xref: /linux/drivers/net/wireless/ath/ath9k/hw.c (revision 8c749ce93ee69e789e46b3be98de9e0cbfcf8ed8)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
25 
26 #include "hw.h"
27 #include "hw-ops.h"
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
31 #include "ath9k.h"
32 
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34 
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39 
40 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
41 {
42 	struct ath_common *common = ath9k_hw_common(ah);
43 	struct ath9k_channel *chan = ah->curchan;
44 	unsigned int clockrate;
45 
46 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
48 		clockrate = 117;
49 	else if (!chan) /* should really check for CCK instead */
50 		clockrate = ATH9K_CLOCK_RATE_CCK;
51 	else if (IS_CHAN_2GHZ(chan))
52 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
53 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
54 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
55 	else
56 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
57 
58 	if (chan) {
59 		if (IS_CHAN_HT40(chan))
60 			clockrate *= 2;
61 		if (IS_CHAN_HALF_RATE(chan))
62 			clockrate /= 2;
63 		if (IS_CHAN_QUARTER_RATE(chan))
64 			clockrate /= 4;
65 	}
66 
67 	common->clockrate = clockrate;
68 }
69 
70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
71 {
72 	struct ath_common *common = ath9k_hw_common(ah);
73 
74 	return usecs * common->clockrate;
75 }
76 
77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
78 {
79 	int i;
80 
81 	BUG_ON(timeout < AH_TIME_QUANTUM);
82 
83 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 		if ((REG_READ(ah, reg) & mask) == val)
85 			return true;
86 
87 		udelay(AH_TIME_QUANTUM);
88 	}
89 
90 	ath_dbg(ath9k_hw_common(ah), ANY,
91 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 		timeout, reg, REG_READ(ah, reg), mask, val);
93 
94 	return false;
95 }
96 EXPORT_SYMBOL(ath9k_hw_wait);
97 
98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
99 			  int hw_delay)
100 {
101 	hw_delay /= 10;
102 
103 	if (IS_CHAN_HALF_RATE(chan))
104 		hw_delay *= 2;
105 	else if (IS_CHAN_QUARTER_RATE(chan))
106 		hw_delay *= 4;
107 
108 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
109 }
110 
111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
112 			  int column, unsigned int *writecnt)
113 {
114 	int r;
115 
116 	ENABLE_REGWRITE_BUFFER(ah);
117 	for (r = 0; r < array->ia_rows; r++) {
118 		REG_WRITE(ah, INI_RA(array, r, 0),
119 			  INI_RA(array, r, column));
120 		DO_DELAY(*writecnt);
121 	}
122 	REGWRITE_BUFFER_FLUSH(ah);
123 }
124 
125 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
126 {
127 	u32 *tmp_reg_list, *tmp_data;
128 	int i;
129 
130 	tmp_reg_list = kmalloc(size * sizeof(u32), GFP_KERNEL);
131 	if (!tmp_reg_list) {
132 		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
133 		return;
134 	}
135 
136 	tmp_data = kmalloc(size * sizeof(u32), GFP_KERNEL);
137 	if (!tmp_data) {
138 		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
139 		goto error_tmp_data;
140 	}
141 
142 	for (i = 0; i < size; i++)
143 		tmp_reg_list[i] = array[i][0];
144 
145 	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
146 
147 	for (i = 0; i < size; i++)
148 		array[i][1] = tmp_data[i];
149 
150 	kfree(tmp_data);
151 error_tmp_data:
152 	kfree(tmp_reg_list);
153 }
154 
155 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
156 {
157 	u32 retval;
158 	int i;
159 
160 	for (i = 0, retval = 0; i < n; i++) {
161 		retval = (retval << 1) | (val & 1);
162 		val >>= 1;
163 	}
164 	return retval;
165 }
166 
167 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
168 			   u8 phy, int kbps,
169 			   u32 frameLen, u16 rateix,
170 			   bool shortPreamble)
171 {
172 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
173 
174 	if (kbps == 0)
175 		return 0;
176 
177 	switch (phy) {
178 	case WLAN_RC_PHY_CCK:
179 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
180 		if (shortPreamble)
181 			phyTime >>= 1;
182 		numBits = frameLen << 3;
183 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
184 		break;
185 	case WLAN_RC_PHY_OFDM:
186 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
187 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
188 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
189 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
190 			txTime = OFDM_SIFS_TIME_QUARTER
191 				+ OFDM_PREAMBLE_TIME_QUARTER
192 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
193 		} else if (ah->curchan &&
194 			   IS_CHAN_HALF_RATE(ah->curchan)) {
195 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
196 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
197 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
198 			txTime = OFDM_SIFS_TIME_HALF +
199 				OFDM_PREAMBLE_TIME_HALF
200 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
201 		} else {
202 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
203 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
204 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
205 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
206 				+ (numSymbols * OFDM_SYMBOL_TIME);
207 		}
208 		break;
209 	default:
210 		ath_err(ath9k_hw_common(ah),
211 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
212 		txTime = 0;
213 		break;
214 	}
215 
216 	return txTime;
217 }
218 EXPORT_SYMBOL(ath9k_hw_computetxtime);
219 
220 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
221 				  struct ath9k_channel *chan,
222 				  struct chan_centers *centers)
223 {
224 	int8_t extoff;
225 
226 	if (!IS_CHAN_HT40(chan)) {
227 		centers->ctl_center = centers->ext_center =
228 			centers->synth_center = chan->channel;
229 		return;
230 	}
231 
232 	if (IS_CHAN_HT40PLUS(chan)) {
233 		centers->synth_center =
234 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
235 		extoff = 1;
236 	} else {
237 		centers->synth_center =
238 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
239 		extoff = -1;
240 	}
241 
242 	centers->ctl_center =
243 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
244 	/* 25 MHz spacing is supported by hw but not on upper layers */
245 	centers->ext_center =
246 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
247 }
248 
249 /******************/
250 /* Chip Revisions */
251 /******************/
252 
253 static void ath9k_hw_read_revisions(struct ath_hw *ah)
254 {
255 	u32 val;
256 
257 	if (ah->get_mac_revision)
258 		ah->hw_version.macRev = ah->get_mac_revision();
259 
260 	switch (ah->hw_version.devid) {
261 	case AR5416_AR9100_DEVID:
262 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
263 		break;
264 	case AR9300_DEVID_AR9330:
265 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
266 		if (!ah->get_mac_revision) {
267 			val = REG_READ(ah, AR_SREV);
268 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
269 		}
270 		return;
271 	case AR9300_DEVID_AR9340:
272 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
273 		return;
274 	case AR9300_DEVID_QCA955X:
275 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
276 		return;
277 	case AR9300_DEVID_AR953X:
278 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
279 		return;
280 	case AR9300_DEVID_QCA956X:
281 		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
282 		return;
283 	}
284 
285 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
286 
287 	if (val == 0xFF) {
288 		val = REG_READ(ah, AR_SREV);
289 		ah->hw_version.macVersion =
290 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
291 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
292 
293 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
294 			ah->is_pciexpress = true;
295 		else
296 			ah->is_pciexpress = (val &
297 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
298 	} else {
299 		if (!AR_SREV_9100(ah))
300 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
301 
302 		ah->hw_version.macRev = val & AR_SREV_REVISION;
303 
304 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
305 			ah->is_pciexpress = true;
306 	}
307 }
308 
309 /************************************/
310 /* HW Attach, Detach, Init Routines */
311 /************************************/
312 
313 static void ath9k_hw_disablepcie(struct ath_hw *ah)
314 {
315 	if (!AR_SREV_5416(ah))
316 		return;
317 
318 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
319 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
320 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
321 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
322 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
323 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
324 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
325 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
326 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
327 
328 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
329 }
330 
331 /* This should work for all families including legacy */
332 static bool ath9k_hw_chip_test(struct ath_hw *ah)
333 {
334 	struct ath_common *common = ath9k_hw_common(ah);
335 	u32 regAddr[2] = { AR_STA_ID0 };
336 	u32 regHold[2];
337 	static const u32 patternData[4] = {
338 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
339 	};
340 	int i, j, loop_max;
341 
342 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
343 		loop_max = 2;
344 		regAddr[1] = AR_PHY_BASE + (8 << 2);
345 	} else
346 		loop_max = 1;
347 
348 	for (i = 0; i < loop_max; i++) {
349 		u32 addr = regAddr[i];
350 		u32 wrData, rdData;
351 
352 		regHold[i] = REG_READ(ah, addr);
353 		for (j = 0; j < 0x100; j++) {
354 			wrData = (j << 16) | j;
355 			REG_WRITE(ah, addr, wrData);
356 			rdData = REG_READ(ah, addr);
357 			if (rdData != wrData) {
358 				ath_err(common,
359 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
360 					addr, wrData, rdData);
361 				return false;
362 			}
363 		}
364 		for (j = 0; j < 4; j++) {
365 			wrData = patternData[j];
366 			REG_WRITE(ah, addr, wrData);
367 			rdData = REG_READ(ah, addr);
368 			if (wrData != rdData) {
369 				ath_err(common,
370 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
371 					addr, wrData, rdData);
372 				return false;
373 			}
374 		}
375 		REG_WRITE(ah, regAddr[i], regHold[i]);
376 	}
377 	udelay(100);
378 
379 	return true;
380 }
381 
382 static void ath9k_hw_init_config(struct ath_hw *ah)
383 {
384 	struct ath_common *common = ath9k_hw_common(ah);
385 
386 	ah->config.dma_beacon_response_time = 1;
387 	ah->config.sw_beacon_response_time = 6;
388 	ah->config.cwm_ignore_extcca = false;
389 	ah->config.analog_shiftreg = 1;
390 
391 	ah->config.rx_intr_mitigation = true;
392 
393 	if (AR_SREV_9300_20_OR_LATER(ah)) {
394 		ah->config.rimt_last = 500;
395 		ah->config.rimt_first = 2000;
396 	} else {
397 		ah->config.rimt_last = 250;
398 		ah->config.rimt_first = 700;
399 	}
400 
401 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
402 		ah->config.pll_pwrsave = 7;
403 
404 	/*
405 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
406 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
407 	 * This means we use it for all AR5416 devices, and the few
408 	 * minor PCI AR9280 devices out there.
409 	 *
410 	 * Serialization is required because these devices do not handle
411 	 * well the case of two concurrent reads/writes due to the latency
412 	 * involved. During one read/write another read/write can be issued
413 	 * on another CPU while the previous read/write may still be working
414 	 * on our hardware, if we hit this case the hardware poops in a loop.
415 	 * We prevent this by serializing reads and writes.
416 	 *
417 	 * This issue is not present on PCI-Express devices or pre-AR5416
418 	 * devices (legacy, 802.11abg).
