah->is_clk_25mhz) {
923 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
924 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
925 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
926 		} else {
927 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
928 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
929 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
930 		}
931 		udelay(100);
932 	}
933 }
934 
935 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
936 					  enum nl80211_iftype opmode)
937 {
938 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
939 	u32 imr_reg = AR_IMR_TXERR |
940 		AR_IMR_TXURN |
941 		AR_IMR_RXERR |
942 		AR_IMR_RXORN |
943 		AR_IMR_BCNMISC;
944 
945 	if (AR_SREV_9340(ah))
946 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
947 
948 	if (AR_SREV_9300_20_OR_LATER(ah)) {
949 		imr_reg |= AR_IMR_RXOK_HP;
950 		if (ah->config.rx_intr_mitigation)
951 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
952 		else
953 			imr_reg |= AR_IMR_RXOK_LP;
954 
955 	} else {
956 		if (ah->config.rx_intr_mitigation)
957 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
958 		else
959 			imr_reg |= AR_IMR_RXOK;
960 	}
961 
962 	if (ah->config.tx_intr_mitigation)
963 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
964 	else
965 		imr_reg |= AR_IMR_TXOK;
966 
967 	if (opmode == NL80211_IFTYPE_AP)
968 		imr_reg |= AR_IMR_MIB;
969 
970 	ENABLE_REGWRITE_BUFFER(ah);
971 
972 	REG_WRITE(ah, AR_IMR, imr_reg);
973 	ah->imrs2_reg |= AR_IMR_S2_GTT;
974 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
975 
976 	if (!AR_SREV_9100(ah)) {
977 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
978 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
979 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
980 	}
981 
982 	REGWRITE_BUFFER_FLUSH(ah);
983 
984 	if (AR_SREV_9300_20_OR_LATER(ah)) {
985 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
986 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
987 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
988 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
989 	}
990 }
991 
992 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
993 {
994 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
995 	val = min(val, (u32) 0xFFFF);
996 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
997 }
998 
999 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1000 {
1001 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1002 	val = min(val, (u32) 0xFFFF);
1003 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1004 }
1005 
1006 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1007 {
1008 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1009 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1010 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1011 }
1012 
1013 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1014 {
1015 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1016 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1017 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1018 }
1019 
1020 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1021 {
1022 	if (tu > 0xFFFF) {
1023 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1024 			tu);
1025 		ah->globaltxtimeout = (u32) -1;
1026 		return false;
1027 	} else {
1028 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1029 		ah->globaltxtimeout = tu;
1030 		return true;
1031 	}
1032 }
1033 
1034 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1035 {
1036 	struct ath_common *common = ath9k_hw_common(ah);
1037 	struct ieee80211_conf *conf = &common->hw->conf;
1038 	const struct ath9k_channel *chan = ah->curchan;
1039 	int acktimeout, ctstimeout, ack_offset = 0;
1040 	int slottime;
1041 	int sifstime;
1042 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1043 	u32 reg;
1044 
1045 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1046 		ah->misc_mode);
1047 
1048 	if (!chan)
1049 		return;
1050 
1051 	if (ah->misc_mode != 0)
1052 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1053 
1054 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1055 		rx_lat = 41;
1056 	else
1057 		rx_lat = 37;
1058 	tx_lat = 54;
1059 
1060 	if (IS_CHAN_5GHZ(chan))
1061 		sifstime = 16;
1062 	else
1063 		sifstime = 10;
1064 
1065 	if (IS_CHAN_HALF_RATE(chan)) {
1066 		eifs = 175;
1067 		rx_lat *= 2;
1068 		tx_lat *= 2;
1069 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1070 		    tx_lat += 11;
1071 
1072 		sifstime *= 2;
1073 		ack_offset = 16;
1074 		slottime = 13;
1075 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1076 		eifs = 340;
1077 		rx_lat = (rx_lat * 4) - 1;
1078 		tx_lat *= 4;
1079 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1080 		    tx_lat += 22;
1081 
1082 		sifstime *= 4;
1083 		ack_offset = 32;
1084 		slottime = 21;
1085 	} else {
1086 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1087 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1088 			reg = AR_USEC_ASYNC_FIFO;
1089 		} else {
1090 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1091 				common->clockrate;
1092 			reg = REG_READ(ah, AR_USEC);
1093 		}
1094 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1095 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1096 
1097 		slottime = ah->slottime;
1098 	}
1099 
1100 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1101 	acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
1102 	ctstimeout = acktimeout;
1103 
1104 	/*
1105 	 * Workaround for early ACK timeouts, add an offset to match the
1106 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1107 	 * This was initially only meant to work around an issue with delayed
1108 	 * BA frames in some implementations, but it has been found to fix ACK
1109 	 * timeout issues in other cases as well.
1110 	 */
1111 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
1112 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1113 		acktimeout += 64 - sifstime - ah->slottime;
1114 		ctstimeout += 48 - sifstime - ah->slottime;
1115 	}
1116 
1117 
1118 	ath9k_hw_set_sifs_time(ah, sifstime);
1119 	ath9k_hw_setslottime(ah, slottime);
1120 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1121 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1122 	if (ah->globaltxtimeout != (u32) -1)
1123 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1124 
1125 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1126 	REG_RMW(ah, AR_USEC,
1127 		(common->clockrate - 1) |
1128 		SM(rx_lat, AR_USEC_RX_LAT) |
1129 		SM(tx_lat, AR_USEC_TX_LAT),
1130 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1131 
1132 }
1133 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1134 
1135 void ath9k_hw_deinit(struct ath_hw *ah)
1136 {
1137 	struct ath_common *common = ath9k_hw_common(ah);
1138 
1139 	if (common->state < ATH_HW_INITIALIZED)
1140 		goto free_hw;
1141 
1142 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1143 
1144 free_hw:
1145 	ath9k_hw_rf_free_ext_banks(ah);
1146 }
1147 EXPORT_SYMBOL(ath9k_hw_deinit);
1148 
1149 /*******/
1150 /* INI */
1151 /*******/
1152 
1153 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1154 {
1155 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1156 
1157 	if (IS_CHAN_B(chan))
1158 		ctl |= CTL_11B;
1159 	else if (IS_CHAN_G(chan))
1160 		ctl |= CTL_11G;
1161 	else
1162 		ctl |= CTL_11A;
1163 
1164 	return ctl;
1165 }
1166 
1167 /****************************************/
1168 /* Reset and Channel Switching Routines */
1169 /****************************************/
1170 
1171 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1172 {
1173 	struct ath_common *common = ath9k_hw_common(ah);
1174 
1175 	ENABLE_REGWRITE_BUFFER(ah);
1176 
1177 	/*
1178 	 * set AHB_MODE not to do cacheline prefetches
1179 	*/
1180 	if (!AR_SREV_9300_20_OR_LATER(ah))
1181 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1182 
1183 	/*
1184 	 * let mac dma reads be in 128 byte chunks
1185 	 */
1186 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1187 
1188 	REGWRITE_BUFFER_FLUSH(ah);
1189 
1190 	/*
1191 	 * Restore TX Trigger Level to its pre-reset value.
1192 	 * The initial value depends on whether aggregation is enabled, and is
1193 	 * adjusted whenever underruns are detected.
1194 	 */
1195 	if (!AR_SREV_9300_20_OR_LATER(ah))
1196 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1197 
1198 	ENABLE_REGWRITE_BUFFER(ah);
1199 
1200 	/*
1201 	 * let mac dma writes be in 128 byte chunks
1202 	 */
1203 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1204 
1205 	/*
1206 	 * Setup receive FIFO threshold to hold off TX activities
1207 	 */
1208 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1209 
1210 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1211 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1212 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1213 
1214 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1215 			ah->caps.rx_status_len);
1216 	}
1217 
1218 	/*
1219 	 * reduce the number of usable entries in PCU TXBUF to avoid
1220 	 * wrap around issues.
1221 	 */
1222 	if (AR_SREV_9285(ah)) {
1223 		/* For AR9285 the number of Fifos are reduced to half.
