xref: /linux/drivers/net/wireless/ath/ath9k/hw.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "debug.h"
28 #include "ath9k.h"
29 
30 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
31 
32 MODULE_AUTHOR("Atheros Communications");
33 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
34 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
35 MODULE_LICENSE("Dual BSD/GPL");
36 
37 static int __init ath9k_init(void)
38 {
39 	return 0;
40 }
41 module_init(ath9k_init);
42 
43 static void __exit ath9k_exit(void)
44 {
45 	return;
46 }
47 module_exit(ath9k_exit);
48 
49 /* Private hardware callbacks */
50 
51 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
52 {
53 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
54 }
55 
56 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
57 {
58 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
59 }
60 
61 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
62 					struct ath9k_channel *chan)
63 {
64 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
65 }
66 
67 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
68 {
69 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
70 		return;
71 
72 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
73 }
74 
75 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
76 {
77 	/* You will not have this callback if using the old ANI */
78 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
79 		return;
80 
81 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
82 }
83 
84 /********************/
85 /* Helper Functions */
86 /********************/
87 
88 #ifdef CONFIG_ATH9K_DEBUGFS
89 
90 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
91 {
92 	struct ath_softc *sc = common->priv;
93 	if (sync_cause)
94 		sc->debug.stats.istats.sync_cause_all++;
95 	if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
96 		sc->debug.stats.istats.sync_rtc_irq++;
97 	if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
98 		sc->debug.stats.istats.sync_mac_irq++;
99 	if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
100 		sc->debug.stats.istats.eeprom_illegal_access++;
101 	if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
102 		sc->debug.stats.istats.apb_timeout++;
103 	if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
104 		sc->debug.stats.istats.pci_mode_conflict++;
105 	if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
106 		sc->debug.stats.istats.host1_fatal++;
107 	if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
108 		sc->debug.stats.istats.host1_perr++;
109 	if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
110 		sc->debug.stats.istats.trcv_fifo_perr++;
111 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
112 		sc->debug.stats.istats.radm_cpl_ep++;
113 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
114 		sc->debug.stats.istats.radm_cpl_dllp_abort++;
115 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
116 		sc->debug.stats.istats.radm_cpl_tlp_abort++;
117 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
118 		sc->debug.stats.istats.radm_cpl_ecrc_err++;
119 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
120 		sc->debug.stats.istats.radm_cpl_timeout++;
121 	if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
122 		sc->debug.stats.istats.local_timeout++;
123 	if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
124 		sc->debug.stats.istats.pm_access++;
125 	if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
126 		sc->debug.stats.istats.mac_awake++;
127 	if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
128 		sc->debug.stats.istats.mac_asleep++;
129 	if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
130 		sc->debug.stats.istats.mac_sleep_access++;
131 }
132 #endif
133 
134 
135 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
136 {
137 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
138 	struct ath_common *common = ath9k_hw_common(ah);
139 	unsigned int clockrate;
140 
141 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
142 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
143 		clockrate = 117;
144 	else if (!ah->curchan) /* should really check for CCK instead */
145 		clockrate = ATH9K_CLOCK_RATE_CCK;
146 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
147 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
148 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
149 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
150 	else
151 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
152 
153 	if (conf_is_ht40(conf))
154 		clockrate *= 2;
155 
156 	if (ah->curchan) {
157 		if (IS_CHAN_HALF_RATE(ah->curchan))
158 			clockrate /= 2;
159 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
160 			clockrate /= 4;
161 	}
162 
163 	common->clockrate = clockrate;
164 }
165 
166 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
167 {
168 	struct ath_common *common = ath9k_hw_common(ah);
169 
170 	return usecs * common->clockrate;
171 }
172 
173 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
174 {
175 	int i;
176 
177 	BUG_ON(timeout < AH_TIME_QUANTUM);
178 
179 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
180 		if ((REG_READ(ah, reg) & mask) == val)
181 			return true;
182 
183 		udelay(AH_TIME_QUANTUM);
184 	}
185 
186 	ath_dbg(ath9k_hw_common(ah), ANY,
187 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
188 		timeout, reg, REG_READ(ah, reg), mask, val);
189 
190 	return false;
191 }
192 EXPORT_SYMBOL(ath9k_hw_wait);
193 
194 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
195 			  int hw_delay)
196 {
197 	if (IS_CHAN_B(chan))
198 		hw_delay = (4 * hw_delay) / 22;
199 	else
200 		hw_delay /= 10;
201 
202 	if (IS_CHAN_HALF_RATE(chan))
203 		hw_delay *= 2;
204 	else if (IS_CHAN_QUARTER_RATE(chan))
205 		hw_delay *= 4;
206 
207 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
208 }
209 
210 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
211 			  int column, unsigned int *writecnt)
212 {
213 	int r;
214 
215 	ENABLE_REGWRITE_BUFFER(ah);
216 	for (r = 0; r < array->ia_rows; r++) {
217 		REG_WRITE(ah, INI_RA(array, r, 0),
218 			  INI_RA(array, r, column));
219 		DO_DELAY(*writecnt);
220 	}
221 	REGWRITE_BUFFER_FLUSH(ah);
222 }
223 
224 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
225 {
226 	u32 retval;
227 	int i;
228 
229 	for (i = 0, retval = 0; i < n; i++) {
230 		retval = (retval << 1) | (val & 1);
231 		val >>= 1;
232 	}
233 	return retval;
234 }
235 
236 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
237 			   u8 phy, int kbps,
238 			   u32 frameLen, u16 rateix,
239 			   bool shortPreamble)
240 {
241 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
242 
243 	if (kbps == 0)
244 		return 0;
245 
246 	switch (phy) {
247 	case WLAN_RC_PHY_CCK:
248 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
249 		if (shortPreamble)
250 			phyTime >>= 1;
251 		numBits = frameLen << 3;
252 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
253 		break;
254 	case WLAN_RC_PHY_OFDM:
255 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
256 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
257 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
258 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
259 			txTime = OFDM_SIFS_TIME_QUARTER
260 				+ OFDM_PREAMBLE_TIME_QUARTER
261 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
262 		} else if (ah->curchan &&
263 			   IS_CHAN_HALF_RATE(ah->curchan)) {
264 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
265 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
266 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
267 			txTime = OFDM_SIFS_TIME_HALF +
268 				OFDM_PREAMBLE_TIME_HALF
269 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
270 		} else {
271 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
272 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
273 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
274 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
275 				+ (numSymbols * OFDM_SYMBOL_TIME);
276 		}
277 		break;
278 	default:
279 		ath_err(ath9k_hw_common(ah),
280 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
281 		txTime = 0;
282 		break;
283 	}
284 
285 	return txTime;
286 }
287 EXPORT_SYMBOL(ath9k_hw_computetxtime);
288 
289 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
290 				  struct ath9k_channel *chan,
291 				  struct chan_centers *centers)
292 {
293 	int8_t extoff;
294 
295 	if (!IS_CHAN_HT40(chan)) {
296 		centers->ctl_center = centers->ext_center =
297 			centers->synth_center = chan->channel;
298 		return;
299 	}
300 
301 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
302 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
303 		centers->synth_center =
304 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
305 		extoff = 1;
306 	} else {
307 		centers->synth_center =
308 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
309 		extoff = -1;
310 	}
311 
312 	centers->ctl_center =
313 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
314 	/* 25 MHz spacing is supported by hw but not on upper layers */
315 	centers->ext_center =
316 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
317 }
318 
319 /******************/
320 /* Chip Revisions */
321 /******************/
322 
323 static void ath9k_hw_read_revisions(struct ath_hw *ah)
324 {
325 	u32 val;
326 
327 	switch (ah->hw_version.devid) {
328 	case AR5416_AR9100_DEVID:
329 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
330 		break;
331 	case AR9300_DEVID_AR9330:
332 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
333 		if (ah->get_mac_revision) {
334 			ah->hw_version.macRev = ah->get_mac_revision();
335 		} else {
336 			val = REG_READ(ah, AR_SREV);
337 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
338 		}
339 		return;
340 	case AR9300_DEVID_AR9340:
341 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
342 		val = REG_READ(ah, AR_SREV);
343 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
344 		return;
345 	case AR9300_DEVID_QCA955X:
346 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
347 		return;
348 	}
349 
350 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
351 
352 	if (val == 0xFF) {
353 		val = REG_READ(ah, AR_SREV);
354 		ah->hw_version.macVersion =
355 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
356 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
357 
358 		if (AR_SREV_9462(ah))
359 			ah->is_pciexpress = true;
360 		else
361 			ah->is_pciexpress = (val &
362 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
363 	} else {
364 		if (!AR_SREV_9100(ah))
365 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
366 
367 		ah->hw_version.macRev = val & AR_SREV_REVISION;
368 
369 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
370 			ah->is_pciexpress = true;
371 	}
372 }
373 
374 /************************************/
375 /* HW Attach, Detach, Init Routines */
376 /************************************/
377 
378 static void ath9k_hw_disablepcie(struct ath_hw *ah)
379 {
380 	if (!AR_SREV_5416(ah))
381 		return;
382 
383 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
384 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
385 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
386 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
387 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
388 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
389 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
390 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
391 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
392 
393 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
394 }
395 
396 /* This should work for all families including legacy */
397 static bool ath9k_hw_chip_test(struct ath_hw *ah)
398 {
399 	struct ath_common *common = ath9k_hw_common(ah);
400 	u32 regAddr[2] = { AR_STA_ID0 };
401 	u32 regHold[2];
402 	static const u32 patternData[4] = {
403 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
404 	};
405 	int i, j, loop_max;
406 
407 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
408 		loop_max = 2;
409 		regAddr[1] = AR_PHY_BASE + (8 << 2);
410 	} else
411 		loop_max = 1;
412 
413 	for (i = 0; i < loop_max; i++) {
414 		u32 addr = regAddr[i];
415 		u32 wrData, rdData;
416 
417 		regHold[i] = REG_READ(ah, addr);
418 		for (j = 0; j < 0x100; j++) {
419 			wrData = (j << 16) | j;
420 			REG_WRITE(ah, addr, wrData);
421 			rdData = REG_READ(ah, addr);
422 			if (rdData != wrData) {
423 				ath_err(common,
424 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
425 					addr, wrData, rdData);
426 				return false;
427 			}
428 		}
429 		for (j = 0; j < 4; j++) {
430 			wrData = patternData[j];
431 			REG_WRITE(ah, addr, wrData);
432 			rdData = REG_READ(ah, addr);
433 			if (wrData != rdData) {
434 				ath_err(common,
435 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
436 					addr, wrData, rdData);
437 				return false;
438 			}
439 		}
440 		REG_WRITE(ah, regAddr[i], regHold[i]);
441 	}
442 	udelay(100);
443 
444 	return true;
445 }
446 
447 static void ath9k_hw_init_config(struct ath_hw *ah)
448 {
449 	int i;
450 
451 	ah->config.dma_beacon_response_time = 1;
452 	ah->config.sw_beacon_response_time = 6;
453 	ah->config.additional_swba_backoff = 0;
454 	ah->config.ack_6mb = 0x0;
455 	ah->config.cwm_ignore_extcca = 0;
456 	ah->config.pcie_clock_req = 0;
457 	ah->config.pcie_waen = 0;
458 	ah->config.analog_shiftreg = 1;
459 	ah->config.enable_ani = true;
460 
461 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
462 		ah->config.spurchans[i][0] = AR_NO_SPUR;
463 		ah->config.spurchans[i][1] = AR_NO_SPUR;
464 	}
465 
466 	/* PAPRD needs some more work to be enabled */
467 	ah->config.paprd_disable = 1;
468 
469 	ah->config.rx_intr_mitigation = true;
470 	ah->config.pcieSerDesWrite = true;
471 
472 	/*
473 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
474 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
475 	 * This means we use it for all AR5416 devices, and the few
476 	 * minor PCI AR9280 devices out there.