419 	 */
420 	if (num_possible_cpus() > 1)
421 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
422 
423 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
424 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
425 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
426 		     !ah->is_pciexpress)) {
427 			ah->config.serialize_regmode = SER_REG_MODE_ON;
428 		} else {
429 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
430 		}
431 	}
432 
433 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
434 		ah->config.serialize_regmode);
435 
436 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
437 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
438 	else
439 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
440 }
441 
442 static void ath9k_hw_init_defaults(struct ath_hw *ah)
443 {
444 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
445 
446 	regulatory->country_code = CTRY_DEFAULT;
447 	regulatory->power_limit = MAX_RATE_POWER;
448 
449 	ah->hw_version.magic = AR5416_MAGIC;
450 	ah->hw_version.subvendorid = 0;
451 
452 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
453 			       AR_STA_ID1_MCAST_KSRCH;
454 	if (AR_SREV_9100(ah))
455 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
456 
457 	ah->slottime = ATH9K_SLOT_TIME_9;
458 	ah->globaltxtimeout = (u32) -1;
459 	ah->power_mode = ATH9K_PM_UNDEFINED;
460 	ah->htc_reset_init = true;
461 
462 	ah->tpc_enabled = false;
463 
464 	ah->ani_function = ATH9K_ANI_ALL;
465 	if (!AR_SREV_9300_20_OR_LATER(ah))
466 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
467 
468 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
469 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
470 	else
471 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
472 }
473 
474 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
475 {
476 	struct ath_common *common = ath9k_hw_common(ah);
477 	u32 sum;
478 	int i;
479 	u16 eeval;
480 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
481 
482 	sum = 0;
483 	for (i = 0; i < 3; i++) {
484 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
485 		sum += eeval;
486 		common->macaddr[2 * i] = eeval >> 8;
487 		common->macaddr[2 * i + 1] = eeval & 0xff;
488 	}
489 	if (!is_valid_ether_addr(common->macaddr)) {
490 		ath_err(common,
491 			"eeprom contains invalid mac address: %pM\n",
492 			common->macaddr);
493 
494 		random_ether_addr(common->macaddr);
495 		ath_err(common,
496 			"random mac address will be used: %pM\n",
497 			common->macaddr);
498 	}
499 
500 	return 0;
501 }
502 
503 static int ath9k_hw_post_init(struct ath_hw *ah)
504 {
505 	struct ath_common *common = ath9k_hw_common(ah);
506 	int ecode;
507 
508 	if (common->bus_ops->ath_bus_type != ATH_USB) {
509 		if (!ath9k_hw_chip_test(ah))
510 			return -ENODEV;
511 	}
512 
513 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
514 		ecode = ar9002_hw_rf_claim(ah);
515 		if (ecode != 0)
516 			return ecode;
517 	}
518 
519 	ecode = ath9k_hw_eeprom_init(ah);
520 	if (ecode != 0)
521 		return ecode;
522 
523 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
524 		ah->eep_ops->get_eeprom_ver(ah),
525 		ah->eep_ops->get_eeprom_rev(ah));
526 
527 	ath9k_hw_ani_init(ah);
528 
529 	/*
530 	 * EEPROM needs to be initialized before we do this.
531 	 * This is required for regulatory compliance.
532 	 */
533 	if (AR_SREV_9300_20_OR_LATER(ah)) {
534 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
535 		if ((regdmn & 0xF0) == CTL_FCC) {
536 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
537 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
538 		}
539 	}
540 
541 	return 0;
542 }
543 
544 static int ath9k_hw_attach_ops(struct ath_hw *ah)
545 {
546 	if (!AR_SREV_9300_20_OR_LATER(ah))
547 		return ar9002_hw_attach_ops(ah);
548 
549 	ar9003_hw_attach_ops(ah);
550 	return 0;
551 }
552 
553 /* Called for all hardware families */
554 static int __ath9k_hw_init(struct ath_hw *ah)
555 {
556 	struct ath_common *common = ath9k_hw_common(ah);
557 	int r = 0;
558 
559 	ath9k_hw_read_revisions(ah);
560 
561 	switch (ah->hw_version.macVersion) {
562 	case AR_SREV_VERSION_5416_PCI:
563 	case AR_SREV_VERSION_5416_PCIE:
564 	case AR_SREV_VERSION_9160:
565 	case AR_SREV_VERSION_9100:
566 	case AR_SREV_VERSION_9280:
567 	case AR_SREV_VERSION_9285:
568 	case AR_SREV_VERSION_9287:
569 	case AR_SREV_VERSION_9271:
570 	case AR_SREV_VERSION_9300:
571 	case AR_SREV_VERSION_9330:
572 	case AR_SREV_VERSION_9485:
573 	case AR_SREV_VERSION_9340:
574 	case AR_SREV_VERSION_9462:
575 	case AR_SREV_VERSION_9550:
576 	case AR_SREV_VERSION_9565:
577 	case AR_SREV_VERSION_9531:
578 	case AR_SREV_VERSION_9561:
579 		break;
580 	default:
581 		ath_err(common,
582 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
583 			ah->hw_version.macVersion, ah->hw_version.macRev);
584 		return -EOPNOTSUPP;
585 	}
586 
587 	/*
588 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
589 	 * We need to do this to avoid RMW of this register. We cannot
590 	 * read the reg when chip is asleep.
591 	 */
592 	if (AR_SREV_9300_20_OR_LATER(ah)) {
593 		ah->WARegVal = REG_READ(ah, AR_WA);
594 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
595 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
596 	}
597 
598 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
599 		ath_err(common, "Couldn't reset chip\n");
600 		return -EIO;
601 	}
602 
603 	if (AR_SREV_9565(ah)) {
604 		ah->WARegVal |= AR_WA_BIT22;
605 		REG_WRITE(ah, AR_WA, ah->WARegVal);
606 	}
607 
608 	ath9k_hw_init_defaults(ah);
609 	ath9k_hw_init_config(ah);
610 
611 	r = ath9k_hw_attach_ops(ah);
612 	if (r)
613 		return r;
614 
615 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
616 		ath_err(common, "Couldn't wakeup chip\n");
617 		return -EIO;
618 	}
619 
620 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
621 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
622 		ah->is_pciexpress = false;
623 
624 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
625 	ath9k_hw_init_cal_settings(ah);
626 
627 	if (!ah->is_pciexpress)
628 		ath9k_hw_disablepcie(ah);
629 
630 	r = ath9k_hw_post_init(ah);
631 	if (r)
632 		return r;
633 
634 	ath9k_hw_init_mode_gain_regs(ah);
635 	r = ath9k_hw_fill_cap_info(ah);
636 	if (r)
637 		return r;
638 
639 	r = ath9k_hw_init_macaddr(ah);
640 	if (r) {
641 		ath_err(common, "Failed to initialize MAC address\n");
642 		return r;
643 	}
644 
645 	ath9k_hw_init_hang_checks(ah);
646 
647 	common->state = ATH_HW_INITIALIZED;
648 
649 	return 0;
650 }
651 
652 int ath9k_hw_init(struct ath_hw *ah)
653 {
654 	int ret;
655 	struct ath_common *common = ath9k_hw_common(ah);
656 
657 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
658 	switch (ah->hw_version.devid) {
659 	case AR5416_DEVID_PCI:
660 	case AR5416_DEVID_PCIE:
661 	case AR5416_AR9100_DEVID:
662 	case AR9160_DEVID_PCI:
663 	case AR9280_DEVID_PCI:
664 	case AR9280_DEVID_PCIE:
665 	case AR9285_DEVID_PCIE:
666 	case AR9287_DEVID_PCI:
667 	case AR9287_DEVID_PCIE:
668 	case AR2427_DEVID_PCIE:
669 	case AR9300_DEVID_PCIE:
670 	case AR9300_DEVID_AR9485_PCIE:
671 	case AR9300_DEVID_AR9330:
672 	case AR9300_DEVID_AR9340:
673 	case AR9300_DEVID_QCA955X:
674 	case AR9300_DEVID_AR9580:
675 	case AR9300_DEVID_AR9462:
676 	case AR9485_DEVID_AR1111:
677 	case AR9300_DEVID_AR9565:
678 	case AR9300_DEVID_AR953X:
679 	case AR9300_DEVID_QCA956X:
680 		break;
681 	default:
682 		if (common->bus_ops->ath_bus_type == ATH_USB)
683 			break;
684 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
685 			ah->hw_version.devid);
686 		return -EOPNOTSUPP;
687 	}
688 
689 	ret = __ath9k_hw_init(ah);
690 	if (ret) {
691 		ath_err(common,
692 			"Unable to initialize hardware; initialization status: %d\n",
693 			ret);
694 		return ret;
695 	}
696 
697 	ath_dynack_init(ah);
698 
699 	return 0;
700 }
701 EXPORT_SYMBOL(ath9k_hw_init);
702 
703 static void ath9k_hw_init_qos(struct ath_hw *ah)
704 {
705 	ENABLE_REGWRITE_BUFFER(ah);
706 
707 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
708 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
709 
710 	REG_WRITE(ah, AR_QOS_NO_ACK,
711 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
712 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
713 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
714 
715 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
716 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
717 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
718 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
719 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
720 
721 	REGWRITE_BUFFER_FLUSH(ah);
722 }
723 
724 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
725 {
726 	struct ath_common *common = ath9k_hw_common(ah);
727 	int i = 0;
728 
729 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
730 	udelay(100);
731 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
732 
733 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
734 
735 		udelay(100);
736 
737 		if (WARN_ON_ONCE(i >= 100)) {
738 			ath_err(common, "PLL4 meaurement not done\n");
739 			break;
740 		}
741 
742 		i++;
743 	}
744 
745 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
746 }
747 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
748 
749 static void ath9k_hw_init_pll(struct ath_hw *ah,
750 			      struct ath9k_channel *chan)
751 {
752 	u32 pll;
753 
754 	pll = ath9k_hw_compute_pll_control(ah, chan);
755 
756 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
757 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
758 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
759 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
760 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
761 			      AR_CH0_DPLL2_KD, 0x40);
762 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
763 			      AR_CH0_DPLL2_KI, 0x4);
764 
765 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
766 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
767 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
768 			      AR_CH0_BB_DPLL1_NINI, 0x58);
769 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
770 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
771 
772 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
773 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
774 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
775 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
776 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
777 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
778 
779 		/* program BB PLL phase_shift to 0x6 */
780 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
781 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
782 
783 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
784 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
785 		udelay(1000);
786 	} else if (AR_SREV_9330(ah)) {
787 		u32 ddr_dpll2, pll_control2, kd;
788 
789 		if (ah->is_clk_25mhz) {
790 			ddr_dpll2 = 0x18e82f01;
791 			pll_control2 = 0xe04a3d;
792 			kd = 0x1d;
793 		} else {
794 			ddr_dpll2 = 0x19e82f01;
795 			pll_control2 = 0x886666;
796 			kd = 0x3d;
797 		}
798 
799 		/* program DDR PLL ki and kd value */
800 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
801 
802 		/* program DDR PLL phase_shift */
803 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
804 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
805 
806 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
807 			  pll | AR_RTC_9300_PLL_BYPASS);
808 		udelay(1000);
809 
810 		/* program refdiv, nint, frac to RTC register */
811 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
812 
813 		/* program BB PLL kd and ki value */
814 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
815 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
816 
817 		/* program BB PLL phase_shift */
818 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
819 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
820 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
821 		   AR_SREV_9561(ah)) {
822 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
823 
824 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
825 			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
826 		udelay(1000);
827 
828 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
829 		udelay(100);
830 
831 		if (ah->is_clk_25mhz) {
832 			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
833 				pll2_divint = 0x1c;
834 				pll2_divfrac = 0xa3d2;
835 				refdiv = 1;
836 			} else {
837 				pll2_divint = 0x54;
838 				pll2_divfrac = 0x1eb85;
839 				refdiv = 3;
840 			}
841 		} else {
842 			if (AR_SREV_9340(ah)) {
843 				pll2_divint = 88;
844 				pll2_divfrac = 0;
845 				refdiv = 5;
846 			} else {
847 				pll2_divint = 0x11;