1224 		 * So set the usable tx buf size also to half to
1225 		 * avoid data/delimiter underruns
1226 		 */
1227 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1228 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1229 	} else if (!AR_SREV_9271(ah)) {
1230 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1231 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1232 	}
1233 
1234 	REGWRITE_BUFFER_FLUSH(ah);
1235 
1236 	if (AR_SREV_9300_20_OR_LATER(ah))
1237 		ath9k_hw_reset_txstatus_ring(ah);
1238 }
1239 
1240 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1241 {
1242 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1243 	u32 set = AR_STA_ID1_KSRCH_MODE;
1244 
1245 	switch (opmode) {
1246 	case NL80211_IFTYPE_ADHOC:
1247 	case NL80211_IFTYPE_MESH_POINT:
1248 		set |= AR_STA_ID1_ADHOC;
1249 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1250 		break;
1251 	case NL80211_IFTYPE_AP:
1252 		set |= AR_STA_ID1_STA_AP;
1253 		/* fall through */
1254 	case NL80211_IFTYPE_STATION:
1255 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1256 		break;
1257 	default:
1258 		if (!ah->is_monitoring)
1259 			set = 0;
1260 		break;
1261 	}
1262 	REG_RMW(ah, AR_STA_ID1, set, mask);
1263 }
1264 
1265 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1266 				   u32 *coef_mantissa, u32 *coef_exponent)
1267 {
1268 	u32 coef_exp, coef_man;
1269 
1270 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1271 		if ((coef_scaled >> coef_exp) & 0x1)
1272 			break;
1273 
1274 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1275 
1276 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1277 
1278 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1279 	*coef_exponent = coef_exp - 16;
1280 }
1281 
1282 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1283 {
1284 	u32 rst_flags;
1285 	u32 tmpReg;
1286 
1287 	if (AR_SREV_9100(ah)) {
1288 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1289 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1290 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1291 	}
1292 
1293 	ENABLE_REGWRITE_BUFFER(ah);
1294 
1295 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1296 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1297 		udelay(10);
1298 	}
1299 
1300 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1301 		  AR_RTC_FORCE_WAKE_ON_INT);
1302 
1303 	if (AR_SREV_9100(ah)) {
1304 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1305 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1306 	} else {
1307 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1308 		if (tmpReg &
1309 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1310 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1311 			u32 val;
1312 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1313 
1314 			val = AR_RC_HOSTIF;
1315 			if (!AR_SREV_9300_20_OR_LATER(ah))
1316 				val |= AR_RC_AHB;
1317 			REG_WRITE(ah, AR_RC, val);
1318 
1319 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1320 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1321 
1322 		rst_flags = AR_RTC_RC_MAC_WARM;
1323 		if (type == ATH9K_RESET_COLD)
1324 			rst_flags |= AR_RTC_RC_MAC_COLD;
1325 	}
1326 
1327 	if (AR_SREV_9330(ah)) {
1328 		int npend = 0;
1329 		int i;
1330 
1331 		/* AR9330 WAR:
1332 		 * call external reset function to reset WMAC if:
1333 		 * - doing a cold reset
1334 		 * - we have pending frames in the TX queues
1335 		 */
1336 
1337 		for (i = 0; i < AR_NUM_QCU; i++) {
1338 			npend = ath9k_hw_numtxpending(ah, i);
1339 			if (npend)
1340 				break;
1341 		}
1342 
1343 		if (ah->external_reset &&
1344 		    (npend || type == ATH9K_RESET_COLD)) {
1345 			int reset_err = 0;
1346 
1347 			ath_dbg(ath9k_hw_common(ah), RESET,
1348 				"reset MAC via external reset\n");
1349 
1350 			reset_err = ah->external_reset();
1351 			if (reset_err) {
1352 				ath_err(ath9k_hw_common(ah),
1353 					"External reset failed, err=%d\n",
1354 					reset_err);
1355 				return false;
1356 			}
1357 
1358 			REG_WRITE(ah, AR_RTC_RESET, 1);
1359 		}
1360 	}
1361 
1362 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1363 
1364 	REGWRITE_BUFFER_FLUSH(ah);
1365 
1366 	udelay(50);
1367 
1368 	REG_WRITE(ah, AR_RTC_RC, 0);
1369 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1370 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1371 		return false;
1372 	}
1373 
1374 	if (!AR_SREV_9100(ah))
1375 		REG_WRITE(ah, AR_RC, 0);
1376 
1377 	if (AR_SREV_9100(ah))
1378 		udelay(50);
1379 
1380 	return true;
1381 }
1382 
1383 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1384 {
1385 	ENABLE_REGWRITE_BUFFER(ah);
1386 
1387 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1388 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1389 		udelay(10);
1390 	}
1391 
1392 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1393 		  AR_RTC_FORCE_WAKE_ON_INT);
1394 
1395 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1396 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1397 
1398 	REG_WRITE(ah, AR_RTC_RESET, 0);
1399 
1400 	REGWRITE_BUFFER_FLUSH(ah);
1401 
1402 	if (!AR_SREV_9300_20_OR_LATER(ah))
1403 		udelay(2);
1404 
1405 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1406 		REG_WRITE(ah, AR_RC, 0);
1407 
1408 	REG_WRITE(ah, AR_RTC_RESET, 1);
1409 
1410 	if (!ath9k_hw_wait(ah,
1411 			   AR_RTC_STATUS,
1412 			   AR_RTC_STATUS_M,
1413 			   AR_RTC_STATUS_ON,
1414 			   AH_WAIT_TIMEOUT)) {
1415 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1416 		return false;
1417 	}
1418 
1419 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1420 }
1421 
1422 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1423 {
1424 	bool ret = false;
1425 
1426 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1427 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1428 		udelay(10);
1429 	}
1430 
1431 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1432 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1433 
1434 	switch (type) {
1435 	case ATH9K_RESET_POWER_ON:
1436 		ret = ath9k_hw_set_reset_power_on(ah);
1437 		break;
1438 	case ATH9K_RESET_WARM:
1439 	case ATH9K_RESET_COLD:
1440 		ret = ath9k_hw_set_reset(ah, type);
1441 		break;
1442 	default:
1443 		break;
1444 	}
1445 
1446 	if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
1447 		REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
1448 
1449 	return ret;
1450 }
1451 
1452 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1453 				struct ath9k_channel *chan)
1454 {
1455 	int reset_type = ATH9K_RESET_WARM;
1456 
1457 	if (AR_SREV_9280(ah)) {
1458 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1459 			reset_type = ATH9K_RESET_POWER_ON;
1460 		else
1461 			reset_type = ATH9K_RESET_COLD;
1462 	}
1463 