477 	 *
478 	 * Serialization is required because these devices do not handle
479 	 * well the case of two concurrent reads/writes due to the latency
480 	 * involved. During one read/write another read/write can be issued
481 	 * on another CPU while the previous read/write may still be working
482 	 * on our hardware, if we hit this case the hardware poops in a loop.
483 	 * We prevent this by serializing reads and writes.
484 	 *
485 	 * This issue is not present on PCI-Express devices or pre-AR5416
486 	 * devices (legacy, 802.11abg).
487 	 */
488 	if (num_possible_cpus() > 1)
489 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
490 }
491 
492 static void ath9k_hw_init_defaults(struct ath_hw *ah)
493 {
494 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
495 
496 	regulatory->country_code = CTRY_DEFAULT;
497 	regulatory->power_limit = MAX_RATE_POWER;
498 
499 	ah->hw_version.magic = AR5416_MAGIC;
500 	ah->hw_version.subvendorid = 0;
501 
502 	ah->atim_window = 0;
503 	ah->sta_id1_defaults =
504 		AR_STA_ID1_CRPT_MIC_ENABLE |
505 		AR_STA_ID1_MCAST_KSRCH;
506 	if (AR_SREV_9100(ah))
507 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
508 	ah->slottime = ATH9K_SLOT_TIME_9;
509 	ah->globaltxtimeout = (u32) -1;
510 	ah->power_mode = ATH9K_PM_UNDEFINED;
511 	ah->htc_reset_init = true;
512 }
513 
514 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
515 {
516 	struct ath_common *common = ath9k_hw_common(ah);
517 	u32 sum;
518 	int i;
519 	u16 eeval;
520 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
521 
522 	sum = 0;
523 	for (i = 0; i < 3; i++) {
524 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
525 		sum += eeval;
526 		common->macaddr[2 * i] = eeval >> 8;
527 		common->macaddr[2 * i + 1] = eeval & 0xff;
528 	}
529 	if (sum == 0 || sum == 0xffff * 3)
530 		return -EADDRNOTAVAIL;
531 
532 	return 0;
533 }
534 
535 static int ath9k_hw_post_init(struct ath_hw *ah)
536 {
537 	struct ath_common *common = ath9k_hw_common(ah);
538 	int ecode;
539 
540 	if (common->bus_ops->ath_bus_type != ATH_USB) {
541 		if (!ath9k_hw_chip_test(ah))
542 			return -ENODEV;
543 	}
544 
545 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
546 		ecode = ar9002_hw_rf_claim(ah);
547 		if (ecode != 0)
548 			return ecode;
549 	}
550 
551 	ecode = ath9k_hw_eeprom_init(ah);
552 	if (ecode != 0)
553 		return ecode;
554 
555 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
556 		ah->eep_ops->get_eeprom_ver(ah),
557 		ah->eep_ops->get_eeprom_rev(ah));
558 
559 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
560 	if (ecode) {
561 		ath_err(ath9k_hw_common(ah),
562 			"Failed allocating banks for external radio\n");
563 		ath9k_hw_rf_free_ext_banks(ah);
564 		return ecode;
565 	}
566 
567 	if (ah->config.enable_ani) {
568 		ath9k_hw_ani_setup(ah);
569 		ath9k_hw_ani_init(ah);
570 	}
571 
572 	return 0;
573 }
574 
575 static void ath9k_hw_attach_ops(struct ath_hw *ah)
576 {
577 	if (AR_SREV_9300_20_OR_LATER(ah))
578 		ar9003_hw_attach_ops(ah);
579 	else
580 		ar9002_hw_attach_ops(ah);
581 }
582 
583 /* Called for all hardware families */
584 static int __ath9k_hw_init(struct ath_hw *ah)
585 {
586 	struct ath_common *common = ath9k_hw_common(ah);
587 	int r = 0;
588 
589 	ath9k_hw_read_revisions(ah);
590 
591 	/*
592 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
593 	 * We need to do this to avoid RMW of this register. We cannot
594 	 * read the reg when chip is asleep.
595 	 */
596 	ah->WARegVal = REG_READ(ah, AR_WA);
597 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
598 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
599 
600 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
601 		ath_err(common, "Couldn't reset chip\n");
602 		return -EIO;
603 	}
604 
605 	if (AR_SREV_9462(ah))
606 		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
607 
608 	ath9k_hw_init_defaults(ah);
609 	ath9k_hw_init_config(ah);
610 
611 	ath9k_hw_attach_ops(ah);
612 
613 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
614 		ath_err(common, "Couldn't wakeup chip\n");
615 		return -EIO;
616 	}
617 
618 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
619 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
620 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
621 		     !ah->is_pciexpress)) {
622 			ah->config.serialize_regmode =
623 				SER_REG_MODE_ON;
624 		} else {
625 			ah->config.serialize_regmode =
626 				SER_REG_MODE_OFF;
627 		}
628 	}
629 
630 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
631 		ah->config.serialize_regmode);
632 
633 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
634 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
635 	else
636 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
637 
638 	switch (ah->hw_version.macVersion) {
639 	case AR_SREV_VERSION_5416_PCI:
640 	case AR_SREV_VERSION_5416_PCIE:
641 	case AR_SREV_VERSION_9160:
642 	case AR_SREV_VERSION_9100:
643 	case AR_SREV_VERSION_9280:
644 	case AR_SREV_VERSION_9285:
645 	case AR_SREV_VERSION_9287:
646 	case AR_SREV_VERSION_9271:
647 	case AR_SREV_VERSION_9300:
648 	case AR_SREV_VERSION_9330:
649 	case AR_SREV_VERSION_9485:
650 	case AR_SREV_VERSION_9340:
651 	case AR_SREV_VERSION_9462:
652 	case AR_SREV_VERSION_9550:
653 		break;
654 	default:
655 		ath_err(common,
656 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
657 			ah->hw_version.macVersion, ah->hw_version.macRev);
658 		return -EOPNOTSUPP;
659 	}
660 
661 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
662 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
663 		ah->is_pciexpress = false;
664 
665 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
666 	ath9k_hw_init_cal_settings(ah);
667 
668 	ah->ani_function = ATH9K_ANI_ALL;
669 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
670 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
671 	if (!AR_SREV_9300_20_OR_LATER(ah))
672 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
673 
674 	ath9k_hw_init_mode_regs(ah);
675 
676 	if (!ah->is_pciexpress)
677 		ath9k_hw_disablepcie(ah);
678 
679 	r = ath9k_hw_post_init(ah);
680 	if (r)
681 		return r;
682 
683 	ath9k_hw_init_mode_gain_regs(ah);
684 	r = ath9k_hw_fill_cap_info(ah);
685 	if (r)
686 		return r;
687 
688 	r = ath9k_hw_init_macaddr(ah);
689 	if (r) {
690 		ath_err(common, "Failed to initialize MAC address\n");
691 		return r;
692 	}
693 
694 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
695 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
696 	else
697 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
698 
699 	if (AR_SREV_9330(ah))
700 		ah->bb_watchdog_timeout_ms = 85;
701 	else
702 		ah->bb_watchdog_timeout_ms = 25;
703 
704 	common->state = ATH_HW_INITIALIZED;
705 
706 	return 0;
707 }
708 
709 int ath9k_hw_init(struct ath_hw *ah)
710 {
711 	int ret;
712 	struct ath_common *common = ath9k_hw_common(ah);
713 
714 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
715 	switch (ah->hw_version.devid) {
716 	case AR5416_DEVID_PCI:
717 	case AR5416_DEVID_PCIE:
718 	case AR5416_AR9100_DEVID:
719 	case AR9160_DEVID_PCI:
720 	case AR9280_DEVID_PCI:
721 	case AR9280_DEVID_PCIE:
722 	case AR9285_DEVID_PCIE:
723 	case AR9287_DEVID_PCI:
724 	case AR9287_DEVID_PCIE:
725 	case AR2427_DEVID_PCIE:
726 	case AR9300_DEVID_PCIE:
727 	case AR9300_DEVID_AR9485_PCIE:
728 	case AR9300_DEVID_AR9330:
729 	case AR9300_DEVID_AR9340:
730 	case AR9300_DEVID_QCA955X:
731 	case AR9300_DEVID_AR9580:
732 	case AR9300_DEVID_AR9462:
733 	case AR9485_DEVID_AR1111:
734 		break;
735 	default:
736 		if (common->bus_ops->ath_bus_type == ATH_USB)
737 			break;
738 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
739 			ah->hw_version.devid);
740 		return -EOPNOTSUPP;
741 	}
742 
743 	ret = __ath9k_hw_init(ah);
744 	if (ret) {
745 		ath_err(common,
746 			"Unable to initialize hardware; initialization status: %d\n",
747 			ret);
748 		return ret;
749 	}
750 
751 	return 0;
752 }
753 EXPORT_SYMBOL(ath9k_hw_init);
754 
755 static void ath9k_hw_init_qos(struct ath_hw *ah)
756 {
757 	ENABLE_REGWRITE_BUFFER(ah);
758 
759 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
760 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
761 
762 	REG_WRITE(ah, AR_QOS_NO_ACK,
763 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
764 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
765 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
766 
767 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
768 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
769 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
770 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
771 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
772 
773 	REGWRITE_BUFFER_FLUSH(ah);
774 }
775 
776 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
777 {
778 	struct ath_common *common = ath9k_hw_common(ah);
779 	int i = 0;
780 
781 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
782 	udelay(100);
783 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
784 
785 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
786 
787 		udelay(100);
788 
789 		if (WARN_ON_ONCE(i >= 100)) {
790 			ath_err(common, "PLL4 meaurement not done\n");
791 			break;
792 		}
793 
794 		i++;
795 	}
796 
797 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
798 }
799 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
800 
801 static void ath9k_hw_init_pll(struct ath_hw *ah,
802 			      struct ath9k_channel *chan)
803 {
804 	u32 pll;
805 
806 	if (AR_SREV_9485(ah)) {
807 
808 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
809 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
810 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
811 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
812 			      AR_CH0_DPLL2_KD, 0x40);
813 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
814 			      AR_CH0_DPLL2_KI, 0x4);
815 
816 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
817 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
818 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
819 			      AR_CH0_BB_DPLL1_NINI, 0x58);
820 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
821 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
822 
823 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
824 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
825 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
826 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
827 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
828 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
829 
830 		/* program BB PLL phase_shift to 0x6 */
831 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
832 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
833 
834 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
835 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
836 		udelay(1000);
837 	} else if (AR_SREV_9330(ah)) {
838 		u32 ddr_dpll2, pll_control2, kd;
839 
840 		if (ah->is_clk_25mhz) {
841 			ddr_dpll2 = 0x18e82f01;
842 			pll_control2 = 0xe04a3d;
843 			kd = 0x1d;
844 		} else {
845 			ddr_dpll2 = 0x19e82f01;
846 			pll_control2 = 0x886666;
847 			kd = 0x3d;
848 		}
849 
850 		/* program DDR PLL ki and kd value */
851 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
852 
853 		/* program DDR PLL phase_shift */
854 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
855 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
856 
857 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
858 		udelay(1000);
859 
860 		/* program refdiv, nint, frac to RTC register */