848 				pll2_divfrac = (AR_SREV_9531(ah) ||
849 						AR_SREV_9561(ah)) ?
850 						0x26665 : 0x26666;
851 				refdiv = 1;
852 			}
853 		}
854 
855 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
856 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
857 			regval |= (0x1 << 22);
858 		else
859 			regval |= (0x1 << 16);
860 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
861 		udelay(100);
862 
863 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
864 			  (pll2_divint << 18) | pll2_divfrac);
865 		udelay(100);
866 
867 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
868 		if (AR_SREV_9340(ah))
869 			regval = (regval & 0x80071fff) |
870 				(0x1 << 30) |
871 				(0x1 << 13) |
872 				(0x4 << 26) |
873 				(0x18 << 19);
874 		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
875 			regval = (regval & 0x01c00fff) |
876 				(0x1 << 31) |
877 				(0x2 << 29) |
878 				(0xa << 25) |
879 				(0x1 << 19);
880 
881 			if (AR_SREV_9531(ah))
882 				regval |= (0x6 << 12);
883 		} else
884 			regval = (regval & 0x80071fff) |
885 				(0x3 << 30) |
886 				(0x1 << 13) |
887 				(0x4 << 26) |
888 				(0x60 << 19);
889 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
890 
891 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
892 			REG_WRITE(ah, AR_PHY_PLL_MODE,
893 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
894 		else
895 			REG_WRITE(ah, AR_PHY_PLL_MODE,
896 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
897 
898 		udelay(1000);
899 	}
900 
901 	if (AR_SREV_9565(ah))
902 		pll |= 0x40000;
903 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
904 
905 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
906 	    AR_SREV_9550(ah))
907 		udelay(1000);
908 
909 	/* Switch the core clock for ar9271 to 117Mhz */
910 	if (AR_SREV_9271(ah)) {
911 		udelay(500);
912 		REG_WRITE(ah, 0x50040, 0x304);
913 	}
914 
915 	udelay(RTC_PLL_SETTLE_DELAY);
916 
917 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
918 }
919 
920 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
921 					  enum nl80211_iftype opmode)
922 {
923 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
924 	u32 imr_reg = AR_IMR_TXERR |
925 		AR_IMR_TXURN |
926 		AR_IMR_RXERR |
927 		AR_IMR_RXORN |
928 		AR_IMR_BCNMISC;
929 
930 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
931 	    AR_SREV_9561(ah))
932 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
933 
934 	if (AR_SREV_9300_20_OR_LATER(ah)) {
935 		imr_reg |= AR_IMR_RXOK_HP;
936 		if (ah->config.rx_intr_mitigation)
937 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
938 		else
939 			imr_reg |= AR_IMR_RXOK_LP;
940 
941 	} else {
942 		if (ah->config.rx_intr_mitigation)
943 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
944 		else
945 			imr_reg |= AR_IMR_RXOK;
946 	}
947 
948 	if (ah->config.tx_intr_mitigation)
949 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
950 	else
951 		imr_reg |= AR_IMR_TXOK;
952 
953 	ENABLE_REGWRITE_BUFFER(ah);
954 
955 	REG_WRITE(ah, AR_IMR, imr_reg);
956 	ah->imrs2_reg |= AR_IMR_S2_GTT;
957 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
958 
959 	if (!AR_SREV_9100(ah)) {
960 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
961 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
962 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
963 	}
964 
965 	REGWRITE_BUFFER_FLUSH(ah);
966 
967 	if (AR_SREV_9300_20_OR_LATER(ah)) {
968 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
969 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
970 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
971 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
972 	}
973 }
974 
975 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
976 {
977 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
978 	val = min(val, (u32) 0xFFFF);
979 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
980 }
981 
982 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
983 {
984 	u32 val = ath9k_hw_mac_to_clks(ah, us);
985 	val = min(val, (u32) 0xFFFF);
986 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
987 }
988 
989 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
990 {
991 	u32 val = ath9k_hw_mac_to_clks(ah, us);
992 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
993 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
994 }
995 
996 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
997 {
998 	u32 val = ath9k_hw_mac_to_clks(ah, us);
999 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1000 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1001 }
1002 
1003 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1004 {
1005 	if (tu > 0xFFFF) {
1006 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1007 			tu);
1008 		ah->globaltxtimeout = (u32) -1;
1009 		return false;
1010 	} else {
1011 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1012 		ah->globaltxtimeout = tu;
1013 		return true;
1014 	}
1015 }
1016 
1017 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1018 {
1019 	struct ath_common *common = ath9k_hw_common(ah);
1020 	const struct ath9k_channel *chan = ah->curchan;
1021 	int acktimeout, ctstimeout, ack_offset = 0;
1022 	int slottime;
1023 	int sifstime;
1024 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1025 	u32 reg;
1026 
1027 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1028 		ah->misc_mode);
1029 
1030 	if (!chan)
1031 		return;
1032 
1033 	if (ah->misc_mode != 0)
1034 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1035 
1036 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1037 		rx_lat = 41;
1038 	else
1039 		rx_lat = 37;
1040 	tx_lat = 54;
1041 
1042 	if (IS_CHAN_5GHZ(chan))
1043 		sifstime = 16;
1044 	else
1045 		sifstime = 10;
1046 
1047 	if (IS_CHAN_HALF_RATE(chan)) {
1048 		eifs = 175;
1049 		rx_lat *= 2;
1050 		tx_lat *= 2;
1051 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1052 		    tx_lat += 11;
1053 
1054 		sifstime = 32;
1055 		ack_offset = 16;
1056 		slottime = 13;
1057 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1058 		eifs = 340;
1059 		rx_lat = (rx_lat * 4) - 1;
1060 		tx_lat *= 4;
1061 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1062 		    tx_lat += 22;
1063 
1064 		sifstime = 64;
1065 		ack_offset = 32;
1066 		slottime = 21;
1067 	} else {
1068 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1069 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1070 			reg = AR_USEC_ASYNC_FIFO;
1071 		} else {
1072 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1073 				common->clockrate;
1074 			reg = REG_READ(ah, AR_USEC);
1075 		}
1076 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1077 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1078 
1079 		slottime = ah->slottime;
1080 	}
1081 
1082 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1083 	slottime += 3 * ah->coverage_class;
1084 	acktimeout = slottime + sifstime + ack_offset;
1085 	ctstimeout = acktimeout;
1086 
1087 	/*
1088 	 * Workaround for early ACK timeouts, add an offset to match the
1089 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1090 	 * This was initially only meant to work around an issue with delayed
1091 	 * BA frames in some implementations, but it has been found to fix ACK
1092 	 * timeout issues in other cases as well.
1093 	 */
1094 	if (IS_CHAN_2GHZ(chan) &&
1095 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1096 		acktimeout += 64 - sifstime - ah->slottime;
1097 		ctstimeout += 48 - sifstime - ah->slottime;
1098 	}
1099 
1100 	if (ah->dynack.enabled) {
1101 		acktimeout = ah->dynack.ackto;
1102 		ctstimeout = acktimeout;
1103 		slottime = (acktimeout - 3) / 2;
1104 	} else {
1105 		ah->dynack.ackto = acktimeout;
1106 	}
1107 
1108 	ath9k_hw_set_sifs_time(ah, sifstime);
1109 	ath9k_hw_setslottime(ah, slottime);
1110 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1111 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1112 	if (ah->globaltxtimeout != (u32) -1)
1113 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1114 
1115 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1116 	REG_RMW(ah, AR_USEC,
1117 		(common->clockrate - 1) |
1118 		SM(rx_lat, AR_USEC_RX_LAT) |
1119 		SM(tx_lat, AR_USEC_TX_LAT),
1120 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1121 
1122 }
1123 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1124 
1125 void ath9k_hw_deinit(struct ath_hw *ah)
1126 {
1127 	struct ath_common *common = ath9k_hw_common(ah);
1128 
1129 	if (common->state < ATH_HW_INITIALIZED)
1130 		return;
1131 
1132 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1133 }
1134 EXPORT_SYMBOL(ath9k_hw_deinit);
1135 
1136 /*******/
1137 /* INI */
1138 /*******/
1139 
1140 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1141 {
1142 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1143 
1144 	if (IS_CHAN_2GHZ(chan))
1145 		ctl |= CTL_11G;
1146 	else
1147 		ctl |= CTL_11A;
1148 
1149 	return ctl;
1150 }
1151 
1152 /****************************************/
1153 /* Reset and Channel Switching Routines */
1154 /****************************************/
1155 
1156 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1157 {
1158 	struct ath_common *common = ath9k_hw_common(ah);
1159 	int txbuf_size;
1160 
1161 	ENABLE_REGWRITE_BUFFER(ah);
1162 
1163 	/*
1164 	 * set AHB_MODE not to do cacheline prefetches
1165 	*/
1166 	if (!AR_SREV_9300_20_OR_LATER(ah))
1167 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1168 
1169 	/*
1170 	 * let mac dma reads be in 128 byte chunks
1171 	 */
1172 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1173 
1174 	REGWRITE_BUFFER_FLUSH(ah);
1175 
1176 	/*
1177 	 * Restore TX Trigger Level to its pre-reset value.
1178 	 * The initial value depends on whether aggregation is enabled, and is
1179 	 * adjusted whenever underruns are detected.
1180 	 */
1181 	if (!AR_SREV_9300_20_OR_LATER(ah))
1182 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1183 
1184 	ENABLE_REGWRITE_BUFFER(ah);
1185 
1186 	/*
1187 	 * let mac dma writes be in 128 byte chunks
1188 	 */
1189 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1190 
1191 	/*
1192 	 * Setup receive FIFO threshold to hold off TX activities
1193 	 */
1194 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1195 
1196 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1197 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1198 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1199 
1200 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1201 			ah->caps.rx_status_len);
1202 	}
1203 
1204 	/*
1205 	 * reduce the number of usable entries in PCU TXBUF to avoid
1206 	 * wrap around issues.
1207 	 */
1208 	if (AR_SREV_9285(ah)) {
1209 		/* For AR9285 the number of Fifos are reduced to half.