1464 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1465 		return false;
1466 
1467 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1468 		return false;
1469 
1470 	ah->chip_fullsleep = false;
1471 	ath9k_hw_init_pll(ah, chan);
1472 	ath9k_hw_set_rfmode(ah, chan);
1473 
1474 	return true;
1475 }
1476 
1477 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1478 				    struct ath9k_channel *chan)
1479 {
1480 	struct ath_common *common = ath9k_hw_common(ah);
1481 	u32 qnum;
1482 	int r;
1483 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1484 	bool band_switch, mode_diff;
1485 	u8 ini_reloaded;
1486 
1487 	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1488 		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1489 						    CHANNEL_5GHZ));
1490 	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1491 
1492 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1493 		if (ath9k_hw_numtxpending(ah, qnum)) {
1494 			ath_dbg(common, QUEUE,
1495 				"Transmit frames pending on queue %d\n", qnum);
1496 			return false;
1497 		}
1498 	}
1499 
1500 	if (!ath9k_hw_rfbus_req(ah)) {
1501 		ath_err(common, "Could not kill baseband RX\n");
1502 		return false;
1503 	}
1504 
1505 	if (edma && (band_switch || mode_diff)) {
1506 		ath9k_hw_mark_phy_inactive(ah);
1507 		udelay(5);
1508 
1509 		ath9k_hw_init_pll(ah, NULL);
1510 
1511 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1512 			ath_err(common, "Failed to do fast channel change\n");
1513 			return false;
1514 		}
1515 	}
1516 
1517 	ath9k_hw_set_channel_regs(ah, chan);
1518 
1519 	r = ath9k_hw_rf_set_freq(ah, chan);
1520 	if (r) {
1521 		ath_err(common, "Failed to set channel\n");
1522 		return false;
1523 	}
1524 	ath9k_hw_set_clockrate(ah);
1525 	ath9k_hw_apply_txpower(ah, chan, false);
1526 	ath9k_hw_rfbus_done(ah);
1527 
1528 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1529 		ath9k_hw_set_delta_slope(ah, chan);
1530 
1531 	ath9k_hw_spur_mitigate_freq(ah, chan);
1532 
1533 	if (edma && (band_switch || mode_diff)) {
1534 		ah->ah_flags |= AH_FASTCC;
1535 		if (band_switch || ini_reloaded)
1536 			ah->eep_ops->set_board_values(ah, chan);
1537 
1538 		ath9k_hw_init_bb(ah, chan);
1539 
1540 		if (band_switch || ini_reloaded)
1541 			ath9k_hw_init_cal(ah, chan);
1542 		ah->ah_flags &= ~AH_FASTCC;
1543 	}
1544 
1545 	return true;
1546 }
1547 
1548 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1549 {
1550 	u32 gpio_mask = ah->gpio_mask;
1551 	int i;
1552 
1553 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1554 		if (!(gpio_mask & 1))
1555 			continue;
1556 
1557 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1558 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1559 	}
1560 }
1561 
1562 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1563 			       int *hang_state, int *hang_pos)
1564 {
1565 	static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1566 	u32 chain_state, dcs_pos, i;
1567 
1568 	for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1569 		chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1570 		for (i = 0; i < 3; i++) {
1571 			if (chain_state == dcu_chain_state[i]) {
1572 				*hang_state = chain_state;
1573 				*hang_pos = dcs_pos;
1574 				return true;
1575 			}
1576 		}
1577 	}
1578 	return false;
1579 }
1580 
1581 #define DCU_COMPLETE_STATE        1
1582 #define DCU_COMPLETE_STATE_MASK 0x3
1583 #define NUM_STATUS_READS         50
1584 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1585 {
1586 	u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1587 	u32 i, hang_pos, hang_state, num_state = 6;
1588 
1589 	comp_state = REG_READ(ah, AR_DMADBG_6);
1590 
1591 	if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1592 		ath_dbg(ath9k_hw_common(ah), RESET,
1593 			"MAC Hang signature not found at DCU complete\n");
1594 		return false;
1595 	}
1596 
1597 	chain_state = REG_READ(ah, dcs_reg);
1598 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1599 		goto hang_check_iter;
1600 
1601 	dcs_reg = AR_DMADBG_5;
1602 	num_state = 4;
1603 	chain_state = REG_READ(ah, dcs_reg);
1604 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1605 		goto hang_check_iter;
1606 
1607 	ath_dbg(ath9k_hw_common(ah), RESET,
1608 		"MAC Hang signature 1 not found\n");
1609 	return false;
1610 
1611 hang_check_iter:
1612 	ath_dbg(ath9k_hw_common(ah), RESET,
1613 		"DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1614 		chain_state, comp_state, hang_state, hang_pos);
1615 
1616 	for (i = 0; i < NUM_STATUS_READS; i++) {
1617 		chain_state = REG_READ(ah, dcs_reg);
1618 		chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1619 		comp_state = REG_READ(ah, AR_DMADBG_6);
1620 
1621 		if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1622 					DCU_COMPLETE_STATE) ||
1623 		    (chain_state != hang_state))
1624 			return false;
1625 	}
1626 
1627 	ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1628 
1629 	return true;
1630 }
1631 
1632 bool ath9k_hw_check_alive(struct ath_hw *ah)
1633 {
1634 	int count = 50;
1635 	u32 reg;
1636 
1637 	if (AR_SREV_9300(ah))
1638 		return !ath9k_hw_detect_mac_hang(ah);
1639 
1640 	if (AR_SREV_9285_12_OR_LATER(ah))
1641 		return true;
1642 
1643 	do {
1644 		reg = REG_READ(ah, AR_OBS_BUS_1);
1645 
1646 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1647 			continue;
1648 
1649 		switch (reg & 0x7E000B00) {
1650 		case 0x1E000000:
1651 		case 0x52000B00:
1652 		case 0x18000B00:
1653 			continue;
1654 		default:
1655 			return true;
1656 		}
1657 	} while (count-- > 0);
1658 
1659 	return false;
1660 }
1661 EXPORT_SYMBOL(ath9k_hw_check_alive);
1662 
1663 /*
1664  * Fast channel change:
1665  * (Change synthesizer based on channel freq without resetting chip)
1666  *
1667  * Don't do FCC when
1668  *   - Flag is not set
1669  *   - Chip is just coming out of full sleep
1670  *   - Channel to be set is same as current channel
1671  *   - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1672  */
1673 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1674 {
1675 	struct ath_common *common = ath9k_hw_common(ah);
1676 	int ret;
1677 
1678 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1679 		goto fail;
1680 
1681 	if (ah->chip_fullsleep)
1682 		goto fail;
1683 
1684 	if (!ah->curchan)
1685 		goto fail;
1686 
1687 	if (chan->channel == ah->curchan->channel)
1688 		goto fail;
1689 
1690 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1691 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1692 		goto fail;
1693 
1694 	if ((chan->channelFlags & CHANNEL_ALL) !=
1695 	    (ah->curchan->channelFlags & CHANNEL_ALL))
1696 		goto fail;
1697 
1698 	if (!ath9k_hw_check_alive(ah))
1699 		goto fail;
1700 
1701 	/*
1702 	 * For AR9462, make sure that calibration data for
1703 	 * re-using are present.