861 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
862 
863 		/* program BB PLL kd and ki value */
864 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
865 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
866 
867 		/* program BB PLL phase_shift */
868 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
869 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
870 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
871 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
872 
873 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
874 		udelay(1000);
875 
876 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
877 		udelay(100);
878 
879 		if (ah->is_clk_25mhz) {
880 			pll2_divint = 0x54;
881 			pll2_divfrac = 0x1eb85;
882 			refdiv = 3;
883 		} else {
884 			if (AR_SREV_9340(ah)) {
885 				pll2_divint = 88;
886 				pll2_divfrac = 0;
887 				refdiv = 5;
888 			} else {
889 				pll2_divint = 0x11;
890 				pll2_divfrac = 0x26666;
891 				refdiv = 1;
892 			}
893 		}
894 
895 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
896 		regval |= (0x1 << 16);
897 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
898 		udelay(100);
899 
900 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
901 			  (pll2_divint << 18) | pll2_divfrac);
902 		udelay(100);
903 
904 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
905 		if (AR_SREV_9340(ah))
906 			regval = (regval & 0x80071fff) | (0x1 << 30) |
907 				 (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
908 		else
909 			regval = (regval & 0x80071fff) | (0x3 << 30) |
910 				 (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
911 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
912 		REG_WRITE(ah, AR_PHY_PLL_MODE,
913 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
914 		udelay(1000);
915 	}
916 
917 	pll = ath9k_hw_compute_pll_control(ah, chan);
918 
919 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
920 
921 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
922 	    AR_SREV_9550(ah))
923 		udelay(1000);
924 
925 	/* Switch the core clock for ar9271 to 117Mhz */
926 	if (AR_SREV_9271(ah)) {
927 		udelay(500);
928 		REG_WRITE(ah, 0x50040, 0x304);
929 	}
930 
931 	udelay(RTC_PLL_SETTLE_DELAY);
932 
933 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
934 
935 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
936 		if (ah->is_clk_25mhz) {
937 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
938 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
939 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
940 		} else {
941 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
942 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
943 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
944 		}
945 		udelay(100);
946 	}
947 }
948 
949 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
950 					  enum nl80211_iftype opmode)
951 {
952 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
953 	u32 imr_reg = AR_IMR_TXERR |
954 		AR_IMR_TXURN |
955 		AR_IMR_RXERR |
956 		AR_IMR_RXORN |
957 		AR_IMR_BCNMISC;
958 
959 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
960 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
961 
962 	if (AR_SREV_9300_20_OR_LATER(ah)) {
963 		imr_reg |= AR_IMR_RXOK_HP;
964 		if (ah->config.rx_intr_mitigation)
965 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
966 		else
967 			imr_reg |= AR_IMR_RXOK_LP;
968 
969 	} else {
970 		if (ah->config.rx_intr_mitigation)
971 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
972 		else
973 			imr_reg |= AR_IMR_RXOK;
974 	}
975 
976 	if (ah->config.tx_intr_mitigation)
977 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
978 	else
979 		imr_reg |= AR_IMR_TXOK;
980 
981 	if (opmode == NL80211_IFTYPE_AP)
982 		imr_reg |= AR_IMR_MIB;
983 
984 	ENABLE_REGWRITE_BUFFER(ah);
985 
986 	REG_WRITE(ah, AR_IMR, imr_reg);
987 	ah->imrs2_reg |= AR_IMR_S2_GTT;
988 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
989 
990 	if (!AR_SREV_9100(ah)) {
991 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
992 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
993 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
994 	}
995 
996 	REGWRITE_BUFFER_FLUSH(ah);
997 
998 	if (AR_SREV_9300_20_OR_LATER(ah)) {
999 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
1000 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
1001 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
1002 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
1003 	}
1004 }
1005 
1006 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1007 {
1008 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1009 	val = min(val, (u32) 0xFFFF);
1010 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1011 }
1012 
1013 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1014 {
1015 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1016 	val = min(val, (u32) 0xFFFF);
1017 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1018 }
1019 
1020 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1021 {
1022 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1023 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1024 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1025 }
1026 
1027 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1028 {
1029 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1030 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1031 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1032 }
1033 
1034 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1035 {
1036 	if (tu > 0xFFFF) {
1037 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1038 			tu);
1039 		ah->globaltxtimeout = (u32) -1;
1040 		return false;
1041 	} else {
1042 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1043 		ah->globaltxtimeout = tu;
1044 		return true;
1045 	}
1046 }
1047 
1048 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1049 {
1050 	struct ath_common *common = ath9k_hw_common(ah);
1051 	struct ieee80211_conf *conf = &common->hw->conf;
1052 	const struct ath9k_channel *chan = ah->curchan;
1053 	int acktimeout, ctstimeout, ack_offset = 0;
1054 	int slottime;
1055 	int sifstime;
1056 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1057 	u32 reg;
1058 
1059 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1060 		ah->misc_mode);
1061 
1062 	if (!chan)
1063 		return;
1064 
1065 	if (ah->misc_mode != 0)
1066 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1067 
1068 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1069 		rx_lat = 41;
1070 	else
1071 		rx_lat = 37;
1072 	tx_lat = 54;
1073 
1074 	if (IS_CHAN_5GHZ(chan))
1075 		sifstime = 16;
1076 	else
1077 		sifstime = 10;
1078 
1079 	if (IS_CHAN_HALF_RATE(chan)) {
1080 		eifs = 175;
1081 		rx_lat *= 2;
1082 		tx_lat *= 2;
1083 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1084 		    tx_lat += 11;
1085 
1086 		sifstime *= 2;
1087 		ack_offset = 16;
1088 		slottime = 13;
1089 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1090 		eifs = 340;
1091 		rx_lat = (rx_lat * 4) - 1;
1092 		tx_lat *= 4;
1093 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1094 		    tx_lat += 22;
1095 
1096 		sifstime *= 4;
1097 		ack_offset = 32;
1098 		slottime = 21;
1099 	} else {
1100 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1101 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1102 			reg = AR_USEC_ASYNC_FIFO;
1103 		} else {
1104 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1105 				common->clockrate;
1106 			reg = REG_READ(ah, AR_USEC);
1107 		}
1108 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1109 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1110 
1111 		slottime = ah->slottime;
1112 	}
1113 
1114 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1115 	acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
1116 	ctstimeout = acktimeout;
1117 
1118 	/*
1119 	 * Workaround for early ACK timeouts, add an offset to match the
1120 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1121 	 * This was initially only meant to work around an issue with delayed
1122 	 * BA frames in some implementations, but it has been found to fix ACK
1123 	 * timeout issues in other cases as well.
1124 	 */
1125 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
1126 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1127 		acktimeout += 64 - sifstime - ah->slottime;
1128 		ctstimeout += 48 - sifstime - ah->slottime;
1129 	}
1130 
1131 
1132 	ath9k_hw_set_sifs_time(ah, sifstime);
1133 	ath9k_hw_setslottime(ah, slottime);
1134 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1135 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1136 	if (ah->globaltxtimeout != (u32) -1)
1137 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1138 
1139 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1140 	REG_RMW(ah, AR_USEC,
1141 		(common->clockrate - 1) |
1142 		SM(rx_lat, AR_USEC_RX_LAT) |
1143 		SM(tx_lat, AR_USEC_TX_LAT),
1144 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1145 
1146 }
1147 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1148 
1149 void ath9k_hw_deinit(struct ath_hw *ah)
1150 {
1151 	struct ath_common *common = ath9k_hw_common(ah);
1152 
1153 	if (common->state < ATH_HW_INITIALIZED)
1154 		goto free_hw;
1155 
1156 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1157 
1158 free_hw:
1159 	ath9k_hw_rf_free_ext_banks(ah);
1160 }
1161 EXPORT_SYMBOL(ath9k_hw_deinit);
1162 
1163 /*******/
1164 /* INI */
1165 /*******/
1166 
1167 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1168 {
1169 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1170 
1171 	if (IS_CHAN_B(chan))
1172 		ctl |= CTL_11B;
1173 	else if (IS_CHAN_G(chan))
1174 		ctl |= CTL_11G;
1175 	else
1176 		ctl |= CTL_11A;
1177 
1178 	return ctl;
1179 }
1180 
1181 /****************************************/
1182 /* Reset and Channel Switching Routines */
1183 /****************************************/
1184 
1185 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1186 {
1187 	struct ath_common *common = ath9k_hw_common(ah);
1188 
1189 	ENABLE_REGWRITE_BUFFER(ah);
1190 
1191 	/*
1192 	 * set AHB_MODE not to do cacheline prefetches
1193 	*/
1194 	if (!AR_SREV_9300_20_OR_LATER(ah))
1195 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1196 
1197 	/*
1198 	 * let mac dma reads be in 128 byte chunks
1199 	 */
1200 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1201 
1202 	REGWRITE_BUFFER_FLUSH(ah);
1203 
1204 	/*
1205 	 * Restore TX Trigger Level to its pre-reset value.
1206 	 * The initial value depends on whether aggregation is enabled, and is
1207 	 * adjusted whenever underruns are detected.
1208 	 */
1209 	if (!AR_SREV_9300_20_OR_LATER(ah))
1210 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1211 
1212 	ENABLE_REGWRITE_BUFFER(ah);
1213 
1214 	/*
1215 	 * let mac dma writes be in 128 byte chunks
1216 	 */
1217 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1218 
1219 	/*
1220 	 * Setup receive FIFO threshold to hold off TX activities
1221 	 */
1222 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1223 
1224 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1225 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1226 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1227 
1228 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1229 			ah->caps.rx_status_len);
1230 	}
1231 
1232 	/*
1233 	 * reduce the number of usable entries in PCU TXBUF to avoid
1234 	 * wrap around issues.
1235 	 */
1236 	if (AR_SREV_9285(ah)) {
1237 		/* For AR9285 the number of Fifos are reduced to half.