1210 		 * So set the usable tx buf size also to half to
1211 		 * avoid data/delimiter underruns
1212 		 */
1213 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1214 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1215 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1216 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1217 	} else {
1218 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1219 	}
1220 
1221 	if (!AR_SREV_9271(ah))
1222 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1223 
1224 	REGWRITE_BUFFER_FLUSH(ah);
1225 
1226 	if (AR_SREV_9300_20_OR_LATER(ah))
1227 		ath9k_hw_reset_txstatus_ring(ah);
1228 }
1229 
1230 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1231 {
1232 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1233 	u32 set = AR_STA_ID1_KSRCH_MODE;
1234 
1235 	ENABLE_REG_RMW_BUFFER(ah);
1236 	switch (opmode) {
1237 	case NL80211_IFTYPE_ADHOC:
1238 		if (!AR_SREV_9340_13(ah)) {
1239 			set |= AR_STA_ID1_ADHOC;
1240 			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1241 			break;
1242 		}
1243 		/* fall through */
1244 	case NL80211_IFTYPE_OCB:
1245 	case NL80211_IFTYPE_MESH_POINT:
1246 	case NL80211_IFTYPE_AP:
1247 		set |= AR_STA_ID1_STA_AP;
1248 		/* fall through */
1249 	case NL80211_IFTYPE_STATION:
1250 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1251 		break;
1252 	default:
1253 		if (!ah->is_monitoring)
1254 			set = 0;
1255 		break;
1256 	}
1257 	REG_RMW(ah, AR_STA_ID1, set, mask);
1258 	REG_RMW_BUFFER_FLUSH(ah);
1259 }
1260 
1261 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1262 				   u32 *coef_mantissa, u32 *coef_exponent)
1263 {
1264 	u32 coef_exp, coef_man;
1265 
1266 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1267 		if ((coef_scaled >> coef_exp) & 0x1)
1268 			break;
1269 
1270 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1271 
1272 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1273 
1274 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1275 	*coef_exponent = coef_exp - 16;
1276 }
1277 
1278 /* AR9330 WAR:
1279  * call external reset function to reset WMAC if:
1280  * - doing a cold reset
1281  * - we have pending frames in the TX queues.
1282  */
1283 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1284 {
1285 	int i, npend = 0;
1286 
1287 	for (i = 0; i < AR_NUM_QCU; i++) {
1288 		npend = ath9k_hw_numtxpending(ah, i);
1289 		if (npend)
1290 			break;
1291 	}
1292 
1293 	if (ah->external_reset &&
1294 	    (npend || type == ATH9K_RESET_COLD)) {
1295 		int reset_err = 0;
1296 
1297 		ath_dbg(ath9k_hw_common(ah), RESET,
1298 			"reset MAC via external reset\n");
1299 
1300 		reset_err = ah->external_reset();
1301 		if (reset_err) {
1302 			ath_err(ath9k_hw_common(ah),
1303 				"External reset failed, err=%d\n",
1304 				reset_err);
1305 			return false;
1306 		}
1307 
1308 		REG_WRITE(ah, AR_RTC_RESET, 1);
1309 	}
1310 
1311 	return true;
1312 }
1313 
1314 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1315 {
1316 	u32 rst_flags;
1317 	u32 tmpReg;
1318 
1319 	if (AR_SREV_9100(ah)) {
1320 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1321 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1322 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1323 	}
1324 
1325 	ENABLE_REGWRITE_BUFFER(ah);
1326 
1327 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1328 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1329 		udelay(10);
1330 	}
1331 
1332 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1333 		  AR_RTC_FORCE_WAKE_ON_INT);
1334 
1335 	if (AR_SREV_9100(ah)) {
1336 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1337 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1338 	} else {
1339 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1340 		if (AR_SREV_9340(ah))
1341 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1342 		else
1343 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1344 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1345 
1346 		if (tmpReg) {
1347 			u32 val;
1348 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1349 
1350 			val = AR_RC_HOSTIF;
1351 			if (!AR_SREV_9300_20_OR_LATER(ah))
1352 				val |= AR_RC_AHB;
1353 			REG_WRITE(ah, AR_RC, val);
1354 
1355 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1356 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1357 
1358 		rst_flags = AR_RTC_RC_MAC_WARM;
1359 		if (type == ATH9K_RESET_COLD)
1360 			rst_flags |= AR_RTC_RC_MAC_COLD;
1361 	}
1362 
1363 	if (AR_SREV_9330(ah)) {
1364 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1365 			return false;
1366 	}
1367 
1368 	if (ath9k_hw_mci_is_enabled(ah))
1369 		ar9003_mci_check_gpm_offset(ah);
1370 
1371 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1372 
1373 	REGWRITE_BUFFER_FLUSH(ah);
1374 
1375 	if (AR_SREV_9300_20_OR_LATER(ah))
1376 		udelay(50);
1377 	else if (AR_SREV_9100(ah))
1378 		mdelay(10);
1379 	else
1380 		udelay(100);
1381 
1382 	REG_WRITE(ah, AR_RTC_RC, 0);
1383 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1384 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1385 		return false;
1386 	}
1387 
1388 	if (!AR_SREV_9100(ah))
1389 		REG_WRITE(ah, AR_RC, 0);
1390 
1391 	if (AR_SREV_9100(ah))
1392 		udelay(50);
1393 
1394 	return true;
1395 }
1396 
1397 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1398 {
1399 	ENABLE_REGWRITE_BUFFER(ah);
1400 
1401 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1402 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1403 		udelay(10);
1404 	}
1405 
1406 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1407 		  AR_RTC_FORCE_WAKE_ON_INT);
1408 
1409 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1410 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1411 
1412 	REG_WRITE(ah, AR_RTC_RESET, 0);
1413 
1414 	REGWRITE_BUFFER_FLUSH(ah);
1415 
1416 	udelay(2);
1417 
1418 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1419 		REG_WRITE(ah, AR_RC, 0);
1420 
1421 	REG_WRITE(ah, AR_RTC_RESET, 1);
1422 
1423 	if (!ath9k_hw_wait(ah,
1424 			   AR_RTC_STATUS,
1425 			   AR_RTC_STATUS_M,
1426 			   AR_RTC_STATUS_ON,
1427 			   AH_WAIT_TIMEOUT)) {
1428 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1429 		return false;
1430 	}
1431 
1432 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1433 }
1434 
1435 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1436 {
1437 	bool ret = false;
1438 
1439 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1440 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1441 		udelay(10);
1442 	}
1443 
1444 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1445 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1446 
1447 	if (!ah->reset_power_on)
1448 		type = ATH9K_RESET_POWER_ON;
1449 
1450 	switch (type) {
1451 	case ATH9K_RESET_POWER_ON:
1452 		ret = ath9k_hw_set_reset_power_on(ah);
1453 		if (ret)
1454 			ah->reset_power_on = true;
1455 		break;
1456 	case ATH9K_RESET_WARM:
1457 	case ATH9K_RESET_COLD:
1458 		ret = ath9k_hw_set_reset(ah, type);
1459 		break;
1460 	default:
1461 		break;
1462 	}
1463 
1464 	return ret;
1465 }
1466 
1467 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1468 				struct ath9k_channel *chan)
1469 {
1470 	int reset_type = ATH9K_RESET_WARM;
1471 
1472 	if (AR_SREV_9280(ah)) {
1473 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1474 			reset_type = ATH9K_RESET_POWER_ON;
1475 		else
1476 			reset_type = ATH9K_RESET_COLD;
1477 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1478 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1479 		reset_type = ATH9K_RESET_COLD;
1480 
1481 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1482 		return false;
1483 
1484 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1485 		return false;
1486 
1487 	ah->chip_fullsleep = false;
1488 
1489 	if (AR_SREV_9330(ah))
1490 		ar9003_hw_internal_regulator_apply(ah);
1491 	ath9k_hw_init_pll(ah, chan);
1492 
1493 	return true;
1494 }
1495 
1496 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1497 				    struct ath9k_channel *chan)
1498 {
1499 	struct ath_common *common = ath9k_hw_common(ah);
1500 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1501 	bool band_switch = false, mode_diff = false;
1502 	u8 ini_reloaded = 0;
1503 	u32 qnum;
1504 	int r;
1505 
1506 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1507 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1508 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1509 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1510 	}
1511 
1512 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1513 		if (ath9k_hw_numtxpending(ah, qnum)) {
1514 			ath_dbg(common, QUEUE,
1515 				"Transmit frames pending on queue %d\n", qnum);
1516 			return false;
1517 		}
1518 	}
1519 
1520 	if (!ath9k_hw_rfbus_req(ah)) {
1521 		ath_err(common, "Could not kill baseband RX\n");
1522 		return false;
1523 	}
1524 
1525 	if (band_switch || mode_diff) {
1526 		ath9k_hw_mark_phy_inactive(ah);
1527 		udelay(5);
1528 
1529 		if (band_switch)
1530 			ath9k_hw_init_pll(ah, chan);
1531 
1532 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1533 			ath_err(common, "Failed to do fast channel change\n");
1534 			return false;
1535 		}
1536 	}
1537 
1538 	ath9k_hw_set_channel_regs(ah, chan);
1539 
1540 	r = ath9k_hw_rf_set_freq(ah, chan);
1541 	if (r) {
1542 		ath_err(common, "Failed to set channel\n");
1543 		return false;
1544 	}
1545 	ath9k_hw_set_clockrate(ah);
1546 	ath9k_hw_apply_txpower(ah, chan, false);
1547 
1548 	ath9k_hw_set_delta_slope(ah, chan);
1549 	ath9k_hw_spur_mitigate_freq(ah, chan);
1550 
1551 	if (band_switch || ini_reloaded)
1552 		ah->eep_ops->set_board_values(ah, chan);
1553 
1554 	ath9k_hw_init_bb(ah, chan);
1555 	ath9k_hw_rfbus_done(ah);
1556 
1557 	if (band_switch || ini_reloaded) {
1558 		ah->ah_flags |= AH_FASTCC;
1559 		ath9k_hw_init_cal(ah, chan);
1560 		ah->ah_flags &= ~AH_FASTCC;
1561 	}
1562 
1563 	return true;
1564 }
1565 
1566 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1567 {
1568 	u32 gpio_mask = ah->gpio_mask;
1569 	int i;
1570 
1571 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1572 		if (!(gpio_mask & 1))
1573 			continue;
1574 
1575 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1576 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1577 	}
1578 }
1579 
1580 void ath9k_hw_check_nav(struct ath_hw *ah)
1581 {
1582 	struct ath_common *common = ath9k_hw_common(ah);
1583 	u32 val;
1584 
1585 	val = REG_READ(ah, AR_NAV);
1586 	if (val != 0xdeadbeef && val > 0x7fff) {
1587 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1588 		REG_WRITE(ah, AR_NAV, 0);
1589 	}
1590 }
1591 EXPORT_SYMBOL(ath9k_hw_check_nav);
1592 
1593 bool ath9k_hw_check_alive(struct ath_hw *ah)
1594 {
1595 	int count = 50;
1596 	u32 reg, last_val;
1597 
1598 	if (AR_SREV_9300(ah))
1599 		return !ath9k_hw_detect_mac_hang(ah);
1600 
1601 	if (AR_SREV_9285_12_OR_LATER(ah))
1602 		return true;
1603 
1604 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1605 	do {
1606 		reg = REG_READ(ah, AR_OBS_BUS_1);
1607 		if (reg != last_val)
1608 			return true;
1609 
1610 		udelay(1);
1611 		last_val = reg;
1612 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1613 			continue;
1614 
1615 		switch (reg & 0x7E000B00) {
1616 		case 0x1E000000:
1617 		case 0x52000B00:
1618 		case 0x18000B00:
1619 			continue;
1620 		default:
1621 			return true;
1622 		}
1623 	} while (count-- > 0);
1624 
1625 	return false;
1626 }
1627 EXPORT_SYMBOL(ath9k_hw_check_alive);
1628 
1629 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1630 {
1631 	/* Setup MFP options for CCMP */
1632 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1633 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1634 		 * frames when constructing CCMP AAD. */
1635 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1636 			      0xc7ff);
1637 		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1638 			ah->sw_mgmt_crypto_tx = true;
1639 		else
1640 			ah->sw_mgmt_crypto_tx = false;
1641 		ah->sw_mgmt_crypto_rx = false;