1704 	 */
1705 	if (AR_SREV_9462(ah) && (!ah->caldata ||
1706 				 !ah->caldata->done_txiqcal_once ||
1707 				 !ah->caldata->done_txclcal_once ||
1708 				 !ah->caldata->rtt_hist.num_readings))
1709 		goto fail;
1710 
1711 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1712 		ah->curchan->channel, chan->channel);
1713 
1714 	ret = ath9k_hw_channel_change(ah, chan);
1715 	if (!ret)
1716 		goto fail;
1717 
1718 	ath9k_hw_loadnf(ah, ah->curchan);
1719 	ath9k_hw_start_nfcal(ah, true);
1720 
1721 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_MCI) && ar9003_mci_is_ready(ah))
1722 		ar9003_mci_2g5g_switch(ah, true);
1723 
1724 	if (AR_SREV_9271(ah))
1725 		ar9002_hw_load_ani_reg(ah, chan);
1726 
1727 	return 0;
1728 fail:
1729 	return -EINVAL;
1730 }
1731 
1732 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1733 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1734 {
1735 	struct ath_common *common = ath9k_hw_common(ah);
1736 	u32 saveLedState;
1737 	u32 saveDefAntenna;
1738 	u32 macStaId1;
1739 	u64 tsf = 0;
1740 	int i, r;
1741 	bool start_mci_reset = false;
1742 	bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
1743 	bool save_fullsleep = ah->chip_fullsleep;
1744 
1745 	if (mci) {
1746 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1747 		if (start_mci_reset)
1748 			return 0;
1749 	}
1750 
1751 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1752 		return -EIO;
1753 
1754 	if (ah->curchan && !ah->chip_fullsleep)
1755 		ath9k_hw_getnf(ah, ah->curchan);
1756 
1757 	ah->caldata = caldata;
1758 	if (caldata &&
1759 	    (chan->channel != caldata->channel ||
1760 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1761 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1762 		/* Operating channel changed, reset channel calibration data */
1763 		memset(caldata, 0, sizeof(*caldata));
1764 		ath9k_init_nfcal_hist_buffer(ah, chan);
1765 	}
1766 	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1767 
1768 	if (fastcc) {
1769 		r = ath9k_hw_do_fastcc(ah, chan);
1770 		if (!r)
1771 			return r;
1772 	}
1773 
1774 	if (mci)
1775 		ar9003_mci_stop_bt(ah, save_fullsleep);
1776 
1777 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1778 	if (saveDefAntenna == 0)
1779 		saveDefAntenna = 1;
1780 
1781 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1782 
1783 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1784 	if (AR_SREV_9100(ah) ||
1785 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1786 		tsf = ath9k_hw_gettsf64(ah);
1787 
1788 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1789 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1790 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1791 
1792 	ath9k_hw_mark_phy_inactive(ah);
1793 
1794 	ah->paprd_table_write_done = false;
1795 
1796 	/* Only required on the first reset */
1797 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1798 		REG_WRITE(ah,
1799 			  AR9271_RESET_POWER_DOWN_CONTROL,
1800 			  AR9271_RADIO_RF_RST);
1801 		udelay(50);
1802 	}
1803 
1804 	if (!ath9k_hw_chip_reset(ah, chan)) {
1805 		ath_err(common, "Chip reset failed\n");
1806 		return -EINVAL;
1807 	}
1808 
1809 	/* Only required on the first reset */
1810 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1811 		ah->htc_reset_init = false;
1812 		REG_WRITE(ah,
1813 			  AR9271_RESET_POWER_DOWN_CONTROL,
1814 			  AR9271_GATE_MAC_CTL);
1815 		udelay(50);
1816 	}
1817 
1818 	/* Restore TSF */
1819 	if (tsf)
1820 		ath9k_hw_settsf64(ah, tsf);
1821 
1822 	if (AR_SREV_9280_20_OR_LATER(ah))
1823 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1824 
1825 	if (!AR_SREV_9300_20_OR_LATER(ah))
1826 		ar9002_hw_enable_async_fifo(ah);
1827 
1828 	r = ath9k_hw_process_ini(ah, chan);
1829 	if (r)
1830 		return r;
1831 
1832 	if (mci)
1833 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1834 
1835 	/*
1836 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1837 	 * right after the chip reset. When that happens, write a new
1838 	 * value after the initvals have been applied, with an offset
1839 	 * based on measured time difference
1840 	 */
1841 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1842 		tsf += 1500;
1843 		ath9k_hw_settsf64(ah, tsf);
1844 	}
1845 
1846 	/* Setup MFP options for CCMP */
1847 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1848 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1849 		 * frames when constructing CCMP AAD. */
1850 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1851 			      0xc7ff);
1852 		ah->sw_mgmt_crypto = false;
1853 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1854 		/* Disable hardware crypto for management frames */
1855 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1856 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1857 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1858 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1859 		ah->sw_mgmt_crypto = true;
1860 	} else
1861 		ah->sw_mgmt_crypto = true;
1862 
1863 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1864 		ath9k_hw_set_delta_slope(ah, chan);
1865 
1866 	ath9k_hw_spur_mitigate_freq(ah, chan);
1867 	ah->eep_ops->set_board_values(ah, chan);
1868 
1869 	ENABLE_REGWRITE_BUFFER(ah);
1870 
1871 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1872 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1873 		  | macStaId1
1874 		  | AR_STA_ID1_RTS_USE_DEF
1875 		  | (ah->config.
1876 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1877 		  | ah->sta_id1_defaults);
1878 	ath_hw_setbssidmask(common);
1879 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1880 	ath9k_hw_write_associd(ah);
1881 	REG_WRITE(ah, AR_ISR, ~0);
1882 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1883 
1884 	REGWRITE_BUFFER_FLUSH(ah);
1885 
1886 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1887 
1888 	r = ath9k_hw_rf_set_freq(ah, chan);
1889 	if (r)
1890 		return r;
1891 
1892 	ath9k_hw_set_clockrate(ah);
1893 
1894 	ENABLE_REGWRITE_BUFFER(ah);
1895 
1896 	for (i = 0; i < AR_NUM_DCU; i++)
1897 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1898 
1899 	REGWRITE_BUFFER_FLUSH(ah);
1900 
1901 	ah->intr_txqs = 0;
1902 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1903 		ath9k_hw_resettxqueue(ah, i);
1904 
1905 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1906 	ath9k_hw_ani_cache_ini_regs(ah);
1907 	ath9k_hw_init_qos(ah);
1908 
1909 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1910 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1911 
1912 	ath9k_hw_init_global_settings(ah);
1913 
1914 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1915 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1916 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1917 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1918 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1919 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1920 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1921 	}
1922 
1923 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1924 
1925 	ath9k_hw_set_dma(ah);
1926 
1927 	REG_WRITE(ah, AR_OBS, 8);
1928 
1929 	if (ah->config.rx_intr_mitigation) {
1930 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1931 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1932 	}
1933 
1934 	if (ah->config.tx_intr_mitigation) {
1935 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1936 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1937 	}
1938 
1939 	ath9k_hw_init_bb(ah, chan);
1940 
1941 	if (caldata) {
1942 		caldata->done_txiqcal_once = false;
1943 		caldata->done_txclcal_once = false;
1944 		caldata->rtt_hist.num_readings = 0;
1945 	}
1946 	if (!ath9k_hw_init_cal(ah, chan))
1947 		return -EIO;
1948 
1949 	ath9k_hw_loadnf(ah, chan);
1950 	ath9k_hw_start_nfcal(ah, true);
1951 
1952 	if (mci && ar9003_mci_end_reset(ah, chan, caldata))
1953 		return -EIO;
1954 
1955 	ENABLE_REGWRITE_BUFFER(ah);
1956 
1957 	ath9k_hw_restore_chainmask(ah);
1958 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1959 
1960 	REGWRITE_BUFFER_FLUSH(ah);
1961 
1962 	/*
1963 	 * For big endian systems turn on swapping for descriptors
1964 	 */
1965 	if (AR_SREV_9100(ah)) {
1966 		u32 mask;
1967 		mask = REG_READ(ah, AR_CFG);
1968 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1969 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1970 				mask);
1971 		} else {
1972 			mask =
1973 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1974 			REG_WRITE(ah, AR_CFG, mask);
1975 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1976 				REG_READ(ah, AR_CFG));
1977 		}
1978 	} else {
1979 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1980 			/* Configure AR9271 target WLAN */
1981 			if (AR_SREV_9271(ah))
1982 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1983 			else
1984 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1985 		}
1986 #ifdef __BIG_ENDIAN
1987 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1988 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1989 		else
1990 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1991 #endif
1992 	}
1993 
1994 	if (ath9k_hw_btcoex_is_enabled(ah))
1995 		ath9k_hw_btcoex_enable(ah);
1996 
1997 	if (mci)
1998 		ar9003_mci_check_bt(ah);
1999 
2000 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2001 		ar9003_hw_bb_watchdog_config(ah);
2002 
2003 		ar9003_hw_disable_phy_restart(ah);
2004 	}
2005 
2006 	ath9k_hw_apply_gpio_override(ah);
2007 
2008 	return 0;
2009 }
2010 EXPORT_SYMBOL(ath9k_hw_reset);
2011 
2012 /******************************/
2013 /* Power Management (Chipset) */
2014 /******************************/
2015 
2016 /*
2017  * Notify Power Mgt is disabled in self-generated frames.
2018  * If requested, force chip to sleep.
2019  */
2020 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2021 {
2022 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2023 	if (setChip) {
2024 		if (AR_SREV_9462(ah)) {
2025 			REG_WRITE(ah, AR_TIMER_MODE,
2026 				  REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
2027 			REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
2028 				  AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
2029 			REG_WRITE(ah, AR_SLP32_INC,
2030 				  REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
2031 			/* xxx Required for WLAN only case ? */
2032 			REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2033 			udelay(100);
2034 		}
2035 
2036 		/*
2037 		 * Clear the RTC force wake bit to allow the
2038 		 * mac to go to sleep.