1238 		 * So set the usable tx buf size also to half to
1239 		 * avoid data/delimiter underruns
1240 		 */
1241 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1242 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1243 	} else if (!AR_SREV_9271(ah)) {
1244 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1245 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1246 	}
1247 
1248 	REGWRITE_BUFFER_FLUSH(ah);
1249 
1250 	if (AR_SREV_9300_20_OR_LATER(ah))
1251 		ath9k_hw_reset_txstatus_ring(ah);
1252 }
1253 
1254 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1255 {
1256 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1257 	u32 set = AR_STA_ID1_KSRCH_MODE;
1258 
1259 	switch (opmode) {
1260 	case NL80211_IFTYPE_ADHOC:
1261 	case NL80211_IFTYPE_MESH_POINT:
1262 		set |= AR_STA_ID1_ADHOC;
1263 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1264 		break;
1265 	case NL80211_IFTYPE_AP:
1266 		set |= AR_STA_ID1_STA_AP;
1267 		/* fall through */
1268 	case NL80211_IFTYPE_STATION:
1269 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1270 		break;
1271 	default:
1272 		if (!ah->is_monitoring)
1273 			set = 0;
1274 		break;
1275 	}
1276 	REG_RMW(ah, AR_STA_ID1, set, mask);
1277 }
1278 
1279 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1280 				   u32 *coef_mantissa, u32 *coef_exponent)
1281 {
1282 	u32 coef_exp, coef_man;
1283 
1284 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1285 		if ((coef_scaled >> coef_exp) & 0x1)
1286 			break;
1287 
1288 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1289 
1290 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1291 
1292 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1293 	*coef_exponent = coef_exp - 16;
1294 }
1295 
1296 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1297 {
1298 	u32 rst_flags;
1299 	u32 tmpReg;
1300 
1301 	if (AR_SREV_9100(ah)) {
1302 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1303 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1304 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1305 	}
1306 
1307 	ENABLE_REGWRITE_BUFFER(ah);
1308 
1309 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1310 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1311 		udelay(10);
1312 	}
1313 
1314 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1315 		  AR_RTC_FORCE_WAKE_ON_INT);
1316 
1317 	if (AR_SREV_9100(ah)) {
1318 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1319 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1320 	} else {
1321 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1322 		if (tmpReg &
1323 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1324 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1325 			u32 val;
1326 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1327 
1328 			val = AR_RC_HOSTIF;
1329 			if (!AR_SREV_9300_20_OR_LATER(ah))
1330 				val |= AR_RC_AHB;
1331 			REG_WRITE(ah, AR_RC, val);
1332 
1333 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1334 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1335 
1336 		rst_flags = AR_RTC_RC_MAC_WARM;
1337 		if (type == ATH9K_RESET_COLD)
1338 			rst_flags |= AR_RTC_RC_MAC_COLD;
1339 	}
1340 
1341 	if (AR_SREV_9330(ah)) {
1342 		int npend = 0;
1343 		int i;
1344 
1345 		/* AR9330 WAR:
1346 		 * call external reset function to reset WMAC if:
1347 		 * - doing a cold reset
1348 		 * - we have pending frames in the TX queues
1349 		 */
1350 
1351 		for (i = 0; i < AR_NUM_QCU; i++) {
1352 			npend = ath9k_hw_numtxpending(ah, i);
1353 			if (npend)
1354 				break;
1355 		}
1356 
1357 		if (ah->external_reset &&
1358 		    (npend || type == ATH9K_RESET_COLD)) {
1359 			int reset_err = 0;
1360 
1361 			ath_dbg(ath9k_hw_common(ah), RESET,
1362 				"reset MAC via external reset\n");
1363 
1364 			reset_err = ah->external_reset();
1365 			if (reset_err) {
1366 				ath_err(ath9k_hw_common(ah),
1367 					"External reset failed, err=%d\n",
1368 					reset_err);
1369 				return false;
1370 			}
1371 
1372 			REG_WRITE(ah, AR_RTC_RESET, 1);
1373 		}
1374 	}
1375 
1376 	if (ath9k_hw_mci_is_enabled(ah))
1377 		ar9003_mci_check_gpm_offset(ah);
1378 
1379 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1380 
1381 	REGWRITE_BUFFER_FLUSH(ah);
1382 
1383 	udelay(50);
1384 
1385 	REG_WRITE(ah, AR_RTC_RC, 0);
1386 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1387 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1388 		return false;
1389 	}
1390 
1391 	if (!AR_SREV_9100(ah))
1392 		REG_WRITE(ah, AR_RC, 0);
1393 
1394 	if (AR_SREV_9100(ah))
1395 		udelay(50);
1396 
1397 	return true;
1398 }
1399 
1400 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1401 {
1402 	ENABLE_REGWRITE_BUFFER(ah);
1403 
1404 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1405 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1406 		udelay(10);
1407 	}
1408 
1409 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1410 		  AR_RTC_FORCE_WAKE_ON_INT);
1411 
1412 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1413 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1414 
1415 	REG_WRITE(ah, AR_RTC_RESET, 0);
1416 
1417 	REGWRITE_BUFFER_FLUSH(ah);
1418 
1419 	if (!AR_SREV_9300_20_OR_LATER(ah))
1420 		udelay(2);
1421 
1422 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1423 		REG_WRITE(ah, AR_RC, 0);
1424 
1425 	REG_WRITE(ah, AR_RTC_RESET, 1);
1426 
1427 	if (!ath9k_hw_wait(ah,
1428 			   AR_RTC_STATUS,
1429 			   AR_RTC_STATUS_M,
1430 			   AR_RTC_STATUS_ON,
1431 			   AH_WAIT_TIMEOUT)) {
1432 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1433 		return false;
1434 	}
1435 
1436 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1437 }
1438 
1439 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1440 {
1441 	bool ret = false;
1442 
1443 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1444 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1445 		udelay(10);
1446 	}
1447 
1448 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1449 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1450 
1451 	switch (type) {
1452 	case ATH9K_RESET_POWER_ON:
1453 		ret = ath9k_hw_set_reset_power_on(ah);
1454 		break;
1455 	case ATH9K_RESET_WARM:
1456 	case ATH9K_RESET_COLD:
1457 		ret = ath9k_hw_set_reset(ah, type);
1458 		break;
1459 	default:
1460 		break;
1461 	}
1462 
1463 	return ret;
1464 }
1465 
1466 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1467 				struct ath9k_channel *chan)
1468 {
1469 	int reset_type = ATH9K_RESET_WARM;
1470 
1471 	if (AR_SREV_9280(ah)) {
1472 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1473 			reset_type = ATH9K_RESET_POWER_ON;
1474 		else
1475 			reset_type = ATH9K_RESET_COLD;
1476 	}
1477 
1478 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1479 		return false;
1480 
1481 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1482 		return false;
1483 
1484 	ah->chip_fullsleep = false;
1485 
1486 	if (AR_SREV_9330(ah))
1487 		ar9003_hw_internal_regulator_apply(ah);
1488 	ath9k_hw_init_pll(ah, chan);
1489 	ath9k_hw_set_rfmode(ah, chan);
1490 
1491 	return true;
1492 }
1493 
1494 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1495 				    struct ath9k_channel *chan)
1496 {
1497 	struct ath_common *common = ath9k_hw_common(ah);
1498 	u32 qnum;
1499 	int r;
1500 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1501 	bool band_switch, mode_diff;
1502 	u8 ini_reloaded;
1503 
1504 	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1505 		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1506 						    CHANNEL_5GHZ));
1507 	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1508 
1509 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1510 		if (ath9k_hw_numtxpending(ah, qnum)) {
1511 			ath_dbg(common, QUEUE,
1512 				"Transmit frames pending on queue %d\n", qnum);
1513 			return false;
1514 		}
1515 	}
1516 
1517 	if (!ath9k_hw_rfbus_req(ah)) {
1518 		ath_err(common, "Could not kill baseband RX\n");
1519 		return false;
1520 	}
1521 
1522 	if (edma && (band_switch || mode_diff)) {
1523 		ath9k_hw_mark_phy_inactive(ah);
1524 		udelay(5);
1525 
1526 		ath9k_hw_init_pll(ah, NULL);
1527 
1528 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1529 			ath_err(common, "Failed to do fast channel change\n");
1530 			return false;
1531 		}
1532 	}
1533 
1534 	ath9k_hw_set_channel_regs(ah, chan);
1535 
1536 	r = ath9k_hw_rf_set_freq(ah, chan);
1537 	if (r) {
1538 		ath_err(common, "Failed to set channel\n");
1539 		return false;
1540 	}
1541 	ath9k_hw_set_clockrate(ah);
1542 	ath9k_hw_apply_txpower(ah, chan, false);
1543 	ath9k_hw_rfbus_done(ah);
1544 
1545 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1546 		ath9k_hw_set_delta_slope(ah, chan);
1547 
1548 	ath9k_hw_spur_mitigate_freq(ah, chan);
1549 
1550 	if (edma && (band_switch || mode_diff)) {
1551 		ah->ah_flags |= AH_FASTCC;
1552 		if (band_switch || ini_reloaded)
1553 			ah->eep_ops->set_board_values(ah, chan);
1554 
1555 		ath9k_hw_init_bb(ah, chan);
1556 
1557 		if (band_switch || ini_reloaded)
1558 			ath9k_hw_init_cal(ah, chan);
1559 		ah->ah_flags &= ~AH_FASTCC;
1560 	}
1561 
1562 	return true;
1563 }
1564 
1565 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1566 {
1567 	u32 gpio_mask = ah->gpio_mask;
1568 	int i;
1569 
1570 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1571 		if (!(gpio_mask & 1))
1572 			continue;
1573 
1574 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1575 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1576 	}
1577 }
1578 
1579 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1580 			       int *hang_state, int *hang_pos)
1581 {
1582 	static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1583 	u32 chain_state, dcs_pos, i;
1584 
1585 	for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1586 		chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1587 		for (i = 0; i < 3; i++) {
1588 			if (chain_state == dcu_chain_state[i]) {
1589 				*hang_state = chain_state;
1590 				*hang_pos = dcs_pos;
1591 				return true;
1592 			}
1593 		}
1594 	}
1595 	return false;
1596 }
1597 
1598 #define DCU_COMPLETE_STATE        1
1599 #define DCU_COMPLETE_STATE_MASK 0x3
1600 #define NUM_STATUS_READS         50
1601 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1602 {
1603 	u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1604 	u32 i, hang_pos, hang_state, num_state = 6;
1605 
1606 	comp_state = REG_READ(ah, AR_DMADBG_6);
1607 
1608 	if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1609 		ath_dbg(ath9k_hw_common(ah), RESET,
1610 			"MAC Hang signature not found at DCU complete\n");
1611 		return false;
1612 	}
1613 
1614 	chain_state = REG_READ(ah, dcs_reg);
1615 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1616 		goto hang_check_iter;
1617 
1618 	dcs_reg = AR_DMADBG_5;
1619 	num_state = 4;
1620 	chain_state = REG_READ(ah, dcs_reg);
1621 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1622 		goto hang_check_iter;
1623 
1624 	ath_dbg(ath9k_hw_common(ah), RESET,
1625 		"MAC Hang signature 1 not found\n");
1626 	return false;
1627 
1628 hang_check_iter:
1629 	ath_dbg(ath9k_hw_common(ah), RESET,
1630 		"DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1631 		chain_state, comp_state, hang_state, hang_pos);
1632 
1633 	for (i = 0; i < NUM_STATUS_READS; i++) {
1634 		chain_state = REG_READ(ah, dcs_reg);
1635 		chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1636 		comp_state = REG_READ(ah, AR_DMADBG_6);
1637 
1638 		if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1639 					DCU_COMPLETE_STATE) ||
1640 		    (chain_state != hang_state))
1641 			return false;
1642 	}
1643 
1644 	ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1645 
1646 	return true;
1647 }
1648 
1649 bool ath9k_hw_check_alive(struct ath_hw *ah)
1650 {
1651 	int count = 50;
1652 	u32 reg;
1653 
1654 	if (AR_SREV_9300(ah))
1655 		return !ath9k_hw_detect_mac_hang(ah);
1656 
1657 	if (AR_SREV_9285_12_OR_LATER(ah))
1658 		return true;
1659 
1660 	do {
1661 		reg = REG_READ(ah, AR_OBS_BUS_1);
1662 
1663 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1664 			continue;
1665 
1666 		switch (reg & 0x7E000B00) {
1667 		case 0x1E000000:
1668 		case 0x52000B00:
1669 		case 0x18000B00:
1670 			continue;
1671 		default:
1672 			return true;
1673 		}
1674 	} while (count-- > 0);
1675 
1676 	return false;
1677 }
1678 EXPORT_SYMBOL(ath9k_hw_check_alive);
1679 
1680 /*
1681  * Fast channel change:
1682  * (Change synthesizer based on channel freq without resetting chip)
1683  *
1684  * Don't do FCC when
1685  *   - Flag is not set
1686  *   - Chip is just coming out of full sleep
1687  *   - Channel to be set is same as current channel
1688  *   - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1689  */
1690 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1691 {
1692 	struct ath_common *common = ath9k_hw_common(ah);
1693 	int ret;
1694 
1695 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1696 		goto fail;
1697 
1698 	if (ah->chip_fullsleep)
1699 		goto fail;
1700 
1701 	if (!ah->curchan)
1702 		goto fail;
1703 
1704 	if (chan->channel == ah->curchan->channel)
1705 		goto fail;
1706 
1707 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1708 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1709 		goto fail;
1710 
1711 	if ((chan->channelFlags & CHANNEL_ALL) !=
1712 	    (ah->curchan->channelFlags & CHANNEL_ALL))
1713 		goto fail;
1714 
1715 	if (!ath9k_hw_check_alive(ah))
1716 		goto fail;
1717 
1718 	/*
1719 	 * For AR9462, make sure that calibration data for
1720 	 * re-using are present.