1642 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1643 		/* Disable hardware crypto for management frames */
1644 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1645 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1646 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1647 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1648 		ah->sw_mgmt_crypto_tx = true;
1649 		ah->sw_mgmt_crypto_rx = true;
1650 	} else {
1651 		ah->sw_mgmt_crypto_tx = true;
1652 		ah->sw_mgmt_crypto_rx = true;
1653 	}
1654 }
1655 
1656 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1657 				  u32 macStaId1, u32 saveDefAntenna)
1658 {
1659 	struct ath_common *common = ath9k_hw_common(ah);
1660 
1661 	ENABLE_REGWRITE_BUFFER(ah);
1662 
1663 	REG_RMW(ah, AR_STA_ID1, macStaId1
1664 		  | AR_STA_ID1_RTS_USE_DEF
1665 		  | ah->sta_id1_defaults,
1666 		  ~AR_STA_ID1_SADH_MASK);
1667 	ath_hw_setbssidmask(common);
1668 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1669 	ath9k_hw_write_associd(ah);
1670 	REG_WRITE(ah, AR_ISR, ~0);
1671 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1672 
1673 	REGWRITE_BUFFER_FLUSH(ah);
1674 
1675 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1676 }
1677 
1678 static void ath9k_hw_init_queues(struct ath_hw *ah)
1679 {
1680 	int i;
1681 
1682 	ENABLE_REGWRITE_BUFFER(ah);
1683 
1684 	for (i = 0; i < AR_NUM_DCU; i++)
1685 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1686 
1687 	REGWRITE_BUFFER_FLUSH(ah);
1688 
1689 	ah->intr_txqs = 0;
1690 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1691 		ath9k_hw_resettxqueue(ah, i);
1692 }
1693 
1694 /*
1695  * For big endian systems turn on swapping for descriptors
1696  */
1697 static void ath9k_hw_init_desc(struct ath_hw *ah)
1698 {
1699 	struct ath_common *common = ath9k_hw_common(ah);
1700 
1701 	if (AR_SREV_9100(ah)) {
1702 		u32 mask;
1703 		mask = REG_READ(ah, AR_CFG);
1704 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1705 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1706 				mask);
1707 		} else {
1708 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1709 			REG_WRITE(ah, AR_CFG, mask);
1710 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1711 				REG_READ(ah, AR_CFG));
1712 		}
1713 	} else {
1714 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1715 			/* Configure AR9271 target WLAN */
1716 			if (AR_SREV_9271(ah))
1717 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1718 			else
1719 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1720 		}
1721 #ifdef __BIG_ENDIAN
1722 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1723 			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1724 			 AR_SREV_9561(ah))
1725 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1726 		else
1727 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1728 #endif
1729 	}
1730 }
1731 
1732 /*
1733  * Fast channel change:
1734  * (Change synthesizer based on channel freq without resetting chip)
1735  */
1736 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1737 {
1738 	struct ath_common *common = ath9k_hw_common(ah);
1739 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1740 	int ret;
1741 
1742 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1743 		goto fail;
1744 
1745 	if (ah->chip_fullsleep)
1746 		goto fail;
1747 
1748 	if (!ah->curchan)
1749 		goto fail;
1750 
1751 	if (chan->channel == ah->curchan->channel)
1752 		goto fail;
1753 
1754 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1755 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1756 		goto fail;
1757 
1758 	/*
1759 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1760 	 */
1761 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1762 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1763 		goto fail;
1764 
1765 	if (!ath9k_hw_check_alive(ah))
1766 		goto fail;
1767 
1768 	/*
1769 	 * For AR9462, make sure that calibration data for
1770 	 * re-using are present.
1771 	 */
1772 	if (AR_SREV_9462(ah) && (ah->caldata &&
1773 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1774 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1775 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1776 		goto fail;
1777 
1778 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1779 		ah->curchan->channel, chan->channel);
1780 
1781 	ret = ath9k_hw_channel_change(ah, chan);
1782 	if (!ret)
1783 		goto fail;
1784 
1785 	if (ath9k_hw_mci_is_enabled(ah))
1786 		ar9003_mci_2g5g_switch(ah, false);
1787 
1788 	ath9k_hw_loadnf(ah, ah->curchan);
1789 	ath9k_hw_start_nfcal(ah, true);
1790 
1791 	if (AR_SREV_9271(ah))
1792 		ar9002_hw_load_ani_reg(ah, chan);
1793 
1794 	return 0;
1795 fail:
1796 	return -EINVAL;
1797 }
1798 
1799 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1800 {
1801 	struct timespec ts;
1802 	s64 usec;
1803 
1804 	if (!cur) {
1805 		getrawmonotonic(&ts);
1806 		cur = &ts;
1807 	}
1808 
1809 	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1810 	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1811 
1812 	return (u32) usec;
1813 }
1814 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1815 
1816 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1817 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1818 {
1819 	struct ath_common *common = ath9k_hw_common(ah);
1820 	u32 saveLedState;
1821 	u32 saveDefAntenna;
1822 	u32 macStaId1;
1823 	u64 tsf = 0;
1824 	s64 usec = 0;
1825 	int r;
1826 	bool start_mci_reset = false;
1827 	bool save_fullsleep = ah->chip_fullsleep;
1828 
1829 	if (ath9k_hw_mci_is_enabled(ah)) {
1830 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1831 		if (start_mci_reset)
1832 			return 0;
1833 	}
1834 
1835 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1836 		return -EIO;
1837 
1838 	if (ah->curchan && !ah->chip_fullsleep)
1839 		ath9k_hw_getnf(ah, ah->curchan);
1840 
1841 	ah->caldata = caldata;
1842 	if (caldata && (chan->channel != caldata->channel ||
1843 			chan->channelFlags != caldata->channelFlags)) {
1844 		/* Operating channel changed, reset channel calibration data */
1845 		memset(caldata, 0, sizeof(*caldata));
1846 		ath9k_init_nfcal_hist_buffer(ah, chan);
1847 	} else if (caldata) {
1848 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1849 	}
1850 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1851 
1852 	if (fastcc) {
1853 		r = ath9k_hw_do_fastcc(ah, chan);
1854 		if (!r)
1855 			return r;
1856 	}
1857 
1858 	if (ath9k_hw_mci_is_enabled(ah))
1859 		ar9003_mci_stop_bt(ah, save_fullsleep);
1860 
1861 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1862 	if (saveDefAntenna == 0)
1863 		saveDefAntenna = 1;
1864 
1865 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1866 
1867 	/* Save TSF before chip reset, a cold reset clears it */
1868 	tsf = ath9k_hw_gettsf64(ah);
1869 	usec = ktime_to_us(ktime_get_raw());
1870 
1871 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1872 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1873 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1874 
1875 	ath9k_hw_mark_phy_inactive(ah);
1876 
1877 	ah->paprd_table_write_done = false;
1878 
1879 	/* Only required on the first reset */
1880 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1881 		REG_WRITE(ah,
1882 			  AR9271_RESET_POWER_DOWN_CONTROL,
1883 			  AR9271_RADIO_RF_RST);
1884 		udelay(50);
1885 	}
1886 
1887 	if (!ath9k_hw_chip_reset(ah, chan)) {
1888 		ath_err(common, "Chip reset failed\n");
1889 		return -EINVAL;
1890 	}
1891 
1892 	/* Only required on the first reset */
1893 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1894 		ah->htc_reset_init = false;
1895 		REG_WRITE(ah,
1896 			  AR9271_RESET_POWER_DOWN_CONTROL,
1897 			  AR9271_GATE_MAC_CTL);
1898 		udelay(50);
1899 	}
1900 
1901 	/* Restore TSF */
1902 	usec = ktime_to_us(ktime_get_raw()) - usec;
1903 	ath9k_hw_settsf64(ah, tsf + usec);
1904 
1905 	if (AR_SREV_9280_20_OR_LATER(ah))
1906 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1907 
1908 	if (!AR_SREV_9300_20_OR_LATER(ah))
1909 		ar9002_hw_enable_async_fifo(ah);
1910 
1911 	r = ath9k_hw_process_ini(ah, chan);
1912 	if (r)
1913 		return r;
1914 
1915 	ath9k_hw_set_rfmode(ah, chan);
1916 
1917 	if (ath9k_hw_mci_is_enabled(ah))
1918 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1919 
1920 	/*
1921 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1922 	 * right after the chip reset. When that happens, write a new
1923 	 * value after the initvals have been applied, with an offset
1924 	 * based on measured time difference
1925 	 */
1926 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1927 		tsf += 1500;
1928 		ath9k_hw_settsf64(ah, tsf);
1929 	}
1930 
1931 	ath9k_hw_init_mfp(ah);
1932 
1933 	ath9k_hw_set_delta_slope(ah, chan);
1934 	ath9k_hw_spur_mitigate_freq(ah, chan);
1935 	ah->eep_ops->set_board_values(ah, chan);
1936 
1937 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1938 
1939 	r = ath9k_hw_rf_set_freq(ah, chan);
1940 	if (r)
1941 		return r;
1942 
1943 	ath9k_hw_set_clockrate(ah);
1944 
1945 	ath9k_hw_init_queues(ah);
1946 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1947 	ath9k_hw_ani_cache_ini_regs(ah);
1948 	ath9k_hw_init_qos(ah);
1949 
1950 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1951 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1952 
1953 	ath9k_hw_init_global_settings(ah);
1954 
1955 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1956 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1957 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1958 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1959 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1960 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1961 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1962 	}
1963 
1964 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1965 
1966 	ath9k_hw_set_dma(ah);
1967 
1968 	if (!ath9k_hw_mci_is_enabled(ah))
1969 		REG_WRITE(ah, AR_OBS, 8);
1970 
1971 	ENABLE_REG_RMW_BUFFER(ah);
1972 	if (ah->config.rx_intr_mitigation) {
1973 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1974 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1975 	}
1976 
1977 	if (ah->config.tx_intr_mitigation) {
1978 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1979 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1980 	}
1981 	REG_RMW_BUFFER_FLUSH(ah);
1982 
1983 	ath9k_hw_init_bb(ah, chan);
1984 
1985 	if (caldata) {
1986 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1987 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1988 	}
1989 	if (!ath9k_hw_init_cal(ah, chan))
1990 		return -EIO;
1991 
1992 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1993 		return -EIO;
1994 
1995 	ENABLE_REGWRITE_BUFFER(ah);
1996 
1997 	ath9k_hw_restore_chainmask(ah);
1998 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1999 
2000 	REGWRITE_BUFFER_FLUSH(ah);
2001 
2002 	ath9k_hw_gen_timer_start_tsf2(ah);
2003 
2004 	ath9k_hw_init_desc(ah);
2005 
2006 	if (ath9k_hw_btcoex_is_enabled(ah))
2007 		ath9k_hw_btcoex_enable(ah);
2008 
2009 	if (ath9k_hw_mci_is_enabled(ah))
2010 		ar9003_mci_check_bt(ah);
2011 
2012 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2013 		ath9k_hw_loadnf(ah, chan);
2014 		ath9k_hw_start_nfcal(ah, true);
2015 	}
2016 
2017 	if (AR_SREV_9300_20_OR_LATER(ah))
2018 		ar9003_hw_bb_watchdog_config(ah);
2019 
2020 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2021 		ar9003_hw_disable_phy_restart(ah);
2022 
2023 	ath9k_hw_apply_gpio_override(ah);
2024 
2025 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2026 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2027 
2028 	if (ah->hw->conf.radar_enabled) {
2029 		/* set HW specific DFS configuration */
2030 		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2031 		ath9k_hw_set_radar_params(ah);
2032 	}
2033 
2034 	return 0;
2035 }
2036 EXPORT_SYMBOL(ath9k_hw_reset);
2037 
2038 /******************************/
2039 /* Power Management (Chipset) */
2040 /******************************/
2041 
2042 /*
2043  * Notify Power Mgt is disabled in self-generated frames.