2039 		 */
2040 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2041 
2042 		if (AR_SREV_9462(ah))
2043 			udelay(100);
2044 
2045 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2046 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2047 
2048 		/* Shutdown chip. Active low */
2049 		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2050 			REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2051 			udelay(2);
2052 		}
2053 	}
2054 
2055 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2056 	if (AR_SREV_9300_20_OR_LATER(ah))
2057 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2058 }
2059 
2060 /*
2061  * Notify Power Management is enabled in self-generating
2062  * frames. If request, set power mode of chip to
2063  * auto/normal.  Duration in units of 128us (1/8 TU).
2064  */
2065 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2066 {
2067 	u32 val;
2068 
2069 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2070 	if (setChip) {
2071 		struct ath9k_hw_capabilities *pCap = &ah->caps;
2072 
2073 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2074 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
2075 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2076 				  AR_RTC_FORCE_WAKE_ON_INT);
2077 		} else {
2078 
2079 			/* When chip goes into network sleep, it could be waken
2080 			 * up by MCI_INT interrupt caused by BT's HW messages
2081 			 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2082 			 * rate (~100us). This will cause chip to leave and
2083 			 * re-enter network sleep mode frequently, which in
2084 			 * consequence will have WLAN MCI HW to generate lots of
2085 			 * SYS_WAKING and SYS_SLEEPING messages which will make
2086 			 * BT CPU to busy to process.
2087 			 */
2088 			if (AR_SREV_9462(ah)) {
2089 				val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
2090 					~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
2091 				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
2092 			}
2093 			/*
2094 			 * Clear the RTC force wake bit to allow the
2095 			 * mac to go to sleep.
2096 			 */
2097 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2098 				    AR_RTC_FORCE_WAKE_EN);
2099 
2100 			if (AR_SREV_9462(ah))
2101 				udelay(30);
2102 		}
2103 	}
2104 
2105 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2106 	if (AR_SREV_9300_20_OR_LATER(ah))
2107 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2108 }
2109 
2110 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2111 {
2112 	u32 val;
2113 	int i;
2114 
2115 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2116 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2117 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2118 		udelay(10);
2119 	}
2120 
2121 	if (setChip) {
2122 		if ((REG_READ(ah, AR_RTC_STATUS) &
2123 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2124 			if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2125 				return false;
2126 			}
2127 			if (!AR_SREV_9300_20_OR_LATER(ah))
2128 				ath9k_hw_init_pll(ah, NULL);
2129 		}
2130 		if (AR_SREV_9100(ah))
2131 			REG_SET_BIT(ah, AR_RTC_RESET,
2132 				    AR_RTC_RESET_EN);
2133 
2134 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2135 			    AR_RTC_FORCE_WAKE_EN);
2136 		udelay(50);
2137 
2138 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2139 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2140 			if (val == AR_RTC_STATUS_ON)
2141 				break;
2142 			udelay(50);
2143 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2144 				    AR_RTC_FORCE_WAKE_EN);
2145 		}
2146 		if (i == 0) {
2147 			ath_err(ath9k_hw_common(ah),
2148 				"Failed to wakeup in %uus\n",
2149 				POWER_UP_TIME / 20);
2150 			return false;
2151 		}
2152 	}
2153 
2154 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2155 
2156 	return true;
2157 }
2158 
2159 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2160 {
2161 	struct ath_common *common = ath9k_hw_common(ah);
2162 	int status = true, setChip = true;
2163 	static const char *modes[] = {
2164 		"AWAKE",
2165 		"FULL-SLEEP",
2166 		"NETWORK SLEEP",
2167 		"UNDEFINED"
2168 	};
2169 
2170 	if (ah->power_mode == mode)
2171 		return status;
2172 
2173 	ath_dbg(common, RESET, "%s -> %s\n",
2174 		modes[ah->power_mode], modes[mode]);
2175 
2176 	switch (mode) {
2177 	case ATH9K_PM_AWAKE:
2178 		status = ath9k_hw_set_power_awake(ah, setChip);
2179 
2180 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2181 			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2182 
2183 		break;
2184 	case ATH9K_PM_FULL_SLEEP:
2185 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2186 			ar9003_mci_set_full_sleep(ah);
2187 
2188 		ath9k_set_power_sleep(ah, setChip);
2189 		ah->chip_fullsleep = true;
2190 		break;
2191 	case ATH9K_PM_NETWORK_SLEEP:
2192 
2193 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2194 			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2195 
2196 		ath9k_set_power_network_sleep(ah, setChip);
2197 		break;
2198 	default:
2199 		ath_err(common, "Unknown power mode %u\n", mode);
2200 		return false;
2201 	}
2202 	ah->power_mode = mode;
2203 
2204 	/*
2205 	 * XXX: If this warning never comes up after a while then
2206 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2207 	 * ath9k_hw_setpower() return type void.
2208 	 */
2209 
2210 	if (!(ah->ah_flags & AH_UNPLUGGED))
2211 		ATH_DBG_WARN_ON_ONCE(!status);
2212 
2213 	return status;
2214 }
2215 EXPORT_SYMBOL(ath9k_hw_setpower);
2216 
2217 /*******************/
2218 /* Beacon Handling */
2219 /*******************/
2220 
2221 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2222 {
2223 	int flags = 0;
2224 
2225 	ENABLE_REGWRITE_BUFFER(ah);
2226 
2227 	switch (ah->opmode) {
2228 	case NL80211_IFTYPE_ADHOC:
2229 	case NL80211_IFTYPE_MESH_POINT:
2230 		REG_SET_BIT(ah, AR_TXCFG,
2231 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2232 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2233 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2234 		flags |= AR_NDP_TIMER_EN;
2235 	case NL80211_IFTYPE_AP:
2236 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2237 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2238 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2239 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2240 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2241 		flags |=
2242 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2243 		break;
2244 	default:
2245 		ath_dbg(ath9k_hw_common(ah), BEACON,
2246 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2247 		return;
2248 		break;
2249 	}
2250 
2251 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2252 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2253 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2254 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2255 
2256 	REGWRITE_BUFFER_FLUSH(ah);
2257 
2258 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2259 }
2260 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2261 
2262 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2263 				    const struct ath9k_beacon_state *bs)
2264 {
2265 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2266 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2267 	struct ath_common *common = ath9k_hw_common(ah);
2268 
2269 	ENABLE_REGWRITE_BUFFER(ah);
2270 
2271 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2272 
2273 	REG_WRITE(ah, AR_BEACON_PERIOD,
2274 		  TU_TO_USEC(bs->bs_intval));
2275 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2276 		  TU_TO_USEC(bs->bs_intval));
2277 
2278 	REGWRITE_BUFFER_FLUSH(ah);
2279 
2280 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2281 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2282 
2283 	beaconintval = bs->bs_intval;
2284 
2285 	if (bs->bs_sleepduration > beaconintval)
2286 		beaconintval = bs->bs_sleepduration;
2287 
2288 	dtimperiod = bs->bs_dtimperiod;
2289 	if (bs->bs_sleepduration > dtimperiod)
2290 		dtimperiod = bs->bs_sleepduration;
2291 
2292 	if (beaconintval == dtimperiod)
2293 		nextTbtt = bs->bs_nextdtim;
2294 	else
2295 		nextTbtt = bs->bs_nexttbtt;
2296 
2297 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2298 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2299 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2300 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2301 
2302 	ENABLE_REGWRITE_BUFFER(ah);
2303 
2304 	REG_WRITE(ah, AR_NEXT_DTIM,
2305 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2306 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2307 
2308 	REG_WRITE(ah, AR_SLEEP1,
2309 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2310 		  | AR_SLEEP1_ASSUME_DTIM);
2311 
2312 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2313 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2314 	else
2315 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2316 
2317 	REG_WRITE(ah, AR_SLEEP2,
2318 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2319 
2320 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2321 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2322 
2323 	REGWRITE_BUFFER_FLUSH(ah);
2324 
2325 	REG_SET_BIT(ah, AR_TIMER_MODE,
2326 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2327 		    AR_DTIM_TIMER_EN);
2328 
2329 	/* TSF Out of Range Threshold */
2330 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2331 }
2332 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2333 
2334 /*******************/
2335 /* HW Capabilities */
2336 /*******************/
2337 
2338 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2339 {
2340 	eeprom_chainmask &= chip_chainmask;
2341 	if (eeprom_chainmask)
2342 		return eeprom_chainmask;
2343 	else
2344 		return chip_chainmask;
2345 }
2346 
2347 /**
2348  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2349  * @ah: the atheros hardware data structure
2350  *
2351  * We enable DFS support upstream on chipsets which have passed a series
2352  * of tests. The testing requirements are going to be documented. Desired
2353  * test requirements are documented at:
2354  *
2355  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2356  *
2357  * Once a new chipset gets properly tested an individual commit can be used
2358  * to document the testing for DFS for that chipset.