1721 	 */
1722 	if (AR_SREV_9462(ah) && (ah->caldata &&
1723 				 (!ah->caldata->done_txiqcal_once ||
1724 				  !ah->caldata->done_txclcal_once ||
1725 				  !ah->caldata->rtt_done)))
1726 		goto fail;
1727 
1728 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1729 		ah->curchan->channel, chan->channel);
1730 
1731 	ret = ath9k_hw_channel_change(ah, chan);
1732 	if (!ret)
1733 		goto fail;
1734 
1735 	ath9k_hw_loadnf(ah, ah->curchan);
1736 	ath9k_hw_start_nfcal(ah, true);
1737 
1738 	if (ath9k_hw_mci_is_enabled(ah))
1739 		ar9003_mci_2g5g_switch(ah, false);
1740 
1741 	if (AR_SREV_9271(ah))
1742 		ar9002_hw_load_ani_reg(ah, chan);
1743 
1744 	return 0;
1745 fail:
1746 	return -EINVAL;
1747 }
1748 
1749 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1750 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1751 {
1752 	struct ath_common *common = ath9k_hw_common(ah);
1753 	u32 saveLedState;
1754 	u32 saveDefAntenna;
1755 	u32 macStaId1;
1756 	u64 tsf = 0;
1757 	int i, r;
1758 	bool start_mci_reset = false;
1759 	bool save_fullsleep = ah->chip_fullsleep;
1760 
1761 	if (ath9k_hw_mci_is_enabled(ah)) {
1762 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1763 		if (start_mci_reset)
1764 			return 0;
1765 	}
1766 
1767 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1768 		return -EIO;
1769 
1770 	if (ah->curchan && !ah->chip_fullsleep)
1771 		ath9k_hw_getnf(ah, ah->curchan);
1772 
1773 	ah->caldata = caldata;
1774 	if (caldata &&
1775 	    (chan->channel != caldata->channel ||
1776 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1777 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1778 		/* Operating channel changed, reset channel calibration data */
1779 		memset(caldata, 0, sizeof(*caldata));
1780 		ath9k_init_nfcal_hist_buffer(ah, chan);
1781 	}
1782 	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1783 
1784 	if (fastcc) {
1785 		r = ath9k_hw_do_fastcc(ah, chan);
1786 		if (!r)
1787 			return r;
1788 	}
1789 
1790 	if (ath9k_hw_mci_is_enabled(ah))
1791 		ar9003_mci_stop_bt(ah, save_fullsleep);
1792 
1793 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1794 	if (saveDefAntenna == 0)
1795 		saveDefAntenna = 1;
1796 
1797 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1798 
1799 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1800 	if (AR_SREV_9100(ah) ||
1801 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1802 		tsf = ath9k_hw_gettsf64(ah);
1803 
1804 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1805 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1806 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1807 
1808 	ath9k_hw_mark_phy_inactive(ah);
1809 
1810 	ah->paprd_table_write_done = false;
1811 
1812 	/* Only required on the first reset */
1813 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1814 		REG_WRITE(ah,
1815 			  AR9271_RESET_POWER_DOWN_CONTROL,
1816 			  AR9271_RADIO_RF_RST);
1817 		udelay(50);
1818 	}
1819 
1820 	if (!ath9k_hw_chip_reset(ah, chan)) {
1821 		ath_err(common, "Chip reset failed\n");
1822 		return -EINVAL;
1823 	}
1824 
1825 	/* Only required on the first reset */
1826 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1827 		ah->htc_reset_init = false;
1828 		REG_WRITE(ah,
1829 			  AR9271_RESET_POWER_DOWN_CONTROL,
1830 			  AR9271_GATE_MAC_CTL);
1831 		udelay(50);
1832 	}
1833 
1834 	/* Restore TSF */
1835 	if (tsf)
1836 		ath9k_hw_settsf64(ah, tsf);
1837 
1838 	if (AR_SREV_9280_20_OR_LATER(ah))
1839 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1840 
1841 	if (!AR_SREV_9300_20_OR_LATER(ah))
1842 		ar9002_hw_enable_async_fifo(ah);
1843 
1844 	r = ath9k_hw_process_ini(ah, chan);
1845 	if (r)
1846 		return r;
1847 
1848 	if (ath9k_hw_mci_is_enabled(ah))
1849 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1850 
1851 	/*
1852 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1853 	 * right after the chip reset. When that happens, write a new
1854 	 * value after the initvals have been applied, with an offset
1855 	 * based on measured time difference
1856 	 */
1857 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1858 		tsf += 1500;
1859 		ath9k_hw_settsf64(ah, tsf);
1860 	}
1861 
1862 	/* Setup MFP options for CCMP */
1863 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1864 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1865 		 * frames when constructing CCMP AAD. */
1866 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1867 			      0xc7ff);
1868 		ah->sw_mgmt_crypto = false;
1869 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1870 		/* Disable hardware crypto for management frames */
1871 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1872 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1873 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1874 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1875 		ah->sw_mgmt_crypto = true;
1876 	} else
1877 		ah->sw_mgmt_crypto = true;
1878 
1879 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1880 		ath9k_hw_set_delta_slope(ah, chan);
1881 
1882 	ath9k_hw_spur_mitigate_freq(ah, chan);
1883 	ah->eep_ops->set_board_values(ah, chan);
1884 
1885 	ENABLE_REGWRITE_BUFFER(ah);
1886 
1887 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1888 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1889 		  | macStaId1
1890 		  | AR_STA_ID1_RTS_USE_DEF
1891 		  | (ah->config.
1892 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1893 		  | ah->sta_id1_defaults);
1894 	ath_hw_setbssidmask(common);
1895 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1896 	ath9k_hw_write_associd(ah);
1897 	REG_WRITE(ah, AR_ISR, ~0);
1898 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1899 
1900 	REGWRITE_BUFFER_FLUSH(ah);
1901 
1902 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1903 
1904 	r = ath9k_hw_rf_set_freq(ah, chan);
1905 	if (r)
1906 		return r;
1907 
1908 	ath9k_hw_set_clockrate(ah);
1909 
1910 	ENABLE_REGWRITE_BUFFER(ah);
1911 
1912 	for (i = 0; i < AR_NUM_DCU; i++)
1913 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1914 
1915 	REGWRITE_BUFFER_FLUSH(ah);
1916 
1917 	ah->intr_txqs = 0;
1918 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1919 		ath9k_hw_resettxqueue(ah, i);
1920 
1921 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1922 	ath9k_hw_ani_cache_ini_regs(ah);
1923 	ath9k_hw_init_qos(ah);
1924 
1925 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1926 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1927 
1928 	ath9k_hw_init_global_settings(ah);
1929 
1930 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1931 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1932 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1933 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1934 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1935 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1936 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1937 	}
1938 
1939 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1940 
1941 	ath9k_hw_set_dma(ah);
1942 
1943 	if (!ath9k_hw_mci_is_enabled(ah))
1944 		REG_WRITE(ah, AR_OBS, 8);
1945 
1946 	if (ah->config.rx_intr_mitigation) {
1947 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1948 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1949 	}
1950 
1951 	if (ah->config.tx_intr_mitigation) {
1952 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1953 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1954 	}
1955 
1956 	ath9k_hw_init_bb(ah, chan);
1957 
1958 	if (caldata) {
1959 		caldata->done_txiqcal_once = false;
1960 		caldata->done_txclcal_once = false;
1961 	}
1962 	if (!ath9k_hw_init_cal(ah, chan))
1963 		return -EIO;
1964 
1965 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1966 		return -EIO;
1967 
1968 	ENABLE_REGWRITE_BUFFER(ah);
1969 
1970 	ath9k_hw_restore_chainmask(ah);
1971 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1972 
1973 	REGWRITE_BUFFER_FLUSH(ah);
1974 
1975 	/*
1976 	 * For big endian systems turn on swapping for descriptors
1977 	 */
1978 	if (AR_SREV_9100(ah)) {
1979 		u32 mask;
1980 		mask = REG_READ(ah, AR_CFG);
1981 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1982 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1983 				mask);
1984 		} else {
1985 			mask =
1986 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1987 			REG_WRITE(ah, AR_CFG, mask);
1988 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1989 				REG_READ(ah, AR_CFG));
1990 		}
1991 	} else {
1992 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1993 			/* Configure AR9271 target WLAN */
1994 			if (AR_SREV_9271(ah))
1995 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1996 			else
1997 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1998 		}
1999 #ifdef __BIG_ENDIAN
2000 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
2001 			 AR_SREV_9550(ah))
2002 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
2003 		else
2004 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2005 #endif
2006 	}
2007 
2008 	if (ath9k_hw_btcoex_is_enabled(ah))
2009 		ath9k_hw_btcoex_enable(ah);
2010 
2011 	if (ath9k_hw_mci_is_enabled(ah))
2012 		ar9003_mci_check_bt(ah);
2013 
2014 	ath9k_hw_loadnf(ah, chan);
2015 	ath9k_hw_start_nfcal(ah, true);
2016 
2017 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2018 		ar9003_hw_bb_watchdog_config(ah);
2019 
2020 		ar9003_hw_disable_phy_restart(ah);
2021 	}
2022 
2023 	ath9k_hw_apply_gpio_override(ah);
2024 
2025 	return 0;
2026 }
2027 EXPORT_SYMBOL(ath9k_hw_reset);
2028 
2029 /******************************/
2030 /* Power Management (Chipset) */
2031 /******************************/
2032 
2033 /*
2034  * Notify Power Mgt is disabled in self-generated frames.