2044  * If requested, force chip to sleep.
2045  */
2046 static void ath9k_set_power_sleep(struct ath_hw *ah)
2047 {
2048 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2049 
2050 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2051 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2052 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2053 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2054 		/* xxx Required for WLAN only case ? */
2055 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2056 		udelay(100);
2057 	}
2058 
2059 	/*
2060 	 * Clear the RTC force wake bit to allow the
2061 	 * mac to go to sleep.
2062 	 */
2063 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2064 
2065 	if (ath9k_hw_mci_is_enabled(ah))
2066 		udelay(100);
2067 
2068 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2069 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2070 
2071 	/* Shutdown chip. Active low */
2072 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2073 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2074 		udelay(2);
2075 	}
2076 
2077 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2078 	if (AR_SREV_9300_20_OR_LATER(ah))
2079 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2080 }
2081 
2082 /*
2083  * Notify Power Management is enabled in self-generating
2084  * frames. If request, set power mode of chip to
2085  * auto/normal.  Duration in units of 128us (1/8 TU).
2086  */
2087 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2088 {
2089 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2090 
2091 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2092 
2093 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2094 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2095 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2096 			  AR_RTC_FORCE_WAKE_ON_INT);
2097 	} else {
2098 
2099 		/* When chip goes into network sleep, it could be waken
2100 		 * up by MCI_INT interrupt caused by BT's HW messages
2101 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2102 		 * rate (~100us). This will cause chip to leave and
2103 		 * re-enter network sleep mode frequently, which in
2104 		 * consequence will have WLAN MCI HW to generate lots of
2105 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2106 		 * BT CPU to busy to process.
2107 		 */
2108 		if (ath9k_hw_mci_is_enabled(ah))
2109 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2110 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2111 		/*
2112 		 * Clear the RTC force wake bit to allow the
2113 		 * mac to go to sleep.
2114 		 */
2115 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2116 
2117 		if (ath9k_hw_mci_is_enabled(ah))
2118 			udelay(30);
2119 	}
2120 
2121 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2122 	if (AR_SREV_9300_20_OR_LATER(ah))
2123 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2124 }
2125 
2126 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2127 {
2128 	u32 val;
2129 	int i;
2130 
2131 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2132 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2133 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2134 		udelay(10);
2135 	}
2136 
2137 	if ((REG_READ(ah, AR_RTC_STATUS) &
2138 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2139 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2140 			return false;
2141 		}
2142 		if (!AR_SREV_9300_20_OR_LATER(ah))
2143 			ath9k_hw_init_pll(ah, NULL);
2144 	}
2145 	if (AR_SREV_9100(ah))
2146 		REG_SET_BIT(ah, AR_RTC_RESET,
2147 			    AR_RTC_RESET_EN);
2148 
2149 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2150 		    AR_RTC_FORCE_WAKE_EN);
2151 	if (AR_SREV_9100(ah))
2152 		mdelay(10);
2153 	else
2154 		udelay(50);
2155 
2156 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2157 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2158 		if (val == AR_RTC_STATUS_ON)
2159 			break;
2160 		udelay(50);
2161 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2162 			    AR_RTC_FORCE_WAKE_EN);
2163 	}
2164 	if (i == 0) {
2165 		ath_err(ath9k_hw_common(ah),
2166 			"Failed to wakeup in %uus\n",
2167 			POWER_UP_TIME / 20);
2168 		return false;
2169 	}
2170 
2171 	if (ath9k_hw_mci_is_enabled(ah))
2172 		ar9003_mci_set_power_awake(ah);
2173 
2174 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2175 
2176 	return true;
2177 }
2178 
2179 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2180 {
2181 	struct ath_common *common = ath9k_hw_common(ah);
2182 	int status = true;
2183 	static const char *modes[] = {
2184 		"AWAKE",
2185 		"FULL-SLEEP",
2186 		"NETWORK SLEEP",
2187 		"UNDEFINED"
2188 	};
2189 
2190 	if (ah->power_mode == mode)
2191 		return status;
2192 
2193 	ath_dbg(common, RESET, "%s -> %s\n",
2194 		modes[ah->power_mode], modes[mode]);
2195 
2196 	switch (mode) {
2197 	case ATH9K_PM_AWAKE:
2198 		status = ath9k_hw_set_power_awake(ah);
2199 		break;
2200 	case ATH9K_PM_FULL_SLEEP:
2201 		if (ath9k_hw_mci_is_enabled(ah))
2202 			ar9003_mci_set_full_sleep(ah);
2203 
2204 		ath9k_set_power_sleep(ah);
2205 		ah->chip_fullsleep = true;
2206 		break;
2207 	case ATH9K_PM_NETWORK_SLEEP:
2208 		ath9k_set_power_network_sleep(ah);
2209 		break;
2210 	default:
2211 		ath_err(common, "Unknown power mode %u\n", mode);
2212 		return false;
2213 	}
2214 	ah->power_mode = mode;
2215 
2216 	/*
2217 	 * XXX: If this warning never comes up after a while then
2218 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2219 	 * ath9k_hw_setpower() return type void.
2220 	 */
2221 
2222 	if (!(ah->ah_flags & AH_UNPLUGGED))
2223 		ATH_DBG_WARN_ON_ONCE(!status);
2224 
2225 	return status;
2226 }
2227 EXPORT_SYMBOL(ath9k_hw_setpower);
2228 
2229 /*******************/
2230 /* Beacon Handling */
2231 /*******************/
2232 
2233 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2234 {
2235 	int flags = 0;
2236 
2237 	ENABLE_REGWRITE_BUFFER(ah);
2238 
2239 	switch (ah->opmode) {
2240 	case NL80211_IFTYPE_ADHOC:
2241 		REG_SET_BIT(ah, AR_TXCFG,
2242 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2243 	case NL80211_IFTYPE_MESH_POINT:
2244 	case NL80211_IFTYPE_AP:
2245 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2246 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2247 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2248 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2249 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2250 		flags |=
2251 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2252 		break;
2253 	default:
2254 		ath_dbg(ath9k_hw_common(ah), BEACON,
2255 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2256 		return;
2257 		break;
2258 	}
2259 
2260 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2261 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2262 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2263 
2264 	REGWRITE_BUFFER_FLUSH(ah);
2265 
2266 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2267 }
2268 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2269 
2270 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2271 				    const struct ath9k_beacon_state *bs)
2272 {
2273 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2274 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2275 	struct ath_common *common = ath9k_hw_common(ah);
2276 
2277 	ENABLE_REGWRITE_BUFFER(ah);
2278 
2279 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2280 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2281 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2282 
2283 	REGWRITE_BUFFER_FLUSH(ah);
2284 
2285 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2286 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2287 
2288 	beaconintval = bs->bs_intval;
2289 
2290 	if (bs->bs_sleepduration > beaconintval)
2291 		beaconintval = bs->bs_sleepduration;
2292 
2293 	dtimperiod = bs->bs_dtimperiod;
2294 	if (bs->bs_sleepduration > dtimperiod)
2295 		dtimperiod = bs->bs_sleepduration;
2296 
2297 	if (beaconintval == dtimperiod)
2298 		nextTbtt = bs->bs_nextdtim;
2299 	else
2300 		nextTbtt = bs->bs_nexttbtt;
2301 
2302 	ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2303 	ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2304 	ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2305 	ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2306 
2307 	ENABLE_REGWRITE_BUFFER(ah);
2308 
2309 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2310 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2311 
2312 	REG_WRITE(ah, AR_SLEEP1,
2313 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2314 		  | AR_SLEEP1_ASSUME_DTIM);
2315 
2316 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2317 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2318 	else
2319 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2320 
2321 	REG_WRITE(ah, AR_SLEEP2,
2322 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2323 
2324 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2325 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2326 
2327 	REGWRITE_BUFFER_FLUSH(ah);
2328 
2329 	REG_SET_BIT(ah, AR_TIMER_MODE,
2330 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2331 		    AR_DTIM_TIMER_EN);
2332 
2333 	/* TSF Out of Range Threshold */
2334 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2335 }
2336 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2337 
2338 /*******************/
2339 /* HW Capabilities */
2340 /*******************/
2341 
2342 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2343 {
2344 	eeprom_chainmask &= chip_chainmask;
2345 	if (eeprom_chainmask)
2346 		return eeprom_chainmask;
2347 	else
2348 		return chip_chainmask;
2349 }
2350 
2351 /**
2352  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2353  * @ah: the atheros hardware data structure
2354  *
2355  * We enable DFS support upstream on chipsets which have passed a series
2356  * of tests. The testing requirements are going to be documented. Desired
2357  * test requirements are documented at:
2358  *
2359  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2360  *
2361  * Once a new chipset gets properly tested an individual commit can be used
2362  * to document the testing for DFS for that chipset.
2363  */
2364 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2365 {
2366 
2367 	switch (ah->hw_version.macVersion) {
2368 	/* for temporary testing DFS with 9280 */
2369 	case AR_SREV_VERSION_9280:
2370 	/* AR9580 will likely be our first target to get testing on */
2371 	case AR_SREV_VERSION_9580:
2372 		return true;
2373 	default:
2374 		return false;
2375 	}
2376 }
2377 
2378 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2379 {
2380 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2381 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2382 	struct ath_common *common = ath9k_hw_common(ah);
2383 
2384 	u16 eeval;
2385 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2386 
2387 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2388 	regulatory->current_rd = eeval;
2389 
2390 	if (ah->opmode != NL80211_IFTYPE_AP &&
2391 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2392 		if (regulatory->current_rd == 0x64 ||
2393 		    regulatory->current_rd == 0x65)
2394 			regulatory->current_rd += 5;
2395 		else if (regulatory->current_rd == 0x41)
2396 			regulatory->current_rd = 0x43;
2397 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2398 			regulatory->current_rd);
2399 	}
2400 
2401 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2402 
2403 	if (eeval & AR5416_OPFLAGS_11A) {
2404 		if (ah->disable_5ghz)
2405 			ath_warn(common, "disabling 5GHz band\n");
2406 		else
2407 			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2408 	}
2409 
2410 	if (eeval & AR5416_OPFLAGS_11G) {
2411 		if (ah->disable_2ghz)
2412 			ath_warn(common, "disabling 2GHz band\n");
2413 		else
2414 			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2415 	}
2416 
2417 	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2418 		ath_err(common, "both bands are disabled\n");
2419 		return -EINVAL;
2420 	}
2421 
2422 	if (AR_SREV_9485(ah) ||
2423 	    AR_SREV_9285(ah) ||
2424 	    AR_SREV_9330(ah) ||
2425 	    AR_SREV_9565(ah))
2426 		pCap->chip_chainmask = 1;
2427 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2428 		pCap->chip_chainmask = 7;
2429 	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2430 		 AR_SREV_9340(ah) ||
2431 		 AR_SREV_9462(ah) ||
2432 		 AR_SREV_9531(ah))
2433 		pCap->chip_chainmask = 3;
2434 	else
2435 		pCap->chip_chainmask = 7;
2436 
2437 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2438 	/*
2439 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2440 	 * the EEPROM.