2359  */
2360 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2361 {
2362 
2363 	switch (ah->hw_version.macVersion) {
2364 	/* AR9580 will likely be our first target to get testing on */
2365 	case AR_SREV_VERSION_9580:
2366 	default:
2367 		return false;
2368 	}
2369 }
2370 
2371 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2372 {
2373 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2374 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2375 	struct ath_common *common = ath9k_hw_common(ah);
2376 	unsigned int chip_chainmask;
2377 
2378 	u16 eeval;
2379 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2380 
2381 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2382 	regulatory->current_rd = eeval;
2383 
2384 	if (ah->opmode != NL80211_IFTYPE_AP &&
2385 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2386 		if (regulatory->current_rd == 0x64 ||
2387 		    regulatory->current_rd == 0x65)
2388 			regulatory->current_rd += 5;
2389 		else if (regulatory->current_rd == 0x41)
2390 			regulatory->current_rd = 0x43;
2391 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2392 			regulatory->current_rd);
2393 	}
2394 
2395 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2396 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2397 		ath_err(common,
2398 			"no band has been marked as supported in EEPROM\n");
2399 		return -EINVAL;
2400 	}
2401 
2402 	if (eeval & AR5416_OPFLAGS_11A)
2403 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2404 
2405 	if (eeval & AR5416_OPFLAGS_11G)
2406 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2407 
2408 	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2409 		chip_chainmask = 1;
2410 	else if (AR_SREV_9462(ah))
2411 		chip_chainmask = 3;
2412 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2413 		chip_chainmask = 7;
2414 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2415 		chip_chainmask = 3;
2416 	else
2417 		chip_chainmask = 7;
2418 
2419 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2420 	/*
2421 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2422 	 * the EEPROM.
2423 	 */
2424 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2425 	    !(eeval & AR5416_OPFLAGS_11A) &&
2426 	    !(AR_SREV_9271(ah)))
2427 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2428 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2429 	else if (AR_SREV_9100(ah))
2430 		pCap->rx_chainmask = 0x7;
2431 	else
2432 		/* Use rx_chainmask from EEPROM. */
2433 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2434 
2435 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2436 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2437 	ah->txchainmask = pCap->tx_chainmask;
2438 	ah->rxchainmask = pCap->rx_chainmask;
2439 
2440 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2441 
2442 	/* enable key search for every frame in an aggregate */
2443 	if (AR_SREV_9300_20_OR_LATER(ah))
2444 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2445 
2446 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2447 
2448 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2449 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2450 	else
2451 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2452 
2453 	if (AR_SREV_9271(ah))
2454 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2455 	else if (AR_DEVID_7010(ah))
2456 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2457 	else if (AR_SREV_9300_20_OR_LATER(ah))
2458 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2459 	else if (AR_SREV_9287_11_OR_LATER(ah))
2460 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2461 	else if (AR_SREV_9285_12_OR_LATER(ah))
2462 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2463 	else if (AR_SREV_9280_20_OR_LATER(ah))
2464 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2465 	else
2466 		pCap->num_gpio_pins = AR_NUM_GPIO;
2467 
2468 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2469 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2470 	else
2471 		pCap->rts_aggr_limit = (8 * 1024);
2472 
2473 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2474 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2475 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2476 		ah->rfkill_gpio =
2477 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2478 		ah->rfkill_polarity =
2479 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2480 
2481 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2482 	}
2483 #endif
2484 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2485 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2486 	else
2487 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2488 
2489 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2490 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2491 	else
2492 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2493 
2494 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2495 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2496 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2497 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2498 
2499 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2500 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2501 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2502 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2503 		pCap->txs_len = sizeof(struct ar9003_txs);
2504 		if (!ah->config.paprd_disable &&
2505 		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2506 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2507 	} else {
2508 		pCap->tx_desc_len = sizeof(struct ath_desc);
2509 		if (AR_SREV_9280_20(ah))
2510 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2511 	}
2512 
2513 	if (AR_SREV_9300_20_OR_LATER(ah))
2514 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2515 
2516 	if (AR_SREV_9300_20_OR_LATER(ah))
2517 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2518 
2519 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2520 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2521 
2522 	if (AR_SREV_9285(ah))
2523 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2524 			ant_div_ctl1 =
2525 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2526 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2527 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2528 		}
2529 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2530 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2531 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2532 	}
2533 
2534 
2535 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2536 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2537 		/*
2538 		 * enable the diversity-combining algorithm only when
2539 		 * both enable_lna_div and enable_fast_div are set
2540 		 *		Table for Diversity
2541 		 * ant_div_alt_lnaconf		bit 0-1
2542 		 * ant_div_main_lnaconf		bit 2-3
2543 		 * ant_div_alt_gaintb		bit 4
2544 		 * ant_div_main_gaintb		bit 5
2545 		 * enable_ant_div_lnadiv	bit 6
2546 		 * enable_ant_fast_div		bit 7
2547 		 */
2548 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2549 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2550 	}
2551 
2552 	if (AR_SREV_9485_10(ah)) {
2553 		pCap->pcie_lcr_extsync_en = true;
2554 		pCap->pcie_lcr_offset = 0x80;
2555 	}
2556 
2557 	if (ath9k_hw_dfs_tested(ah))
2558 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2559 
2560 	tx_chainmask = pCap->tx_chainmask;
2561 	rx_chainmask = pCap->rx_chainmask;
2562 	while (tx_chainmask || rx_chainmask) {
2563 		if (tx_chainmask & BIT(0))
2564 			pCap->max_txchains++;
2565 		if (rx_chainmask & BIT(0))
2566 			pCap->max_rxchains++;
2567 
2568 		tx_chainmask >>= 1;
2569 		rx_chainmask >>= 1;
2570 	}
2571 
2572 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2573 		ah->enabled_cals |= TX_IQ_CAL;
2574 		if (AR_SREV_9485_OR_LATER(ah))
2575 			ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2576 	}
2577 
2578 	if (AR_SREV_9462(ah)) {
2579 
2580 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2581 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2582 
2583 		if (AR_SREV_9462_20(ah))
2584 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2585 
2586 	}
2587 
2588 
2589 	return 0;
2590 }
2591 
2592 /****************************/
2593 /* GPIO / RFKILL / Antennae */
2594 /****************************/
2595 
2596 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2597 					 u32 gpio, u32 type)
2598 {
2599 	int addr;
2600 	u32 gpio_shift, tmp;
2601 
2602 	if (gpio > 11)
2603 		addr = AR_GPIO_OUTPUT_MUX3;
2604 	else if (gpio > 5)
2605 		addr = AR_GPIO_OUTPUT_MUX2;
2606 	else
2607 		addr = AR_GPIO_OUTPUT_MUX1;
2608 
2609 	gpio_shift = (gpio % 6) * 5;
2610 
2611 	if (AR_SREV_9280_20_OR_LATER(ah)
2612 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2613 		REG_RMW(ah, addr, (type << gpio_shift),
2614 			(0x1f << gpio_shift));
2615 	} else {
2616 		tmp = REG_READ(ah, addr);
2617 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2618 		tmp &= ~(0x1f << gpio_shift);
2619 		tmp |= (type << gpio_shift);
2620 		REG_WRITE(ah, addr, tmp);
2621 	}
2622 }
2623 
2624 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2625 {
2626 	u32 gpio_shift;
2627 
2628 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2629 
2630 	if (AR_DEVID_7010(ah)) {