2035  * If requested, force chip to sleep.
2036  */
2037 static void ath9k_set_power_sleep(struct ath_hw *ah)
2038 {
2039 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2040 
2041 	if (AR_SREV_9462(ah)) {
2042 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2043 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2044 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2045 		/* xxx Required for WLAN only case ? */
2046 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2047 		udelay(100);
2048 	}
2049 
2050 	/*
2051 	 * Clear the RTC force wake bit to allow the
2052 	 * mac to go to sleep.
2053 	 */
2054 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2055 
2056 	if (ath9k_hw_mci_is_enabled(ah))
2057 		udelay(100);
2058 
2059 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2060 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2061 
2062 	/* Shutdown chip. Active low */
2063 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2064 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2065 		udelay(2);
2066 	}
2067 
2068 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2069 	if (AR_SREV_9300_20_OR_LATER(ah))
2070 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2071 }
2072 
2073 /*
2074  * Notify Power Management is enabled in self-generating
2075  * frames. If request, set power mode of chip to
2076  * auto/normal.  Duration in units of 128us (1/8 TU).
2077  */
2078 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2079 {
2080 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2081 
2082 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2083 
2084 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2085 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2086 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2087 			  AR_RTC_FORCE_WAKE_ON_INT);
2088 	} else {
2089 
2090 		/* When chip goes into network sleep, it could be waken
2091 		 * up by MCI_INT interrupt caused by BT's HW messages
2092 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2093 		 * rate (~100us). This will cause chip to leave and
2094 		 * re-enter network sleep mode frequently, which in
2095 		 * consequence will have WLAN MCI HW to generate lots of
2096 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2097 		 * BT CPU to busy to process.
2098 		 */
2099 		if (ath9k_hw_mci_is_enabled(ah))
2100 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2101 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2102 		/*
2103 		 * Clear the RTC force wake bit to allow the
2104 		 * mac to go to sleep.
2105 		 */
2106 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2107 
2108 		if (ath9k_hw_mci_is_enabled(ah))
2109 			udelay(30);
2110 	}
2111 
2112 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2113 	if (AR_SREV_9300_20_OR_LATER(ah))
2114 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2115 }
2116 
2117 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2118 {
2119 	u32 val;
2120 	int i;
2121 
2122 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2123 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2124 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2125 		udelay(10);
2126 	}
2127 
2128 	if ((REG_READ(ah, AR_RTC_STATUS) &
2129 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2130 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2131 			return false;
2132 		}
2133 		if (!AR_SREV_9300_20_OR_LATER(ah))
2134 			ath9k_hw_init_pll(ah, NULL);
2135 	}
2136 	if (AR_SREV_9100(ah))
2137 		REG_SET_BIT(ah, AR_RTC_RESET,
2138 			    AR_RTC_RESET_EN);
2139 
2140 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2141 		    AR_RTC_FORCE_WAKE_EN);
2142 	udelay(50);
2143 
2144 	if (ath9k_hw_mci_is_enabled(ah))
2145 		ar9003_mci_set_power_awake(ah);
2146 
2147 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2148 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2149 		if (val == AR_RTC_STATUS_ON)
2150 			break;
2151 		udelay(50);
2152 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2153 			    AR_RTC_FORCE_WAKE_EN);
2154 	}
2155 	if (i == 0) {
2156 		ath_err(ath9k_hw_common(ah),
2157 			"Failed to wakeup in %uus\n",
2158 			POWER_UP_TIME / 20);
2159 		return false;
2160 	}
2161 
2162 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2163 
2164 	return true;
2165 }
2166 
2167 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2168 {
2169 	struct ath_common *common = ath9k_hw_common(ah);
2170 	int status = true;
2171 	static const char *modes[] = {
2172 		"AWAKE",
2173 		"FULL-SLEEP",
2174 		"NETWORK SLEEP",
2175 		"UNDEFINED"
2176 	};
2177 
2178 	if (ah->power_mode == mode)
2179 		return status;
2180 
2181 	ath_dbg(common, RESET, "%s -> %s\n",
2182 		modes[ah->power_mode], modes[mode]);
2183 
2184 	switch (mode) {
2185 	case ATH9K_PM_AWAKE:
2186 		status = ath9k_hw_set_power_awake(ah);
2187 		break;
2188 	case ATH9K_PM_FULL_SLEEP:
2189 		if (ath9k_hw_mci_is_enabled(ah))
2190 			ar9003_mci_set_full_sleep(ah);
2191 
2192 		ath9k_set_power_sleep(ah);
2193 		ah->chip_fullsleep = true;
2194 		break;
2195 	case ATH9K_PM_NETWORK_SLEEP:
2196 		ath9k_set_power_network_sleep(ah);
2197 		break;
2198 	default:
2199 		ath_err(common, "Unknown power mode %u\n", mode);
2200 		return false;
2201 	}
2202 	ah->power_mode = mode;
2203 
2204 	/*
2205 	 * XXX: If this warning never comes up after a while then
2206 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2207 	 * ath9k_hw_setpower() return type void.
2208 	 */
2209 
2210 	if (!(ah->ah_flags & AH_UNPLUGGED))
2211 		ATH_DBG_WARN_ON_ONCE(!status);
2212 
2213 	return status;
2214 }
2215 EXPORT_SYMBOL(ath9k_hw_setpower);
2216 
2217 /*******************/
2218 /* Beacon Handling */
2219 /*******************/
2220 
2221 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2222 {
2223 	int flags = 0;
2224 
2225 	ENABLE_REGWRITE_BUFFER(ah);
2226 
2227 	switch (ah->opmode) {
2228 	case NL80211_IFTYPE_ADHOC:
2229 	case NL80211_IFTYPE_MESH_POINT:
2230 		REG_SET_BIT(ah, AR_TXCFG,
2231 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2232 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2233 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2234 		flags |= AR_NDP_TIMER_EN;
2235 	case NL80211_IFTYPE_AP:
2236 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2237 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2238 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2239 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2240 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2241 		flags |=
2242 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2243 		break;
2244 	default:
2245 		ath_dbg(ath9k_hw_common(ah), BEACON,
2246 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2247 		return;
2248 		break;
2249 	}
2250 
2251 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2252 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2253 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2254 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2255 
2256 	REGWRITE_BUFFER_FLUSH(ah);
2257 
2258 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2259 }
2260 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2261 
2262 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2263 				    const struct ath9k_beacon_state *bs)
2264 {
2265 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2266 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2267 	struct ath_common *common = ath9k_hw_common(ah);
2268 
2269 	ENABLE_REGWRITE_BUFFER(ah);
2270 
2271 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2272 
2273 	REG_WRITE(ah, AR_BEACON_PERIOD,
2274 		  TU_TO_USEC(bs->bs_intval));
2275 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2276 		  TU_TO_USEC(bs->bs_intval));
2277 
2278 	REGWRITE_BUFFER_FLUSH(ah);
2279 
2280 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2281 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2282 
2283 	beaconintval = bs->bs_intval;
2284 
2285 	if (bs->bs_sleepduration > beaconintval)
2286 		beaconintval = bs->bs_sleepduration;
2287 
2288 	dtimperiod = bs->bs_dtimperiod;
2289 	if (bs->bs_sleepduration > dtimperiod)
2290 		dtimperiod = bs->bs_sleepduration;
2291 
2292 	if (beaconintval == dtimperiod)
2293 		nextTbtt = bs->bs_nextdtim;
2294 	else
2295 		nextTbtt = bs->bs_nexttbtt;
2296 
2297 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2298 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2299 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2300 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2301 
2302 	ENABLE_REGWRITE_BUFFER(ah);
2303 
2304 	REG_WRITE(ah, AR_NEXT_DTIM,
2305 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2306 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2307 
2308 	REG_WRITE(ah, AR_SLEEP1,
2309 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2310 		  | AR_SLEEP1_ASSUME_DTIM);
2311 
2312 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2313 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2314 	else
2315 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2316 
2317 	REG_WRITE(ah, AR_SLEEP2,
2318 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2319 
2320 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2321 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2322 
2323 	REGWRITE_BUFFER_FLUSH(ah);
2324 
2325 	REG_SET_BIT(ah, AR_TIMER_MODE,
2326 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2327 		    AR_DTIM_TIMER_EN);
2328 
2329 	/* TSF Out of Range Threshold */
2330 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2331 }
2332 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2333 
2334 /*******************/
2335 /* HW Capabilities */
2336 /*******************/
2337 
2338 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2339 {
2340 	eeprom_chainmask &= chip_chainmask;
2341 	if (eeprom_chainmask)
2342 		return eeprom_chainmask;
2343 	else
2344 		return chip_chainmask;
2345 }
2346 
2347 /**
2348  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2349  * @ah: the atheros hardware data structure
2350  *
2351  * We enable DFS support upstream on chipsets which have passed a series
2352  * of tests. The testing requirements are going to be documented. Desired
2353  * test requirements are documented at:
2354  *
2355  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2356  *
2357  * Once a new chipset gets properly tested an individual commit can be used
2358  * to document the testing for DFS for that chipset.
2359  */
2360 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2361 {
2362 
2363 	switch (ah->hw_version.macVersion) {
2364 	/* AR9580 will likely be our first target to get testing on */
2365 	case AR_SREV_VERSION_9580:
2366 	default:
2367 		return false;
2368 	}
2369 }
2370 
2371 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2372 {
2373 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2374 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2375 	struct ath_common *common = ath9k_hw_common(ah);
2376 	unsigned int chip_chainmask;
2377 
2378 	u16 eeval;
2379 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2380 
2381 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2382 	regulatory->current_rd = eeval;
2383 
2384 	if (ah->opmode != NL80211_IFTYPE_AP &&
2385 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2386 		if (regulatory->current_rd == 0x64 ||
2387 		    regulatory->current_rd == 0x65)
2388 			regulatory->current_rd += 5;
2389 		else if (regulatory->current_rd == 0x41)
2390 			regulatory->current_rd = 0x43;
2391 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2392 			regulatory->current_rd);
2393 	}
2394 
2395 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2396 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2397 		ath_err(common,
2398 			"no band has been marked as supported in EEPROM\n");
2399 		return -EINVAL;
2400 	}
2401 
2402 	if (eeval & AR5416_OPFLAGS_11A)
2403 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2404 
2405 	if (eeval & AR5416_OPFLAGS_11G)
2406 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2407 
2408 	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2409 		chip_chainmask = 1;
2410 	else if (AR_SREV_9462(ah))
2411 		chip_chainmask = 3;
2412 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2413 		chip_chainmask = 7;
2414 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2415 		chip_chainmask = 3;
2416 	else
2417 		chip_chainmask = 7;
2418 
2419 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2420 	/*
2421 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2422 	 * the EEPROM.