2441 	 */
2442 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2443 	    !(eeval & AR5416_OPFLAGS_11A) &&
2444 	    !(AR_SREV_9271(ah)))
2445 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2446 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2447 	else if (AR_SREV_9100(ah))
2448 		pCap->rx_chainmask = 0x7;
2449 	else
2450 		/* Use rx_chainmask from EEPROM. */
2451 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2452 
2453 	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2454 	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2455 	ah->txchainmask = pCap->tx_chainmask;
2456 	ah->rxchainmask = pCap->rx_chainmask;
2457 
2458 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2459 
2460 	/* enable key search for every frame in an aggregate */
2461 	if (AR_SREV_9300_20_OR_LATER(ah))
2462 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2463 
2464 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2465 
2466 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2467 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2468 	else
2469 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2470 
2471 	if (AR_SREV_9271(ah))
2472 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2473 	else if (AR_DEVID_7010(ah))
2474 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2475 	else if (AR_SREV_9300_20_OR_LATER(ah))
2476 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2477 	else if (AR_SREV_9287_11_OR_LATER(ah))
2478 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2479 	else if (AR_SREV_9285_12_OR_LATER(ah))
2480 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2481 	else if (AR_SREV_9280_20_OR_LATER(ah))
2482 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2483 	else
2484 		pCap->num_gpio_pins = AR_NUM_GPIO;
2485 
2486 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2487 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2488 	else
2489 		pCap->rts_aggr_limit = (8 * 1024);
2490 
2491 #ifdef CONFIG_ATH9K_RFKILL
2492 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2493 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2494 		ah->rfkill_gpio =
2495 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2496 		ah->rfkill_polarity =
2497 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2498 
2499 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2500 	}
2501 #endif
2502 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2503 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2504 	else
2505 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2506 
2507 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2508 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2509 	else
2510 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2511 
2512 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2513 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2514 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2515 		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2516 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2517 
2518 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2519 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2520 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2521 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2522 		pCap->txs_len = sizeof(struct ar9003_txs);
2523 	} else {
2524 		pCap->tx_desc_len = sizeof(struct ath_desc);
2525 		if (AR_SREV_9280_20(ah))
2526 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2527 	}
2528 
2529 	if (AR_SREV_9300_20_OR_LATER(ah))
2530 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2531 
2532 	if (AR_SREV_9561(ah))
2533 		ah->ent_mode = 0x3BDA000;
2534 	else if (AR_SREV_9300_20_OR_LATER(ah))
2535 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2536 
2537 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2538 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2539 
2540 	if (AR_SREV_9285(ah)) {
2541 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2542 			ant_div_ctl1 =
2543 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2544 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2545 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2546 				ath_info(common, "Enable LNA combining\n");
2547 			}
2548 		}
2549 	}
2550 
2551 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2552 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2553 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2554 	}
2555 
2556 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2557 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2558 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2559 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2560 			ath_info(common, "Enable LNA combining\n");
2561 		}
2562 	}
2563 
2564 	if (ath9k_hw_dfs_tested(ah))
2565 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2566 
2567 	tx_chainmask = pCap->tx_chainmask;
2568 	rx_chainmask = pCap->rx_chainmask;
2569 	while (tx_chainmask || rx_chainmask) {
2570 		if (tx_chainmask & BIT(0))
2571 			pCap->max_txchains++;
2572 		if (rx_chainmask & BIT(0))
2573 			pCap->max_rxchains++;
2574 
2575 		tx_chainmask >>= 1;
2576 		rx_chainmask >>= 1;
2577 	}
2578 
2579 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2580 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2581 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2582 
2583 		if (AR_SREV_9462_20_OR_LATER(ah))
2584 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2585 	}
2586 
2587 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2588 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2589 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2590 
2591 #ifdef CONFIG_ATH9K_WOW
2592 	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2593 		ah->wow.max_patterns = MAX_NUM_PATTERN;
2594 	else
2595 		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2596 #endif
2597 
2598 	return 0;
2599 }
2600 
2601 /****************************/
2602 /* GPIO / RFKILL / Antennae */
2603 /****************************/
2604 
2605 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2606 					 u32 gpio, u32 type)
2607 {
2608 	int addr;
2609 	u32 gpio_shift, tmp;
2610 
2611 	if (gpio > 11)
2612 		addr = AR_GPIO_OUTPUT_MUX3;
2613 	else if (gpio > 5)
2614 		addr = AR_GPIO_OUTPUT_MUX2;
2615 	else
2616 		addr = AR_GPIO_OUTPUT_MUX1;
2617 
2618 	gpio_shift = (gpio % 6) * 5;
2619 
2620 	if (AR_SREV_9280_20_OR_LATER(ah)
2621 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2622 		REG_RMW(ah, addr, (type << gpio_shift),
2623 			(0x1f << gpio_shift));
2624 	} else {
2625 		tmp = REG_READ(ah, addr);
2626 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2627 		tmp &= ~(0x1f << gpio_shift);
2628 		tmp |= (type << gpio_shift);
2629 		REG_WRITE(ah, addr, tmp);
2630 	}
2631 }
2632 
2633 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2634 {
2635 	u32 gpio_shift;
2636 
2637 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2638 
2639 	if (AR_DEVID_7010(ah)) {
2640 		gpio_shift = gpio;
2641 		REG_RMW(ah, AR7010_GPIO_OE,
2642 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2643 			(AR7010_GPIO_OE_MASK << gpio_shift));
2644 		return;
2645 	}
2646 
2647 	gpio_shift = gpio << 1;
2648 	REG_RMW(ah,
2649 		AR_GPIO_OE_OUT,
2650 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2651 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2652 }
2653 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2654 
2655 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2656 {
2657 #define MS_REG_READ(x, y) \
2658 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2659 
2660 	if (gpio >= ah->caps.num_gpio_pins)
2661 		return 0xffffffff;
2662 
2663 	if (AR_DEVID_7010(ah)) {
2664 		u32 val;
2665 		val = REG_READ(ah, AR7010_GPIO_IN);
2666 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2667 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2668 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2669 			AR_GPIO_BIT(gpio)) != 0;
2670 	else if (AR_SREV_9271(ah))
2671 		return MS_REG_READ(AR9271, gpio) != 0;
2672 	else if (AR_SREV_9287_11_OR_LATER(ah))
2673 		return MS_REG_READ(AR9287, gpio) != 0;
2674 	else if (AR_SREV_9285_12_OR_LATER(ah))
2675 		return MS_REG_READ(AR9285, gpio) != 0;
2676 	else if (AR_SREV_9280_20_OR_LATER(ah))
2677 		return MS_REG_READ(AR928X, gpio) != 0;
2678 	else
2679 		return MS_REG_READ(AR, gpio) != 0;
2680 }
2681 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2682 
2683 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2684 			 u32 ah_signal_type)
2685 {
2686 	u32 gpio_shift;
2687 
2688 	if (AR_DEVID_7010(ah)) {
2689 		gpio_shift = gpio;
2690 		REG_RMW(ah, AR7010_GPIO_OE,
2691 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2692 			(AR7010_GPIO_OE_MASK << gpio_shift));
2693 		return;
2694 	}
2695 
2696 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2697 	gpio_shift = 2 * gpio;
2698 	REG_RMW(ah,
2699 		AR_GPIO_OE_OUT,
2700 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2701 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2702 }
2703 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2704 
2705 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2706 {
2707 	if (AR_DEVID_7010(ah)) {
2708 		val = val ? 0 : 1;
2709 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2710 			AR_GPIO_BIT(gpio));
2711 		return;
2712 	}
2713 
2714 	if (AR_SREV_9271(ah))
2715 		val = ~val;
2716 
2717 	if ((1 << gpio) & AR_GPIO_OE_OUT_MASK)
2718 		REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2719 			AR_GPIO_BIT(gpio));
2720 	else
2721 		gpio_set_value(gpio, val & 1);
2722 }
2723 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2724 
2725 void ath9k_hw_request_gpio(struct ath_hw *ah, u32 gpio, const char *label)
2726 {
2727 	if (gpio >= ah->caps.num_gpio_pins)
2728 		return;
2729 
2730 	gpio_request_one(gpio, GPIOF_DIR_OUT | GPIOF_INIT_LOW, label);
2731 }
2732 EXPORT_SYMBOL(ath9k_hw_request_gpio);
2733 
2734 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2735 {
2736 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2737 }
2738 EXPORT_SYMBOL(ath9k_hw_setantenna);
2739 
2740 /*********************/
2741 /* General Operation */
2742 /*********************/
2743 
2744 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2745 {
2746 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2747 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2748 
2749 	if (phybits & AR_PHY_ERR_RADAR)
2750 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2751 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2752 		bits |= ATH9K_RX_FILTER_PHYERR;
2753 
2754 	return bits;
2755 }
2756 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2757 
2758 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2759 {
2760 	u32 phybits;
2761 
2762 	ENABLE_REGWRITE_BUFFER(ah);
2763 
2764 	REG_WRITE(ah, AR_RX_FILTER, bits);
2765 
2766 	phybits = 0;
2767 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2768 		phybits |= AR_PHY_ERR_RADAR;
2769 	if (bits & ATH9K_RX_FILTER_PHYERR)
2770 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2771 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2772 
2773 	if (phybits)
2774 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2775 	else
2776 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2777 
2778 	REGWRITE_BUFFER_FLUSH(ah);
2779 }
2780 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2781 
2782 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2783 {
2784 	if (ath9k_hw_mci_is_enabled(ah))
2785 		ar9003_mci_bt_gain_ctrl(ah);
2786 
2787 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2788 		return false;
2789 
2790 	ath9k_hw_init_pll(ah, NULL);
2791 	ah->htc_reset_init = true;
2792 	return true;
2793 }
2794 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2795 
2796 bool ath9k_hw_disable(struct ath_hw *ah)
2797 {
2798 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2799 		return false;
2800 
2801 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2802 		return false;
2803 
2804 	ath9k_hw_init_pll(ah, NULL);
2805 	return true;
2806 }
2807 EXPORT_SYMBOL(ath9k_hw_disable);
2808 
2809 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2810 {
2811 	enum eeprom_param gain_param;
2812 
2813 	if (IS_CHAN_2GHZ(chan))
2814 		gain_param = EEP_ANTENNA_GAIN_2G;
2815 	else
2816 		gain_param = EEP_ANTENNA_GAIN_5G;
2817 
2818 	return ah->eep_ops->get_eeprom(ah, gain_param);
2819 }
2820 
2821 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2822 			    bool test)
2823 {
2824 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2825 	struct ieee80211_channel *channel;
2826 	int chan_pwr, new_pwr, max_gain;
2827 	int ant_gain, ant_reduction = 0;
2828 
2829 	if (!chan)
2830 		return;
2831 
2832 	channel = chan->chan;
2833 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2834 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2835 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2836 
2837 	ant_gain = get_antenna_gain(ah, chan);
2838 	if (ant_gain > max_gain)
2839 		ant_reduction = ant_gain - max_gain;
2840 
2841 	ah->eep_ops->set_txpower(ah, chan,
2842 				 ath9k_regd_get_ctl(reg, chan),
2843 				 ant_reduction, new_pwr, test);
2844 }
2845 
2846 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2847 {