2631 		gpio_shift = gpio;
2632 		REG_RMW(ah, AR7010_GPIO_OE,
2633 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2634 			(AR7010_GPIO_OE_MASK << gpio_shift));
2635 		return;
2636 	}
2637 
2638 	gpio_shift = gpio << 1;
2639 	REG_RMW(ah,
2640 		AR_GPIO_OE_OUT,
2641 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2642 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2643 }
2644 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2645 
2646 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2647 {
2648 #define MS_REG_READ(x, y) \
2649 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2650 
2651 	if (gpio >= ah->caps.num_gpio_pins)
2652 		return 0xffffffff;
2653 
2654 	if (AR_DEVID_7010(ah)) {
2655 		u32 val;
2656 		val = REG_READ(ah, AR7010_GPIO_IN);
2657 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2658 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2659 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2660 			AR_GPIO_BIT(gpio)) != 0;
2661 	else if (AR_SREV_9271(ah))
2662 		return MS_REG_READ(AR9271, gpio) != 0;
2663 	else if (AR_SREV_9287_11_OR_LATER(ah))
2664 		return MS_REG_READ(AR9287, gpio) != 0;
2665 	else if (AR_SREV_9285_12_OR_LATER(ah))
2666 		return MS_REG_READ(AR9285, gpio) != 0;
2667 	else if (AR_SREV_9280_20_OR_LATER(ah))
2668 		return MS_REG_READ(AR928X, gpio) != 0;
2669 	else
2670 		return MS_REG_READ(AR, gpio) != 0;
2671 }
2672 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2673 
2674 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2675 			 u32 ah_signal_type)
2676 {
2677 	u32 gpio_shift;
2678 
2679 	if (AR_DEVID_7010(ah)) {
2680 		gpio_shift = gpio;
2681 		REG_RMW(ah, AR7010_GPIO_OE,
2682 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2683 			(AR7010_GPIO_OE_MASK << gpio_shift));
2684 		return;
2685 	}
2686 
2687 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2688 	gpio_shift = 2 * gpio;
2689 	REG_RMW(ah,
2690 		AR_GPIO_OE_OUT,
2691 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2692 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2693 }
2694 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2695 
2696 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2697 {
2698 	if (AR_DEVID_7010(ah)) {
2699 		val = val ? 0 : 1;
2700 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2701 			AR_GPIO_BIT(gpio));
2702 		return;
2703 	}
2704 
2705 	if (AR_SREV_9271(ah))
2706 		val = ~val;
2707 
2708 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2709 		AR_GPIO_BIT(gpio));
2710 }
2711 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2712 
2713 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2714 {
2715 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2716 }
2717 EXPORT_SYMBOL(ath9k_hw_setantenna);
2718 
2719 /*********************/
2720 /* General Operation */
2721 /*********************/
2722 
2723 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2724 {
2725 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2726 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2727 
2728 	if (phybits & AR_PHY_ERR_RADAR)
2729 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2730 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2731 		bits |= ATH9K_RX_FILTER_PHYERR;
2732 
2733 	return bits;
2734 }
2735 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2736 
2737 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2738 {
2739 	u32 phybits;
2740 
2741 	ENABLE_REGWRITE_BUFFER(ah);
2742 
2743 	if (AR_SREV_9462(ah))
2744 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2745 
2746 	REG_WRITE(ah, AR_RX_FILTER, bits);
2747 
2748 	phybits = 0;
2749 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2750 		phybits |= AR_PHY_ERR_RADAR;
2751 	if (bits & ATH9K_RX_FILTER_PHYERR)
2752 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2753 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2754 
2755 	if (phybits)
2756 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2757 	else
2758 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2759 
2760 	REGWRITE_BUFFER_FLUSH(ah);
2761 }
2762 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2763 
2764 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2765 {
2766 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2767 		return false;
2768 
2769 	ath9k_hw_init_pll(ah, NULL);
2770 	ah->htc_reset_init = true;
2771 	return true;
2772 }
2773 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2774 
2775 bool ath9k_hw_disable(struct ath_hw *ah)
2776 {
2777 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2778 		return false;
2779 
2780 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2781 		return false;
2782 
2783 	ath9k_hw_init_pll(ah, NULL);
2784 	return true;
2785 }
2786 EXPORT_SYMBOL(ath9k_hw_disable);
2787 
2788 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2789 {
2790 	enum eeprom_param gain_param;
2791 
2792 	if (IS_CHAN_2GHZ(chan))
2793 		gain_param = EEP_ANTENNA_GAIN_2G;
2794 	else
2795 		gain_param = EEP_ANTENNA_GAIN_5G;
2796 
2797 	return ah->eep_ops->get_eeprom(ah, gain_param);
2798 }
2799 
2800 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2801 			    bool test)
2802 {
2803 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2804 	struct ieee80211_channel *channel;
2805 	int chan_pwr, new_pwr, max_gain;
2806 	int ant_gain, ant_reduction = 0;
2807 
2808 	if (!chan)
2809 		return;
2810 
2811 	channel = chan->chan;
2812 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2813 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2814 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2815 
2816 	ant_gain = get_antenna_gain(ah, chan);
2817 	if (ant_gain > max_gain)
2818 		ant_reduction = ant_gain - max_gain;
2819 
2820 	ah->eep_ops->set_txpower(ah, chan,
2821 				 ath9k_regd_get_ctl(reg, chan),
2822 				 ant_reduction, new_pwr, test);
2823 }
2824 
2825 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2826 {
2827 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2828 	struct ath9k_channel *chan = ah->curchan;
2829 	struct ieee80211_channel *channel = chan->chan;
2830 
2831 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2832 	if (test)
2833 		channel->max_power = MAX_RATE_POWER / 2;
2834 
2835 	ath9k_hw_apply_txpower(ah, chan, test);
2836 
2837 	if (test)
2838 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2839 }
2840 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2841 
2842 void ath9k_hw_setopmode(struct ath_hw *ah)
2843 {
2844 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2845 }
2846 EXPORT_SYMBOL(ath9k_hw_setopmode);
2847 
2848 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2849 {
2850 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2851 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2852 }
2853 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2854 
2855 void ath9k_hw_write_associd(struct ath_hw *ah)
2856 {
2857 	struct ath_common *common = ath9k_hw_common(ah);
2858 
2859 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2860 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2861 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2862 }
2863 EXPORT_SYMBOL(ath9k_hw_write_associd);
2864 
2865 #define ATH9K_MAX_TSF_READ 10
2866 
2867 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2868 {
2869 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2870 	int i;
2871 
2872 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2873 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2874 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2875 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2876 		if (tsf_upper2 == tsf_upper1)
2877 			break;
2878 		tsf_upper1 = tsf_upper2;
2879 	}
2880 
2881 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2882 
2883 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2884 }
2885 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2886 
2887 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2888 {
2889 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2890 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2891 }
2892 EXPORT_SYMBOL(ath9k_hw_settsf64);
2893 
2894 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2895 {
2896 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2897 			   AH_TSF_WRITE_TIMEOUT))
2898 		ath_dbg(ath9k_hw_common(ah), RESET,
2899 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2900 
2901 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2902 }
2903 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2904 
2905 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2906 {
2907 	if (setting)
2908 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2909 	else
2910 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2911 }
2912 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2913 
2914 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2915 {
2916 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2917 	u32 macmode;
2918 
2919 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2920 		macmode = AR_2040_JOINED_RX_CLEAR;
2921 	else
2922 		macmode = 0;
2923 
2924 	REG_WRITE(ah, AR_2040_MODE, macmode);
2925 }
2926 
2927 /* HW Generic timers configuration */
2928 
2929 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2930 {