2423 	 */
2424 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2425 	    !(eeval & AR5416_OPFLAGS_11A) &&
2426 	    !(AR_SREV_9271(ah)))
2427 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2428 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2429 	else if (AR_SREV_9100(ah))
2430 		pCap->rx_chainmask = 0x7;
2431 	else
2432 		/* Use rx_chainmask from EEPROM. */
2433 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2434 
2435 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2436 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2437 	ah->txchainmask = pCap->tx_chainmask;
2438 	ah->rxchainmask = pCap->rx_chainmask;
2439 
2440 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2441 
2442 	/* enable key search for every frame in an aggregate */
2443 	if (AR_SREV_9300_20_OR_LATER(ah))
2444 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2445 
2446 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2447 
2448 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2449 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2450 	else
2451 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2452 
2453 	if (AR_SREV_9271(ah))
2454 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2455 	else if (AR_DEVID_7010(ah))
2456 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2457 	else if (AR_SREV_9300_20_OR_LATER(ah))
2458 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2459 	else if (AR_SREV_9287_11_OR_LATER(ah))
2460 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2461 	else if (AR_SREV_9285_12_OR_LATER(ah))
2462 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2463 	else if (AR_SREV_9280_20_OR_LATER(ah))
2464 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2465 	else
2466 		pCap->num_gpio_pins = AR_NUM_GPIO;
2467 
2468 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2469 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2470 	else
2471 		pCap->rts_aggr_limit = (8 * 1024);
2472 
2473 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2474 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2475 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2476 		ah->rfkill_gpio =
2477 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2478 		ah->rfkill_polarity =
2479 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2480 
2481 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2482 	}
2483 #endif
2484 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2485 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2486 	else
2487 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2488 
2489 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2490 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2491 	else
2492 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2493 
2494 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2495 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2496 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2497 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2498 
2499 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2500 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2501 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2502 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2503 		pCap->txs_len = sizeof(struct ar9003_txs);
2504 		if (!ah->config.paprd_disable &&
2505 		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2506 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2507 	} else {
2508 		pCap->tx_desc_len = sizeof(struct ath_desc);
2509 		if (AR_SREV_9280_20(ah))
2510 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2511 	}
2512 
2513 	if (AR_SREV_9300_20_OR_LATER(ah))
2514 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2515 
2516 	if (AR_SREV_9300_20_OR_LATER(ah))
2517 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2518 
2519 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2520 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2521 
2522 	if (AR_SREV_9285(ah))
2523 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2524 			ant_div_ctl1 =
2525 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2526 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2527 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2528 		}
2529 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2530 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2531 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2532 	}
2533 
2534 
2535 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2536 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2537 		/*
2538 		 * enable the diversity-combining algorithm only when
2539 		 * both enable_lna_div and enable_fast_div are set
2540 		 *		Table for Diversity
2541 		 * ant_div_alt_lnaconf		bit 0-1
2542 		 * ant_div_main_lnaconf		bit 2-3
2543 		 * ant_div_alt_gaintb		bit 4
2544 		 * ant_div_main_gaintb		bit 5
2545 		 * enable_ant_div_lnadiv	bit 6
2546 		 * enable_ant_fast_div		bit 7
2547 		 */
2548 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2549 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2550 	}
2551 
2552 	if (AR_SREV_9485_10(ah)) {
2553 		pCap->pcie_lcr_extsync_en = true;
2554 		pCap->pcie_lcr_offset = 0x80;
2555 	}
2556 
2557 	if (ath9k_hw_dfs_tested(ah))
2558 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2559 
2560 	tx_chainmask = pCap->tx_chainmask;
2561 	rx_chainmask = pCap->rx_chainmask;
2562 	while (tx_chainmask || rx_chainmask) {
2563 		if (tx_chainmask & BIT(0))
2564 			pCap->max_txchains++;
2565 		if (rx_chainmask & BIT(0))
2566 			pCap->max_rxchains++;
2567 
2568 		tx_chainmask >>= 1;
2569 		rx_chainmask >>= 1;
2570 	}
2571 
2572 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2573 		ah->enabled_cals |= TX_IQ_CAL;
2574 		if (AR_SREV_9485_OR_LATER(ah))
2575 			ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2576 	}
2577 
2578 	if (AR_SREV_9462(ah)) {
2579 
2580 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2581 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2582 
2583 		if (AR_SREV_9462_20(ah))
2584 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2585 
2586 	}
2587 
2588 
2589 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2590 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE |
2591 				 ATH9K_HW_WOW_PATTERN_MATCH_EXACT;
2592 
2593 		if (AR_SREV_9280(ah))
2594 			pCap->hw_caps |= ATH9K_HW_WOW_PATTERN_MATCH_DWORD;
2595 	}
2596 
2597 	return 0;
2598 }
2599 
2600 /****************************/
2601 /* GPIO / RFKILL / Antennae */
2602 /****************************/
2603 
2604 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2605 					 u32 gpio, u32 type)
2606 {
2607 	int addr;
2608 	u32 gpio_shift, tmp;
2609 
2610 	if (gpio > 11)
2611 		addr = AR_GPIO_OUTPUT_MUX3;
2612 	else if (gpio > 5)
2613 		addr = AR_GPIO_OUTPUT_MUX2;
2614 	else
2615 		addr = AR_GPIO_OUTPUT_MUX1;
2616 
2617 	gpio_shift = (gpio % 6) * 5;
2618 
2619 	if (AR_SREV_9280_20_OR_LATER(ah)
2620 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2621 		REG_RMW(ah, addr, (type << gpio_shift),
2622 			(0x1f << gpio_shift));
2623 	} else {
2624 		tmp = REG_READ(ah, addr);
2625 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2626 		tmp &= ~(0x1f << gpio_shift);
2627 		tmp |= (type << gpio_shift);
2628 		REG_WRITE(ah, addr, tmp);
2629 	}
2630 }
2631 
2632 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2633 {
2634 	u32 gpio_shift;
2635 
2636 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2637 
2638 	if (AR_DEVID_7010(ah)) {
2639 		gpio_shift = gpio;
2640 		REG_RMW(ah, AR7010_GPIO_OE,
2641 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2642 			(AR7010_GPIO_OE_MASK << gpio_shift));
2643 		return;
2644 	}
2645 
2646 	gpio_shift = gpio << 1;
2647 	REG_RMW(ah,
2648 		AR_GPIO_OE_OUT,
2649 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2650 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2651 }
2652 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2653 
2654 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2655 {
2656 #define MS_REG_READ(x, y) \
2657 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2658 
2659 	if (gpio >= ah->caps.num_gpio_pins)
2660 		return 0xffffffff;
2661 
2662 	if (AR_DEVID_7010(ah)) {
2663 		u32 val;
2664 		val = REG_READ(ah, AR7010_GPIO_IN);
2665 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2666 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2667 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2668 			AR_GPIO_BIT(gpio)) != 0;
2669 	else if (AR_SREV_9271(ah))
2670 		return MS_REG_READ(AR9271, gpio) != 0;
2671 	else if (AR_SREV_9287_11_OR_LATER(ah))
2672 		return MS_REG_READ(AR9287, gpio) != 0;
2673 	else if (AR_SREV_9285_12_OR_LATER(ah))
2674 		return MS_REG_READ(AR9285, gpio) != 0;
2675 	else if (AR_SREV_9280_20_OR_LATER(ah))
2676 		return MS_REG_READ(AR928X, gpio) != 0;
2677 	else
2678 		return MS_REG_READ(AR, gpio) != 0;
2679 }
2680 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2681 
2682 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2683 			 u32 ah_signal_type)
2684 {
2685 	u32 gpio_shift;
2686 
2687 	if (AR_DEVID_7010(ah)) {
2688 		gpio_shift = gpio;
2689 		REG_RMW(ah, AR7010_GPIO_OE,
2690 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2691 			(AR7010_GPIO_OE_MASK << gpio_shift));
2692 		return;
2693 	}
2694 
2695 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2696 	gpio_shift = 2 * gpio;
2697 	REG_RMW(ah,
2698 		AR_GPIO_OE_OUT,
2699 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2700 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2701 }
2702 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2703 
2704 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2705 {
2706 	if (AR_DEVID_7010(ah)) {
2707 		val = val ? 0 : 1;
2708 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2709 			AR_GPIO_BIT(gpio));
2710 		return;
2711 	}
2712 
2713 	if (AR_SREV_9271(ah))
2714 		val = ~val;
2715 
2716 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2717 		AR_GPIO_BIT(gpio));
2718 }
2719 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2720 
2721 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2722 {
2723 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2724 }
2725 EXPORT_SYMBOL(ath9k_hw_setantenna);
2726 
2727 /*********************/
2728 /* General Operation */
2729 /*********************/
2730 
2731 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2732 {
2733 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2734 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2735 
2736 	if (phybits & AR_PHY_ERR_RADAR)
2737 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2738 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2739 		bits |= ATH9K_RX_FILTER_PHYERR;
2740 
2741 	return bits;
2742 }
2743 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2744 
2745 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2746 {
2747 	u32 phybits;
2748 
2749 	ENABLE_REGWRITE_BUFFER(ah);
2750 
2751 	if (AR_SREV_9462(ah))
2752 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2753 
2754 	REG_WRITE(ah, AR_RX_FILTER, bits);
2755 
2756 	phybits = 0;
2757 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2758 		phybits |= AR_PHY_ERR_RADAR;
2759 	if (bits & ATH9K_RX_FILTER_PHYERR)
2760 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2761 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2762 
2763 	if (phybits)
2764 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2765 	else
2766 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2767 
2768 	REGWRITE_BUFFER_FLUSH(ah);
2769 }
2770 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2771 
2772 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2773 {
2774 	if (ath9k_hw_mci_is_enabled(ah))
2775 		ar9003_mci_bt_gain_ctrl(ah);
2776 
2777 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2778 		return false;
2779 
2780 	ath9k_hw_init_pll(ah, NULL);
2781 	ah->htc_reset_init = true;
2782 	return true;
2783 }
2784 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2785 
2786 bool ath9k_hw_disable(struct ath_hw *ah)
2787 {
2788 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2789 		return false;
2790 
2791 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2792 		return false;
2793 
2794 	ath9k_hw_init_pll(ah, NULL);
2795 	return true;
2796 }
2797 EXPORT_SYMBOL(ath9k_hw_disable);
2798 
2799 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2800 {
2801 	enum eeprom_param gain_param;
2802 
2803 	if (IS_CHAN_2GHZ(chan))
2804 		gain_param = EEP_ANTENNA_GAIN_2G;
2805 	else
2806 		gain_param = EEP_ANTENNA_GAIN_5G;
2807 
2808 	return ah->eep_ops->get_eeprom(ah, gain_param);
2809 }
2810 
2811 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2812 			    bool test)
2813 {
2814 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2815 	struct ieee80211_channel *channel;
2816 	int chan_pwr, new_pwr, max_gain;
2817 	int ant_gain, ant_reduction = 0;
2818 
2819 	if (!chan)
2820 		return;
2821 
2822 	channel = chan->chan;
2823 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2824 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2825 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2826 