2848 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2849 	struct ath9k_channel *chan = ah->curchan;
2850 	struct ieee80211_channel *channel = chan->chan;
2851 
2852 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2853 	if (test)
2854 		channel->max_power = MAX_RATE_POWER / 2;
2855 
2856 	ath9k_hw_apply_txpower(ah, chan, test);
2857 
2858 	if (test)
2859 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2860 }
2861 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2862 
2863 void ath9k_hw_setopmode(struct ath_hw *ah)
2864 {
2865 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2866 }
2867 EXPORT_SYMBOL(ath9k_hw_setopmode);
2868 
2869 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2870 {
2871 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2872 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2873 }
2874 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2875 
2876 void ath9k_hw_write_associd(struct ath_hw *ah)
2877 {
2878 	struct ath_common *common = ath9k_hw_common(ah);
2879 
2880 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2881 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2882 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2883 }
2884 EXPORT_SYMBOL(ath9k_hw_write_associd);
2885 
2886 #define ATH9K_MAX_TSF_READ 10
2887 
2888 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2889 {
2890 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2891 	int i;
2892 
2893 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2894 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2895 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2896 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2897 		if (tsf_upper2 == tsf_upper1)
2898 			break;
2899 		tsf_upper1 = tsf_upper2;
2900 	}
2901 
2902 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2903 
2904 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2905 }
2906 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2907 
2908 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2909 {
2910 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2911 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2912 }
2913 EXPORT_SYMBOL(ath9k_hw_settsf64);
2914 
2915 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2916 {
2917 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2918 			   AH_TSF_WRITE_TIMEOUT))
2919 		ath_dbg(ath9k_hw_common(ah), RESET,
2920 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2921 
2922 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2923 }
2924 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2925 
2926 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2927 {
2928 	if (set)
2929 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2930 	else
2931 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2932 }
2933 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2934 
2935 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2936 {
2937 	u32 macmode;
2938 
2939 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2940 		macmode = AR_2040_JOINED_RX_CLEAR;
2941 	else
2942 		macmode = 0;
2943 
2944 	REG_WRITE(ah, AR_2040_MODE, macmode);
2945 }
2946 
2947 /* HW Generic timers configuration */
2948 
2949 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2950 {
2951 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2952 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2953 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2954 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2955 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2956 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2957 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2958 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2959 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2960 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2961 				AR_NDP2_TIMER_MODE, 0x0002},
2962 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2963 				AR_NDP2_TIMER_MODE, 0x0004},
2964 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2965 				AR_NDP2_TIMER_MODE, 0x0008},
2966 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2967 				AR_NDP2_TIMER_MODE, 0x0010},
2968 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2969 				AR_NDP2_TIMER_MODE, 0x0020},
2970 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2971 				AR_NDP2_TIMER_MODE, 0x0040},
2972 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2973 				AR_NDP2_TIMER_MODE, 0x0080}
2974 };
2975 
2976 /* HW generic timer primitives */
2977 
2978 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2979 {
2980 	return REG_READ(ah, AR_TSF_L32);
2981 }
2982 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2983 
2984 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
2985 {
2986 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2987 
2988 	if (timer_table->tsf2_enabled) {
2989 		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
2990 		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
2991 	}
2992 }
2993 
2994 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2995 					  void (*trigger)(void *),
2996 					  void (*overflow)(void *),
2997 					  void *arg,
2998 					  u8 timer_index)
2999 {
3000 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3001 	struct ath_gen_timer *timer;
3002 
3003 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3004 	    (timer_index >= ATH_MAX_GEN_TIMER))
3005 		return NULL;
3006 
3007 	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3008 	    !AR_SREV_9300_20_OR_LATER(ah))
3009 		return NULL;
3010 
3011 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3012 	if (timer == NULL)
3013 		return NULL;
3014 
3015 	/* allocate a hardware generic timer slot */
3016 	timer_table->timers[timer_index] = timer;
3017 	timer->index = timer_index;
3018 	timer->trigger = trigger;
3019 	timer->overflow = overflow;
3020 	timer->arg = arg;
3021 
3022 	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3023 		timer_table->tsf2_enabled = true;
3024 		ath9k_hw_gen_timer_start_tsf2(ah);
3025 	}
3026 
3027 	return timer;
3028 }
3029 EXPORT_SYMBOL(ath_gen_timer_alloc);
3030 
3031 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3032 			      struct ath_gen_timer *timer,
3033 			      u32 timer_next,
3034 			      u32 timer_period)
3035 {
3036 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3037 	u32 mask = 0;
3038 
3039 	timer_table->timer_mask |= BIT(timer->index);
3040 
3041 	/*
3042 	 * Program generic timer registers
3043 	 */
3044 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3045 		 timer_next);
3046 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3047 		  timer_period);
3048 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3049 		    gen_tmr_configuration[timer->index].mode_mask);
3050 
3051 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3052 		/*
3053 		 * Starting from AR9462, each generic timer can select which tsf
3054 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3055 		 * 8 - 15  use tsf2.
3056 		 */
3057 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3058 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3059 				       (1 << timer->index));
3060 		else
3061 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3062 				       (1 << timer->index));
3063 	}
3064 
3065 	if (timer->trigger)
3066 		mask |= SM(AR_GENTMR_BIT(timer->index),
3067 			   AR_IMR_S5_GENTIMER_TRIG);
3068 	if (timer->overflow)
3069 		mask |= SM(AR_GENTMR_BIT(timer->index),
3070 			   AR_IMR_S5_GENTIMER_THRESH);
3071 
3072 	REG_SET_BIT(ah, AR_IMR_S5, mask);
3073 
3074 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3075 		ah->imask |= ATH9K_INT_GENTIMER;
3076 		ath9k_hw_set_interrupts(ah);
3077 	}
3078 }
3079 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3080 
3081 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3082 {
3083 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3084 
3085 	/* Clear generic timer enable bits. */
3086 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3087 			gen_tmr_configuration[timer->index].mode_mask);
3088 
3089 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3090 		/*
3091 		 * Need to switch back to TSF if it was using TSF2.
3092 		 */
3093 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3094 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3095 				    (1 << timer->index));
3096 		}
3097 	}
3098 
3099 	/* Disable both trigger and thresh interrupt masks */
3100 	REG_CLR_BIT(ah, AR_IMR_S5,
3101 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3102 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3103 
3104 	timer_table->timer_mask &= ~BIT(timer->index);
3105 
3106 	if (timer_table->timer_mask == 0) {
3107 		ah->imask &= ~ATH9K_INT_GENTIMER;
3108 		ath9k_hw_set_interrupts(ah);
3109 	}
3110 }
3111 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3112 
3113 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3114 {
3115 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3116 
3117 	/* free the hardware generic timer slot */
3118 	timer_table->timers[timer->index] = NULL;
3119 	kfree(timer);
3120 }
3121 EXPORT_SYMBOL(ath_gen_timer_free);
3122 
3123 /*
3124  * Generic Timer Interrupts handling
3125  */
3126 void ath_gen_timer_isr(struct ath_hw *ah)
3127 {
3128 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3129 	struct ath_gen_timer *timer;
3130 	unsigned long trigger_mask, thresh_mask;
3131 	unsigned int index;
3132 
3133 	/* get hardware generic timer interrupt status */
3134 	trigger_mask = ah->intr_gen_timer_trigger;
3135 	thresh_mask = ah->intr_gen_timer_thresh;
3136 	trigger_mask &= timer_table->timer_mask;
3137 	thresh_mask &= timer_table->timer_mask;
3138 
3139 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3140 		timer = timer_table->timers[index];
3141 		if (!timer)
3142 		    continue;
3143 		if (!timer->overflow)
3144 		    continue;
3145 
3146 		trigger_mask &= ~BIT(index);
3147 		timer->overflow(timer->arg);
3148 	}
3149 
3150 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3151 		timer = timer_table->timers[index];
3152 		if (!timer)
3153 		    continue;
3154 		if (!timer->trigger)
3155 		    continue;
3156 		timer->trigger(timer->arg);
3157 	}
3158 }
3159 EXPORT_SYMBOL(ath_gen_timer_isr);
3160 
3161 /********/
3162 /* HTC  */
3163 /********/
3164 
3165 static struct {
3166 	u32 version;
3167 	const char * name;
3168 } ath_mac_bb_names[] = {
3169 	/* Devices with external radios */
3170 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3171 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3172 	{ AR_SREV_VERSION_9100,		"9100" },
3173 	{ AR_SREV_VERSION_9160,		"9160" },
3174 	/* Single-chip solutions */
3175 	{ AR_SREV_VERSION_9280,		"9280" },
3176 	{ AR_SREV_VERSION_9285,		"9285" },
3177 	{ AR_SREV_VERSION_9287,         "9287" },
3178 	{ AR_SREV_VERSION_9271,         "9271" },
3179 	{ AR_SREV_VERSION_9300,         "9300" },
3180 	{ AR_SREV_VERSION_9330,         "9330" },
3181 	{ AR_SREV_VERSION_9340,		"9340" },
3182 	{ AR_SREV_VERSION_9485,         "9485" },
3183 	{ AR_SREV_VERSION_9462,         "9462" },
3184 	{ AR_SREV_VERSION_9550,         "9550" },
3185 	{ AR_SREV_VERSION_9565,         "9565" },
3186 	{ AR_SREV_VERSION_9531,         "9531" },
3187 	{ AR_SREV_VERSION_9561,         "9561" },
3188 };
3189 
3190 /* For devices with external radios */
3191 static struct {
3192 	u16 version;
3193 	const char * name;
3194 } ath_rf_names[] = {
3195 	{ 0,				"5133" },
3196 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3197 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3198 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3199 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3200 };
3201 
3202 /*
3203  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3204  */
3205 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3206 {
3207 	int i;
3208 
3209 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3210 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3211 			return ath_mac_bb_names[i].name;
3212 		}
3213 	}
3214 
3215 	return "????";
3216 }
3217 
3218 /*
3219  * Return the RF name. "????" is returned if the RF is unknown.
3220  * Used for devices with external radios.
3221  */
3222 static const char *ath9k_hw_rf_name(u16 rf_version)
3223 {
3224 	int i;
3225 
3226 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3227 		if (ath_rf_names[i].version == rf_version) {
3228 			return ath_rf_names[i].name;
3229 		}
3230 	}
3231 
3232 	return "????";
3233 }
3234 
3235 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3236 {
3237 	int used;
3238 
3239 	/* chipsets >= AR9280 are single-chip */
3240 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3241 		used = scnprintf(hw_name, len,
3242 				 "Atheros AR%s Rev:%x",
3243 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3244 				 ah->hw_version.macRev);
3245 	}
3246 	else {
3247 		used = scnprintf(hw_name, len,
3248 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3249 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3250 				 ah->hw_version.macRev,
3251 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3252 						  & AR_RADIO_SREV_MAJOR)),
3253 				 ah->hw_version.phyRev);
3254 	}
3255 
3256 	hw_name[used] = '\0';
3257 }
3258 EXPORT_SYMBOL(ath9k_hw_name);
3259