2931 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2932 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2933 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2934 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2935 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2936 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2937 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2938 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2939 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2940 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2941 				AR_NDP2_TIMER_MODE, 0x0002},
2942 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2943 				AR_NDP2_TIMER_MODE, 0x0004},
2944 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2945 				AR_NDP2_TIMER_MODE, 0x0008},
2946 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2947 				AR_NDP2_TIMER_MODE, 0x0010},
2948 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2949 				AR_NDP2_TIMER_MODE, 0x0020},
2950 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2951 				AR_NDP2_TIMER_MODE, 0x0040},
2952 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2953 				AR_NDP2_TIMER_MODE, 0x0080}
2954 };
2955 
2956 /* HW generic timer primitives */
2957 
2958 /* compute and clear index of rightmost 1 */
2959 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2960 {
2961 	u32 b;
2962 
2963 	b = *mask;
2964 	b &= (0-b);
2965 	*mask &= ~b;
2966 	b *= debruijn32;
2967 	b >>= 27;
2968 
2969 	return timer_table->gen_timer_index[b];
2970 }
2971 
2972 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2973 {
2974 	return REG_READ(ah, AR_TSF_L32);
2975 }
2976 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2977 
2978 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2979 					  void (*trigger)(void *),
2980 					  void (*overflow)(void *),
2981 					  void *arg,
2982 					  u8 timer_index)
2983 {
2984 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2985 	struct ath_gen_timer *timer;
2986 
2987 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2988 
2989 	if (timer == NULL) {
2990 		ath_err(ath9k_hw_common(ah),
2991 			"Failed to allocate memory for hw timer[%d]\n",
2992 			timer_index);
2993 		return NULL;
2994 	}
2995 
2996 	/* allocate a hardware generic timer slot */
2997 	timer_table->timers[timer_index] = timer;
2998 	timer->index = timer_index;
2999 	timer->trigger = trigger;
3000 	timer->overflow = overflow;
3001 	timer->arg = arg;
3002 
3003 	return timer;
3004 }
3005 EXPORT_SYMBOL(ath_gen_timer_alloc);
3006 
3007 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3008 			      struct ath_gen_timer *timer,
3009 			      u32 trig_timeout,
3010 			      u32 timer_period)
3011 {
3012 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3013 	u32 tsf, timer_next;
3014 
3015 	BUG_ON(!timer_period);
3016 
3017 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3018 
3019 	tsf = ath9k_hw_gettsf32(ah);
3020 
3021 	timer_next = tsf + trig_timeout;
3022 
3023 	ath_dbg(ath9k_hw_common(ah), HWTIMER,
3024 		"current tsf %x period %x timer_next %x\n",
3025 		tsf, timer_period, timer_next);
3026 
3027 	/*
3028 	 * Program generic timer registers
3029 	 */
3030 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3031 		 timer_next);
3032 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3033 		  timer_period);
3034 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3035 		    gen_tmr_configuration[timer->index].mode_mask);
3036 
3037 	if (AR_SREV_9462(ah)) {
3038 		/*
3039 		 * Starting from AR9462, each generic timer can select which tsf
3040 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3041 		 * 8 - 15  use tsf2.
3042 		 */
3043 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3044 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3045 				       (1 << timer->index));
3046 		else
3047 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3048 				       (1 << timer->index));
3049 	}
3050 
3051 	/* Enable both trigger and thresh interrupt masks */
3052 	REG_SET_BIT(ah, AR_IMR_S5,
3053 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3054 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3055 }
3056 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3057 
3058 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3059 {
3060 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3061 
3062 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3063 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3064 		return;
3065 	}
3066 
3067 	/* Clear generic timer enable bits. */
3068 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3069 			gen_tmr_configuration[timer->index].mode_mask);
3070 
3071 	/* Disable both trigger and thresh interrupt masks */
3072 	REG_CLR_BIT(ah, AR_IMR_S5,
3073 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3074 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3075 
3076 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3077 }
3078 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3079 
3080 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3081 {
3082 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3083 
3084 	/* free the hardware generic timer slot */
3085 	timer_table->timers[timer->index] = NULL;
3086 	kfree(timer);
3087 }
3088 EXPORT_SYMBOL(ath_gen_timer_free);
3089 
3090 /*
3091  * Generic Timer Interrupts handling
3092  */
3093 void ath_gen_timer_isr(struct ath_hw *ah)
3094 {
3095 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3096 	struct ath_gen_timer *timer;
3097 	struct ath_common *common = ath9k_hw_common(ah);
3098 	u32 trigger_mask, thresh_mask, index;
3099 
3100 	/* get hardware generic timer interrupt status */
3101 	trigger_mask = ah->intr_gen_timer_trigger;
3102 	thresh_mask = ah->intr_gen_timer_thresh;
3103 	trigger_mask &= timer_table->timer_mask.val;
3104 	thresh_mask &= timer_table->timer_mask.val;
3105 
3106 	trigger_mask &= ~thresh_mask;
3107 
3108 	while (thresh_mask) {
3109 		index = rightmost_index(timer_table, &thresh_mask);
3110 		timer = timer_table->timers[index];
3111 		BUG_ON(!timer);
3112 		ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3113 			index);
3114 		timer->overflow(timer->arg);
3115 	}
3116 
3117 	while (trigger_mask) {
3118 		index = rightmost_index(timer_table, &trigger_mask);
3119 		timer = timer_table->timers[index];
3120 		BUG_ON(!timer);
3121 		ath_dbg(common, HWTIMER,
3122 			"Gen timer[%d] trigger\n", index);
3123 		timer->trigger(timer->arg);
3124 	}
3125 }
3126 EXPORT_SYMBOL(ath_gen_timer_isr);
3127 
3128 /********/
3129 /* HTC  */
3130 /********/
3131 
3132 static struct {
3133 	u32 version;
3134 	const char * name;
3135 } ath_mac_bb_names[] = {
3136 	/* Devices with external radios */
3137 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3138 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3139 	{ AR_SREV_VERSION_9100,		"9100" },
3140 	{ AR_SREV_VERSION_9160,		"9160" },
3141 	/* Single-chip solutions */
3142 	{ AR_SREV_VERSION_9280,		"9280" },
3143 	{ AR_SREV_VERSION_9285,		"9285" },
3144 	{ AR_SREV_VERSION_9287,         "9287" },
3145 	{ AR_SREV_VERSION_9271,         "9271" },
3146 	{ AR_SREV_VERSION_9300,         "9300" },
3147 	{ AR_SREV_VERSION_9330,         "9330" },
3148 	{ AR_SREV_VERSION_9340,		"9340" },
3149 	{ AR_SREV_VERSION_9485,         "9485" },
3150 	{ AR_SREV_VERSION_9462,         "9462" },
3151 };
3152 
3153 /* For devices with external radios */
3154 static struct {
3155 	u16 version;
3156 	const char * name;
3157 } ath_rf_names[] = {
3158 	{ 0,				"5133" },
3159 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3160 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3161 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3162 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3163 };
3164 
3165 /*
3166  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3167  */
3168 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3169 {
3170 	int i;
3171 
3172 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3173 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3174 			return ath_mac_bb_names[i].name;
3175 		}
3176 	}
3177 
3178 	return "????";
3179 }
3180 
3181 /*
3182  * Return the RF name. "????" is returned if the RF is unknown.
3183  * Used for devices with external radios.
3184  */
3185 static const char *ath9k_hw_rf_name(u16 rf_version)
3186 {
3187 	int i;
3188 
3189 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3190 		if (ath_rf_names[i].version == rf_version) {
3191 			return ath_rf_names[i].name;
3192 		}
3193 	}
3194 
3195 	return "????";
3196 }
3197 
3198 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3199 {
3200 	int used;
3201 
3202 	/* chipsets >= AR9280 are single-chip */
3203 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3204 		used = snprintf(hw_name, len,
3205 			       "Atheros AR%s Rev:%x",
3206 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3207 			       ah->hw_version.macRev);
3208 	}
3209 	else {
3210 		used = snprintf(hw_name, len,
3211 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3212 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3213 			       ah->hw_version.macRev,
3214 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3215 						AR_RADIO_SREV_MAJOR)),
3216 			       ah->hw_version.phyRev);
3217 	}
3218 
3219 	hw_name[used] = '\0';
3220 }
3221 EXPORT_SYMBOL(ath9k_hw_name);
3222