2827 	ant_gain = get_antenna_gain(ah, chan);
2828 	if (ant_gain > max_gain)
2829 		ant_reduction = ant_gain - max_gain;
2830 
2831 	ah->eep_ops->set_txpower(ah, chan,
2832 				 ath9k_regd_get_ctl(reg, chan),
2833 				 ant_reduction, new_pwr, test);
2834 }
2835 
2836 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2837 {
2838 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2839 	struct ath9k_channel *chan = ah->curchan;
2840 	struct ieee80211_channel *channel = chan->chan;
2841 
2842 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2843 	if (test)
2844 		channel->max_power = MAX_RATE_POWER / 2;
2845 
2846 	ath9k_hw_apply_txpower(ah, chan, test);
2847 
2848 	if (test)
2849 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2850 }
2851 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2852 
2853 void ath9k_hw_setopmode(struct ath_hw *ah)
2854 {
2855 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2856 }
2857 EXPORT_SYMBOL(ath9k_hw_setopmode);
2858 
2859 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2860 {
2861 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2862 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2863 }
2864 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2865 
2866 void ath9k_hw_write_associd(struct ath_hw *ah)
2867 {
2868 	struct ath_common *common = ath9k_hw_common(ah);
2869 
2870 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2871 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2872 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2873 }
2874 EXPORT_SYMBOL(ath9k_hw_write_associd);
2875 
2876 #define ATH9K_MAX_TSF_READ 10
2877 
2878 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2879 {
2880 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2881 	int i;
2882 
2883 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2884 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2885 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2886 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2887 		if (tsf_upper2 == tsf_upper1)
2888 			break;
2889 		tsf_upper1 = tsf_upper2;
2890 	}
2891 
2892 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2893 
2894 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2895 }
2896 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2897 
2898 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2899 {
2900 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2901 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2902 }
2903 EXPORT_SYMBOL(ath9k_hw_settsf64);
2904 
2905 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2906 {
2907 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2908 			   AH_TSF_WRITE_TIMEOUT))
2909 		ath_dbg(ath9k_hw_common(ah), RESET,
2910 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2911 
2912 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2913 }
2914 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2915 
2916 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2917 {
2918 	if (set)
2919 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2920 	else
2921 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2922 }
2923 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2924 
2925 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2926 {
2927 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2928 	u32 macmode;
2929 
2930 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2931 		macmode = AR_2040_JOINED_RX_CLEAR;
2932 	else
2933 		macmode = 0;
2934 
2935 	REG_WRITE(ah, AR_2040_MODE, macmode);
2936 }
2937 
2938 /* HW Generic timers configuration */
2939 
2940 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2941 {
2942 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2943 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2944 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2945 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2946 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2947 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2948 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2949 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2950 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2951 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2952 				AR_NDP2_TIMER_MODE, 0x0002},
2953 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2954 				AR_NDP2_TIMER_MODE, 0x0004},
2955 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2956 				AR_NDP2_TIMER_MODE, 0x0008},
2957 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2958 				AR_NDP2_TIMER_MODE, 0x0010},
2959 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2960 				AR_NDP2_TIMER_MODE, 0x0020},
2961 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2962 				AR_NDP2_TIMER_MODE, 0x0040},
2963 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2964 				AR_NDP2_TIMER_MODE, 0x0080}
2965 };
2966 
2967 /* HW generic timer primitives */
2968 
2969 /* compute and clear index of rightmost 1 */
2970 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2971 {
2972 	u32 b;
2973 
2974 	b = *mask;
2975 	b &= (0-b);
2976 	*mask &= ~b;
2977 	b *= debruijn32;
2978 	b >>= 27;
2979 
2980 	return timer_table->gen_timer_index[b];
2981 }
2982 
2983 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2984 {
2985 	return REG_READ(ah, AR_TSF_L32);
2986 }
2987 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2988 
2989 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2990 					  void (*trigger)(void *),
2991 					  void (*overflow)(void *),
2992 					  void *arg,
2993 					  u8 timer_index)
2994 {
2995 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2996 	struct ath_gen_timer *timer;
2997 
2998 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2999 
3000 	if (timer == NULL) {
3001 		ath_err(ath9k_hw_common(ah),
3002 			"Failed to allocate memory for hw timer[%d]\n",
3003 			timer_index);
3004 		return NULL;
3005 	}
3006 
3007 	/* allocate a hardware generic timer slot */
3008 	timer_table->timers[timer_index] = timer;
3009 	timer->index = timer_index;
3010 	timer->trigger = trigger;
3011 	timer->overflow = overflow;
3012 	timer->arg = arg;
3013 
3014 	return timer;
3015 }
3016 EXPORT_SYMBOL(ath_gen_timer_alloc);
3017 
3018 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3019 			      struct ath_gen_timer *timer,
3020 			      u32 trig_timeout,
3021 			      u32 timer_period)
3022 {
3023 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3024 	u32 tsf, timer_next;
3025 
3026 	BUG_ON(!timer_period);
3027 
3028 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3029 
3030 	tsf = ath9k_hw_gettsf32(ah);
3031 
3032 	timer_next = tsf + trig_timeout;
3033 
3034 	ath_dbg(ath9k_hw_common(ah), HWTIMER,
3035 		"current tsf %x period %x timer_next %x\n",
3036 		tsf, timer_period, timer_next);
3037 
3038 	/*
3039 	 * Program generic timer registers
3040 	 */
3041 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3042 		 timer_next);
3043 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3044 		  timer_period);
3045 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3046 		    gen_tmr_configuration[timer->index].mode_mask);
3047 
3048 	if (AR_SREV_9462(ah)) {
3049 		/*
3050 		 * Starting from AR9462, each generic timer can select which tsf
3051 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3052 		 * 8 - 15  use tsf2.
3053 		 */
3054 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3055 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3056 				       (1 << timer->index));
3057 		else
3058 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3059 				       (1 << timer->index));
3060 	}
3061 
3062 	/* Enable both trigger and thresh interrupt masks */
3063 	REG_SET_BIT(ah, AR_IMR_S5,
3064 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3065 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3066 }
3067 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3068 
3069 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3070 {
3071 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3072 
3073 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3074 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3075 		return;
3076 	}
3077 
3078 	/* Clear generic timer enable bits. */
3079 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3080 			gen_tmr_configuration[timer->index].mode_mask);
3081 
3082 	/* Disable both trigger and thresh interrupt masks */
3083 	REG_CLR_BIT(ah, AR_IMR_S5,
3084 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3085 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3086 
3087 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3088 }
3089 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3090 
3091 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3092 {
3093 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3094 
3095 	/* free the hardware generic timer slot */
3096 	timer_table->timers[timer->index] = NULL;
3097 	kfree(timer);
3098 }
3099 EXPORT_SYMBOL(ath_gen_timer_free);
3100 
3101 /*
3102  * Generic Timer Interrupts handling
3103  */
3104 void ath_gen_timer_isr(struct ath_hw *ah)
3105 {
3106 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3107 	struct ath_gen_timer *timer;
3108 	struct ath_common *common = ath9k_hw_common(ah);
3109 	u32 trigger_mask, thresh_mask, index;
3110 
3111 	/* get hardware generic timer interrupt status */
3112 	trigger_mask = ah->intr_gen_timer_trigger;
3113 	thresh_mask = ah->intr_gen_timer_thresh;
3114 	trigger_mask &= timer_table->timer_mask.val;
3115 	thresh_mask &= timer_table->timer_mask.val;
3116 
3117 	trigger_mask &= ~thresh_mask;
3118 
3119 	while (thresh_mask) {
3120 		index = rightmost_index(timer_table, &thresh_mask);
3121 		timer = timer_table->timers[index];
3122 		BUG_ON(!timer);
3123 		ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3124 			index);
3125 		timer->overflow(timer->arg);
3126 	}
3127 
3128 	while (trigger_mask) {
3129 		index = rightmost_index(timer_table, &trigger_mask);
3130 		timer = timer_table->timers[index];
3131 		BUG_ON(!timer);
3132 		ath_dbg(common, HWTIMER,
3133 			"Gen timer[%d] trigger\n", index);
3134 		timer->trigger(timer->arg);
3135 	}
3136 }
3137 EXPORT_SYMBOL(ath_gen_timer_isr);
3138 
3139 /********/
3140 /* HTC  */
3141 /********/
3142 
3143 static struct {
3144 	u32 version;
3145 	const char * name;
3146 } ath_mac_bb_names[] = {
3147 	/* Devices with external radios */
3148 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3149 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3150 	{ AR_SREV_VERSION_9100,		"9100" },
3151 	{ AR_SREV_VERSION_9160,		"9160" },
3152 	/* Single-chip solutions */
3153 	{ AR_SREV_VERSION_9280,		"9280" },
3154 	{ AR_SREV_VERSION_9285,		"9285" },
3155 	{ AR_SREV_VERSION_9287,         "9287" },
3156 	{ AR_SREV_VERSION_9271,         "9271" },
3157 	{ AR_SREV_VERSION_9300,         "9300" },
3158 	{ AR_SREV_VERSION_9330,         "9330" },
3159 	{ AR_SREV_VERSION_9340,		"9340" },
3160 	{ AR_SREV_VERSION_9485,         "9485" },
3161 	{ AR_SREV_VERSION_9462,         "9462" },
3162 	{ AR_SREV_VERSION_9550,         "9550" },
3163 };
3164 
3165 /* For devices with external radios */
3166 static struct {
3167 	u16 version;
3168 	const char * name;
3169 } ath_rf_names[] = {
3170 	{ 0,				"5133" },
3171 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3172 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3173 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3174 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3175 };
3176 
3177 /*
3178  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3179  */
3180 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3181 {
3182 	int i;
3183 
3184 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3185 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3186 			return ath_mac_bb_names[i].name;
3187 		}
3188 	}
3189 
3190 	return "????";
3191 }
3192 
3193 /*
3194  * Return the RF name. "????" is returned if the RF is unknown.
3195  * Used for devices with external radios.
3196  */
3197 static const char *ath9k_hw_rf_name(u16 rf_version)
3198 {
3199 	int i;
3200 
3201 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3202 		if (ath_rf_names[i].version == rf_version) {
3203 			return ath_rf_names[i].name;
3204 		}
3205 	}
3206 
3207 	return "????";
3208 }
3209 
3210 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3211 {
3212 	int used;
3213 
3214 	/* chipsets >= AR9280 are single-chip */
3215 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3216 		used = snprintf(hw_name, len,
3217 			       "Atheros AR%s Rev:%x",
3218 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3219 			       ah->hw_version.macRev);
3220 	}
3221 	else {
3222 		used = snprintf(hw_name, len,
3223 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3224 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3225 			       ah->hw_version.macRev,
3226 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3227 						AR_RADIO_SREV_MAJOR)),
3228 			       ah->hw_version.phyRev);
3229 	}
3230 
3231 	hw_name[used] = '\0';
3232 }
3233 EXPORT_SYMBOL(ath9k_hw_name);
3234